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ABSTRACT

THEORETICAL ANALYSIS OF DISTURBANCE OBSERVER:

STABILITY AND PERFORMANCE

BY

YOUNGJUN JOO

SCHOOL OF ELECTRICAL ENGINEERING
AND COMPUTER SCIENCE
COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

August 2014

This dissertation provides the stability and performance analysis of the distur-
bance observer and proposes several design methods for guaranteeing the robust
stability and for enhancing the disturbance rejection performance. Compared to
many success stories in industry, theoretic analysis on the disturbance observer
itself has attracted relatively little attention. In order to enlarge the horizon of its
applications, we provide some rigorous analysis both in the frequency and time
domain.

In the frequency domain, we focus on two main issues: disturbance rejection
performance and robust stability. In spite of its powerful ability for disturbance
rejection, the conventional disturbance observer rejects the disturbance approxi-
mately rather than asymptotically. To enhance the disturbance rejection perfor-

mance, based on the well-known internal model principle, we propose a design
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method to embed an internal model into the disturbance observer structure for
achieving the asymptotic disturbance rejection and derive a condition for robust
stability. Thus, the proposed disturbance observer can reject not only approxi-
mately the unmodeled disturbances but also asymptotically the disturbances of
sinusoidal or polynomial-in-time type. In addition, a constructive design proce-
dure to satisfy the proposed stability condition is presented. The other issue is to
design of the disturbance observer based control system for guaranteeing robust
stability under plant uncertainties. We study the robust stability for the case
that the relative degree of the plant is not exactly known and so it happens to
be different from that of nominal model. Based on the above results, we propose
a universal design method for the disturbance observer when the relative degree
of the plant is less than or equal to 4. Moreover, from the observation about the
role of each block, we generalize the design of disturbance observer and propose
a reduced order type-k disturbance observer to improve the disturbance rejection
performance and to reduce the design complexity simultaneously.

As a counterpart of the frequency domain analysis, we analyze the distur-
bance observer in the state space for the purpose of extending the horizon of
the disturbance observer applications and obtaining the deeper understanding of
the role of each block. Based on the singular perturbation theory, it reveals not
only well-known properties but also interesting facts such as the peaking in the
transient response. Moreover, we investigate robust stability of the disturbance
observer based control systems with and without unmodeled dynamics and derive
an explicit relation between the nominal performance recovery and the time con-
stant of Q-filter. Since the classical linear disturbance observer does not ensure
the recovery of transient response, a nonlinear disturbance observer, in which all
the benefits of the classical one are still preserved, is presented for guaranteeing

the recovery of transient as well as steady-state response.

Keywords: disturbance observer, robust stability, disturbance rejection perfor-
mance, internal model principle, unmodeled dynamics, nominal performance re-
covery

Student Number: 2008-30244
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Chapter 1

Introduction

1.1 Motivation

The primary objective of control may be to make a system response satisfy a given
specification such as the overshoot, settling time, steady-state error between the
reference input and system output, and so on [DET92, [(Che99, [SSTHO2, FPENO06],
When there is no modeling error (i.e., information about an actual plant is com-
pletely known a priori.), it is easy to achieve the given specification by a simple
unity feedback control system shown by Fig. u (a). In this ﬁgulreH7 P,(s) and
C(s) denote a nominal model obtained from information about the plant and
controller, respectively, and the signals  and y represent the reference input and
plant output, respectively. The controller C(s) is designed based on the nominal
model P,(s) to achieve the given specification. Then, the plant output is simply

computed as, for all w € [0, 00),

= T4 B CGe) Y (L.11)

since P,(s) equals to the actual plant. Thus, one can obtain the desired system
response merely by selecting appropriate C(s).
However, it is impossible to obtain a precise mathematical model from the ac-

tual plant because there are some limitationg?| to obtain exact information about

!For simplicity, we assume that an actual plant is a single-input single-output (SISO) linear

time-invariant system. More general class of systems will be discussed in Chapter E
2In general, when the nominal model is derived from the system identification method, the

3 by
1 -":l'-u_! = 1_.. i

L

[

-
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2 Chap. 1. Introduction

d
T C Pn Yy T C g P Yy

(@) (b)

Figure 1.1: (a) The nominal closed-loop system with P,(s) and (b) The ac-
tual closed-loop system with Pf(s)

the actual plant. Moreover, in real control situation, the existence of the distur-
bancdﬂ and measurement noise is also inevitable. Here, an actual closed-loop sys-
tem under such situation is described as Fig. (b). The actual plant is denoted
by P(s) and the input signals d and n denote the disturbance and measurement
noise, respectively.

If there exists a modeling error, then P(s) is no longer eqaul to P,(s). Hence, it
is not easy to accomplish the primary control objective and the situation becomes
much worse because of the existence of the disturbance and sensor noise as well
as the modeling error. Therefore, the secondary control objective may be to
compensate the effect of plant uncertainties, disturbance, and noise as much as
possible so that the control system behaves approximately like the nominal one
depicted in Fig. (a).

Designing controllers to compensate the effect of plant uncertainties and dis-
turbances have been one of the major issues in control fields, and many useful
solutions such as robust output regulation [Dav76, FW76, Isi195, [Hua04|, Hs/H
control [DGKF89, [ZD98], sliding mode control [Utk92|, adaptive control [NA89L
[S96, YAMT97], disturbance accommodation controller [Joh71l, [Joh86|, propor-
tional integral observer [JWS00, [KRK10L [SK10|, disturbance observer [Ohn87],

and so on, are available in the literature.

obtained data is contaminated by the measurement error, parameter variations, and unexpected
unmodeled dynamics. Therefore, the modeling error, the difference between the actual plant

and its nominal model, is an unavoidable element in the controller design task.
3The disturbance is defined as external signals caused by unexpected environment. In general,

there are two main sources of the disturbance: 1) unknown or unpredictable external inputs
such as friction, load torque, nonlinearity, and so on, [AHDW94] OAdW98, IMO05, MGOOS],
2) unknown exogenous input generated by an exosystem [Joh71l, MGBO0G, [CLP06]. Sometimes,

the modeling error is also considered as the disturbance.



1.1. Motivation 3

r—(0—1 C(s)

Figure 1.2: The closed-loop system with the disturbance observer structure

(shaded block).

Among various robust control schemes, in mechatronics (see, e.g., [Tom96a,
Tom96b]), the disturbance observer has been recognized as a powerful tool for ro-
bust control due to its simple structure and ability for disturbance rejection. In ad-
dition, it is flexible because it constitutes an inner-loop, that is, merely by adding
disturbance observer feedback in the inner-loop, the conventional (outer-loop)
feedback design is enabled without taking into account the effects from distur-
bances and uncertainties. Since its introduction in 1987 [Ohn87|, the disturbance
observer has been widely applied to industrial applications such as motor control
[UH91), YCS09), [KT13], robot manipulator [UH93| [OC99, KMHO00, [ESC01], SD02,
KIOO08, [BSPS10], positioning table [LT96, EKK™96, [KK99, [TLT00, [KC03b], op-
tical disk drive [CYCT03, [KC03al, WT04]|, hard disk drive [IT98, [HM98|, [YT99,
WTS00, YCCO05|, automotive vehicle [GG02, IGGK09], power-assisted wheelchair
[OHHO08, [OOH10|, to name only a few. In this dissertation, we focus our attention

on the disturbance observer to analyze and extend its properties.

Fig. [[.2) describes a basic configuration of disturbance observer based control
system. Roughly speaking, the disturbance observer compares the control input
we apply to the plant with an estimate of the actual input which refers to the
control input together with the disturbance, and we estimate it by passing the
system output to an inverse model of the plant. The difference between the control
input and the estimate we obtain will be similar to the disturbance, and we can

.__:Ix_c L, '|'|i

-
=]
1
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4 Chap. 1. Introduction

use this signal to estimate the disturbance and generate a compensating signal if
needed. In practice, a low pass filter called Q-filter is added in the loop to make
the idea implementable, and the coefficients of Q-filter are design parameters. It
is noted that the external disturbance and plant uncertainties are lumped into the
disturbance, which means that the disturbance observer can provide robustness

against plant uncertainty as well.

Compared with many success stories in industry, theoretic analysis on the
disturbance observer itself has attracted relative little attention. One of reasons
might be that the original idea of [Ohn87|, explained for a simple mechanical
model using transfer functions, has already clear intuitive justification. Thus,
regarding the design and analysis of the closed-loop system with the disturbance
observer, most researches employ the frequency domain tools. As a result, the
class of systems under consideration is limited to linear systems (in fact, usu-
ally second order systems are considered) and the existing robust stability con-
ditions are mainly based on the small-gain theorem, which are therefore conser-
vative [UH93, [Tom96al, [GGOT, ICYCT03, [KT13]. Several trials have been per-
formed to design and to analyze the disturbance observer in view of well-known
frameworks such as Hy control [CCY96, MHMZ98, WT04], sliding mode control
[IKCO02|, unknown input observer [SD02], passivity-based approach [BT99|, and
so on. However, the behavior and design methodology of individual blocks in the
disturbance observer structure and the possibility of extension to more general
class of systems (e.g., time-varying linear plants, nonlinear plants, and nonmini-

mum phase plants) have not been clarified yet.

In this dissertation, under an assumption that the bandwidth of Q-filter is
enough large (we shall maintain this assumption throughout this dissertation
since it make the observation about the behavior of each pole and dynamics of
the closed-loop system more easy.), we will rigorously analyze the stability and
performance of disturbance observer based control system both in the frequency
and time domain. In the frequency domain, we will review the robustness of the
disturbance observer and an almost necessary and sufficient condition for robust
stability. Afterward, by embedding the internal model, a disturbance observer
with modified Q-filter structure will be proposed to enhance the disturbance re-
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1.2. Contributions and Outline of the Dissertation 5

jection performance. And then, we will study the robustness of the disturbance
observer for the case that the relative degree of the plant is unknown. As a coun-
terpart, in the time domain, we will represent the closed-loop system with dis-
turbance observer as the singular perturbation form to enlighten the behavior of
each block of the disturbance observer structure and extend its applications to
more general class of systems. Then, with respect to the bandwidth of Q-filter,
the robust stability and nominal performance recovery of disturbance observer
based control scheme with and without unmodeled dynamics will be discussed.
Finally, the robust transient as well as steady-state performance recovery of non-

linear disturbance observers will be further discussed.

1.2 Contributions and Outline of the Dissertation

This dissertation is composed of two parts with respect to their representations.
Throughout Chapter the analysis is based on the frequency domain approach,
whereas the remainder part is analyzed in the state-space. The contributions of

each chapter and the organization of this dissertation are as follows:

Chapter Robust Stability for Closed-loop System with Disturbance
Observer

As a first step, we introduce the structure of the disturbance observer and review
its disturbance rejection performance and robust stability under plant uncertain-
ties. In addition, a condition for robust stability (in some sense, it is almost
necessary and sufficient) is presented. The analysis on robust stability for the

disturbance observer based control system in this chapter is owed to [SJ09].

Chapter Embedding Internal Model in Disturbance Observer with
Robust Stability

In this chapter, we consider a design problem of disturbance observer to achieve
the asymptotic disturbance rejection in view of the internal model principle al-
though the conventional disturbance observer merely compensates the disturbance
approximately. This chapter is based on the results in [PJSB12, [JPBS14] and the

contributions of this chapter are as follows:
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e We propose a design method for the disturbance observer to embed the

internal model of disturbance for rejecting the disturbance asymptotically.

e We present an almost necessary and sufficient condition for robust stability

of the proposed disturbance observer based control system.

e For plant uncertainties belong to an arbitrarily large compact set, a con-
structive design procedure to satisfy the proposed stability condition is pro-
vided.

e As a practical example, a simulation for a mechanical positioning system
for X-Y table is performed to verify the performance of the proposed dis-

turbance observer.

Chapter [4| Disturbance Observer with Unknown Relative Degree of the
Plant

This chapter deals with the robust stability of the disturbance observer based
control system when the relative degree of plant is not exactly known. Most of
this chapter is based on [JJSS12| [JJS14] and the contributions of this chapter are

summarized as

e We analyze the robust stability for the closed-loop system with the distur-
bance observer when the relative degree of the plant is not equal to that of

its nominal model.

e We provide a robust stability condition for the case that the difference be-
tween the relative degree of the plant and that of its nominal model is equal

to 1.

e A universal design method for the disturbance observer is proposed when

the relative degree of the plant is less than or equal to 4.

Chapter [5| Reduced Order Type-k Disturbance Observer under Gener-

alized Q-filter Design

The main objective of this chapter is to extend the disturbance observer structure

proposed in Chapter [2| and [3| for obtaining an understanding of the role of each
T !
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1.2. Contributions and Outline of the Dissertation 7

block and reducing the order of disturbance observer structure. The contributions

of this chapter are listed as follows.

e Based on the observation about the role of each filter, we generalize a Q-

filter design scheme and derive a robust stability condition.

e We propose a reduced order type-k disturbance observer in the viewpoint

of the generalized Q-filter design scheme.

o We present a Q-filter design procedure guaranteeing the proposed stability

condition.

e To clarify the validity of the proposed disturbance observer, a simulation is

performed.

Chapter [6] State Space Analysis of Disturbance Observer

In this chapter, based on the singular perturbation theory, we analyze the dis-
turbance observer in the state space to get a deeper understanding of the be-
havior of each block in its structure and possibilities to enlarge the horizon of
its applications. In addition, we show that the disturbance observer can recover
the nominal performance in the presence of disturbances and plant uncertainties.
Some parts of this chapter are based on [SJ07]. The contributions of this chapter

are summarized as follows:

e We represent the disturbance observer based control system as a singular

perturbation form by the state space realization.

e We enlighten several aspects of the disturbance observer not well discussed

in the frequency domain approach.

e Based on the Lyapunov stability analysis, the robust stability and nominal
performance recovery with respect to the time constant of Q-filter is dis-

cussed.

Chapter [7] Nominal Performance Recovery and Stability Analysis for

Disturbance Observer under Unmodeled Dynamics
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This chapter focus on the robust stability and nominal performance recovery
of the closed-loop system with the disturbance observer under fast unmodeled
dynamics, which is a counterpart of the results in Chapter @l The contributions

of this chapter are as follows:

e We present the robust stability of the disturbance observer based control
scheme under the fast unmodeled dynamics using the multi-parameter and

multi-time-scale singular perturbation theory.

e We provide that the robust stability and nominal performance of distur-
bance observer under unmodeled dynamics with respect the bandwidth of
Q-filter.

Chapter (8] Extensions of Disturbance Observer for Guaranteeing Ro-
bust Transient Performance

In this chapter, we review extensions of disturbance observer to multi-input multi-
output (MIMO) nonlinear systems. Furthermore, the robust transient perfor-

mance recovery of nonlinear disturbance observer with saturating functions is

also discussed. Most of this chapter is based on [BS08|, BS09].
Chapter [9 Conclusions

This dissertation concludes with some remarks.



Chapter 2

Robust Stability for Closed-loop
System with Disturbance Observer

Since its simple structure and powerful ability for disturbance rejection, the dis-
turbance observer has been widely applied to industurial applications. In this
chapter, we introduce the basic concept and structure of the classical disturbance
observer and review a condition for guaranteeing robust stability of the distur-
bance observer based control system. Finally, in order to verify the validity of the
robust stability condition and the disturbance rejection performance, simulations
for a mechanical system are presented. The results of this chapter are mainly
based on [SJ09].

2.1 Structure of Disturbance Observer

The disturbance observer structure (shaded block) with the outer-loop controller
C(s) is shown in Fig. The actual plant, denoted by P(s), is a single-input
single-output linear time-invariant system with the relative degreer'_-] v > 1 and the
nominal model for P(s) is denoted by P,(s). The component @(s), known as the
'Q-filter’, is a stable low-pass filter. The outer-loop controller C(s) is designed for
P,(s) without taking plant uncertainties and/or disturbances into account.

We make the following assumption for the plant.

'In the transfer function, the relative degree means that the difference between the degree of

the numerator and denominator. For more detailed definition, see [Kha02]
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r—(0—1 C(s)

Figure 2.1: The closed-loop system with the disturbance observer structure

(shaded block).

Assumption 2.1.1. The plant P(s) belongs to a set P defined by

P :{ ﬁn—usnill + 511—1/—13”7”71 +--- 4+ BO .
ns" + 18" tag (2.1.1)

a; € oy, 04, B € [éj,ﬁj],izo,...,n, j:O,...,n—u}

where o, @;, éj’ and Bj are known constants, the intervals [«,,, @,] and [gniy,ﬁnfy]
do not contain zerﬂ and f3;’s are such that 8,_,s" " + -+ 3y is Hurwitz (i.e.,

P consists of minimum phase plants). O

In fact, the order of nominal model P,(s), 7, may not equal to n. However,
one must choose P,(s) such that the relative degree of P,(s) is equal to that of
P(S)EL minimum phase plant, and S°_, /ol has the same sign as (3,—,/a, where
both B2_, and @) are nominal values of 3,,—, and «,, respectively. For simplicity,
we assume that P,(s) also belongs to the set P (i.e., n = n).

The Q-filter is generally designed as [UH93], [LT96), (CYCT03]

er(T8)F + -+ + co
(18) +ar_1(78)=1 + - 4+ ay(rs) + ag

Q(s) = (2.1.2)

It implies that the relative degree, v, and the sign of the high frequency gain, Bn—. /an, of

the plant are known a priori and do not changed.
3The general case when the relative degree of Pp(s) is different from that of P(s) will be

discussed in Chapter E| and E

2] &-t]] 8
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2.1. Structure of Disturbance Observer 11

where ¢g = ag and | — k > v so that the Q-filter has a unity DC gain and the
transfer function Q(s)P,(s)~! becomes proper. All the a;’s should be chosen such
that the polynomial st + a;_1s'~! 4 --- + ag is Hurwitz. The design parameter

7 > 0 is a time constant, which determines the cut-off frequency of Q-filter.

In Fig. the reference input 7, the input disturbance d, the output dis-
turbance o, and the measurement noise n are the input signals of the closed-loop
system. In general, it is assumed that the disturbances d and ¢ are dominant
in the low frequency range, while the noise n is dominant in the high frequency

range. With these signals, the output y of the closed-loop system becomes

y(s) = Tyr(s)r(s) + Tya(s)d(s) + Tys(s)a(s) + Tyn(s)n(s) (2.1.3)
where
- P(s) Pa(5)C(5)
v Q(s)(P(s) — Pa(s)) + Pa(s) (L + P(s)C(s))’
T i(s) = P()Po(s)(1 = Q(s))
Y Q(s)(P(s) — Pa(s)) + Pa(s) (L + P(s)C(s))’
T os) Po(s)(1 - Q(5))
" Q(s)(P(s) — Pa(s)) + Pa(s) (1 + P(s)C(s))’
s P(s) (Pa(3)C(s) + Q())
. Q(s)(P(s) = Fa(s)) + Pa(s)(1 + P(s)C(s))

By construction, we have that Q(jw) = 1 in the low frequency range. Therefore, it

follows that T}, (jw) = %, Tyq(jw) = 0, and T))s(jw) ~ 0. In addition,

we can ignore the noise n(jw) since it is dominant in the high frequency range.

Therefore, the equation ([2.1.3]) is approximated as

Py (jw)C(jw)
1+ P(jw)C(jw)

y(jw) ~ r(jw).

This implies that, in the low frequency range, the closed-loop system with
the disturbance observer structure behaves as the nominal closed-loop system in
the absence of uncertainties and disturbances. In other words, in spite of the
existence of disturbances and uncertainties, the disturbance observer recovers the

nominal performance. Here, the nominal performance means the performance of

] 2- 1_l|



12 Chap. 2. Robust Stability

the nominal closed-loop system P,(s)C(s)/(14 Pn(s)C(s)) without the input and
output disturbances. It is important to notice that the above property is only valid
when the closed-loop system is internally stable. A condition for robust internal

stability of the closed-loop system will be presented in the following section. (See
[SJ07, BS08|, [SJ09] for more details.)

2.2 Robust Stability Condition for Closed-loop System

with Disturbance Observer

Now, we present a condition for robust stability of the closed-loop system in Fig.
From Fig. the transfer function matrix from [r,d, o, n|T to [e, @, 7, y]" is

computed as

QPP —-P)+P, —PP,(1-Q) —-P,(1-Q) ~-P(1-Q)

1 P,C P(1-Q) —(P.C+Q) —(PC+Q)

A(s) PP,C PP(1-Q) P.(1-Q) P(1-Q)
| PRC PR(1-Q) P(1-Q) —PPC+Q) |

where A(s) := Q(s)(P(s) — Pa(s))+ Pa(s)(14+ P(s)C(s)). If this transfer function
matrix is stable, then the closed-loop system is said to be internally stable. For
convenience, one can represent P, P,, C, and ) as the ratios of coprime poly-
nomials: P(s) = N(s)/D(s), Pa(s) = Nn(s)/Dn(s), C(s) = Nc(s)/Dc(s), and
Q(s) = Nq(s;7)/Dqg(s; 7). Note that, in order to express the explicit dependency
of 7, Nq(s;7) and Dq(s;7) will be used instead of Nq(s) and Dq(s), respectively.

With this notation, for given 7 > 0, the characteristic polynomial
3(s;7) := DcNq(DnN — DNy) + NoDg(DDc + NN¢) (2.2.1)

is Hurwitz if and only if the closed-loop system is internally stable [SJOQ]E|. The
closed-loop system is said to be robustly internally stable if §(s; 7) is Hurwitz for
all P(s) € P.

“In fact, unfortunately, this claim (5(s;7) is Hurwitz if and only if the closed-loop system is
internally stable) in [SJ09] may not be true by the pole/zero cancellation. However, if P,(s) is

of minimum phase and C(s) internally stabilizes P,(s), then the above claim is true.
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Altough effects of the measurement noise on the overall performance are re-
lated to the bandwidth of Q-filter, it is not relevant to robust stability of the
closed-loop system. Therefore, regardless of the effect of noise, we focus on the ro-
bust stability and performance for rejecting disturbances and compensating model
uncertainties under an assumption that the bandwidth of Q-filter is enough large.
To deal with the performance of disturbance observer with respect to the noise,
noise reduction disturbance observers were proposed in [JST3, [HKJ™13].

Let us introduce the polynomial p(s) given by

pr(s) := Dq(s;1) + <lim Pls)

500 Po(s) 1) Nq(s;1). (2.2.2)

By denoting P(s) = (S8 B;s7)/(Sg is’) and Pa(s) = (S8 B7s7) /(S0 als')
whose coefficients o] and Bj'»‘ are the nominal values of ; and f3;, respectively, the

polynomial p¢(s) is rewritten as

pf(S) — Sl —|—al_15l_1 NI ak+15k+1

— _ (2.2.3)
+ <ak+gggnck> st <ao+g g"co>

n n

where ¢ := 8, /oy, and gy == B)_,/an. In fact, g and g, are the high frequency
gains of P(s) and P,(s), respectively. By Assumption there exist positive
constants g and g such that g and g, belong to the interval [g, g].

It is important to note that, even if the output disturbance is not taken into
account, the characteristic polynomial of the closed-loop system remains
unchanged compared with [SJ09]. Hence, the following theorem, which was pro-
posed in [SJ09| also presents a condition for robust internal stability of the closed-

loop system even though we consider both the input and output disturbances.

Theorem 2.2.1. [SJ09] Under Assumption there exists a constant 7 > 0
such that, for all 0 < 7 < 7, the closed-loop system is robustly internally stable

if the following two conditions hold:
1. C(s) internally stabilizes P,(s),

2. p¢(s) is Hurwitz for all P(s) € P.

SERL
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On the contrary, there is 7 > 0 such that, for all 0 < 7 < 7, the closed-loop
system is not robustly internally stable if at least one of the conditions [THZ] is
violated in the sense that P,C'/(1+ P,C) has some poles in C*, or some zeros of

P(s) or some roots of ps(s) = 0 are located in C* for some P(s) € P. O

Remark 2.2.1. Theorem [2.2.1] is not able to determine robust internal stability
when some poles of P,C'/(14P,C'), or some zeros of P(s), or some roots of ps(s) =
0 are located on the imaginary axis in the complex plane, but the remaining poles,
zeros, and roots are located in C~. See [JJS11] [JJSS12 [JJS14] for more about
such cases. If we exclude such situations, the conditions[IH2| are not only sufficient
but also necessary for robust internal stability. In this sense, we call Theorem [2.2.7]

as an almost necessary and sufficient condition for robust stability. O

Theorem explains interesting points of the disturbance observer based
control scheme under the assumption that the time constant 7 is sufficiently small.
Firstly, it reveals that the minimum phaseness of the plant is one of the necessary
conditions for internal stability in the classical disturbance observelﬂ Secondly,
if P(s) is of minimum phase and C(s) is already designed to internally stabilize
P, (s), then condition 2| in Theorem 1 indicates whether the closed-loop system
is stable or not. Hence, ps(s) plays an important role for guaranteeing robust
stability of the closed-loop system under plant uncertainties. In other words, the
robust stability is mainly determined by the coefficients a;, ¢;, and the variation
of g. If the variation of g around its nominal value g, is small enough, then,
due to the continuity of roots with respect to the coefficients of the equation,
the polynomial p(s) remains Hurwitz for small perturbation of g provided that
st + a1 + -+ a1s + ag is Hurwitz (i.e., the Q-filter of the form (2.1.2)
is stable). This explains why the disturbance observer based control system is
known to be robust under small parametric uncertainties.

