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Abstract

In order to accommodate the high demand for performance in smartphones, mo-

bile cloud computing techniques, which aim to enhance a smartphone’s performance

through utilizing powerful cloud servers, were suggested. Among such techniques, ex-

ecution offloading, which migrates a thread between a mobile device and a server, is

often employed. In such execution offloading techniques, it is typical to dynamically

decide what code part is to be offloaded through decision making algorithms. In order

to achieve optimal offloading performance, however, the gain and cost of offloading

must be predicted accurately for such algorithms. Previous works did not try hard to

do this because it is usually expensive to make an accurate prediction.

Moreover, existing schemes completely ignore the costs of cloud resources by

assuming that idle servers are always available for free of charge. These unrealistic

assumptions make each server run only a small load to achieve the guaranteed high

offload performance. Therefore, these schemes cannot be applied to real-world com-

mercial clouds which aim to minimize the operation costs by maximizing the server

throughput, and then charge users for their resource usage.

Thus in this dissertation, I present Mantis, a framework for predicting the Compu-

tational Resource Consumption(CRC) of Android applications on given inputs accu-

rately, and efficiently. Mantis synergistically combines techniques from program anal-

ysis and machine learning. It constructs concise CRC models by choosing from many

program execution features only a handful that are most correlated with the program’s

CRC metric yet can be evaluated efficiently from the program’s input. I apply program

slicing to reduce evaluation time of a feature and automatically generate executable

code snippets for efficiently evaluating features. Using the techniques, I empirically
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show they enhance the performance of offloading. Lately, I propose CMcloud, a novel

cost-effective mobile-to-cloud offloading platform, which works nicely under the real-

world cloud environments. CMcloud minimizes both the server costs and the user

service fee by offloading as many mobile applications to a single server as possible,

while satisfying the target performance of all applications.

Keywords: Mobile Cloud Computing, Smartphone, Performance prediction, Mobile

Offloading

Student Number: 2010-30209
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Chapter 1

Introduction

1.1 Mobile Execution Offloading

Smartphones have become an essential part of a modern man’s life, with around a bil-

lion devices activated worldwide for the Android platform alone. With its wide range

of functions, such as GPS or cameras, and general purpose processors with gigabytes

of storage, it has become natural to deploy more and more complex applications on

smartphones. These applications, however, require a considerable amount of energy

and computational power. As a result, users have to match the increasing computa-

tional complexity of applications with newer hardware. Yet they still suffer from lim-

ited battery lifetime all the same.

Mobile cloud computing, which utilizes cloud alongside mobile devices, is a promis-

ing approach to alleviate this problem. Within a mobile cloud computing framework,

mobile devices do not need powerful hardware because most of the complicated com-

putations are handled in the cloud. This approach extends battery lifetime, enables

the use of the computation power of cloud systems, which typically exceed even the
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newest mobile hardware, and lessens the need to upgrade user’s devices.

In recent years, techniques called mobile execution offloading, which is the act of

transferring execution between smartphones and servers during run time, were pro-

posed as a way of implementing mobile cloud computing. When an execution of a

program thread on the smartphone gets to a certain point in its code, the thread is sus-

pended and its current state for execution is packaged and shipped to a server. There,

the thread is reconstructed from the shipped state and is resumed until it reaches the

point to return, where it packages and transfers its state back to the smartphone. Fi-

nally, the original thread is updated by these states and is resumed.

1.2 Dynamic Code Partitioning

In ideal cases where the costs for state transfer and update can be neglected, any code

region except for those using device resources like GPS or screens would benefit from

remote execution. This is obvious because the server processor speed is much faster,

and virtually no energy of the mobile device would be consumed while the thread runs

on the server. In reality, however, the costs for state capturing and transferring may

not be negligible and might even be a dominant factor that inhibits the regions from

executing remotely. To mitigate the transfer cost, Yang et al. [1] dramatically reduced

the size of transferred state by finding only the essential state needed to recreate a

program on the server. Even with such efforts, however, the state transfer cost can

still be high and inconstant in some cases, so offloading frameworks needed a way to

selectively offload only when the code regions would benefit from the offloading.

It is for this reason that most mobile execution offloading frameworks implement

a dynamic code partitioning module, which is also called the solver. The solver’s key

task is to determine which part of the program should be offloaded to the remote server

for better performance by weighing the performance gains against the costs from the
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action of offloading at a certain point in the program. To accurately compare the gains

with the costs, the solver should have an ability of predicting the program performance

as precisely as possible before actual offloading is made. There have been several

studies to build such solvers for their offloading frameworks. In most of the studies,

they use the history-based prediction approach where they utilize the past profiled

information as a basis for performance prediction of future runs [2, 3, 4, 5].

For example in CloneCloud [2], they statically profile past information to make a

set of decisions, called scenarios, which describe what code regions are to be offloaded

at which runtime network condition(3G or WiFi). However, they have no regard for

effects of inputs on program performance. In MAUI [3], they use the dynamically

profiled information of a method as the predictor of future invocations. The history-

based approach basically assumes that the program performance will be consistent

regardless of the program input and environment. This assumption may hold for many

applications, as empirically demonstrated by [3], in practice. However we have also

found many other applications to which this does not apply because their performance

is very sensitive to input values, that is, varying dynamically depending on the values.

1.3 Cost-effectivity of Mobile Execution Offloading

The existing offload schemes depend on many unrealistic assumptions as they blindly

ignore the costs of using servers in the cloud. For example, they assume that a target

server is always available for free of charge, the server’s load is always idle or stable,

the application has been previously profiled for the target server, and the post-offload

performance matches the user-expected performance. As a result, the existing schemes

naturally choose to offload a mobile application to a free server in the cloud.

Therefore, the existing offload schemes are not suitable for real-world commercial

cloud environments, where the cloud provider charges the users based on their cloud
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resource usage and each server aims to run as many applications as possible to max-

imize the server throughput or minimize the server costs (i.e., oversubscription). In

such highly-utilized clouds, the cloud provider cannot estimate the user application’s

post-offload performance on target cloud servers. If a target server is running other

applications, the application’s profiled performance will not match the actual post-

offload performance, which leads to a critical Quality-of-Service (QoS) failure. On the

other hand, if the cloud provider forces to maintain the initial profiling state of servers

(e.g., idle or static load,) it fails to increase the server throughput, which leads to the

increased server costs and the user service fee.

As a result, the real-world commercial cloud environments require a new cost-

effective offloading scheme which can satisfy two fundamental requirements. First,

the cloud provider must maximize the server throughput (or reduce the server costs) by

running many mobile applications per server. Second, the cloud provider must satisfy

the application’s user-expected post-offload performance using the minimum server

resources.

1.4 Dissertation Contributions and Outline

To overcome the input-sensitivity problem of performance, in this dissertation, I pro-

pose an alternative performance approach for execution offloading, which we call

feature-based prediction. Then, to make it work nicely under the real-world cloud

environments, I propose CMcloud, a novel cost-effective mobile cloud platform.

In Chapter 2, I introduce Mantis, a new framework to predict execution time, en-

ergy consumption, memory allocation and memory requirement of bytecode programs

on given inputs accurately and efficiently. I demonstrate how the proposed approach

extracts and utilizes program features for the predictions.

In Chapter 3, I propose a new offloading solver which uses f Mantis,an extension

4



of Mantis. Based on the prediction results by f Mantis, the solver precisely offloads

mobile programs in order to match the user’s various needs. The solver also prevent

out-of-memory error.

In Chapter 4, I propose CMcloud, a novel cost-effective mobile cloud platform,

which works nicely under the real-world cloud environments. CMcloud exploits a

novel performance modeling methodology for estimating the target application’s post-

offload performance on any target server, regardless of its current utilization. At the

same time, CMcloud allows to offload as many applications to each server as possible

without violating the applications’ user-expected performance. In this way, CMcloud

can offer to users its QoS-guaranteed offload service at a very low price, while mini-

mizing the cloud operation costs.

Chapter 5 concludes this dissertation with a summary and discussion of future

directions.
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Chapter 2

Mantis: Efficient Predictions of
Execution Time, Energy Usage,
Memory Usage and Network Usage on
Smart Mobile Devices

2.1 Introduction

Predicting the consumption of computational resources, such as computation time,

memory capacity, energy consumption and network characteristics, of programs on

smart mobile devices has many applications such as, notifying the estimated comple-

tion time to users, achieving better scheduling and resource management, testing ap-

plications, detecting anomalies, or offloading computation [6, 7, 8]. The importance of

these applications—and of program performance prediction—will only grow as smart-

phone systems become increasingly complex and flexible.

Many techniques have been proposed for predicting the computational resource

consumption(CRC) of programs. A key aspect of such techniques is what features,

which characterize the program’s input and environment, are used to model the pro-
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gram’s CRC. Features that are trivial and efficient to obtain, such as input parameters,

input size or cpu speed, can be enough to build an accurate predictor for some applica-

tions [9]. However, in many cases, additional features need to be extracted from within

an application to accurately predict an its performance. Most existing CRC prediction

techniques are domain-specific [10, 11, 12] or requiring expert knowledge [13, 14].

We present Mantis, a new framework to predict online the CRC of bytecode pro-

grams on given inputs accurately, and efficiently. Since it uses neither domain nor

expert knowledge to obtain relevant features, our framework casts a wide net and ex-

tracts a broad set of features from the given program itself to select relevant features

using machine learning as done in our prior work [15]. During an offline stage, we

execute an instrumented version of the program on a set of training inputs to compute

values for those features; We use the training data set to construct a prediction model

for online evaluation as new inputs arrive.

It is tempting to exploit features that are evaluated at late stages of program exe-

cution as such features may be strongly correlated with CRC. A drawback of naı̈vely

using such features for predicting program CRC, however, is that it takes as long to

evaluate them as to execute almost the entire program. Our efficiency goal requires our

framework to not only find features that are strongly correlated with CRC, but to also

evaluate those features significantly faster than running the program to completion.

To exploit such late-evaluated features, we use a program analysis technique called

program slicing [16, 17]. Given a feature, slicing computes the set of all statements in

the program that may affect the value of the feature. Precise slicing could prune large

portions of the program that are irrelevant to the evaluation of features. Our slices are

stand-alone executable programs; thus, executing them on program inputs provides

both the evaluation time and the value of the corresponding feature.

We have implemented Mantis for Android applications and applied it to six CPU-

intensive applications (Encryptor, Path Routing, Spam Filter, Chess Engine, Ring-
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tone Maker, and Face Detection), an I/O-intensive application (JTar) and a Network-

intensive application (SorTube) on four smartphone hardware platforms (Galaxy Nexus,

Galaxy S2, Galaxy S3, Nexus 5). We demonstrate experimentally that, with Galaxy

Nexus, Mantis can predict the execution time, the energy consumption, the accumu-

lated memory allocation, the memory requirement and network usage of these pro-

grams with estimation error mostly under 5%, with a few exceptions peaking at 11.1%,

by executing slices that spend at most 1.3% of the total execution time of these pro-

grams. The results for Galaxy S2 and Galaxy S3 are similar. We also briefly show the

impact Mantis could have on mobile execution offloading.

We summarize the key contributions of our work:

• We propose a novel framework that automatically generates CRC predictors us-

ing program-execution features with program slicing and machine learning.

• We have implemented our framework for Android-smartphone applications and

show empirically that it can predict the execution time of various applications

accurately and efficiently.

• We show that Mantis can predict other CRC metrics, energy consumption, accu-

mulated memory allocation and memory requirement, with only implementation

of its own CRC metric profiler.

• We show an example of Mantis predictors enhancing the performance of smart-

phones.

The rest of the chapter is organized as follows. We present the architecture of our

framework in Section 2.2. Sections 2.3 and 2.4 describe our feature instrumentation

and CRC-model generation, respectively. Section 2.5 describes predictor code gener-

ation using program slicing. In Section 2.6, we present our system implementation
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Figure 2.1 The Mantis offline stage.

and in Section 2.7, we present evaluation results. Finally, we discuss related work in

Section 2.8 and conclude in Section 2.9.

2.2 Architecture

In Mantis, we take a new approach to automatically generate system CRC predictors.

Unlike traditional approaches, we extract information from the execution of the pro-

gram, which is likely to contain key features for CRC prediction. This approach poses

the following two key challenges:

• What are good program features for CRC prediction? Among many features,

which ones are relevant to CRC metrics? How do we model CRC with relevant

features?

• How do we compute features cheaply? How do we automatically generate code

to compute feature values for prediction?

Mantis addresses the above challenges by synergistically combining techniques

from program analysis and machine learning.

Mantis has an offline stage and an online stage. The offline stage, depicted in Fig-

ure 2.1, consists of four components: a feature instrumentor, a profiler, a CRC-model
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generator, and a predictor code generator.

The feature instrumentor (Section 2.3), takes as input the program whose CRC is

to be predicted, and a set of feature instrumentation schemes. A scheme specifies a

broad class of program features that are potentially correlated with the program’s CRC

metrics. Examples of schemes include a feature for counting the number of times each

conditional in the program evaluates to true, a feature for the average of all values

taken by each integer-typed variable in the program, etc. The feature instrumentor in-

struments the program to collect the values of features (f1, ..., fM ) as per the schemes.

Next, the profiler takes the instrumented program and a set of user-supplied pro-

gram inputs (I1, ..., IN ). It runs the instrumented program on each of these inputs and

produces, for each input Ii, a vector of feature values (vi1, ..., viM ). It also runs the

program on the given inputs and measures the CRC metric (e.g., execution time (ti),

memory size (mi) or energy consumption (ei)) of the program on that input.

The CRC-model generator (Section 2.4) performs sparse nonlinear regression on

the feature values and CRC metrics obtained by the profiler, and produces a function

(λ) that approximates the program’s CRC metrics using a subset of features (fi1, ..., fiK).

In practice, only a tiny fraction of all M available features is chosen (K ≪ M ) since

most features exhibit little variability on different program inputs, are not correlated

or only weakly correlated with CRC metrics, or are equivalent in value to the chosen

features and therefore redundant.

As a final step, the predictor code generator (Section 2.5) produces for each of the

chosen features a code snippet from the instrumented program. Since our requirement

is to efficiently predict the program’s CRC on given inputs, we need a way to efficiently

evaluate each of the chosen features (fi1, ..., fiK) from program inputs.

We apply program slicing to extract a small code snippet that computes the value

of each chosen feature. A precise slicer would prune large portions of the original pro-

gram that are irrelevant to evaluating a given feature and thereby provide an efficient
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way to evaluate the feature. In practice, however, our framework must be able to toler-

ate imprecision. Besides, independent of the slicer’s precision, certain features will be

inherently expensive to evaluate: e.g., features whose value is computed upon program

termination, rather than derived from the program’s input. We define a feature as ex-

pensive to evaluate if the execution time of its slice exceeds a threshold (TH) expressed

as a fraction of program execution time. If any of the chosen features (fi1, ..., fiK) is

expensive, then via the feedback loop in Figure 2.1 (at the bottom), our framework re-

runs the model generator, this time without providing it with the rejected features. The

process is repeated until the model generator produces a set of features, all of which

are deemed inexpensive by the slicer. In summary, the output of the offline stage of

our framework is a predictor, which consists of a function (λ) over the final chosen

features that approximates the program’s CRC, along with a feature evaluator for the

chosen features.

The online stage is straightforward: it takes a program input from which the pro-

gram’s CRC must be predicted and runs the predictor module, which executes the

feature evaluator on that input to compute feature values, and uses those values to

compute λ as the estimated CRC of the program on that input.

2.3 Feature Instrumentation

We now present details on the four instrumentation schemes we consider: branch

counts, loop counts, method-call counts, and variable values. Our overall framework,

however, generalizes to all schemes that can be implemented by the insertion of simple

tracking-statements into binaries or source.

Branch Counts: This scheme generates, for each conditional occurring in the pro-

gram, two features: one counting the number of times the branch evaluates to true in
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an execution, and the other counting the number of times it evaluates to false.

Loop Counts: This scheme generates, for each loop occurring in the program, a fea-

ture counting the number of times it iterates in an execution. Clearly, each such feature

is potentially correlated with execution time.

Method Call Counts: This scheme generates a feature counting the number of calls to

each procedure. In case of recursive calls of methods, this feature is likely to correlate

with execution time.

Variable Values: This scheme generates, for each statement that writes to a variable

of primitive type in the program, two features tracking the sum and average of all

values written to the variable in an execution. One can also instrument versions of

variable values in program execution to capture which variables are static and what

value changes each variable has. However, this creates too many feature values and we

resort to the simpler scheme.

We instrument variable values for a few reasons. First, often the variable values ob-

tained from input parameters and configurations are changing infrequently, and these

values tend to affect program execution by changing control flow. Second, since we

cannot instrument all functions (e.g., system call handlers), the values of parameters

to such functions may be correlated with their execution-time contribution. Similarly,

variable value features can be equivalent to other types of features but significantly

cheaper to compute.

2.4 CRC Modeling

Our feature instrumentation schemes generate a large number of features (albeit linear

in the size of the program for the schemes we consider). Most of these features, how-

ever, are not expected to be useful for the CRC prediction. In practice we expect a small
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number of these features to suffice in explaining the program’s execution time well,

and thereby seek a compact CRC model, that is, a function of (nonlinear combinations

of) just a few features that accurately approximates execution time. Unfortunately, we

do not know a priori this handful of features and their nonlinear combinations that

predict execution time well.

For a given program, our feature instrumentation profiler outputs a data set with N

samples as tuples of {ti,vi}Ni=1, where ti ∈ R denotes the ith observation of execution

time, and vi denotes the ith observation of the vector of M features.

Least square regression is widely used for finding the best-fitting λ(v, β) to a given

set of responses ti by minimizing the sum of the squares of the residuals [18]. However,

least square regression tends to overfit the data and create complex models with poor

interpretability. This does not serve our purpose since we have a lot of features but

desire only a small subset of them to contribute to the model.

