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This dissertation provides the stability and performance analysis of the distur-

bance observer and proposes several design methods for guaranteeing the robust

stability and for enhancing the disturbance rejection performance. Compared to

many success stories in industry, theoretic analysis on the disturbance observer

itself has attracted relatively little attention. In order to enlarge the horizon of its

applications, we provide some rigorous analysis both in the frequency and time

domain.

In the frequency domain, we focus on two main issues: disturbance rejection

performance and robust stability. In spite of its powerful ability for disturbance

rejection, the conventional disturbance observer rejects the disturbance approxi-

mately rather than asymptotically. To enhance the disturbance rejection perfor-

mance, based on the well-known internal model principle, we propose a design
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method to embed an internal model into the disturbance observer structure for

achieving the asymptotic disturbance rejection and derive a condition for robust

stability. Thus, the proposed disturbance observer can reject not only approxi-

mately the unmodeled disturbances but also asymptotically the disturbances of

sinusoidal or polynomial-in-time type. In addition, a constructive design proce-

dure to satisfy the proposed stability condition is presented. The other issue is to

design of the disturbance observer based control system for guaranteeing robust

stability under plant uncertainties. We study the robust stability for the case

that the relative degree of the plant is not exactly known and so it happens to

be different from that of nominal model. Based on the above results, we propose

a universal design method for the disturbance observer when the relative degree

of the plant is less than or equal to 4. Moreover, from the observation about the

role of each block, we generalize the design of disturbance observer and propose

a reduced order type-k disturbance observer to improve the disturbance rejection

performance and to reduce the design complexity simultaneously.

As a counterpart of the frequency domain analysis, we analyze the distur-

bance observer in the state space for the purpose of extending the horizon of

the disturbance observer applications and obtaining the deeper understanding of

the role of each block. Based on the singular perturbation theory, it reveals not

only well-known properties but also interesting facts such as the peaking in the

transient response. Moreover, we investigate robust stability of the disturbance

observer based control systems with and without unmodeled dynamics and derive

an explicit relation between the nominal performance recovery and the time con-

stant of Q-filter. Since the classical linear disturbance observer does not ensure

the recovery of transient response, a nonlinear disturbance observer, in which all

the benefits of the classical one are still preserved, is presented for guaranteeing

the recovery of transient as well as steady-state response.

Keywords: disturbance observer, robust stability, disturbance rejection perfor-

mance, internal model principle, unmodeled dynamics, nominal performance re-

covery

Student Number: 2008–30244

ii





Contents

ABSTRACT i

List of Figures ix

Symbols and Acronyms xiv

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions and Outline of the Dissertation . . . . . . . . . . . . 5

2 Robust Stability for Closed-loop System with Disturbance Ob-

server 9

2.1 Structure of Disturbance Observer . . . . . . . . . . . . . . . . . . 9

2.2 Robust Stability Condition for Closed-loop System with Distur-

bance Observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Embedding Internal Model in Disturbance Observer with Robust

Stability 19

3.1 Design Method for Embedding Internal Model of Disturbance . . . 21

3.2 Design of Q-filter for Guranteeing Robust Stability . . . . . . . . . 27

3.2.1 Robust Stability Condition of Closed-loop System . . . . . 27

3.2.2 Selecting ai’s for Robust Stability . . . . . . . . . . . . . . . 30

3.3 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Discussions on Robustness . . . . . . . . . . . . . . . . . . . . . . . 36

v



3.4.1 Pros and Cons of Proposed Design Procedure . . . . . . . . 36

3.4.2 Bode Diagram Approach . . . . . . . . . . . . . . . . . . . . 38

4 Disturbance Observer with Unknown Relative Degree of the Plant 45

4.1 Robust Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 A Guideline for Selecting Q and Pn . . . . . . . . . . . . . . . . . . 53

4.2.1 A Universal Robust Controller . . . . . . . . . . . . . . . . 54

4.3 Technical Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Reduced Order Type-k Disturbance Observer under Generalized

Q-filter 65

5.1 Concept of Disturbance Observer with Generalized Q-filter Structure 66

5.2 Robust Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Reduced Order Type-k Disturbance Observer . . . . . . . . . . . . 71

5.4 Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 State Space Analysis of Disturbance Observer 81

6.1 State Space realization of Disturbance Observer . . . . . . . . . . . 82

6.2 Analysis of Disturbance Observer based on Singular Perturbation

Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3 Discussion on Disturbance Observer Approach . . . . . . . . . . . . 91

6.3.1 Relation of Robust Stability Condition between State Space

and Frequency Domain Analysis . . . . . . . . . . . . . . . 91

6.3.2 Effect of Zero Dynamics . . . . . . . . . . . . . . . . . . . . 91

6.3.3 Stability of Nominal Closed-loop System . . . . . . . . . . . 92

6.3.4 Infinite Gain Property with p-dynamics . . . . . . . . . . . 92

6.3.5 Peaking in Fast Transient . . . . . . . . . . . . . . . . . . . 94

6.4 Nominal Performance Recovery with respect to Time Constant of

Q-filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7 Nominal Performance Recovery and Stability Analysis for Dis-

turbance Observer under Unmodeled Dynamics 99

7.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 100

vi



7.2 Stability and Performance Analysis based on Singular Perturbation

Thoery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2.1 Nominal Performance Recovery . . . . . . . . . . . . . . . . 105

7.2.2 Multi-time-scale Singular Perturbation Analysis . . . . . . . 106

7.3 Nominal Performance Recovery by Disturbance Observer under

Unmodeled Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 108

8 Extensions of Disturbance Observer for Guaranteeing Robust

Transient Performance 115

8.1 Extensions to MIMO Nonlinear Systems . . . . . . . . . . . . . . . 116

8.1.1 SISO Nonlinear Disturbance Observer with Nonlinear Nom-

inal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.1.2 MIMO Nonlinear Disturbance Observer with Linear Nomi-

nal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

9 Conclusions 125

APPENDIX 127

BIBLIOGRAPHY 131

국문초록 141

감사의 글 143

vii





List of Figures

1.1 (a) The nominal closed-loop system with Pn(s) and (b) The actual

closed-loop system with Pf(s) . . . . . . . . . . . . . . . . . . . . 2

1.2 The closed-loop system with the disturbance observer structure

(shaded block). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 The closed-loop system with the disturbance observer structure

(shaded block). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Step responses of the nominal closed-loop system in the absence of

disturbance (‘Nominal response’), the nominal closed-loop system

in the presence of the disturbance d(t) = 5 sin(2πt) (‘W/O DOB’),

and the nominal closed-loop system with the disturbance observer

with Qb(s) in the presence of the disturbance (‘W/ DOB’) when

τ = 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 The error between the step response of the nominal closed-loop sys-

tem and that of the actual closed-loop system with the disturbance

observer with Qb(s) for the time constant τ = 0.01 (’Time constant

τ = 0.01’) and τ = 0.001 (’Time constant τ = 0.001’) when J = 1

and B = 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 The error between the step response of the nominal closed-loop

system and that of the actual closed-loop system with the distur-

bance observer with Qb(s) (’DOB with Qb(s)’) and Qp(s) (’DOB

with Qp(s)’) when J = 0.1 and B = 11.3. . . . . . . . . . . . . . . 18

3.1 The closed-loop system with the disturbance observer structure

(dotted-line block). . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

ix



3.2 Equivalent block diagram of the DOB structure in Fig. 3.1. . . . . 23

3.3 The error between the step response of the nominal closed-loop

system and that of the actual closed-loop system with the distur-

bance observer with Qb(s) (‘DOB with Qb(s)’) and Qp(s) (‘DOB

with Qp(s)’) when J = 1. . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 The error between the step response of the nominal closed-loop

system and that of the actual closed-loop system with the distur-

bance observer with Qb(s) (‘DOB with Qb(s)’) and Qp(s) (‘DOB

with Qp(s)’) when J = 4.2. . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Bode diagrams of sensitivity functions without the disturbance ob-

server (’W/O DOB’) and with the disturbance observer with Qb(s)

(‘DOB with Qb(s)’) and Qp(s) (‘DOB with Qp(s)’) when J = 1. . . 35

3.6 The value sets of the four extreme polynomials of p1(s; g) (’blue

solid line’) and p1(s; g) (‘red plus signs’) for each ω ≥ 0. . . . . . . 37

3.7 Bode diagrams of sensitivity functions without the disturbance

observer (’W/O DOB’) and with the disturbance observer with

Qb
type−1(s) (‘DOB with Qb

type−1(s)’), Qb
type−2(s) (‘DOB with Qb

type−2(s)’),

Qb
type−3(s) (‘DOB with Qb

type−3(s)’), Qb
IM (s) (‘DOB with Qb

IM (s)’),

and Qb
type−4(s) (‘DOB with Qb

type−4(s)’) when τ = 0.001 and ω1 =

8× 2π. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.8 Bode diagrams of loop transfer functions without the disturbance

observer (’W/O DOB’) and with the disturbance observer with

Qb
type−1(s) (‘DOB with Qb

type−1(s)’), Qb
type−2(s) (‘DOB with Qb

type−2(s)’),

Qb
type−3(s) (‘DOB with Qb

type−3(s)’), Qb
IM (s) (‘DOB with Qb

IM (s)’),

and Qb
type−4(s) (‘DOB with Qb

type−4(s)’) when τ = 0.001 and ω1 =

8× 2π. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.9 Bode diagrams of sensitivity functions without the disturbance

observer (’W/O DOB’) and with the disturbance observer with

Qp
type−1(s) (‘DOB with Qp

type−1(s)’), Q
p
type−2(s) (‘DOB with Qp

type−2(s)’),

Qp
type−3(s) (‘DOB with Qp

type−3(s)’), Q
p
IM (s) (‘DOB with Qp

IM (s)’),

and Qp
type−4(s) (‘DOB with Qp

type−4(s)’) when τ = 0.001 and ω1 =

8× 2π. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

x



3.10 Bode diagrams of loop transfer functions without the disturbance

observer (’W/O DOB’) and with the disturbance observer with

Qp
type−1(s) (‘DOB with Qp

type−1(s)’), Q
p
type−2(s) (‘DOB with Qp

type−2(s)’),

Qp
type−3(s) (‘DOB with Qp

type−3(s)’), Q
p
IM (s) (‘DOB with Qp

IM (s)’),

and Qp
type−4(s) (‘DOB with Qp

type−4(s)’) when τ = 0.001 and ω1 =

8× 2π. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.11 Bode diagrams of sensitivity functions without the disturbance

observer (’W/O DOB’) and with the disturbance observer with

Qp
type−1(s) (‘DOB with Qp

type−1(s)’), Q
p
type−2(s) (‘DOB with Qp

type−2(s)’),

Qp
type−3(s) (‘DOB with Qp

type−3(s)’), Q
p
IM (s) (‘DOB with Qp

IM (s)’),

and Qp
type−4(s) (‘DOB with Qp

type−4(s)’) when τ = 0.1 and ω1 = 2π. 42

3.12 Bode diagrams of loop transfer functions without the disturbance

observer (’W/O DOB’) and with the disturbance observer with

Qp
type−1(s) (‘DOB with Qp

type−1(s)’), Q
p
type−2(s) (‘DOB with Qp

type−2(s)’),

Qp
type−3(s) (‘DOB with Qp

type−3(s)’), Q
p
IM (s) (‘DOB with Qp

IM (s)’),

and Qp
type−4(s) (‘DOB with Qp

type−4(s)’) when τ = 0.1 and ω1 = 2π. 42

3.13 Bode diagrams of Qb
type−1(s), Qb

type−2(s), Qb
type−3(s), Qb

IM (s), and

Qb
type−4(s) when τ = 0.1 and ω1 = 2π. . . . . . . . . . . . . . . . . 43

3.14 Bode diagrams of Qp
type−1(s), Q

p
type−2(s), Q

p
type−3(s), Q

p
IM (s) , and

Qp
type−4(s) when τ = 0.1 and ω1 = 2π. . . . . . . . . . . . . . . . . 43

4.1 Structure of the disturbance observer control system. The shaded

region represents the real plant P (s) augmented with the distur-

bance observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Newton diagram for δ(s; τ) in (4.1.6) when r.deg(P ) > r.deg(Pn)

(i.e., mβ > mα). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Newton diagram for δ̂(ŝ; τ̂)/τ̂ l+1. . . . . . . . . . . . . . . . . . . . 57

4.4 Newton diagram for the case r.deg(P ) < r.deg(Pn). . . . . . . . . . 58
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Chapter 1

Introduction

1.1 Motivation

The primary objective of control may be to make a system response satisfy a given

specification such as the overshoot, settling time, steady-state error between the

reference input and system output, and so on [DFT92, Che99, SSJH02, FPEN06],

When there is no modeling error (i.e., information about an actual plant is com-

pletely known a priori.), it is easy to achieve the given specification by a simple

unity feedback control system shown by Fig. 1.1 (a). In this figure1, Pn(s) and

C(s) denote a nominal model obtained from information about the plant and

controller, respectively, and the signals r and y represent the reference input and

plant output, respectively. The controller C(s) is designed based on the nominal

model Pn(s) to achieve the given specification. Then, the plant output is simply

computed as, for all ω ∈ [0,∞),

y(jω) =
Pn(jω)C(jω)

1 + Pn(jω)C(jω)
r(jω) (1.1.1)

since Pn(s) equals to the actual plant. Thus, one can obtain the desired system

response merely by selecting appropriate C(s).

However, it is impossible to obtain a precise mathematical model from the ac-

tual plant because there are some limitations2 to obtain exact information about
1For simplicity, we assume that an actual plant is a single-input single-output (SISO) linear

time-invariant system. More general class of systems will be discussed in Chapter 8.
2In general, when the nominal model is derived from the system identification method, the

1



2 Chap. 1. Introduction

+−

(a)

+−

(b)

Figure 1.1: (a) The nominal closed-loop system with Pn(s) and (b) The ac-
tual closed-loop system with Pf(s)

the actual plant. Moreover, in real control situation, the existence of the distur-

bance3 and measurement noise is also inevitable. Here, an actual closed-loop sys-

tem under such situation is described as Fig. 1.1 (b). The actual plant is denoted

by P (s) and the input signals d and n denote the disturbance and measurement

noise, respectively.

If there exists a modeling error, then P (s) is no longer eqaul to Pn(s). Hence, it

is not easy to accomplish the primary control objective and the situation becomes

much worse because of the existence of the disturbance and sensor noise as well

as the modeling error. Therefore, the secondary control objective may be to

compensate the effect of plant uncertainties, disturbance, and noise as much as

possible so that the control system behaves approximately like the nominal one

depicted in Fig. 1.1 (a).

Designing controllers to compensate the effect of plant uncertainties and dis-

turbances have been one of the major issues in control fields, and many useful

solutions such as robust output regulation [Dav76, FW76, Isi95, Hua04], H2/H∞

control [DGKF89, ZD98], sliding mode control [Utk92], adaptive control [NA89,

IS96, YAMT97], disturbance accommodation controller [Joh71, Joh86], propor-

tional integral observer [JWS00, KRK10, SK10], disturbance observer [Ohn87],

and so on, are available in the literature.

obtained data is contaminated by the measurement error, parameter variations, and unexpected
unmodeled dynamics. Therefore, the modeling error, the difference between the actual plant
and its nominal model, is an unavoidable element in the controller design task.

3The disturbance is defined as external signals caused by unexpected environment. In general,
there are two main sources of the disturbance: 1) unknown or unpredictable external inputs
such as friction, load torque, nonlinearity, and so on, [AHDW94, OÅdW+98, MÖ05, MGÖ08],
2) unknown exogenous input generated by an exosystem [Joh71, MGB06, CLP06]. Sometimes,
the modeling error is also considered as the disturbance.
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Figure 1.2: The closed-loop system with the disturbance observer structure
(shaded block).

Among various robust control schemes, in mechatronics (see, e.g., [Tom96a,

Tom96b]), the disturbance observer has been recognized as a powerful tool for ro-

bust control due to its simple structure and ability for disturbance rejection. In ad-

dition, it is flexible because it constitutes an inner-loop, that is, merely by adding

disturbance observer feedback in the inner-loop, the conventional (outer-loop)

feedback design is enabled without taking into account the effects from distur-

bances and uncertainties. Since its introduction in 1987 [Ohn87], the disturbance

observer has been widely applied to industrial applications such as motor control

[UH91, YCS09, KT13], robot manipulator [UH93, OC99, KMH00, ESC01, SD02,

KIO08, BSPS10], positioning table [LT96, EKK+96, KK99, TLT00, KC03b], op-

tical disk drive [CYC+03, KC03a, WT04], hard disk drive [IT98, HM98, YT99,

WTS00, YCC05], automotive vehicle [GG02, GGK09], power-assisted wheelchair

[OHH08, OOH10], to name only a few. In this dissertation, we focus our attention

on the disturbance observer to analyze and extend its properties.

Fig. 1.2 describes a basic configuration of disturbance observer based control

system. Roughly speaking, the disturbance observer compares the control input

we apply to the plant with an estimate of the actual input which refers to the

control input together with the disturbance, and we estimate it by passing the

system output to an inverse model of the plant. The difference between the control

input and the estimate we obtain will be similar to the disturbance, and we can
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use this signal to estimate the disturbance and generate a compensating signal if

needed. In practice, a low pass filter called Q-filter is added in the loop to make

the idea implementable, and the coefficients of Q-filter are design parameters. It

is noted that the external disturbance and plant uncertainties are lumped into the

disturbance, which means that the disturbance observer can provide robustness

against plant uncertainty as well.

Compared with many success stories in industry, theoretic analysis on the

disturbance observer itself has attracted relative little attention. One of reasons

might be that the original idea of [Ohn87], explained for a simple mechanical

model using transfer functions, has already clear intuitive justification. Thus,

regarding the design and analysis of the closed-loop system with the disturbance

observer, most researches employ the frequency domain tools. As a result, the

class of systems under consideration is limited to linear systems (in fact, usu-

ally second order systems are considered) and the existing robust stability con-

ditions are mainly based on the small-gain theorem, which are therefore conser-

vative [UH93, Tom96a, GG01, CYC+03, KT13]. Several trials have been per-

formed to design and to analyze the disturbance observer in view of well-known

frameworks such as H∞ control [CCY96, MHMZ98, WT04], sliding mode control

[KCO02], unknown input observer [SD02], passivity-based approach [BT99], and

so on. However, the behavior and design methodology of individual blocks in the

disturbance observer structure and the possibility of extension to more general

class of systems (e.g., time-varying linear plants, nonlinear plants, and nonmini-

mum phase plants) have not been clarified yet.

In this dissertation, under an assumption that the bandwidth of Q-filter is

enough large (we shall maintain this assumption throughout this dissertation

since it make the observation about the behavior of each pole and dynamics of

the closed-loop system more easy.), we will rigorously analyze the stability and

performance of disturbance observer based control system both in the frequency

and time domain. In the frequency domain, we will review the robustness of the

disturbance observer and an almost necessary and sufficient condition for robust

stability. Afterward, by embedding the internal model, a disturbance observer

with modified Q-filter structure will be proposed to enhance the disturbance re-
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jection performance. And then, we will study the robustness of the disturbance

observer for the case that the relative degree of the plant is unknown. As a coun-

terpart, in the time domain, we will represent the closed-loop system with dis-

turbance observer as the singular perturbation form to enlighten the behavior of

each block of the disturbance observer structure and extend its applications to

more general class of systems. Then, with respect to the bandwidth of Q-filter,

the robust stability and nominal performance recovery of disturbance observer

based control scheme with and without unmodeled dynamics will be discussed.

Finally, the robust transient as well as steady-state performance recovery of non-

linear disturbance observers will be further discussed.

1.2 Contributions and Outline of the Dissertation

This dissertation is composed of two parts with respect to their representations.

Throughout Chapter 2–5, the analysis is based on the frequency domain approach,

whereas the remainder part is analyzed in the state-space. The contributions of

each chapter and the organization of this dissertation are as follows:

Chapter 2. Robust Stability for Closed-loop System with Disturbance

Observer

As a first step, we introduce the structure of the disturbance observer and review

its disturbance rejection performance and robust stability under plant uncertain-

ties. In addition, a condition for robust stability (in some sense, it is almost

necessary and sufficient) is presented. The analysis on robust stability for the

disturbance observer based control system in this chapter is owed to [SJ09].

Chapter 3. Embedding Internal Model in Disturbance Observer with

Robust Stability

In this chapter, we consider a design problem of disturbance observer to achieve

the asymptotic disturbance rejection in view of the internal model principle al-

though the conventional disturbance observer merely compensates the disturbance

approximately. This chapter is based on the results in [PJSB12, JPBS14] and the

contributions of this chapter are as follows:
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• We propose a design method for the disturbance observer to embed the

internal model of disturbance for rejecting the disturbance asymptotically.