However, for large uncertainties, the coefficients a;’s need to carefully be se-
lected. Although it seems difficult to achieve, under Assumption [2.1.1] one can

always select a; and c¢; of Q-filter such that ps(s) is Hurwitz. Here, we provide

SHowever, the non-minimum phase systems are often met in applications. Therefore, a trial
had been made to apply the disturbance observer approach to non-minimum phase linear systems
[JSS10].

2] &-t]] 8
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one way to design the coefficients of Q-filter. If one select k& = 0, then py(s) is
reduced as

pr(s) =8 +a1s o Fars + giao. (2.2.4)
n
Now, we propose a design procedure so that p¢(s) in (2.2.4) to be Hurwitz.

Procedure 1. Q-filter Design Procedure for Robust Stability
Step 0: Choose the coefficients a;_1, ..., a1 such that the polynomial

s p a8ty

is Hurwitz.
Step 1: From Lemma A. 3 in Appendix, there exists 7, such that the polyno-
mial

st ai_s 4 ars + 0
is Hurwitz for all vy € (0,7,). Then, select ag < (gn/G)7. O

By the proposed procedure, we can choose the coefficients a;’s such that ps(s)
in ([2.2.4) is Hurwitz for all g € [g,g]. More general design procedure for ps(s) in
(2.2.3) to satisfy the condition [2[in Theorem will be discussed in Chapter [3]

Now, we investigate the physical meaning of ps(s) by the following remark.

Remark 2.2.2. Consider a second-order mechanical system as follows:

1

P = 727 Bs

(2.2.5)
where J is a moment of inertia and B is a viscous friction coefficient. From
(2-2.5)), the uncertain parameter in pys(s) is 1/J. Therefore, the inertia variation
determines whether py(s) is Hurwitz or not. It is important to notice that, from
the viewpoint of physical interpretation, ps(s) explains the well-known fact that
the robust stability mainly depends on the inertia variation for the mechanical

systems, which is pointed out in [KC03bl [KKOO07]. O
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2.3 Illustrative Example

In order to verify the robust stability condition proposed in Theorem and
the disturbance rejection performance of the disturbance observer, simulations

are performed for a mechanical system of the form

1

PO = 727 Bs

where the moment of inertia J and the viscous friction B belong to the intervals

[0.1,1] and [8, 12], respectively. We consider its nominal model as follows:

1

P =
n(s) Jns2 + Bps

where J, = 1 and B, = 8. Note that g, = 1 and g € [g,g] where g = 1 and

g = 10. The outer-loop controller C(s) is designed as a simple proportional

controller C'(s) = 25 so that the nominal closed-loop system becomes

P, (s)C(s) 52
14 Py(s)C(s) s2+4+2x08x5s+ 52

The Q-filter with binomial coefficients for disturbance observer is selected as

1

Pl = o T B 4 3(rs) + 1

Fig. shows the step responses of three cases: nominal closed-loop system
in the absence of disturbance (‘Nominal response’), nominal closed-loop system in
the presence of d(t) = 5sin(27t) (‘W/O DOB’), and nominal closed-loop system
with the disturbance observer with Qp(s) in the presence of disturbance (‘W/
DOB’). From the figure, it is seen that the disturbance observer compensates the
effect of disturbance and recovers the nominal performance.

Now, we focus on the nominal performance recovery by the disturbance ob-
server with respect to the time constant 7 of Q-filter. Fig. shows the error
between the step response of the nominal closed-loop system in the absence of
disturbance, which is shown in Fig. 2.2] and that of the actual closed-loop system
with the disturbance observer for 7 = 0.01 and 7 = 0.001. It is clearly observed

] 2- 1_l|
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1.2

Step Response

—Nominal response
---W/O DOB I
--'W/ DOB

T
6 7 8 9 10

-0. L L L I I
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Figure 2.2: Step responses of the nominal closed-loop system in the absence
of disturbance (‘Nominal response’), the nominal closed-loop sys-
tem in the presence of the disturbance d(t) = 5sin(27t) (‘W/O
DOB’), and the nominal closed-loop system with the disturbance
observer with Qp(s) in the presence of the disturbance (‘W/
DOB’) when 7 = 0.01.

0.04

0.02

0.01f

Error
i

-0.01~

1 [}
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-0.02- —
-0.03 ---Time constant T = 0.01
—Time constant T = 0.001
) ‘1 ‘2 ‘3 4‘1 : 6 7 8 9 10
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Figure 2.3: The error between the step response of the nominal closed-loop
system and that of the actual closed-loop system with the distur-
bance observer with Q(s) for the time constant 7 = 0.01 ("Time
constant 7 = 0.01") and 7 = 0.001 ('Time constant 7 = 0.001’)
when J =1 and B =8.

A & 1—l| S1ET!



18 Chap. 2. Robust Stability

Error
o
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Figure 2.4: The error between the step response of the nominal closed-loop
system and that of the actual closed-loop system with the distur-
bance observer with Q(s) ('DOB with Q(s)’) and Q,(s) (DOB
with @p(s)’) when J = 0.1 and B = 11.3.

that the difference between the output of the nominal closed-loop system and that
of the actual closed-loop system becomes smaller (i.e., the nominal performance
is recovered) as 7 gets smaller [CYCT03, [BSO8|. More explicit relation between
the nominal performance recovery and 7 will be discussed in Section

Finally, the robust stability condition of Theorem for the closed-loop
system with the disturbance observer under parametric uncertainties is explored.
To guarantee robust stability, we select the coefficients of Q-filter such that ps(s)
is Hurwitz for all g € [1,10]. Following Procedure |1} we select | = 3, as = 3,
and a; = 3 so that s + ass 4 a; is Hurwitz. Using the root-locus plot, we take
o = 9 such that s(s% + azs + a1) + 7o is Hurwitz for all 79 € (0,%,). Choose
ap = 0.89 € (0,(gn/9)7y)- Then, the proposed Q-filter is designed as

0.89
(15)3 +3(75)2 + 3(7s) + 0.89°

Qp(s) =

From Fig. when J = 0.1 and B = 11.3, it can be seen that the closed-loop
system with the disturbance observer with Q(s) becomes unstable since p¢(s) is
not Hurwitz. It is remarked that the proposed disturbance observer with Q,(s)

works well because it is designed considering plant uncertainties.



Chapter 3

Embedding Internal Model in
Disturbance Observer with Robust
Stability

Design problems for disturbance rejection controllers are mainly classified into
two types. Inspired by the internal model principle [Dav76, [FW76], one approach
is to design a controller so as to embed an internal model of disturbances into
its structure and generate a corresponding input signal for compensating the dis-
turbance when the disturbance is modeled as an output of a differential equation
whose initial condition is unknown. Following this idea, asymptotic disturbance
rejection has been achieved by output regulator [Isi95, [Hua04], disturbance ac-
commodation controller [Joh7l|, proportional integral observer [JWS00, [SK10],
and so on. Although the disturbance model is required, it has the benefit of exact
cancellation of the disturbances in the steady state.

The other approach is to suppress the effect of disturbances, rather than
asymptotically cancel them, so that the disturbance rejection is just approximate.
One popular control method is based on the disturbance observer. Since the
disturbance observer based control has a simple structure for implementation,
while it has strong disturbance rejection ability, it has been widely applied in
many applications. As discussed in Chapter [2| however, due to lack of disturbance
model in the control loop, it rejects the disturbance approximately rather than
asymptotically.

In many applications, the disturbance can be modeled such as step, ramp,

T~
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20Chap. 3. Embedding Internal Model in Disturbance Observer with Robust Stability

sinusoidal, and so on [Dav76]. When the disturbance model is known, based on
the internal model principle, a disturbance observer, called "high order disturbance
observer’, which can reject a polynomial-in-time type disturbance (dy+dit+-- )
has been already developed [YKIH96, YKMH96, YKIH97, YKMH99, [KMHOQ].
They impose certain restriction on the structure of Q-filter to embed the internal
model. Although successful to embed the internal model and to derive a robust
stability condition [YKMH99]|, the stability condition is restrictive in the sense
that the plant uncertainty allowed is limited by the reciprocal of Hy, norm of
complementary sensitivity function, and the results are mainly for the second
order systems. Moreover, as the order of disturbance observer (equivalently, the
degree of the numerator of Q-filter) grows, this condition tends to be violated
[YKIH96].

In this chapter, our concern is to enhance the disturbance rejection perfor-
mance of the conventional disturbance observer by embedding the internal model
assuming that the disturbance model is available. In particular, this chapter
shows that the linear disturbance model can be embedded in the so-called Q-filter
of the conventional disturbance observer structure, and moreover, the remaining
design freedom of Q-filter can be used to robustly stabilize the closed-loop system
that has uncertain parameters of arbitrarily large variation. As a result, the pro-
posed disturbance observer based controller can reject not only approximately the
unmodeled disturbances but also asymptotically the disturbances of sinusoidal or
polynomial-in-time type. Details on the contributions of this chapter are listed

below and the results are based on [PJSB12, [JPBS14].

e A design method for the disturbance observer to embed the internal model
including the sinusoidal as well as the polynomial-in-time type disturbance
is proposed. It implies that the disturbance observer can reject not only the
bounded low frequency disturbance approximately but also the modeled

disturbance asymptotically.

e A modified almost necessary and sufficient robust stability condition is de-
rived for the proposed disturbance observer. It is an extension of the previ-
ous result in Theorem 2.2.1] and deals with the case that the coefficients of

.__:Ix_c L, '|'|i
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3.1. Design Method for Embedding Internal Model of Disturbance 21

Q-filter are not only a constant but also a polynomial depending on a time
constant of Q-filter. It is emphasized that the robust stability condition is
almost necessary and sufficient, and the uncertain parameters of the plant

are allowed to belong to an arbitrarily large (but bounded) compact set.

e A systematic design procedure for Q-filter to satisfy the robust stability con-
dition is proposed. In order to develop the design procedure, we first con-
struct an interval polynomial, which characterizes stability of the closed-
loop system, from the coeflicients of Q-filter and the bounds of plant un-
certainties. Then, this polynomial reduces the robust stability problem as
the selection of the coefficients of Q-filter to make the polynomial Hurwitz
for all uncertain parameters. To solve this problem, we employ Kharitonov
theorem [BCK95| and exploit the structure of the polynomial to show that
appropriate coefficients can always be chosen step by step. It is remarked
that, compared to previous result in Procedure [1}, the proposed design pro-
cedure provide more flexibility since it does not restrict the degree of Q-

filter.

3.1 Design Method for Embedding Internal Model of

Disturbance

As discussed in Chapter [2] the disturbance observer can reject disturbances ap-
proximately. In fact, the effects of disturbances are reduced as the Q-filter’s time
constant 7 goes to zero [CYC¥03, BS08] (It will be also discussed in Section [6.4)).
However, it may make the closed-loop system unstable in the presence of un-
modeled dynamics [JJSS12] [JJS14] and increase the effect of measurement noise
[KK99, ICYCT03|. Thus, in real applications, there are certain limitations on the
disturbance rejection performance that can be achieved by reducing 7.

While approximate rejection of disturbances might be the best when a model
generating the disturbance is not known, let us now explore for exact rejection
with knowledge of the disturbance model. The conceptual answer has already
been given by the well-known internal model principle, e.g., in [FW76]. The actual
question here is where and how to embed the internal model of disturbances in the
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22Chap. 3. Embedding Internal Model in Disturbance Observer with Robust Stability

r—(0—{ C(s)

Figure 3.1: The closed-loop system with the disturbance observer structure
(dotted-line block).

disturbance observer structure of Fig. This embedding should preserve the
conventional behavior of the disturbance observer such as approximate rejection of
unmodeled low frequency disturbances, and should enable the selection of Q-filter
such that the closed-loop system is robustly stable, which was the case discussed
in Chapter

In order to endow the disturbance observer with this ability, we consider the
transfer functions Ty4(s) and Ty, (s) in which are transfer functions from

the disturbances d and o to the output y, respectively. We represent them as

~ Dc(5)N(s)Nn(8)(Dqg(s;7) — Ng(s;7))
Tyd(s) - (5(8'7’) )
_ De(5)D(5)Na(s) (Da(53 7) — N5 7)) (3.L11)
fies) = 3(s:7)
where
5(5;7) := Na(DDe + NN2)Dg + NqDe(DaN — DNy). (3.1.2)

Note that the polynomials regarding P, P,, and C are already given from the
problem, and thus, we may need to embed the internal model utilizing two poly-
nomials Dy and Ng. Since the effects of Dq and Nq on Ty4(s) and Ty, (s) are the
same, we can omit the detailed analysis of the output disturbance o from now on.

Now, we make the following assumption for the disturbance.



3.1. Design Method for Embedding Internal Model of Disturbance 23

Figure 3.2: Equivalent block diagram of the DOB structure in Fig.

Assumption 3.1.1. The input disturbance d(¢) has the fornﬂ of

kit ks
d(t) = d(t) + ) dit' + ) ojsin(wst + ¢;)
g = (3.1.3)

= d(t) +d(t)

where k; > 0 and ks > 1 are known integers, d;, 0;, and ¢; are unknown constants
while the frequencies w; > 0 are known such that w; # w; for j # 7, and d(t) is

an unknown but bounded signal whose time derivative is also bounded. O

Laplace transform of the disturbance component d(t) has the form of d(s) =
Sk dr /st +Z§;s:1(5j8+5j)/(82+w32) where df, ¢;, and ; are some constants.
The observation with , , and suggests that if we find the
coefficients of Dq and Ng so that Dgq — Nq contains s"““LllTi-“‘S:l(s2 + wf) and if
the polynomial d(s;7) in is Hurwitz, then the effect of disturbance d(t)
is completely rejected from the response y(t) in the steady state. Note that this

can also be viewed as the internal model principle [FW76]. In fact, an equivalent

In general, the disturbance is considered as unknown system input including friction, torque
ripple, modeling errors, and so on. However, in some applications, one can choose a suitable
disturbance model when some information of disturbance is given [JohT7I|. Therefore, it is
possible to divide the disturbance into two parts: one part is an unknown but bounded low
frequency disturbance and the other one is an output of a differential equation whose initial
condition is unknown. Therefore, if the model of disturbance is given and the disturbance
observer is designed to include the disturbance model, then the effects of modeled disturbance

should be asymptotically reduced to zero, regardless of 7, by the internal model principle.
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block diagram of the disturbance observer is shown in Fig. [3:2 One can see that
the rational function 1/(5kt+1H§;1(32 + wjz)), which is the internal model of d(t),
is embedded in the block 1/(1 — Q) = Dq/(Dq — Ng).

We now investigate how to design Dy and Nq to embed the internal model of

disturbance. For this, it is sufficient to find the coefficients satisfying
Dqy(s;7) — Ny(s;7) = skt+1Hf;1(s2 + w?)R(s; ) (3.1.4)

for some polynomial R(s;7). Our design suggests to set deg(Nq) = k = k¢ + 2k;
and deg(Dq) = > k + v, where deg(-) implies the degree of the polynomial, and

set

C; = Qq, ZIO, ,k‘t. (315)
By this, Dq — N now contains the factor s**1, and in order to contain Hf;l(SQ +
w?), we ask

(Dq - Nq)/(TS)kt+1|s:ijwi =

[(Ts)l*kt*wal_l(Ts)l*’ft*%- ctag, 1 —cg(Ts) TR -

. 1} —0
ot s=tjw;

foralli=1,...,ks. For convenience, let us suppose that [ — k; is even. Then, the

above equation leads to the following two equations for real and imaginary parts,

respectively:
2 2 2 9L1(—k—2
41 — Q3T+ -+ @y (—7Pw]) 20 Re2) (3.1.6)
2 2 2 2\ks—1 o
= Cly41 — Cly43T Wy + -+ th+2ksfl(_7' wi) )
2 2 2 2\LE(l—ki—2
I e o S D EA (3.1.7)
2 2 2 2\ks—1 o
= Chyt2 = CheaT Wy + o+ Chppon, (=T w7)™ 7,
forall i =1,...,ks. If we introduce Vandermonde matrix given by
2, 2\1 2, 2\i
1 (—7%wi) - (—Twy)
Vi |1 | RO,
2,2 \1 2,2
1 (—7%w}) (—7%wy,)*
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the equations (3.1.6)) and (3.1.7) can be rewritten compactly as

T
Vig—1[Chi+15 - - > Chpg2ks—1] = V1 gy —2)ARes
T
Vio-1lekira, - ok = Vig_p,—2)Am
T —ky)/2 T
where Age = [ag,+1,-..,a-1]" € RU=k)/2 and Ap, = [k, +2,- .-, a1—2,1]" €

R(—K)/2 - Note that Vi.—1 is a square matrix of size ks X kg, and is nonsingular
because det Vi, 1 = H1<i<j<ks 7'2(%-2 — w]2) # 0 by the assumption that w; # w;
for i # j [HI85]. As a result, the coefficients ¢; for i = k; + 1,- -+ , k are obtained

as a function of a;’s (and 7 as well). The following theorem presents a summary,

also with the case when [ — k; is odd.

Theorem 3.1.1. Under Assumption the closed-loop system of Fig.
rejects the modeled disturbance ci(t) asymptotically if, for any given a;, ¢ =
0,---,0l —1 (where I > k+ v), and 7 > 0, the coefficients ¢;, i = 0,--- ,k
with k = k; + 2k,, are designed as and

T _ -1
[Chitts Chyas s cka]” = Vi 2 Vi g, oppe)ARe
T _ -1
[th+2, Chy+4y - - ,Ck] = Vksflvé(l—kt—Z—k*)AIm
where
e when [ — k¢ is even (k* = 0)

T I—ke+h*) /2
Are = (@11, Ak 43 - - ap1)” € RETRFRD/

T —hi—k*) /2
A = [apys2, aky s - > ar2, 1|7 € REF=ED/

e when [ — k; is odd (k* = 1)

T I—ky+k*) /2
ARe = [arys1, Qhy 435 - - > a1z, 1T € REFFED/

T I—ky—k*)/2
Amm = [ag,42, Qppgds - - q—1]" € RU—ke—k")/

and if 6(s;7) in (3.1.2)) is Hurwitz. O
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Remark 3.1.1. The closed-loop system with the proposed disturbance observer
also rejects the unmodeled disturbance d(t) approximately in the low frequency
range, which is determined as the range where Q(jw) =~ 1. This range becomes

larger as 7 gets smaller. O

Remark 3.1.2. When o; =0 for j = 1,..., ks (i.e., the sinusoidal disturbance
does not exist in (3.1.3))), by Theorem the Q-filter is designed as

ap(T8)F + - +ag

As) = (r8)! + a1 (75) ! + -+ +aa(7s) + a0’

(3.1.8)

Then, with the structure of Q-filter and the equivalent block diagram of the
disturbance observer shown in Fig. one can easily see that the block 1/(1—-Q)
contains k 4 1 integrators, which implies that the disturbance observer structure
has the internal model so that the disturbance of the type do + dit + - - - + djt*
can be exactly rejected. We call a disturbance observer with as ‘type-k

disturbance observer’. For more details, see [PJSB12]. O

After embedding the disturbance model, we still have some freedom of choos-
ing a;’s and 7. This freedom will be utilized in the next section in order to ro-
bustly stabilize the closed-loop system (i.e., to make §(s;7) Hurwitz) in spite of
the uncertainty of the plant P(s). Here we note that, by the selection of Theorem
, the coefficient ¢; is in fact a function of a;’s and 7, and the Q-filter of
now becomes

ce(T)(T8)F 4o 4 g1 (T) (7)ot e, (78)Rt - ¢

Q) = (18) +ar_1(78)=1 + - -+ ay(rs) + ag (3.1.9)

in which, we explicitly treat ¢; fori = k;+1,--- , k as a function of 7. In particular,

the following lemma plays a key role in the next section.

Lemma 3.1.2. The functions ¢;(7), ¢ = k¢ + 1,...,k, obtained from Theorem

3.1.1 are of the form
ci(1) = ai + 7°¢(T) (3.1.10)

where ¢;(7) is a polynomial of . O
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Proof. The matrix that appears in Theorem has the form of Vl,;il\/}C €
RFsX(b+1) where & > ko —1. If ko = k, — 1, the assertion follows with ¢;(7) = 0. For
the case where k > ks — 1, we decompose Vias 'V = [Vks—l f/’} Note that the
first ks columns of V;, are the same as those of Vi1 by construction and that Vi, 1
can be rewritten as Vi, _; = Wdiag{1,72,...,(73)* 71} where W = Vj, _1|,=1.
The matrix V can also be represented by V = Wdiag{(r%)*,..., (72)’%} where
W e Rksx(fc—ksH) is a matrix independent of 7. Therefore, V,;llv,; = {I szilf/}
where szilff is given by

- 1 1 —1Vi7 2\ ks 2\k
dlag{l’»rz,.”’(»r%ks—l}w Wdlag{(T ) “,...,(T ) },

from which one deduces that each component of Vk:ilff is a monomial of 7 whose

degree is at least 2. O

So far, we discuss the performance of the disturbance observer for rejecting
the effect of the unmodeled disturbance d(t) approximately with respect to 7 as
well as the modeled disturbance J(t) asymptotically by the internal model in the
Q-filter. However, also note that the above analysis is only valid when the closed-

loop system is internally stable under plant uncertainties.

3.2 Design of Q-filter for Guranteeing Robust Stability

We now present how to design a;’s and 7 so that the closed-loop system
remains stable (i.e., d(s;7) is Hurwitz) for arbitrarily large uncertainty of the
plant P(s) satisfying Assumption m For this, we first derive robust stability
condition using the tools developed in [SJ09].

3.2.1 Robust Stability Condition of Closed-loop System

A robust stability condition for the disturbance observer already introduced in
Theorem m However, differently from the coefficients ¢; of Q-filter in ,
those in considered in this chapter are not constants but polynomials
depending on 7 as discussed in Lemma Therefore, we propose a modified

robust stability condition for the proposed disturbance observer.
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As discussed in Chapter [2] the closed-loop system is said to be robustly inter-
nally stable if and only if §(s;7) is Hurwitz for all P(s) € P. To present a robust
stability condition, we define a polynomial p}(s) given by
Jopst + -+ Lars+ Lay (3.2.1)

n gn n

T T

pi(s) = o +arrs
The following result presents a condition which ensures robust stability of the

closed-loop system.

Theorem 3.2.1. Under Assumptions and suppose that the following

conditions hold.
1. C(s) internally stabilizes Py, (s),
2. a;’s are chosen such that p}(s) is Hurwitz for all P(s) € P.

Then, there exists a constant 7 > 0 such that, for all 0 < 7 < 7, the Q-filter
B:1.9 with ¢;’s given by Theorem [3.1.1] guarantees that the closed-loop system
is robustly internally stable and that the effect of disturbance component d is

completely removed in the steady state. g

Proof. We follow the techniques developed in [SJ09, Lemma 2 and Theorem 3]
keeping in mind that ¢; = a;+72¢;(7) where &;(7) is a polynomial of 7 (by Lemma
3.1.2)).

Let pX(s) = N(s)(Dc(s)Dn(s)+ Nc(s)Nn(s)), whose roots are either the poles
of P,C/(1+ P,C) and the zeros of P, and let m = deg(p}(s)) = deg(D.DnN).
By Assumption and Condition (I} the polynomial p%(s) is Hurwitz.

Since deg(d(s; 7)) = l+m, we need to inspect all [+ m roots of §(s; 7). This is
a difficult task in general, but it turns out that, as 7 — 0, the m roots tend to the
roots of d(s; 0), whose degree is m, and the other [ roots tend to infinity [Lemma A.
2 in Appendix|. In fact, §(s;0) = agp}(s) (by the fact Ng(s;0) = Dq(s;0) = ayp),
and thus, those m roots are stable for sufficiently small 7 > 0.

Now, in order to see the behavior of remaining [ roots that tend to in-
finity as 7 — 0, let us define §(s;7) = 7M0(s/7;7) = Y1(s;7)Dy(s/7;7) +
Nqo(s/7;7)y2(s; 7) where v1(s;7) = 7" (DDcNn(s/7) + NNNn(s/7)) and v2(s; 7)

2] -] 8} 3
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= 7"(DcDnN(s/7)—DcDNy(s/7)). Because m = deg(D.DnN) = deg(DDcN,)
deg(N N.Ny), it follows that 1 (s;0) and y2(s; 0) are well-defined and that lim,_,o
v1(s;7) = lim;0 T DDNp(s/7) = 318™ and lim;_0y2(s;7) = J28™ for all s
with some constants 41 # 0 and 42. Note that 1 (s; 7) and v2(s; 7) are well-defined
and continuous for all 7. On the other hand, by Lemma [3.1.2] the polynomial
Ny(s;7) can be decomposed as Nq(s;7) = Nq(s;7) + Nq(s;7) where Ny(s;7) =
ap(78)*F +- - -4ay(78) +ag and Ny(s;7) = 726,(7)(78)* +- - -4 72Ep, 41 (1) (78) ke L,
Note that Nq(s/7;7) = Nq(s;1) (and similarly Dq(s/7;7) = Dq(s;1)). Also, note
that lim,_q Nq(s/T;T) = Nq(S/T;T)|T:0 =0.