Another challenge we faced was that linear regression with feature selection would

not capture all interesting behaviors by practical programs. Many such programs have

non-linear, e.g., polynomial, logarithmic, or polylogarithmic complexity. So we were

interested in non-linear models, which can be inefficient for the large number of fea-

tures we had to contend with.

Regression with best subset selection finds for each K ∈ {1, 2, . . . ,M} the subset

of size K that gives the smallest Residual Sum of Squares (RSS). However, it is a dis-

crete optimization problem and is known to be NP-hard [18]. In recent years a number

of approximate algorithms have been proposed as efficient alternatives for simultane-

ous feature selection and model fitting. Widely used among them are LASSO (Least

Absolute Shrinkage and Selection Operator) [19] and FoBa [20], an adaptive forward-

backward greedy algorithm. The former, LASSO, is based on model regularization,

penalizing low-selectivity, high-complexity models. It is a convex optimization prob-

lem, so efficiently solvable [21, 22]. The latter, FoBa, is an iterative greedy pursuit
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algorithm: during each iteration, only a small number of features are actually involved

in model fitting, adding or removing the chosen features at each iteration to reduce

the RSS. As shown FoBa has nice theoretical properties and efficient inference algo-

rithms [20].

For our system, we chose the SPORE-FoBa algorithm, which we proposed [15],

to build a predictive model from collected features. In our work, we showed that

SPORE-FoBa outperforms LASSO and FoBa. The FoBa component of the algorithm

helps cut down the number of interesting features first, and the SPORE component

builds a fixed-degree (d) polynomial of all selected features, on which it then applies

sparse, polynomial regression to build the model. For example, using a degree-2 poly-

nomial with feature vector v = [x1 x2], we expand out (1 + x1 + x2)
2 to get terms

1, x1, x2, x
2
1, x1x2, x

2
2, and use them as basis functions to construct the following

function for regression:

f(v) = β0 + β1x1 + β2x2 + β3x
2
1 + β4x1x2 + β5x

2
2.

The resulting model can capture polynomial or sub-polynomial program complexities

well thanks to Taylor expansion, which characterizes the vast majority of practical

programs.

For a program whose execution time may dynamically change over time as the

workload changes, our CRC model should evolve accordingly. The model can evolve

in two ways: 1) the set of (non-linear) feature terms used in the model change; 2)

with a fixed set of feature terms, their coefficients β′
js change. For a relatively stable

program, we expect the former changes much less frequently than the latter. Using

methods based on Stochastic Gradient Descent [23], it is feasible to update the set

of feature terms and their coefficients β′
js online upon every execution time being

collected.
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2.5 Predictor Code Generation

The function output by the CRC model generator is intended to efficiently predict the

program’s CRC on given program inputs. This requires a way to efficiently evaluate

the features that appear in the function on those inputs. Many existing techniques rely

on users to provide feature evaluators. A key contribution of our approach is the use

of static program slicing [16, 17] to automatically extract from the (instrumented)

program efficient feature evaluators in the form of executable slices—stand-alone ex-

ecutable programs whose sole goal is to evaluate the features. This section explains

the rationale underlying our feature slicing (Section 2.5.1), describes the challenges of

slicing and our approach to addressing them (Section 2.5.2), and provides the design

of our slicer (Section 2.5.3).

2.5.1 Rationale

Given a program and a slicing criterion (p, v), where v is a program variable in scope

at program point p, a slice is an executable sub-program of the given program that

yields the same value of v at p as the given program, on all inputs. The goal of static

slicing is to yield as small a sub-program as possible. It involves computing data and

control dependencies for the slicing criterion, and excluding parts of the program upon

which the slicing criterion is neither data- nor control-dependent.

In the absence of user intervention or slicing, a naı̈ve approach to evaluate features

would be to simply execute the (instrumented) program until all features of interest

have been evaluated. This approach, however, can be grossly inefficient. Besides, our

framework relies on feature evaluators to obtain the cost of each feature, so that it

can iteratively reject costly features from the CRC model. Thus, the naı̈ve approach to

evaluate features could grossly overestimate the cost of cheap features. We illustrate

these problems with the naı̈ve approach using two examples.
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Example 1: A Java program may read a system property lazily, late in its execution,

and depending upon its value decide whether or not to perform an expensive compu-

tation:

. . . ; / / e x p e n s i v e c o m p u t a t i o n S1

S t r i n g s = System . g e t P r o p e r t y ( . . . ) ;

i f ( s . e q u a l s ( . . . ) ) {

f t r u e ++; / / f e a t u r e i n s t r u m e n t a t i o n

. . . ; / / e x p e n s i v e c o m p u t a t i o n S2

}

In this case, feature f true generated by our framework to track the number of times

the above branch evaluates to true will be highly predictive of the execution time. How-

ever, the naı̈ve approach for evaluating this feature will always perform the expensive

computation denoted by S1. In contrast, slicing this program with slicing criterion

(p exit, f true), where p exit is the exit point of the program, will produce a

feature evaluator that excludes S1 (and S2), assuming the value of f true is truly

independent of computation S1 and the slicer is precise enough.

Example 2: This example illustrates a case in which the computation relevant to eval-

uating a feature is interleaved with computation that is expensive but irrelevant to

evaluating the feature. The following program opens an input text file, reads each line

in the file, and performs an expensive computation on it (denoted by the call to the

process method):

Reader r = new Reader ( new F i l e ( name ) ) ;

S t r i n g s ;

w h i l e ( ( s = r . r e a d L i n e ( ) ) != n u l l ) {
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f l o o p ++; / / f e a t u r e i n s t .

p r o c e s s ( s ) ; / / e x p e n s i v e c o m p u t a t i o n

}

Assuming the number of lines in the input file is strongly correlated with the pro-

gram’s execution time, the only highly predictive feature available to our framework

is f loop, which tracks the number of iterations of the loop. The naı̈ve approach to

evaluate this feature will perform the expensive computation denoted by the process

method in each iteration, even if the number of times the loop iterates is independent

of it. Slicing this program with slicing criterion (p exit, f loop), on the other hand,

can yield a slice that excludes the calls to process(s).

The above two examples illustrate cases where the feature is fundamentally cheap

to evaluate but slicing is required because the program is written in a manner that

intertwines its evaluation with unrelated expensive computation.

2.5.2 Slicer Challenges

There are several key challenges to effective static slicing. Next we discuss these chal-

lenges and the approaches we take to address them. Three of these are posed by pro-

gram artifacts—procedures, the heap, and concurrency—and the fourth is posed by

our requirement that the slices be executable.

Inter-procedural Analysis: The slicer must compute data and control dependencies

efficiently and precisely. In particular, it must propagate these dependencies context-

sensitively, that is, only along inter-procedurally realizable program paths—doing oth-

erwise could result in inferring false dependencies and, ultimately, grossly imprecise

slices. Our slicer uses existing precise and efficient inter-procedural algorithms from

the literature [24, 25].
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Alias Analysis: False data dependencies (and thereby false control dependencies as

well) can also arise due to aliasing, i.e., two or more expressions pointing to the same

memory location. Alias analysis is expensive. The use of an imprecise alias analysis by

the slicer can lead to false dependencies. Static slicing needs may-alias information—

analysis identifying expressions that may be aliases in at least some executions—to

conservatively compute all data dependencies. In particular, it must generate a data

dependency from an instance field write u.f (or an array element write u[i]) to a

read v.f (or v[i]) in the program if u and v may-alias. Additionally, static slicing

can also use must-alias information if available (expressions that are always aliases in

all executions), to kill dependencies that no longer hold as a result of instance field and

array element writes in the program. Our slicer uses a flow- and context-insensitive

may-alias analysis with object allocation site heap abstraction [26].

Concurrency Analysis: Multi-threaded programs pose an additional challenge to static

slicing due to the possibility of inter-thread data dependencies: reads of instance fields,

array elements, and static fields (i.e., global variables) are not just data-dependent on

writes in the same thread, but also on writes in other threads. Precise static slicing re-

quires a precise static race detector to compute such data dependencies. Our may-alias

analysis, however, suffices for our purpose (a race detector would perform additional

analyses like thread-escape analysis, may-happen-in-parallel analysis, etc.)

Executable Slices: We require slices to be executable. In contrast, most of the liter-

ature on program slicing focuses on its application to program debugging, with the

goal of highlighting a small set of statements to help the programmer debug a par-

ticular problem (e.g., Sirdharan et al.[27]). As a result, their slices do not need to be

executable. Ensuring that the generated slices are executable requires extensive engi-

neering so that the run-time does not complain about malformed slices, e.g., the first

statement of each constructor must be a call to the super constructor even though the

body of that super constructor is sliced away, method signatures must not be altered,
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etc.

2.5.3 Slicer Design

Our slicer combines several existing algorithms to produce executable slices. The

slicer operates on a three-address-like intermediate representation of the bytecode of

the given program.

Computing System Dependence Graph: For each method reachable from the pro-

gram’s root method (e.g., main) by our call-graph analysis, we build a Program De-

pendence Graph (PDG) [25], whose nodes are statements in the body of the method

and whose edges represent intra-procedural data/control dependencies between them.

For uniform treatment of memory locations in subsequent steps of the slicer, this step

also performs a mod-ref analysis1 and creates additional nodes in each PDG denoting

implicit arguments for heap locations and globals possibly read in the method, and

return results for those possibly modified in the method.

The PDGs constructed for all methods are stitched into a System Dependence

Graph (SDG) [25], which represents inter-procedural data/control dependencies. This

involves creating extra edges (so-called linkage-entry and linkage-exit edges) linking

actual to formal arguments and formal to actual return results, respectively.

In building PDGs, we handle Java native methods, which are built with JNI calls,

specially. We implement simple stubs to represent these native methods for the static

analysis. We examine the code of the native method and write a stub that has the same

dependencies between the arguments of the method, the return value of the method,

and the class variables used inside the method as does the native method itself. We

currently perform this step manually. Once a stub for a method is written, the stub can
1This finds all expressions that a method may modify-ref erence directly, or via some method it tran-

sitively calls.
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be reused for further analyses.

Augmenting System Dependence Graph: This step uses the algorithm by Reps, Hor-

witz, Sagiv, and Rosay [24] to augment the SDG with summary edges, which are edges

summarizing the data/control dependencies of each method in terms of its formal ar-

guments and return results.

Two-Pass Reachability: The above two steps are more computationally expensive

but are performed once and for all for a given program, independent of the slicing

criterion. This step takes as input a slicing criterion and the augmented SDG, and

produces as output the set of all statements on which the slicing criterion may depend.

It uses the two-pass backward reachability algorithm proposed by Horwitz, Reps, and

Binkley [25] on the augmented SDG.

Translation: As a final step, we translate the slicer code based on intermediate repre-

sentation to bytecode.

Extra Steps for Executable Slices: A set of program statements identified by the

described algorithm may not meet Java language requirements. This problem needs to

be resolved to create executable slices.

First, we need to handle accesses to static fields and heap locations (instance fields

and array elements). Therefore, when building an SDG, we identify all such accesses

in a method and create formal-in vertices for those read and formal-out for those writ-

ten along with corresponding actual-in and actual-out vertices. Second, there may be

uninitialized parameters if they are not included in a slice. We opt to keep method

signatures, hence we initialize them with default values. Third, there are methods not

reachable from a main method but rather called from the VM directly (e.g., class ini-

tializers). These methods will not be included in a slice by the algorithm but still may

affect the slicing criterion. Therefore, we do not slice out such code. Fourth, when a

new object creation is in a slice, the corresponding constructor invocation may not. To

address this, we create a control dependency between object creations and correspond-
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Figure 2.2 Mantis prototype toolchain.

ing constructor invocations to ensure that they are also in the slice. Fifth, a constructor

of a class except the Object class must include a call to a constructor of its parent class.

Hence we include such calls when they are missing in a slice. Sixth, the first parameter

of an instance method call is a reference to the associated object. Therefore if such a

call site is in a slice, the first parameter has to be in the slice too and we ensure this.

2.6 Implementations

We have built a prototype of Mantis implementing the instrumentor, profiler, model

generator and predictor code generator (Figure 2.2). The prototype is built to work

with Android application binaries. We implemented the feature instrumentor using

Javassist [28], which is a Java bytecode rewriting library. The profiler is made of scripts

automatically running the program for CRC metric data and the instrumented program

for feature data on the test inputs. After the corresponding CRC profiler has gathered

the profile data, it is used by the model generator, which is written in Octave [29]
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scripts. Finally, we implemented our predictor code generator in Java and Datalog by

extending JChord [30], a static and dynamic Java program-analysis tool. JChord uses

the Joeq Java compiler framework to convert the bytecode of the input Java program

into a three-address-like intermediate code called quadcode, which is more suitable

for analysis. The predictor code generator produces the quadcode slice, which is the

smallest subprogram that could obtain the selected features. Each quad instruction is

translated to a corresponding set of Jasmin [31] assembly code, and then the Jasmin

compiler generates the final Java bytecode.

We have applied the prototype to Android applications. Before Android applica-

tions are translated to Dalvik Executables (DEX), their Java source code is first com-

piled into Java bytecode. Mantis works with this bytecode and translates it to DEX to

run on the device. Mantis could work with DEX directly, as soon as a translator from

DEX to Joeq becomes available.

To show Mantis can work with various CRC metrics, we chose five CRC metrics

to implement, execution time, energy consumption, accumulated memory allocation,

memory requirement and network usage. Execution time is the amount of time needed

for an application to run and energy consumption shows how much energy will be

consumed when a program is executed. Accumulated memory allocation is the total

sum of memory allocation during an application’s runtime and memory requirement

represents the absolute minimum amount of free memory needed to run an application.

Finally, network usage shows how much data will be transferred through networks. As

each CRC metric needs to be measured differently, we have implemented profilers for

each metric needs its own personally tailored profiler. The following explains in detail

how each profiler is implemented and run.

Execution time Profiler: To profile execution time, we insert a simple code to notify

us when the program finishes in the end of the program. Then for each run of the pro-
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gram on the test input, we record the time when we start the program and record the

time when we are notified that the program has ended. We use the difference between

these two recorded values as the execution time for that particular run.

Energy Consumption Profiler: As the energy consumption measured by the Android

system is not accurate enough, we used an external device [32] to attain a more accu-

rate measurement of the energy consumed by a single run of an application. In order

to get the energy consumption data of a single application run, we first ready the appli-

cation and its input on the device, then we start the external device and a few moments

later we run the application. After the application finishes we stop the external device

and save the data, which is the energy consumption of that particular run. As with the

other profilers the process is fully automated.

Accumulated memory allocation Profiler: For the profiling of accumulated memory

allocation, we utilized the Debug class from Android. As the method getGlobalAl-

locSize from the Debug class gives the global size of objects allocated by the runtime

between a start and stop point, we simply instrument the target application to insert the

starting and stopping point at the beginning and the end of the program respectively,

and to call the getGlobalAllocSize method right after the stop point. By running this

the newly instrumented code, we can collect the value returned from getGlobalAlloc-

Size as the accumulated memory allocation.

Memory requirement Profiler: In Android 2.3(gingerbread) or higher, which in-

cludes the version we used, when heap allocation fails, the dalvik garbage collector

concurrently runs to reclaim memory space which will not be accessed any more. We

have modified the dalvik vm to execute garbage collection whenever heap allocation

is requested, even when the allocation succeeds, so that heap space is always main-
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tained at a minimum size, just barely enough to run the program. We have extracted

the memory requirement of each run from analysing the garbage collection log.

2.7 Evaluation

2.7.1 Evaluation Environment

We mainly use for our experiments, Galaxy Nexus running Android 4.1.2 with dual-

core 1.2Ghz CPU and 1GB RAM. We run our experiments with a server to run the

instrumentor, model generator, and predictor code generator, as well as a smartphone

to run the codes for profiling and generated predictor codes for slicing evaluation. The

server runs Ubuntu 11.10 64-bit with a 3.1GHz quad-core CPU, and 8GB of RAM.

All experiments were done using Java SE 64-bit 1.6.0 30.

The selected applications — Encryptor, Path Routing, Spam Filter, Chess Engine,

Ringtone Maker, Face Detection, Tar Archive and SorTube — cover a broad range of

CPU, I/O and network intensive functionalities found in most Android-applications.

Their execution times are sensitive to inputs, challenging to model. Below we describe

the applications and the input set we used for experiments in detail.

We evaluate Mantis on randomly generated inputs for each application. These in-

puts achieve 95-100% basic-block coverage, except exception handling. We generate

1,000 random test inputs with their random range specified for each application. The

predictor for each application is trained on 100 random inputs that fall within 60% of

the specified random range. For each platform, we run Mantis to generate predictors

and measure their error and running time. The threshold is set to 5%, which means a

generated predictor is accepted only if the predictor running time is less than 5% of

the original program’s completion time.

• Encryptor: This encrypts a file using a matrix as a key. Inputs are the file and
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the matrix key. We use 1,000 files, each with its own matrix key. File size ranges

from 10 KB to 8000 KB, and keys are 200× 200 square matrices.

• Path Routing: This computes the shortest path from one point to another on a

map (as in navigation and game applications). We use 1,000 maps, each with

100-200 locations, and random paths among them. We queried a route for a

single random pair of locations for each map.

• Spam Filter: This application filters spam messages based on a collective database.

At initialization, it collects the phone numbers of spam senders from online

databases and sorts them. Then it removes white-listed numbers (from the user’s

phonebook) and builds a database. Subsequently, messages from senders in the

database are blocked. We test Mantis with the initialization step; filtering has

constant duration. We use 1,000 databases, each with 2,500 to 20,000 phone

numbers.

• Chess Engine: This is the AI part of a chess application. Similar to many game

applications, it receives the configuration of chess pieces as input and determines

the best move using a Minimax algorithm. We set the game-tree depth to three.

We use 1,000 randomly generated chess-piece configurations, each with up to

32 chess pieces.

• Ringtone maker: This generates customized ringtones. Its input is a wav-format

file and a time interval within the file. The application extracts that interval from

the audio file and generates a new mp3 ringtone. We use 1,000 wav files, ranging

from 1 to 10 minutes, and intervals starting at random positions and of lengths

between 10 and 30 seconds.