• We present an almost necessary and sufficient condition for robust stability

of the proposed disturbance observer based control system.

• For plant uncertainties belong to an arbitrarily large compact set, a con-

structive design procedure to satisfy the proposed stability condition is pro-

vided.

• As a practical example, a simulation for a mechanical positioning system

for X-Y table is performed to verify the performance of the proposed dis-

turbance observer.

Chapter 4 Disturbance Observer with Unknown Relative Degree of the

Plant

This chapter deals with the robust stability of the disturbance observer based

control system when the relative degree of plant is not exactly known. Most of

this chapter is based on [JJSS12, JJS14] and the contributions of this chapter are

summarized as

• We analyze the robust stability for the closed-loop system with the distur-

bance observer when the relative degree of the plant is not equal to that of

its nominal model.

• We provide a robust stability condition for the case that the difference be-

tween the relative degree of the plant and that of its nominal model is equal

to 1.

• A universal design method for the disturbance observer is proposed when

the relative degree of the plant is less than or equal to 4.

Chapter 5 Reduced Order Type-k Disturbance Observer under Gener-

alized Q-filter Design

The main objective of this chapter is to extend the disturbance observer structure

proposed in Chapter 2 and 3 for obtaining an understanding of the role of each
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block and reducing the order of disturbance observer structure. The contributions

of this chapter are listed as follows.

• Based on the observation about the role of each filter, we generalize a Q-

filter design scheme and derive a robust stability condition.

• We propose a reduced order type-k disturbance observer in the viewpoint

of the generalized Q-filter design scheme.

• We present a Q-filter design procedure guaranteeing the proposed stability

condition.

• To clarify the validity of the proposed disturbance observer, a simulation is

performed.

Chapter 6 State Space Analysis of Disturbance Observer

In this chapter, based on the singular perturbation theory, we analyze the dis-

turbance observer in the state space to get a deeper understanding of the be-

havior of each block in its structure and possibilities to enlarge the horizon of

its applications. In addition, we show that the disturbance observer can recover

the nominal performance in the presence of disturbances and plant uncertainties.

Some parts of this chapter are based on [SJ07]. The contributions of this chapter

are summarized as follows:

• We represent the disturbance observer based control system as a singular

perturbation form by the state space realization.

• We enlighten several aspects of the disturbance observer not well discussed

in the frequency domain approach.

• Based on the Lyapunov stability analysis, the robust stability and nominal

performance recovery with respect to the time constant of Q-filter is dis-

cussed.

Chapter 7 Nominal Performance Recovery and Stability Analysis for

Disturbance Observer under Unmodeled Dynamics
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This chapter focus on the robust stability and nominal performance recovery

of the closed-loop system with the disturbance observer under fast unmodeled

dynamics, which is a counterpart of the results in Chapter 4. The contributions

of this chapter are as follows:

• We present the robust stability of the disturbance observer based control

scheme under the fast unmodeled dynamics using the multi-parameter and

multi-time-scale singular perturbation theory.

• We provide that the robust stability and nominal performance of distur-

bance observer under unmodeled dynamics with respect the bandwidth of

Q-filter.

Chapter 8 Extensions of Disturbance Observer for Guaranteeing Ro-

bust Transient Performance

In this chapter, we review extensions of disturbance observer to multi-input multi-

output (MIMO) nonlinear systems. Furthermore, the robust transient perfor-

mance recovery of nonlinear disturbance observer with saturating functions is

also discussed. Most of this chapter is based on [BS08, BS09].

Chapter 9. Conclusions

This dissertation concludes with some remarks.



Chapter 2

Robust Stability for Closed-loop
System with Disturbance Observer

Since its simple structure and powerful ability for disturbance rejection, the dis-

turbance observer has been widely applied to industurial applications. In this

chapter, we introduce the basic concept and structure of the classical disturbance

observer and review a condition for guaranteeing robust stability of the distur-

bance observer based control system. Finally, in order to verify the validity of the

robust stability condition and the disturbance rejection performance, simulations

for a mechanical system are presented. The results of this chapter are mainly

based on [SJ09].

2.1 Structure of Disturbance Observer

The disturbance observer structure (shaded block) with the outer-loop controller

C(s) is shown in Fig. 2.1. The actual plant, denoted by P (s), is a single-input

single-output linear time-invariant system with the relative degree1 ν ≥ 1 and the

nominal model for P (s) is denoted by Pn(s). The component Q(s), known as the

’Q-filter’, is a stable low-pass filter. The outer-loop controller C(s) is designed for

Pn(s) without taking plant uncertainties and/or disturbances into account.

We make the following assumption for the plant.

1In the transfer function, the relative degree means that the difference between the degree of
the numerator and denominator. For more detailed definition, see [Kha02]

9
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
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Figure 2.1: The closed-loop system with the disturbance observer structure
(shaded block).

Assumption 2.1.1. The plant P (s) belongs to a set P defined by

P =
{βn−νs

n−ν + βn−ν−1s
n−ν−1 + · · ·+ β0

αnsn + αn−1sn−1 + · · ·+ α0
:

αi ∈ [αi, αi], βj ∈ [β
j
, βj ], i = 0, . . . , n, j = 0, . . . , n− ν

} (2.1.1)

where αi, αi, βj
, and βj are known constants, the intervals [αn, αn] and [β

n−ν
, βn−ν ]

do not contain zero2, and βi’s are such that βn−νs
n−ν + · · ·+ β0 is Hurwitz (i.e.,

P consists of minimum phase plants). �

In fact, the order of nominal model Pn(s), n̄, may not equal to n. However,

one must choose Pn(s) such that the relative degree of Pn(s) is equal to that of

P (s)3, minimum phase plant, and βn
n̄−ν/α

n
n̄ has the same sign as βn−ν/αn where

both βn
n̄−ν and αn

n̄ are nominal values of βn−ν and αn, respectively. For simplicity,

we assume that Pn(s) also belongs to the set P (i.e., n = n̄).

The Q-filter is generally designed as [UH93, LT96, CYC+03]

Q(s) =
ck(τs)

k + · · ·+ c0
(τs)l + al−1(τs)l−1 + · · ·+ a1(τs) + a0

(2.1.2)

2It implies that the relative degree, ν, and the sign of the high frequency gain, βn−ν/αn, of
the plant are known a priori and do not changed.

3The general case when the relative degree of Pn(s) is different from that of P (s) will be
discussed in Chapter 4 and 7.
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where c0 = a0 and l − k ≥ ν so that the Q-filter has a unity DC gain and the

transfer function Q(s)Pn(s)
−1 becomes proper. All the ai’s should be chosen such

that the polynomial sl + al−1s
l−1 + · · · + a0 is Hurwitz. The design parameter

τ > 0 is a time constant, which determines the cut-off frequency of Q-filter.

In Fig. 2.1, the reference input r, the input disturbance d, the output dis-

turbance σ, and the measurement noise n are the input signals of the closed-loop

system. In general, it is assumed that the disturbances d and σ are dominant

in the low frequency range, while the noise n is dominant in the high frequency

range. With these signals, the output y of the closed-loop system becomes

y(s) = Tyr(s)r(s) + Tyd(s)d(s) + Tyσ(s)σ(s) + Tyn(s)n(s) (2.1.3)

where

Tyr(s) :=
P (s)Pn(s)C(s)

Q(s)(P (s)− Pn(s)) + Pn(s)(1 + P (s)C(s))
,

Tyd(s) :=
P (s)Pn(s)(1−Q(s))

Q(s)(P (s)− Pn(s)) + Pn(s)(1 + P (s)C(s))
,

Tyσ(s) :=
Pn(s)(1−Q(s))

Q(s)(P (s)− Pn(s)) + Pn(s)(1 + P (s)C(s))
,

Tyn(s) := − P (s)(Pn(s)C(s) +Q(s))

Q(s)(P (s)− Pn(s)) + Pn(s)(1 + P (s)C(s))
.

By construction, we have that Q(jω) ≈ 1 in the low frequency range. Therefore, it

follows that Tyr(jω) =
Pn(jω)C(jω)

1+Pn(jω)C(jω) , Tyd(jω) ≈ 0, and Tyσ(jω) ≈ 0. In addition,

we can ignore the noise n(jω) since it is dominant in the high frequency range.

Therefore, the equation (2.1.3) is approximated as

y(jω) ≈ Pn(jω)C(jω)

1 + Pn(jω)C(jω)
r(jω).

This implies that, in the low frequency range, the closed-loop system with

the disturbance observer structure behaves as the nominal closed-loop system in

the absence of uncertainties and disturbances. In other words, in spite of the

existence of disturbances and uncertainties, the disturbance observer recovers the

nominal performance. Here, the nominal performance means the performance of



12 Chap. 2. Robust Stability

the nominal closed-loop system Pn(s)C(s)/(1+Pn(s)C(s)) without the input and

output disturbances. It is important to notice that the above property is only valid

when the closed-loop system is internally stable. A condition for robust internal

stability of the closed-loop system will be presented in the following section. (See

[SJ07, BS08, SJ09] for more details.)

2.2 Robust Stability Condition for Closed-loop System

with Disturbance Observer

Now, we present a condition for robust stability of the closed-loop system in Fig.

2.1. From Fig. 2.1, the transfer function matrix from [r, d, σ, n]T to [e, ū, ȳ, y]T is

computed as

1

∆(s)


Q(P − Pn) + Pn −PPn(1−Q) −Pn(1−Q) −Pn(1−Q)

PnC Pn(1−Q) −(PnC +Q) −(PnC +Q)

PPnC PPn(1−Q) Pn(1−Q) Pn(1−Q)

PPnC PPn(1−Q) Pn(1−Q) −P (PnC +Q)


where ∆(s) := Q(s)(P (s)−Pn(s))+Pn(s)(1+P (s)C(s)). If this transfer function

matrix is stable, then the closed-loop system is said to be internally stable. For

convenience, one can represent P , Pn, C, and Q as the ratios of coprime poly-

nomials: P (s) = N(s)/D(s), Pn(s) = Nn(s)/Dn(s), C(s) = Nc(s)/Dc(s), and

Q(s) = Nq(s; τ)/Dq(s; τ). Note that, in order to express the explicit dependency

of τ , Nq(s; τ) and Dq(s; τ) will be used instead of Nq(s) and Dq(s), respectively.

With this notation, for given τ > 0, the characteristic polynomial

δ(s; τ) := DcNq(DnN −DNn) +NnDq(DDc +NNc) (2.2.1)

is Hurwitz if and only if the closed-loop system is internally stable [SJ09]4. The

closed-loop system is said to be robustly internally stable if δ(s; τ) is Hurwitz for

all P (s) ∈ P.
4In fact, unfortunately, this claim (δ(s; τ) is Hurwitz if and only if the closed-loop system is

internally stable) in [SJ09] may not be true by the pole/zero cancellation. However, if Pn(s) is
of minimum phase and C(s) internally stabilizes Pn(s), then the above claim is true.
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Altough effects of the measurement noise on the overall performance are re-

lated to the bandwidth of Q-filter, it is not relevant to robust stability of the

closed-loop system. Therefore, regardless of the effect of noise, we focus on the ro-

bust stability and performance for rejecting disturbances and compensating model

uncertainties under an assumption that the bandwidth of Q-filter is enough large.

To deal with the performance of disturbance observer with respect to the noise,

noise reduction disturbance observers were proposed in [JS13, HKJ+13].

Let us introduce the polynomial pf (s) given by

pf (s) := Dq(s; 1) +

(
lim
s→∞

P (s)

Pn(s)
− 1

)
Nq(s; 1). (2.2.2)

By denoting P (s) = (
∑n−ν

j=0 βjs
j)/(

∑n
i=0 αis

i) and Pn(s) = (
∑n−ν

j=0 βn
j s

j)/(
∑n

i=0 α
n
i s

i)

whose coefficients αn
i and βn

j are the nominal values of αi and βj , respectively, the

polynomial pf (s) is rewritten as

pf (s) = sl + al−1s
l−1 + · · ·+ ak+1s

k+1

+

(
ak +

g − gn
gn

ck

)
sk + · · ·+

(
a0 +

g − gn
gn

c0

) (2.2.3)

where g := βn−ν/αn and gn := βn
n−ν/α

n
n. In fact, g and gn are the high frequency

gains of P (s) and Pn(s), respectively. By Assumption 2.1.1, there exist positive

constants g and g such that g and gn belong to the interval [g, g].

It is important to note that, even if the output disturbance is not taken into

account, the characteristic polynomial (2.2.1) of the closed-loop system remains

unchanged compared with [SJ09]. Hence, the following theorem, which was pro-

posed in [SJ09] also presents a condition for robust internal stability of the closed-

loop system even though we consider both the input and output disturbances.

Theorem 2.2.1. [SJ09] Under Assumption 2.1.1, there exists a constant τ > 0

such that, for all 0 < τ ≤ τ , the closed-loop system is robustly internally stable

if the following two conditions hold:

1. C(s) internally stabilizes Pn(s),

2. pf (s) is Hurwitz for all P (s) ∈ P.
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On the contrary, there is τ > 0 such that, for all 0 < τ ≤ τ , the closed-loop

system is not robustly internally stable if at least one of the conditions 1–2 is

violated in the sense that PnC/(1 +PnC) has some poles in C+, or some zeros of

P (s) or some roots of pf (s) = 0 are located in C+ for some P (s) ∈ P. �

Remark 2.2.1. Theorem 2.2.1 is not able to determine robust internal stability

when some poles of PnC/(1+PnC), or some zeros of P (s), or some roots of pf (s) =

0 are located on the imaginary axis in the complex plane, but the remaining poles,

zeros, and roots are located in C−. See [JJS11, JJSS12, JJS14] for more about

such cases. If we exclude such situations, the conditions 1–2 are not only sufficient

but also necessary for robust internal stability. In this sense, we call Theorem 2.2.1

as an almost necessary and sufficient condition for robust stability. �

Theorem 2.2.1 explains interesting points of the disturbance observer based

control scheme under the assumption that the time constant τ is sufficiently small.

Firstly, it reveals that the minimum phaseness of the plant is one of the necessary

conditions for internal stability in the classical disturbance observer5. Secondly,

if P (s) is of minimum phase and C(s) is already designed to internally stabilize

Pn(s), then condition 2 in Theorem 1 indicates whether the closed-loop system

is stable or not. Hence, pf (s) plays an important role for guaranteeing robust

stability of the closed-loop system under plant uncertainties. In other words, the

robust stability is mainly determined by the coefficients ai, ci, and the variation

of g. If the variation of g around its nominal value gn is small enough, then,

due to the continuity of roots with respect to the coefficients of the equation,

the polynomial pf (s) remains Hurwitz for small perturbation of g provided that

sl + al−1s
l−1 + · · · + a1s + a0 is Hurwitz (i.e., the Q-filter of the form (2.1.2)

is stable). This explains why the disturbance observer based control system is

known to be robust under small parametric uncertainties.

However, for large uncertainties, the coefficients ai’s need to carefully be se-

lected. Although it seems difficult to achieve, under Assumption 2.1.1, one can

always select ai and ci of Q-filter such that pf (s) is Hurwitz. Here, we provide
5However, the non-minimum phase systems are often met in applications. Therefore, a trial

had been made to apply the disturbance observer approach to non-minimum phase linear systems
[JSS10].
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one way to design the coefficients of Q-filter. If one select k = 0, then pf (s) is

reduced as

pf (s) = sl + al−1s
l−1 + · · ·+ a1s+

g

gn
a0. (2.2.4)

Now, we propose a design procedure so that pf (s) in (2.2.4) to be Hurwitz.

Procedure 1. Q-filter Design Procedure for Robust Stability

Step 0: Choose the coefficients al−1, . . . , a1 such that the polynomial

sl−1 + al−1s
l−2 + · · ·+ a1

is Hurwitz.

Step 1: From Lemma A. 3 in Appendix, there exists γ0 such that the polyno-

mial

sl + al−1s
l−1 + · · ·+ a1s+ γ0

is Hurwitz for all γ0 ∈ (0, γ0). Then, select a0 < (gn/g)γ. �

By the proposed procedure, we can choose the coefficients ai’s such that pf (s)

in (2.2.4) is Hurwitz for all g ∈ [g, g]. More general design procedure for pf (s) in

(2.2.3) to satisfy the condition 2 in Theorem 2.2.1 will be discussed in Chapter 3.

Now, we investigate the physical meaning of pf (s) by the following remark.

Remark 2.2.2. Consider a second-order mechanical system as follows:

P (s) =
1

Js2 +Bs
(2.2.5)

where J is a moment of inertia and B is a viscous friction coefficient. From

(2.2.5), the uncertain parameter in pf (s) is 1/J . Therefore, the inertia variation

determines whether pf (s) is Hurwitz or not. It is important to notice that, from

the viewpoint of physical interpretation, pf (s) explains the well-known fact that

the robust stability mainly depends on the inertia variation for the mechanical

systems, which is pointed out in [KC03b, KKO07]. �
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2.3 Illustrative Example

In order to verify the robust stability condition proposed in Theorem 2.2.1 and

the disturbance rejection performance of the disturbance observer, simulations

are performed for a mechanical system of the form

P (s) =
1

Js2 +Bs

where the moment of inertia J and the viscous friction B belong to the intervals

[0.1, 1] and [8, 12], respectively. We consider its nominal model as follows:

Pn(s) =
1

Jns2 +Bns

where Jn = 1 and Bn = 8. Note that gn = 1 and g ∈ [g, g] where g = 1 and

g = 10. The outer-loop controller C(s) is designed as a simple proportional

controller C(s) = 25 so that the nominal closed-loop system becomes

Pn(s)C(s)

1 + Pn(s)C(s)
=

52

s2 + 2× 0.8× 5s+ 52
.

The Q-filter with binomial coefficients for disturbance observer is selected as

Qb(s) =
1

(τs)3 + 3(τs)2 + 3(τs) + 1
.

Fig. 2.2 shows the step responses of three cases: nominal closed-loop system

in the absence of disturbance (‘Nominal response’), nominal closed-loop system in

the presence of d(t) = 5 sin(2πt) (‘W/O DOB’), and nominal closed-loop system

with the disturbance observer with Qb(s) in the presence of disturbance (‘W/

DOB’). From the figure, it is seen that the disturbance observer compensates the

effect of disturbance and recovers the nominal performance.

Now, we focus on the nominal performance recovery by the disturbance ob-

server with respect to the time constant τ of Q-filter. Fig. 2.3 shows the error

between the step response of the nominal closed-loop system in the absence of

disturbance, which is shown in Fig. 2.2 and that of the actual closed-loop system

with the disturbance observer for τ = 0.01 and τ = 0.001. It is clearly observed
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Figure 2.2: Step responses of the nominal closed-loop system in the absence
of disturbance (‘Nominal response’), the nominal closed-loop sys-
tem in the presence of the disturbance d(t) = 5 sin(2πt) (‘W/O
DOB’), and the nominal closed-loop system with the disturbance
observer with Qb(s) in the presence of the disturbance (‘W/
DOB’) when τ = 0.01.

0 1 2 3 4 5 6 7 8 9 10
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

time (sec)

E
rr

or

 

 

Time constant τ = 0.01
Time constant τ = 0.001

Figure 2.3: The error between the step response of the nominal closed-loop
system and that of the actual closed-loop system with the distur-
bance observer with Qb(s) for the time constant τ = 0.01 (’Time
constant τ = 0.01’) and τ = 0.001 (’Time constant τ = 0.001’)
when J = 1 and B = 8.
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Figure 2.4: The error between the step response of the nominal closed-loop
system and that of the actual closed-loop system with the distur-
bance observer with Qb(s) (’DOB with Qb(s)’) and Qp(s) (’DOB
with Qp(s)’) when J = 0.1 and B = 11.3.

that the difference between the output of the nominal closed-loop system and that

of the actual closed-loop system becomes smaller (i.e., the nominal performance

is recovered) as τ gets smaller [CYC+03, BS08]. More explicit relation between

the nominal performance recovery and τ will be discussed in Section 6.4.

Finally, the robust stability condition of Theorem 2.2.1 for the closed-loop

system with the disturbance observer under parametric uncertainties is explored.

To guarantee robust stability, we select the coefficients of Q-filter such that pf (s)

is Hurwitz for all g ∈ [1, 10]. Following Procedure 1, we select l = 3, a2 = 3,

and a1 = 3 so that s2 + a2s + a1 is Hurwitz. Using the root-locus plot, we take

γ0 = 9 such that s(s2 + a2s + a1) + γ0 is Hurwitz for all γ0 ∈ (0, γ0). Choose

a0 = 0.89 ∈ (0, (gn/g)γ0). Then, the proposed Q-filter is designed as

Qp(s) =
0.89

(τs)3 + 3(τs)2 + 3(τs) + 0.89
.