Putting together, it is seen that, for all 7 > 0, the polynomial §(s;7) has the

degree [ +m and is continuous, and

5(s;0) = y18™ (Dq(s; 1)+ ?J\_fq(s; 1)> .

M
Since
Y2 _ limr 07" (DeDaN(s/7) = DeDNa(s/7)) _ - NDn(s) =9
o7l lim, 0 7" D DNy (s/7) s—00 Ny D(s) Jn ’
it is seen that d(s;0) = Y15"p}(s). Let s7, -+, sf be the roots of p}(s). We note

that the [ + m roots of &(s;7) converge to [ + m roots of 4(s;0) as 7 tends to
zero. Since a root 3(7) of d(s;7) corresponds to the root 5(7)/7 of §(s;7T), it is

seen that

1. those [ roots of d(s;7) going to infinity as 7 — 0, say s;(7), ¢ = 1,--- I,

correspond to §;(7)/T where §;(7) converges to s¥, respectively,

2. those m roots of d(s,7) that remain finite as 7 — 0 correspond to 5;(7)/T

where 5;(7) converges to the origin for i = 1,--- ,m.

Since p}(s) is Hurwitz from the condition 2} all [ 4+ m roots of §(s; ) are found
in C™ for sufficiently small 7 > 0. This completes the first part of proof.
The second part the theorem follows from Theorem [3.1.1] and the internal

stability of the closed-loop system. ]

Remark 3.2.1. The conditions in Theorem [3.2.1] are also necessary for robust

2] -] 8} 3
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stability in some sense. See Section [2.2] for details. O

Remark 3.2.2. Although the robust stability condition of Theorem [3.2.1]| resem-
bles that of Theorem the latter is on the case where the coefficients a;’s and
¢;’s of Q-filter are constant numbers while the former allows ¢;’s to be functions
of 7. Moreover, Theorem provides a condition with which the possibility
of asymptotic rejection of modeled disturbance as well as robust stability can be

checked while that of Theorem is only for robust stability. 0

Remark 3.2.3. The design parameters of disturbance observer are a;’s, ¢;’s, and
7 of Q-filter. Since p’}(s) involves only a;’s, one can design these parameters first
considering plant uncertainties, and then choose ¢;’s for disturbance rejection by
following Theorem [3.1.1] Finally, the parameter 7 is chosen sufficiently small.
This shows that the proposed controller is designed in a systematic way. In

fact, the design is fully constructive since the parameters a;’s can be also chosen

iteratively (see Section [3.2.2)). O

3.2.2 Selecting a;’s for Robust Stability

This section presents a constructive design procedure for the coefficients a;’s to
satisfy the condition [2| in Theorem (equivalently, to make the polynomial
in become Hurwitz for all g € [g,9]). The proposed design procedure is
derived by Lemma A. 3 and Remark A. 5.

With unknown g € [g, g] and its nominal value g,, we define, for j = 0,1, ...k,

pj(s;9) = s gyt TRIHT L .
j ; 3.2.2
+agprs + gi(aksj + o agg).

n

Note that pjy1(s;g) = sp;(s; g) + (9/gn)ar—j—1 and pg(s; g) = p}(s). Associated

with p;(s; g), we define the set of interval polynomials

1j:= {slikﬂ' ot ap st st o+ Vi—j

Vi € [(g/gn)ah (g/gn)ai]vi =k—7j,... 7k}'
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The four extreme polynomials for Z;, in view of Remark A. 5, are denoted by
13.771(8)7 ctt ﬁ]74(8)'
We now describe the proposed design procedure of a; for p}(s) to be Hurwitz

for all g € [g,g]. It is a recursive procedure and Step 0 is the initialization step.

Procedure 2. Q-filter Design Procedure for Robust Stability

Step 0: Choose the order of Q-filter [ > v+k and the coefficients a;_1, a;—o, . . .,
ap+1 such that the polynomial sl g st 4y apy1 is Hurwitz.

Then, find a 7, > 0 such that sF pa_qst R ap+18 + v is Hurwitz
for all v, € (0,7;) and choose a € (0, (gn/9)7%)-

Step j (j = 1,...,k): With the coefficients a;_1,a;—2,...,a,—j+1 obtained
from the previous steps, construct p;j_1,1(s),...,pj—14(s) of Z;_;. For each i =

1,...,4, find 4,_;; > 0 such that
$Pj—1,i(8) + Vk—ji

is Hurwitz for all y,_;; € (0,7—;,), and let 45_; := min; 4_;,;. Choose a;_; €
(0, (9n/9)V—5)- O

It is emphasized that each step requires at most four extreme polynomials, and

the number of polynomials to be checked does not increase as the step proceeds.

Remark 3.2.4. With Procedure[2] one obtains the coefficients ay, . . ., a;—1, which
determine the denominator of Q-filter. The numerator is left as an additional
degree of freedom for other performances. For example, it can be determined for

complete rejection of some modeled disturbance as discussed in Section U

Theorem 3.2.2. Under Assumption 1, the coefficients a;_1, ..., ag obtained
via Procedure [2| ensure that the polynomial p}(s) of (3.2.1) is Hurwitz for all
9 €lg,9) O

Proof. Since p}(s) = pr(s;g), we prove the assertion by induction for the index j
of pj(s; g) given by (3.2.2).

After Step 0 of Procedure |Z|, we obtain a;_1, ..., agy1, and ay such that the
polynomial s =% 4+ a;_1s"F =1 4 ... 4 ap 15+ (g/gn)ak is Hurwitz for all g € l9,9]

2] &-t]] 8
i ] 1
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(The existence of ay is guaranteed by Lemma A. 3.). This means that po(s; g) is
Hurwitz for all g € [g,7].

As the induction hypothesis, we assume that p;_1(s;g) is Hurwitz for all
g € [g,9]. To complete the proof, we consider Step j in Procedure [2| With a;_,
.+, @_(j—1) obtained up to Step j—1, construct Z; 1 and p;_11(s), ..., Pj—1,4(S)-
Then, Lemma A. 3 ensures that for each i = 1,...,4, there exists 7,_;; > 0 such
that spj_1,:(s)+yk—j,: is Hurwitz for all v, j; € (0,7;_;,;). Let J—; = min; 35—
and choose a_; such that 0 < ay_; < (gn/g)¥;—;- This results in that, for each
i =1,...,4, spj_1i(s) + (9/9n)ar—; is Hurwitz for all g € [g,g]. Since these
polynomials are all Hurwitz, it follows from Remark A. 5 that p;(s; g) is Hurwitz
for all g € [g,g]. The induction completes when j = k, and the polynomial pg(s; g)

is the same as p}(s), which completes the proof. O

3.3 Illustrative Example

We apply the proposed disturbance observer to a practical example to evalu-
ate the disturbance rejection performance and robustness against parameter un-

certainties.

Example 3.3.1. Consider a mechanical positioning system for the X-Y table
driven by a linear motor [YKMH99]. An actual plant P(s) and its nominal model
P, (s) are given by

1 1

P(s) = Js? + Bs’ Fals) = Jns2 + Bys

where J and B are the mass of the table with load variation and the viscous
friction coefficient and J,, and B, are nominal values of J and B, respectively.
Let J € [1,6], B = 80, J, = 1, and B, = 80. For tracking control, a simple
proportional control of gain K, is employed for the outer-loop controller C(s). It
is assumed that the disturbance d(t) = o1 sin(wit + ¢1).

Now, we design a Q-filter to embed the internal model of disturbance. We
choose ks = 1 and k; = 0 so kK = 2, and, since the relative degree v of the plant

is 2, we let [ = 4 > k4 v. Then, by Theorem [3.1.1] the coefficients ¢;’s are

] 2- 1_l|
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determined as ¢y = ag, c1 = a1 — az(Twi)?, and ¢y = ay — (Tw1)?. By Procedure
, we can choose the coefficients a;’s such that the polynomial p}(s) of (3.2.1) is
Hurwitz for all g € [g,g] where g =1/6,g=1, and g, = 1.

Step 0: Pick ag = 4 so that s+ag is Hurwitz. Since the polynomial 52—|—a35—|—72
is Hurwitz for all 2 > 0, we choose as = 6.

Step 1: The four extreme polynomials of po(s;g) yield two different ones

Po,1(s) and po3(s) as

_ g _ g
Po,1 = 82 + ass + iag, p073(8) = S2 + azs + —as.
gn 9n

Using the root-locus plot, we take 7; ; = 24 and 7, 3 = 3.83 such that spo ;(s) +
71,7 is Hurwitz for all v1; € (0,7 ;). Let 7, = min{%; 1,7 3} and choose a1 =

3.8 € (0, (gn/9)71)-
Step 2: The four extreme polynomials of p;(s; g) are given by

Pra(s) = s° + azs? + Lags + Lay,

9n gn
_ 7 g
Pra(s) = 83+ azs? + Lags + Zay,
n gn
_ g g
p13(s) = 8% 4+ azs® + Zags + =ay,
9n gn
pra(s) = s° + azs® + L s+ Ly,
n n

By the same procedure as Step 1, we take ag = 0.04.
With the coefficients obtained above, the Q-filter is designed as

Qu(s) = {6 — (Tw1)?}(75)* + {3.8 — 4(Tw1)?*}(7s) + 0.04
P (18)* + 4(75)3 + 6(75)% + 3.8(7s) +0.04 ~

Now, for comparison, we consider another Q-filter whose coefficients are bi-

nomial coefficients (that is often employed in the literature such as |[CYCT03|):

6(75)% 4+ 4(7s) + 1
(18)* + 4(75)3 + 6(78)%2 + 4(rs) + 1

Qi(s) =

It is designed to have the same order and relative degree as @Q,(s) for fair compar-

ison since the disturbance rejection performance tends to improve as the degree

] 2- 1_l|
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x10°

Error

---DOB with Q,(s) |
—DOB with Qp(s) I

L
0.15 0.2 0.25 0.3
time (sec)

Figure 3.3: The error between the step response of the nominal closed-loop
system and that of the actual closed-loop system with the distur-
bance observer with Q(s) (‘DOB with Q(s)’) and Q,(s) (‘DOB
with Qp(s)’) when J = 1.

of the numerator of Q-filter grows (with the same 7) [CYCT03|. In addition,
simulations are performed with J = 1 and 4.2 to observe the effect of parameter
uncertainties. Detailed parameters are as follows: o1 = 1, wy = 27-8, K, = 2500,

¢1 = 0.5m, and 7 = 0.001.
Fig. and show the error between the step response of the nominal

closed-loop system and that of the actual closed-loop system with the distur-
bance observer with the Q-filter Qp(s) having the binomial coefficients and the
proposed Q-filter @, (s). Here, the step response of the nominal closed-loop sys-
tem means that of P,C/(1+ P,C) without the disturbance. As seen in Fig. [3.3
the disturbance observer with @,(s) completely rejects the effect of disturbance
in the steady state, while the one with @Q(s) approximately. From Fig. it is
observed that the closed-loop system with Qp(s) is unstable when J = 4.2. It im-
plies that large plant uncertainties can deteriorate the stability of the closed-loop
system with the disturbance observer when it is designed without considering un-
certainties. We remark that the proposed disturbance observer works well since it

is designed by the proposed systematic procedure considering plant uncertainties.
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3.3. Illustrative Example

Error
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Figure 3.4:
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The error between the step response of the nominal closed-loop

system and that of the actual closed-loop system with the distur-

bance observer with Qp(s) (‘DOB with Q4(s)’) and Qp(s) (‘DOB

with @Qp(s)’) when J = 4.2.

Bode Diagram
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Figure 3.5: Bode diagrams of sensitivity functions without the disturbance
observer ("W/O DOB’) and with the disturbance observer with
Qu(s) (‘DOB with Qp(s)’) and Qp(s) (‘DOB with Qp(s)’) when
J

=1

10 10 10°

Frequency (Hz)
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The performance of the disturbance observer with @Q(s) and Qp(s) can be
also analyzed in view of the sensitivity functionﬂ as shown in Fig. . In the
low frequency range, the disturbance rejection performance is improved by both
disturbance observers with Q(s) and @Q,(s). Especially, in the target frequency
(8 Hz), the magnitude of the sensitivity function of the disturbance observer with
Qp(s) becomes much smaller than that with Qu(s) due to the internal model in
the disturbance observer structure. On the other hand, the disturbance rejection
performance of the disturbance observer with Q(s) is better than that with @Q,(s)
in other frequency ranges since it contains three integrators in 1/(1—Q(s)) block
as shown in Fig. [3:2l More discussions on the sensitivity function analysis will be

provided in the next section.

3.4 Discussions on Robustness

In this section, we discuss the robustness of the proposed design procedure 2]
In the following subsection, the pros and cons of the proposed Q-filter design
procedure is more investigated. And then, the robustness is discussed based on

the bode plot approach.

3.4.1 Pros and Cons of Proposed Design Procedure

At each step of the proposed design procedure Kharitonov theorem is em-
ployed to guarantee the Hurwitz stability of the interval polynomial p;(s;g) for
all variation of g. In fact, Kharitonov theorem provides a necessary and sufficient
condition for Hurwitz stability of a family of the interval polynomial when the
polynomial coefficients vary independently. However, the coefficients of p;(s;g)
vary interdependently according to the variation of g. In other word, if the four

extreme polynomials of p;(s;g) are Hurwitz, then p;(s;g) is Hurwitz. But, the

2The loop transfer function L(s) and the sensitivity function S(s) of the disturbance observer

based control system are computed as

P(s)(Pa(s)C(s) + Q(s)) S(s) = Pu(s)(1 = Q(s))
P(s)(1-Q(s)) 7

L(s) =
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Figure 3.6: The value sets of the four extreme polynomials of p1(s;g) ("blue
solid line’) and p;(s; g) (‘red plus signs’) for each w > 0.

converse may not be true. This relationship can be easily understood in view of

the value set approach [Definition A. 6 in Appendix].

Recall step 1 of the design procedure in Example [3.3.1L The coefficient a;
is selected such that the four extreme polynomials of pi(s;g) are Hurwitz (i.e.,
pi(s;g) is Hurwitz). Fig. w shows the value sets of four extreme polynomials
p1(s;g) and pi(s;g) for all g € [g,g]. By the zero exclusion theorem |[Lemma
A. 7 in Appendix|, both cases are Hurwitz stable since the value sets do not
contain the origin. However, the distance between the origin and the value set
of four extreme polynomials of p;(s; g) is smaller than that of p;(s;¢g). It implies
that the proposed design procedure [2|is conservative in the sense that one might
select a small aj_; such that the four extreme polynomials of p;(s; g) be Hurwitz
even though the selection of larger a,_; might be possible. As a result, as the

step proceeds, the selected aj_; becomes smaller although the proposed design

procedure provides a systematic method for selecting a_;.

B e
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3.4.2 Bode Diagram Approach

In this section, the robustness of the proposed Q-filter design procedure is
investigated in view of the bode diagram approach. For Example [3.3.1] we design
the Q-filters with the binomial coefficients (ngpeq(s)a nyped(s), Qfgypefg(s),

@Q5,,(s), and nype_4(s)) and the Q-filters by the proposed design procedure
( ?ype—l(s)v i)ype—2(3)7 gype—3(8)7 ?M(S)a and nype—4(s)) as follows:

1 b
(15)2+2(1s)+ 1’ Qiype—2(5) =
Qb (s) = 6(78)% +4(rs) + 1

ype=3 (18)* +4(75)3 + 6(78)2 + 4(7s) + 1’
Qb (s) = {6 — (Tw1)?}(78)* + {4 — 4(7w1)?}(7s) + 1
M (18)* +4(15)3 +6(78)2 +4(rs) +1

10(75)% +10(7s)% + 5(7s) + 1
(78)% + 5(7s)* + 10(7s)? + 10(75)2 + 5(7s) + 1’

6 » B 6(7s) + 3.8
(15)2 +4(1s) + 6’ Quype—2(s) = (15)% + 4(75)2 + 6(7s) + 3.8
» B 6(7s)? + 3.8(7s) + 0.04
type*:g(s) ©(78)4 +4(75)3 + 6(75)% + 3.8(Ts) + 0.04’

» {6 - (Tw1)?}(78)? 4+ {3.8 — 4(1w1)?}(75) + 0.04
m(s) = (18)* +4(75)3 +6(7s)2 + 3.8(ts) +0.04 ~
v B 6(7s)% + 3.8(75)? 4 0.04(7s) + 0.0006
type-1(5) = (75)° + 4(78)* + 6(75)3 + 3.8(75)2 4 0.04(7s) + 0.0006

3(rs)+1
(18)3 4+ 3(1s)2 +3(7s) + 1’

Q?ypefl (S) -

Q?ype—4 (S) =

fypefl (S) =

Fig. [B7 and [3.8) show the bode diagrams of sensitivity functions and loop
transfer functions with Q-filters having the binomial coefficients, respectively. The
phase margins by Qf, . 1(5), Qpype—2(5), Qfype—3(s), Q4p(s), and Q7,04 (s) are
75.8 deg, 53deg, 43.5deg, 43.5deg, and 38.3 deg, respectively. It implies that,
as the order of Q-filter with the binomial coeflicients increases, the robustness
decreases. On the other hand, Fig. [B.9] and [3.I0] show the bode diagrams of
sensitivity functions and loop transfer functions with Q-filters by the proposed
design procedure, respectively. The phase margins by Q7 (s), nype_2(s),

type—1

pe—3(8), Q7 (s), and Qf . 4(s) are 70.5deg, 46.5 deg, 46.5 deg, 46.5 deg, and

46.5 deg, respectively. Thus, the robustness is preserved even though the order of
Q-filter by the proposed design procedure increases.
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One might think that the above results are not implementable since the control
bandwidth of the nominal closed-loop system is much smaller than those of the
disturbance observer based control systems. Fig. and show the bode
diagrams of sensitivity functions and loop transfer functions with Q-filters by the
proposed design procedure, respectively. In this case, the control bandwidth of
the disturbance observer based control systems are designed to be similar to that
of the nominal closed-loop system. The phase margins of the nominal closed-
loop system and the closed-loop system with Q? (s), QY (s), Q¥ (s),

type—1 type—2\5)s Wiype—3
T (s), and Q7 . 4(s) are 69.9deg, 49.1deg, 46.6 deg, 46.6 deg, 48.1deg, and
46.6 deg, respectively. It means that the robustness is also preseved although the
order of the Q-filter is increased. This phenomenon is explained by the bode
diagram of each Q-filter as shown in and As the order of the Q-filter
increases, the cut-off frequency and magnitude of each Q-filter designed by the
proposed design procedure do not increase even though those of each Q-filter with

the binomial coefficients increase. (For more details, see [KK99].)
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Bode Diagram
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Figure 3.7: Bode diagrams of sensitivity functions without the disturbance
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observer ("W/O DOB’) and with the disturbance observer with
Q?ype—l(s) (‘DOB with Q?ype—l(s),)7 ngpe—2(5) (‘DOB with
ngpe—2(3)7)7 Q?ype—S(s) (‘DOB with Q?ype—S(sy)? Q?M(s) (‘DOB
with @Q%,,(s)"), and ngpe%(s) (‘DOB with nyp674(s)’) when
7 =0.001 and w; = 8 x 2.
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Figure 3.8: Bode diagrams of loop transfer functions without the distur-

bance observer ("W/O DOB’) and with the disturbance observer
with Qé’ype_l(s) (‘DOB with nype_l(s)’), nype_Q(s) (‘DOB with
ngpefQ(Sy)? Q?ypef?)(s) (‘DOB with Q?yp673(8)’)7 Q?M(S) (‘DOB
with QY,,(s)’), and Qi’ype_4(s) (‘DOB with Qi’ype_4(s)’) when
7=0.001 and wy = 8 x 2.

Rk R

e



3.4. Discussions on Robustness

Magnitude (dB)

Bode Diagram

100
O _
=100 o
-200F -
,30 il L I | L I | L I | i -
450F “ ‘ ‘ | —— w/o DOB
——— DoBwith Qf ., |
DOB with nypei ||
——DOBwith Qf
DOB with Q}},
DOB with QF, [l
10 10° 10" 107 10° 10*

Frequency (Hz)

Figure 3.9: Bode diagrams of sensitivity functions without the disturbance

Magnitude (dB)

Phase (deg)

300

observer ("W/O DOB’) and with the disturbance observer with
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Figure 3.10: Bode diagrams of loop transfer functions without the distur-
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when 7 = 0.001 and w; = 8 x 2.
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Chapter 4

Disturbance Observer with Unknown
Relative Degree of the Plant

The disturbance observer based controller has been widely used among control
engineers since it has a powerful ability of uncertainty compensation and distur-
bance attenuation. However, this property holds only when the disturbance ob-
server based control system is stable. Therefore, the important question of inter-
est is the robust stability of the closed-loop system under the uncertainty of the
plant.

As shown in Chapter [2] and [3] an almost necessary and sufficient stability
condition was presented when the time constant of Q-filter is sufficiently small
in accordance with the performance enhancement. Under the assumption that
actual uncertain plant P be of minimum phase, it has been shown that, for any
given nominal model F,, the disturbance observer based control system can be
robustly stabilized with an appropriate choice of the Q-filter. However, it is not
applicable to the case where the relative degree of real plant is not the same as
that of the nominal model.

In this chapter, we study the robust stability of the disturbance observer
based control system when the relative degree of plant is not exactly known and
so it happens to be different from that of nominal model. This case often occurs
in real world control applications. For instance, r.deg(P) > r.deg(P, )] when the

actuator dynamics is ignored, or when there is unmodeled dynamics for the plant.

Lr.deg(P) stands for the relative degree of the transfer function P.

45 .-':l'\-\.—= -";:'1. : !
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Although some related work has been presented in [JJSTT], it is limited to the case
where the relative degree of P, is equal to one and the Q-filter is given by the first
order system. Inspired by the fact that the characteristic equation for stability
is of the form that appears in the ‘higher-order root locus technique’ [Hah81],
conditions for robust stability are derived by utilizing the Newton diagram for
general cases. Under the standing assumption that the time constant of Q-filter

is sufficiently small, the derived conditions reveal a few facts such as:

o if r.deg(P) = r.deg(Pn) + 1, the robust stability can be achieved by an
appropriate design of P, as well as ), which is contrast to the case where
r.deg(P) = r.deg(P,) in Chapter [2[ (where the selection of P, does not

matter).
e if 1 <r.deg(P) < 2, then the robust stability is always achievable.

o if r.deg(P) > r.deg(P,) + 2 or r.deg(FP,) > r.deg(P) > 2, then the robust
stabilization is not possible with sufficiently small 7 no matter how P,, C,

and @ are selected.

e a universal design of the disturbance observer can be achieved for the special

case where r.deg(P) is unknown but 1 < r.deg(P) < 4.

In summary, the lesson of this chapter is that one needs to estimate the relative
degree of the plant as close as possible, because, if not, the robust stability may

not be achievable with sufficiently small time constant of Q-filter.

4.1 Robust Stability

The standard disturbance observer control system is illustrated in Fig. [£1] In
this figure, P(s) and P,(s) represent the uncertain plant and its nominal model,
respectively, and signals r, d, and n represent the reference input, input distur-
bance and measurement noise, respectively. The controller C(s) is designed a
priori using the nominal model P,(s) only (The design of C(s) does not require

the information of P(s).). The transfer function Q(s) (called as ‘Q-filter’) is a

2] &-t]] 8
i ] 1
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d
—T>o—> C(s) ° >£—> P(s) Y

Y
>0
Y

4_;547 Q(s)/Pis) J—Sd -

Figure 4.1: Structure of the disturbance observer control system. The shaded
region represents the real plant P(s) augmented with the distur-
bance observer

stable low pass filter, which usually has the form of

cr(t8)f +cp_1(rs)F L4+ + ¢
ai(Ts)t + a1 (18) 1+ -+ ar(Ts) + ag

Q(s) = (4.1.1)

where 7 > 0 is the filter time constant, and k and [ are nonnegative integers.
Assume that ¢y = ag for the unity DC gain and | > k 4 r.deg(P,) to make the
transfer function Q(s)P, !(s) proper.

As discussed in Chapter [2| the disturbance observer recovers the nominal
performance in the presence of the disturbances and model uncertainties. How-
ever, this property is only maintained when the closed-loop system is stable.
In this chapter, we will investigate the robust stability of the disturbance ob-
server based control system when r.deg(P) # r.deg(P,). We assume that P(s)
and P,(s) are strictly proper while C'(s) is at least proper. Let us also rep-
resent each transfer function P, P,, C, and @ as the ratios of coprime poly-
nomials: P(s) = N(s)/D(s), Pn(s) = Nn(s)/Dn(s), C(s) = N¢(s)/Dc(s), and
Q(s) = Ng(s;7)/Dg(s; ) (in which, the dependence of Ng and Dg on 7 is ex-
plicitly indicated). Then, it has been shown in Chapter [2| that, for given 7 > 0,
the closed-loop system is internally stable if and only if the characteristic polyno-
mial

§(s;7) := (DDe + NN )NyDg + NoDe(NDy — NoD) (4.1.2)
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is Hurwitz. Define

Pa(s) := N(NeNy + DcDy), pg(s) = No(N.N + D.D) (4.1.3)
and let mq := deg(ND.D,), mg := deg(NnD.D), and oy, 5; be such that

-1
amasma + amaflsma + A+ Qo,

pp(s) = Bmys™ + ﬁmﬂ,lsmﬁ_l + o+ Bo.