• Face Detection: This detects faces in an image by using the OpenCV library.

It outputs a copy of the image, outlining faces with a red box. We use 1,000
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Table 2.1 Prediction error and prediction time for execution time.
Application Error TAve TMax

Encryptor 4.5% 0.18% 0.26s
Path Routing 5.4% 1.34% 0.29s

Spam Filter 3.1% 0.51% 0.35s
Chess Engine 11.1% 1.03% 0.46s

Ringtone Maker 4.9% 0.20% 0.24s
Face Detection 3.8% 0.62% 0.27s

Tar Archive 3.4% 1.24% 0.41s

images, of sizes between 100× 100 and 900× 3000 pixels.

• Tar Archive: This application compresses text files to tar archive files by using

JTar. JTar is a simple Java Tar library using IO streams. We use randomly gener-

ated text files, ranging from a few KBs to dozens of KBs, and randomly choose

1,000 sets of files for compression.

• SorTube: This is a cross-platform media streaming application with video cus-

tomization for heterogeneous devices. Its server-side application pulls video data

from a media server and adjusts the video format, bit rate, resolution and pixel

format to match the specification of the device streaming the video. We use

1,000 videos which have different durations and sizes.

2.7.2 Experiment Results

Accurate and Efficient Prediction for Execution time:

We first evaluate the accuracy and efficiency of Mantis execution time prediction.

Table 2.1 reports the prediction error and running time of Mantis-generated execution

time predictors. The “prediction error” column measures the accuracy of our predic-

tion. Let A(i) and E(i) denote the actual and predicted execution times, respectively,

computed on input i. Then, this column denotes the prediction error of our approach

as the average value of |A(i)−E(i)|/A(i) over all inputs i. The “TAve” measures how
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Table 2.2 The total number of features initially detected, the number of chosen features,
selected features for execution time prediction.

No. of features
Application Total Chosen Selected features

Encryptor 28 2 Matrix-key size (f1), Loop count of encryption (f2)
Path Routing 68 1 Build map loop count (f1)

Spam Filter 55 1 Inner loop count of sorting (f1)
Chess Engine 1084 2 # of 1-depth nodes (f1), # of pieces (f2)

Ringtone Maker 74 1 Cut interval length (f1)
Face Detection 107 2 Width of image (f1), Height of image (f2)

Tar Archive 122 1 Total sum of the size of the text files

Table 2.3 Generated prediction models for execution time prediction.
Application Generated model

Encryptor c0f1
2f2 + c1f1

2 + c2f2 + c3
Path Routing c0f1

2 + c1f1 + c2
Spam Filter c0f1 + c1

Chess Engine c0f1
3 + c1f1f2 + c2f2

2 + c3
Ringtone Maker c0f1 + c1

Face Detection c0f1f2 + c1f2
2 + c2

Tar Archive c0 + c1f1

long the predictor runs compared to the original program. Let P (i) denote the time

to execute the predictor. This column denotes the average value of P (i)/A(i) over all

inputs i. The “TMax” shows the actual running time of the predictor. We show the

longest prediction time among the 1,000 inputs.

Mantis achieves accuracy with prediction error within 5% in most cases, while

each predictor runs around 1% of the original application’s execution time, which is

well under the 5% limit we assigned to Mantis.

Mantis generated interpretable and intuitive prediction models by only choosing

one or two among the many detected features unlike non-parametric methods. Ta-

ble 2.2 shows the total number of features initially detected, the number of features

actually chosen to build the prediction model and the selected features for execution
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Table 2.4 Prediction error and prediction time for energy consumption.
Application Error TAve TMax

Encryptor 3.9% 0.18% 0.26s
Path Routing 4.8% 1.34% 0.29s

Spam Filter 2.8% 0.51% 0.35s
Chess Engine 10.5% 1.03% 0.46s

Ringtone Maker 4.3% 0.20% 0.24
Face Detection 3.6% 0.62% 0.27s

Tar Archive 4.1% 1.24% 0.41s

time prediction. And Table 2.3 shows the generated polynomial prediction model of

execution time. In the model, cn represents a constant real coefficient generated by

the model generator and fn represents the selected feature. The selected features are

important factors in execution time, and they often interact in a non-linear way, which

Mantis captures accurately. For example, for Encryptor, Mantis uses non-linear feature

terms (f2
1 f2, f2

1 ) to predict the execution time accurately.

Now we explain why Chess Engine has a higher error rate. Its execution time is

related to the number of leaf nodes in the game tree. However, this feature can only

be obtained late in the application execution and is dependent on almost all code that

comes before it. Therefore, Mantis rejects this feature because it is too expensive. Note

that we set the limit of predictor execution time to be 5% of the original application

time. As the expensive feature is not usable, Mantis chooses alternative features: the

number of nodes in the first level of the game tree and the number of chess pieces left;

these features can capture the behavior of the number of leaf nodes in the game tree.

Although they can only give a rough estimate of the number of leaf nodes in the game

tree, the prediction error is still around only 12%.

Accurate and Efficient Prediction for Energy consumption:

Table 2.4 shows the prediction error and running time of Mantis-generated en-
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Table 2.5 Prediction error and prediction time for memory allocation.
Application Error TAve TMax

Encryptor 0.0% 0.18% 0.26s
Path Routing 4.9% 1.34% 0.29s

Spam Filter 0.2% 0.51% 0.35s
Chess Engine 8.1% 1.03% 0.46s

Ringtone Maker 0.0% 0.00% 0s
Face Detection 0.1% 0.62% 0.27s

Tar Archive 1.5% 0.15% 0.64s

ergy consumption predictors. As the table shows, the generated predictors obtained

error rates under 5% with the exception of the predictor for Chess Engine and all of

them need only around 1% of the application’s actual running time. The reason for

the higher, yet quite acceptable, error rate on Chess Engine is the same with the case

of the execution time predictor. The number of detected features are the same as Ta-

ble 2.2 and the chosen features are the same as well. The generated models, however,

are slightly different from the table. This is because there is usually a strong correlation

between execution time and energy consumption, so the features that would affect ex-

ecution time are likely to affect the energy consumption of an application as well, and

the applications we tested all showed this correlation. And as the chosen features are

the same, the prediction time, the time to acquire the feature values, is the same as well.

Accurate and Efficient Prediction for Memory Usage:

Table 2.5 shows the behaviors of the accumulated memory allocation predictors.

As we can see, the overall error rate is lower, mostly under 4% and chess engine at

8.1%, than that of the execution time or energy consumption predictors. This is because

the execution time and energy consumption of an application can slightly differ even

on the same input and under the same environment, resulting in giving slightly different

execution time or energy consumption data when profiled. On the contrary, memory
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allocation always gives the same profiled value on the same input, thus, Mantis is able

to generate a more accurate prediction model.

The prediction time for the accumulated memory allocation predictors are the same

as or less than that of the former two predictors, the ones for execution time and energy

consumption, depending on the chosen features. When the chosen features are the

same as the other predictors, the prediction time is the same. However the predictor

for Ringtone Maker chose fewer features than before, and in the case of Tar Archive

a different feature was chosen, both resulting in different prediction times compared

to those of the predictors for the former two CRC metrics. Tar Archive’s predictor for

memory usage chose a different feature from what its predictor for execution time and

energy consumption choose. The newly chosen feature was the number of text files to

compress and as it is a cheaper feature than the total sum of text files, which was used

in the other predictors, the prediction time is less than that of the other predictors. The

reason why only the number of text files is relevant to memory allocation is because

Tar Archive makes an object for each file and there is a fixed sized buffer for each

object, which means the memory used for each file is always constant. In the case

of Ringtone Maker the prediction time is 0. The reason for this is that the generated

prediction model for accumulated memory allocation only has a constant term, so

running a sliced version of the program to obtain feature values is unneeded. This

is due to the fact that Ringtone Maker uses a fixed sized buffer to handle its source

file and output file regardless of its input, which in turn means it always uses a fixed

amount of memory.

Table 2.6, the predictors generated for memory requirement prediction show sim-

ilar tendencies to those of the other predictors. Most of the predictors for memory

requirement achieved low error rates with the exception of Chess Engine, yet even in

that case the error rate is under 5%. This is due to the the same reasons as stated before,

which is that the usage of memory does not fluctuate as much as the execution time
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Table 2.6 Prediction error and prediction time for memory requirement.
Application Error TAve TMax

Encryptor 0.2% 0.00% 0s
Path Routing 0.5% 1.34% 0.29s

Spam Filter 2.8% 0.51% 0.35s
Chess Engine 4.6% 0.73% 0.34s

Ringtone Maker 0.1% 0.00% 0s
Face Detection 0.6% 0.62% 0.27s

Tar Archive 0.2% 0.00% 0s

or energy consumption of an application, which in turn leads to a more accurate pre-

dictor generated by Mantis. So even when it is hard to predict the tendency of Chess

Engine the prediction error for memory requirement is lower than that for execution

time or energy consumption. The overhead to run the memory requirement predictors

are around 1%. Though in the cases of Encryptor, Ringtone Maker, and Tar Archive

the prediction times are 0. The reason for this is that there are no chosen features for

these applications’ memory requirement predictors, which in turn means the minimum

required memory for these applications stay the same regardless of the input.

Accurate and Efficient Prediction for Network usage: We have tested Mantis to

predict the network usage metric of SorTube. Mantis turned out to be similarly effec-

tive on predicting network usage as it is on other metrics, with 2.5% prediction error

while requiring 0.10% of the original application’s running time.

The effect of the number of training samples:

We show the effect of the number of training samples on prediction errors in Fig-

ure 2.3. In most cases, the curve of their prediction error plateaus before 50 input

samples for training. Furthermore, even in the cases where the error rate improves be-

yond using 50 input samples, the curve plateaus around 100 input samples for training.
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(b) Prediction errors for Energy consumption
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(c) Prediction errors for Accumulated memory al-
location
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Figure 2.3 Prediction errors varying the number of input samples. The y-axis is trun-
cated to 20 for clarity.

Since there is little to gain after the curve plateaus, we only use 100 input samples for

training Mantis. Even for bigger input datasets of 10,000 samples, we only need about

100 input samples for training to obtain similar prediction accuracy.

Benefit of Non-linear Terms on Prediction Accuracy:

Table 2.7 shows the prediction error rates of the models built by Mantis and Mantis-

linear for execution time. Mantis-linear uses only linear terms (fi’s) for model gener-

ation.

For Encryptor, Path Routing, Chess Engine, and Face Detection, non-linear terms im-
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Table 2.7 Prediction error of Mantis and Mantis-linear for execution time prediction.
Mantis-linear uses only linear terms (fi’s) for model generation.

Application Mantis(%) Linear(%)
Encryptor 4.5 6.6

Path Routing 5.4 10.6
Spam Filter 3.1 3.1

Chess Engine 11.1 16.2
Ringtone Maker 4.9 4.9

Face Detection 3.8 52.7
Tar Archive 3.4 3.4

Table 2.8 Prediction time of Mantis and PE for execution time prediction
Application Mantis (%) PE (%)

Encryptor 0.18 100.08
Path Routing 1.34 17.76

Spam Filter 0.51 99.39
Chess Engine 1.03 69.63

Ringtone Maker 0.20 0.04
Face Detection 0.62 0.17

Tar Archive 1.24 0.53

prove prediction accuracy significantly since Mantis-linear does not capture the in-

teraction between features. The other cases show the two having the same accuracy

because Mantis generated linear models for the predictors of those applications.

Benefit of Slicing on Prediction Time:

Next we discuss how slicing improves the prediction time. In Table 2.8, we com-

pare the prediction times of Mantis-generated predictors for execution time with those

of predictors built with partial execution. Partial Execution (PE) runs the instrumented

program only until the point where we obtain the chosen feature values.

Mantis reduces the prediction time significantly in most cases, as PE predictors

need to run a large piece of code, which includes code that is unrelated to the chosen
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Table 2.9 Prediction error of Mantis and BE for execution time prediction.
Application Mantis (%) BE (%)

Encryptor 4.5 57.1
Path Routing 5.4 69.3

Spam Filter 3.1 39.7
Chess Engine 11.1 28.1

Ringtone Maker 4.9 4.9
Face Detection 3.8 3.8

Tar Archive 3.4 3.4

features until their values are obtained.

The ones that show around 100% for PE prediction are the worst cases for PE since

the last updates of the chosen feature values occur near the end of their execution. In

contrast, in the cases that show lower prediction time than Mantis, the PE predictor can

obtain the chosen feature values cheaply even without slicing. This is because the val-

ues for the chosen features can be obtained at the very beginning in the application’s

execution. In fact, the Mantis-generated predictors of these applications take longer

than PE because the generated code is less optimized than the code generated directly

by the compiler.

Benefit of Slicing on Prediction Accuracy: To show the effect of slicing on prediction

accuracy under a prediction time limit, we compare our results with those obtained

using bounded execution. Bounded Execution (BE) gathers features by running an

instrumented application for only a short period of time, which is the same as the time

a Mantis-generated predictor would run. It then uses these gathered features with the

Mantis model generator to build a prediction model.

As shown in Table 2.9, the prediction error rates of the models built by BE are

much higher than those of the models built by Mantis in most cases. This is because

BE cannot exploit as many features as Mantis. As a result, in several cases, no usable
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Table 2.10 Prediction error and time of execution time running with Galaxy S2 and
Galaxy S3.

Galaxy S2 Galaxy S3
Application Prediction Prediction Prediction Prediction

error (%) time (%) error (%) time (%)
Encryptor 4.6 0.35 3.4 0.08

Path Routing 4.1 3.07 4.2 1.28
Spam Filter 5.4 1.52 2.2 0.52

Chess Engine 9.7 1.42 13.2 1.38
Ringtone Maker 3.7 0.51 4.8 0.20

Face Detection 5.1 1.28 5.0 0.69

feature can be obtained by BE; thus, BE creates a prediction model with only a con-

stant term for the applications.

Prediction on Different Hardware Platforms:

Next we evaluate whether Mantis generates accurate and efficient predictors on

three different hardware platforms. Table 2.10 shows the results of Mantis execution

time predictor with two additional smartphones: Galaxy S2 and Galaxy S3, respec-

tively. Galaxy S2 has a dual-core 1.2Ghz CPU and 1GB RAM, running Android 4.0.3.

Galaxy S3 has a quad-core 1.4Ghz CPU and 1GB RAM, running Android 4.0.4. As

shown in the table, Mantis achieves low prediction errors and short prediction times

with Galaxy S2 and Galaxy S3 as well. Here, Mantis builds models similar to the ones

generated for Galaxy Nexus. The chosen features for each device are the same as or

equivalent (e.g., there can be multiple instrumented variables with the same value) to

the chosen features for Galaxy Nexus, while the model coefficients are changed to

match the speed of each device. We also verify the prediction error and time for the

other CRC metrics with the additional smartphones are almost same as the result of

execution time prediction. The result shows that Mantis generates predictors robustly

with different hardware platforms.
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Table 2.11 Prediction errors for a multi-threaded Chess Engine application with Nexus
5

# of Threads Error(%) Speed-up
Single 3.8 1X

Dual 6.0 1.37X
Quad 7.9 1.36X

Table 2.12 Mantis offline stage processing time for execution time prediction(in sec-
onds).

Application P. M. S. T. Total Iters
Encryptor 2373 18 117 391 2.9k 3

Path Routing 363 28 114 14 0.5k 3
Spam Filter 135 10 66 3 0.2k 2

Chess Engine 6624 10k 6016 23k 46k 83
Ringtone Maker 2074 19 4565 2 6.7k 1

Face Detection 1437 13 6412 179 8k 4
Tar Archive 2718 80 125 913 3.8k 8

Prediction errors for multi-threaded applications:

We show the effect of multi-threads on prediction error in Table 2.11. To compare

the prediction accuracy of different amount of concurrent threads in an application, we

modified Chess Engine to run as a multi-threaded application. We run it on Nexus 5

which has a quad-core 2.3Ghz CPU and 2GB RAM. As shown in the table, Mantis’

prediction accuracy falls a little as the number of threads are increased. An interesting

point here is that the application does not seem to benefit much from multi-threading

above two threads, as the speed-up is about the same. This seems to be a result of the

Android OS kernel limiting the usage of CPU cores to sustain the device’s power.

Mantis Offline Stage Processing Time: Table 2.12 presents Mantis offline stage pro-

cessing (profiling, model generation, slicing, and testing) time for all input training

data. The total time is the sum of times of all steps. The iterations column shows how
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many times Mantis ran the model generation and slicing part due to rejected features.

For the applications excluding Chess Engine, the total time is less than a few hours,

the profiling part dominates, and the number of iterations in the feedback loop is small.

Chess Engine’s offline processing time takes up to around 13 hours because of many

rejected features.

Summary: We have demonstrated that our prototype implementation of Mantis gen-

erates good predictors that estimate four CRC metrics with high accuracy and short

prediction time. We have also compared our approach to simpler, intuitive approaches

based on Partial Execution and Bounded Execution, showing that Mantis works sig-

nificantly better in almost all cases, and as well in even the few cases where Partial

Execution happened upon good prediction features. Finally, we showed that Mantis

predictors are accurate on three different hardware platforms.

2.8 Related Work

Much research has been devoted to modeling system behavior as a means of prediction

for databases [10, 11], cluster computing [33, 34], networking [35, 36, 37], program

optimization [38, 39], mapping parallelism [40] etc.

Prediction of basic program characteristics, execution time, or even resource con-

sumption, has been used broadly to improve scheduling, provisioning, and optimiza-

tion. Example domains include prediction of library and benchmark performance [41,

42], database query execution-time and resource prediction [10, 11], performance pre-

diction for streaming applications based on control flow characterization [43], viola-

tions of Service-Level Agreements (SLAs) for cloud and web services [33, 34], and

load balancing for network monitoring infrastructures [12]. Such work demonstrates

significant benefits from prediction, but focuses on problem domains that have iden-

tifiable features (e.g., operator counts in database queries, or network packet header

values) based on expert knowledge, use domain-specific feature extraction that may
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not apply to general-purpose programs, or require high correlation between simple

features (e.g., input size) and execution time.