From Fig. 2.4, when J = 0.1 and B = 11.3, it can be seen that the closed-loop

system with the disturbance observer with Qb(s) becomes unstable since pf (s) is

not Hurwitz. It is remarked that the proposed disturbance observer with Qp(s)

works well because it is designed considering plant uncertainties.



Chapter 3

Embedding Internal Model in
Disturbance Observer with Robust
Stability

Design problems for disturbance rejection controllers are mainly classified into

two types. Inspired by the internal model principle [Dav76, FW76], one approach

is to design a controller so as to embed an internal model of disturbances into

its structure and generate a corresponding input signal for compensating the dis-

turbance when the disturbance is modeled as an output of a differential equation

whose initial condition is unknown. Following this idea, asymptotic disturbance

rejection has been achieved by output regulator [Isi95, Hua04], disturbance ac-

commodation controller [Joh71], proportional integral observer [JWS00, SK10],

and so on. Although the disturbance model is required, it has the benefit of exact

cancellation of the disturbances in the steady state.

The other approach is to suppress the effect of disturbances, rather than

asymptotically cancel them, so that the disturbance rejection is just approximate.

One popular control method is based on the disturbance observer. Since the

disturbance observer based control has a simple structure for implementation,

while it has strong disturbance rejection ability, it has been widely applied in

many applications. As discussed in Chapter 2, however, due to lack of disturbance

model in the control loop, it rejects the disturbance approximately rather than

asymptotically.

In many applications, the disturbance can be modeled such as step, ramp,

19
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sinusoidal, and so on [Dav76]. When the disturbance model is known, based on

the internal model principle, a disturbance observer, called ’high order disturbance

observer’, which can reject a polynomial-in-time type disturbance (d0+d1t+ · · · )
has been already developed [YKIH96, YKMH96, YKIH97, YKMH99, KMH00].

They impose certain restriction on the structure of Q-filter to embed the internal

model. Although successful to embed the internal model and to derive a robust

stability condition [YKMH99], the stability condition is restrictive in the sense

that the plant uncertainty allowed is limited by the reciprocal of H∞ norm of

complementary sensitivity function, and the results are mainly for the second

order systems. Moreover, as the order of disturbance observer (equivalently, the

degree of the numerator of Q-filter) grows, this condition tends to be violated

[YKIH96].

In this chapter, our concern is to enhance the disturbance rejection perfor-

mance of the conventional disturbance observer by embedding the internal model

assuming that the disturbance model is available. In particular, this chapter

shows that the linear disturbance model can be embedded in the so-called Q-filter

of the conventional disturbance observer structure, and moreover, the remaining

design freedom of Q-filter can be used to robustly stabilize the closed-loop system

that has uncertain parameters of arbitrarily large variation. As a result, the pro-

posed disturbance observer based controller can reject not only approximately the

unmodeled disturbances but also asymptotically the disturbances of sinusoidal or

polynomial-in-time type. Details on the contributions of this chapter are listed

below and the results are based on [PJSB12, JPBS14].

• A design method for the disturbance observer to embed the internal model

including the sinusoidal as well as the polynomial-in-time type disturbance

is proposed. It implies that the disturbance observer can reject not only the

bounded low frequency disturbance approximately but also the modeled

disturbance asymptotically.

• A modified almost necessary and sufficient robust stability condition is de-

rived for the proposed disturbance observer. It is an extension of the previ-

ous result in Theorem 2.2.1 and deals with the case that the coefficients of
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Q-filter are not only a constant but also a polynomial depending on a time

constant of Q-filter. It is emphasized that the robust stability condition is

almost necessary and sufficient, and the uncertain parameters of the plant

are allowed to belong to an arbitrarily large (but bounded) compact set.

• A systematic design procedure for Q-filter to satisfy the robust stability con-

dition is proposed. In order to develop the design procedure, we first con-

struct an interval polynomial, which characterizes stability of the closed-

loop system, from the coefficients of Q-filter and the bounds of plant un-

certainties. Then, this polynomial reduces the robust stability problem as

the selection of the coefficients of Q-filter to make the polynomial Hurwitz

for all uncertain parameters. To solve this problem, we employ Kharitonov

theorem [BCK95] and exploit the structure of the polynomial to show that

appropriate coefficients can always be chosen step by step. It is remarked

that, compared to previous result in Procedure 1, the proposed design pro-

cedure provide more flexibility since it does not restrict the degree of Q-

filter.

3.1 Design Method for Embedding Internal Model of

Disturbance

As discussed in Chapter 2, the disturbance observer can reject disturbances ap-

proximately. In fact, the effects of disturbances are reduced as the Q-filter’s time

constant τ goes to zero [CYC+03, BS08] (It will be also discussed in Section 6.4).

However, it may make the closed-loop system unstable in the presence of un-

modeled dynamics [JJSS12, JJS14] and increase the effect of measurement noise

[KK99, CYC+03]. Thus, in real applications, there are certain limitations on the

disturbance rejection performance that can be achieved by reducing τ .

While approximate rejection of disturbances might be the best when a model

generating the disturbance is not known, let us now explore for exact rejection

with knowledge of the disturbance model. The conceptual answer has already

been given by the well-known internal model principle, e.g., in [FW76]. The actual

question here is where and how to embed the internal model of disturbances in the
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Figure 3.1: The closed-loop system with the disturbance observer structure
(dotted-line block).

disturbance observer structure of Fig. 3.1. This embedding should preserve the

conventional behavior of the disturbance observer such as approximate rejection of

unmodeled low frequency disturbances, and should enable the selection of Q-filter

such that the closed-loop system is robustly stable, which was the case discussed

in Chapter 2.

In order to endow the disturbance observer with this ability, we consider the

transfer functions Tyd(s) and Tyσ(s) in (2.1.3) which are transfer functions from

the disturbances d and σ to the output y, respectively. We represent them as

Tyd(s) =
Dc(s)N(s)Nn(s)(Dq(s; τ)−Nq(s; τ))

δ(s; τ)
,

Tyσ(s) =
Dc(s)D(s)Nn(s)(Dq(s; τ)−Nq(s; τ))

δ(s; τ)

(3.1.1)

where

δ(s; τ) := Nn(DDc +NNc)Dq +NqDc(DnN −DNn). (3.1.2)

Note that the polynomials regarding P , Pn, and C are already given from the

problem, and thus, we may need to embed the internal model utilizing two poly-

nomials Dq and Nq. Since the effects of Dq and Nq on Tyd(s) and Tyσ(s) are the

same, we can omit the detailed analysis of the output disturbance σ from now on.

Now, we make the following assumption for the disturbance.
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Figure 3.2: Equivalent block diagram of the DOB structure in Fig. 3.1.

Assumption 3.1.1. The input disturbance d(t) has the form1 of

d(t) = d̄(t) +

kt∑
i=0

dit
i +

ks∑
j=1

σj sin(ωjt+ φj)

=: d̄(t) + d̃(t)

(3.1.3)

where kt ≥ 0 and ks ≥ 1 are known integers, di, σj , and φj are unknown constants

while the frequencies ωj > 0 are known such that ωj ̸= ωj̄ for j ̸= j̄, and d̄(t) is

an unknown but bounded signal whose time derivative is also bounded. �

Laplace transform of the disturbance component d̃(t) has the form of d̃(s) =∑kt
i=0 d

∗
i /s

i+1+
∑ks

j=1(σ̃js+ σ̄j)/(s
2+ω2

j ) where d∗i , σ̃j , and σ̄j are some constants.

The observation with (2.1.3), (3.1.1), and (3.1.2) suggests that if we find the

coefficients of Dq and Nq so that Dq − Nq contains skt+1Πks
j=1(s

2 + ω2
j ) and if

the polynomial δ(s; τ) in (3.1.2) is Hurwitz, then the effect of disturbance d̃(t)

is completely rejected from the response y(t) in the steady state. Note that this

can also be viewed as the internal model principle [FW76]. In fact, an equivalent
1In general, the disturbance is considered as unknown system input including friction, torque

ripple, modeling errors, and so on. However, in some applications, one can choose a suitable
disturbance model when some information of disturbance is given [Joh71]. Therefore, it is
possible to divide the disturbance into two parts: one part is an unknown but bounded low
frequency disturbance and the other one is an output of a differential equation whose initial
condition is unknown. Therefore, if the model of disturbance is given and the disturbance
observer is designed to include the disturbance model, then the effects of modeled disturbance
should be asymptotically reduced to zero, regardless of τ , by the internal model principle.
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block diagram of the disturbance observer is shown in Fig. 3.2. One can see that

the rational function 1/(skt+1Πks
j=1(s

2 + ω2
j )), which is the internal model of d̃(t),

is embedded in the block 1/(1−Q) = Dq/(Dq −Nq).

We now investigate how to design Dq and Nq to embed the internal model of

disturbance. For this, it is sufficient to find the coefficients satisfying

Dq(s; τ)−Nq(s; τ) = skt+1Πks
i=1(s

2 + ω2
i )R(s; τ) (3.1.4)

for some polynomial R(s; τ). Our design suggests to set deg(Nq) = k = kt + 2ks

and deg(Dq) = l ≥ k+ ν, where deg(·) implies the degree of the polynomial, and

set

ci = ai, i = 0, · · · , kt. (3.1.5)

By this, Dq−Nq now contains the factor skt+1, and in order to contain Πks
i=1(s

2+

ω2
i ), we ask

(Dq −Nq)/(τs)
kt+1|s=±jωi =[

(τs)l−kt−1+al−1(τs)
l−kt−2+· · ·+akt+1−ck(τs)

k−kt−1−· · ·−ckt+1

]
s=±jωi

= 0

for all i = 1, . . . , ks. For convenience, let us suppose that l−kt is even. Then, the

above equation leads to the following two equations for real and imaginary parts,

respectively:

akt+1 − akt+3τ
2ω2

i + · · ·+ al−1(−τ2ω2
i )

1
2
(l−kt−2)

= ckt+1 − ckt+3τ
2ω2

i + · · ·+ ckt+2ks−1(−τ2ω2
i )

ks−1,
(3.1.6)

akt+2 − akt+4τ
2ω2

i + · · ·+ (−τ2ω2
i )

1
2
(l−kt−2)

= ckt+2 − ckt+4τ
2ω2

i + · · ·+ ckt+2ks(−τ2ω2
i )

ks−1,
(3.1.7)

for all i = 1, . . . , ks. If we introduce Vandermonde matrix given by

Vi :=


1 (−τ2ω2

1)
1 · · · (−τ2ω2

1)
i

...
...

...

1 (−τ2ω2
ks
)1 · · · (−τ2ω2

ks
)i

 ∈ Rks×(i+1),
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the equations (3.1.6) and (3.1.7) can be rewritten compactly as

Vks−1[ckt+1, . . . , ckt+2ks−1]
T = V 1

2
(l−kt−2)ARe,

Vks−1[ckt+2, . . . , ckt+2ks ]
T = V 1

2
(l−kt−2)AIm

where ARe = [akt+1, . . . , al−1]
T ∈ R(l−kt)/2 and AIm = [akt+2, . . . , al−2, 1]

T ∈
R(l−kt)/2. Note that Vks−1 is a square matrix of size ks × ks, and is nonsingular

because detVks−1 =
∏

1≤i<j≤ks
τ2(ω2

i − ω2
j ) ̸= 0 by the assumption that ωi ̸= ωj

for i ̸= j [HJ85]. As a result, the coefficients ci for i = kt + 1, · · · , k are obtained

as a function of ai’s (and τ as well). The following theorem presents a summary,

also with the case when l − kt is odd.

Theorem 3.1.1. Under Assumption 3.1.1, the closed-loop system of Fig. 3.1

rejects the modeled disturbance d̃(t) asymptotically if, for any given ai, i =

0, · · · , l − 1 (where l ≥ k + ν), and τ > 0, the coefficients ci, i = 0, · · · , k
with k = kt + 2ks, are designed as (3.1.5) and

[ckt+1, ckt+3, . . . , ck−1]
T = V −1

ks−1V 1
2
(l−kt−2+k∗)ARe

[ckt+2, ckt+4, . . . , ck]
T = V −1

ks−1V 1
2
(l−kt−2−k∗)AIm

where

• when l − kt is even (k⋆ = 0)

ARe = [akt+1, akt+3, . . . , al−1]
T ∈ R(l−kt+k∗)/2

AIm = [akt+2, akt+4, . . . , al−2, 1]
T ∈ R(l−kt−k∗)/2

• when l − kt is odd (k⋆ = 1)

ARe = [akt+1, akt+3, . . . , al−2, 1]
T ∈ R(l−kt+k∗)/2

AIm = [akt+2, akt+4, . . . , al−1]
T ∈ R(l−kt−k∗)/2

and if δ(s; τ) in (3.1.2) is Hurwitz. �
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Remark 3.1.1. The closed-loop system with the proposed disturbance observer

also rejects the unmodeled disturbance d̄(t) approximately in the low frequency

range, which is determined as the range where Q(jω) ≈ 1. This range becomes

larger as τ gets smaller. �

Remark 3.1.2. When σj = 0 for j = 1, . . . , ks (i.e., the sinusoidal disturbance

does not exist in (3.1.3)), by Theorem 3.1.1, the Q-filter is designed as

Q(s) =
ak(τs)

k + · · ·+ a0
(τs)l + al−1(τs)l−1 + · · ·+ a1(τs) + a0

. (3.1.8)

Then, with the structure of Q-filter (3.1.8) and the equivalent block diagram of the

disturbance observer shown in Fig. 3.2, one can easily see that the block 1/(1−Q)

contains k + 1 integrators, which implies that the disturbance observer structure

has the internal model so that the disturbance of the type d0 + d1t + · · · + dkt
k

can be exactly rejected. We call a disturbance observer with (3.1.8) as ‘type-k

disturbance observer’. For more details, see [PJSB12]. �

After embedding the disturbance model, we still have some freedom of choos-

ing ai’s and τ . This freedom will be utilized in the next section in order to ro-

bustly stabilize the closed-loop system (i.e., to make δ(s; τ) Hurwitz) in spite of

the uncertainty of the plant P (s). Here we note that, by the selection of Theorem

3.1.1, the coefficient ci is in fact a function of ai’s and τ , and the Q-filter of (2.1.2)

now becomes

Q(s) =
ck(τ)(τs)

k + · · ·+ ckt+1(τ)(τs)
kt+1 + ckt(τs)

kt + · · ·+ c0
(τs)l + al−1(τs)l−1 + · · ·+ a1(τs) + a0

(3.1.9)

in which, we explicitly treat ci for i = kt+1, · · · , k as a function of τ . In particular,

the following lemma plays a key role in the next section.

Lemma 3.1.2. The functions ci(τ), i = kt + 1, . . . , k, obtained from Theorem

3.1.1, are of the form

ci(τ) = ai + τ2c̃i(τ) (3.1.10)

where c̃i(τ) is a polynomial of τ . �
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Proof. The matrix that appears in Theorem 3.1.1 has the form of V −1
ks−1Vk̂ ∈

Rks×(k̂+1) where k̂ ≥ ks−1. If k̂ = ks−1, the assertion follows with c̃i(τ) = 0. For

the case where k̂ > ks − 1, we decompose Vk̂ as Vk̂ =
[
Vks−1 V̂

]
. Note that the

first ks columns of Vk̂ are the same as those of Vks−1 by construction and that Vks−1

can be rewritten as Vks−1 = Wdiag{1, τ2, . . . , (τ2)ks−1} where W = Vks−1|τ=1.

The matrix V̂ can also be represented by V̂ = Ŵdiag{(τ2)ks , . . . , (τ2)k̂} where

Ŵ ∈ Rks×(k̂−ks+1) is a matrix independent of τ . Therefore, V −1
ks−1Vk̂ =

[
I V −1

ks−1V̂
]

where V −1
ks−1V̂ is given by

diag

{
1,

1

τ2
, . . . ,

1

(τ2)ks−1

}
W−1Ŵdiag

{
(τ2)ks , . . . , (τ2)k̂

}
,

from which one deduces that each component of V −1
ks−1V̂ is a monomial of τ whose

degree is at least 2.

So far, we discuss the performance of the disturbance observer for rejecting

the effect of the unmodeled disturbance d̄(t) approximately with respect to τ as

well as the modeled disturbance d̃(t) asymptotically by the internal model in the

Q-filter. However, also note that the above analysis is only valid when the closed-

loop system is internally stable under plant uncertainties.

3.2 Design of Q-filter for Guranteeing Robust Stability

We now present how to design ai’s and τ so that the closed-loop system

remains stable (i.e., δ(s; τ) is Hurwitz) for arbitrarily large uncertainty of the

plant P (s) satisfying Assumption 2.1.1. For this, we first derive robust stability

condition using the tools developed in [SJ09].

3.2.1 Robust Stability Condition of Closed-loop System

A robust stability condition for the disturbance observer already introduced in

Theorem 2.2.1. However, differently from the coefficients ci of Q-filter in (2.1.2),

those in (3.1.9) considered in this chapter are not constants but polynomials

depending on τ as discussed in Lemma 3.1.2. Therefore, we propose a modified

robust stability condition for the proposed disturbance observer.



28Chap. 3. Embedding Internal Model in Disturbance Observer with Robust Stability

As discussed in Chapter 2, the closed-loop system is said to be robustly inter-

nally stable if and only if δ(s; τ) is Hurwitz for all P (s) ∈ P. To present a robust

stability condition, we define a polynomial p⋆f (s) given by

p⋆f (s) = sl + al−1s
l−1 + · · ·+ ak+1s

k+1 +
g

gn
aks

k + · · ·+ g

gn
a1s+

g

gn
a0 (3.2.1)

The following result presents a condition which ensures robust stability of the

closed-loop system.

Theorem 3.2.1. Under Assumptions 2.1.1 and 3.1.1, suppose that the following

conditions hold.

1. C(s) internally stabilizes Pn(s),

2. ai’s are chosen such that p⋆f (s) is Hurwitz for all P (s) ∈ P.

Then, there exists a constant τ > 0 such that, for all 0 < τ ≤ τ , the Q-filter

3.1.9 with ci’s given by Theorem 3.1.1 guarantees that the closed-loop system

is robustly internally stable and that the effect of disturbance component d̃ is

completely removed in the steady state. �

Proof. We follow the techniques developed in [SJ09, Lemma 2 and Theorem 3]

keeping in mind that ci = ai+τ2c̃i(τ) where c̃i(τ) is a polynomial of τ (by Lemma

3.1.2).

Let p⋆s(s) = N(s)(Dc(s)Dn(s)+Nc(s)Nn(s)), whose roots are either the poles

of PnC/(1 + PnC) and the zeros of P , and let m = deg(p⋆s(s)) = deg(DcDnN).

By Assumption 2.1.1 and Condition 1, the polynomial p⋆s(s) is Hurwitz.

Since deg(δ(s; τ)) = l+m, we need to inspect all l+m roots of δ(s; τ). This is

a difficult task in general, but it turns out that, as τ → 0, the m roots tend to the

roots of δ(s; 0), whose degree is m, and the other l roots tend to infinity [Lemma A.

2 in Appendix]. In fact, δ(s; 0) = a0p
⋆
s(s) (by the fact Nq(s; 0) = Dq(s; 0) = a0),

and thus, those m roots are stable for sufficiently small τ > 0.

Now, in order to see the behavior of remaining l roots that tend to in-

finity as τ → 0, let us define δ̄(s; τ) := τmδ(s/τ ; τ) = γ1(s; τ)Dq(s/τ ; τ) +

Nq(s/τ ; τ)γ2(s; τ) where γ1(s; τ) = τm(DDcNn(s/τ)+NNcNn(s/τ)) and γ2(s; τ)
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= τm(DcDnN(s/τ)−DcDNn(s/τ)). Because m = deg(DcDnN) = deg(DDcNn) >

deg(NNcNn), it follows that γ1(s; 0) and γ2(s; 0) are well-defined and that limτ→0

γ1(s; τ) = limτ→0 τ
mDDcNn(s/τ) = γ̄1s

m and limτ→0 γ2(s; τ) = γ̄2s
m for all s

with some constants γ̄1 ̸= 0 and γ̄2. Note that γ1(s; τ) and γ2(s; τ) are well-defined

and continuous for all τ . On the other hand, by Lemma 3.1.2, the polynomial

Nq(s; τ) can be decomposed as Nq(s; τ) = N̄q(s; τ) + Ñq(s; τ) where N̄q(s; τ) =

ak(τs)
k+ · · ·+a1(τs)+a0 and Ñq(s; τ) = τ2c̃k(τ)(τs)

k+ · · ·+τ2c̃kt+1(τ)(τs)
kt+1.