=
Q
—~
Va)
~—
I

(4.1.4)

It should be kept in mind that mg—mg = r.deg(P)—r.deg(F,), and that B, /am,
is the ratio of the high frequency gains of P(s) and P,(s). Let k be such that
ap = co, - ,ay = by and ag; # cp,, or k = k. Then, it follows that (with

a; = 1 for convenience)

o(s;7) = (S)DQ(S' 7) + (Pa(s) = ps(s))Na(s;7)
k

= ps(s Zaz 75)' + (Pa(s) — ps(s)) Y bi(rs)’

=0
k 4.1.5
= Z TS azpoc ( )
i=0 ) l |
Z (aip(s) + ci(pals) = ps(s))) + Y (78) aips(s).
i=k+ i=k+1

Note that deg(d(s;7)) = I + mg if 7 > 0, and the locations of [ + mg roots,
when 7 is sufficiently small, are of interest because they determine the stability
of the closed-loop system. Since d(s;0) = appa(s) and deg(d(s;0)) = mq, it is
clear that m, roots out of | + mg roots of §(s;7) converge to the roots of p,(s)
as 7 — 0, while the remaining [ + mg — m, roots tend to infinity (see [S.J09)] for
more rigorous arguments).

Here, we recall Theorem in the viewpoint of the coefficients «; and j;,
with the set P being a collection of transfer functions whose coefficients belong

to certain (known) bounded intervals.

Theorem 4.1.1. Suppose that r.deg(P,) = r.deg(P) and their high frequency

gains have the same sign. Then, there exists a constant 7 > 0 such that, for

A & 8!
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all 0 < 7 < 7, the closed-loop system is internally stable if the following three

conditions hold:
H1. P(s) is of minimum phase for all P(s) € P,
H2. P,C/(1+ P,C) is stable, and

H3. the polynomial

pr(s) =Bms{as' + a8+ + appa s+ (ap — cr)st o+ (a1 — e1)s)

+ ama{cxs® + -+ s +agk

is Hurwitz.

On the contrary, there is 7 > 0 such that, for all 0 < 7 < 7, the closed-loop
system is unstable if at least one of the conditions H1-H3 is violated in the sence
that, P,C/(1 + P,C) has some poles in C", or some zeros of P(s) or some roots

of py = 0 are located in C™. O

Proof. The conditions H1-H3 are the same as those of Theorem 2.2.1]although the
condition H3 is derived using a different method with respect to (4.1.4). Hence,

the proof is the same as that of Theorem [2.2.1] and omitted. O

Remark 4.1.1. It is observed that the conditions H1 and H2 are equivalent to
pa(s) being Hurwitz (see (4.1.3), so that mq roots of 6(s;7) have negative real
parts for sufficiently small 7. On the other hand, the condition H3 constrains the
other I + mg — mqy =1 (since mg = mq, if r.deg(P) = r.deg(P,)) roots to remain
in C™. 0

Theorem indicates that robust stabilization can be achieved against un-
certain parameters, provided that C(s) stabilizes the nominal model P,(s), and
uncertain plant is of minimum phase. Note that the selection of P,(s) is not
crucial for the robust stabilization provided that r.deg(P,) = r.deg(P).

Although Theorem [£.1.T] presents an almost necessary and sufficient condition
for stability according to Remark[2.2.1] it is not useful when r.deg(P) # r.deg(P,).
If lims 00 (P(s)/Pa(s)) = 0, which occurs when the relative degree of P,(s) is less

2] -] 8} 3
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than that of P(s), then ps(s) = Dg(s;1) — Ng(s;1) has a root at the origin
since ¢y = ag. For such a case, some stability condition was derived in [JJS11]
under the assumption that r.deg(P,) = 1 and the Q-filter is of the form Q(s) =
ap/(a17s + ap). However, this is too restrictive to be used in real applications.
Furthermore, the polynomial p¢(s) is not defined when r.deg(P) < r.deg(P,).
When r.deg(P) # r.deg(P,), the | + mg — mq roots of d(s;7), that go to
infinity as 7 — 0, are of particular interest. In order to observe their behavior

conveniently, we want to make them go to zero as 7 — 0. This is done by defining
O(s;7) = sTM86(1 /55 7). Then

5(s;7) =To(s) + 71 (s) + -+ T'g(s),

1=0,1,---,k,
—i 1 i
(8 = €3} By 8™ o o) (4.1.6)
61<3) = + Ci(amasH*mﬁ*Ma*Z S a0$l+m571)’

i=k+1,k+2 - -k,
ai(ﬁmﬁsl_i‘i‘"'+ﬂ031+mﬁ_i),
i=k+1,k4+2,--- 1.

Since Re(s) < 0 if and only if Re(1/s) < 0 for a complex variable s, stability
analysis using &, instead of ¢, is justified (assuming that 6(0,7) # 0 which is
to be seen shortly). As 7 — 0, I + mg — mq roots of § are converging to zero
whereas the remaining roots converge to m, nontrivial roots of g,. (From now on,
the former are called as vanishing roots while the latter as non-vanishing roots.)
Since gy (s)/s M8 = ag(apm,, + - - - +aps™), the non-vanishing m,, roots have
negative real parts if and only if p,(s) is Hurwitz. Hence, paying attention to the
vanishing roots, we can obtain the following Theorems and (for the case

r.deg(P) > r.deg(Fy)) and Theorems and (for r.deg(P) < r.deg(Py)),
whose proofs are given in Section

Theorem 4.1.2. Suppose that r.deg(P) = r.deg(P,) + 1 for all P € P. Then,

2For reader’s convenience, we write all polynomials in ascending order from now on.

2] -] 8} 3
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there exists 7 such that, for all 0 < 7 < 7, the closed-loop system is robustly
stable if both conditions H1 and H2 of Theorem hold and the following

three conditions hold:
Lo7w(s) =8+ Fapys® + (ap — cp)sP L+ -+ (a1 — ¢1) is Hurwitz,

2. the signs of high frequency gains P and P, are the same (i.e., B, /am, > 0)
for all P € P,

3. gy = @mazt _ Pmesl e a0 (a—cy a) < for all P € P.

Qg Bmg Bmg ar—c1rai—ci

O

The case where r.deg(P) > r.deg(P,) often happens when the actuator dynamics
is ignored, or when there is unmodeled dynamics for the plant. The conditions of

Theorem are almost necessary and sufficient in the following sense.

Theorem 4.1.3. For given P € P with r.deg(P) > r.deg(P,), the closed-loop

system is unstable for sufficiently small 7 if at least one of the following holds:
1. r.deg(P) > r.deg(P,) + 2,

2. P has at least one zero in C* (violation of the condition H1 of Theorem

L),

3. P,C/(1+ P,C) has at least one pole in C* (violation of the condition H2
of Theorem 4.1.1]),

4. 7(s) has at least one root in C¥,
5. Bmg/m, <0,
6. o4 >0,

7. k>0.

3¢1 = 0if ¢1 is not present in ([.1.1)), and so on.
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A lesson from Theorem is that, if r.deg(P) — r.deg(Pn) > 2, the closed-
loop system cannot be stabilized, with small 7, no matter how C, P,, and @ are
chosen. Thus, the estimation of the relative degree of actual plant is essential for

the design of the disturbance observer based controller.

Theorem 4.1.4. Suppose that r.deg(P) < r.deg(FP,) for all P € P. Then, there
exists 7 such that , for all 0 < 7 < 7, the closed-loop system is robustly stable if,
for all P € P, both conditions H1 and H2 of Theorem hold, and

1. r.deg(Q) < r.deg(P,) — r.deg(P) + 2,
2. Ng(s;1) is Hurwitz (or a constant),

3. P and P, have the same sign of high frequency gains (i.e., By,;/m, > 0)
if r.deg(Q) > r.deg(P,) — r.deg(P) + 1,

4. o_:=cp_1 — aj_1¢ck < 0if r.deg(Q) = r.deg(P,) — r.deg(P) + 2 and k > 1.
Il

Theorem 4.1.5. For given P € P with r.deg(P) < r.deg(P,), the closed-loop

system is unstable for sufficiently small 7 if at least one of the following holds:
1. r.deg(Q) > r.deg(P,) — r.deg(P) + 3,
2. P has at least one zero in CT,
3. P,C/(1+ P,C) has at least one pole in C™,
4. Ng(s;1) has at least one root in C,
5. Bmg/m, <0 while r.deg(Q) > r.deg(FP,) — r.deg(P) + 1,
6. o_ > 0 while r.deg(Q) > r.deg(P,) — r.deg(P) + 2 and k > 1.
O

Since the Q-filter is always designed such that r.deg(Q) > r.deg(P,), the condition
of Theorem imposes the restriction that r.deg(P) < 2.

#;rﬁ'! _CIJI_ 1—l| -_.fJ]_ T_III-
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4.2 A Guideline for Selecting () and F,

The theorems in the previous section suggest some design guidelines for ) and
P,. For example, if the relative degree of the unknown plant is ensured to be less
than or equal to two with known sign of high frequency gain, then simply choose
P, such that r.deg(P,) > 3 with the same sign of high frequency gain, and design
Q with £ = 0 and [ = r.deg(P,). Then, it is easily seen that all the conditions of
Theorem [£.1.4] are satisfied.

On the other hand, the condition [3] of Theorem allows the following
interpretation. Let K, denote the high frequency gain of the plant P(s), and its
numerator and the denominator be written as N(s) = K,(s" + bysh»=1 4 ...)
and D(s) = s'» +a,s'»~1 +. .. | respectively. The controller C(s) and the nominal
model P,(s) admit the similar expression so that K., Ky, ke, lc, kn, In, Gc, be, an,
and by are all defined from N., D., N, and D,. Suppose that r.deg(P,C) > 2
and K, K, > 0 (same sign of high frequency gains). Then, since mq = kp +In + 1.
and mg = ko + 1, + I, it follows that pe(s) = Kp[s™ + (an + ac+by)s™e "1 4+ - -]
and pg = Kn[s"8 + (ap + ac + bn)s™# 1 + .. .]. Thus, the condition [3[ of Theorem
is reduced to

K agn ag — C2 C1
b — by, + —= - — <0
{an—i_ P +K a; —c1 <a1—01 a0>] ’

which leads to

kp b

as — Co C1 P
— -— | < 4.2.1
Zz sz el o B B DU DS E R

=1 =1

where poles and zeros of P(s), and those of P,(s) are denoted by pf, z¥, and pf,
z?, respectively. Therefore, as poles (zeros, respectively) of P, are placed further
right (left, respectively), it becomes more beneficial for robust stability. However,
this may make the design of C(s) more difficult since the control of stable plant
is easier than that of unstable plant. It should be noted that the controller C(s)

does not affect (4.2.1)).
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4.2.1 A Universal Robust Controller

The design guidelines yield a rather interesting observation that, if the uncertain
plant has the relative degree at most four (and is of minimum phase whose sign
of high frequency gain is known), then a robust controller can be designed, which
is ‘universal’ in the sense that it applies to the plant of any order and of any
bounded (but arbitrarily large) uncertainty. Just by reducing the parameter T,
robust stabilization is achieved.

Let u(P) = (sum of all zeros of P) - (sum of all poles of P), and let u(P) :=
minpep u(P) and K, := maxpep |Kp|. Pick the high frequency gain K, of the
nominal plant P, (to be designed) such that K,K, > 0. Let Q(s) = ao/((75)® +
az(7s)?+a1(Ts)+ag), where a; and as is designed such that s?+ags+a; = 7(s) is
Hurwitz and ag > 0 is chosen sufficiently small such that p(s) = s> +azs*+a1s+
(Kp/Kn)ap is Hurwitz for all |K,| < K,,. In fact, it holds if 0 < ag < a1a2Kn/K,,
which is found, e.g., by the Routh-Hurwitz test. Now, determine the locations of
poles and zeros of P, such that its relative degree is 3 and that

Fp apas

< (P)
K, a%

w(Py) +

is satisfied. Then, C is designed such that is stabilizes P,. The remaining freedom
of choice for P, and C' can be used to satisfy given performance specifications.

With the design, robust stability follows from the main theorems. If r.deg(P)
is 1 or 2, all the conditions of Theorem are satisfied. If r.deg(P) is 3, all the
conditions of Theorem hold. If r.deg(P) is 4, all the conditions of Theorem
412 hold. Hence, with sufficiently small 7, robust stability is guaranteed.

4.3 Technical Proofs

The conditions regarding H1 and H2 in all theorems follow from the same argu-
ments as in Remark which are related to the polynomial p,(s). Therefore,
the proof is mainly to investigate the behavior of [ 4+ mg — m, vanishing roots of
6(s;7) in and to see if they remain in C~ while converging to the origin.

The study could have been facilitated if there is no higher-order terms of 7 in

] 2- 1_l|
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71 mg—mg+k+1

—

k+1 - N Ap+1Pp

k XXX akps + bi(pa — p3)
Lgi™, =00 0.
hl XK 105 + by 1(Pa — ps)

k \ ; ; . - (pPa

1P

l—k l+mz—ma—k S
k-1 l—k—1 l+ms—my,

Figure 4.2: Newton diagram for §(s;7) in (4.1.6) when r.deg(P) > r.deg(P,)

(i.e., mg > myg).

6(s;T) except the first order one because the classical root-locus method could be
employed. However, since this is not the case, we invoke the method of Newton
diagram, inspired by the higher-order root-locus method in [Hah8&1].

Proof of Theorem The vanishing roots of 6(s; 7) have the form of s*(7) =
y7¢ + o(7¢) where o(7¢) represents the terms having higher order of 7 than ¢ > 0,
and 7y is a non-zero constant. To find ¢ and v, the Newton diagra of §(s;7) is
drawn as in Fig. where it is seen that there are two groups of roots. The first

“The non-zero coefficient of the term 775° is marked as x in the coordinate (i,;). Then, a
convex hull of all marked X is considered, and the line segments with different slopes, located
on the boundary in the lower-left side, are found. (L, and L; in Fig. E) Let N be the number
of such line segments. From the figure, the following facts are read out: () the total number
of roots converging to zero as 7 — 0 is the index of the leftmost x in the row of 70 (which is
l4+mg —mq in Fig. [4.2)). (i7) These roots are divided by N groups. (iii) For each group, there
is m roots of the form s (7) = 7;7¢ + 0o(7°),1 < i < m, where ¢ = —(slope of the line segment)
and m is the difference between the horizontal indices of the rightmost mark and the leftmost
mark in the line segment. (iv) The value of ; is determined by finding roots of the m-th order
polynomial ¢(v) whose coefficients are the values of those marks that touch the corresponding

line segment.

iﬂ k'_. 1_'_” r
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group consists of | — k — 1 roots of the form ~,7! + o(7!) and the second group
has mg — mq + k + 1 roots of the form ~pr R/ (mg—ma+k+1)) 4 o(---). It is also

seen that v, and -, satisfy the following two equations, respectively:

! k
Ga(V) = By | D @it T+ Y (ai—e) | =0,

i=k+1 i=k+1

For stability, all the roots of ¢, and ¢, need to be located in C~ because they
determine the location of s*(7) for sufficiently small 7. It is clear that a necessary
condition for stability is mg — mq, + k is at most one, because, if not, at least
one root of ¢p(7y) is in C*. This explains the conditions [l and [7} Now assuming
mg — mq = 1 and k = 0, the condition respectively) implies a solution to
da(y) = 0 (ép(y) = 0, respectively) is in CT (since ¢q(7y) = ﬂmﬁ'yl_lﬂ(l/'y)). If
Bms/®ms > 0, the second group has two roots s*(7) = +i7371/2 4 o(7'/2) where

y= \/ (a1 — €1)Bms/(aoam,, ). With this, stability is inconclusive and we need to

inspect higher order terms.

We le s*(1) = (i7 + 3(1))7"/? where § is a continuous function to be found
such that §(0) = 0.
and regard §(s*(72); 72) as a polynomial of § with the parameter 7, that is, from

(T1.6)

Define 7 = 7'/2 and A(#) = 7 + 4(#2) for convenience,

3(s*(7%);7%) = ag(oum, AT 4o, AFZRFE L)
1 (a1 — 1) (B, A1 171 +5mﬁf1z4lfl+2 o)
4 er(am, A2 Ly AL
+ (ag — C2)(ﬂmﬁA1727ﬁH2 n /Bmﬂ_lAFl%lH +o)

+ CQ(O&mQAl_l’]A'H_S + - ) 4.0 = g(é,f')

5As for the case where s*(7) = (=i + 4(7))7'/2, the same conclusion is obtained and the

details are omitted.
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T oo
doii
1 X X X

2 3 5

Figure 4.3: Newton diagram for 6(3;7)/#!*1.

Collecting the terms in increasing order of 7, it becomes

0(8;7) = # " agum, AT + (a1 — ¢1) B, ATV

7A'l+2[(l00éma71Al+2 + ((a1 — Cz)ﬁmﬁfl + clama)Al + (ag — Cg)ﬁmﬁAl_Q]

By expanding with A = iy + 5(72), it is seen that the constant term (with respect
to 8) in the coefficient of 71
7. With this fact, the Newton diagram of §(8; 7)/7/*! (Fig. suggests that it

has one root §*(7) of the form 47! + o(7!) and 4 is the root of

(the lowest power of 7) is zero by the definition of

“ Uma—18m,(a1 = c1)* (a1 — €1)*BmyBms—1 (a1 — c1)c1Bm,
(%) = 2 - -
a?, ag U, G0 ao

+ (a2 — 62)/8771/3) —2(a1 — c1) By

The condition |§| implies that 4 is in C*, and so is s*(7) = i77/2 + 471 + o(7))

as 7 — 0.

Proof of Theorem Conclusions of Theorem [I.1.2] are easily derived from
the proof of Theorem Indeed, by the condition [I], it follows that a1 —c; > 0
and k = 0, which yields ¢4(7) = (a1 — ¢1)Bm; + ¥m,a0y*. Then, the conditions

A L)) &

S |
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T
XK B
D A S N 1) R}
.. X >< >< >< U/A:])H‘Fbk(pa _p{?)
XX X X X
T I T \X‘XXXX 1P + bjia (Pa — p3)

a:

N, >

l+mg—ma—Fk l+mg —na—k :
I—k—1 I+mg—m,,

Figure 4.4: Newton diagram for the case r.deg(P) < r.deg(F,).

and 3| (the condition |1} respectively) imply that all the roots of ¢y (¢4, respec-

tively) are located in C™.

Proof of Theorem We now consider the case where mg — mq < 0.
From the Newton diagram of this case (Fig. , it is seen that there are two
groups of vanishing roots of d(s; 7). The first group consists of k roots of the form
s*(7) = vamt+o(r!) where 7, is the roots of ¢q () = cp+- - - CE+17k*E*1+aEfyk*E+
o+ apyt =g + -+ oy = ¥¥Ng(1/v;1). The condition 2| guarantees that
¢q is Hurwitz. On the other hand, it is seen from Fig. [£.4] that the second group
has the roots of the form s*(7) = U=k (UAms=mak) " with ~, being the roots of
Ob(Y) = By + Chm, YTk Note that 1 < 1+mg —mq —k = r.deg(Q) +
r.deg(P) — r.deg(P,) < 2 by the condition [l and by r.deg(Q) > r.deg(P,). If
its value is 1, then the condition 3| guarantees that ¢, is Hurwitz (of first order).
If its value is 2 (so that [ — k > 2), then two roots of the second group are

s*(1) = (37 + 5(7))7=F)/2 where 7 = Bms/(Crm,,) and 8 is a continuous
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~ A

7

My — 'mgi\

»
»

N 2 3 8
Figure 4.5: Newton diagram for §(8;7)/72 under the condition r.deg(P) <
r.deg(P).

function to be found such that 3(0) = 0. Let 7 = 7V/2 and A() = iF + 5(72)
so that s*(#2) = A#/"%. From (£.I.6), it is seen that the power of 7 in each
#27q;(A#17F) begins with (I — k)(I +mg — mq — j) + 27 if 0 < j < k, and with
(Il—k)(1—j)+2jif k+1<j <, and increases by (I — k) in both cases. Since
| —k > 2, the term of the second lowest power in the polynomial §(A7=* #2)
comes from the lowest power term of 72:=Dg, | (A7) and of #/-1G,_; (A7)

but not from others. Writing 0 in ascending power of 7, we have

5(s*;7%) = [cpam, A% + ﬁmﬂ]f'% + [cp—10m, A3 + al_lﬁmﬁA]f'Ql_mﬁ_m“ + -
= [2ickam 75 + (--- )8 72 + [Y(a1-1B8ms — Che1Cm.7°)

+ ()84 () ()P RHTme e L= (8 7).

The corresponding Newton diagram (Fig. suggests that it has one root §*(7)

of the form 47¢ 4 o(7¢) where ¢ = my —mg and 4 is the root of

Brmg

2
2¢i

$(4) = 2060 Y+ (A1 By — Ch—10ma 7°) = 2Ck0m,, |+ (ar—1ck—cr—1)|-

The condition [4| implies that ¢ is Hurwitz. The result is the same with A(7) =
—i7y + 3(7%).

Proof of Theorem Conclusions of Theorem are easily derived from
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the proof of Theorem Indeed, the condition 4] implies that ¢,(7) is not
Hurwitz. On the other hand, if the condition [1] holds, then ¢,(7) is not Hurwitz
because [ +mg — mqy — k > 3. Regarding the condition [5, it implies that ¢p(7y)
has at least one root in C*. Finally, suppose that £, /am,, > 0 while r.deg(Q) =
r.deg(Py) —r.deg(P)+2. Then, s*(1) = 47> ~"6 4 o(7™>="6). But, ¥ is positive

because of the condition [6

4.4 Illustrative Examples
A numerical example is given to illustrate the method presented in Section [4.2.1]

Example 4.4.1. Let h.gain(P) denote the high frequency gain of P(s) and define

sets of transfer functions (having finite coefficients and of minimum phase)

Pra ={P(s)| 1 <r.deg(P) <2, 0.1 < h.gain < 8},
P3 = {P(s)| r.deg(P) =3, 0.1 < h.gain < 8},
Py ={P(s)| r.deg(P) =4, 0.1 < h.gain <8, u(P) > 8}.

It is assumed that the primary control goal is to achieve zero steady-state error
(to step response) with overshoot less than 15% and settling time less than 6
seconds. We will show that, for any plant P(s) € P := P12 U Ps U Py, a robust
controller can be designed in order to achieve the control goal. As discussed in

Section we first choose

1 1
P(s)=— = , 44.1
() s(s+2)(s+3) @) (18)3+3(7s)2 +3(rs) + 1 ( )
which guarantees that, for P € Py,
8  Kpapas
P)—pu(P)>8-5>_-=—"E2—= 4.4.2
WP) = (P 28 =5 > 5 = 22 (4.4.2)
Next, select
C(s)=5 (4.4.3)

so that the unity feedback control system composed of P, (s) and C(s) achieves the

] 2- 1_l|
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primary control goal. Then, according to Theorem[4.1.2land [4.1.4] the disturbance

observer control system (with small 7) will be stable for any P € P.

To verify the stability as well as the performance, the computer simulations
are carried out using the disturbance observer controller with , , and
7 = 0.01. In addition, the disturbance and the reference inputs are chosen as
d(t) = sin(27t) and r(t) = 1. For simulation purpose, we consider the following

plants of variation:

2 0.2 5
l,a S+6’ 1,6 8—1—4’ 1,c s—1
2 0.2 5
Pog=———— Pyy=m=——— o Ppo=——
20T 5+ 2)(s+4) T s+ +3) T (5+2)(s—1)
1 1 1
Pyso=-P, Pyp=-Py, P3.=-P,
S S S
1 1 s+ 1
Pio=-Ps4 Pyy=-Psy, Pro=——_Ps,.
4,a s 3,05 4,b s 3,by 4,c 8(8+8) 3,c

It is observed that (a) all the plants except Py} belong to P, (b) all the plants
have different high frequency gains from P,(s), (c) (4.4.2) is satisfied by Py 4, Pa.q,
P3 ,, Py q, and Py . but not by the others, and (d) Py ¢, P>, and Ps . are unstable.

Fig. and Fig. show the simulation results for Py 4, Py and P4, Pay,
P, ., respectively. Although there is the disturbance signal d(t), it seems that plant
outputs are not affected by d(t). In addition, it is seen that the performance of
each plant can be recovered to that of nominal one so that the primary control
goal is achieved for any plant belonging to P12. The simulation results for Ps ,,
Ps, and P3 . are depicted in Fig. @ It is also seen that the recovery of the
nominal closed-loop system performance is achieved. From Figs. [L.6HL.8] it is
verified that, when r.deg(P) = r.deg(P,) or 1 < r.deg(P) < 2, the control system
can be stabilized regardless of whether or not the condition (i.e., |3 of

Theorem is satisfied.