Delving further into extraction of non-trivial features, research has explored ex-

tracting predictors from execution traces [44] to model program complexity [13], to

improve hardware simulation specificity [45, 46], and to find bugs cooperatively [47].

There has also been research on multi-component systems (e.g., content-distribution

networks) where the whole system may not be observable in one place. For example,

extracting component dependencies (web objects in a distributed web service) can be

useful for what-if analysis to predict how changing network configuration will impact

user-perceived or global performance [35, 36, 37].

A large body of work has targeted worst-case behavior prediction, either focusing

on identifying the inputs that cause it, or on estimating a tight upper bound [48, 49,

50, 51, 52] in embedded and/or real-time systems. Such efforts are helped by the fact

that, by construction, the systems are more amenable to such analysis, for instance

thanks to finite bounds on loop sizes. Other work focuses on modeling algorithmic

complexity [13], simulation to derive worst-case running time [53], and symbolic ex-

ecution and abstract evaluation to derive either worst-case inputs for a program [54],

or asymptotic bounds on worst-case complexity [55, 56]. In contrast, our goal is to

automatically generate an online, accurate predictor of the performance of particular

invocations of a general-purpose program.

Among many algorithms to predict CRC metrics [57, 58, 59] Mantis’s machine

learning algorithm for prediction is based on our earlier work [15] which is to select

just a few useful features from hundreds or thousands of features detected in an appli-

cation. In our prior work, we computed program features manually. In this work, we

introduce program slicing to compute features cheaply and generate predictors auto-

matically, apply our system to Android smartphone applications on multiple hardware

platforms, and evaluate the benefits of slicing thoroughly.
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2.9 Conclusion

In this chapter, I presented Mantis, a framework that automatically generates program

CRC predictors that can estimate CRC accurately and efficiently. Mantis combines

program slicing and sparse regression in a novel way. The key insight is that I can

extract information from program executions, even when it occurs late in execution,

cheaply by using program slicing and generate efficient feature evaluators in the form

of executable slices. My evaluation shows that my prototype implementation of Man-

tis generates good predictors that estimate five CRC metrics with high accuracy and

short prediction time. Mantis can automatically generate predictors that estimate five

CRC metrics accurately and efficiently for smart mobile applications. Furthermore, the

evaluation shows Mantis could enhance mobile execution offloading.
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Chapter 3

Precise Execution Offloading for
Applications with Dynamic Behavior in
Mobile Cloud Computing

3.1 Introduction

The objective of this work is to propose a new solver which uses the feature-based

prediction technique introduced in Chapter 2. We have implemented the solver and

prediction module for Android applications. To predict the program performance of

input-sensitive applications, during the offline stage of the module, we execute an

instrumented version of the applications on a set of training inputs which represent

dynamic behaviors of them. The instrumented applications produce training outputs

which include objective metrics of the program performance and the values of all pos-

sible features for each of the inputs. By using a machine learning technique [15] with

the training output set, we select just a few among all possible features and build the

model which is a function of (nonlinear combinations of) the features. Then, the pre-

diction module provides our solver with a feature extractor and a model calculator to
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compute the feature values and the output of the model during the online stage. Fi-

nally, the solver makes an offloading decision with the output to improve the program

performance. We show the impact of our work with three real applications, Chess En-

gine, Face Detection and Invaders. In our tests, we were able to reduce the execution

time by up to 31.7% compared to previous methods. We also applied the prediction

technique to an energy consumption problem. As a result, we could save the energy of

smartphone by up to 57.2%

The rest of this chapter is organized as follows: in Section 3.2, we first explain

the basic concepts of execution offloading and then show how much impact prediction

accuracy and global optimization have on offloading. Then in Section 3.3, we describe

our techniques to precisely and efficiently predict various aspects of program perfor-

mance for execution offloading. And in section 3.4, we describe our solver which

utilize our prediction techniques to offload our mobile code more precisely at runtime,

attaining better performance of program execution. In Section 3.5, we experimentally

demonstrate the effectiveness of our techniques which reduce significantly execution

time or energy consumption. Finally, in Section 3.6 and 3.7, we relate our work with

others and conclude.

3.2 Background & Motivation

In this section, we address how mobile execution offloading works and discuss how

performance prediction accuracy and global optimization affect offloading precision.

3.2.1 Background

In order to evaluate the impact of prediction accuracy on the offloading performance,

we present a simple offloading framework depicted in Figure 3.1. The first step of the

execution offloading is identifying which methods are remotely executable. There are

two ways to identify the methods. The first is to use annotations within the source
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Figure 3.1 A simple architecture for mobile execution offloading.

code to distinguish these remotely executable methods(REMs) from the non-REMs.

The second is to use static analysis to automatically identify legal choices for placing

migration in the code. After identifying the REMs, when an REM is called during an

execution of a program on the smartphone, the framework suspends the running thread

and decides whether to offload it or not by calling the solver with the current program

states and device conditions and weighing the performance gains of offloading against

the costs. For example, when a user prefers fast execution, the solver predicts time for

capturing and transferring the state, costs, as well as the local and remote execution

time to calculate a gain. Then, the solver decides to offload the method only when the

gain is bigger than the costs. If the solver decides to offload a method, the communica-

tion module of the smartphone is called to pack the program state and send the package

to the server. The server-side communication module receives the states and unpacks

the states to recreate the runtime environment and resume the execution of the method.

When the method reaches its end, the module collects and sends only the states that

are different from the original states received from the device, thereby reducing the

amount of data needed to be sent back to the smartphone. The communication module

of the smartphone receives the different states and compares them with the original
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Figure 3.2 Prediction errors varying the number of input samples.

states and applies the difference to its current program state. The program, finally, is

resumed where the migrated method ended. Whenever an REM is executed, regardless

of it being offloaded, the profiler measures the performance of the method. In offload-

ing cases, it also calculates the size of the transferred state and the cost required to

transfer the state.

3.2.2 Motivation

Impact of prediction accuracy on mobile offloading performance

We have implemented the simple mobile offloading framework, which uses annotation

within the source code to identify REMs and offloads only a single REM at once; it

means that the remote execution started at the entry of any REM should be finished at

the exit of the same REM. The architecture lets users choose which prediction tech-

nique to apply to the solver. We prepare four types of prediction schemes: Standalone,

Remote Only Execution(ROE), History-based prediction and Oracle. The predictions

of Standalone and ROE respectively make the solver decide to always run REMs lo-
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Table 3.1 Solving results for ordered inputs with History-based prediction
Input Standalone(s) ROE(s) Decision of Oracle Decision of HB
1 0 8.50 L L
2 0 8.50 L L
3 0 8.50 L L
4 0.01 8.52 L L
5 0.04 8.52 L L
6 0.02 8.50 L L
7 0.14 8.57 L L
8 0.37 8.80 L L
9 1.29 8.80 L L
10 3.16 9.15 L L
11 15.53 9.86 R L
12 82.89 14.01 R R

cally or to always run them remotely. History-based prediction predicts the execution

time of a method to be the same as the last invocation of the method. Oracle is a predic-

tion method that always makes the optimal decision because we assume that it knows

what the actual execution time will be. For simple comparison, we ignore overhead of

the prediction and assume the network is stable.

As the decision of offloading a method is based on the prediction result of the

gains and the costs, the accuracy of the prediction has a great impact on the precision

of the offloading. In order to demonstrate the impact of prediction accuracy, we run

a program solving an N-Queen problem, which has dynamic behavior depending on

its inputs, on our simple offloading framework with prediction schemes of Standalone

and ROE. Figure 3.2 presents the execution time of the N-Queen problem running

locally and being offloaded to a server, for inputs ranging from 1 queen to 12 queens.

The execution time for offloading cases includes time for capturing and transferring

the states. In this figure, we can see that the execution time for running the program

locally increase more dramatically than that for being offloaded.

Based on the experimental results in Figure 3.2, we compared the two other pre-
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Figure 3.3 Total execution time of the N-Queens program running for 4 types of deci-
sion making with (a)ordered input set and (b)randomly mixed input set

diction schemes. In Table 3.1, we show the solving results of running the program

through the inputs in order with Oracle and History-based prediction. They decides

where to run the method based on the profiling results of “Standalone” and “ROE”.

In the columns of “Decision of Oracle” and “Decision of HB”, “L” denotes the solver

decides to run the method on the smartphone and “R” denoted the solver decides to run

the method on the server. We presents the wrong decisions with gray-color-box. In this

table, while Oracle always makes a correct decision, History-based prediction makes

a wrong decision only once when the input value is 11. In Figure 3.3(a), we show the

sum of the execution time with each prediction approaches. It shows the execution

time of ROE being slightly longer than that of Standalone. However, the execution

time of Oracle is about one third of those and History-based prediction come close to

Oracle.

Next, we show the solving results of the program running through a randomly or-

dered set of the same inputs in table 3.2. In the table, History-based prediction often

makes wrong decisions. As seen in Figure 3.3(b), the mixed input order greatly de-

graded the performance of History-based prediction. History-based prediction works

fine for inputs that change gradually because the performance follows the gradual
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Table 3.2 solving results for randomly mixed inputs with History-based prediction
Input Local execution(s) Remote execution(s) Oracle HB
1 0 8.50 L L
2 0 8.50 L L
12 82.89 14.01 R L
4 0.01 8.52 L R
5 0.04 8.52 L L
11 15.53 9.86 R L
7 0.14 8.57 L R
8 0.37 8.80 L L
9 1.29 8.80 L L
10 3.16 9.15 L L
6 0.02 8.50 L L
3 0 8.50 L L

change, making its accuracy reliable. However, in cases where the input fluctuates,

History-based prediction loses its functionality as a prediction technique, and could

even lead to worse results than decisions made without any prediction at all.

In the program for N-Queens problem, By the way, the input, which is the number

of queens, by itself is the feature which characterizes the program’s dynamic behavior.

From the profiling results, we can easily find out that the gains are bigger than the

costs on input values over 10. However the existing solvers do not have ability to

automatically choose the feature and predict the gains and the costs with the feature.

Furthermore, for real android applications, features are scattered and obscured in the

whole program code. Therefore, it is needed to automate the process for feature-based

prediction.

Global Optimization for Code Partitioning

The solvers of previous works [2, 3, 5] used data collected from performance profil-

ers to solve global optimization problems rather than local optimization problems to

decide which REM should execute locally and which should execute remotely. Fig-
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Figure 3.4 An example of a call graph

ure 3.4 presents an example of a call graph, which also shows the need of a solver for

global optimization. The time denoted on the edges represents the cost to offload the

method, and the times denoted on the vertices respectively represent the execution time

consumed when the method is run locally and remotely. Once a method is offloaded,

no additional costs are needed to run callees remotely. To improve the performance of

the program, whenever method Main calls method m1, the gain and cost on execution

time are calculated and the decision where method m1 will be run is made. In this

case, it takes 11.2 seconds to execute the three methods m1, m3 and m4 locally. it, on

the other hand, takes 7.7 seconds to execute the methods remotely, so a locally opti-

mization solver decides to migrate method m1 to the server. However, it takes only 2.9

seconds to execute the three methods if each of methods m3 and m4 is executed on re-

mote server after method m1 is run locally, which saves 5 seconds execution time-wise

than migrating method m1. This result suggests that the solver should make globally

optimized decisions rather than calculate gain and cost at a single method call point.

To explain in more detail the impact of prediction techniques on precision of the

offloading, see the method m2 and m5 in Figure 3.4. The dotted edge between method

m2 and m5 represents that method m5 may not be called by method m2 depending on

its state. Whether or not method m5 will be run is a critical factor when calculating

the gain or cost of migrating method m2. Migrating method m2 when method m5 will
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be run could be greatly beneficial. When method m5 is not called, however, it leads

to a net loss in execution time. Running method m2 locally and deciding to migrate

method m5 if it is called is not plausible either, as the transfer cost for method m5 is too

high compared to its local execution time. Additionally, as m6 is a recursive method,

it is another critical factor for the offloading to estimate how many times the method

will be executed. From this example, we can see that a prediction technique for those

critical factors is needed for global optimization solver. However, to the best of our

knowledge, there is no work done to consider these factors on global optimization.

3.3 f Mantis : Automatically generation of accurate and effi-
cient performance predictor for mobile execution offload-
ing

In this section, we discuss our technique, f Mantis, that help to efficiently predict the

performance of mobile applications. f Mantis is the extension of Mantis in Chapter 2,

which generates a performance predictor for a mobile application off-line (i.e. before

the program is run by a user). We improve and modify the techniques of Mantis in

order to apply it to mobile execution offloading. The details are following.

• f Mantis generates predictor which efficiently predicts various types of perfor-

mance metrics including execution time, energy consumption, memory usage

and state size.

• The predictor predicts whether or not a certain method will be executed.

• The predictor predicts not only the performance of a whole application but also

that of each method of the application.

• The predictor can be run during the execution of an application.
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Figure 3.5 Overview of f Mantis architecture.

3.3.1 Performance predictor generation overview

In Figure 3.5, we show the architecture of f Mantis. In the off-line phase, f Mantis

consists of four components: a feature instrumentor, a profiler, a model generator and

a predictor generator. The feature instrumentor takes as input an application whose

performance is to be predicted and instruments the application to collect the values of

features as per the performance metrics and methods. Next, the profiler takes the instru-

mented application and a set of user-supplied program inputs. It runs the instrumented

program on each of these inputs and produces a vector of features. It also measures

the performance metrics on each input. Model Generator then performs sparse linear

regression on the feature values and performance metrics obtained by the profiler, and

produces a function that approximates the program’s performance metrics using a sub-

set of the features. As a final step, for each function, the predictor generator produces a

feature extractor to extract chosen feature values, which are used in the predictor func-
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tion just before running target method. And it also produces a model calculator which

makes predictions for a given REM. The feature instrumentor and model generator are

addressed in Section 2.3 and 2.4. In this section, we address the modification of the

profiler and predictor generator in detail.

3.3.2 Profiler

The profiler computes feature values with test inputs by running the instrumented code.

Each REM in the application has its own feature values, which are accumulated or

modified until the corresponding method is finished. At the same time, performance

metrics of each REM on both server and smartphone are recorded as well. Our archi-

tecture handles five metrics, which are execution time, energy consumption, memory

requirement, transferring state size and method call count. The program code is instru-

mented to leave runtime performance information as following.

When the profiler meets an REM, the state needed to be transferred to the server

is serialized to profile the size for the migration. Then, by recording the timestamps

at the entry point and return point of the method, the execution time is profiled. The

memory usage and the power consumption for the method is recorded as well. The

method call count is profiled by the instrumented code. Our profiler outputs data sets

for each target method with N samples as tuples of {ti,vi}Ni=1, where ti ∈ R denotes

the ith observation of the vector of the performance metrics, and vi denotes the ith

observation of the vector of M features.

3.3.3 Predictor Generator

In order to evaluate features that appear in the generated model function and make a

prediction based on the function at runtime, the predictor generator produces a feature

extractor and a model calculator for each predictor. The feature extractor and the model

calculator are executable codes which extract the feature values for the function of the
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performance model and make predictions at runtime. To generate the feature extractor,

the predictor generator draws call-graphs and control dependency graphs to analyze

the dependency between features and methods. There are two cases that can occur,

which is shown in the following program code. In the code, the method call goo

in method foo is the only remotely executable point, and at this point, whether it

should be migrated to the server or not should be decided. To make the decision, the

performance of method goo should be predicted with features. The first case is when

the chosen features appear before the call of the method needing prediction, which

would be within the code segment annotated computation S1 in the program. In this

case, the generator instruments the original code to calculate the feature and save it

to be used for the prediction. The second case is when the chosen features appear

during the execution of the method needing prediction, which would be within the code

segment annotated computation S2. In this case, we might have to run the method until

the feature values are obtained in order to predict its performance, which could need

the method to be run entirely in the worst cases. We avoid this problem by extracting

the feature values from the method efficiently, using static program slicing [16, 17].

foo ( . . . ) {

. . . ; / / c o m p u t a t i o n S1

goo ( . . . ) ; / /REM

. . . ;

}

goo ( . . . ) {

. . . ; / / c o m p u t a t i o n S2

}
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Figure 3.6 Architecture for the dynamic solver

3.4 Dynamic code partitioning with predictor generated by
f Mantis

In this section, we propose a new solver, which makes offloading decisions based on

outputs of predictors generated by f Mantis. The solver precisely offloads REMs in

order to match the user’s various needs.

3.4.1 Architecture for our solver

Figure 3.6 presents the architecture of the solver. Before running an application, we

obtain the call graph G = (V,E) for the application. Each vertex v ∈ V represents

a method in the call stack of the application, each edge e = (u, v) represents an in-

vocation of method v from method u. When the program thread reaches an REM, the

offloading framework relays information, such as program state or method call param-

eters, of the method to the solver. Within the solver, at first, an REMs finder draw a
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subgraph G′ = (V ′, E′), which contains all vertices and edges that are reachable from

the vertex of the REM, of graph G and finds the remotely executable vertices from the

graph. For each remotely executable vertex v ∈ V ′ and edge e = (u, v) ∈ E′, we

predict its performance and costs as follow: the energy consumption for local execu-

tion El
v, the local execution time T l

v, the remote execution time T r
v , the energy cost

for remote execution Bu,v, the time cost for remote execution Cu,v and the times that

method v will be called from method u Ru,v. For each of the predictions, a feature ex-

tractor calculates the feature values needed for the prediction. As the feature extractor

shares the parameters and states with the original thread, this process might modify the

program state or heap objects. In other words, it may alter the behavior of the original

program after extracting the features. To avoid this, we instrument the feature extractor

to backup the original state. After the prediction, a state restorator restore the backed

up state. A model calculator then makes a prediction using the extracted feature values.