Note that N̄q(s/τ ; τ) = N̄q(s; 1) (and similarly Dq(s/τ ; τ) = Dq(s; 1)). Also, note

that limτ→0 Ñq(s/τ ; τ) = Ñq(s/τ ; τ)|τ=0 = 0.

Putting together, it is seen that, for all τ ≥ 0, the polynomial δ̄(s; τ) has the

degree l +m and is continuous, and

δ̄(s; 0) = γ̄1s
m

(
Dq(s; 1) +

γ̄2
γ̄1

N̄q(s; 1)

)
.

Since

γ̄2
γ̄1

=
limτ→0 τ

m(DcDnN(s/τ)−DcDNn(s/τ))

limτ→0 τmDDcNn(s/τ)
= lim

s→∞

NDn(s)

NnD(s)
− 1 =

g

gn
− 1,

it is seen that δ̄(s; 0) = γ̄1s
mp⋆f (s). Let s⋆1, · · · , s⋆l be the roots of p⋆f (s). We note

that the l + m roots of δ̄(s; τ) converge to l + m roots of δ̄(s; 0) as τ tends to

zero. Since a root s̄(τ) of δ̄(s; τ) corresponds to the root s̄(τ)/τ of δ(s; τ), it is

seen that

1. those l roots of δ(s; τ) going to infinity as τ → 0, say si(τ), i = 1, · · · , l,
correspond to s̄i(τ)/τ where s̄i(τ) converges to s⋆i , respectively,

2. those m roots of δ(s, τ) that remain finite as τ → 0 correspond to s̄i(τ)/τ

where s̄i(τ) converges to the origin for i = 1, · · · ,m.

Since p⋆f (s) is Hurwitz from the condition 2, all l +m roots of δ(s; τ) are found

in C− for sufficiently small τ > 0. This completes the first part of proof.

The second part the theorem follows from Theorem 3.1.1 and the internal

stability of the closed-loop system.

Remark 3.2.1. The conditions in Theorem 3.2.1 are also necessary for robust
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stability in some sense. See Section 2.2 for details. �

Remark 3.2.2. Although the robust stability condition of Theorem 3.2.1 resem-

bles that of Theorem 2.2.1, the latter is on the case where the coefficients ai’s and

ci’s of Q-filter are constant numbers while the former allows ci’s to be functions

of τ . Moreover, Theorem 3.2.1 provides a condition with which the possibility

of asymptotic rejection of modeled disturbance as well as robust stability can be

checked while that of Theorem 2.2.1 is only for robust stability. �

Remark 3.2.3. The design parameters of disturbance observer are ai’s, ci’s, and

τ of Q-filter. Since p⋆f (s) involves only ai’s, one can design these parameters first

considering plant uncertainties, and then choose ci’s for disturbance rejection by

following Theorem 3.1.1. Finally, the parameter τ is chosen sufficiently small.

This shows that the proposed controller is designed in a systematic way. In

fact, the design is fully constructive since the parameters ai’s can be also chosen

iteratively (see Section 3.2.2). �

3.2.2 Selecting ai’s for Robust Stability

This section presents a constructive design procedure for the coefficients ai’s to

satisfy the condition 2 in Theorem 3.2.1 (equivalently, to make the polynomial

in (3.2.1) become Hurwitz for all g ∈ [g, g]). The proposed design procedure is

derived by Lemma A. 3 and Remark A. 5.

With unknown g ∈ [g, g] and its nominal value gn, we define, for j = 0, 1, . . . , k,

pj(s; g) := sl−k+j + al−1s
l−k−1+j + · · ·

+ ak+1s
1+j +

g

gn
(aks

j + · · ·+ ak−j).
(3.2.2)

Note that pj+1(s; g) = spj(s; g) + (g/gn)ak−j−1 and pk(s; g) = p⋆f (s). Associated

with pj(s; g), we define the set of interval polynomials

Ij := {sl−k+j + · · ·+ ak+1s
1+j + γks

j + · · ·+ γk−j :

γi ∈ [(g/gn)ai, (g/gn)ai], i = k − j, . . . , k}.
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The four extreme polynomials for Ij , in view of Remark A. 5, are denoted by

p̄j,1(s), . . . , p̄j,4(s).

We now describe the proposed design procedure of ai for p⋆f (s) to be Hurwitz

for all g ∈ [g, g]. It is a recursive procedure and Step 0 is the initialization step.

Procedure 2. Q-filter Design Procedure for Robust Stability

Step 0: Choose the order of Q-filter l ≥ ν+k and the coefficients al−1, al−2, . . . ,

ak+1 such that the polynomial sl−k−1 + al−1s
l−k−2 + · · ·+ ak+1 is Hurwitz.

Then, find a γk > 0 such that sl−k + al−1s
l−k−1 + · · ·+ ak+1s+ γk is Hurwitz

for all γk ∈ (0, γk) and choose ak ∈ (0, (gn/g)γk).

Step j (j = 1, . . . , k): With the coefficients al−1, al−2, . . . , ak−j+1 obtained

from the previous steps, construct p̄j−1,1(s), . . . , p̄j−1,4(s) of Ij−1. For each i =

1, . . . , 4, find γ̄k−j,i > 0 such that

sp̄j−1,i(s) + γk−j,i

is Hurwitz for all γk−j,i ∈ (0, γ̄k−j,i), and let γ̄k−j := mini γ̄k−j,i. Choose ak−j ∈
(0, (gn/g)γ̄k−j). �

It is emphasized that each step requires at most four extreme polynomials, and

the number of polynomials to be checked does not increase as the step proceeds.

Remark 3.2.4. With Procedure 2, one obtains the coefficients a0, . . . , al−1, which

determine the denominator of Q-filter. The numerator is left as an additional

degree of freedom for other performances. For example, it can be determined for

complete rejection of some modeled disturbance as discussed in Section 3.1. �

Theorem 3.2.2. Under Assumption 1, the coefficients al−1, . . . , a0 obtained

via Procedure 2 ensure that the polynomial p⋆f (s) of (3.2.1) is Hurwitz for all

g ∈ [g, g]. �

Proof. Since p⋆f (s) = pk(s; g), we prove the assertion by induction for the index j

of pj(s; g) given by (3.2.2).

After Step 0 of Procedure 2, we obtain al−1, . . . , ak+1, and ak such that the

polynomial sl−k + al−1s
l−k−1 + · · ·+ ak+1s+ (g/gn)ak is Hurwitz for all g ∈ [g, g]
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(The existence of ak is guaranteed by Lemma A. 3.). This means that p0(s; g) is

Hurwitz for all g ∈ [g, g].

As the induction hypothesis, we assume that pj−1(s; g) is Hurwitz for all

g ∈ [g, g]. To complete the proof, we consider Step j in Procedure 2. With al−1,

. . . , ak−(j−1) obtained up to Step j−1, construct Ij−1 and p̄j−1,1(s), . . . , p̄j−1,4(s).

Then, Lemma A. 3 ensures that for each i = 1, . . . , 4, there exists γk−j,i > 0 such

that sp̄j−1,i(s)+γk−j,i is Hurwitz for all γk−j,i ∈ (0, γk−j,i). Let γ̄k−j = mini γ̄k−j,i

and choose ak−j such that 0 < ak−j < (gn/g)γk−j . This results in that, for each

i = 1, . . . , 4, sp̄j−1,i(s) + (g/gn)ak−j is Hurwitz for all g ∈ [g, g]. Since these

polynomials are all Hurwitz, it follows from Remark A. 5 that pj(s; g) is Hurwitz

for all g ∈ [g, g]. The induction completes when j = k, and the polynomial pk(s; g)

is the same as p∗f (s), which completes the proof.

3.3 Illustrative Example

We apply the proposed disturbance observer to a practical example to evalu-

ate the disturbance rejection performance and robustness against parameter un-

certainties.

Example 3.3.1. Consider a mechanical positioning system for the X-Y table

driven by a linear motor [YKMH99]. An actual plant P (s) and its nominal model

Pn(s) are given by

P (s) =
1

Js2 +Bs
, Pn(s) =

1

Jns2 +Bns

where J and B are the mass of the table with load variation and the viscous

friction coefficient and Jn and Bn are nominal values of J and B, respectively.

Let J ∈ [1, 6], B = 80, Jn = 1, and Bn = 80. For tracking control, a simple

proportional control of gain Kp is employed for the outer-loop controller C(s). It

is assumed that the disturbance d̃(t) = σ1 sin(ω1t+ φ1).

Now, we design a Q-filter to embed the internal model of disturbance. We

choose ks = 1 and kt = 0 so k = 2, and, since the relative degree ν of the plant

is 2, we let l = 4 ≥ k + ν. Then, by Theorem 3.1.1, the coefficients ci’s are
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determined as c0 = a0, c1 = a1 − a3(τω1)
2, and c2 = a2 − (τω1)

2. By Procedure

2, we can choose the coefficients ai’s such that the polynomial p⋆f (s) of (3.2.1) is

Hurwitz for all g ∈ [g, g] where g = 1/6, g = 1, and gn = 1.

Step 0: Pick a3 = 4 so that s+a3 is Hurwitz. Since the polynomial s2+a3s+γ2

is Hurwitz for all γ2 > 0, we choose a2 = 6.

Step 1: The four extreme polynomials of p0(s; g) yield two different ones

p̄0,1(s) and p̄0,3(s) as

p̄0,1 = s2 + a3s+
g

gn
a2, p̄0,3(s) = s2 + a3s+

g

gn
a2.

Using the root-locus plot, we take γ1,1 = 24 and γ1,3 = 3.83 such that sp̄0,j(s) +

γ1,j is Hurwitz for all γ1,j ∈ (0, γ1,j). Let γ1 = min{γ1,1, γ1,3} and choose a1 =

3.8 ∈ (0, (gn/g)γ1).

Step 2: The four extreme polynomials of p1(s; g) are given by

p̄1,1(s) = s3 + a3s
2 +

g

gn
a2s+

g

gn
a1,

p̄1,2(s) = s3 + a3s
2 +

g

gn
a2s+

g

gn
a1,

p̄1,3(s) = s3 + a3s
2 +

g

gn
a2s+

g

gn
a1,

p̄1,4(s) = s3 + a3s
2 +

g

gn
a2s+

g

gn
a1.

By the same procedure as Step 1, we take a0 = 0.04.

With the coefficients obtained above, the Q-filter is designed as

Qp(s) =
{6− (τω1)

2}(τs)2 + {3.8− 4(τω1)
2}(τs) + 0.04

(τs)4 + 4(τs)3 + 6(τs)2 + 3.8(τs) + 0.04
.

Now, for comparison, we consider another Q-filter whose coefficients are bi-

nomial coefficients (that is often employed in the literature such as [CYC+03]):

Qb(s) =
6(τs)2 + 4(τs) + 1

(τs)4 + 4(τs)3 + 6(τs)2 + 4(τs) + 1
.

It is designed to have the same order and relative degree as Qp(s) for fair compar-

ison since the disturbance rejection performance tends to improve as the degree
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Figure 3.3: The error between the step response of the nominal closed-loop
system and that of the actual closed-loop system with the distur-
bance observer with Qb(s) (‘DOB with Qb(s)’) and Qp(s) (‘DOB
with Qp(s)’) when J = 1.

of the numerator of Q-filter grows (with the same τ) [CYC+03]. In addition,

simulations are performed with J = 1 and 4.2 to observe the effect of parameter

uncertainties. Detailed parameters are as follows: σ1 = 1, ω1 = 2π ·8, Kp = 2500,

φ1 = 0.5π, and τ = 0.001.

Fig. 3.3 and 3.4 show the error between the step response of the nominal

closed-loop system and that of the actual closed-loop system with the distur-

bance observer with the Q-filter Qb(s) having the binomial coefficients and the

proposed Q-filter Qp(s). Here, the step response of the nominal closed-loop sys-

tem means that of PnC/(1 + PnC) without the disturbance. As seen in Fig. 3.3,

the disturbance observer with Qp(s) completely rejects the effect of disturbance

in the steady state, while the one with Qb(s) approximately. From Fig. 3.4, it is

observed that the closed-loop system with Qb(s) is unstable when J = 4.2. It im-

plies that large plant uncertainties can deteriorate the stability of the closed-loop

system with the disturbance observer when it is designed without considering un-

certainties. We remark that the proposed disturbance observer works well since it

is designed by the proposed systematic procedure considering plant uncertainties.
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Figure 3.5: Bode diagrams of sensitivity functions without the disturbance
observer (’W/O DOB’) and with the disturbance observer with
Qb(s) (‘DOB with Qb(s)’) and Qp(s) (‘DOB with Qp(s)’) when
J = 1.
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The performance of the disturbance observer with Qb(s) and Qp(s) can be

also analyzed in view of the sensitivity function2 as shown in Fig. 3.5. In the

low frequency range, the disturbance rejection performance is improved by both

disturbance observers with Qb(s) and Qp(s). Especially, in the target frequency

(8 Hz), the magnitude of the sensitivity function of the disturbance observer with

Qp(s) becomes much smaller than that with Qb(s) due to the internal model in

the disturbance observer structure. On the other hand, the disturbance rejection

performance of the disturbance observer with Qb(s) is better than that with Qp(s)

in other frequency ranges since it contains three integrators in 1/(1−Qb(s)) block

as shown in Fig. 3.2. More discussions on the sensitivity function analysis will be

provided in the next section.

3.4 Discussions on Robustness

In this section, we discuss the robustness of the proposed design procedure 2.

In the following subsection, the pros and cons of the proposed Q-filter design

procedure is more investigated. And then, the robustness is discussed based on

the bode plot approach.

3.4.1 Pros and Cons of Proposed Design Procedure

At each step of the proposed design procedure 2, Kharitonov theorem is em-

ployed to guarantee the Hurwitz stability of the interval polynomial pj(s; g) for

all variation of g. In fact, Kharitonov theorem provides a necessary and sufficient

condition for Hurwitz stability of a family of the interval polynomial when the

polynomial coefficients vary independently. However, the coefficients of pj(s; g)

vary interdependently according to the variation of g. In other word, if the four

extreme polynomials of pj(s; g) are Hurwitz, then pj(s; g) is Hurwitz. But, the

2The loop transfer function L(s) and the sensitivity function S(s) of the disturbance observer
based control system are computed as

L(s) =
P (s)(Pn(s)C(s) +Q(s))

Pn(s)(1−Q(s))
, S(s) =

Pn(s)(1−Q(s))

Q(s)(P (s)− Pn(s)) + Pn(s)(1 + P (s)C(s))
.
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Figure 3.6: The value sets of the four extreme polynomials of p1(s; g) (’blue
solid line’) and p1(s; g) (‘red plus signs’) for each ω ≥ 0.

converse may not be true. This relationship can be easily understood in view of

the value set approach [Definition A. 6 in Appendix].

Recall step 1 of the design procedure in Example 3.3.1. The coefficient a1

is selected such that the four extreme polynomials of p1(s; g) are Hurwitz (i.e.,

p1(s; g) is Hurwitz). Fig. 3.6 shows the value sets of four extreme polynomials

p1(s; g) and p1(s; g) for all g ∈ [g, g]. By the zero exclusion theorem [Lemma

A. 7 in Appendix], both cases are Hurwitz stable since the value sets do not

contain the origin. However, the distance between the origin and the value set

of four extreme polynomials of p1(s; g) is smaller than that of p1(s; g). It implies

that the proposed design procedure 2 is conservative in the sense that one might

select a small ak−j such that the four extreme polynomials of pj(s; g) be Hurwitz

even though the selection of larger ak−j might be possible. As a result, as the

step proceeds, the selected ak−j becomes smaller although the proposed design

procedure provides a systematic method for selecting ak−j .
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3.4.2 Bode Diagram Approach

In this section, the robustness of the proposed Q-filter design procedure is

investigated in view of the bode diagram approach. For Example 3.3.1, we design

the Q-filters with the binomial coefficients (Qb
type−1(s), Qb

type−2(s), Qb
type−3(s),

Qb
IM (s), and Qb

type−4(s)) and the Q-filters by the proposed design procedure

(Qp
type−1(s), Q

p
type−2(s), Q

p
type−3(s), Q

p
IM (s), and Qp

type−4(s)) as follows:

Qb
type−1(s) =

1

(τs)2 + 2(τs) + 1
, Qb

type−2(s) =
3(τs) + 1

(τs)3 + 3(τs)2 + 3(τs) + 1
,

Qb
type−3(s) =

6(τs)2 + 4(τs) + 1

(τs)4 + 4(τs)3 + 6(τs)2 + 4(τs) + 1
,

Qb
IM (s) =

{6− (τω1)
2}(τs)2 + {4− 4(τω1)

2}(τs) + 1

(τs)4 + 4(τs)3 + 6(τs)2 + 4(τs) + 1
,

Qb
type−4(s) =

10(τs)3 + 10(τs)2 + 5(τs) + 1

(τs)5 + 5(τs)4 + 10(τs)3 + 10(τs)2 + 5(τs) + 1
,

Qp
type−1(s) =

6

(τs)2 + 4(τs) + 6
, Qp

type−2(s) =
6(τs) + 3.8

(τs)3 + 4(τs)2 + 6(τs) + 3.8
,

Qp
type−3(s) =

6(τs)2 + 3.8(τs) + 0.04

(τs)4 + 4(τs)3 + 6(τs)2 + 3.8(τs) + 0.04
,

Qp
IM (s) =

{6− (τω1)
2}(τs)2 + {3.8− 4(τω1)

2}(τs) + 0.04

(τs)4 + 4(τs)3 + 6(τs)2 + 3.8(τs) + 0.04
,

Qp
type−4(s) =

6(τs)3 + 3.8(τs)2 + 0.04(τs) + 0.0006

(τs)5 + 4(τs)4 + 6(τs)3 + 3.8(τs)2 + 0.04(τs) + 0.0006
.

Fig. 3.7 and 3.8 show the bode diagrams of sensitivity functions and loop

transfer functions with Q-filters having the binomial coefficients, respectively. The

phase margins by Qb
type−1(s), Qb

type−2(s), Qb
type−3(s), Qb

IM (s), and Qb
type−4(s) are

75.8 deg, 53 deg, 43.5 deg, 43.5 deg, and 38.3 deg, respectively. It implies that,

as the order of Q-filter with the binomial coefficients increases, the robustness

decreases. On the other hand, Fig. 3.9 and 3.10 show the bode diagrams of

sensitivity functions and loop transfer functions with Q-filters by the proposed

design procedure, respectively. The phase margins by Qp
type−1(s), Qp

type−2(s),

Qp
type−3(s), Q

p
IM (s), and Qp

type−4(s) are 70.5 deg, 46.5 deg, 46.5 deg, 46.5 deg, and

46.5 deg, respectively. Thus, the robustness is preserved even though the order of

Q-filter by the proposed design procedure increases.



3.4. Discussions on Robustness 39

One might think that the above results are not implementable since the control

bandwidth of the nominal closed-loop system is much smaller than those of the

disturbance observer based control systems. Fig. 3.11 and 3.12 show the bode

diagrams of sensitivity functions and loop transfer functions with Q-filters by the

proposed design procedure, respectively. In this case, the control bandwidth of

the disturbance observer based control systems are designed to be similar to that

of the nominal closed-loop system. The phase margins of the nominal closed-

loop system and the closed-loop system with Qp
type−1(s), Q

p
type−2(s), Q

p
type−3(s),

Qp
IM (s), and Qp

type−4(s) are 69.9 deg, 49.1 deg, 46.6 deg, 46.6 deg, 48.1 deg, and

46.6 deg, respectively. It means that the robustness is also preseved although the

order of the Q-filter is increased. This phenomenon is explained by the bode

diagram of each Q-filter as shown in 3.13 and 3.14. As the order of the Q-filter

increases, the cut-off frequency and magnitude of each Q-filter designed by the

proposed design procedure do not increase even though those of each Q-filter with

the binomial coefficients increase. (For more details, see [KK99].)



40Chap. 3. Embedding Internal Model in Disturbance Observer with Robust Stability

−300

−200

−100

0

100

M
ag

ni
tu

de
 (

dB
)

10−1 100 101 102 103 104
0

90

180

270

360

450

P
ha

se
 (

de
g)

 

 

Bode Diagram

Frequency  (Hz)

W/O DOB

DOB with Qtype−1
b

DOB with Qtype−2
b

DOB with Qtype−3
b

DOB with QIM
b

DOB with Qtype−4
b

Figure 3.7: Bode diagrams of sensitivity functions without the disturbance
observer (’W/O DOB’) and with the disturbance observer with
Qb

type−1(s) (‘DOB with Qb
type−1(s)’), Qb

type−2(s) (‘DOB with
Qb

type−2(s)’), Qb
type−3(s) (‘DOB with Qb

type−3(s)’), Qb
IM (s) (‘DOB

with Qb
IM (s)’), and Qb

type−4(s) (‘DOB with Qb
type−4(s)’) when

τ = 0.001 and ω1 = 8× 2π.