Fig. shows the simulation results for Py ,, Pyp, and Py .. It is seen that
Py, and Py, can be stabilized by the disturbance observer controller and the
nominal performance is recovered. On the other hand, the instability occurs
for Py ¢ P, which indicates that the condition is very critical when
r.deg(P) = r.deg(P,) + 1.
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o2 e Plc|

Control input, u

) 1 2 3 4 6 7 8 9 10

5
time (sec)

Figure 4.6: Simulation results for Py 4, P, and P; . (plants having relative
degree 1) in the presence of disturbance d(t) = sin(2wt)
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> 1+ z
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Control input, u

Figure 4.7: Simulation results for P> 4, Pay, and P . (plants having relative
degree 2) in the presence of disturbance d(t) = sin(2wt)
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oz f A K P3c
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Control input, u

1
(]

Figure 4.8: Simulation results for Ps,, P3p, and P3 . (plants having relative
degree 3) in the presence of disturbance d(t) = sin(27t)
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Figure 4.9: Simulation results for Py, Py, and Py . (plants having relative
degree 4) in the presence of disturbance d(t) = sin(2mt)
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Finally, it should be remarked that, with the help of the disturbance observer
controller, the plant output of any P(s) € P is almost indistinguishable from that

of nominal model in the absence of the disturbance input.



Chapter 5

Reduced Order Type-k Disturbance
Observer under Generalized Q-filter

As a robust control scheme, a disturbance observer has been widely employed in
industrial applications to reject the effect of disturbances and plant uncertainties.
As shown in Chapter [3] the disturbance rejection performance of disturbance ob-
server is mainly determined by the design of two Q-filters, which are the core
components of disturbance observer structure. Despite the different roles of each
Q-filter, they have been typically designed to have the same structure. In this
section, we generalize Q-filters’ structures with respect to each Q-filter’s objec-
tive and derive a robust stability condition for the proposed disturbance observer
based control system. To clarify the utility of the generalized Q-filter design
framework, a reduced order type-k disturbance observer is proposed to enhance
the disturbance rejection performance and to reduce the order of type-k distur-
bance observer compared with the conventional one, simultaneously. In addition,
a constructive Q-filter design procedure for guaranteeing robust stability of the
closed-loop system is proposed under parametric uncertainties of plant which be-
long to an arbitrarily large compact set. Finally, the validity of the proposed
disturbance observer is proved by a simulation for the mechanical positioning sys-

tem.

3 + 1 y
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—4ée—Qmmr%><}ﬂ

Figure 5.1: Structure of the disturbance observer control system. The shaded
region represents the real plant P(s) augmented with the distur-
bance observer

Y

5.1 Concept of Disturbance Observer with Generalized

Q-filter Structure

Fig.[5.1]depicts the configuration of the disturbance observer based control scheme.
The input signals 7, d, and n denote the reference input, the disturbance, and the
noise, respectively. An uncertain single-input single-output linear time-invariant
plant and its nominal model are denoted by P(s) and P,(s), respectively. The
outer-loop controller C'(s) is designed for the nominal model P,(s) regardless of
the plant uncertainty and disturbance. The blocks Qp(s) and Qx(s), which are

known as ‘Q-filter’, are stable low-pass filters.

The plant output y is calculated as

y(s) = Tyr(s) 7(s) + Tyals) d(s) = Tyn(s) n(s),
_PRC L PRO-Qp) . PRO+PQx
yT(S) - A(S) ) Tyd( ) A(S) ) Tyn( ) A(S)

A(s) = PP,C+ PQn + Py(1 — Qp).

. (5.1.1)

Generally, the disturbance d is dominant in the low frequency range, whereas the

noise n is dominant in the high frequency. As discussed in Chapter [2] in the low
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frequency range, (5.1.1)) becomes approximately

P.C

y(jw) ~ 11 hC r(jw) (5.1.2)

since Qp(jw) = 1, Qn(jw) ~ 1, and n(jw) ~ 0. It implies that, assuming that
all transfer functions are stable, the disturbance observer recovers the nominal
closed-loop system P,C/(1 + P,C) in the absence of the disturbance and plant

uncertainties.

Let us again consider . One can observe an interesting fact that, when
Qp(jw) = 1, the transfer function from d to y is approximate zero (i.e., Tyq(jw) ~
0) regardless of @Qn(jw). It implies that the disturbance rejection performance
mainly depends on @Qp(s). On the other hand, the primary objective of Qn(s)
is to implement an inverse dynamics of the nominal model P, !(s). In spite of
their different objectives, in general, two Q-filters are designed to have the same
structure. However, in this section, we design two Q-filters Qp(s) and Qn(s)

independently with respect to the role of each Q-filter.

From these observations, we will specify a generalized Q-filter design frame-
work and discuss robust stability of the disturbance observer based control system
with the proposed Q-filter structure. Assume that the plant P(s) and its nominal
model P,(s) under consideration satisfy Assumption .

Here, we propose two Q-filters Qp(s) and Qn(s) with generalized structures

as follows:

Qn(s) : = cx(Ts)F + 1 (ms)F L+ 4
E (Ts) + a1 (rs) =1+ +ap ’
cq(78)T + cg1(78)7 L+ + ¢

(7)P + ap1 (7)1 £+ g

(5.1.3)
Qn(s):=

where ¢y = ag and ¢g = ag so that each Q-filter has the unity DC gain. For
nonnegative integers [, k, p, and ¢, [ and k are selected as [ — k > 1, whereas p
and ¢ are chosen so that p — ¢ > v to make the transfer function Qy(s)P;1(s)
proper. The design parameter 7 > 0 is a time constant, which determines the
cut-off frequency of each Q-filter. The design procedure for the coefficients a;, ¢;,

a;, and ¢; will be presented in Subsection [5.3

2] &-t]] 8
i ] 1



68 Chap. 5. Reduced Order Type-k Disturbance Observer

5.2 Robust Stability

With the configuration of Fig. , the transfer function matrix from [r, d, n]” to

[e,u,7]T is computed as

P,1-Qp)+PQn —PP,(1-Qp) —FP(1-Qp)
pP.C P,(1—Qp) —P.C—Qn (5.2.1)
PP,C PP,(1-Qp) P.(1—-Qp)

A(s)

where A(s) is in (5.1.1). As discussed in Chapter [2 when the above nine transfer
functions are stable, the closed-loop system is said to be internally stable. In
addition, the closed-loop system is said to be robustly internally stable if it is
internally stable for all P(s) € P. Let us also represent each transfer function P,

P,, C, Qp, and Qu as the ratio of two coprime polynomials:

— N(S) s) = Nn(S) S) = NC(S)
P= D(S)a Pn( )_ Dn(s)’ C( ) Dc(8)7 (522)
Qp = Nen(siT) o Nen(si7) -
Dop(s;T)’ Daon(si7)

In order to express the explicit dependency of 7, Nop(s;7), Dgop(s; ), Non(s;7),
and Dgp (s;7) will be used instead of Ngp(s), Dop(s), Non(s), and Dgn(s),
respectively. Then, by a similar way used in [DET92], for given 7 > 0, the closed-

loop system is internally stable if and only if the characteristic polynomial
(S(S; 7’) = N(NHNCDQN + DnDCNQN)DQD

(5.2.3)
+ NnDDCDQN(DQD — NQD)

is Hurwitz.

For convenience, define m := deg(DN,D.). Then, since transfer functions P,
P,, @p, and Qn are strictly proper, and C' is at least proper, the degree of s
in §(s;7) with 7 > 0 is m + [ + p. Therefore, there exist m + [ 4+ p roots of the
characteristic equation §(s;7) = 0. The following lemma shows the behavior of

roots of 0(s;7) = 0 as T goes to zero.
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Lemma 5.2.1. Let
Ps(8) := N(8)(Dn(s)Dc(s) + Na(s)Ne(s)),

p(s) = {Dgp(s;1) = Nop(s; 1)} Don (s;1)

* {31520 1];((2)) } Dap(s;1)Nen(s: 1),

and s7,...,s), and s¢n+1,...,3jn+l+p be the roots of ps(s) = 0 and ps(s) = 0,
respectively. Then, m + [ + p roots of §(s;7) =0, say s;(7),i =1,...,m+ 1+ p,
have the property that

lim s;(7) =87, i=1,...m,

T7—0

lim 7s;(1) = s}, i=m+1,...,m+1+p.

T—0

Proof. Since Dgp(s;0) = Ngp(s;0) = ag and Dgn(s;0) = Ngn(s;0) = ag,

lim §(s;7) = apagN(s)(Dn(s)De(s) + Nn(s)Ne(s)).

T—0

Thus, the first claim is directly proved by Lemma A. 2 in Appendix.
The other [ + p roots of d(s;7) = 0 go to the infinity as 7 goes to zero. To
investigate the behavior of the I + p roots, let 6(s;7) := 7™(s/7; 7). Then, we

have

0(s;7) = 71(s;7)Dgp(s;1)Don (85 1) + v2(s; 7) Dop(s; 1) Non (s; 1)
+73(s; 7)Don (s; 1){Dgp(s; 1) — Nop(s; 1)}

where v1(s;7) := T NN.N(s/7), v2(s;7) := 7""ND,D.(s/7), and ~y3(s;7) :=
T NyDD.(s/7). Since m = deg(NDn,D.) = deg(NnDD.) > deg(NN,N,), i

follows that lim,_,0v1(s;7) = 0, lim,—072(s;7) = Fs™, and lim, 0 v3(s;7) =

—
-+

75s™ for all s with some nonzero constant 7, and 75. Then, we obtain

0(s;0) =73s™ |{Dgp(s;1) — Nop(s; 1)} Don(s; 1) + { lim 218

500 pn(s)}DQD(S;l)NQN(s;l)}

.-:rw-. i -"'l-.l' 1_-“ -"‘.ll T'l.
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since 7y /73 = limg_y00 P/ Py. It follows that

6(s;0) =73s"ps(s).

It implies that §(s; 0) = 0 has m roots at the origin and [+p roots at Sl
In other words, there exist [ +p roots of §(s;7) = 0, say 5,(7), i =m+1,...,m+
I + p, such that lim,_,o 5;(7) = s}. Since 5;(7)/7 are roots of §(s;7) = 0, the

second claim is proved. O

Based on Lemma the following theorem presents a condition for robust
internal stability of the closed-loop system for all P(s) € P.

Theorem 5.2.2. There exists a constant 7 > 0 such that, for all 0 < 7 < 7, the
closed-loop system with (5.1.3]) is robustly internally stable if the following two

conditions hold:
1. C(s) internally stabilizes P,(s),
2. p¢(s) is Hurwitz.

On the contrary, there is 7 > 0 such that, for all 0 < 7 < 7, the closed-loop
system is not robustly internally stable if at least one of the conditions [THZ] is
violated in the sense that P,C'/(1+ P,C) has some poles in C", or some zeros of

P(s) or some roots of ps(s) = 0 are located in C* for some P(s) € P. O

Proof. Since the denominator of P,C/(1 + P,C) is (DyD. + N,N;) and the nu-
merator of P(s) is N(s), the condition 1] and Assumption imply that the
polynomial p4(s) is Hurwitz. Thus, the proof follows from Lemma O

It is important to note that Theorem[5.2.2] cannot be applied to the case when
one of the conditions is marginal (e.g., if some roots of p¢(s) are located on the
imaginary axis). Therefore, in this sense, we call it as an almost necessary and
sufficient condition for robust stability.

In addition, Theorem reveals the following facts: 1) the designer has to
design the outer-loop controller C(s) to stabilize the nominal model P,(s) (con-

dition , 2) the proposed disturbance observer only can apply to the minimum

2] -] 8} 3

*
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phase system, which is a standard assumption for the conventional disturbance
observer approach, and 3) the coefficients of two Q-filters Q@ p(s) and Qp(s) de-
termine the stability of the closed-loop system (condition . Note that the last
one is a key condition for robust stability and enlightens new issues on the design

of disturbance observer with generalized Q-filters.

Remark 5.2.1. If two Q-filters Qp(s) and Qn(s) are designed as Qp(s) =
Qn(s), then the polynomial ps(s) becomes

P(s)

pr(s) = Dgp(s;1) x |:DQD(S; 1)+ { lim

s—00 Py (s)

- 1} Nop(s; 1)] . (5.2.4)

Compared with Theorem the polynomial Dgp(s;1) is multiplied into py(s)
in (5.2.4). In fact, when Qp(s) = Qn(s), all conditions of Theorem are
equivalent to those in since Dgp(s;1) is already Hurwitz if Dgp(s;1) +
{lims00 (P/Pn)—1}Ngp(s; 1) is designed to be Hurwitz for all P(s) € P. The dif-
ference between Theorem and the proposed one is from the stable pole/zero
cancelation in corresponding to Dgp(s; 1). O

5.3 Reduced Order Type-k Disturbance Observer

As discussed before, the design of Qp(s) affects the disturbance rejection
performance. In order to investigate this intuition, consider Tyq(s) in (.1.1)),
which is the transfer function from d to y,

NNnDCDQN(DQD — NQD)
Tyals) = 5(s:7)

(5.3.1)

where §(s;7) is the characteristic polynomial defined in (5.2.3]). It is noticed that
the transfer function has the term Dgp(s;7) — Ngp(s; 7) in its numerator. If one

selects the coefficients ¢;’s such that ¢; = a;, for all ¢ = 0,..., k, then

Dgp(s;7) — Nop(s;T) (5:3.2)
= {(rs)"7F L a1 (7)o ap Hrs)PTL

A -Etf &3

'Iu
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u i ; P(s) Y

1
1- QD (S)

Qu(B)PH(s)

Figure 5.2: The equivalent block diagram of the disturbance observer struc-
ture in Fig. [5.1

Now, assume that the disturbance has the following form:

&

d(s):Z -

k
=0

Vo)

where d;’s are unknown constants and k is an unknown nonnegative integer smaller
than or equal to k + 1. By the final value theorem, if §(s;7) is Hurwitz, then

lim sTyq(s)d(s) = 0.

s—0

It implies that the effect of polynomial-in-time disturbance is completely disap-
peared in the steady state.

This point can also be explained by the internal model principle [FWT6].
Fig. shows an equivalent block diagram of the disturbance observer structure.
Then, one can easily observe that the block 1/(1 —Qp(s)) contains k + 1 integra-
tors, which implies that the disturbance observer structure has the internal model

to reject the polynomial-in-time disturbance completely.

On the other hand, the role of Q v (s) is for implementing the block Q x (s) Py 1(s).

Therefore, the relative degree of Qn(s) has to be larger than or equal to that of
P,(s). From these observations, we propose Q-filters’ design for reduced order

type-k disturbance observer to answer the purpose of each Q-filter as follows:

ap(T8)F + - +ag

k+1 k ..
(7’8) + ak(Tci)) + + ag (533)

(T8)Y +a,_1(Ts)V 1+ +ap’

@p(s) =

Qn(s) =
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Note that v is the relative degree of the plant and k is selected by the type of
disturbance. Now, we call a disturbance observer with two Q-filters in (5.3.3) as

‘reduced order type-k disturbance observer’.

Remark 5.3.1. In order to reject the polynomial-in-time disturbance, a type-k
disturbance observer has been already proposed in [YKIH96, YKMH99, [P.JSB12].
However, even if deg(NN,,) = 0, the order of the type-k disturbance observer with
two Q-filters having identical structures is at least 2(v + k) although that of the
proposed disturbance observer with isv+k+ 1

In addition, to guarantee the robust stability, a stability condition proposed in
[YKMH99|. But, it is conservative since it is derived by the small-gain theorem.
Moreover, as the degree of Q-filter’s numerator grows (i.e., k increases), this con-
dition tends to be violated [YKIH96]. Whereas, by a design procedure which will
be proposed later, one can always design the reduced order type-k disturbance
observer to guarantee the robust stability of closed-loop system even though un-
certain parameters of the plant belong to an arbitrarily large (but bounded) set.
O

The polynomial ps(s) for the reduced order type-k disturbance observer is

calculated as

pfd(s) — Su-l-k:-i-l + Cll,_18V+k NS a18k+2

+ (5.3.4)
+ aOMskH + aoiaksk +-+ aogao.
n n n
where g := (,_,/ay and g, := f;,_,/a; whose values o), and f;_, denote the

nominal values of a,, and (,,_,, respectively. It is note that, by Assumption [2.1.1]
g and gn belong to the interval [g, g] where g =3 /&, and g = B/, and
g/gn are always positive.

With unknown g € [g,g] and its nominal value g,, define, for i =0,...,k+1,

pi(S;g) — Sl/+l + ay_lsuflJrz 4t a181+z

+ ; i
+ Cl()usZ + Cl(]i(aksl Lpot Akt1—i)

In n

(5.3.5)

Note that pi+1(s;9) = spi(s: ) + ao(g/gn)ar—i, po(sig) = s + ay_18"" 4+ +

2] &-t]] 8
i ] 1
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a1s + ao(g + gn)/gn, and pry1(s;9) = pra(s). With respect to p;(s; g), we define

the set of interval polynomials

g+gn 7
—S

Ii — {SV+Z + aV_18V—1+z et alsl—i—z + agp
Gn

g i— _
+ Clog*(‘llcsZ Ty Ap41-i) 2 g € [gag]}
n

The four extreme polynomials for Z;, in view of Remark A. 5, are denoted by

Pio(8), -, pi3(s)
We are now ready to introduce a Q-filter design procedure so that prq(s) is
Hurwitz for all g € [g,9g] (i.e., the condition |2 in Theorem is satisfied.).

Procedure 3. Q-filter Design Procedure for Robust Stability

Step 0: Select k in and the coefficients a,_1,...,a; such that the
polynomial s*~' + a,_15""2 4+ -+ + ass + a; is Hurwitz. Next, pick &g > 0
such that sV + a,_ 18"~ 1 + -+ 4 a;s + kg is Hurwitz for all kg € (0,%g). Choose
ao € (0, (9n/ (9 + gn))Fo)-

Stepm (m=1,...,k+1): With the coefficients obtained from the previous
steps, consider the four extreme polynomials py,—1;(s) of Z,,—1. For each j =

0,...,3, find piy_p, ; > 0 such that
$Pm—1,j(8) + Prt1-m,;j

is Hurwitz for all pgi1-mj € (0, P11 ;). Then, let by, = ming pgq_p, ;,
and choose apy1-m € (0, (gn/(009))Prt1—m)-
Step k 4+ 2: Construct the Q-filters with the coefficients a,_1,...,a9 and

ag, - - ., ag obtained through the steps 0,...,k + 1. U

We also remark that each step requires at most four extreme polynomials and the

number of polynomials to be checked does not increase as the step proceeds.

Theorem 5.3.1. Under Assumption[2.1.1] the coefficients a,_1, ..., a9 and a, . . .
obtained by the Q-filter design procedure ensure that the polynomial p¢q(s) of

(5.3.4)) is Hurwitz for all g € [g,9]. O

SERL
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Proof. In Step 0, the coefficients a,,_1,--- , ag are selected such that the polyno-
mial s*"! 4+ a, 15872+ - + ay is Hurwitz and 0 < ag((g + gn)/gn) < Fo. Thus,
by Lemma A. 3, the polynomial po(s; g) is Hurwitz for all g € [g,9].

The remaining part of theorem is easily proved by the induction argument.
Assume that the polynomial p;(s;g) is Hurwitz for all g € [g,g]. We claim that,
with aj_; from the design procedure, the polynomial p;11(s;g9) = spi(s;g) +
ao(g/gn)ak—; is Hurwitz for all g € [g,g]. For each extreme polynomial p; ;(s) of
Z;, Lemma A. 3 guarantees the existence of py_; ; such that sp; j(s) + pg_;; is
Hurwitz for all pp_;; € (O,ﬁkﬂ-’j), and ay_; was selected such that 0 < aj_; <
(9n/9)Py—; where pj,_; = min; py_, ;. Therefore, all extreme polynomials p; 1 ;(s)
are Hurwitz since they correspond to the collection of sp; j(s) + (g9/gn)ak—i, j =
0,---,3. It means that p;+1(s;g) is Hurwitz for all ¢ € [g,g]. The proof is

completed since prq(s) = pr+1(s; g). O

5.4 Illustrative Examples

In this subsection, an illustrative example is presented to clarify the validity of
the reduced order type-k disturbance observer scheme proposed in the previous

subsection.

Example 5.4.1. Let us consider a mechanical positioning system for the X-
Y table operated by a linear motor [YKMH99|. Here, an actual plant and its

nominal one are modeled as

1 1

Pls) = Js? + Bs’ Fals) = Jns2 + Bps

(5.4.1)
where J € [0.5,2] is the mass of the table with load variation, B = 8 is the
viscous friction coefficient, and J, = 1 and B, = 8 are nominal values of J
and B, respectively. Note that ¢ = 1/J of P(s) belongs to a bounded interval
[0.5,2] =: [g, 9], which contains the nominal one g, = 1/J, = 1. To stabilize
the nominal model, the outer-loop controller C'(s) is designed as a proportional
controller with K, = 25.

Assuming that a polynomial-in-time disturbance of at most type-2 enters into

.__:Ix_c L, '|'|i
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the closed-loop system, we construct a reduced order type-2 disturbance observer

by following the proposed Q-filter design procedure.

Step 0: We first design a; = 2 such that s+ a; is Hurwitz. Since any positive

po makes s2 + ars + po Hurwitz, we simply select ag = 1 € (0, 00).

Step 1: Thanks to the selection of {a;}’s, two extreme polynomials

g+
p070(8) = 82 +a1s + Clog gn,
n
g+g
po2(s) = s +ars + ap= p !
n

are Hurwitz. By using the root-locus technique, we take py o = 6.1 and py 5 = 2.9
such that, for j = 0,2, spo;(s) + p2; is Hurwitz for pa; € (0,p5;). Let py =
min; py ; = 2.9 and select az = 1.4 € (0, (gn/(a0g)p2)-

Step 2-8: We now have the following four Hurwitz extreme polynomials

i _

p1,o(8) =g + 0182 + OOMS + Clogag,
In 9n
g+ g

p1,1(8) =g + 0182 + OOMS + ap—aa,
n n
g+g g

pLQ(S) = s3+a132+a0* ns—i—ag;ag,
In 9n
+g g

p1,3(8) = s° +ars® + ap= n8+a0£a2-
n n

With the same procedure in the previous step, we take a; = 0.0675 and ag =

0.0035.

Step 4: With the coefficients obtained above, we finally propose Q-filters
Qp(s) and Qn(s) as

0 () 1.4(7s)2 + 0.0675(7s) + 0.0035
Diptype=282) 7 (6)3 4 1.4(7s)2 + 0.0675(7s) + 0.0035’
1
@ ptype—2(s) = (18)2+2(1s) +1°

To compare with the proposed disturbance observer, we make the other Q-

filters with binomial coefficients, which have been usually used in the design of

] 2- 1_l|
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disturbance observer structure [YKIH96], as follows:

3(18)% +3(rs) + 1
(15)3 +3(7s)2 +3(rs) + 1

Qpp(s) =

and Qnp(s) = QN pype—2(5). Notice that in this case, prq(s) is calculated as

+
prap(s) = s + 25" + <gg”> S+ T34 L3542
Gn 9n 9n Gn

=S5+ 12+ L(s+1)3 = (s +1)? {53 + s+ 1)} .
9n 9n
Since s3> 4+ (g/gn)(s + 1) always has an unstable root for any positive g, psap(s)
also does. Therefore, Theorem [5.2.2] indicates that the reduced-order type-2 dis-
turbance observer with the binomial coefficient may destabilize the overall system

for a sufficiently small 7.

For the simulation, set J = 0.6 and r(¢) = 0, and choose 7 as 0.003. As shown
in Fig. [5.3] the disturbance observer with the binomial coefficients makes the
overall system unstable; on the other hand, the stability of the overall closed-loop

system is guaranteed with the proposed Q-filter design procedure.

As k, which is the type of the Q-filter Qp(s) increases, the disturbance rejec-
tion performance of the resulting type-k disturbance observer becomes better. To
verify this argument, we additionally construct reduced order type-0 and type-1
disturbance observers with the coefficients of the Q-filters obtained above; that is

to say, each Qp(s) is designed as

1.4
s+ 1.4
1.4(7s) + 0.0675
(15)? + 1.4(7s) + 0.0675

QD,p,type—O (8) =

Q@D ,p,type—1 (s) =

where 7 = 0.003, while Qn(s) is chosen as the same one used in the type-2

disturbance observer.

As shown in Fig. [5.4] when a polynomial-in-time disturbance of type-2 enters
into the overall system, the type-2 disturbance observer can reject the modeled

disturbance asymptotically, while others induce divergent or constant error in the

A ! _'-.I.'ZI_ -l_-ll
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Figure 5.4: The output y of the overall system with Qpptype—o0(s) (dot-
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Figure 5.5: The output y of the overall system with Qpptype—o0(s) (dot-
dashed), @p ptype—1(s) (dashed), and Qp ptype—2(s) (solid) when
d(t) = 2sin(2mt)
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Figure 5.6: Bode plot of sensitivity function of the overall system
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Figure 5.7: Bode plot of Q-filters Qp p type—0(s) (dot-dashed), Qp ptype—1(5)
(dashed), and Qp ptype—2(s) (solid)

steady state due to the lack of the embedded integrators.