According to the user’s need, a decision making module solves one of the follow-

ing two integer linear programming problems for global optimization, which is based

on the MAUI solver [3]. It solves the problem for various solving priority, such as

reducing the execution time, the energy consumption or the memory usage and pre-

venting errors of memory. The solving result of the module is Iv which will be 0 if

method v should be run locally and 1 if it should run remotely.

Maximize
∑
v∈V

Iv × El
v ×R( ,v) −

∑
(u,v)∈E

|Iu − Iv| × C(u,v) ×R(u,v)

Such that :
∑
v∈V

(
(1− Iv)× T l

v + (Iv × T r
v )
)
×R( ,v)+

∑
(u,v)∈E

|Iu − Iv|×B(u,v)×R(u,v) < Lt
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Minimize
∑
v∈V

(
(1− Iv)× T l

v + (Iv × T r
v )
)
×R( ,v)+

∑
(u,v)∈E

|Iu − Iv|×B(u,v)×R(u,v)

Such that :
∑
v∈V

Iv × El
v ×R( ,v) −

∑
(u,v)∈E

|Iu − Iv| × C(u,v) ×R(u,v) > Le

We provide additional solving options as well. To prevent out-of-memory error,

when an REM is to be called, we predict the memory usage of the method. If this

predicted memory usage exceeds the available memory on the device, we execute the

method remotely.

3.5 Evaluation

3.5.1 Implementation

We have built f Mantis, implementing the feature instrumentor, profiler, model gen-

erator and predictor generator (Figure 3.5). These are built to work with Android

application binaries. We implemented the feature instrumentor using Javassist [28],

which is a Java bytecode library. The profiler is made of scripts automatically running

the program to profile for execution time, energy consumption, transfer state size and

memory consumption on test inputs. To profile energy consumption, we used a Mon-

soon power monitor in order to obtain accurate data on energy consumption. When the

profiler runs, the monsoon power monitor leaves a continuous data that contains data

for all separate test runs done during the profile. The profiler cross examines this data

with the execution times for each test run to obtain the energy consumption of each

test run.

Also, the profiler instruments programs to extract feature data. The data obtained

by the profiler is then used by the model generator, which is written in Octave [29]

scripts, to build a prediction model of the given program. Based on this model, the pre-

dictor code generator generates a predictor code. We implemented our predictor code
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generator in Java and Datalog by extending JChord [30], a static and dynamic Java

program-analysis tool. JChord converts the bytecode of the input Java program into

a three-address-like intermediate code7. Then, the generator produces a slice, which

is the smallest code that could obtain the selected features. The slice is translated to

Jasmin [31] assembly code, and then the Jasmin compiler generates the final Java byte-

code which can be executed at runtime to make a prediction.

To evaluate the performance of our predictor and dynamic partitioning process,

we have built a mobile execution offloading framework, which is called SorMob. Sor-

Mob runs on the Android platform as an application and does mobile offloading with

Aspect-Oriented programming (AOP). We used AspectJ [61], which is an AOP tool

for java, to insert the profiler, solver and communication module codes at the begin-

ning and end of a method annotated as offloadable. This is done at compile time and

enables SorMob for the target application. To execute a migrated thread, its state needs

to be transferred to the server side. The state is accumulated by Kryo [62], which is an

open source java serializer.

3.5.2 Evaluation Environment

We run our experiments with a machine to run the predictor generator and the offload-

ing server, as well as a smartphone to run the codes for profiling, generated predictor

code and benchmarks for offloading evaluation. The machine runs Ubuntu 11.10 64-

bit with a 3.1GHz quad-core CPU, and 8GB of RAM. To run the offloading server,

the machine runs a virtual machine for the Android environment. The smartphone is

a Galaxy Nexus running Android 4.1.2 with a dual-core 1.2Ghz CPU and 1GB RAM.

All experiments were done using Java SE 64-bit 1.6.0 30.

We have chosen three real applications –Chess Engine, Face Detection, Invaders–

to evaluate our offloading performance. Unlike input insensitive applications, these

three applications show different behavior on different inputs. Therefore, accurate per-
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formance prediction for these applications is needed for precise execution offloading.

Below we describe the applications and the input dataset we used for their evaluation

in detail.

3.5.3 Experimental results

Chess Engine

Chess engine is the decision making part of a chess game application. Similar to the

decision making process of many game applications, it receives the configuration of

chess pieces as input and determines the best move using a Minimax algorithm. The

Minimax algorithm is based on utilizing a game tree, whose nodes, in this application,

represent the state of the game and edges the move a chess piece. The Chess Engine

starts at the root node, which represents the current state of the game, and builds a

child node for each and every possible move allowed on the current board until it

reaches a predefined depth in the game tree. It then selects the best move, which is the

edge that leads to the child node with the best probable outcome. This is calculated

by considering all the possible outcomes of the child node, which in turn repeatedly

considers its own child nodes until the inputted depth of the game tree is met. We

set the game-tree depth to three or four for this experiment and used 100 randomly

generated chess-piece configurations to train the performance predictor.

Figure 3.7 is a part of the call graph for Chess Engine. The number in bracket

means the number of times that the method is invoked for a certain input. Dotted edges

represents that the callee can be invoked multiple times or may not be invoked from the

caller. We tried to predict the performance of Chess Engine from the features which in-

clude the number of times that each of the leaf nodes is invoked. The prediction results

was so satisfactory to be used for the solver. The average prediction time, however, was

about 40% of execution time for original program, which was too huge to efficiently

offload. To make offloading framework efficient, we reject such features to use for the
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Figure 3.7 A part of the call graph for Chess Engine

Table 3.3 Performance prediction results for Chess Engine
Prediction Prediction Prediction No. of chosen
target error (%) time (%) features
exec. time of dev. 15.18 0.03 3
exec. time of serv. 15.22 0.03 3
energy cons. of dev. 15.85 0.03 3
transferred state size 0 0 0
memory usage 4.55 0.25 2

performance prediction. We choose the features that make the average prediction time

under 5% of execution time for original program, even though the prediction may be

less accurate.

With the constraints, we generated predictors for five performance metrics: exe-

cution time on the smartphone, execution time on the server, energy consumption on

the smartphone, state transfer size and memory usage for all REMs. Table 3.3 shows

the prediction error, prediction time, number of chosen features and generated model

for each predictor of an REM, findOptimalMove. The “prediction error” column
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Table 3.4 Performance prediction models for Chess Engine
Prediction target Generated model
exec. time of dev. c1f1

13f3
2 + c2f1

11 + c3f1
14f2

4

exec. time of serv. c1f1
13f3

2 + c2f1
13f2 + c3f1

15f3
5

energy cons. of dev. c1 + c2f1 + c3f2
2 + c4f1f3

2 + c5f1f2
3

transferred state size c1
memory usage c1 + c2f22 + c3f12f2 + c4f1f2

measures the accuracy of our prediction. Let A(i) and E(i) denote the actual and pre-

dicted execution times, respectively, computed on input i. Then, this column denotes

the prediction error of our approach as the average value of |A(i) − E(i)|/A(i) over

all inputs i. The “prediction time” measures how long the predictor runs compared to

the original program. Let P (i) denote the time to execute the predictor. This column

denotes the average value of P (i)/A(i) over all inputs i. All five predictors chose only

a few features from 905 candidate features to generate a predictor model. The feature

f1 indicates the depth of the game tree, f2 the number of pieces in the input and f3

the number of child nodes of the root node. The predictors for both execution times

and energy consumption use all of the aforementioned three features and predict with

an error rate around 15%. The prediction error and prediction time of the predictor for

transfer state size are both 0. This is due to the fact that when this method is offloaded

to the server, the same amount of state is transferred regardless of the input.

Users usually want to reduce energy consumption as well as execution time. So, we

set the solving policy for Chess engine to only migrate when offloading would benefit

both execution time and energy consumption. To see the impact of our f mantis predic-

tor on the efficiency of mobile execution offloading, we compared it with the following

basic techniques: Standalone, ROE, History-based prediction, PE(partial execution)

and Oracle. Standalone, ROE, History-based prediction and Oracle are the same as

described in Section 2. The PE predictor predicts by extracting features from the code

and modeling a prediction function with it, just as f mantis does. The only difference is
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Figure 3.8 The results of code partitioning for Chess Engine with History-based pre-
diction.

that the PE predictor does not utilize slicing techniques, so it needs to run the original

code until it can obtain all of its chosen features.

Figure 3.8 and 3.9 show the results of code partitioning for twenty inputs with

History-based and f Mantis prediction. In this figure, the line ’Original‘ represents the

profile results for the execution time and each prediction technique’s line represents the

predicted execution time. The circle in the figure represents the decision whether the

method should run at remote server or not is correct. On the contrary to this, the cross

represents the decision is incorrect. The figure shows code partitioning with f Mantis

always makes correct decision. On the other hand, code partitioning with History-

based prediction often makes wrong decision.

Table 3.5 shows how efficient it is to make offloading decisions with the f Mantis

predictor. It only has an 2.2% overhead in execution time and 3.5% in energy con-
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Figure 3.9 The results of code partitioning for Chess Engine with f Mantis prediction.

sumption compared to oracle. On the other hand, history-based prediction shows worse

results than remote-only execution and while PE prediction made the same predictions

as f Mantis, its prediction overhead was too large.

The Android dalvik VM has a different memory limit for applications depending

on the version of the OS or the configuration set by the manufacturer. This occasion-

ally leads to unintentional OOM(out-of-memory) errors, when an application requires

more memory than allowed. Mobile execution offloading can allow an application to

utilize the vast memory of a server instead of getting an OOM error. Thinkair restarts

a program on a server when it receives an OOM error. The f Mantis predictor, on the

other hand, can predict whether it will run out of memory beforehand and start it on

the server rather than restarting an application when it gets an error.

Table 3.3 shows the prediction results of memory usage which would be used in
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Table 3.5 Offloading results using each prediction techniques for Chess Engine
Total execution time(s) Total energy consumption(mAh)

Oracle 35,950 2,733
RO 46,328 3,822
StandAlone 53,807 4,945
HB 50,095 4,372
PE 73,856 2,863
f Mantis 36,746 2,828

the situation mentioned above. The predictor uses a model made of only two features,

and runs with 4.55% prediction error and 0.25% prediction time overhead. With the

predictor, we ran 1,000 inputs that could possibly get an OOM error. 142 of the inputs

actually made the application run out of memory when run on the device. The f Mantis

predictor successfully predicted 136 of these inputs beforehand and offloaded them to

a memory-rich server.

Face Detection

This application detects faces in an image by using the OpenCV library [63]. It outputs

a copy of the image, outlining faces with a red box. As the application might need to

accept a continuous stream of images from a video to detect the faces in it, execution

time is a critical factor. First, the application receives a jpeg image as input and trans-

forms it to a bitmap image for analysis. As the original jpeg image is smaller than the

converted bitmap image, it would usually be advantageous to offload the application

before the image conversion. Therefore, we annotated the point as an REM.

To generate predictors for Face Detection, we used 100 randomly cut images with

a size between 100 X 100 and 1,000 X 3,000 pixels for training data. As seen in

Table 3.6, the predictor generator selected 2 features, the width (f1) and height (f2) of

the original image, from 107 candidate features for the predictors of execution time and

energy consumption. For the prediction of state transfer cost, file size of the original
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Table 3.6 Performance prediction results for Face Detection
Prediction Prediction Prediction No. of chosen
target error (%) time (%) features
exec. time of dev. 4.45 0.6 2
exec. time of serv. 4.74 0.6 2
energy cons. of dev. 6.57 0.6 2
transferred state size 0.01 0.6 2

Table 3.7 Performance prediction models for Face Detection
Prediction target Generated model
exec. time of dev. c1 + c2f1f2 + c3f1

2f2 + c4f1
exec. time of serv. c1 + c2f1f2 + c3f1

2f2 + c4f1
3f2 + c5f1

2

energy cons. of dev. c1 + c2f1f2 + c3f1 + c4f1
2

transferred state size c1 + c2f3

jpeg image (f3) was selected.

Table 3.6 shows the results of performance prediction for the REM. Using the

predictor, we run Face Detection to be offload the server with 1,000 inputs. As the pixel

count of the bitmap image dominates the execution time and energy consumption of

Face Detection, the predictors for them show high accuracy with error rates around 5%.

The predictor for transferred state size also shows high accuracy because the original

image, whose size is the feature, is the majority of the state.

Figure 3.10 and 3.11 show the results of code partitioning for twenty inputs with

History-based and f Mantis prediction. In this graph, code partitioning with f Mantis

Table 3.8 Offloading results using each prediction techniques for Face Detection
Total execution time(s) Total energy consumption(mAh)

Oracle 4,346 479
RO 6,157 596
StandAlone 6,077 844
HB 6,108 742
f Mantis 4,385 483
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Figure 3.10 The results of code partitioning for Face Detection with History-based
prediction.

makes wrong decision only once. However, code partitioning with History-based pre-

diction makes right decisions for under half inputs. As seen in Table 3.8, f Mantis

shows performance that almost matches Oracle, while the performance of offloading

with History based prediction shows little improvement over ROE or Standalone

Invaders

This application is a demo 3D game in libGDX [64], a cross-platform game develop-

ment framework. It receives the device’s gyrosensor and touchscreen data as input. It

uses these inputs to calculate a change in the game state and renders a frame to display,

which contains objects representing data in the game state. The rendering part of this

process takes up most of the application’s execution time, and the rendering time for

each frame depends on the game state. The rendering process is repeated continuously

while running the application and its speed is measured as frame per second(FPS). As

63



0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ex
e
cu
ti
o
n
 T
im

e
(s
)

Original

f_Mantis

Figure 3.11 The results of code partitioning for Face Detection with f Mantis predic-
tion.

the computational power of the server is better than the device, we expected to get

a higher FPS for offloading the render function to the server. However, the transfer

cost for offloading Invaders, sending game state to the server and receiving rendered

images from the server, turned out to be too large for offloading to be beneficial with

the original SorMob framework. Especially, when the human eye requires at least a

frame rate of 20 fps to accept images as a continuous flow, the time overhead, which

is around a few seconds for each frame, is unacceptable. To address this problem, we

altered SorMob to build a framework fit to run interactive applications similar to In-

vaders. After an initial offloading environment setup for an application is done, state

transferring, rendering and image transfer is done in a software pipeline. Through this

new framework, we were able to achieve a lower bound of 20 fps regardless of the state

of Invaders. The energy consumption, however, is higher than just running the appli-

cation on the device due to the constant network traffic. So the framework decides to

64



Table 3.9 Performance prediction results for Invader
Prediction Prediction Prediction No. of chosen
target error (%) time (%) features
exec. time of dev. 10.06 0.0 2
exec. time of serv. 5.37 0.0 0
energy cons. of dev. 11.74 0.0 2
transferred state size 0.00 0.0 0

Table 3.10 Performance prediction models for Invader
Prediction target Generated model
exec. time of dev. c1 + c2f1 + c3f1f2
exec. time of serv. c1
energy cons. of dev. c1 + c2f1 + c3f + 2 + c4f2f1

3 + c5f2
3f1

transferred state size. c1

offload only when the predicted rendering time will result in an FPS under 20.

We used the execution time and energy consumption of rendering 100 random

game states as training data. Table 3.9 shows the prediction results of the predictor

which generated for the performance of the rendering method. The features f1 and

f2, used for the predictors for the execution time and the energy consumption of the

device, are the number of object1 (enemy ships) and the number of object2 (defensive

obstacles) respectively. As these features are easily obtainable by just checking two

integer values, the prediction time becomes negligible. The predictors for server exe-

cution time and state transfer size use constants as their prediction models, thus, their

prediction time overhead also became trivial. The reason why the state transfer size

predictor uses a constant as its prediction model is because the only state transferred

to offload rendering is the game state and rendered image, which means their size is

always constant. The predictor for server execution time, on the other hand, uses a

constant model because, regardless of the amount of objects to display, the server can

easily render an image with the size of the resolution of a mobile device. And as seen

in the offloading results of Table 3.9, the predictor proved to be accurate enough.
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Figure 3.12 The results of code partitioning for Invader with History-based prediction.

To show how well a predictor generated by our framework would work, we tweaked

the Invader to render a random game state every 0.05 seconds. Then, in our modified

framework, whenever the game state is changed, a prediction would be made to de-

cide whether to render locally or remotely. Figure 3.12 and 3.13 show the results of

code partitioning for twenty inputs with History-based and f Mantis prediction. In this

figures, f Mantis always makes correct decision whether to run the method remotely.

History-based prediction, however, often makes wrong decisions. Table 3.11 shows

the results of running the tweaked Invader for 50 seconds in our modified framework.

The row ’Taken input count’ shows how many game states were successfully acknowl-

edged and rendered by the application. Some state changes are missed by the frame-

work when the rendering of the former frame takes too long and the state is changed

again, because it is set to change every 0.05 seconds, before it could be read to be

rendered.
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Figure 3.13 The results of code partitioning for Invader with f Mantis prediction.

When running the application stand alone, the FPS is around 15, which will appear

clunky to the user. When always rendering the application remotely, the FPS is kept

stable around 20. However, the energy consumption reaches 1.6 times of that of run-

ning stand alone. Oracle shows an ideal case of offloading, yet even it can only render

827 out of 1,000 state changes. This is because some states require a little bit more time

than 0.05 seconds to render even on the sever. Remote only rendered 758 out of 1,000

and stand alone a mere 575. Offloading with f Mantis, on the other hand, shows nearly

the same performance as Oracle in execution time, energy consumption and even taken

input count. History based prediction seems to show good enough performance with

a high average FPS, but when we look at its standard deviation in FPS, which is over

twice the amount of oracle’s, we can see that its performance is not stable.

67



Table 3.11 Offloading results using each prediction techniques for Invader

Oracle RO StandAlone HB f Mantis
Average FPS(frame) 20.02 20.08 15.71 18.91 19.98
Total energy consumption(uAh) 6,732 7,553 4,630 6,094 6,642
Taken input count 827 758 575 681 808
STDEV 1.33 1.62 3.91 3.00 1.36

3.6 Related work

Much research has been devoted to modeling system behavior as a means of prediction

for databases [10, 11], cluster computing [33, 34], networking [35, 36, 37], program

optimization [38, 39], etc.