−200

−100

0

100

200

300

M
ag

ni
tu

de
 (

dB
)

10−1 100 101 102 103 104 105
−450

−360

−270

−180

−90

P
ha

se
 (

de
g)

 

 

Bode Diagram

Frequency  (Hz)

W/O DOB

DOB with Qtype−1
b

DOB with Qtype−2
b

DOB with Qtype−3
b

DOB with QIM
b

DOB with Qtype−4
b

Figure 3.8: Bode diagrams of loop transfer functions without the distur-
bance observer (’W/O DOB’) and with the disturbance observer
with Qb

type−1(s) (‘DOB with Qb
type−1(s)’), Qb

type−2(s) (‘DOB with
Qb

type−2(s)’), Qb
type−3(s) (‘DOB with Qb

type−3(s)’), Qb
IM (s) (‘DOB

with Qb
IM (s)’), and Qb

type−4(s) (‘DOB with Qb
type−4(s)’) when

τ = 0.001 and ω1 = 8× 2π.
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Figure 3.9: Bode diagrams of sensitivity functions without the disturbance
observer (’W/O DOB’) and with the disturbance observer with
Qp

type−1(s) (‘DOB with Qp
type−1(s)’), Qp
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p
IM (s) (‘DOB

with Qp
IM (s)’), and Qp
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type−4(s)’) when

τ = 0.001 and ω1 = 8× 2π.
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Figure 3.10: Bode diagrams of loop transfer functions without the distur-
bance observer (’W/O DOB’) and with the disturbance observer
with Qp

type−1(s) (‘DOB with Qp
type−1(s)’), Qp

type−2(s) (‘DOB
with Qp

type−2(s)’), Q
p
type−3(s) (‘DOB with Qp

type−3(s)’), Q
p
IM (s)

(‘DOB with Qp
IM (s)’), and Qp

type−4(s) (‘DOB with Qp
type−4(s)’)

when τ = 0.001 and ω1 = 8× 2π.



42Chap. 3. Embedding Internal Model in Disturbance Observer with Robust Stability

−300

−200

−100

0

100

M
ag

ni
tu

de
 (

dB
)

10−3 10−2 10−1 100 101 102
0

90

180

270

360

450

P
ha

se
 (

de
g)

 

 

Bode Diagram

Frequency  (Hz)

W/O DOB

DOB with Qtype−1
p

DOB with Qtype−2
p

DOB with Qtype−3
p

DOB with QIM
p

DOB with Qtype−4
p

Figure 3.11: Bode diagrams of sensitivity functions without the disturbance
observer (’W/O DOB’) and with the disturbance observer
with Qp

type−1(s) (‘DOB with Qp
type−1(s)’), Qp

type−2(s) (‘DOB
with Qp

type−2(s)’), Q
p
type−3(s) (‘DOB with Qp

type−3(s)’), Q
p
IM (s)

(‘DOB with Qp
IM (s)’), and Qp

type−4(s) (‘DOB with Qp
type−4(s)’)

when τ = 0.1 and ω1 = 2π.
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Figure 3.12: Bode diagrams of loop transfer functions without the distur-
bance observer (’W/O DOB’) and with the disturbance observer
with Qp

type−1(s) (‘DOB with Qp
type−1(s)’), Qp

type−2(s) (‘DOB
with Qp

type−2(s)’), Q
p
type−3(s) (‘DOB with Qp

type−3(s)’), Q
p
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(‘DOB with Qp
IM (s)’), and Qp

type−4(s) (‘DOB with Qp
type−4(s)’)

when τ = 0.1 and ω1 = 2π.
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type−4(s) when τ = 0.1 and ω1 = 2π.
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Chapter 4

Disturbance Observer with Unknown
Relative Degree of the Plant

The disturbance observer based controller has been widely used among control

engineers since it has a powerful ability of uncertainty compensation and distur-

bance attenuation. However, this property holds only when the disturbance ob-

server based control system is stable. Therefore, the important question of inter-

est is the robust stability of the closed-loop system under the uncertainty of the

plant.

As shown in Chapter 2 and 3, an almost necessary and sufficient stability

condition was presented when the time constant of Q-filter is sufficiently small

in accordance with the performance enhancement. Under the assumption that

actual uncertain plant P be of minimum phase, it has been shown that, for any

given nominal model Pn, the disturbance observer based control system can be

robustly stabilized with an appropriate choice of the Q-filter. However, it is not

applicable to the case where the relative degree of real plant is not the same as

that of the nominal model.

In this chapter, we study the robust stability of the disturbance observer

based control system when the relative degree of plant is not exactly known and

so it happens to be different from that of nominal model. This case often occurs

in real world control applications. For instance, r.deg(P ) > r.deg(Pn)
1 when the

actuator dynamics is ignored, or when there is unmodeled dynamics for the plant.

1r.deg(P ) stands for the relative degree of the transfer function P .

45
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Although some related work has been presented in [JJS11], it is limited to the case

where the relative degree of Pn is equal to one and the Q-filter is given by the first

order system. Inspired by the fact that the characteristic equation for stability

is of the form that appears in the ‘higher-order root locus technique’ [Hah81],

conditions for robust stability are derived by utilizing the Newton diagram for

general cases. Under the standing assumption that the time constant of Q-filter

is sufficiently small, the derived conditions reveal a few facts such as:

• if r.deg(P ) = r.deg(Pn) + 1, the robust stability can be achieved by an

appropriate design of Pn as well as Q, which is contrast to the case where

r.deg(P ) = r.deg(Pn) in Chapter 2 (where the selection of Pn does not

matter).

• if 1 ≤ r.deg(P ) ≤ 2, then the robust stability is always achievable.

• if r.deg(P ) ≥ r.deg(Pn) + 2 or r.deg(Pn) > r.deg(P ) > 2, then the robust

stabilization is not possible with sufficiently small τ no matter how Pn, C,

and Q are selected.

• a universal design of the disturbance observer can be achieved for the special

case where r.deg(P ) is unknown but 1 ≤ r.deg(P ) ≤ 4.

In summary, the lesson of this chapter is that one needs to estimate the relative

degree of the plant as close as possible, because, if not, the robust stability may

not be achievable with sufficiently small time constant of Q-filter.

4.1 Robust Stability

The standard disturbance observer control system is illustrated in Fig. 4.1. In

this figure, P (s) and Pn(s) represent the uncertain plant and its nominal model,

respectively, and signals r, d, and n represent the reference input, input distur-

bance and measurement noise, respectively. The controller C(s) is designed a

priori using the nominal model Pn(s) only (The design of C(s) does not require

the information of P (s).). The transfer function Q(s) (called as ‘Q-filter’) is a
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_ _

_

Figure 4.1: Structure of the disturbance observer control system. The shaded
region represents the real plant P (s) augmented with the distur-
bance observer

stable low pass filter, which usually has the form of

Q(s) =
ck(τs)

k + ck−1(τs)
k−1 + · · ·+ c0

al(τs)l + al−1(τs)l−1 + · · ·+ a1(τs) + a0
(4.1.1)

where τ > 0 is the filter time constant, and k and l are nonnegative integers.

Assume that c0 = a0 for the unity DC gain and l ≥ k + r.deg(Pn) to make the

transfer function Q(s)P−1
n (s) proper.

As discussed in Chapter 2, the disturbance observer recovers the nominal

performance in the presence of the disturbances and model uncertainties. How-

ever, this property is only maintained when the closed-loop system is stable.

In this chapter, we will investigate the robust stability of the disturbance ob-

server based control system when r.deg(P ) ̸= r.deg(Pn). We assume that P (s)

and Pn(s) are strictly proper while C(s) is at least proper. Let us also rep-

resent each transfer function P , Pn, C, and Q as the ratios of coprime poly-

nomials: P (s) = N(s)/D(s), Pn(s) = Nn(s)/Dn(s), C(s) = Nc(s)/Dc(s), and

Q(s) = NQ(s; τ)/DQ(s; τ) (in which, the dependence of NQ and DQ on τ is ex-

plicitly indicated). Then, it has been shown in Chapter 2 that, for given τ > 0,

the closed-loop system is internally stable if and only if the characteristic polyno-

mial

δ(s; τ) := (DDc +NNc)NnDQ +NQDc(NDn −NnD) (4.1.2)



48 Chap. 4. Disturbance Observer with Unknown Relative Degree of the Plant

is Hurwitz. Define

pα(s) := N(NcNn +DcDn), pβ(s) = Nn(NcN +DcD) (4.1.3)

and let mα := deg(NDcDn), mβ := deg(NnDcD), and αi, βi be such that

pα(s) = αmαs
mα + αmα−1s

mα−1 + · · ·+ α0,

pβ(s) = βmβ
smβ + βmβ−1s

mβ−1 + · · ·+ β0.
(4.1.4)

It should be kept in mind that mβ−mα = r.deg(P )−r.deg(Pn), and that βmβ
/αmα

is the ratio of the high frequency gains of P (s) and Pn(s). Let k be such that

a0 = c0, · · · , ak = bk and ak+1 ̸= ck+1, or k = k. Then, it follows that (with

al = 1 for convenience)

δ(s; τ) = pβ(s)DQ(s; τ) + (pα(s)− pβ(s))NQ(s; τ)

= pβ(s)
l∑

i=0

ai(τs)
i + (pα(s)− pβ(s))

k∑
i=0

bi(τs)
i

=

k∑
i=0

(τs)iaipα(s)

+
k∑

i=k+1

(τs)i(aipβ(s) + ci(pα(s)− pβ(s))) +
l∑

i=k+1

(τs)iaipβ(s).

(4.1.5)

Note that deg(δ(s; τ)) = l + mβ if τ > 0, and the locations of l + mβ roots,

when τ is sufficiently small, are of interest because they determine the stability

of the closed-loop system. Since δ(s; 0) = a0pα(s) and deg(δ(s; 0)) = mα, it is

clear that mα roots out of l +mβ roots of δ(s; τ) converge to the roots of pα(s)

as τ → 0, while the remaining l +mβ −mα roots tend to infinity (see [SJ09] for

more rigorous arguments).

Here, we recall Theorem 2.2.1 in the viewpoint of the coefficients αi and βi,

with the set P being a collection of transfer functions whose coefficients belong

to certain (known) bounded intervals.

Theorem 4.1.1. Suppose that r.deg(Pn) = r.deg(P ) and their high frequency

gains have the same sign. Then, there exists a constant τ > 0 such that, for
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all 0 < τ ≤ τ , the closed-loop system is internally stable if the following three

conditions hold:

H1. P (s) is of minimum phase for all P (s) ∈ P,

H2. PnC/(1 + PnC) is stable, and

H3. the polynomial

pf (s) :=βmβ
{alsl + al−1s

l−1 + · · ·+ ak+1s
k+1 + (ak − ck)s

k + · · ·+ (a1 − c1)s}

+ αmα{cksk + · · ·+ c1s+ a0}

is Hurwitz.

On the contrary, there is τ > 0 such that, for all 0 < τ ≤ τ , the closed-loop

system is unstable if at least one of the conditions H1–H3 is violated in the sence

that, PnC/(1 + PnC) has some poles in C+, or some zeros of P (s) or some roots

of pf = 0 are located in C+. �

Proof. The conditions H1–H3 are the same as those of Theorem 2.2.1 although the

condition H3 is derived using a different method with respect to (4.1.4). Hence,

the proof is the same as that of Theorem 2.2.1 and omitted.

Remark 4.1.1. It is observed that the conditions H1 and H2 are equivalent to

pα(s) being Hurwitz (see (4.1.3), so that mα roots of δ(s; τ) have negative real

parts for sufficiently small τ . On the other hand, the condition H3 constrains the

other l +mβ −mα = l (since mβ = mα if r.deg(P ) = r.deg(Pn)) roots to remain

in C−. �

Theorem 4.1.1 indicates that robust stabilization can be achieved against un-

certain parameters, provided that C(s) stabilizes the nominal model Pn(s), and

uncertain plant is of minimum phase. Note that the selection of Pn(s) is not

crucial for the robust stabilization provided that r.deg(Pn) = r.deg(P ).

Although Theorem 4.1.1 presents an almost necessary and sufficient condition

for stability according to Remark 2.2.1, it is not useful when r.deg(P ) ̸= r.deg(Pn).

If lims→∞(P (s)/Pn(s)) = 0, which occurs when the relative degree of Pn(s) is less
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than that of P (s), then pf (s) = DQ(s; 1) − NQ(s; 1) has a root at the origin

since c0 = a0. For such a case, some stability condition was derived in [JJS11]

under the assumption that r.deg(Pn) = 1 and the Q-filter is of the form Q(s) =

a0/(a1τs + a0). However, this is too restrictive to be used in real applications.

Furthermore, the polynomial pf (s) is not defined when r.deg(P ) < r.deg(Pn).

When r.deg(P ) ̸= r.deg(Pn), the l + mβ − mα roots of δ(s; τ), that go to

infinity as τ → 0, are of particular interest. In order to observe their behavior

conveniently, we want to make them go to zero as τ → 0. This is done by defining

δ(s; τ) := sl+mβδ(1/s; τ). Then,2

δ(s; τ) = q0(s) + τq1(s) + · · ·+ τ lql(s),

qi(s) =



ai(αmαs
l+mβ−mα−i + · · ·α0s

l+mβ−i),

i = 0, 1, · · · , k,
(ai − ci)(βmβ

sl−i + · · ·+ β0s
l+mβ−i)

+ ci(αmαs
l+mβ−mα−i + · · ·+ α0s

l+mβ−i),

i = k + 1, k + 2, · · · k,
ai(βmβ

sl−i + · · ·+ β0s
l+mβ−i),

i = k + 1, k + 2, · · · , l.

(4.1.6)

Since Re(s) < 0 if and only if Re(1/s) < 0 for a complex variable s, stability

analysis using δ, instead of δ, is justified (assuming that δ(0, τ) ̸= 0 which is

to be seen shortly). As τ → 0, l + mβ − mα roots of δ are converging to zero

whereas the remaining roots converge to mα nontrivial roots of q0. (From now on,

the former are called as vanishing roots while the latter as non-vanishing roots.)

Since q0(s)/s
l+mβ−mα = a0(αmα + · · ·+α0s

mα), the non-vanishing mα roots have

negative real parts if and only if pα(s) is Hurwitz. Hence, paying attention to the

vanishing roots, we can obtain the following Theorems 4.1.2 and 4.1.3 (for the case

r.deg(P ) > r.deg(Pn)) and Theorems 4.1.4 and 4.1.5 (for r.deg(P ) < r.deg(Pn)),

whose proofs are given in Section 4.3.

Theorem 4.1.2. Suppose that r.deg(P ) = r.deg(Pn) + 1 for all P ∈ P. Then,

2For reader’s convenience, we write all polynomials in ascending order from now on.
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there exists τ such that, for all 0 < τ ≤ τ , the closed-loop system is robustly

stable if both conditions H1 and H2 of Theorem 4.1.1 hold and the following

three conditions hold:

1. π(s) := sl−1 + · · ·+ ak+1s
k + (ak − ck)s

k−1 + · · ·+ (a1 − c1) is Hurwitz,

2. the signs of high frequency gains P and Pn are the same (i.e., βmβ
/αmα > 0)

for all P ∈ P,

3. σ+ :=
αmα−1

αmα
−

βmβ−1

βmβ
+ αmα

βmβ

a0
a1−c1

(a2−c2
a1−c1

− c1
a0
) < 03 for all P ∈ P.

�

The case where r.deg(P ) > r.deg(Pn) often happens when the actuator dynamics

is ignored, or when there is unmodeled dynamics for the plant. The conditions of

Theorem 4.1.2 are almost necessary and sufficient in the following sense.

Theorem 4.1.3. For given P ∈ P with r.deg(P ) > r.deg(Pn), the closed-loop

system is unstable for sufficiently small τ if at least one of the following holds:

1. r.deg(P ) ≥ r.deg(Pn) + 2,

2. P has at least one zero in C+ (violation of the condition H1 of Theorem

4.1.1),

3. PnC/(1 + PnC) has at least one pole in C+ (violation of the condition H2

of Theorem 4.1.1),

4. π(s) has at least one root in C+,

5. βmβ
/αmα < 0,

6. σ+ > 0,

7. k > 0.

�

3c1 = 0 if c1 is not present in (4.1.1), and so on.
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A lesson from Theorem 4.1.3 is that, if r.deg(P ) − r.deg(Pn) ≥ 2, the closed-

loop system cannot be stabilized, with small τ , no matter how C, Pn, and Q are

chosen. Thus, the estimation of the relative degree of actual plant is essential for

the design of the disturbance observer based controller.

Theorem 4.1.4. Suppose that r.deg(P ) < r.deg(Pn) for all P ∈ P. Then, there

exists τ such that , for all 0 < τ ≤ τ , the closed-loop system is robustly stable if,

for all P ∈ P, both conditions H1 and H2 of Theorem 4.1.1 hold, and

1. r.deg(Q) ≤ r.deg(Pn)− r.deg(P ) + 2,

2. NQ(s; 1) is Hurwitz (or a constant),

3. P and Pn have the same sign of high frequency gains (i .e., βmβ
/αmα > 0)

if r.deg(Q) ≥ r.deg(Pn)− r.deg(P ) + 1,

4. σ− := ck−1 − al−1ck < 0 if r.deg(Q) = r.deg(Pn)− r.deg(P ) + 2 and k ≥ 1.

�

Theorem 4.1.5. For given P ∈ P with r.deg(P ) < r.deg(Pn), the closed-loop

system is unstable for sufficiently small τ if at least one of the following holds:

1. r.deg(Q) ≥ r.deg(Pn)− r.deg(P ) + 3,

2. P has at least one zero in C+,

3. PnC/(1 + PnC) has at least one pole in C+,

4. NQ(s; 1) has at least one root in C+,

5. βmβ
/αmα < 0 while r.deg(Q) ≥ r.deg(Pn)− r.deg(P ) + 1,

6. σ− > 0 while r.deg(Q) ≥ r.deg(Pn)− r.deg(P ) + 2 and k ≥ 1.

�

Since the Q-filter is always designed such that r.deg(Q) ≥ r.deg(Pn), the condition

4 of Theorem 4.1.4 imposes the restriction that r.deg(P ) ≤ 2.
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4.2 A Guideline for Selecting Q and Pn

The theorems in the previous section suggest some design guidelines for Q and

Pn. For example, if the relative degree of the unknown plant is ensured to be less

than or equal to two with known sign of high frequency gain, then simply choose

Pn such that r.deg(Pn) ≥ 3 with the same sign of high frequency gain, and design

Q with k = 0 and l = r.deg(Pn). Then, it is easily seen that all the conditions of

Theorem 4.1.4 are satisfied.

On the other hand, the condition 3 of Theorem 4.1.2 allows the following

interpretation. Let Kp denote the high frequency gain of the plant P (s), and its

numerator and the denominator be written as N(s) = Kp(s
kp + bps

kp−1 + · · · )
and D(s) = slp +aps

lp−1+ · · · , respectively. The controller C(s) and the nominal

model Pn(s) admit the similar expression so that Kc, Kn, kc, lc, kn, ln, ac, bc, an,

and bn are all defined from Nc, Dc, Nn, and Dn. Suppose that r.deg(PnC) ≥ 2

and KnKp > 0 (same sign of high frequency gains). Then, since mα = kp+ ln+ lc

and mβ = kn+ lp+ lc, it follows that pα(s) = Kp[s
mα +(an+ac+ bp)s

mα−1+ · · · ]
and pβ = Kn[s

mβ +(ap + ac + bn)s
mβ−1 + · · · ]. Thus, the condition 3 of Theorem

4.1.2 is reduced to[
an + bp − ap − bn +

Kp

Kn

a0
a1 − c1

(
a2 − c2
a1 − c1

− c1
a0

)]
< 0,

which leads to

kn∑
i=1

zni −
ln∑
i=1

pni +
Kp

Kn

a0
a1 − c1

(
a2 − c2
a1 − c1

− c1
a0

)
<

kp∑
i=1

zpi −
lp∑
i=1

ppi (4.2.1)

where poles and zeros of P (s), and those of Pn(s) are denoted by ppi , z
p
i , and pni ,

zni , respectively. Therefore, as poles (zeros, respectively) of Pn are placed further

right (left, respectively), it becomes more beneficial for robust stability. However,

this may make the design of C(s) more difficult since the control of stable plant

is easier than that of unstable plant. It should be noted that the controller C(s)

does not affect (4.2.1).
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4.2.1 A Universal Robust Controller

The design guidelines yield a rather interesting observation that, if the uncertain

plant has the relative degree at most four (and is of minimum phase whose sign

of high frequency gain is known), then a robust controller can be designed, which

is ‘universal’ in the sense that it applies to the plant of any order and of any

bounded (but arbitrarily large) uncertainty. Just by reducing the parameter τ ,

robust stabilization is achieved.