In addition to this asymptotic disturbance rejection property, the type-2 dis-
turbance observer also can perform better than type-0 and type-1 even though
the disturbance has not the form of polynomial-in-time, as depicted in Fig. [5.5]
Indeed, the larger the type of the Q-filter Qp(s), the lower the magnitude of the
sensitivity function of the overall system below 2Hz (Fig. . We remark that

this improvement is achieved without increasing the bandwidth of Qp(s) (Fig.

p.7).



Chapter 6

State Space Analysis of Disturbance
Observer

Throughout Chapter the conventional linear disturbance observer approach
is analyzed in the frequency domain. Although it gives an intuitive explanation for
the disturbance observer, we analyze the disturbance observer in the state space
for the purpose of extending the horizon of the disturbance observer approach
to MIMO (multi-input multi-output) plants, to nonlinear plants, and to non-
minimum phase plants and obtaining the deeper understanding of the role of
each block.

The contribution of this chapter is

e How the input disturbance d is estimated and compensated in spite of the
uncertainties of the plant. How and why the disturbance observer can be
used as a way to robust control. Why the steady-state performance is re-
covered to the nominal one. These are basic characteristics of the distur-
bance observer approach, which are already well-known from the frequency

domain analysis.

e How the zero dynamics of the plant is replaced by the nominal zero dynam-
ics, and why the zero dynamics of the plant should be stable (i.e., minimum

phaseness). This is somewhat new discussion.

e Peaking phenomenon caused by employing Q-filter with large bandwidth is

discussed, which possibly degrades the performance during the initial period

3 ey 211
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82 Chap. 6. State Space Analysis

for some initial conditions. This implies that the transient performance is
not recovered in general, which is a limitation of the conventional linear

disturbance observer approach.

e An almost necessary and sufficient condition for robust stability of the plant
with model uncertainties, which is the same result in Theorem are
derived when the bandwidth of Q-filter is enough large. It is easy to check
and can be applied to not only a plant with unstable poles but also the
Q-filter of arbitrary relative degree whose coefficients are not limited to the

binomial one.

e Based on Lyapunov stability analysis, a bound of the time constant 7 for
Q-filter is obtained to complete robust stability analysis. Furthermore, the
nominal performance recovery of the disturbance observer based control

scheme with respect to 7 is presented.

6.1 State Space realization of Disturbance Observer

To begin with the state space analysis, we first realize all the transfer functions in
the disturbance observer structure in Fig. [6.1} Then, after a coordinate change,
the closed-loop system is put into the standard singular perturbation form. Note
that the measurement noise n is not considered because it is not related to the
internal stability.

Consider the following class of uncertain plantsEL which is a state space real-

ization of P(s):

z2=52+Gy, y=~Cux, (6.1.1a)
& =Ax + B{Fiz + Fox + g(u + d)}, (6.1.1b)

where v is the relative degree of P(s), z € R” and z € R"™" are the plant state,
and u € R, y € R!, and d € R! are the plant input, the plant output, and the

!Note that a single-input single-output linear time-invariant system P(s) whose relative de-
gree v can always be transformed into the form [6.1.1] such that 2-dynamics is independent of
Z2,- - ,xy. For detailed explanations, refer Chapter 13 in [Kha02]

2] &-t]] 8
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O« QA(S) Pnil (S) O«—

Figure 6.1: Conventional linear disturbance observer structure with the
outer-loop controller. Here, Q4(s) = Qp(s) = Q(s), but unique
names are given for convenience.

unknown disturbance, respectively. The matrices A, B, and C are given by

O1/—1 Iy—l
0 05,

0,—
A= , B = ! ,C = [1 017:_1}.

The uncertain matrices S, GG, Fy, and F5 are of appropriate dimensions and g is
an unknown constant. d(t) and d(t) are bounded with known constants ¢4 and

bar such that ||d(t)|| < ¢q and ||d(t)|| < das, respectively.

Assumption 6.1.1. For the uncertain plant (6.1.1)), all uncertainties are bounded
and their bounds are known a priori. In particular, there exist positive constants

g and g such that g < g <7j. O

In fact, Assumption and are equivalent each other. Therefore, it implies

that the relative degree of the plant and the sign of g are known a priori.
Assumption 6.1.2. The matrix S is Hurwitz |

Assumption implies that the uncertain plant (6.1.1)) is of minimum phase

system, which is a conventional assumption on the disturbance observer approach.

As a result, the zero dynamics (6.1.1a]) in (6.1.1) is input-to-state stable with

respect to x.

A
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Now, we represent a nominal model P,(s) for the uncertain plant (6.1.1) as
follows:
in =Sz + Gym Yn = Cxp,

i ) (6.1.2)
Zpn = Axy + B{F12, + Foxy + gnur by

where z, € R” and 2, € R"™ are the state, u,, € R! and y,, € R! are the control
input and the output of the nominal model, respectively. Note that the order
of the nominal zero dynamics z, may not be equal to that of the zero dynamics
, i.e., n may not be equal to n. S, G, Fi, F», and g, are the nominal
values of S, G, F, F5, and g, respectively.

For the nominal model , consider an output feedback outer-loop con-
troller C'(s) as

n=An+ Ber — Ecyp,  ur = Ceny+ Der — Heyp, (6'1'3)

where n € R" is the state of output feedback controller and 7 is the reference
input. The matrices A., B¢, C., D., E., and H,. are of appropriate dimensions. It
is assumed that r(¢) and 7(¢) are bounded with known constants ¢, and ¢,; such
that ||7(t)]| < ¢, and ||7(t)]| < ¢re, respectively. Note that, when the outer-loop
controller is considered in the overall closed-loop system, v, should be re-
placed by y, which is evident and will be applied without mention throughout the
paper. Furthermore, u,, the function of y, n, and r, will be used for simplification
of equations.

We make the following assumption for the nominal closed-loop system.

Assumption 6.1.3. The nominal closed-loop system (6.1.2) and (6.1.3) is ex-
ponentially stable. It implies that it is input-to-state stable with respect to the

reference input r. O

As discussed in Chapter the outer-loop controller has to be designed to
stabilize the nominal model . Additionally, the specific design of the outer-
loop controller is determined by the control objective (e.g., tracking or regulation).

Now, we represent the state space realization of the disturbance observer

structure. Since the i-th derivative of the output y is x;11, the inverse dynamics

A L)) &

L



6.1. State Space realization of Disturbance Observer 85

of (6.1.1)) is obtained from [Isi95] as

=582+ Gy

1
(U+d) = ;(_Flz - F2[y7y7 e ay(yil)]T +y(V))

Motivated by the above exact inverse, we realize the nominal inverse w = P, !(s)y

(see Fig. [6.1) as the following system

Y.
Il

zZ+ Gy (6.1.4a)

(—F1z2 — Fy[1,8,8%, - " Ty + s¥y) (6.1.4Db)

g
I

?‘}—L (Q\

where s represents the differentiation operator.
Next, a realization of the block Q4(s) in Fig. where Q4(s) is given by
(2.1.2), is

0 1 0 0 0
0 0 0 0
0 0 0 . 1 0
__% —T?il _T?EQ . _‘”T—l_ _1_ (6.1.5)
=: Ay(1)q + Byw
w = [%7 Tflla ) Tlcfka Oa ) 0 q
=: Cq(7)q
where ¢ = [q1, - ,q]T € R, 1 —k > v, ¢y = ag, and all a;’s are chosen such

that the polynomial s' +a;_1s'~' 4 - -+ a5+ ag is Hurwitz. The detailed design
procedure for coefficients a;, ¢;, and the constant 7 will be discussed later. Finally,
realization of the block Qp(s) is identical to (6.1.5) except the corresponding
inputs and outputs. That is, referring to Fig. [6.1] we obtain

(1)p + Bg(u, + 0 —w)

p= A4
Cq(T)p

(6.1.6)

>
I
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w y
— 1 Q0 K Pi(s) |—
w y
— P | Q)  [———

Figure 6.2: Since both systems Q4 and P, ! are linear, two configurations in
this figure are equivalent in the steady-state. For implementation
the configuration of the bottom is used while the upper one is
employed for the stability analysis in this paper.

where b= [ph' o 7pl]T € R

Remark 6.1.1. Obviously, the realization (6.1.4) alone cannot be implemented
because it corresponds to an improper transfer function. Instead, the block
Qa(s)P;!(s) is implemented together. Referring to Fig. we propose the

following implementation in the state space, whose transfer function is proper:

q=Aqq+ By
z=5z2+GCyq (6.1.7)
1 _ _
w = g— (—Flé — ByTrq+ CyAgq + CqAZ_quy)
where ) )
Cy
c,A
T — q. q
[CoA7 ™"

The analysis in this paper uses the combination of (6.1.4)) and (6.1.5)), instead of

(6.1.7), because it greatly simplifies the stability analysis. However, although the
input-output responses of two representations are the same, it should be noted

that time responses between the two cases are different. O

Based on the obtained state space realizations, we will represent the closed-

loop system as a singular perturbation form. In order to obtain the standard

.__:Ix_c L, '|'|i
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6.1. State Space realization of Disturbance Observer 87
singular perturbation form, we change coordinates for states ¢ and p as follows:
gi = T;_(l+1)qi7 Cl = T;_(H_l)pia i = 17 s 7l- (618)

On the other hand, since s'y = y) = z;,1, s’y = &, and u = u, + 4 — w,

the equation for w in ([6.1.4b|) can again be written in the new coordinates as

1 _ _
w=—(-Fz—-Fr+ Fz+ R+ gu +i—w+d)
91" . . (6.1.9)
= —(—Flf—l—Flz—ng—l—FQac—i—gC’l((—Q+g(uT+d)).

=
From (6.1.8) and (6.1.9)), the dynamics £ and ¢ become

) 1 .
TE = (Ag — g£B§C§)f + g£B§C§C: + ;B&{F(z, z,x)+g(ur +d)}, w= Ceé,

7¢ = —BcCel + (A + B¢Ce)C + Beuy, = CeC
(6.1.10)

where F(z,%,2) = —F|Z — Foa + Fiz + Fox and Ag¢, Be, and C¢ imply Ay, By,
and C; when 7 = 1.

Then, from the equation (6.1.1), (6.1.3), (6.1.4), and (6.1.10), the overall

closed-loop system can be written as

= Acn + Beyr — Ecy, u, =Cen+ Deyr — Hey,
& = Az + B{F1z + Fox 4 gC¢(C — &) + gur + gd},

(6.1.11a)
z2=8z+ Gy,
z=8z+Gy, y=Cuz,
and
: g g 1 ~
7 = (A¢ — = BeCe)§ + = BeCe( + —Be{F (2,2, 2) + g(ur + d) },
9n gn gn (6.1.11b)

7¢ = —BeCe& + (A¢ + B:C¢)( + Beuy,

From the overall closed-loop system (|6.1.11]), it is observed that, for relatively

small 7, the system is in the standard singular perturbation form.
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6.2 Analysis of Disturbance Observer based on Singular

Perturbation Theory

In this section, we will discuss the nominal performance recovery and robust sta-
bility for the disturbance observer based control scheme from the singular per-
turbation theory. It is observed from that the variables x, z, z, n, r,
and d are considered as slow variables, while the state £ and ( are regarded as
fast variables. If the fast dynamics has an isolated equilibrium for each (frozen)
slow variables and the equilibrium (depending on z, z, z, n, r, d) is exponen-
tially stable, then the overall closed-loop system behaves as the reduced system
(that is, the overall closed-loop system is restricted to the slow manifold) with
sufficiently small 7, under the assumption that the slow variables are bounded

and not varying fast. In order to show that the disturbance observer recovers the

steady-state performance of the nominal closed-loop system (6.1.2)) and (6.1.3)
and guarantees robust stability of the overall closed-loop system , we first
obtain the quasi-steady-state system. And then, we investigate under what condi-
tion the overall closed-loop system is exponential stable and the nominal

performance is recovered.

The equilibrium of (6.1.11b|) for each frozen slow variables is,

* LBAF(z % r4d
6 — 7./4;1 gn g{ (Z’Z7x)+g(u + )} (621)
¢ Bfur
where
A — L B:C, 4 B.C,
Ap= |78 w78 w e (6.2.2)
—BgC& Ag—i—BgCg

After simple calculation using the matrix inversion lemma (Lemma A. 8 in Ap-

pendix), each equilibrium is calculated as

* + _
f :_gn g(A§—£B§C§) 1B€UT,
gn gn
1 9n -1 ~ _
= Ae + BeCe) " Be{F(z,z,x) + gd — ghu,}.
¢ gn+g(fgn+g§§) L F( )+ 9d — gnur}

] 2- 1_l|
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With the equilibrium (6.2.1)), we derive the quasi-steady-state system (i.e.,

slow dynamics on the slow manifold when 7 = 0) as follows:

n=Am+ Ber — Ecy, u, =Cen+ Der — Hey,
i = Az + B{F1Z + Fox + gau,},

z=258%24+ GCxz,

2=82+GCz, y=Cx.

(6.2.3)

The quasi-steady-state system is the key role to explain the nominal per-
formance recovery of the disturbance observer and the extreme case when 7 = 0.
From this reduced system, we find out several interesting points. First, the in-
put disturbance d is completely rejected from the control input. In addition, the
quasi-steady-state subsystem is nothing but the nominal closed-loop system aug-
mented by the zero dynamics of the real plant. Therefore, if the boundary-layer
subsystem is exponentially stable, then the overall system behaves like the quasi-
steady-state system after the transient of fast dynamics of £ and {. In
this way, the steady-state performance is recovered to the nominal one. Second,
in the viewpoint of the outer-loop controller , the plant to be controlled
is approximated as the nominal model that is completely known to the
controller designer. Finally, the zero dynamics of the plant (i.e., z-dynamics of
(6.1.1a))) is disconnected from the output y, that is, becomes unobservable from
the output. In fact, it is replaced by the zero dynamics of the nominal model (i.e.,
Z-dynamics of ) These points are explored more in Section .

Now, we analyze the robust stability of the overall closed-loop system (|6.1.11])

based on the singular perturbation approach.

Theorem 6.2.1. Under Assumption [6.1.1},[6.1.2], and [6.1.3] there exists a positive
constant 7 such that, for all 0 < 7 < 7, the overall closed-loop system (|6.1.11])
is robustly exponentially stable if the matrix Ay in (6.2.2) is Hurwitz for all

uncertain g. O

Proof. From the singular perturbation theory, if both the quasi-steady-state and
the boundary-layer subsystem are exponentially stable, then the overall closed-

loop system is exponentially stable. Since the quasi-steady-state subsystem (/6.2.3))

A 2- 1_'_“ r
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is the nominal closed-loop system (6.1.2]) and (6.1.3)) augmented by the zero dy-

namics of the real plant (6.1.1a]), from Assumption and it follows that
(6.2.3)) is exponentially stable. On the other hands, the system matrix of the

boundary-layer subsystem is nothing but Ay of (6.2.2)). Therefore, the proof is

completed since the matrix A is Hurwitz. ]

It is emphasized that the matrix Ay plays a key role to determine the stability
of the overall closed-loop system ((6.1.11)). If it is satisfied, then (6.1.11)) is robustly
stable for the sufficiently small 7. Next lemma shows the condition for a; and ¢;,

(i.e., the coefficients of Q-filter) to make Ay Hurwitz.

Lemma 6.2.2. The matrix Ay is Hurwitz if and only if the following two poly-

nomials are Hurwitz:

Pa(s) = s+ a8 4 4 ars+ag

pf(S) _ Sl + (llflsl_l 44 ak+15k+1

g_g"ck)sk+---+(ao+g_g"

n gn

(6.2.4a)

+ (ak + C()).

0

Proof. We compute the characteristic polynomial of the matrix A as follows. In
the derivation, we use the property of the determinant that adding or subtract-

ing a row/column block to another row/column block leaves the determinant un-

changed:
_ g _9 (o7 — 9 _
dot sl Ag + o BgCS o BgCg ~ det sl Ag + an BgCg sl Ag
_ det sl — AE + g;:]n BgCg 0
BgC& SI — Ag

Therefore, the characteristic polynomial of the matrix Ay is p,(s)ps(s) where

agn

Pals) = det [sT — Ag| . puls) = det [sT — A¢ + =2 BeC |

which completes the proof. O
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From the analysis in the above, it is clear that the stability of the disturbance
observer control scheme under a sufficiently small 7 is determined by two poly-
nomials p,(a) and ps(s) of Lemma As discussed in Section one can
always design the coefficients a; and ¢; such that the polynomial p¢(s) is Hurwitz.

In addition, if py(s) is Hurwitz, then py(s) is also Hurwitz since gn € [g, g].

6.3 Discussion on Disturbance Observer Approach

This section is for discussing several new findings and reinterpretations obtained

from the proposed analysis of disturbance observer in the state space.

6.3.1 Relation of Robust Stability Condition between State Space

and Frequency Domain Analysis

It is observed that Assumption 2.1.1] and the conditions [IH2] of Theorem [2.2.1]
are equivalent to Assumption [6.1.1] [6.1.2] [6.1.3] and the Hurwitzness of Ay of
Theorem [6.2.1] Therefore, Theorem [2.2.1] is equivalent to Theorem As a
result, Remark still hold for Theorem [6.2.1}

6.3.2 Effect of Zero Dynamics

Looking at the quasi-steady-state model , we observe that the zero dynam-
ics of the plant is disconnected from the output y, which can be viewed as that
the effective disturbance observer makes the zero dynamics almost unobservable.
Instead, the nominal zero dynamics (having the state z) substitutes for the role
of the true one. Therefore, in order to have the internal state z bounded under
the effective disturbance observer, minimum phaseness of the plant is necessary
so that the z-dynamics of becomes input-to-state stable (ISS) with z; as
the input.

This analysis suggests that, if the outer-loop controller design takes into ac-
count the initial conditions of the plant for (slow) transient performanceﬂ of y(t),

then it should consider z(0) and Z(0), but not z(0). Note also that, if S and

2In this Chapter, 'fast /slow transient’ implies the transient response of the fast /slow variables,

respectively.
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S, and G and G, are similar to each other, respectively, then the z-dynamics of
plays the role of the state observer for z. Therefore, it is sometimes desir-
able that the zero dynamics of the plant is fast enough for the nominal state z(t)
to converge quickly to its true counterpart z(t). It is also noted that, if a state
observer is used as a part of the outer-loop controller, then the estimated state for
the zero dynamics is more likely to be Z(¢) rather than z(t), because the observer

is looking at the quasi-steady-state subsystem when 7 is sufficiently small.

6.3.3 Stability of Nominal Closed-loop System

Assuming the plant P(s) is of minimum phase, Assumption is about the
stability of P,(s) combined with the outer-loop controller C(s), and implies the
stability of the nominal closed-loop transfer function P,(s)C(s)/(1 + P,C(s))
when the unity-feedback configuration is used. Obviously, since the primary goal
of the outer-loop controller is to stabilize the nominal closed-loop system, this
assumption naturally holds for most cases. Note that a stable P,(s) can just be
taken without using the outer-loop controller C(s) because Assumption is
satisfied with C(s) = 0 and a stable P,(s). In this way, a robust stabilization
of the plant P(s) may be achieved by the disturbance observer structure only.
(However, our philosophy is that stabilization of P,(s) is the responsibility of
the outer-loop controller C(s) if P,(s) is not stable. This point is in contrast to

[UH93, ICYCT03|, where the stabilization of P(s) is achieved by designing both
Fa(S) and Q(s).)

6.3.4 Infinite Gain Property with p-dynamics

It is known that a behind-the-scenes characteristic of the disturbance observer
structure is that the Q-filter @p(s) constructs an infinite gain block in the feed-
back loop. In other words, by noting that Fig. [6.3]is an equivalent to the shaded
block of Fig. it is observed that the magnitude of 1/(1 — Qp(jw)) tends
to infinity at low frequencies where Qp(jw) ~ 1. Indeed, the transfer function
1/(1—Qp(s)) always has a pole at the origin, and this fact is already reflected in
our analysis as that, for that is p = (Aq + B;Cy)p + B(u, — w), the (I,1)-
element of the matrix A, + B,C, is always zero. Therefore, the system (/6.1.6))

.-:rxﬁ-! ""I:,' 1_-l| [
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Figure 6.3: Equivalent configuration of the shaded block of Fig. (6.1

is not asymptotically stable by itself. Instead, the combined dynamics of
and is asymptotically stable for frozen slow variables if the matrix A; is
Hurwitz. This point is more easily seen in . In fact, we note that, the
(1,1)-element of (A + B¢ Cy) for 7¢ = (A¢ + BeC )¢ — BeCe& + Beuy of is
zero, but thanks to the term g%BgCg( in &-dynamics of , the Hurwitzness
of Ay is possible. The source of the term g%BgCgC is the signal 4 in w of .
Since the appearance of 4 in w is due to the fact that w depends on y* = &,
which has 4 as one of the inputs to the plant, it can be seen that the helpful term
comes through the plant P(s). Therefore, if the input to the plant is modified
by, for example, the actuator saturation, then the stability of fast dynamics is

affected accordingly.

Infinite gain property leads to an interesting fact that, unlike some intuition
that the signal w in Fig. is a low-pass filtered signal approximating (u + d)
while @ approximates u, the signal w is mimicking the external input u, and
approximates the important signal (1/g)(—F(z, Z, ) + gnuy — gd). (This is easily
seen from keeping in mind that w = C¢§ — Ce&* and 4 = Ce( — Ce(*)
When the control system with the disturbance observer is working well, the signal
(ur —w) is nearly zero (but not identically zero) at low frequencies and this small
signal is amplified through the almost infinite gain block (see Fig. so that

the signal u contains all the necessary signal components for making the overall

system be a nominal one with disturbance free.
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6.3.5 Peaking in Fast Transient

By choosing the design parameter 7 sufficiently small, the poles of Q4(s) (i.e.,
(6.1.5) are located far left in the complex plane. More specifically, if \;’s are
roots of st + a;_1st=1 4+ -+~ + ag = 0, then the poles of are \;/7. Then,
under the structure of , the peaking phenomenon [SK91| happens for the
state ¢q. Peaking phenomenon is briefly summarized as follows. The state ¢(t)
obeys that ||q(t)|| < ki(1)e= N DH|q(0)|| + ko(7) IN e~ WM=9)5(s)ds with some
A > 0 and two positive constants k1 and ko depending on 7. While we can speed
up the transient by reducing 7, the constant k; (and ko, as well) increases in the
order of 1/7/=1, which explains the fact that the state ¢(t) may have very large
value during the initial period for some initial conditions. This initial peaking
effect then increases the value of w (see the real implementation , and also
the equation for w in (6.1.5))). The peaks of w in the fast transient may perturb
the slow state = during the fast initial period (because C¢({ —¢)) in will

have unwanted large absolute vlaues then). Peaking phenomenon also happens

for the state p of (6.1.6]).
Remark 6.3.1. Although the structure of (6.1.11b)) (i.e., another representation

of (6.1.5) and (6.1.6)) does not seem to show peaking phenomenon for £ and (,
the initial condition for £(0) and ((0) coming from (6.1.8]) already reflects the

peaking phenomenon of (6.1.5) and (6.1.6), that is, they may be very large with

small 7. O
Peaking phenomenon becomes less apparent under the following cases.

1. The parameter 7 is not very small.

2. The relative degree of the plant is not very high. (For mechanical systems,

it is usually two.)

3. The overall system begins its operation on the slow manifold. For example,
all the initial conditions of the overall control system including the distur-

bance d(0) are zero. (This is the case for some motion control systems.)

In summary, it is not true in general that the conventional linear disturbance

observer structure recovers the (slow) transient performance to the nominal one.

2] £- 1_'_“

CLY



6.4. Nominal Performance Recovery with respect to Time Constant of Q-filter95

A possible remedy to this problem is to modify the disturbance observer structure

as suggested in [BS08|.

6.4 Nominal Performance Recovery with respect to Time

Constant of Q-filter

In the stability analysis discussed so far, the bound of 7 for robust stability of
(6.1.11]) is not explicitly provided. However, its bound must be determined for
the complete stability analysis. Therefore, in this section, we derive the stability
analysis based on Lyapunov theory. Furthermore, the nominal performance re-

covery by the disturbance observer with respect to 7 is presented.

The closed-loop system (6.1.11)) can be compactly written as

X = .ASX + -quZ + B;BV,

- (6.4.1)

where X := [n;x;2;2], Z2 := [§;(], and V := [r;d]. The matrices A, Ayq, Bq,

Agz, and B, are as given by

Ac _ECC Oth—V OhX’FL—V
L. | 9BCe A+B(R-gHC)  BR Ouxcins
S - bl
Onfuxh GC S On—uxﬁ—u
_Oﬁfuxh GC Oﬁ—uxn—u g ]
Onxi Onx1 B:  Onx1
—gBC BC BD B
Aarq  — g ¢ g I3 7 B, = g c 9 ’
Onxl 0n><l On><1 0n><1
L 0ﬁ><l Oﬁxl ] L Or‘le OT_LXI_
A= IBeCe o Be[-Fo+ F —gH.C] -BeFy — - BeF |
L BECC _BéHcC Orxn—v Orxi—v
(9 9
Bq L= 9n BfDC g"B
| BeDe  Oix1
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Let h(X,V) := —AJTI(AWX + ByV) = [£*;¢*], which is the isolated equilibrium
of (6.1.11b]) for each (frozen) slow variables. In fact, it is also equal to [£*;(*] in
(6.2.1). With Y := Z — h(X,V), we have

X = FoX + Ay + (Bo — AygA; ' By)V
V=FX+ (%Af + AT Age Aug)Y (6.4.2)
+ A7 Ay (By — Aug AT By)V + A ByV.
where Fy i= As — Agg Ay  Age and Fy i= A7 Age (A5 — Apg A7 Agz). Note that

the X-dynamics without the term involving ) in (6.4.2)) is the quasi-steady-state

model . In order to show that the closed-loop system behaves
like (6.2.3)), let the solution of be Xn(t), that is, Xn(t) satisfies that
Xy = FsXn + (B, — .quAJ?qu)V where F, is Hurwitz by Assumption and
. The solution Xy () is hence bounded. Then, with X := X — X, we have
2;( = .7:3)? + quy, while the Y-dynamics of is rewritten as

. - 1
where 0 := [XL, VT, V)T and B, is
By i= | A AP Af (B — AwgAS'By) AF'B,.