Prediction of basic program characteristics, execution time, or even resource con-

sumption, has been used broadly to improve scheduling, provisioning, and optimiza-

tion. Example domains include prediction of library and benchmark performance [41,

42], database query execution-time and resource prediction [10, 11], performance pre-

diction for streaming applications based on control flow characterization [43], viola-

tions of Service-Level Agreements (SLAs) for cloud and web services [33, 34], and

load balancing for network monitoring infrastructures [12]. Such work demonstrates

significant benefits from prediction, but focuses on problem domains that have iden-

tifiable features (e.g., operator counts in database queries, or network packet header

values) based on expert knowledge, use domain-specific feature extraction that may

not apply to general-purpose programs, or require high correlation between simple

features (e.g., input size) and execution time.

Delving further into extraction of non-trivial features, research has explored ex-

tracting predictors from execution traces to model program complexity [13], to im-

prove hardware simulation specificity [45, 46], and to find bugs cooperatively [47].

There has also been research on multi-component systems (e.g., content-distribution
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networks) where the whole system may not be observable in one place. For example,

extracting component dependencies (web objects in a distributed web service) can be

useful for what-if analysis to predict how changing network configuration will impact

user-perceived or global performance [35, 36, 37].

A large body of work has targeted worst-case behavior prediction, either focusing

on identifying the inputs that cause it, or on estimating a tight upper bound [48, 49,

50, 51, 52] in embedded and/or real-time systems. Such efforts are helped by the fact

that, by construction, the systems are more amenable to such analysis, for instance

thanks to finite bounds on loop sizes. Other work focuses on modeling algorithmic

complexity [13], simulation to derive worst-case running time [53], and symbolic ex-

ecution and abstract evaluation to derive either worst-case inputs for a program [54],

or asymptotic bounds on worst-case complexity [55, 56]. In contrast, our goal is to

automatically generate an online, accurate predictor of the performance of particular

invocations of a general-purpose program.

Finally, Our predictor is based on our earlier work [65]. In the prior work, we

introduce program slicing to compute features cheaply and generate predictors auto-

matically, apply the whole system to Android smartphone applications on multiple

hardware platforms, and evaluate the benefits of slicing thoroughly. In this work, we

modified Mantis to do method-wise performance prediction at runtime.

Previous work has proposed many techniques that aim to empower mobile device

with computational infrastructures. Satyanarayanan et al. [66, 67] proposed one of

the earliest studies which migrated the full VM or a small VM overlay along with a

process running on the device. As huge size of the data are transferred, this technique

is not applicable on mobile devices.

In order to realize offloading mobile computation to a server over wireless LAN

or even 3G networks, many recent works have proposed process-level migration ap-

proaches, which is transferring only the state and related heap objects of a process.
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Some of those use static partitioning schemes. In static partitioning schemes, the de-

cision whether to offload or not is fixed regardless of the execution environment. So,

a performance predictor is not needed as there is no need to estimate a program’s

characteristic. Ryan et al. [68] proposed a solution for optimal partitioning of sensor

network application code between sensor nodes and servers. It statically partitions the

code using profile-based approach to reduce the use of CPU and network bandwidth.

Cuckoo [69] is a framework for offloading mobile device applications to a cloud server.

For this framework to work, applications need to be re-written to match their program-

ming model. After the application code is generated during compile time, the Cuckoo

framework always tries to offload the application to a cloud server.

To elastically offload a program to a server, a majority of studies introduced dy-

namic partitioning schemes. CloneCloud [2] suggests an elastic execution offloading

approach for the Android System. CloneCloud uses a profile-based approach for parti-

tioning. It automatically partitions the program into parts that should be offloaded and

parts that should run locally at a certain network bandwidth from profiled data. There-

fore, CloneCloud reduces the overhead of modifying the application code. However, it

needs to transfer a rather large size of state to the server. Giurgiu et al. [70] also uses

a profile-based approach to dynamically distribute different layers of an application

between the server and the smartphone. It automatically determines which application

module should be offloaded in order to get high performance or low cost. These ap-

proaches rely on profiled application performance, limiting them to only work well

on a set number of offloading scenarios, unable to react to any change in application

performance, which might be caused by different inputs or network speed from the

profiled run.

At run time, OLIE [71] monitors the current memory status and network bandwidth

and it decides whether it should offload the application or not to overcome memory re-

source constraints of mobile devices. However, OLIE does not predict future memory
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requirements nor does it consider execution time or energy consumption.

MAUI [3] decides at run-time which method should be offloaded in order to achieve

optimal energy consumption by predicting the performance of the application and

transferring time of states, which is based on the transferred state size and network

speed, as long as the decision does not increase execution time. More recently, ThinkAir [4]

suggests an offloading framework that migrates smartphone applications to the cloud.

It allocates more than one clone VM image to exploit parallelism and relieve the lack

of memory space. They chooses the round-trip time or the time to transfer a certain

amount of data as features and builds the model for network speed using the features,

which is similar prediction method to feature-based approach. These features can be

commonly applied regardless of types of target program and are relatively easy to ob-

tain. On the other hand, it is difficult to automatically choose the features and create

the model for program performance, as there are no features which can be commonly

applied to every program.

COMET [72] adopted distributed shared memory to expand the range of offload-

able code and consequently, allows multiple threads to be offloaded simultaneously.

Inspired by MAUI, Kovachev et al. [5] proposed more sophisticated techniques for pro-

filing, monitoring and partitioning. These approaches use historical prediction based

on monitoring to lower the runtime overhead of prediction, which makes it hard for

them to make a good prediction when a program’s performance fluctuates greatly.

Odessa [73] dynamically partitions applications using a greedy algorithm, and

adaptively makes offloading decisions. In the paper, Moo-Ryong Ra et al. showed var-

ious factors, especially input variability, can affect application performance. In order

to offload effectively, accurate predictions of execution are required on both the smart-

phone and the server. Therefore, Odessa periodically acquires information from a low

overhead run-time profiler to estimate the bottleneck in the current configuration.
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3.7 Conclusion

In this chapter, we proposed a mobile offloading solver with f Mantis, which is a run-

time performance prediction generator. Our results show that f Mantis can accurately

predict the gains and costs of offloading a method at a certain point in a program in

consideration of different program inputs or device states. And by utilizing f Mantis,

we showed the possibility of a new solver to make precise offloading decisions which

further reduces the execution time or energy consumption of an application.
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Chapter 4

CMcloud: Cloud Platform for
Cost-Effective Offloading of Mobile
Applications

4.1 Introduction

In this chapter, we propose CMcloud, a novel cost-effective mobile cloud platform,

which works nicely under the real-world cloud environments. The key idea of CM-

cloud is to exploit a novel performance modeling methodology for estimating the tar-

get application’s post-offload performance accurately on any target server, regardless

of its current utilization. At the same time, CMcloud allows to offload as many applica-

tions to each server as possible without violating the applications’ user-expected per-

formance. If the target performance cannot be achieved using the currently allocated

server due to inaccurate performance estimations, CMcloud performs fast inter-server

live migrations to achieve the target performance. In this way, CMcloud can offer to

users its QoS-guaranteed offload service at a very low price, while minimizing the

cloud operation costs.
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CMcloud operation assumes the following working environments. First, CMcloud

is given the target application’s performance profiled on both the user device and a

reference-model cloud server. Such static profiling assumption of CMcloud is similar

to that of existing offload schemes [6, 7], and thus it does not incur any extra profiling

overheads compared to the existing schemes. Second, CMcloud allows to run as many

applications on each server as possible to minimize the cloud operation costs.

Based on the environments, CMcloud works as follows. First, on receiving an

offload request, CMcloud applies a sophisticated architecture performance modeling

to find the most cost-effective target server whose remaining resources are just large

enough to achieve the target performance. CMcloud finds the most cost-effective target

server by accurately predicting the application’s performance by estimating how the

performance profiled on the reference server would change on the target server, regard-

less of its current utilization. Next, CMcloud performs offloading and starts to monitor

the application’s progress. If CMcloud detects any failure in achieving the target per-

formance due to either inaccurate estimations or unexpected performance contentions,

it performs inter-server live migrations to achieve the target offload performance. In

this way, CMcloud provides the most cost-effective offloading service to users without

violating the QoS of the offloaded applications.

To the best of our knowledge, CMcloud is the first mobile cloud platform to pro-

vide the cost-effective offloading service by taking into account the costs of cloud

operation and the quality of offload services. Our example implementation on top of

a 8-node (16 sockets) Android-x86 / KVM [74] with QEMU 1.4.0 / Ubuntu 12.04

64bit platform shows that CMcloud can improve the server throughput by 111% over

a conventional static light-load scheme (or a 2.9x per-socket throughput.) Alterna-

tively, CMcloud reduces the number of service failures by 80% over a static high-load

scheme, while even improving the throughput by 16%.

Our work makes the following contributions:
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• Novel design. We propose CMcloud, a novel cost-effective mobile cloud which

exploits a performance modeling theory and inter-server migration capability.

• High performance. CMcloud significantly improves the server throughput over

the conventional static load schemes (e.g., 2.9x per-socket throughput.)

• Low costs. CMcloud maximizes the server throughput or minimizes the server

costs, while guaranteeing the user-expected offload performance.

• Easy applicability. CMcloud requires only a single reference-machine profiling

to find the most cost-effective server, regardless of its current utilization.

• Strong results. Our results show that CMcloud can achieve 16% higher through-

put over a heavy-load scheme, while reducing 80% of service failures.

• Low profiling overhead. CMcloud does not need to profile every application

for all possible servers, their load states and inputs.

The rest of this chapter is organized as follows: in Section 4.2, we first explain lim-

itations of existing schemes. Then in Section 4.3, we describe CMcloud’s key design

goals and its basic operation and architecture model. And in Section 4.4, we describe

CMcloud operatino mechanisms in detail. In Section 4.5, we experimentally demon-

strate the effectiveness of CMcloud. Finally, in Section 4.6 and 4.7, we relate our work

and conclude.

4.2 Backgrounds and Limitations

To motivate our CMcloud platform, this section introduces conventional offload schemes

and their key limitations.
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Figure 4.1 Offloading to multiple idle servers.

4.2.1 Basic Offload Mechanisms

The recent seminal works on the mobile-to-cloud offloading [6, 7] propose to run mo-

bile applications on high-performance servers. Even though their detailed implemen-

tations can differ based on the code modification scope (e.g., user application, kernel,)

and the offload granularity (e.g., functions, threads,) they are generally implemented

as follows. First, the cloud provider must have profiled the target application’s perfor-

mance and power consumption on both the mobile device and the target server. Next,

on receiving an offload request, the cloud provider compares the application’s profiled

performance on the mobile device and the target server. If any performance improve-

ment is expected, which is likely to be the case unless the communication latency

becomes an obvious bottleneck, the cloud provider offloads the application to the tar-

get server, and moves it back to the mobile device after the user-specified execution

region is completed.
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4.2.2 Limitations of Existing schemes

However, as the existing schemes do not consider the user’s service purchasing costs

nor the cloud provider’s server operation costs, they cannot be applied to the real-world

cloud environments, where the cloud provider aims to maximize the server throughput

or to minimize the server costs and charges the users based on their cloud resource

usage.

Costs of offload services. The existing schemes completely ignore the costs of

offload service by assuming that servers are provided for free and they run only one

mobile application or maintain a same static load per server. Therefore, they always

perform offloading as long as any amount of performance improvement is expected,

which is likely to be the case because a lightly loaded server is available and runs

faster than a mobile device. Figure 4.1 shows a typical scenario in which each four-

core server accepts only a single offload request to achieve the highest performance

and guarantee the user-expected performance.
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Figure 4.3 QoS failure due to incorrect profiling

However, the real-world clouds are designed to run as many applications as pos-

sible on each server to maximize the server’s throughput or to minimize the number

of active servers [75]. Therefore, if the existing schemes run only a small static load

per server, the costs of operating the server and thus the user service fee will be sig-

nificantly increased, which makes the mobile cloud computing business infeasible.

Figure 4.2 shows a scenario in which multiple offload requests are serviced on a single

server with a tradeoff between the server utilization and the offload performance.

Costs of service failures. To reduce the costs of operating the cloud and the user

service fee, the cloud provider must allow to offload as many mobile applications

to each server as possible. However, offloading too many applications to each server

incurs a new challenge in guaranteeing the user-expected offload performance because

multiple applications come to contend for the sharing server resources such as cores

and caches.

We define the number of offloaded applications completing within the user-expected

deadline over the number of all offloaded applications as the offload service’s quality

of service (QoS). It should be noted that even a small QoS violation is unacceptable in
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the cloud business, as the users only pay the fee as long as the expected performance

is achieved. Figure 4.3 shows a scenario in which five applications in Figure 4.1 are

now offloaded to a single four-core server and all applications fail to complete within

the user-expected deadlines. In this case, five applications contend for four cores and

the last-level cache (LLC) available on the server.

Costs of profiling. The existing schemes assume that performance has been previ-

ously profiled for the target server and the offloading always achieves the profiled per-

formance. However, this assumption is broken when an application is now offloaded

to a target server which is running other applications to reduce the server costs. To en-

able an accurate performance estimation, the existing schemes must have profiled for

all possible load states of each server. However, it is unrealistic for the cloud provider

to statically profile every application for all possible server load states.

4.3 CMcloud offloading

In this section, we first describe CMcloud’s key design goals. Next, we present its basic

operation model and architecture model consisting of three key components.

4.3.1 Design Goals

CMcloud must satisfy the following design goals to enable a cost-effective offload ser-

vice. First, CMcloud must target a real-world commercial cloud environment, where

servers are highly utilized by running multiple applications per server, Second, the

cloud provider must be able to find the most cost-effective target server whose re-

maining resource is just large enough to achieve the target performance, regardless of

its utilization. Finally, once an application is offloaded to the cloud, CMcloud must

deliver the user-expected performance by considering the QoS success as a primary

requirement.
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Figure 4.4 CMcloud’s example operation model.

4.3.2 Operation Model

Figure 4.4 illustrates how CMcloud performs an offloading once a user agrees to pur-

chase the offload service. Therefore, the cloud provider now has a target deadline for

each application to be completed by also considering a variation in the mobile-to-

cloud transfer latency. The cloud provider must satisfy the deadline using the minimum

server resources.

(1) Profiling on a reference server. CMcloud chooses a reference-model server

in the cloud which is used to profile all offload-enabled mobile applications. Any

server can be chosen as a reference-model server as long as it is equipped with a

basic set of performance counters. CMcloud profiles the application’s execution when

the reference-model server is idle, and stores the information in the profiling DB. Sec-

tion 4.4.1 describes the profiling mechanism in more detail.

(2)–(3) Offloading the application. The user requests an offload service, agrees on

the service fee, and transfers the application with the termination point and the target

deadline. Section 4.3.3 describes CMcloud’s mobile-to-cloud offload mechanism in
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more detail.

(4) Selecting a target server. The cloud provider finds the most cost-effective

server to complete the application within the target deadline using the minimum amount

of resources. At this step, CMcloud applies a performance modeling methodology to

estimate the application’s performance on the target server by differences in server

specifications (e.g., clock frequency, cache size) and load states between the reference-

model server and the target sever. Section 4.4.2 describes the modeling mechanism in

detail.

(5) Detecting a QoS failure. While running the application, the target server mon-

itors the application’s progress to detect a potential failure of completing the applica-

tion within the target deadline, due to either an unexpected performance contention or

inaccurate performance estimation. Section 4.4.3 describes the monitoring mechanism

in detail.

(6) Migrating to another server. On detecting a potential QoS failure, CMcloud

accelerates the application by migrating it to a faster server. Section 4.4.3 describes

the performance monitoring mechanism in detail. Section 4.4.4 describes the server-

to-server migration mechanism in detail.

(7)–(8) Migration server selection. Similar to the step (2)–(4), the cloud provider

selects the best target server based on the cost effectiveness and migrates the applica-

tion to a new server. The cloud provider can repeat the steps from (5) to (8) to maximize

the server throughput, while satisfying the QoS requirement.

(9) Completion. On reaching the offload termination point, the application is mi-

grated back to the mobile device.

As a result, the user always achieves the expected performance for the paid service

fee, while preserving the mobile device’s battery. At the same time, the cloud provider

can increase the server utilization to reduce both the datacenter operation costs and the

offload service fee.
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Figure 4.5 CMcloud’s basic architecture model.

4.3.3 Architecture Model

In this section, we describe our CMcloud architecture, which consists of a single mas-

ter server and the rest of servers as compute servers, as shown in Figure 4.5.

Master server. The master server consists of three components: profiling DB,

performance estimator, and target selector. First, the profiling DB contains the pro-

filed execution information on all offload-enable mobile applications on the reference-

model server. Next, the performance estimator predicts the application’s performance

on a current candidate target server analyzing the profiled information on the reference-

model server, and differences in server specifications and utilizations between the
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reference-model server and the candidate target server. Finally, the target selector finds

the most cost-effective target server which will deliver the user-expected performance

at the minimum costs.

Compute server. The compute server consists of three components: manager, per-

formance monitor, and migrator. First, the manager communicates with other com-

ponents and servers by handling requests and replies. Next, the performance monitor

measures the application’s on-going performance to detect a potential QoS failure (i.e.,

failing to meet the user-requested deadline) by exploiting the current server’s perfor-

mance counters and the execution profile stored in the profiling DB. Finally, on detect-

ing a potential QoS failure, the migrator embedded in the application virtual machine

(VM) suspends the application’s execution, migrates its execution state, and continues

to execute on a new target server.