Let µ(P ) = (sum of all zeros of P ) - (sum of all poles of P ), and let µ(P) :=

minP∈P µ(P ) and Kp := maxP∈P |Kp|. Pick the high frequency gain Kn of the

nominal plant Pn (to be designed) such that KnKp > 0. Let Q(s) = a0/((τs)
3 +

a2(τs)
2+a1(τs)+a0), where a1 and a2 is designed such that s2+a2s+a1 = π(s) is

Hurwitz and a0 > 0 is chosen sufficiently small such that pf (s) = s3+a2s
2+a1s+

(Kp/Kn)a0 is Hurwitz for all |Kp| ≤ Kp. In fact, it holds if 0 < a0 < a1a2Kn/Kp,

which is found, e.g., by the Routh-Hurwitz test. Now, determine the locations of

poles and zeros of Pn such that its relative degree is 3 and that

µ(Pn) +
Kp

Kn

a0a2
a21

< µ(P)

is satisfied. Then, C is designed such that is stabilizes Pn. The remaining freedom

of choice for Pn and C can be used to satisfy given performance specifications.

With the design, robust stability follows from the main theorems. If r.deg(P )

is 1 or 2, all the conditions of Theorem 4.1.4 are satisfied. If r.deg(P ) is 3, all the

conditions of Theorem 4.1.1 hold. If r.deg(P ) is 4, all the conditions of Theorem

4.1.2 hold. Hence, with sufficiently small τ , robust stability is guaranteed.

4.3 Technical Proofs

The conditions regarding H1 and H2 in all theorems follow from the same argu-

ments as in Remark 4.1.1, which are related to the polynomial pα(s). Therefore,

the proof is mainly to investigate the behavior of l+mβ −mα vanishing roots of

δ(s; τ) in (4.1.6) and to see if they remain in C− while converging to the origin.

The study could have been facilitated if there is no higher-order terms of τ in
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Figure 4.2: Newton diagram for δ(s; τ) in (4.1.6) when r.deg(P ) > r.deg(Pn)
(i.e., mβ > mα).

δ(s; τ) except the first order one because the classical root-locus method could be

employed. However, since this is not the case, we invoke the method of Newton

diagram, inspired by the higher-order root-locus method in [Hah81].

Proof of Theorem 4.1.3: The vanishing roots of δ(s; τ) have the form of s∗(τ) =

γτ c+ o(τ c) where o(τ c) represents the terms having higher order of τ than c > 0,

and γ is a non-zero constant. To find c and γ, the Newton diagram4 of δ(s; τ) is

drawn as in Fig. 4.2, where it is seen that there are two groups of roots. The first

4The non-zero coefficient of the term τ jsi is marked as × in the coordinate (i, j). Then, a
convex hull of all marked × is considered, and the line segments with different slopes, located
on the boundary in the lower-left side, are found. (La and Lb in Fig. 4.2.) Let N be the number
of such line segments. From the figure, the following facts are read out: (i) the total number
of roots converging to zero as τ → 0 is the index of the leftmost × in the row of τ0 (which is
l+mβ −mα in Fig. 4.2). (ii) These roots are divided by N groups. (iii) For each group, there
is m roots of the form s∗i (τ) = γiτ

c + o(τ c), 1 ≤ i ≤ m, where c = −(slope of the line segment)
and m is the difference between the horizontal indices of the rightmost mark and the leftmost
mark in the line segment. (iv) The value of γi is determined by finding roots of the m-th order
polynomial φ(γ) whose coefficients are the values of those marks that touch the corresponding
line segment.
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group consists of l − k − 1 roots of the form γaτ
1 + o(τ1) and the second group

has mβ −mα + k + 1 roots of the form γbτ
(k+1/(mβ−mα+k+1)) + o(· · · ). It is also

seen that γa and γb satisfy the following two equations, respectively:

φa(γ) = βmβ

[
l∑

i=k+1

aiγ
l−i +

k∑
i=k+1

(ai − ci)γ
l−i

]
= 0,

φb(γ) = (ak+1 − ck+1)βmβ
+ αmαa0γ

mβ−mα+k+1 = 0.

For stability, all the roots of φa and φb need to be located in C− because they

determine the location of s∗(τ) for sufficiently small τ . It is clear that a necessary

condition for stability is mβ − mα + k is at most one, because, if not, at least

one root of φb(γ) is in C+. This explains the conditions 1 and 7. Now assuming

mβ − mα = 1 and k = 0, the condition 4 (5, respectively) implies a solution to

φa(γ) = 0 (φb(γ) = 0, respectively) is in C+ (since φa(γ) = βmβ
γl−1π(1/γ)). If

βmβ
/αmα > 0, the second group has two roots s∗(τ) = ±iγτ1/2 + o(τ1/2) where

γ =
√

(a1 − c1)βmβ
/(a0αmα). With this, stability is inconclusive and we need to

inspect higher order terms.

We let5 s∗(τ) = (iγ + ŝ(τ))τ1/2 where ŝ is a continuous function to be found

such that ŝ(0) = 0. Define τ̂ = τ1/2 and A(τ̂) = iγ + ŝ(τ̂2) for convenience,

and regard δ(s∗(τ̂2); τ̂2) as a polynomial of ŝ with the parameter τ̂ , that is, from

(4.1.6)

δ(s∗(τ̂2); τ̂2) = a0(αmαA
l+1τ̂ l+1 + αmα−1A

l+2τ̂ l+2 + · · · )

+ (a1 − c1)(βmβ
Al−1τ̂ l+1 + βmβ−1A

lτ̂ l+2 + · · · )

+ c1(αmαA
lτ̂ l+2 + αmα−1A

l+1τ̂ l+3 + · · · )

+ (a2 − c2)(βmβ
Al−2τ̂ l+2 + βmβ−1A

l−1τ̂ l+3 + · · · )

+ c2(αmαA
l−1τ̂ l+3 + · · · ) + · · · =: δ̂(ŝ; τ̂).

5As for the case where s∗(τ) = (−iγ + ŝ(τ))τ1/2, the same conclusion is obtained and the
details are omitted.
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Figure 4.3: Newton diagram for δ̂(ŝ; τ̂)/τ̂ l+1.

Collecting the terms in increasing order of τ̂ , it becomes

δ̂(ŝ; τ̂) = τ̂ l+1[a0αmαA
l+1 + (a1 − c1)βmβ

Al−1]

+ τ̂ l+2[a0αmα−1A
l+2 + ((a1 − c2)βmβ−1 + c1αmα)A

l + (a2 − c2)βmβ
Al−2]

+ τ̂ l+3[· · · ] + · · · .

By expanding with A = iγ+ ŝ(τ̂2), it is seen that the constant term (with respect

to ŝ) in the coefficient of τ̂ l+1 (the lowest power of τ̂) is zero by the definition of

γ. With this fact, the Newton diagram of δ̂(ŝ; τ̂)/τ̂ l+1 (Fig. 4.3) suggests that it

has one root ŝ∗(τ̂) of the form γ̂τ̂1 + o(τ̂1) and γ̂ is the root of

φ̂(γ̂) =

(
αmα−1β

2
mβ

(a1 − c1)
2

α2
mα

a0
−

(a1 − c1)
2βmβ

βmβ−1

αmαa0
−

(a1 − c1)c1βmβ

a0

+ (a2 − c2)βmβ

)
− 2(a1 − c1)βmβ

γ̂.

The condition 6 implies that γ̂ is in C+, and so is s∗(τ) = iγτ1/2 + γ̂τ1 + o(τ1)

as τ → 0.

Proof of Theorem 4.1.2: Conclusions of Theorem 4.1.2 are easily derived from

the proof of Theorem 4.1.3. Indeed, by the condition 1, it follows that a1− c1 > 0

and k = 0, which yields φb(γ) = (a1 − c1)βmβ
+ αmαa0γ

2. Then, the conditions
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Figure 4.4: Newton diagram for the case r.deg(P ) < r.deg(Pn).

2 and 3 (the condition 1, respectively) imply that all the roots of φb (φa, respec-

tively) are located in C−.

Proof of Theorem 4.1.4: We now consider the case where mβ − mα < 0.

From the Newton diagram of this case (Fig. 4.4), it is seen that there are two

groups of vanishing roots of δ(s; τ). The first group consists of k roots of the form

s∗(τ) = γaτ
1+o(τ1) where γa is the roots of φa(γ) = ck+· · · ck+1γ

k−k−1+akγ
k−k+

· · · + a0γ
k = ck + · · · + c0γ

k = γkNQ(1/γ; 1). The condition 2 guarantees that

φa is Hurwitz. On the other hand, it is seen from Fig. 4.4 that the second group

has the roots of the form s∗(τ) = γbτ
(l−k)/(l+mβ−mαk), with γb being the roots of

φb(γ) = βmβ
+ ckαmαγ

l+mβ−mα−k. Note that 1 ≤ l+mβ −mα − k = r.deg(Q) +

r.deg(P ) − r.deg(Pn) ≤ 2 by the condition 1 and by r.deg(Q) ≥ r.deg(Pn). If

its value is 1, then the condition 3 guarantees that φb is Hurwitz (of first order).

If its value is 2 (so that l − k > 2), then two roots of the second group are

s∗(τ) = (±iγ + ŝ(τ))τ (l−k)/2 where γ =
√
βmβ

/(ckαmα) and ŝ is a continuous



4.3. Technical Proofs 59

Figure 4.5: Newton diagram for δ̂(ŝ; τ̂)/τ̂2l under the condition r.deg(P ) <
r.deg(Pn).

function to be found such that ŝ(0) = 0. Let τ̂ = τ1/2 and A(τ̂) = iγ + ŝ(τ̂2)

so that s∗(τ̂2) = Aτ̂ l−k. From (4.1.6), it is seen that the power of τ̂ in each

τ̂2jqj(Aτ̂ l−k) begins with (l − k)(l +mβ −mα − j) + 2j if 0 ≤ j ≤ k, and with

(l − k)(l − j) + 2j if k + 1 ≤ j ≤ l, and increases by (l − k) in both cases. Since

l − k > 2, the term of the second lowest power in the polynomial δ(Aτ̂ l−k, τ̂2)

comes from the lowest power term of τ̂2(k−1)qk−1(Aτ̂ l−k) and of τ̂ l−1ql−1(Aτ̂ l−k)

but not from others. Writing δ in ascending power of τ̂ , we have

δ(s∗; τ̂2) = [ckαmαA
2 + βmβ

]τ̂2l + [ck−1αmαA
3 + al−1βmβ

A]τ̂2l−mβ−mα + · · ·

= [2ickαmαγŝ+ (· · · )ŝ2]τ̂2l + [iγ(al−1βmβ
− ck−1αmαγ

2)

+ (· · · )ŝ+ (· · · )ŝ2 + (· · · )ŝ3]τ̂2l−mβ+mα + · · · =: δ̂(ŝ; τ̂).

The corresponding Newton diagram (Fig. 4.5) suggests that it has one root ŝ∗(τ̂)

of the form γ̂τ̂ c + o(τ̂ c) where c = mα −mβ and γ̂ is the root of

φ̂(γ̂) = 2ckαmα γ̂+(al−1βmβ
−ck−1αmαγ

2) = 2ckαmα

[
γ̂+

βmβ

2c2kαmα

(al−1ck−ck−1)

]
.

The condition 4 implies that φ̂ is Hurwitz. The result is the same with A(τ̂) =

−iγ + ŝ(τ̂2).

Proof of Theorem 4.1.5: Conclusions of Theorem 4.1.5 are easily derived from
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the proof of Theorem 4.1.4. Indeed, the condition 4 implies that φa(γ) is not

Hurwitz. On the other hand, if the condition 1 holds, then φb(γ) is not Hurwitz

because l +mβ −mα − k ≥ 3. Regarding the condition 5, it implies that φb(γ)

has at least one root in C+. Finally, suppose that βmβ
/αmα > 0 while r.deg(Q) =

r.deg(Pn)−r.deg(P )+2. Then, s∗(τ) = γ̂τmα−mβ +o(τmα−mβ ). But, γ̂ is positive

because of the condition 6.

4.4 Illustrative Examples

A numerical example is given to illustrate the method presented in Section 4.2.1.

Example 4.4.1. Let h.gain(P ) denote the high frequency gain of P (s) and define

sets of transfer functions (having finite coefficients and of minimum phase)

P12 = {P (s)| 1 ≤ r.deg(P ) ≤ 2, 0.1 ≤ h.gain ≤ 8},

P3 = {P (s)| r.deg(P ) = 3, 0.1 ≤ h.gain ≤ 8},

P4 = {P (s)| r.deg(P ) = 4, 0.1 ≤ h.gain ≤ 8, µ(P ) ≥ 8}.

It is assumed that the primary control goal is to achieve zero steady-state error

(to step response) with overshoot less than 15% and settling time less than 6

seconds. We will show that, for any plant P (s) ∈ P := P12 ∪ P3 ∪ P4, a robust

controller can be designed in order to achieve the control goal. As discussed in

Section 4.2.1, we first choose

Pn(s) =
1

s(s+ 2)(s+ 3)
, Q(s) =

1

(τs)3 + 3(τs)2 + 3(τs) + 1
, (4.4.1)

which guarantees that, for P ∈ P4,

µ(P )− µ(Pn) ≥ 8− 5 >
8

3
=

Kp

Kn

a0a2
a21

. (4.4.2)

Next, select

C(s) = 5 (4.4.3)

so that the unity feedback control system composed of Pn(s) and C(s) achieves the
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primary control goal. Then, according to Theorem 4.1.2 and 4.1.4, the disturbance

observer control system (with small τ) will be stable for any P ∈ P.

To verify the stability as well as the performance, the computer simulations

are carried out using the disturbance observer controller with (4.4.1), (4.4.3), and

τ = 0.01. In addition, the disturbance and the reference inputs are chosen as

d(t) = sin(2πt) and r(t) = 1. For simulation purpose, we consider the following

plants of variation:

P1,a =
2

s+ 6
, P1,b =

0.2

s+ 4
, P1,c =

5

s− 1
,

P2,a =
2

(s+ 2)(s+ 4)
, P2,b =

0.2

(s+ 1)(s+ 3)
, P2,c =

5

(s+ 2)(s− 1)
,

P3,a =
1

s
P2,a, P3,b =

1

s
P2,b, P3,c =

1

s
P2,c,

P4,a =
1

s
P3,a, P4,b =

1

s
P3,b, P4,c =

s+ 1

s(s+ 8)
P3,c.

It is observed that (a) all the plants except P4,b belong to P, (b) all the plants

have different high frequency gains from Pn(s), (c) (4.4.2) is satisfied by P1,a, P2,a,

P3,a, P4,a, and P4,c but not by the others, and (d) P1,c, P2,c, and P3,c are unstable.

Fig. 4.6 and Fig. 4.7 show the simulation results for P1,a, P1,b and P2,a, P2,b,

P2,c, respectively. Although there is the disturbance signal d(t), it seems that plant

outputs are not affected by d(t). In addition, it is seen that the performance of

each plant can be recovered to that of nominal one so that the primary control

goal is achieved for any plant belonging to P12. The simulation results for P3,a,

P3,b, and P3,c are depicted in Fig. 4.8. It is also seen that the recovery of the

nominal closed-loop system performance is achieved. From Figs. 4.6–4.8, it is

verified that, when r.deg(P ) = r.deg(Pn) or 1 ≤ r.deg(P ) ≤ 2, the control system

can be stabilized regardless of whether or not the condition (4.4.2) (i.e., 3 of

Theorem 4.1.2) is satisfied.

Fig. 4.9 shows the simulation results for P4,a, P4,b, and P4,c. It is seen that

P4,a and P4,c can be stabilized by the disturbance observer controller and the

nominal performance is recovered. On the other hand, the instability occurs

for P4,b /∈ P, which indicates that the condition (4.4.2) is very critical when

r.deg(P ) = r.deg(Pn) + 1.
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Figure 4.6: Simulation results for P1,a, P1,b, and P1,c (plants having relative
degree 1) in the presence of disturbance d(t) = sin(2πt)
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Figure 4.7: Simulation results for P2,a, P2,b, and P2,c (plants having relative
degree 2) in the presence of disturbance d(t) = sin(2πt)
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Figure 4.8: Simulation results for P3,a, P3,b, and P3,c (plants having relative
degree 3) in the presence of disturbance d(t) = sin(2πt)
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Figure 4.9: Simulation results for P4,a, P4,b, and P4,c (plants having relative
degree 4) in the presence of disturbance d(t) = sin(2πt)
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Finally, it should be remarked that, with the help of the disturbance observer

controller, the plant output of any P (s) ∈ P is almost indistinguishable from that

of nominal model in the absence of the disturbance input.



Chapter 5

Reduced Order Type-k Disturbance
Observer under Generalized Q-filter

As a robust control scheme, a disturbance observer has been widely employed in

industrial applications to reject the effect of disturbances and plant uncertainties.

As shown in Chapter 3, the disturbance rejection performance of disturbance ob-

server is mainly determined by the design of two Q-filters, which are the core

components of disturbance observer structure. Despite the different roles of each

Q-filter, they have been typically designed to have the same structure. In this

section, we generalize Q-filters’ structures with respect to each Q-filter’s objec-

tive and derive a robust stability condition for the proposed disturbance observer

based control system. To clarify the utility of the generalized Q-filter design

framework, a reduced order type-k disturbance observer is proposed to enhance

the disturbance rejection performance and to reduce the order of type-k distur-

bance observer compared with the conventional one, simultaneously. In addition,

a constructive Q-filter design procedure for guaranteeing robust stability of the

closed-loop system is proposed under parametric uncertainties of plant which be-

long to an arbitrarily large compact set. Finally, the validity of the proposed

disturbance observer is proved by a simulation for the mechanical positioning sys-

tem.

65
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Figure 5.1: Structure of the disturbance observer control system. The shaded
region represents the real plant P (s) augmented with the distur-
bance observer

5.1 Concept of Disturbance Observer with Generalized

Q-filter Structure

Fig. 5.1 depicts the configuration of the disturbance observer based control scheme.

The input signals r, d, and n denote the reference input, the disturbance, and the

noise, respectively. An uncertain single-input single-output linear time-invariant

plant and its nominal model are denoted by P (s) and Pn(s), respectively. The

outer-loop controller C(s) is designed for the nominal model Pn(s) regardless of

the plant uncertainty and disturbance. The blocks QD(s) and QN (s), which are

known as ‘Q-filter’, are stable low-pass filters.

The plant output y is calculated as

y(s) = Tyr(s) r(s) + Tyd(s) d(s)− Tyn(s) n(s),

Tyr(s) =
PPnC

∆(s)
, Tyd(s) =

PPn(1−QD)

∆(s)
, Tyn(s) =

PPnC + PQN

∆(s)
,

∆(s) = PPnC + PQN + Pn(1−QD).

(5.1.1)

Generally, the disturbance d is dominant in the low frequency range, whereas the

noise n is dominant in the high frequency. As discussed in Chapter 2, in the low
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frequency range, (5.1.1) becomes approximately

y(jw) ≈ PnC

1 + PnC
r(jw) (5.1.2)

since QD(jw) ≈ 1, QN (jw) ≈ 1, and n(jw) ≈ 0. It implies that, assuming that

all transfer functions are stable, the disturbance observer recovers the nominal

closed-loop system PnC/(1 + PnC) in the absence of the disturbance and plant

uncertainties.

Let us again consider (5.1.1). One can observe an interesting fact that, when

QD(jw) ≈ 1, the transfer function from d to y is approximate zero (i.e., Tyd(jw) ≈
0) regardless of QN (jw). It implies that the disturbance rejection performance

mainly depends on QD(s). On the other hand, the primary objective of QN (s)

is to implement an inverse dynamics of the nominal model P−1
n (s). In spite of

their different objectives, in general, two Q-filters are designed to have the same

structure. However, in this section, we design two Q-filters QD(s) and QN (s)

independently with respect to the role of each Q-filter.