If the matrices Ay and F, are Hurwitz, then there exist positive definite
matrices Py and Ps such that PrAy + A7 P = =21 and PoFs + F) Ps = =21
Let V(X,)) = %/’\?TPS/\? + %yTPfy. Then, we obtain

) - 1 .
V< —|X| - ;IIJ’II2 + XV + 2P+ 3D,

where y1 = || PsAgq ||+ PrFoll, 72 = ||Pf“4;1-/4qx~/4xq”a'73 = ||P¢ By || maxo<i<oo 10(2) |-
If 7 <7:=1/(7} + 272), then it can be shown that V' < 0 when ||Y|| > 2v37.

Now, define V := || X||> + 1||Y||?. Then, it holds that
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which means that, if V' > 4937, then V < 0. And, a positive constant j; is given
by

p1 = max V(X,)).
V:4’y§7‘

We define the set
Qe = {[X; V] : V(X,D) <}

Then, it is clear that all solutions of [X;))] converge to the set Q¢ as t — oo. If
it converges to the set )¢, then it remains the set €)¢. By the definition of V' and
V.

15 S 1 =
V= XTPX + VP < pV
where p1 := max{2 Amax(Ps), 3Amax(Pf)7}. For all [X, 1] € Q, [|X|? < 1 <
4p1737 and thus,

X < 2v3v/P1V/T.

Since we assume that 7 is relatively small positive constant and p; = Apax(Ps)/2
as 7 — 0, the bound of ||X — Xn|| is proportional to the /7. This implies that
V(X(t), Y(t)) tends to arbitrarily small so that the error X(t) — Xx(t) becomes
arbitrarily small, by taking 7 sufficiently small. Here, we summarize the result as

follows.

Theorem 6.4.1. Under Assumption|6.1.1}[6.1.2] and[6.1.3] there exists a constant
7 =1/(v} 4+ 272) > 0 such that, for all 0 < 7 < 7, the closed-loop system ([6.1.11)

is exponentially stable when r = 0 and d = 0. Furthermore, the part of the
solution (6.1.11]) denoted by [1(t); z(t); Z(t)] satisfies that

lim sup [|[n(£); #(t); 2(t)] — v (8); 2n () an (O]l < T1v/7

t—o00

where I'y := 273,/p1 and [nn(t); x5 (t); 2w (t)] is the solution of the nominal closed-

loop system (6.1.2]) and (6.1.3)). O
As can be seen in Theorem the error decreases proportional to /7. It

implies that the performance of the disturbance observer is improved as the time

constant 7 goes to zero.
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Chapter 7

Nominal Performance Recovery and
Stability Analysis for Disturbance
Observer under Unmodeled Dynamics

Feedback system design including the disturbance observer based control is often
achieved by neglecting fast unmodeled dynamics (e.g., actuator or sensor) for
reducing design complexity [SD02, [LT96]. It is based on an assumption that
unmodeled dynamics is fast enough to be negligible. However, the disturbance
observer contains two Q-filters as fast dynamics; therefore the assumption may
not be satisfied when the time constant of the Q-filter is too small to enhance
the disturbance rejection performance. As discussed in Chapter [, it causes the
degradation of performance and may be lead to instability. On the other hand,
in order to avoid instability caused by unmodeled dynamics, some guidelines for
robust stability have been proposed [KK99, (CYCT03, [WT04]. However, they are
also based on the small-gain theorem as well as can not deal with the plant with
unstable poles.

This chapter presents the nominal performance recovery and stability analysis
for the disturbance observer based control scheme under fast unmodeled dynamics.

The contribution of this chapter is as follows:

e The stability analysis of disturbance observer based control scheme under
the fast unmodeled dynamics is presented using the singular perturbation

theory.

99 H 2-1tlH
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e In order to guarantee the robust stability, the explicit bound of a time
constant of Q-filter with respect to the unmodeled dynamics is derived based

on Lyapunov analysis.

e Finally, this chapter presents that the disturbance observer recovers a nom-
inal performance, which is designed for the nominal model for the plant and
the state error between the nominal and actual closed-loop system asymp-
totically converges to a set whose size is proportional to the square root of

the time constant of Q-filter.

7.1 Problem Formulation

In this section, we introduce the disturbance observer based control scheme for an
uncertain single-input single-output linear plant including unmodeled dynamics
to achieve the nominal performance recovery in the presence of the disturbances
and uncertainties. After the problem formulation, the overall closed-loop system
is transformed to a singular perturbation form.

Consider the following class of uncertain plants:

2=824+Gy, y=~Cr, (7.1.1a)
&= Azx+ B{Fiz+ Fox + g(u+d)}, (7.1.1b)
To0 = Ayv + Byuy, u = Cyv, (7.1.1c)

where x € R” and z € R"™ are the plant state, v € R™ is the state of the un-
modeled dynamics, and u € R!, u, € R!, y € R!, and d € R! are the plant input,
the control input, the plant output, and the unknown disturbance, respectively.

The matrices A, B, and C are given by

01/—1 I;—l] ,B — [01/—1
0o o7, 1

The positive constant 7, is a time constant of unmodeled dynamics. The uncertain

A= ,C = [1 OZ_J .

matrices S, G, Fi, Fy, Ay, By, and C, are of appropriate dimensions and ¢ is an
unknown constant. The disturbance d(t) and its derivative d(t) are bounded with

5 "
.__:Ix_c L, 1_'. i

L

[

-
1

T
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known constants ¢q and ¢g, such that ||d(t)|| < ¢g and ||d(t)|| < ¢ar, respectively.

Assumption 7.1.1. The uncertain plant ((7.1.1) satisfy the following assump-

tions:

1. All uncertainties are bounded and the bounds are known a priori. In par-

ticular, there exist positive constants g and g such that g < g <7.
2. The matrix S is Hurwitz. (|

Note that, in the absence of the unmodeled dynamics (7.1.1¢|), the plant ([7.1.1al)
and ([7.1.1b|) under consideration is in the normal form whose relative degree is

v. In addition, the condition [2 implies that the plant (7.1.1a)) and (7.1.1b)) is of

minimum phase, which is a conventional assumption on the disturbance observer

approach.

Assumption 7.1.2. The unmodeled dynamics in the plant (7.1.1¢)) is exponen-
tially stable (i.e., the matrix A, is Hurwitz) and —C, A, !B, = 1. Furthermore,
the time constant 7, is upper bounded by a positive constant 7, which is known

a priori. Il

The above assumption implies that the DC gain of (7.1.1c|) equals to one. Even
though it is not, a non-unity gain can be integrated into the plant input gain g.

Now, we consider a nominal model for the uncertain plant ([7.1.1)) as follows:

Zn = Szn + Gym Yn = Cxy,
3 3 (7.1.2)
Ty = Az, + B{Flzn + Fexy, + gnur}a

where z, € R” and z, € R" are the state, u, € R! and y,, € R! are the control
input and the output of the nominal model, respectively. Notice that the order
of the nominal zero dynamics z, may not be equal to that of the zero dynamics
(7.1.14), i.e., 7 may not be equal to n. S, G, Fy, F,, and g are the nominal values
of S, G, Fy, F», and g, respectively.

For the nominal model , consider an output feedback outer-loop con-

troller as

N = Ac77 + Ber — Ecyn,  ur = Cen+ Der — Heyp, (713)
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where n € R" is the state of output feedback controller and 7 is the reference
input. The matrices A., B., C., D., E., and H. are of appropriate dimensions.
It is assumed that r(¢) and 7(¢) are bounded with known bounds ¢, and ¢,; such
that ||r(t)|] < ¢, and ||7(¢)|| < ¢y, respectively. As discussed in Chapter [6], when
is employed in the actual closed-loop system, 3 should be replaced by .

In addition, u,, the function of n, r, and y, will be often used for simplification.

Assumption 7.1.3. The nominal closed-loop system ((7.1.2)) and (7.1.3)) is ex-
ponentially stable. It implies that it is input-to-state stable with respect to the

reference input r. O

As discussed in the previous chapters, Assumption implies that the outer-
loop controller has to be designed to stabilize the nominal model .

Now, we will show that the plant with the disturbance observer behaves
as the disturbance-free nominal model in the presence of the disturbance
and model uncertainties. The disturbance observer as an inner-loop controller is

proposed as

_ _ 1 _
F=8z2+Gw, w=-—(—Fz— Ko +a"), (7.1.4a)
gn

§=Ay(T)g+ By, w=Cy(1)q, (7.1.4Db)
p = Ay(T)p + Bquy, U= Cy(T)p, (7.1.4¢)
Uy =Up + U — W (7.1.4d)
_ T

where Z € R, g € R!, and p € R are the state, @l = [w w - wrh

and @' is the i-th derivative of the output w. The matrices A,(7), By, and Cy(7)

are

1 0
0 0 0
Ag(T) == , By = )
0 0 1 0
- o 1
Cor)=[% o - e 0 - 0
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where | — k > v, cg = ag, and all a;’s are chosen such that the polynomial
st 4+ a1+ -+ + a1s + ap is Hurwitz. The detailed design procedure for

coefficients a;, ¢;, and 7 will be discussed later.

It is important to note that the disturbance observer in ((7.1.4) is a state-space
realization of the conventional disturbance observer, which is already proposed in
Chapter [f| The dynamics (7.1.4a) has the same structure as an inverse dynamics

of (7.1.2) and the dynamics ([7.1.4b]) and ([7.1.4c) are the controllable canonical

form realizations of a stable low-pass filter known as Q-filter. In addition, since
| — k > v, the signal @ and w! can be implemented from the state of ((7.1.4b)
and the output y.

Let us exchange the dynamics (7.1.4a)) with (7.1.4b|) as follows:

. _ — 1 _ _
z7=872+Gy, w=—(—Fiz—Fy' +y"), (7.1.5a)
G =Aq(T)q+ Bgw, w = Cy(7)g, (7.1.5b)
p=Ay(T)p + Byuy, U= Cy(T)p, (7.1.5¢)
Uy = Up + U — W (7.1.5d)
where y! = {y y o y”*l} and 3’ is the i-th derivative of the output y. By

virtue of the linearity, the input-output behavior between y and w of and
is the same as that of and . Throughout this chapter,
for simple analysis, the dynamics is used instead of , although the
time response of g in is different from that of .

In order to obtain a singular perturbation form, we change coordinates for

states ¢ and p as follows:
Gi=7" g, ¢ i=7"0p, (7.1.6)

With (7.1.6]), the dynamics of &, ¢, and v are represented as

¢ £l | 5BelF (2 7,2) + gd}
| = A [¢| + Beu, : (7.1.7)
Ty v Byu,
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where
Ag Oix1 T BeCy
Ay = —BgCg Ag + Bng Oism | s
—B,C¢ B,Cs A,

F(z,%z,2) := —F1zZ— Foa + Fiz+ Fyx, and Ag¢, Be, and C¢ imply A, By, and C,
when 7, = 1, respectively.
Then, from the equation (7.1.1), (7.1.3), (7.1.5a)), and (7.1.7), the overall

closed-loop system can be written as

n = Ac"? + Ber — By,  up = Ccn + Der — H_y,
& = Az + B{F1z+ Fox + g(Cyv + d)},

(7.1.8a)
z=8Sz+ Gy,
z=S8z+Gy, y=Cuz,
and
7¢ 3 EBe{F(z,7,x) + gd}
| =Au || + Beu, . (7.1.8b)
TyU v Byu,

From the overall closed-loop system ([7.1.8)), it is observed that, for relatively
small 7, and 7, the system is in the multi-parameter or the multi-time-scale sin-

gular perturbation forml[T}

7.2 Stability and Performance Analysis based on Singu-
lar Perturbation Thoery
In this section, we will discuss the nominal performance recovery and robust sta-

bility for the disturbance observer based control scheme under the unmodeled

dynamics using the singular perturbation theory. In order to present the nominal

If time constants T and T, are in same order, then the system is in the multi-parameter
singular perturbation form [LS83|, [KKT79]. Otherwise, it is in the multi-time-scale singular
perturbation form [LR85].



7.2. Singular Perturbation Analysis 105

performance recovery of the disturbance observer based control system, we first
obtain the quasi-steady-state system from the overall closed-loop system
for the extreme case 7 = 7, = 0. And then, we investigate under what condition
the overall closed-loop system is exponential stable and the nominal per-

formance is recovered.

7.2.1 Nominal Performance Recovery

It is observed from that the variables x, z, z, n, r, and d are considered
as slow variables, while the state &, ¢, and v are regarded as fast variables. If
the fast dynamics has an isolated equilibrium for each (frozen) slow variables
and the equilibrium (depending on z, z, Z, 0, r, d) is exponentially stable, then
the overall closed-loop system behaves as the quasi-steady-state system (i.e., the
overall closed-loop system is restricted to the slow manifold) with sufficiently
small 7 and 7,, under the assumption that the slow variables are bounded and

not varying fast.

The equilibrium of (7.1.8)) for each frozen slow variables is,

'3 = Be{F(2,2,7) + gd}
¢ = AL Beu, . (7.2.1)
v* B,u,

With the help of the matrix inversion lemma (Lemma A. 8 in Appendix), each

equilibrium is computed as

* gnt9g g -
f = — (A{ - 7B£C€) 1B§ur, (722)
Gn dn
1 gn -1 ~ _

"= Ae + BeCe) " Be{F(z,z,x) + gd — gnur}, 7.2.3
g g Aet T BeCe) BelF(2 %,2) ¥ (7.2.3)
1 .

v = A B {F (2,2 x) + gd — ghu,}. (7.2.4)
g

With the equilibrium, we derive the quasi-steady-state system (i.e., slow dy-

A L)) &

T
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namics on the slow manifold when 7 = 7, = 0) as follows:

n=Amn+ Bsor — E.y, wu, =Cwn+ D.r — Hey,
i = Az + B{F1Z + Fyz + gau,},

z=S%z+ GOz,

2=8z2+GCzx, y=~Cx.

(7.2.5)

The quasi-steady-state system is also the key role to explain the nominal
performance recovery of the disturbance observer based control scheme and the
extreme case when 7 = 7, = 0. In fact, the quasi-steady-state system is
equivalent to (6.2.3)). Since we already mentioned about the quasi-steady-state
system in Section we omit the detailed explanation here.

Now, we analyze robust stability for the overall closed-loop system
based on the singular perturbation approach with respect to the ratio between 7

and 7.

7.2.2 Multi-time-scale Singular Perturbation Analysis

In this section, we first discuss the case that the time constants 7 and 7, are
in different order. When 7, < 7 (i.e., the unmodeled dynamics is much faster
than p and g-dynamics), ((7.1.8) can be considered as the three-time scale singular

perturbation form.

Theorem 7.2.1. Under Assumption[7.1.1] [7.1.2] and[7.1.3] there exists a positive
constant 7 such that, for all 0 < 7, < 7 < 7, the overall closed-loop system (|7.1.8))

is robustly exponentially stable if the matrix Ay

A¢ — IBCe  IBcCe

Af =
—BgCg Ag + BgC&

(7.2.6)

is Hurwitz for all uncertain g. O

Proof. Since 7, < 7, we consider v-dynamics in ([7.1.8) as fast dynamics, while
the other dynamics are slow dynamics. From the singular perturbation theory, if

both the quasi-steady-state and the boundary-layer subsystem are exponentially
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stable, then the overall closed-loop system is exponentially stable. By Assumption
it follows that the boundary-layer subsystem (v-dynamics) is exponentially
stable.

In the next step, we will show that the quasi-steady-state subsystem is ex-
ponentially stable. Since C,A; !B, = —1, the quasi-steady-state system is easily

calculated as follows:

77 = Acn—i—Bcr—Ecy, Uy = c77+-DcT—HCy)
i = Az + B{F1z + Fox + gC¢(¢ — &) + gu, + gd},

(7.2.72)
=52+ Gy,
z=8%2+Gy, y=~0Cug,
and
' LB{F(z,z -+ gd
TH yy S AF (2, 2,2) + gur + gd} ’ (7.2.7h)
¢ ¢ Beu,

Now, it can be observed that ([7.2.7)) is the two-time scale singular perturbation
form. In fact, it is exactly same as the system (|6.1.11) in Section . By the
same manner in Section [6.2] the dynamics (7.2.7a) and (7.2.7b) are considered

as slow and fast dynamics, respectively. After a simple calculation, it is easy to
see that is its quasi-steady-state subsystem. From Assumption and
it follows that is exponentially stable. The proof is completed since
the matrix Ay is Hurwitz. O

It is emphasized that the matrix Ay plays a key role to determine the stability
of the overall closed-loop system ([7.1.8)). If it is satisfied, then (7.1.8]) is robustly
stable for the sufficiently small 7. The detailed procedure so as to make the matrix

Ay Hurwitz was discussed in Section and

Remark 7.2.1. When the dynamics of Q-filter is much faster than the unmodeled
dynamics v (i.e., 7 < T,), the stability of the overall closed-loop system does

not guaranteed. Since 7 < T,, the dynamics of Q-filter are considered as fast



108 Chap. 7. Nominal Performance Recovery under Unmodeled Dynamics

dynamics. Then, from ([7.1.8]), the system matrix of £ and ( is

Ae Oix1
—BgCg Ag + BgCg

and always has one eigenvalue at the origin. Therefore, the singular perturbation
theory cannot be employed since the boundary-layer system is not exponentially
stable. In fact, if the relative degree of v-dynamics is greater than one, then
robust stabilization is impossible when the time constant 7 is much smaller than

7, as discussed in Chapter [4] O

7.3 Nominal Performance Recovery by Disturbance Ob-

server under Unmodeled Dynamics

In the stability analysis discussed so far, the explicit bound of 7 for robust stability
of is not provided. However, in order to complete the stability analysis,
the bound of 7 must be provided with respect to 7,, especially when the time
constants 7 and 7, are in same order. In addition, the relation between the time
constant 7 and the nominal performance recovery by the disturbance observer
will be presented. In fact, as can be seen in Section the error decreases
proportional to y/7. It implies that the performance of the disturbance observer
is improved as the time constant 7 tends to be small. However, in contrast with
Chapter [6], we cannot make the time constant 7 arbitrarily small when unmodeled
dynamics exists. Furthermore, it may make the closed-loop system unstable.
Now, we investigate the nominal performance recovery of the disturbance observer
under unmodeled dynamics with respect to 7.

For the convenience, (7.1.8) can be compactly written as

X = -/leX + -szZQ + B:cvy
721 = A;Z1 + ApX + AgpZa + BV, (7.3.1)
ToZo = Ay Zo + ApaX + Ay Z1 + B,V

where X = [n;x;2; 2], 21 := [£;(], 22 := v, V := [r;d], and the matrices As, Ay,

2] &-t]] 8
i ] 1



7.3. Nominal Performance Recovery under Unmodeled Dynamics

"Zlf7 qu, AQIH Az Avqy B_$7 B_Q7 and B, are

Ac _ECC Ohxn—u
- Oyxh A+ BF; BFy
As ==
Onfuxh GC S
_Oﬁ—yxh GC Oﬁ—an—l/
| A 0
Af _ '3 Ix1
| —BeCe  Ag + BeCe
9 B:C, _
‘AQU = 9n 5 Y 5 qr =
Ol><m Bgcc
_ B,
_ 0,
Avq = [—BUC§ BUC§:| N
Op—v
Oﬁ—y

B, = [BvDC om} .

Ohxﬁ—u
Ouxﬁ—u

On—yxﬁ—u

S

—BeH.C
0, |

Orxh gflnt[—Fg—l-Fg] iBﬁFl _Q%ngl

len—u

0;
BeD.,

109

) -Avm = |:Bvcc —B,H.C Opmxn—v Omxﬁ—z/:| ’

)

leﬁ—u

g

gn

Be
0 |’

Let hi(X, V) := —A; (AgX +B,V) and ha(X, 21, V) 1= = Ay (A X + Avg 21+

B,V) where
A iBfCC glnt[*FZ + Fy — chC] Q%BﬁFl 7g71anF1
qr ‘= )
BSCC _BchO Orxn—v O1x—v
9 9
By = | BeDe 4, Be )
BeD. 0151

In fact, hi(X,V) = [£%; ("] and ha(X, Z1,V) = v* when Z; = hy(X, V) which are
the equilibrium in (7.2.2]). With Yy := Z; —hy(X,V) and V5 := Z9—ho(X, Z1,V),
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we have

X = FoX + A1 + Aeds + (Br — AugA; ' By)V

V= F,X + (%Af + A;lquAmq)yl + (%Aqv + A;lAqum)yz
+ A7 A (B — Aug AT By)V + A7 B,V

Vo = FuX + (%AglAquf + Ay Ay Arg) V1 72
T (TlvAv + %A;lAquqv + A Ay o) Yo

+ A A (Br — Ang A7 By)V + A B,V

where F, 1= .As—.qu.AJTlAqx, Fq = A;lAqm(As—Aqu;IAqx), Foi= Ay Ay (As—

AwgA; ! Agz), and

Ac _ECC Ohxnfu Ohxﬁfu
_A L gBCc A + B(FQ — gHCC) BF1 nyﬁ_y
S T bl
On—uxh GC S On—uxﬁ—u
_Oﬁ—uxh GC Oﬁfyxnfz/ g ]
Onxt Onxi Be  Onxa
—gBC BC BD B
-qu = I © 9 ¢ s B, : g ¢ 9
On><l 0n><l 0n><1 On><1
L Oﬁxl Oﬁxl ] L Oﬁxl Oﬁ><1_

Note that the X-dynamics without the term involving Y; and Vs in (7.3.2)
is the quasi-steady-state model (7.2.5). Then, with X = X — Xy, we have X =
.7-'52? + Azq V1 + AgzoYa, while the Yy and Yo-dynamics of ([7.3.2)) are rewritten as

: - 1
Vi=FoX + (A + A7 A Arg) 1

1
+ (= Agy + A A Av) Vo + B0
i ! 1 (7.3.3)
Vo = Fold + (A Ay Ag + At AgeAug) 1

1 1 >
+ (;AU + ;A;lAquqv + AglAvazv)yQ + Bre

2] -] 8} 3

'Iu
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where 6 := [xXF, VT VIT,

Byi= |Fy A Ag(Be — AwgA;'By) AS'B,|.

Byi= |Fy A7 Au(Be — AugA;'B,) AS'B,

By Assumption [7.1.2] and [7.1.3] the matrix F, and A, are Hurwitz. If the
matrix Ay is Hurwitz, then there exist positive definite matrices Py, Ps, and P,
such that P,Fs + FI P, = —2I, PrA; —I—.A;‘CPf = —2I, and P, A, + AT P, = —2I.
Let Vg()?, Vi,dh) = %)ETPSQE + %nyfyl + %5372TPU3/2 where a positive constant

¢ will be chosen later. Then, we obtain

. _ 1 5 _ .
Vo < —|| X7 - ;IIMH2 - ;Ill’zll2 + XVl + (v2 + ) [ XYzl

1 1 1
+ (’74; 5+ 08 + 5¥) |V V2l + sl Ve l|* + (5;710 + 6711) 1222
+ 36l V1] + 6712192
where
N = PsAug + F{ Prll, 72 = | PsAwoll, v3 = |PrA7 AgeAagll; 74 = [|1PrAgll,
v = | PrA;  Age Avolls 76 = || PrBr| [max 10, v7 = |FL Py,
S _OO

8 = ”PUAljl'AqufH? Yo = HP’U-AJII-Aqa:Aqu, Y10 = ”PvAzjl-Aququa
1 = [1PoAy  Av Ao ||, 2 = | PB: || max [[0(1)]].
0<t<o0

We choose d such that 3237, < § < 1/(32927,) and assume 7, < 1/(16711).
It is possible because we already assume that the time constant of unmodeled
dynamics, 7,, is sufficiently small. By Assumption [7.1.1] [7.1.2], and [7.1.3] values

of 71 — 712 also can be obtained. If we select 7 that satisfies 1 < 7 < 7 where

1
71 = max{167,07,, 6472 g?v, 647267, },
1 1) 1
8(291 + 73) 64737 640737,

2

7 := min{

then it can be shown that Va < 0 when ||V1]| > 2767 and || Vs|| > 27127. Define

2] £- 1_'_“

CLY



112 Chap. 7. Nominal Performance Recovery under Unmodeled Dynamics

Vo i= 31X + L1 + 2 [122]1%. Then, it holds that

. 1 V2. —

Vo < —§V2 + T’Y(Tv )V V2
where ¥(7,7,) := 4max{ye, vi2} - max{y/7,\/7,/0}. If [|Va| > 242(7,7,), then
Va < 0. And, a positive constant ps is given by

po = max  Va(X,V1,)%)
VQ:%TYQ(T:T’U)
Now, we define the set Q, := {[i;yl; y2]\v2(22,y1,y2) < pa}. It is obvious that
the state [/‘3; V1; Vo] converges to the set Q, as t — co. Also,

O | g %
Vo= XTPX + SV P+ S Vi P < ;o

where py := max{Amax(Ps), 3 Amax(Pf)7, 3 Amax(Py) 7y }. For all [X, V1, )] € Qa,
||)E”2 <pg < %02’72(7‘, Tp) and thus,

> P2 _
120 </ 5T m).