Offload-ready mobile device The user’s mobile device and operating system must

be able to offload a mobile application to the cloud. In this work, we implemented a

MAUI-like model as proposed in [6]. For example, the offload handler predetermines

offload-enabled regions as remote-executable methods (RM). Therefore, the master

server must profile the RM methods and store the profiled information in the profiling

DB. Even though we used a MAUI-like model for this work as it does not require to

modify the operating system, CMcloud implementation is orthogonal to the mobile-to-

cloud offload implementation. CMcloud focuses on providing the cost-effective cloud

platform. Therefore, CMcloud can be implemented with other mobile-to-cloud offload

models.

Network modeling We modeled 3G and Wi-Fi networks between mobile devices

and the cloud using normal distributions of the bandwidth with empirically observed

average and deviations. The detailed information is described in Section 4.5.

83



4.4 CMcloud mechanism

In this section, we describe CMcloud operation mechanisms in detail: reference-server

profiling, performance estimation and monitoring, and migration techniques.

4.4.1 Reference-model Server Profiling

The existing offload schemes assume that the offloaded application’s performance has

been previously profiled for the target server so that they can estimate the application’s

post-offload performance before making an offload decision. However, if the target

server runs different sets of applications from the profiling time, which is the basic

operation model of CMcloud, the existing schemes must perform an unbounded num-

ber of profiling processes for all kinds of different utilization status even for a single

server.

On the other hand, CMcloud still performs a static profiling on a single reference-

model server with a few inputs, which can be later translated to the performance for

a different target server running any combination of applications. To enable such per-

formance estimation, CMcloud collects the following statistics on the reference-model

server using HW performance counters and a memory access tracer.

• CPI stack. Execution time breakdown to each performance bottleneck compo-

nent

• Feature values. Values of features characterizing dynamic behaviors of the ap-

plication on given input

• Temporal locality information. Memory access patterns affecting cache hit and

miss rates

CMcloud can choose any machine equipped with basic performance counters as

a reference-model server. However, as our performance modeling assumes that the
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server’s pipeline microarchitecture (e.g., branch predictor, issue order) is maintained,

CMcloud must profile an application on all reference-model servers representing unique

pipeline microarchitecture families (e.g, one reference machine for all Sandy Bridge

family processors.) Other than the pipeline structure, CMcloud does not require extra

profiling due to different clock speeds or different sizes of last-level caches (LLC).

More importantly, CMcloud does not require extra profiling due to different server

utilization status.

Therefore, CMcloud’s static profiling overhead is much smaller than that of exist-

ing offload schemes [6, 7] required to estimating the post-offload performance when

servers are highly utilized.

4.4.2 Performance Estimation

Performance Estimation Overview

In figures 4.7, we show CMcloud’s performance estimation process. In the off-line

stage, CMcloud collects target application’s information which is necessary to estimate

the application’s post-offloaded performance. Then, it generates an instruction count

predictor with the profiled data. In the on-line stage, CMcloud estimates post-offloaded

performance with specification and resource usage of the target server, the profiled data

and predicted instruction count.

CPI stack Estimation for Different Servers

(a) Performance Analysis using CPI Stack.

CPI stack [76, 77] is a performance analysis tool widely used to understand how

much each performance losing events (e.g., cache miss, branch misprediction) con-

tributes to the overall performance. As cycle-per-instruction (CPI) explains how many

cycles are spent to execute a single instruction on average, it is possible to separate the

different impacts from different bottlenecks. If the CPU experiences performance los-
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Figure 4.6 Performance estimation using CPI stack

ing events such as a cache miss, the final CPI can be obtained by adding the ideal CPI

and the extra CPI caused by the cache miss. Therefore, if we are aware of how each

event’s CPI impact would change on a target architecture, it is possible to construct a

target CPI, as shown in Figure 4.6.

(b) CPI stack estimation for different idle servers.

CMcloud applies the CPI stack method to predict the target application’s post-

offload performance on a target server, using the profiled performance on the reference-

model server. CMcloud first takes the CPI stack collected on the reference-model

server, analyzes how key performance losing events will change on a target server,

and constructs a new CPI stack to measure the post-offload performance, as shown in

Figure 4.7.

86



Reference 
Model
Profiling

Mobile 
Application Profiling 

DB

Predictor 
Generation

CPI stack 
Estimator

HW Spec
(Freq, Cache, …) 

Resource Usage
(# of apps, MPKI, …)

MEM

L3

BASE

Estimated 
CPI stack

Inst. Count
Predictor

User input

Estimated 
Performance

<Off‐line Stage>

<On‐line Stage>
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In this work, CMcloud focuses mainly on four performance impact factors, CPU

frequency, LLC hit, LLC miss, and store buffer full, because the number of memory

instructions and LLC miss rates affect the overall performance most significantly. Even

though we consider only four major performance factors in this work, CMcloud can

apply more fine-grain bottleneck components as proposed in [77, 78, 79, 80].

Once such CPI stack becomes available, CMcloud can estimate the performance

on a target server by adjusting the impact of each CPI stall event as follows. First,

CMcloud breaks the overall CPI down to a combination of four sub-CPI events (i.e.,

ideal latency (base), last-level cache hit (llc), memory access (mem), store buffer full

(sfull)) as follows.

CPI = CPIbase + CPIllc + CPImem + CPIsfull (4.1)

Next, CMcloud measures CPI adjusting factors, CPIratio,mem, CPIratio,llc, and CPIratio,sfull.

The factors are used for adjusting the corresponding CPI event for the target server.
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Figure 4.8 An example reuse distance of four for A.

If the CPU clock frequency of the target machine is different from that of the

reference server, both CPIllc and CPImem are scaled for the target CPU. If the target

server’s memory access latency is different from that of the reference server, the ratio

is applied to CPImem as well.

Freqratio = Freqtarget/Freqref

CPIratio,llc = LLC Hitratio × Freqratio

CPIratio,mem = LLC Missratio × Freqratio × Latratio

(4.2)

where Freq is a CPU clock frequency, Lat is a memory access latency, and LLC Hit

and LLC Miss are the number of LLC hits and misses, respectively.

However, it is difficult to estimate the number of LLC hits and misses, when cache

architectures differ between the reference server and the target server. To address the

issue, we assume that the size of an LLC differs by the degree of associativity and its

cache block replacement policy is based on a LRU policy. In fact, as modern LLCs

exploit variations of index hashing mechanisms to effectively increase the degree of

associativity, even caches scaled by the number of sets show similar hit and miss pat-

terns as the caches scaled by the associativity.

To discover the application’s temporal locality, we leverage the reuse distance (RD)

analysis[81], in which RD is the number of distinct and different memory accesses

between two consecutive references. Figure 4.8 shows an example reuse distance of
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four between two consecutive memory accesses to A. To collect the reuse distances,

we use our memory tracing scheme implemented in the QEMU emulator.

With the LLC scaling and the reuse distances available, LLC hit and miss rates

can be estimated for differently sized LLCs. For example, when the LLC’s associativ-

ity increases from x to y, the number of LLC misses decreases by
∑y

n=x+1CRD=n

where CRD=n is the number of accesses with the reuse distance of n. Therefore,

LLC Missratio can be calculated as follows:

LLC Missratio = 1±
y∑

n=x+1

CRD=n/LLC Missref (4.3)

Finally, the penalty caused by the store buffer full depends on some factors in-

cluding the issue width (W ), in-flight store instructions, memory latency and clock

frequency. Frequent LLC misses of store instructions can incur a high penalty by fill-

ing up the store buffer, which stalls the entire piepline. We estimate such store buffer

full cycles using the measured CPIsfull and average store instructions per cycle. We

approximately calculate the changed penalty of store buffer full event as follows.

CPIratio,sfull = 1 +
Freqratio × Latratio − 1

W ×%stores
(4.4)

By combining equations for each CPI event, we obtain the final target CPI estima-

tion model for different, but idle target servers:

CPItarget = CPIbase +
∑

(CPIratio,event × CPIevent) (4.5)

(c) CPI stack estimation for Different Utilization.

In highly utilized cloud environments, each server is highly utilized to achieve

the maximum throughput, and thus it will be difficult to find an idle target server for

offloading. If an application is offloaded to a target server currently running other

applications, the available CPU clock cycles and LLC capacity will be smaller due

to the resource sharing among applications.
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To calculate the available clock cycles with a core contention, we simply scale

the baseline frequency down by the number of applications. We assume that all ap-

plications are evenly scheduled with same priorities. If the operating system applies

different priorities, this method can be easily adjusted to consider the relative weights

as cycles available.

In addition, to estimate the miss rates of the LLCs experiencing a contention, we

exploit the miss rate estimation model as proposed in [82]:

LLC Misses = CRD>A +

A∑
x=1

Pmiss(x)× CRD=x (4.6)

where A is the LLC’s associativity, CRD=x is the number of accesses with the reuse

distance of x, and Pmiss(x) is the possibility of miss for the access with the reuse

distance of x.

Pmiss depends on which applications are co-located in the same server. This esti-

mation requires the histogram information such as per-application reuse distances. In

our work, as the phase of each application varies over time, we collect the information

periodically (e.g, one billion instructions.) Then, we adjust the LLC miss estimation

model by considering progresses of background applications in the server where a new

application is offloaded.

Once such information becomes available, we apply the modified frequency and

miss information to the formulas developed in the Section 4.4.2.(b)

Instruction Count Prediction for Different Inputs

To apply the CPI stack method to predict the target application’s post-offload perfor-

mance on a target server for different inputs, it is necessary to obtain an instruction

count for executing the application on each input. For some applications, behaviors of

them are not affected by their inputs. In these cases, the value of instruction counts are

constant, which can be calculated from profiling data with only an input. The other
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applications, however, have dynamic behaviors on input changes. Instruction counts

for those applications also can be obtained by profiling for all possible inputs, but It

is time-consuming. To overcome the problem, in this work, we chose it Mantis, which

we proposed in Chapter 2, to generate a predictor of program performance. Mantis

generates a performance predictor for a mobile devices. We modify the techniques of

Mantis in order to apply it to instruction count estimation on a server.

Instruction Count Predictor Generation Overview

In Figure 4.9, we show the architecture of our instruction count predictor gen-

eration. The architecture takes as input a profiling DB which is computed from an

instrumented application. The instrumented application collect the values of features

and instruction counts. With the profiling DB, a model generator then performs sparse

linear regression on the feature values and the instruction counts, and produces a func-

tion that approximates the program’s instruction count using a subset of the features.

As a final step, a predictor code generator produces a program code which predicts the

application’s instruction count from its input.

Application Instrumentation and profiling The instruction count of an applica-

tion is determined by its inputs and state. These could be the features on their own, but
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in most cases, other features implicated by them are more usable to characterize dy-

namic behavior of the application. Usable program feature, which are candidates for a

basis of prediction, can be found in a program in various forms. Some of these features

may not be immediately visible in the original code, so we instruments the program

in order to acquire them. We consider four instrumentation schemes for such features:

branch counts, loop counts, method-call counts and variable values. After instrument-

ing, a profiler computes the feature values with test inputs by running the instrumented

code.

Model and Predictor Code Generation The profiler produces a large number

of features. Among those features, only a handful of features are enough to make

an accurate and efficient predictor. To seek compact performance model, which are

functions of just a few features that accurately approximates instruction count, we

use the SPORE-FoBa algorithm [15]. The resulting model can capture polynomial or

sub-polynomial program complexities well thanks to Taylor expansion, which char-

acterizes the vast majority of practical programs. The function output by the model

generator is used for produce the predictor code generator.

4.4.3 Performance Monitoring

In this section, we describe CMcloud’s performance monitoring mechanism. The mon-

itoring mechanism detects the applications’ potential QoS failure caused by either an

incorrectly estimated post-offload performance or a resource contention in the servers.

Performance Evaluation

The performance monitor exploits HW performance counters to check the progress of

the target application. Our implementation collects the million instructions per second

(MIPS) of each application using a modified version of perf [84]. Based on the per-

formance estimation model described in Section 4.4.2, the performance is periodically
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measured and compared as the number of retired instructions for the given period (e.g.,

one second.)

QoS Violation Detection

The performance monitor detects a QoS violation as follows. First, as CMcloud pro-

files applications only on a single idle reference-model server, the performance mon-

itor estimates the expected performance on the current target server using the model

described in Section 4.4.2. We describe the QoS violation detection method as follows:

(1) Estimate instruction count on the input The performance monitor estimates

instruction count using the instruction count predictor.

(2) Determine a comparison period. The performance monitor determines a

small period of region (e.g., three past seconds) to compare the MIPS. We use few-

second comparison periods to tolerate sudden fine-grain performance variations.

(3) Obtain the original completion time. The performance monitor computes the

time spent to complete the application based on the originally estimated post-offload

performance.

(4) Compute the newly expected completion time. By applying the relative per-

formance difference between the expected post-offload performance and the currently

monitored performance, the performance monitor can estimates the application’s ex-

pected completion time.

(5) Detect a QoS failure. The performance monitor can now detect a potential QoS

failure by comparing the newly expected completion time against the target deadline

agreed between the user and the cloud provider.

4.4.4 Migration

On detecting a potential QoS failure, CMcloud guarantees the application’s QoS re-

quirements by migrating the corresponding applications to a faster server. The migra-
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tor shown in Figure 4.5 performs a low-cost live VM migration.

Destination selection. On detecting a QoS failure, the migrator must find a right

destination server. When a migration request is forwarded to the target selector, the

target selector finds a right destination node using the performance estimator, as de-

scribed in Section 4.4.2. The performance estimator exploits not only the status of

each server (e.g., the number of active cores, current server utilizations,) but also the

application-specific information (e.g., the number of retired instructions, the elapsed

run time.)

Performance overhead. Migration can incur non-trivial performance overhead

when the large amount of data is transferred over the network. Therefore, CMcloud

performs fast inter-server live migrations to minimize a downtime. We assume that

servers already contain key application binaries to avoid migrating binaries.

4.4.5 Cost-aware Application Scheduling in Cloud

To minimize the datacenter operation costs, CMcloud targets to improve server uti-

lizations, while maintaining only a smallest number of active servers in the cloud. To

achieve the goal, CMcloud first starts with a small number of nodes and populates

the small pool with offloaded applications. Next, on receiving a mobile-to-cloud of-

fload request, the performance estimator collects the estimated performance from the

servers. Using this information, the target selector finds the most cost-effective server

whose remaining resources are just enough to satisfy the agreed post-offload perfor-

mance. If the target selector cannot find such server, a new server is activated and

added to the current pool of active servers.

4.5 Evaluation

In this section, we first explain our evaluation platform and workloads, and next eval-

uate CMcloud’s accurate performance modeling and its overall cost effectiveness.
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Server platform. Our datacenter consists of eight server nodes connected with

10Gbps network, where each server has two CPU sockets. All servers run Ubuntu

12.04 64-bit with Linux Kernel 3.5.0 and KVM [74] with qemu 1.4.0. The KVM re-

lease supports both hypervisor and users to access low-level performance counters. To

support offloading between mobile phones and x86 servers, we use Android-x86 [85]

VMs to run an Android application on a server.

Table 4.1 lists CPU architectures used as reference-model and target servers. We

use reference models for different pipeline micro-architecture CPU families (e.g., Ne-

halem, Sandy Bridge) to avoid inaccurate performance estimation across different

micro-architectures. As a result, we use two unique reference CPU models in this

work because the target servers use one of the pipeline architectures, but differ in the

clock frequency and the cache size.

Network. We modeled a Wi-Fi network using a normal distribution of the band-

width with empirically obtained 18.5Mbps average and a 3.5 standard deviation. Each

Table 4.1 CPUs used for tests.
Processor Frequency Cache Size

Reference Intel Core i7-930¶ 2.80 GHz 8 MB
Intel Core i7-2600‡ 3.40 GHz 8 MB

Target Intel Xeon X5650¶ 2.66 GHz 12 MB
Intel Xeon E5-2630‡ 2.30 GHz 15 MB
Intel Xeon E5-2670‡ 2.60 GHz 20 MB

¶Nehalem (Westmere) processor
‡Sandy Bridge processor

Table 4.2 Workloads and average performances (in i7-2600).
Execution Total LLC LLC

time insts refs/sec misses/sec
Chess 293 s 1181 B 0.7 M 0.02 M
FaceDetect 37 s 142 B 3.0 M 2.05 M
VirusScan 91 s 495 B 0.7 M 0.69 M
FeatureDetect 21 s 76 B 3.2 M 2.44 M
Bellmanford 173 s 473 B 20.5 M 5.66 M
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offload request obtains a unique bandwidth following the distribution. We modeled

both 3G and Wi-Fi networks, but used Wi-Fi environments to focus more on the sever-

side performance for evaluation. CMcloud can be equally applied to 3G network as

well.

Workloads. We implemented five real-world mobile applications listed in Ta-

ble 4.2. We carefully selected these workloads for the reasonable execution latency,

while they contend for the shared resources (e.g., last-level cache.) Chess calculates

the latency for a computer to find the next move, FaceDetect and FeatureDetect iden-

tify human faces and various features from a given image, VirusScan compares in-

put virus signatures with 1GB of cloud data, and Bellmanford finds a shortest path

based on maps which include a real map(NY-city) and randomly generated maps. We

generated 1,000 random test inputs for each application. The instruction count predic-

tor for each application is trained on 100 inputs. To support offloading, we modified

these workloads as proposed in [6]. We also applied Native Interface (JNI) to evaluate

memory-intensive workloads.

Clients. We modeled clients as an inflow of offloading requests based on Poisson

distribution with 30 requests per minute for the 24-socket cloud. To finish 30 appli-

cations per minute, we configured the application ratio as Chess (19.2%), VirusScan

(9.7%), FaceDetect (32.3%), FeatureDetect (32.3%), and Bellmanford (6.5%.)