From these observations, we will specify a generalized Q-filter design frame-

work and discuss robust stability of the disturbance observer based control system

with the proposed Q-filter structure. Assume that the plant P (s) and its nominal

model Pn(s) under consideration satisfy Assumption 2.1.1.

Here, we propose two Q-filters QD(s) and QN (s) with generalized structures

as follows:

QD(s) : =
ck(τs)

k + ck−1(τs)
k−1 + · · ·+ c0

(τs)l + al−1(τs)l−1 + · · ·+ a0
,

QN (s) : =
cq(τs)

q + cq−1(τs)
q−1 + · · ·+ c0

(τs)p + ap−1(τs)p−1 + · · ·+ a0

(5.1.3)

where c0 = a0 and c0 = a0 so that each Q-filter has the unity DC gain. For

nonnegative integers l, k, p, and q, l and k are selected as l − k ≥ 1, whereas p

and q are chosen so that p − q ≥ ν to make the transfer function QN (s)P−1
n (s)

proper. The design parameter τ > 0 is a time constant, which determines the

cut-off frequency of each Q-filter. The design procedure for the coefficients ai, ci,

ai, and ci will be presented in Subsection 5.3.
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5.2 Robust Stability

With the configuration of Fig. 5.1, the transfer function matrix from [r, d, n]T to

[e, u, y]T is computed as

1

∆(s)


Pn(1−QD) + PQN −PPn(1−QD) −Pn(1−QD)

PnC Pn(1−QD) −PnC −QN

PPnC PPn(1−QD) Pn(1−QD)

 (5.2.1)

where ∆(s) is in (5.1.1). As discussed in Chapter 2, when the above nine transfer

functions are stable, the closed-loop system is said to be internally stable. In

addition, the closed-loop system is said to be robustly internally stable if it is

internally stable for all P (s) ∈ P. Let us also represent each transfer function P ,

Pn, C, QD, and QN as the ratio of two coprime polynomials:

P =
N(s)

D(s)
, Pn(s) =

Nn(s)

Dn(s)
, C(s) =

Nc(s)

Dc(s)
,

QD =
NQD(s; τ)

DQD(s; τ)
, QN =

NQN (s; τ)

DQN (s; τ)
.

(5.2.2)

In order to express the explicit dependency of τ , NQD(s; τ), DQD(s; τ), NQN (s; τ),

and DQN (s; τ) will be used instead of NQD(s), DQD(s), NQN (s), and DQN (s),

respectively. Then, by a similar way used in [DFT92], for given τ > 0, the closed-

loop system is internally stable if and only if the characteristic polynomial

δ(s; τ) = N(NnNcDQN +DnDcNQN )DQD

+NnDDcDQN (DQD −NQD)
(5.2.3)

is Hurwitz.

For convenience, define m := deg(DNnDc). Then, since transfer functions P ,

Pn, QD, and QN are strictly proper, and C is at least proper, the degree of s

in δ(s; τ) with τ > 0 is m + l + p. Therefore, there exist m + l + p roots of the

characteristic equation δ(s; τ) = 0. The following lemma shows the behavior of

roots of δ(s; τ) = 0 as τ goes to zero.
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Lemma 5.2.1. Let

ps(s) := N(s)(Dn(s)Dc(s) +Nn(s)Nc(s)),

pf (s) := {DQD(s; 1)−NQD(s; 1)}DQN (s; 1)

+

{
lim
s→∞

P (s)

Pn(s)

}
DQD(s; 1)NQN (s; 1),

and s⋆1, . . . , s
⋆
m and s⋆m+1, . . . , s

⋆
m+l+p be the roots of ps(s) = 0 and pf (s) = 0,

respectively. Then, m+ l + p roots of δ(s; τ) = 0, say si(τ), i = 1, . . . ,m+ l + p,

have the property that

lim
τ→0

si(τ) = s⋆i , i = 1, . . .m,

lim
τ→0

τsi(τ) = s⋆i , i = m+ 1, . . . ,m+ l + p.

�

Proof. Since DQD(s; 0) = NQD(s; 0) = a0 and DQN (s; 0) = NQN (s; 0) = a0,

lim
τ→0

δ(s; τ) = a0a0N(s)(Dn(s)Dc(s) +Nn(s)Nc(s)).

Thus, the first claim is directly proved by Lemma A. 2 in Appendix.

The other l + p roots of δ(s; τ) = 0 go to the infinity as τ goes to zero. To

investigate the behavior of the l + p roots, let δ̄(s; τ) := τmδ(s/τ ; τ). Then, we

have

δ̄(s; τ) = γ1(s; τ)DQD(s; 1)DQN (s; 1) + γ2(s; τ)DQD(s; 1)NQN (s; 1)

+ γ3(s; τ)DQN (s; 1){DQD(s; 1)−NQD(s; 1)}

where γ1(s; τ) := τmNNnNc(s/τ), γ2(s; τ) := τmNDnDc(s/τ), and γ3(s; τ) :=

τmNnDDc(s/τ). Since m = deg(NDnDc) = deg(NnDDc) > deg(NNnNc), it

follows that limτ→0 γ1(s; τ) = 0, limτ→0 γ2(s; τ) = γ2s
m, and limτ→0 γ3(s; τ) =

γ3s
m for all s with some nonzero constant γ2 and γ3. Then, we obtain

δ̄(s; 0) = γ3s
m
[
{DQD(s; 1)−NQD(s; 1)}DQN (s; 1) +

{
lim
s→∞

P (s)

Pn(s)

}
DQD(s; 1)NQN (s; 1)

]
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since γ2/γ3 = lims→∞ P/Pn. It follows that

δ̄(s; 0) = γ3s
mpf (s).

It implies that δ̄(s; 0) = 0 has m roots at the origin and l+p roots at s⋆m+1, . . . , s
⋆
m+l+p.

In other words, there exist l+p roots of δ̄(s; τ) = 0, say s̄i(τ), i = m+1, . . . ,m+

l + p, such that limτ→0 s̄i(τ) = s⋆i . Since s̄i(τ)/τ are roots of δ(s; τ) = 0, the

second claim is proved.

Based on Lemma 5.2.1, the following theorem presents a condition for robust

internal stability of the closed-loop system for all P (s) ∈ P.

Theorem 5.2.2. There exists a constant τ > 0 such that, for all 0 < τ ≤ τ , the

closed-loop system with (5.1.3) is robustly internally stable if the following two

conditions hold:

1. C(s) internally stabilizes Pn(s),

2. pf (s) is Hurwitz.

On the contrary, there is τ > 0 such that, for all 0 < τ ≤ τ , the closed-loop

system is not robustly internally stable if at least one of the conditions 1–2 is

violated in the sense that PnC/(1 +PnC) has some poles in C+, or some zeros of

P (s) or some roots of pf (s) = 0 are located in C+ for some P (s) ∈ P. �

Proof. Since the denominator of PnC/(1 + PnC) is (DnDc + NnNc) and the nu-

merator of P (s) is N(s), the condition 1 and Assumption 2.1.1 imply that the

polynomial ps(s) is Hurwitz. Thus, the proof follows from Lemma 5.2.1.

It is important to note that Theorem 5.2.2 cannot be applied to the case when

one of the conditions is marginal (e.g., if some roots of pf (s) are located on the

imaginary axis). Therefore, in this sense, we call it as an almost necessary and

sufficient condition for robust stability.

In addition, Theorem 5.2.2 reveals the following facts: 1) the designer has to

design the outer-loop controller C(s) to stabilize the nominal model Pn(s) (con-

dition 1), 2) the proposed disturbance observer only can apply to the minimum
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phase system, which is a standard assumption for the conventional disturbance

observer approach, and 3) the coefficients of two Q-filters QD(s) and QD(s) de-

termine the stability of the closed-loop system (condition 2). Note that the last

one is a key condition for robust stability and enlightens new issues on the design

of disturbance observer with generalized Q-filters.

Remark 5.2.1. If two Q-filters QD(s) and QN (s) are designed as QD(s) ≡
QN (s), then the polynomial pf (s) becomes

pf (s) = DQD(s; 1)×
[
DQD(s; 1) +

{
lim
s→∞

P (s)

Pn(s)
− 1

}
NQD(s; 1)

]
. (5.2.4)

Compared with Theorem 2.2.1, the polynomial DQD(s; 1) is multiplied into pf (s)

in (5.2.4). In fact, when QD(s) = QN (s), all conditions of Theorem 5.2.2 are

equivalent to those in 2.2.1 since DQD(s; 1) is already Hurwitz if DQD(s; 1) +

{lims→∞(P/Pn)−1}NQD(s; 1) is designed to be Hurwitz for all P (s) ∈ P. The dif-

ference between Theorem 2.2.1 and the proposed one is from the stable pole/zero

cancelation in (5.2.1) corresponding to DQD(s; 1). �

5.3 Reduced Order Type-k Disturbance Observer

As discussed before, the design of QD(s) affects the disturbance rejection

performance. In order to investigate this intuition, consider Tyd(s) in (5.1.1),

which is the transfer function from d to y,

Tyd(s) =
NNnDcDQN (DQD −NQD)

δ(s; τ)
(5.3.1)

where δ(s; τ) is the characteristic polynomial defined in (5.2.3). It is noticed that

the transfer function has the term DQD(s; τ)−NQD(s; τ) in its numerator. If one

selects the coefficients ci’s such that ci = ai, for all i = 0, . . . , k, then

DQD(s; τ)−NQD(s; τ)

= {(τs)l−k−1 + al−1(τs)
l−k−2 + · · ·+ ak+1}(τs)k+1.

(5.3.2)
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ydu
_
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Figure 5.2: The equivalent block diagram of the disturbance observer struc-
ture in Fig. 5.1.

Now, assume that the disturbance has the following form:

d(s) =

k∑
i=0

di
si

where di’s are unknown constants and k is an unknown nonnegative integer smaller

than or equal to k + 1. By the final value theorem, if δ(s; τ) is Hurwitz, then

lim
s→0

sTyd(s)d(s) = 0.

It implies that the effect of polynomial-in-time disturbance is completely disap-

peared in the steady state.

This point can also be explained by the internal model principle [FW76].

Fig. 5.2 shows an equivalent block diagram of the disturbance observer structure.

Then, one can easily observe that the block 1/(1−QD(s)) contains k+1 integra-

tors, which implies that the disturbance observer structure has the internal model

to reject the polynomial-in-time disturbance completely.

On the other hand, the role of QN (s) is for implementing the block QN (s)P−1
n (s).

Therefore, the relative degree of QN (s) has to be larger than or equal to that of

Pn(s). From these observations, we propose Q-filters’ design for reduced order

type-k disturbance observer to answer the purpose of each Q-filter as follows:

QD(s) =
ak(τs)

k + · · ·+ a0
(τs)k+1 + ak(τs)k + · · ·+ a0

,

QN (s) =
a0

(τs)ν + aν−1(τs)ν−1 + · · ·+ a0
.

(5.3.3)
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Note that ν is the relative degree of the plant and k is selected by the type of

disturbance. Now, we call a disturbance observer with two Q-filters in (5.3.3) as

‘reduced order type-k disturbance observer’.

Remark 5.3.1. In order to reject the polynomial-in-time disturbance, a type-k

disturbance observer has been already proposed in [YKIH96, YKMH99, PJSB12].

However, even if deg(Nn) = 0, the order of the type-k disturbance observer with

two Q-filters having identical structures is at least 2(ν + k) although that of the

proposed disturbance observer with (5.3.3) is ν + k + 1.

In addition, to guarantee the robust stability, a stability condition proposed in

[YKMH99]. But, it is conservative since it is derived by the small-gain theorem.

Moreover, as the degree of Q-filter’s numerator grows (i.e., k increases), this con-

dition tends to be violated [YKIH96]. Whereas, by a design procedure which will

be proposed later, one can always design the reduced order type-k disturbance

observer to guarantee the robust stability of closed-loop system even though un-

certain parameters of the plant belong to an arbitrarily large (but bounded) set.

�

The polynomial pf (s) for the reduced order type-k disturbance observer is

calculated as

pfd(s) := sν+k+1 + aν−1s
ν+k + · · ·+ a1s

k+2

+ a0
g + gn
gn

sk+1 + a0
g

gn
aks

k + · · ·+ a0
g

gn
a0.

(5.3.4)

where g := βn−ν/αn and gn := βn
n−ν/α

n
n whose values αn

n and βn
n−ν denote the

nominal values of αn and βn−ν , respectively. It is note that, by Assumption 2.1.1,

g and gn belong to the interval [g, g] where g = β
n−ν

/αn and g = βn−ν/αn, and

g/gn are always positive.

With unknown g ∈ [g, g] and its nominal value gn, define, for i = 0, . . . , k+1,

pi(s; g) := sν+i + aν−1s
ν−1+i + · · ·+ a1s

1+i

+ a0
g + gn
gn

si + a0
g

gn
(aks

i−1 + · · ·+ ak+1−i)
(5.3.5)

Note that pi+1(s; g) = spi(s; g) + a0(g/gn)ak−i, p0(s; g) = sν + aν−1s
ν−1 + · · · +
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a1s + a0(g + gn)/gn, and pk+1(s; g) = pfd(s). With respect to pi(s; g), we define

the set of interval polynomials

Ii :=
{
sν+i + aν−1s

ν−1+i + · · ·+ a1s
1+i + a0

g + gn
gn

si

+ a0
g

gn
(aks

i−1 + · · ·+ ak+1−i) : g ∈ [g, g]

}
The four extreme polynomials for Ii, in view of Remark A. 5, are denoted by

pi,0(s), . . . , pi,3(s).

We are now ready to introduce a Q-filter design procedure so that pfd(s) is

Hurwitz for all g ∈ [g, g] (i.e., the condition 2 in Theorem 5.2.2 is satisfied.).

Procedure 3. Q-filter Design Procedure for Robust Stability

Step 0: Select k in (5.3.3) and the coefficients aν−1, . . . , a1 such that the

polynomial sν−1 + aν−1s
ν−2 + · · · + a2s + a1 is Hurwitz. Next, pick κ0 > 0

such that sν + aν−1s
ν−1 + · · · + a1s + κ0 is Hurwitz for all κ0 ∈ (0, κ0). Choose

a0 ∈ (0, (gn/(g + gn))κ0).

Step m (m = 1, . . . , k + 1): With the coefficients obtained from the previous

steps, consider the four extreme polynomials pm−1,j(s) of Im−1. For each j =

0, . . . , 3, find ρk+1−m,j > 0 such that

spm−1,j(s) + ρk+1−m,j

is Hurwitz for all ρk+1−m,j ∈ (0, ρk+1−m,j). Then, let ρk+1−m := minj ρk+1−m,j ,

and choose ak+1−m ∈ (0, (gn/(a0g))ρk+1−m).

Step k + 2: Construct the Q-filters with the coefficients aν−1, . . . , a0 and

ak, . . . , a0 obtained through the steps 0, . . . , k + 1. �

We also remark that each step requires at most four extreme polynomials and the

number of polynomials to be checked does not increase as the step proceeds.

Theorem 5.3.1. Under Assumption 2.1.1, the coefficients aν−1, . . . , a0 and ak, . . . , a0

obtained by the Q-filter design procedure ensure that the polynomial pfd(s) of

(5.3.4) is Hurwitz for all g ∈ [g, g]. �



5.4. Illustrative Examples 75

Proof. In Step 0, the coefficients aν−1, · · · , a0 are selected such that the polyno-

mial sν−1 + aν−1s
ν−2 + · · ·+ a1 is Hurwitz and 0 < a0((g + gn)/gn) < κ0. Thus,

by Lemma A. 3, the polynomial p0(s; g) is Hurwitz for all g ∈ [g, g].

The remaining part of theorem is easily proved by the induction argument.

Assume that the polynomial pi(s; g) is Hurwitz for all g ∈ [g, g]. We claim that,

with ak−i from the design procedure, the polynomial pi+1(s; g) = spi(s; g) +

a0(g/gn)ak−i is Hurwitz for all g ∈ [g, g]. For each extreme polynomial pi,j(s) of

Ii, Lemma A. 3 guarantees the existence of ρk−i,j such that spi,j(s) + ρk−i,j is

Hurwitz for all ρk−i,j ∈ (0, ρk−i,j), and ak−i was selected such that 0 < ak−i <

(gn/g)ρk−i where ρk−i = minj ρk−i,j . Therefore, all extreme polynomials pi+1,j(s)

are Hurwitz since they correspond to the collection of spi,j(s) + (g/gn)ak−i, j =

0, · · · , 3. It means that pi+1(s; g) is Hurwitz for all g ∈ [g, g]. The proof is

completed since pfd(s) = pk+1(s; g).

5.4 Illustrative Examples

In this subsection, an illustrative example is presented to clarify the validity of

the reduced order type-k disturbance observer scheme proposed in the previous

subsection.

Example 5.4.1. Let us consider a mechanical positioning system for the X-

Y table operated by a linear motor [YKMH99]. Here, an actual plant and its

nominal one are modeled as

P (s) =
1

Js2 +Bs
, Pn(s) =

1

Jns2 +Bns
(5.4.1)

where J ∈ [0.5, 2] is the mass of the table with load variation, B = 8 is the

viscous friction coefficient, and Jn = 1 and Bn = 8 are nominal values of J

and B, respectively. Note that g = 1/J of P (s) belongs to a bounded interval

[0.5, 2] =: [g, g], which contains the nominal one gn = 1/Jn = 1. To stabilize

the nominal model, the outer-loop controller C(s) is designed as a proportional

controller with Kp = 25.

Assuming that a polynomial-in-time disturbance of at most type-2 enters into
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the closed-loop system, we construct a reduced order type-2 disturbance observer

by following the proposed Q-filter design procedure.

Step 0: We first design a1 = 2 such that s+ a1 is Hurwitz. Since any positive

ρ0 makes s2 + a1s+ ρ0 Hurwitz, we simply select a0 = 1 ∈ (0,∞).

Step 1: Thanks to the selection of {ai}’s, two extreme polynomials

p0,0(s) = s2 + a1s+ a0
g + gn
gn

,

p0,2(s) = s2 + a1s+ a0
g + gn

gn

are Hurwitz. By using the root-locus technique, we take ρ2,0 = 6.1 and ρ2,2 = 2.9

such that, for j = 0, 2, sp0,j(s) + ρ2,j is Hurwitz for ρ2,j ∈ (0, ρ2,j). Let ρ2 =

minj ρ2,j = 2.9 and select a2 = 1.4 ∈ (0, (gn/(a0g)ρ2).

Step 2-3: We now have the following four Hurwitz extreme polynomials

p1,0(s) = s3 + a1s
2 + a0

g + gn
gn

s+ a0
g

gn
a2,

p1,1(s) = s3 + a1s
2 + a0

g + gn
gn

s+ a0
g

gn
a2,

p1,2(s) = s3 + a1s
2 + a0

g + gn

gn
s+ a0

g

gn
a2,

p1,3(s) = s3 + a1s
2 + a0

g + gn

gn
s+ a0

g

gn
a2.

With the same procedure in the previous step, we take a1 = 0.0675 and a0 =

0.0035.

Step 4: With the coefficients obtained above, we finally propose Q-filters

QD(s) and QN (s) as

QD,p,type−2(s) =
1.4(τs)2 + 0.0675(τs) + 0.0035

(τs)3 + 1.4(τs)2 + 0.0675(τs) + 0.0035
,

QN,p,type−2(s) =
1

(τs)2 + 2(τs) + 1
.

To compare with the proposed disturbance observer, we make the other Q-

filters with binomial coefficients, which have been usually used in the design of
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disturbance observer structure [YKIH96], as follows:

QD,b(s) =
3(τs)2 + 3(τs) + 1

(τs)3 + 3(τs)2 + 3(τs) + 1

and QN,b(s) = QN,p,type−2(s). Notice that in this case, pfd(s) is calculated as

pfd,b(s) = s5 + 2s4 +

(
g + gn
gn

)
s3 +

g

gn
3s2 +

g

gn
3s+

g

gn

= s3(s+ 1)2 +
g

gn
(s+ 1)3 = (s+ 1)2

{
s3 +

g

gn
(s+ 1)

}
.

Since s3 + (g/gn)(s + 1) always has an unstable root for any positive g, pfd,b(s)

also does. Therefore, Theorem 5.2.2 indicates that the reduced-order type-2 dis-

turbance observer with the binomial coefficient may destabilize the overall system

for a sufficiently small τ .

For the simulation, set J = 0.6 and r(t) ≡ 0, and choose τ as 0.003. As shown

in Fig. 5.3, the disturbance observer with the binomial coefficients makes the

overall system unstable; on the other hand, the stability of the overall closed-loop

system is guaranteed with the proposed Q-filter design procedure.