Since we assume that 7, is relatively small positive constant, ps = Amax(Ps)/2
as 7 is reduced and the bound of |X — X| is proportional to the F(7,7,). It
means that V5 tends to small depending on 7 so the error X' (t) — X' (t) becomes

small, by taking 7 appropriately.

Theorem 7.3.1. Under Assumption[7.1.1} [7.1.2] and[7.1.3] for a sufficiently small

T, there exist positive constants = max{16v107, 6472 %?v, 647%6?1,} and T =

: 1 5 1
min{ 8(272473) " 6427, 64o7eT

loop system ([7.1.8]) is exponential stable when 3. = 0 and d = 0. Furthermore,
the part of solution of ([7.1.8)) denoted by [c(t); z(t); 2(t); Z(t)] satisfies that

} such that, for all 71 < 7 < 7, the overall closed-

lim supl[[e(t); 2(2); 2(4)] = [en (2); 2 (£); 2n (]| <T2y(74, 70)

t—o00

where I'y := \/p2/2 and [en(t); xn(t); Zn(t)] is the solution of the nominal closed-
loop system (7.1.2]) and ((7.1.3)). O
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Compared to results in Section the error X (t) — Xn(t) cannot become arbi-
trarily small in Theorem because the time constant 7, which is the design
parameter of the disturbance observer is bounded by 7,. If 7 is selected too small

to reduce the error, it can lead to the instability of the overall closed-loop system.

Remark 7.3.1. In Theorem we assume that the upper bound of the time
constant of unmodeled dynamics 7, is smaller than 1/(16+11) where 711 is de-
termined by the uncertain system under consideration. It seems to be conserva-
tive, and thus difficult to apply in real applications. However, when the relative
degree of the plant is equal to or greater than 2, v1; = 0 and 1/(16v11) = oc.
Therefore, for an arbitrarily 7,, this assumption is always satisfied. Furthermore,
in this case, 719 is also equal to 0. On the other hand, when the relative degree
of the plant is equal to 1, for an arbitrarily small 7, robust stabilization of the
disturbance observer based control system can always be achieved regardless of

Ty, which was discussed in Chapter [ U

Remark 7.3.2. When the time constant of unmodeled dynamics 7, is sufficiently

small compared with the time constant of Q-filter 7 (i.e., 7, < 1 and 7, < 7),

1
8(27+73)’
respectively. In addition, the magnitude of (7, 7,) is determined by not 7, but

7. As a result, Theorem [7.3.1] provides the same results as Theorem O

the upper and lower bounds of time constant become 71 ~ 0 and 7 =
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Chapter 8

Extensions of Disturbance Observer for
Guaranteeing Robust Transient
Performance

In control system design, the existence of disturbances and model uncertainties
is unavoidable. To overcome this problem, a disturbance observer approach has
been widely used in industry [UH91, [UH93, [BT99, [SD02, BSPS10,, [LT96l, [KIK99.
CYC™03]. The versatility of the disturbance observer for many applications comes
from its simple structure as well as powerful ability for rejecting disturbances
and compensating model uncertainties. Furthermore, the disturbance observer is
convenient for use because it is an inner-loop controller, that is, if it is added in
the inner-loop, then the existing (pre-designed outer-loop) controller is enabled
without taking into account effects from disturbances and model uncertainties.
Although the characteristic of the disturbance observer is easily understood
in the frequency domain, an analysis was performed in the state-space domain
based on the singular perturbation theory for the purpose of obtaining the deeper
understanding of the effects of each block as shown in Chapter [6] and [, Under
an assumption that the cutoff frequency of the Q-filter is sufficiently fast, they

exhibit well-known properties as well as some interesting points:

e it shows not only the input disturbance is almost completely rejected but
also the plant with the disturbance observer, inner-loop blocks, behaves as

a nominal model of the plant.

115 A 21l
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e the zero dynamics of the plant is replaced by the zero dynamics of the
nominal model. It means that the zero dynamics of the plant is nearly
unobservable from the output and implies why the zero dynamics should be

stable (i.e., minimum phase system).

However, the classical linear disturbance observer does not ensure the recovery
of transient response. In order to guarantee the robust transient response and
to extend to nonlinear systems, a modified nonlinear disturbance observer, in
which all the benefits of the classical one are still preserved, was suggested [BS08].
MIMO (multi-input multi-output) extensions having the same number of inputs
and outputs with a linear nominal model was also proposed [BS09].

In this chapter, we review a modified nonlinear disturbance observer and show
that it recovers the nominal trajectory, that is, steady-state as well as transient

trajectory, which is designed for nominal model.

8.1 Extensions to MIMO Nonlinear Systems

We consider uncertain MIMO nonlinear systems having the same number of inputs

and outputs given in the Byrnes-Isidori normal form [[si95] as follows:

z= F()(Z,x),
= A"x 4+ B™(F(z,z,t) + G(z,z,t)(u + d)), (8.1.1)
y=C"zx

where u € R™, d € R™, and y € R™ are the control input, unknown distur-
bance, and output, respectively. x € R” and z € R®™" are system states such
that © = [v1;- - ;2] and z; = [2i1,- -+ ,2,]7 € RY with v = vy + -+ + vy,
The matrices A™ € R¥*¥ B™ € R"*™ and C™ € R™*" are defined as A™ =
diag{AT",--- , A"}, B™ = diag{B}",--- ,B]'}, and C"™ = diag{C{",--- ,C}'}, in
which

0p,—1 1y— 0y, —
ap = [t e s o= 1 on ]
0 ol_, 1
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Here, we assume that the functions Fy, F', and G are twice continuously differen-
tiable (€2) but uncertainlﬂ
We now consider a disturbance-free nominal model of (8.1.1)) as

‘% = 0(273_7)
T = A"z + B"(F[z; 7] + Gu,) (8.1.2)
g=C"z

where Fy(z,z), F[2;Z], and G the nominal counterparts of Fy(z,x), F(z,z,t),
and G(z,z,t), respectively. Note that ' and G are constant matrices so that the
Z—dynamics becomes linear, while F} is assumed to be €2E| We also assume that
an (dynamic) output feedback outer-loop controller C' is designed a priori for the

nominal plant (8.1.2)), which is represented by

0=T(n37r), neck
(8.1.3)

Uy = 7(777 Y, T‘), Up € R™

where I' and 7 are €2 functions, and 7 is a vector of ¢? reference command. It is
assumed that r(¢) and 7(t) are bounded so that r(¢) € S,, t > 0, where S, is a

known compact set.

Assumption 8.1.1. For the considered class of references r(t), the nominal
closed-loop system (8.1.2]) and (8.1.3)) has the following properties:

1. the solution [z(t); Z(t);n(t)] of (8.1.2) and (8.1.3) evolves in a bounded,

connected, and open set U € R™* if the initial condition [2(0);Z(0);7(0)]

is located in a compact set S € U.
2. each solution [2(t); Z(t); n(t)] initiated in S is locally asymptotically stable.

O

! Considering uncertain single-input single-output (SISO) nonlinear systems, we assume that

F and G are not depend on the time.
2When we consider a SISO nonlinear nominal model, Fy, F, and G are ¢? functions. More

details are in [BS0§].
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Assumption 8.1.2. Let U, C R” and U, C R"™" be the projections of the set
U to the = subspace and the z subspace, respectively. The system Z = Fy(z, )

with z(0) € U, is input-state stable (ISS) with respect to any constrained input
x(t) € U. O

Let Z be the bounded set which contains all feasible solutions z(t) of Assump-

tion [8.1.2)

Assumption 8.1.3. There are positive constants Iy, I¢, Iy, and [y such that
|Fo(z,2)| < lgy, [F(2,2,t)] < 1y, [(OF/0t)(2,2,t)| < lpt, and [(0G/0t)| < gy, for
all (z,x,t) € ZxU, xR,. For the uncertain input gain matrix G(z, z, t), there ex-
ist a nonsingular matrix K, G~ := diag{gy,--- , ¢, } and GT := diag{g;, - , g}
such that 0 < G~ < GT and that

(G(z,z, ) K9 — G0 TTI*(G(2, z,t) K¥ — GT) < 0.
Vo € R™,Y(z,z,t) € Z x Uy x Ry

where II = diag{m1, -+ ,mm} = 2(G* + G7)~!. In addition, the disturbance
signal d(t) is at least ¢2, and d(t) and d(t) are bounded with known bounds I
and g such that |d(t)| < Ig and |d(t)| < lg, respectively. O

The Q-filter, a key ingredient for the design of the disturbance observer, is
given by

a;o
PR — —. (8.1.4)
sYi 4 ajp,—18" 7 4+ ago

Compared to (2.1.2), we restrict the structure of Q-filter in such a form whose
degrees of the numerator and denominator equal to zero and the relative degree of
the plant, respectively. However, by the virtue of simple structure, a systematic

design procedure of the disturbance observer can be obtained.

8.1.1 SISO Nonlinear Disturbance Observer with Nonlinear Nom-

inal Model

In some applications, the systems are required to generate signals or trajectories,

which cannot be generated by linear systems, with high accuracy. Therefore,

] 2- 1_l|
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d
Ur | F(2,5:(q)) w u Up Yy
—> _ P —> P >
PRI e il e ® % ’
1 —{l —p
5(9)|[d(#) Qp(s)
Pp1
¢ —pir|  Qqls)
. _ j€—
i £ = Fo(2,5:(q))
q,z I

Figure 8.1: Proposed SISO nonlinear disturbance observer structure. P,
Qq(s), and Q,(s) correspond to (8.1.1) and (8.1.10)), respectively.

a SISO nonlinear disturbance observer with the nonlinear nominal model was
proposed in [BS08]. To deal with SISO uncertain systems, it is assumed that
m = 1 in , all matrices and coefficients are appropriately defined (e.g.,
Al = A, ajp = ag, and so on), and positive constants G~ and G satisfy the
inequality 0 < G~ <1 < G™. It is always achieved by scaling the control input
and disturbance.

Fig. shows the structure of the proposed inner-loop controller where P
denotes the plant . We begin by introducing some essential design param-
eters and components of the proposed controller. Let a = [ag, a1, - ,a,—1] such

that all the roots of (8.1.5) and (8.1.6) shown below are in C~. (When v = 1,
consider the equation ({8.1.5)) only.)

s' +ay_18" 4+ +ars+ag =0, (8.1.5)

" T4a, 18" 2+ +a;=0. (8.1.6)

From Lemma A. 3 in Appendix, such a;’s always exist.

Now, choose a constant p > 0 from the following procedure. First, let

1 ag
H(s):= - .
(5) s M4 a, 18V 24+ 4y
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Consider a disk D(pG~, pG™T), which is defined as a closed disk in the complex
plane whose diameter is the line segment connecting —1/(pG~) and —1/(pG™).
Then, choose a sufficiently small p > 0 such that the disk D is disjoint from the
Nyquist plot and the plot does not encircle the disk.

5, and 5, globally bounded continuous differentiable (€!) saturation functions,

are used in the scheme and satisfy the following:
05,
7:(2 =&, x> d |+

Sz(x) =z, V€U, an 8x(av)

5(s) =s, Vse€Sy, and 0<5 <1, VseR

<ky Vxe RY

(8.1.8)

where ’ denotes the derivative, kg > 0 is a constant, and

50={s= (s — ) (Fz:0)+ G bt )

F(z,x)
G(z,x)

—d:ze 7|z eUreS,,|d gzd}.

The set Sy indicates the steady-state range of the signal ¢(t) to be defined in
. In fact, it is enough to have the saturation levels of 5, and s sufficiently
large so that the saturation functions are not active during the nominal transient
and steady-state operation. Note that the knowledge of the bounds for F' and G

is used for choosing the function s.

In addition to the saturation functions, we introduce a dead-zone function

d(s) := s — 3, which will be used shortly.

Let 7 > 0 which will be chosen later and define

. 1 1 1
Ar = dlag{;, =1 7;}7

[ 0 1 0 i

(8.1.9)
ACLT =
0 0 1
__aop al _ ay—1
L TV Tv—1 T

With all the components introduced so far, we now present an inner-loop

2] -] 8} 3

'Iu
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controller given by

Z = Fy(Z,5:(q)),
. a
G=Aurq+ ;BBy,

D= Aurp+ B~ pd(9) + pw).

v

(8.1.10)
u=5(¢) + pw,
where q= [Qh e 7ql/}T S Rua p= [p17 o 7pl/]T S RV7 and

. ap
¢ =p1— pdy =pra’ Arq— P=oY;

w= F(Z, 5:(9)) + G(Z, 52(q))ur-

Theorem 8.1.1. [BS08] Let Sy, be a compact set for the initial condition [p(0); ¢(0)],

S be a compact set slightly small than S (i.e., S C S and their boundaries are
disjoint), and S, be the projection of S into the z plane. Under Assumption
for given € > 0, there exists a 7 > 0 such that, for each 0 < 7 < 7,
the solution of the closed-loop system , , and denoted by
[2(t); 2(t); 2(t); n(t)], initiated at [2(0); 2(0); x(0);n(0)] € S, x S, is bounded and
satisfies that

[Z();2(t);n(t)] — [en(); an ()i N ()] <€ VE>0. (8.1.11)

where [Zn(t); Zn(t); nn(t)] is the solution of the nominal closed-loop system, i.e.,

and (13), with [z (0); 2 (0); 7w (0)] = [2(0); 2(0); n(0)]. =

8.1.2 MIMO Nonlinear Disturbance Observer with Linear Nomi-
nal Model

The result in Section [8.1.1] was extended to a class of MIMO nonlinear systems
having the same number of inputs and outputs under the restriction that the
nominal model is linear. But, this restriction allows a much simpler control struc-
ture than the result in Section Recalling that the linear nominal models are

sufficient for many applications, we may enjoy the benefit of the simpler control

2] -] 8} 3
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structure even for SISO cases.

Now, we present the design procedure of an inner-loop controller, MIMO

nonlinear disturbance observer. First, let a; = [aio, i1, -+ , @i p—1], i =1,--- ,m.
For each 7, choose a;1,- - ,a;,,—1 such that
sVl —l—ai,,,z._lsl”'*Q—l—-'-—#—ail =0 (8.1.12)

has all roots in C~. When v; = 1, there is nothing to choose. For each 7, with
ail, -, Qi1 fixed, we choose ajo as follows. Let Apgr = [[II(GT — G7)/2]|.
Define D(1— Az, 1+ Amaz) by a closed disk in the complex plane whose diameter
is the line segment connecting the points —1/(1 — A\paz) +70 and —1/(14 Apaz) +
70. Let

1 a;o

Hi(s) :=— .
’L( ) Ssyi_l+a1/i—13yi_2+"'+ai1

(8.1.13)

and find a positive constant a;o such that the Nyquist plot of H;(s) is disjoint
from the disk D(1 — Mnaz, 1 + Amae) and does not encircle the disk. Such ajg

always exists.

Now, we define saturation functions ¢ : R” — R” and ¢ : R™ — R™ as

globally bounded ! functions satisfying

9¢

¢(z) =z, VreU, and 8—(95) <1, VreR”
T

20 (8.1.14)
P(w)=w, YweS,, and ’&U(w)‘ <1, YweR™

where

Sew z{w ER™:w= (G Yz,z,t) — IN)Gy(n, C™x,T)
+ Gz, 2,t)(F[z;2] — F(z,2,t)) —d: z€ Z, t e R,
[Z;x;c] € U, €Sy, |d| <4 for all admissible F' and G}.

The set S, indicates the steady-state range of the signal w(t) to be defined in
(8.1.16)). In fact, it is enough to have the saturation levels of ¢ and ® sufficiently

large so that the saturation functions are not active during the steady-state op-

A L)) &

T
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Uy — u Y
— IG =0 O—— P
N

v

q)(w) p - Aarp + BaTu

) 4

\ 4

[P1vy s Py
—1II [(jlvl o ;qmvm]

N +11F[z;q] q= {an + Bary

™~ £ = Fy(z,6(q))

w

Figure 8.2: Proposed MIMO nonlinear disturbance observer structure. P

corresponds to (8.1.1]).

eration.

With a positive parameter 7 (to be designed), let

[0 1 0 |
Agir = | : K . (8.1.15)
aio a1 Giv;—1
s

The proposed inner-loop controller, MIMO nonlinear disturbance observer, is

given by

z = Fo(z,6(9),
. aio
Qi:AaiTQi“‘il,Biyia L. ,m,

8.1.16)
a (
P = AaiTpi + LOBz’U,Z, 1,---.,m,

u = ®(w) + IIGu,,
where ¢ = [q1;++ ;qm] € RY, ¢ = [qi1, . Piv,]T € RY, p = [p1; - ;pm) € RY,

- - . X
¥ ) 11 =|
.-'-\.\._! - -] I8 -_|!
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pi = [pit, D] T ERY w=[wy, -+ ,wp]! € R™, and

w; = pit — Tidiv, + TiF5[Zq), =1, m.

Here, we write F;, G;, F;, and G; to indicate the i—th row (or component) of
F, G, F, and G, respectively.

Fig. shows the structure of the proposed inner-loop controller where P
denotes the plant and the matrices are A, = diag{Aq1+, - , Aamr} and
B.r = diag{(aio/7™")B1,- -, (amo/T"™)By}. It is noted that the structure is
much simpler than that of [BS08| (i.e., SISO nonlinear disturbance observer in

Section [8.1.1)) since we consider the linear nominal model.

Theorem 8.1.2. [BS09] Let Sy, be a compact set for the initial condition [p(0); ¢(0)],

S be a compact set slightly small than S (i.e., S C S and their boundaries are
disjoint), and S, be the projection of S into the z subspace. Under Assumption
for given € > 0, there exists a 7 > 0 such that, for each 0 < 7 < 7,

the solution of the closed-loop system (8.1.1)), (8.1.3), and (8.1.16) denoted by
[2(t); 2(t); x(t); n(t)], initiated at [2(0); 2(0); 2(0);n(0)] € S, x S, is bounded for
all t > 0, and satisfies that

()i n()] = [Ex ;v (O] < e, V= 0. (8.1.17)

where [Zn(t); nn(t)] is from the solution [Zx (t); Zn (¢); N (t)] of the nominal closed-

loop system and (8.1.3), with [2x(0); Zn(0); v (0)] = [2(0); 2(0); 7(0)]. O



Chapter 9

Conclusions

Throughout the dissertation, we have discussed the stability and performance of
the disturbance observer based control system both in the frequency and time
domain. This chapter summarizes the results of the dissertation discussed so far.

In the frequency domain, we have dealt with the robust stability of the distur-
bance observer based on the observation about the pole locations of the closed-loop
system and derived a robust stability condition. To overcome the approximate
disturbance rejection property, based on the internal model principle, we proposed
a method to embed the internal model into the disturbance observer structure so
as to achieve asymptotic disturbance rejection in Chapter[3} In chapter [ we have
focused on the robust stability when the relative degree of the plant is unknown
and proposed a universal design method for guaranteeing robust stability of the
closed-loop system for the case that the relative degree of the plant is less than or
equal to 4. In Chapter [5] focusing on the role of each Q-filter, we have generalized
the design of disturbance observer structure and proposed a reduced order type-k
disturbance observer so as to enhance the disturbance rejection performance and
reduce the design complexity simultaneously.

As a counterpart of the frequency domain analysis, Chapter [6] has analyzed
the disturbance observer in the state space. Based on the singular perturbation
theory, not only the equivalence relation between the frequency and time domain
but also the behaviour of each block of the disturbance observer structure have
been clarified. It has also revealed new facts such as peaking phenomenon as
well as well-known properties of disturbance observer. In addition, the robust

T !
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stability of the closed-loop system with and without unmodeled dynamics and
the nominal performance recovery depending on the time constant of Q-filter have
been investigated in Chapter [ and [7] Finally, the robust transient performance
recovery of the nonlinear disturbance observer with saturation functions has been

discussed.



APPENDIX

Theorem A. 1. [Rouché’s Theorem| [Fla83|

Let f(s) and g¢(s) be analytic on and inside a simple closed curve C, with
llg(s)|| < [|f(s)]| on C. Then, f(s)and f(s)+ g(s) have the same number of roots
inside C (counting multiplicity). O

Lemma A. 2. [SJ09]

Let p(s) and g;(s), j = 1,...,k, be polynomials of complex variable s. Define
R(s;7) := p(s) + 7qi(s) + 72qa(s) + - - - + 7Fqr(s). Assume that deg(p) = n and
let s7, 4 = 1,...,n, be the roots of R(s;0) = 0. Then, for a sufficiently small
7 > 0, there exist n roots of R(s;7) = 0, say s;(7), ¢ = 1,...,n, such that

lim; ;0 s;(7) = s} (even if R(s;7) may have more than n roots for 7 > 0). O

Lemma A. 3. [BS0S]
If a polynomial

ST ra 8724+ ay (9.0.1)

is Hurwitz, then there exists g such that the polynomial
s+a_18 + - +as+ Yo (9.0.2)

is Hurwitz for all vo € (0, %0). O

Proof: Indeed, let H(S) = 1/(s'+a;_15" ' 4---+ays). Then, since H(s) has
one pole at the origin and all other poles in the C™, the root locus of the unity
feedback system with the gain 7y remains in the C~ for sufficiently small v¢ > 0.
Take 7, such that the plot remains in the C~ for all 7 € (0,7,). As a result, it
is proved. O

127 A=
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Lemma A. 4. [Kharitonov Theorem| [BCK95|

Consider a set of polynomials given by Z := {6,s" + 6,1 sHl 4 401546 :
a; € [0;,0:],i = 0,1,...,u} where 6, and ; are positive constants such that

0, < 0;. Define four extreme polynomials given by

Pi(s) = Oust + 0y 15" 40, 95" 2 +0, 3577
+ @H743“_4 + gu,g,s“_s + -

)

Pa(s) = 08" + Qu—15“71 + Qu—23“72 + 0,357

)

+ 0y a5+ Qu_5sf*5 + - ) 903)
P3(s) =0,8" + 0, 1" "+ 0,25+ 0, 35"
+ Qﬂ_4s“_4 + Qu_55#_5 4o,
pa(s) = 0,,8" + 018"+ 0,_98" % + QM,33“’3
0 s B
Then, every polynomial in Z is Hurwitz if and only if the polynomials p1(s), . . ., pa(s)

are Hurwitz. O

From Lemma A. 4, we derive the following remark.
Remark A. 5.
For the set Z in Lemma A. 4, suppose that m be a positive integer such that

m < p and that §, = 6; = b;, for i = m + 1,..., u. Then, every polynomial in Z

is Hurwitz if and only if the following four extreme polynomials are Hurwitz:

pi(s) = s" +by_1s" 4 4 bpyygs™ T

40 S™ O 15" 40, 05T, a5
Pa(s) = s +byu_18" 4 by 8™

O™ 4 O 8™ 4 0 0™ 4 Oy g™ T
P3(s) = 8" +bu_18" 4 F by 8™t

+ 0,8 + Qm_rsm_l + 028" 2 4 058 T
Pa(s) = s" + bu—lsufl N T Lk

40,8 + 018" 0y 052G, g8 4
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This follows easily from the fact that p;(s) of (9.0.3) corresponds to p; with
l=7+((p—m) mod 4). O

Definition A. 6. [Value Set]
Let @) be an uncertainty boundeded set defined by

Q:: {q: [qlv"' 7QZ} ‘ qi € [gzaqz]v Z:Ll}

where ¢. and g, are known constants. Given a family of polynomials P(s, Q) :=
4; i

{p(s,9) | ¢ € Q}, the value set is given by

P(jw,Q) = {p(jw,q) | ¢ € Q, w > 0}.

Lemma A. 7 |Zero Exclusion Theorem| [Ack02]
Given a polynomial family P(s, @), the set P(s, Q) is robustly stable if and

only if the following two conditions are hold:
1. There exists a stable polynomial p(s,q) € P(s,Q),

2. 0 ¢ P(jw, Q) for all w > 0.

Lemma A. 8. |[Matrix Inversion Lemma| [ZD98§]|

Let A be a square matrix partitioned as follows:

A A
Ag1 Ag

A=

where A1 and Agy are also square matrices. If A and Ay are nonsingular, then

A A
Ag1 A

A+ A ApAT An AT — AT AATT
—A_lAglAl_ll A1

A= A22 — A21A1_11A12.
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And, if A and Ay are nonsingular, then

A~

A1 — AT A A
—AG A ATY A+ AS AR AT A AL

A A
Ag1 Agp

A .= AH — A12A2_21A21.

&) el

] L8
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