4.5.1 Estimating Target CPI stack

We first evaluate the accuracy of the proposed CPI stack estimation method using idle

target servers by with the reference-model profiling described in Section 4.4.2. We use

the estimated CPI stack with the profiled runtime progress information to estimate the

performance of CMcloud. Figure 4.10 compares the estimation accuracy between the

real performance obtained on the target server and the estimated performance. The x-

axis indicates three target-server runs for six workloads, whereas the y-axis shows the
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Figure 4.10 Accuracy of the performance prediction for idle server
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Figure 4.11 Accuracy of the performance prediction for busy server running the five
background jobs

performance normalized to the reference machine as shown in Table 4.1. Real bar indi-

cates the actual post-offload performance, while CMcloud bar indicates the predicted

performance. The results indicate that CMcloud predicts the performance of idle target

servers with the average error of only 2.9%. Freq bar indicates the performance only

when the CPU frequency is considered for the estimation, which leads to the average

error of 10.3%.

Next, we repeat the same experiments when each target server runs a group of

five baseline applications in background. Figure 4.11 indicates that CMcloud’s perfor-

mance estimation is also accurate even for the highly utilized target servers. The results
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indicate that CMcloud predicts the performance of busy target servers with the average

error of only 5.3%, compared to the 13.4% error of the frequency-only estimation.

4.5.2 Predicting Instruction Count

We evaluate the accuracy and efficiency of instruction count prediction. In Table 4.3,

we achieve accuracy with prediction error within 4.3% in all cases, while each predic-

tor runs around 0.4 s. We show the effect of the number of training samples on pre-

diction error in Figure 4.12. In most cases, the curve of their prediction error plateaus

before 20 input samples for training.

4.5.3 Cost Effectiveness with QoS requirements

This section evaluates the cost effectiveness of CMcloud by analyzing the improved

server throughput and reduced server costs.

Improved server throughput. Figure 4.13 compares the performance and costs of

CMcloud against conventional static server allocation schemes. The X-axis lists seven

target server allocation schemes: three static allocation schemes and four dynamic al-

location schemes including CMcloud. For static allocation schemes, we configured the

cloud provider to assign only one application to each socket (17% load,) three appli-

cations to each socket (50% load), and five applications to each socket (83% load.)

For dynamic allocations schemes, we evaluated a frequency-only estimation model

and CMcloud with/without intra-server migration capability. The Y-axis shows, among

500 offload requests, the number of requests successfully completed within the user-

Table 4.3 Prediction error and prediction time.
Prediction error Prediction time

Chess 4.30% 0.45 s
FaceDetect 3.88% 0.27 s
VirusScan 0.03% 0.35 s
FeatureDetect 0.97% 0.36 s
Bellmanford 0.33% 0.33 s
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Figure 4.13 Datacenter throughput (out of 500 requests.)

agreed deadline (QoS-success) for the entire cloud, the number of requests violating

the deadline (QoS-failure,) and the number of requests turned down by the cloud due

to insufficient servers.

Among the static allocation schemes, the 17% load scheme shows the lowest per-
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Figure 4.14 Datacenter utilization (out of 16 sockets.)

socket throughput by utilizing only one core per 6-core socket. The 17% load rejects

almost half of the requests due to insufficient servers. On the other hand, the 83%

load scheme achieves 83% server throughput, while 17% of workloads fail to com-

plete within the deadline. Even though the 50% load shows 93% throughput in return

of 50% server efficiency, this sweet spot will change for different workloads. There-

fore, considering the server underutilization and the QoS failure are unacceptable for

the cloud business, the static allocations cannot be applied as a cost-effective offload

scheme.

Among dynamic allocations, CMcloud achieves almost the ideal throughput and

even CMcloud without migration capability outperforms two frequency-only estima-

tion models. The result shows that CMcloud improves the server throughput by 111%

over the 17% load scheme. Compared to the 83% load scheme, CMcloud reduces the

number of service failures by 80%, while even improving the throughput by 16%. The

results also show that both the performance modeling and inter-server migration of

CMcloud contributed to the improved server throughput separately.

Reduced server costs. Figure 4.14 shows the number of sockets running appli-

cations for the first 1000 seconds. In this experiment, we evaluate the server costs
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Figure 4.15 Per-socket cost effectiveness.

of CMcloud against three static load schemes. As expected, the higher-load alloca-

tion policies utilize a smaller number of sockets than lighter-load allocation policies.

However, CMcloud only activates the minimum number of sockets by maximizing

the throughput, as long as the QoS of applications is not violated. Considering the

CMcloud’s high throughput shown in Figure 4.13, it is clearly shown that CMcloud

consistently operates at lower costs than the 17% and 50% static allocation schemes.

Cost effectiveness. Considering the improved throughput and reduced server costs

of CMcloud, Figure 4.15 compares the cost effectiveness of CMcloud against the static

allocation schemes. In this figure, we measure the cost effectiveness of the number

of applications successfully completed within the deadline per socket, which indi-

cates each socket’s cost effectiveness. The results show that CMcloud outperforms

all schemes significantly. CMcloud provides a 2.9x higher per-socket throughput over

a static light-load scheme (i.e., 17% load.) It should be noted that the relatively high

cost-effectiveness of high-load static allocation policy (i.e., 83% load) comes with

many QoS failures. On the other hand, CMcloud does not incur unacceptable QoS

failures as shown in Figure 4.13.
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4.5.4 Offloading/migration Overhead

Table 4.4 shows the overhead of performance monitoring, inter-server migration, and

reference-model profiling. Both monitoring and profiling overheads are normalized to

the execution latency without profiling. The monitoring overhead is small and thus

shown in percentage.

Once applications are offloaded to servers, CMcloud must monitor all applica-

tions to detect the potential QoS violations and trigger server-to-server migrations to

improve the performance. We use KVM’s native live migration method, which can

migrate an application paying only the minimum performance loss. By modifying the

KVM’s live-migration source code, we measure the latency from when the VM stops

at the source node to when it restarts at the destination node. The table 4.4 shows that

both monitoring and migration overheads are minimal.

The static profiling can take a long time as it includes the reuse distance anal-

ysis obtained by QEMU emulator. However, it is only a one-time overhead paid by

the cloud provider and the overhead is not exposed to users. Moreover, CMcloud re-

quires only a single reference-machine profiling, regardless of its current utilization.

It should be noted that a similar kind of static profiling is also required by the exist-

ing seminal works[6, 7]. Many proposals to reduce the profiling overhead has been

proposed, which is orthogonal to our work.

Table 4.4 Offloading overheads.
Esti. Moni. Migr. Prof.

Chess 1.03% 1.58% 45 ms x150
FaceDetect 0.51% 0.14% 21 ms x127
VirusScan 0.18% 4.15% 14 ms x180
FeatureDetect 0.56% 0.71% 12 ms x124
Bellmanford 1.34% 3.66% 50 ms x136
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4.6 Related Work

In this section, we discuss previous work related to CMcloud in the areas of dynamic

offloading, performance prediction, performance monitoring, and migration.

Dynamic offloading. Dynamic offloading techniques, MAUI [6] and CloneCloud

[7], allow users to execute a mobile application on a cloud. However, these schemes

are not suitable for the real-world cloud environment due to the lack of the QoS guar-

antee of applications and a cost model [86, 87]. ThinkAir [88] proposes an on-demand

resource allocation for user-side cost and parallel method execution of a mobile ap-

plication for the QoS guarantee, but focuses on one automatically parallelizable ap-

plication instead of simultaneous execution of several applications. [89] focuses on

reduction in migration overhead by transferring only essential heap objects. Instead,

our scheme targets to mobile cloud computing for simultaneous execution of several

applications, the QoS guarantee of applications, and minimization of server cost.

Performance prediction. In heterogeneous multi-core systems, PIE [90] and Re-

gression analysis [91] estimate the performance of other cores and assign an appropri-

ate application to an optimal core. These schemes assume that caches have the same

size and there is no resource contention. Bubble-Up [92] and Bubble-Flux [93] guaran-

tee QoS of a latency sensitive application. However, the former performs many sensi-

tivity tests with various memory pressures in advance, and the latter does not allow co-

location of multiple latency sensitive applications. Our prior work [83] automatically

estimate the execution time of the application on various inputs by extracting features

related to the performance from a mobile application. To estimate the performance of

an application on servers, we apply this technique to predicting the instruction count

of the application.

Performance monitoring. Many researches [94, 95] widely use resource monitor-

ing to detect performance interference. Perf [84] and Oprofile [96] monitor the system
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resource usage of each application through hardware performance counters. Pin [97]

and Valgrind [98] measure what kinds and how many instructions are executed through

dynamic instrumentation.

Migrations. Cloud systems migrate VMs to another server for guaranteeing QoS

and improve cost effectiveness of clouds. To reduce the downtime of VMs, we adopt

Pre-copy [99] as a live migration scheme. We can adopt other live migration schemes

[100, 101].

4.7 Conclusions

In this chapter, we proposed CMcloud, a novel cost-effective mobile cloud platform,

which works nicely under the real-world cloud environments. CMcloud reduced the

cost of offloading by improving the server utilization significantly, while achieving

the user-expected offload performance. Our implementation shows that CMcloud can

improve the datacenter throughput by 84% over a conventional static light-load scheme

(or a 2.7x higher per-socket throughput.) Alternatively, CMcloud reduces the number

of service failures by 83% over a static high-load scheme, while even improving the

throughput by 31%. To the best of our knowledge, CMcloud is the first cost-effective

mobile cloud platform which allows an oversubscribed offloading without affecting

the QoS of mobile applications.
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Chapter 5

Conculsion

The growing needs of processing pwoer and energy efficiency for new smartphone

applications have rendered the existing standalone execution no longer appropriate to

satisfy high performance and low power consumption demands. On the other hands,

mobile execution offloading is an alternative to the problem. To derive benefit from

mobile execution offloadding, it is necessary to predict computational resource con-

sumption of offloaded applications.

In this dissertation, I address the problem of accuracy and efficiency of the predic-

tion. To obtain predictors which are sufficient to use for mobile execution offloading, I

propose Mantis, a framework that automatically generates the predictors. We showed

that the use of Mantis can predict computational resource consumption with estima-

tion error mostly under 5% by executing slice that spend at most 1.3% of the total

execution time of these programs.

From the prediction technique, I propose f Mantis which is a runtime method-wise

performance prediction generator. By utilizing f Mantis to mobile execution offloading

solver, I showed the possibility of it to make more precise offloading decisions. As the
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result, we reduce the execution time by up to 31.7% and save the energy of smartphone

by up to 57.2%.

To make mobile execution offloading work nicely under the real-world cloud envi-

ronments, I propose CMcloud, a novel cost-effective mobile cloud platform. CMcloud

estimates post-offloaded performance with specification and resource usage of the tar-

get server, the profiled data and predicted instruction count. CMcloud reduced the cost

of offloading by improving the server utilization, while achieving the user-expected

offload performance. The implementation results show that CMcloud can improve the

datacenter throughput by 84% over a conventional static light-load scheme. Thus, CM-

cloud reduces the number of service failures by 83% over a static high-load scheme,

while even improving the throughput by 31%.
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초록

높은스마트폰의성능요구를만족시키기위해서클라우드의자원을활용하여

스마트폰 성능을 높일 수 있는 모바일 클라우드 컴퓨팅 기술들이 제안되어 왔

다. 그러한 기술들 중 오프로딩 기술은 모바일 기기와 서버 사이에서 쓰레드를

이전시킴으로써모바일에서수행할코드를서버에서대신수행하고돌아오게

된다. 모바일 오프로딩 기술에서는 어떤 영역의 코드를 서버로 이전 시킬지의

결정을 동적으로 결정하게 된다. 최적화된 결정을 위해서는 오프로딩의 득과

실을 정확하게 예측해야 할 필요성이 있지만, 이전의 연구들은 정확한 예측을

하는데필요한자원손실때문에시도하지못했다.특히,기존연구들은클라우

드의 자원에 대한 비용을 무시하였다. 그들은 서버가 항상 휴면상태이고 항상

무료로이용가능하다고가정하였다.그러하여기존연구들은적은비용으로최

고의성능을이끌어내며사용자들에게과금을하는실제의상용클라우드에는

적용하지못한다.

따라서본연구에서는,프로그램의성능을정확하고효율적이며자동적으로

예측할수있는 Mantis를제안하였다. Mantis는프로그램분석기술과머신러닝

기술을융합하여많은프로그램 Feature들중프로그램의성능과밀접한관계가

있는 Feature만을 이용하여 예측 모델을 생성한다. Program Slicing 기법은 효율

적으로 Feature값을추출하여생성된모델을계산하는코드를자동적으로생성

한다.본논문에서는 Mantis를이용하여프로그램의성능을예측하여오프로딩

성능을개선할수있음을실험으로보였다.또한효율적인클라우드오프로딩플

랫폼인 CMcloud를제안하여서버의운영비용을줄이는동시에사용자의요구

성능을최대한만족시켜줄수있었다.

주요어:모바일클라우드컴퓨팅,스마트폰,성능예측,모바일오프로딩

학번: 2010-30209

119


	Chapter 1 Introduction
	1.1 Mobile Execution Offloading
	1.2 Dynamic Code Partitioning
	1.3 Cost-effectivity of Mobile Execution Offloading
	1.4 Dissertation Contributions and Outline

	Chapter 2 Mantis: Efficient Predictions of Execution Time, Energy Usage, Memory Usage and Network Usage on Smart Mobile Devices
	2.1 Introduction 
	2.2 Architecture
	2.3 Feature Instrumentation 
	2.4 CRC Modeling 
	2.5 Predictor Code Generation 
	2.5.1 Rationale 
	2.5.2 Slicer Challenges 
	2.5.3 Slicer Design

	2.6 Implementations 
	2.7 Evaluation
	2.7.1 Evaluation Environment 
	2.7.2 Experiment Results 

	2.8 Related Work
	2.9 Conclusion 

	Chapter 3 Precise Execution Offloading for Applications with Dynamic Behavior in Mobile Cloud Computing
	3.1 Introduction
	3.2 Background & Motivation
	3.2.1 Background 
	3.2.2 Motivation

	3.3 f Mantis : Automatically generation of accurate and efficient

	predictor for mobile execution offloading  
	3.3.1 Performance predictor generation overview 
	3.3.2 Profiler  
	3.3.3 Predictor Generator  
	3.4 Dynamic code partitioning with predictor generated by f Mantis  
	3.4.1 Architecture for our solver 

	3.5 Evaluation 
	3.5.1 Implementation  
	3.5.2 Evaluation Environment  
	3.5.3 Experimental results  

	3.6 Related work 
	3.7 Conclusion 

	Chapter 4 CMcloud: Cloud Platform for Cost-Effective Offloading of Mobile Applications
	4.1 Introduction 
	4.2 Backgrounds and Limitations 
	4.2.1 Basic Offload Mechanisms
	4.2.2 Limitations of Existing schemes 

	4.3 CMcloud offloading  
	4.3.1 Design Goals  
	4.3.2 Operation Model 
	4.3.3 Architecture Model 

	4.4 CMcloud mechanism 
	4.4.1 Reference-model Server Profiling 
	4.4.2 Performance Estimation 
	4.4.3 Performance Monitoring 
	4.4.4 Migration 
	4.4.5 Cost-aware Application Scheduling in Cloud  

	4.5 Evaluation 
	4.5.1 Estimating Target CPI stack 
	4.5.2 Predicting Instruction Count  
	4.5.3 Cost Effectiveness with QoS requirements 
	4.5.4 Offloading/migration Overhead 

	4.6 Related Work 
	4.7 Conclusions  

	Chapter 5 Conculsion
	초록


<startpage>15
Chapter 1 Introduction 1
 1.1 Mobile Execution Offloading 1
 1.2 Dynamic Code Partitioning 2
 1.3 Cost-effectivity of Mobile Execution Offloading 3
 1.4 Dissertation Contributions and Outline 4
Chapter 2 Mantis: Efficient Predictions of Execution Time, Energy Usage, Memory Usage and Network Usage on Smart Mobile Devices 6
 2.1 Introduction  6
 2.2 Architecture 9
 2.3 Feature Instrumentation  11
 2.4 CRC Modeling  12
 2.5 Predictor Code Generation  15
  2.5.1 Rationale  15
  2.5.2 Slicer Challenges  17
  2.5.3 Slicer Design 19
 2.6 Implementations  21
 2.7 Evaluation 24
  2.7.1 Evaluation Environment  24
  2.7.2 Experiment Results  26
 2.8 Related Work 37
 2.9 Conclusion  39
Chapter 3 Precise Execution Offloading for Applications with Dynamic Behavior in Mobile Cloud Computing 40
 3.1 Introduction 40
 3.2 Background & Motivation 41
  3.2.1 Background  41
  3.2.2 Motivation 43
 3.3 f Mantis : Automatically generation of accurate and efficient performance
predictor for mobile execution offloading   48
  3.3.1 Performance predictor generation overview  49
  3.3.2 Profiler   50
  3.3.3 Predictor Generator   50
 3.4 Dynamic code partitioning with predictor generated by f Mantis   52
  3.4.1 Architecture for our solver  52
 3.5 Evaluation  54
  3.5.1 Implementation   54
  3.5.2 Evaluation Environment   55
  3.5.3 Experimental results   56
 3.6 Related work  68
 3.7 Conclusion  72
Chapter 4 CMcloud: Cloud Platform for Cost-Effective Offloading of Mobile Applications 73
 4.1 Introduction  73
 4.2 Backgrounds and Limitations  75
  4.2.1 Basic Offload Mechanisms 76
  4.2.2 Limitations of Existing schemes  77
 4.3 CMcloud offloading   79
  4.3.1 Design Goals   79
  4.3.2 Operation Model  80
  4.3.3 Architecture Model  82
 4.4 CMcloud mechanism  84
  4.4.1 Reference-model Server Profiling  84
  4.4.2 Performance Estimation  85
  4.4.3 Performance Monitoring  92
  4.4.4 Migration  93
  4.4.5 Cost-aware Application Scheduling in Cloud   94
 4.5 Evaluation  94
  4.5.1 Estimating Target CPI stack  96
  4.5.2 Predicting Instruction Count   98
  4.5.3 Cost Effectiveness with QoS requirements  98
  4.5.4 Offloading/migration Overhead  102
 4.6 Related Work  103
 4.7 Conclusions   104
Chapter 5 Conculsion 105
ÃÊ·Ï 119
</body>