As k, which is the type of the Q-filter QD(s) increases, the disturbance rejec-

tion performance of the resulting type-k disturbance observer becomes better. To

verify this argument, we additionally construct reduced order type-0 and type-1

disturbance observers with the coefficients of the Q-filters obtained above; that is

to say, each QD(s) is designed as

QD,p,type−0(s) =
1.4

τs+ 1.4
,

QD,p,type−1(s) =
1.4(τs) + 0.0675

(τs)2 + 1.4(τs) + 0.0675

where τ = 0.003, while QN (s) is chosen as the same one used in the type-2

disturbance observer.

As shown in Fig. 5.4, when a polynomial-in-time disturbance of type-2 enters

into the overall system, the type-2 disturbance observer can reject the modeled

disturbance asymptotically, while others induce divergent or constant error in the
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steady state due to the lack of the embedded integrators.

In addition to this asymptotic disturbance rejection property, the type-2 dis-

turbance observer also can perform better than type-0 and type-1 even though

the disturbance has not the form of polynomial-in-time, as depicted in Fig. 5.5.

Indeed, the larger the type of the Q-filter QD(s), the lower the magnitude of the

sensitivity function of the overall system below 2Hz (Fig. 5.6). We remark that

this improvement is achieved without increasing the bandwidth of QD(s) (Fig.

5.7).



Chapter 6

State Space Analysis of Disturbance
Observer

Throughout Chapter 2–3, the conventional linear disturbance observer approach

is analyzed in the frequency domain. Although it gives an intuitive explanation for

the disturbance observer, we analyze the disturbance observer in the state space

for the purpose of extending the horizon of the disturbance observer approach

to MIMO (multi-input multi-output) plants, to nonlinear plants, and to non-

minimum phase plants and obtaining the deeper understanding of the role of

each block.

The contribution of this chapter is

• How the input disturbance d is estimated and compensated in spite of the

uncertainties of the plant. How and why the disturbance observer can be

used as a way to robust control. Why the steady-state performance is re-

covered to the nominal one. These are basic characteristics of the distur-

bance observer approach, which are already well-known from the frequency

domain analysis.

• How the zero dynamics of the plant is replaced by the nominal zero dynam-

ics, and why the zero dynamics of the plant should be stable (i.e., minimum

phaseness). This is somewhat new discussion.

• Peaking phenomenon caused by employing Q-filter with large bandwidth is

discussed, which possibly degrades the performance during the initial period

81
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for some initial conditions. This implies that the transient performance is

not recovered in general, which is a limitation of the conventional linear

disturbance observer approach.

• An almost necessary and sufficient condition for robust stability of the plant

with model uncertainties, which is the same result in Theorem 2.2.1 are

derived when the bandwidth of Q-filter is enough large. It is easy to check

and can be applied to not only a plant with unstable poles but also the

Q-filter of arbitrary relative degree whose coefficients are not limited to the

binomial one.

• Based on Lyapunov stability analysis, a bound of the time constant τ for

Q-filter is obtained to complete robust stability analysis. Furthermore, the

nominal performance recovery of the disturbance observer based control

scheme with respect to τ is presented.

6.1 State Space realization of Disturbance Observer

To begin with the state space analysis, we first realize all the transfer functions in

the disturbance observer structure in Fig. 6.1. Then, after a coordinate change,

the closed-loop system is put into the standard singular perturbation form. Note

that the measurement noise n is not considered because it is not related to the

internal stability.

Consider the following class of uncertain plants1, which is a state space real-

ization of P (s):

ż = Sz +Gy, y = Cx, (6.1.1a)

ẋ = Ax+B{F1z + F2x+ g(u+ d)}, (6.1.1b)

where ν is the relative degree of P (s), x ∈ Rν and z ∈ Rn−ν are the plant state,

and u ∈ R1, y ∈ R1, and d ∈ R1 are the plant input, the plant output, and the

1Note that a single-input single-output linear time-invariant system P (s) whose relative de-
gree ν can always be transformed into the form 6.1.1 such that z-dynamics is independent of
x2, · · · , xν . For detailed explanations, refer Chapter 13 in [Kha02]
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Figure 6.1: Conventional linear disturbance observer structure with the
outer-loop controller. Here, QA(s) = QB(s) = Q(s), but unique
names are given for convenience.

unknown disturbance, respectively. The matrices A, B, and C are given by

A :=

[
0ν−1 Iν−1

0 0Tν−1

]
, B :=

[
0ν−1

1

]
, C :=

[
1 0Tν−1

]
.

The uncertain matrices S, G, F1, and F2 are of appropriate dimensions and g is

an unknown constant. d(t) and ḋ(t) are bounded with known constants φd and

φdt such that ∥d(t)∥ ≤ φd and ∥ḋ(t)∥ ≤ φdt, respectively.

Assumption 6.1.1. For the uncertain plant (6.1.1), all uncertainties are bounded

and their bounds are known a priori. In particular, there exist positive constants

g and g such that g ≤ g ≤ g. �

In fact, Assumption 6.1.1 and 2.1.1 are equivalent each other. Therefore, it implies

that the relative degree of the plant and the sign of g are known a priori.

Assumption 6.1.2. The matrix S is Hurwitz �

Assumption 6.1.2 implies that the uncertain plant (6.1.1) is of minimum phase

system, which is a conventional assumption on the disturbance observer approach.

As a result, the zero dynamics (6.1.1a) in (6.1.1) is input-to-state stable with

respect to x1.
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Now, we represent a nominal model Pn(s) for the uncertain plant (6.1.1) as

follows:

żn = S̄zn + Ḡyn, yn = Cxn,

ẋn = Axn +B{F̄1zn + F̄2xn + gnur},
(6.1.2)

where xn ∈ Rν and zn ∈ Rn̄−ν are the state, ur ∈ R1 and yn ∈ R1 are the control

input and the output of the nominal model, respectively. Note that the order

of the nominal zero dynamics zn may not be equal to that of the zero dynamics

(6.1.1a), i.e., n̄ may not be equal to n. S̄, Ḡ, F̄1, F̄2, and gn are the nominal

values of S, G, F1, F2, and g, respectively.

For the nominal model (6.1.2), consider an output feedback outer-loop con-

troller C(s) as

η̇ = Acη +Bcr − Ecyn, ur = Ccη +Dcr −Hcyn (6.1.3)

where η ∈ Rh is the state of output feedback controller and r is the reference

input. The matrices Ac, Bc, Cc, Dc, Ec, and Hc are of appropriate dimensions. It

is assumed that r(t) and ṙ(t) are bounded with known constants φr and φrt such

that ∥r(t)∥ ≤ φr and ∥ṙ(t)∥ ≤ φrt, respectively. Note that, when the outer-loop

controller (6.1.3) is considered in the overall closed-loop system, yn should be re-

placed by y, which is evident and will be applied without mention throughout the

paper. Furthermore, ur, the function of y, η, and r, will be used for simplification

of equations.

We make the following assumption for the nominal closed-loop system.

Assumption 6.1.3. The nominal closed-loop system (6.1.2) and (6.1.3) is ex-

ponentially stable. It implies that it is input-to-state stable with respect to the

reference input r. �

As discussed in Chapter 2–3, the outer-loop controller (6.1.3) has to be designed to

stabilize the nominal model (6.1.2). Additionally, the specific design of the outer-

loop controller is determined by the control objective (e.g., tracking or regulation).

Now, we represent the state space realization of the disturbance observer

structure. Since the i-th derivative of the output y is xi+1, the inverse dynamics
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of (6.1.1) is obtained from [Isi95] as

ż = Sz +Gy

(u+ d) =
1

g
(−F1z − F2[y, ẏ, · · · , y(ν−1)]T + y(ν)).

Motivated by the above exact inverse, we realize the nominal inverse w̄ = P−1
n (s)y

(see Fig. 6.1) as the following system

˙̄z = S̄z̄ + Ḡy (6.1.4a)

w̄ =
1

gn
(−F̄1z̄ − F̄2[1, s, s

2, · · · , sν−1]T y + sνy) (6.1.4b)

where s represents the differentiation operator.

Next, a realization of the block QA(s) in Fig. 6.1, where QA(s) is given by

(2.1.2), is

q̇ =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−a0
τ l

− a1
τ l−1 − a2

τ l−2 · · · −al−1

τ


q +



0

0
...

0

1


w̄

=: Aq(τ)q +Bqw̄

w =
[
c0
τ l
, c1

τ l−1 , · · · , ck
τ l−k , 0, · · · , 0

]
q

=: Cq(τ)q

(6.1.5)

where q = [q1, · · · , ql]T ∈ Rl, l − k ≥ ν, c0 = a0, and all ai’s are chosen such

that the polynomial sl+al−1s
l−1+ · · ·+a1s+a0 is Hurwitz. The detailed design

procedure for coefficients ai, ci, and the constant τ will be discussed later. Finally,

realization of the block QB(s) is identical to (6.1.5) except the corresponding

inputs and outputs. That is, referring to Fig. 6.1, we obtain

ṗ = Aq(τ)p+Bq(ur + û− w)

û = Cq(τ)p
(6.1.6)
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y

Figure 6.2: Since both systems QA and P−1
n are linear, two configurations in

this figure are equivalent in the steady-state. For implementation
the configuration of the bottom is used while the upper one is
employed for the stability analysis in this paper.

where p = [p1, · · · , pl]T ∈ Rl.

Remark 6.1.1. Obviously, the realization (6.1.4) alone cannot be implemented

because it corresponds to an improper transfer function. Instead, the block

QA(s)P
−1
n (s) is implemented together. Referring to Fig. 6.2 we propose the

following implementation in the state space, whose transfer function is proper:

q̇ = Aqq +Bqy

˙̄z = S̄z̄ + ḠCqq

w =
1

gn

(
−F̄1z̄ − F̄2Tτq + CqA

ν
qq + CqA

ν−1
q Bqy

) (6.1.7)

where

Tτ =


Cq

CqAq

...

CqA
ν−1
q

 .

The analysis in this paper uses the combination of (6.1.4) and (6.1.5), instead of

(6.1.7), because it greatly simplifies the stability analysis. However, although the

input-output responses of two representations are the same, it should be noted

that time responses between the two cases are different. �

Based on the obtained state space realizations, we will represent the closed-

loop system as a singular perturbation form. In order to obtain the standard
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singular perturbation form, we change coordinates for states q and p as follows:

ξi := τ i−(l+1)
q qi, ζi := τ i−(l+1)

q pi, i = 1, . . . , l. (6.1.8)

On the other hand, since siy = y(i) = xi+1, sνy = ẋν , and u = ur + û − w,

the equation for w̄ in (6.1.4b) can again be written in the new coordinates as

w̄ =
1

gn

(
− F̄1z̄ − F̄2x+ F1z + F2x+ g(ur + û− w + d)

)
=

1

gn

(
− F̄1z̄ + F1z − F̄2x+ F2x+ gC1(ζ − ξ) + g(ur + d)

)
.

(6.1.9)

From (6.1.8) and (6.1.9), the dynamics ξ and ζ become

τ ξ̇ = (Aξ −
g

gn
BξCξ)ξ +

g

gn
BξCξζ +

1

gn
Bξ{F̃ (z, z̄, x) + g(ur + d)}, w = Cξξ,

τ ζ̇ = −BξCξξ + (Aξ +BξCξ)ζ +Bξur, û = Cξζ

(6.1.10)

where F̃ (z, z̄, x) = −F̄1z̄ − F̄2x + F1z + F2x and Aξ, Bξ, and Cξ imply Aq, Bq,

and Cq when τ = 1.

Then, from the equation (6.1.1), (6.1.3), (6.1.4), and (6.1.10), the overall

closed-loop system can be written as

η̇ = Acη +Bcyr − Ecy, ur = Ccη +Dcyr −Hcy,

ẋ = Ax+B{F1z + F2x+ gCξ(ζ − ξ) + gur + gd},

ż = Sz +Gy,

˙̄z = S̄z̄ + Ḡy, y = Cx,

(6.1.11a)

and

τ ξ̇ = (Aξ −
g

gn
BξCξ)ξ +

g

gn
BξCξζ +

1

gn
Bξ{F̃ (z, z̄, x) + g(ur + d)},

τ ζ̇ = −BξCξξ + (Aξ +BξCξ)ζ +Bξur,

(6.1.11b)

From the overall closed-loop system (6.1.11), it is observed that, for relatively

small τ , the system is in the standard singular perturbation form.



88 Chap. 6. State Space Analysis

6.2 Analysis of Disturbance Observer based on Singular

Perturbation Theory

In this section, we will discuss the nominal performance recovery and robust sta-

bility for the disturbance observer based control scheme from the singular per-

turbation theory. It is observed from (6.1.11) that the variables x, z, z̄, η, r,

and d are considered as slow variables, while the state ξ and ζ are regarded as

fast variables. If the fast dynamics has an isolated equilibrium for each (frozen)

slow variables and the equilibrium (depending on x, z, z̄, η, r, d) is exponen-

tially stable, then the overall closed-loop system behaves as the reduced system

(that is, the overall closed-loop system is restricted to the slow manifold) with

sufficiently small τ , under the assumption that the slow variables are bounded

and not varying fast. In order to show that the disturbance observer recovers the

steady-state performance of the nominal closed-loop system (6.1.2) and (6.1.3)

and guarantees robust stability of the overall closed-loop system (6.1.11), we first

obtain the quasi-steady-state system. And then, we investigate under what condi-

tion the overall closed-loop system (6.1.11) is exponential stable and the nominal

performance is recovered.

The equilibrium of (6.1.11b) for each frozen slow variables is,

[
ξ⋆

ζ⋆

]
= −A−1

f

[
1
gn
Bξ{F̃ (z, z̄, x) + g(ur + d)}

Bξur

]
(6.2.1)

where

Af =

[
Aξ − g

gn
BξCξ

g
gn
BξCξ

−BξCξ Aξ +BξCξ

]
. (6.2.2)

After simple calculation using the matrix inversion lemma (Lemma A. 8 in Ap-

pendix), each equilibrium is calculated as

ξ∗ = −gn + g

gn
(Aξ −

g

gn
BξCξ)

−1Bξur,

ζ∗ =
1

gn + g
(Aξ +

gn
gn + g

BξCξ)
−1Bξ{F̃ (z, z̄, x) + gd− gnur}.



6.2. Analysis of Disturbance Observer based on Singular Perturbation Theory 89

With the equilibrium (6.2.1), we derive the quasi-steady-state system (i.e.,

slow dynamics on the slow manifold when τ = 0) as follows:

η̇ = Acη +Bcr − Ecy, ur = Ccη +Dcr −Hcy,

ẋ = Ax+B{F̄1z̄ + F̄2x+ gnur},

˙̄z = S̄z̄ + ḠCx,

ż = Sz +GCx, y = Cx.

(6.2.3)

The quasi-steady-state system (6.2.3) is the key role to explain the nominal per-

formance recovery of the disturbance observer and the extreme case when τ = 0.

From this reduced system, we find out several interesting points. First, the in-

put disturbance d is completely rejected from the control input. In addition, the

quasi-steady-state subsystem is nothing but the nominal closed-loop system aug-

mented by the zero dynamics of the real plant. Therefore, if the boundary-layer

subsystem is exponentially stable, then the overall system behaves like the quasi-

steady-state system (6.2.3) after the transient of fast dynamics of ξ and ζ. In

this way, the steady-state performance is recovered to the nominal one. Second,

in the viewpoint of the outer-loop controller (6.1.3), the plant to be controlled

is approximated as the nominal model (6.1.2) that is completely known to the

controller designer. Finally, the zero dynamics of the plant (i.e., z-dynamics of

(6.1.1a)) is disconnected from the output y, that is, becomes unobservable from

the output. In fact, it is replaced by the zero dynamics of the nominal model (i.e.,

z̄-dynamics of (6.1.2)). These points are explored more in Section 6.3.

Now, we analyze the robust stability of the overall closed-loop system (6.1.11)

based on the singular perturbation approach.

Theorem 6.2.1. Under Assumption 6.1.1, 6.1.2, and 6.1.3 there exists a positive

constant τ such that, for all 0 < τ < τ , the overall closed-loop system (6.1.11)

is robustly exponentially stable if the matrix Af in (6.2.2) is Hurwitz for all

uncertain g. �

Proof. From the singular perturbation theory, if both the quasi-steady-state and

the boundary-layer subsystem are exponentially stable, then the overall closed-

loop system is exponentially stable. Since the quasi-steady-state subsystem (6.2.3)
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is the nominal closed-loop system (6.1.2) and (6.1.3) augmented by the zero dy-

namics of the real plant (6.1.1a), from Assumption 6.1.1 and 6.1.2, it follows that

(6.2.3) is exponentially stable. On the other hands, the system matrix of the

boundary-layer subsystem is nothing but Af of (6.2.2). Therefore, the proof is

completed since the matrix Af is Hurwitz.

It is emphasized that the matrix Af plays a key role to determine the stability

of the overall closed-loop system (6.1.11). If it is satisfied, then (6.1.11) is robustly

stable for the sufficiently small τ . Next lemma shows the condition for ai and ci,

(i.e., the coefficients of Q-filter) to make Af Hurwitz.

Lemma 6.2.2. The matrix Af is Hurwitz if and only if the following two poly-

nomials are Hurwitz:

pa(s) = sl + al−1s
l−1 + · · ·+ a1s+ a0

pf (s) = sl + al−1s
l−1 + · · ·+ ak+1s

k+1

+ (ak +
g − gn
gn

ck)s
k + · · ·+ (a0 +

g − gn
gn

c0).

(6.2.4a)

�

Proof. We compute the characteristic polynomial of the matrix Af as follows. In

the derivation, we use the property of the determinant that adding or subtract-

ing a row/column block to another row/column block leaves the determinant un-

changed:

det

[
sI −Aξ +

g
gn
BξCξ − g

gn
BξCξ

BξCξ sI −Aξ −BξCξ

]
= det

[
sI −Aξ +

g
gn
BξCξ sI −Aξ

BξCξ sI −Aξ

]

= det

[
sI −Aξ +

g−gn
gn

BξCξ 0

BξCξ sI −Aξ

]
.

Therefore, the characteristic polynomial of the matrix Af is pa(s)pf (s) where

pa(s) = det
[
sI −Aξ

]
, ps(s) = det

[
sI −Aξ +

g−gn
gn

BξCξ

]
which completes the proof.
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From the analysis in the above, it is clear that the stability of the disturbance

observer control scheme under a sufficiently small τ is determined by two poly-

nomials pa(a) and pf (s) of Lemma 6.2.2. As discussed in Section 3.2.2, one can

always design the coefficients ai and ci such that the polynomial pf (s) is Hurwitz.

In addition, if pf (s) is Hurwitz, then pa(s) is also Hurwitz since gn ∈ [g, g].

6.3 Discussion on Disturbance Observer Approach

This section is for discussing several new findings and reinterpretations obtained

from the proposed analysis of disturbance observer in the state space.

6.3.1 Relation of Robust Stability Condition between State Space

and Frequency Domain Analysis

It is observed that Assumption 2.1.1 and the conditions 1–2 of Theorem 2.2.1

are equivalent to Assumption 6.1.1, 6.1.2, 6.1.3, and the Hurwitzness of Af of

Theorem 6.2.1. Therefore, Theorem 2.2.1 is equivalent to Theorem 6.2.1. As a

result, Remark 2.2.1 still hold for Theorem 6.2.1.

6.3.2 Effect of Zero Dynamics

Looking at the quasi-steady-state model (6.2.3), we observe that the zero dynam-

ics of the plant is disconnected from the output y, which can be viewed as that

the effective disturbance observer makes the zero dynamics almost unobservable.

Instead, the nominal zero dynamics (having the state z̄) substitutes for the role

of the true one. Therefore, in order to have the internal state z bounded under

the effective disturbance observer, minimum phaseness of the plant is necessary

so that the z-dynamics of (6.2.3) becomes input-to-state stable (ISS) with x1 as

the input.

This analysis suggests that, if the outer-loop controller design takes into ac-

count the initial conditions of the plant for (slow) transient performance2 of y(t),

then it should consider x(0) and z̄(0), but not z(0). Note also that, if S and

2In this Chapter, ’fast/slow transient’ implies the transient response of the fast/slow variables,
respectively.
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S̄, and G and Ḡ, are similar to each other, respectively, then the z̄-dynamics of

(6.2.3) plays the role of the state observer for z. Therefore, it is sometimes desir-

able that the zero dynamics of the plant is fast enough for the nominal state z̄(t)

to converge quickly to its true counterpart z(t). It is also noted that, if a state

observer is used as a part of the outer-loop controller, then the estimated state for

the zero dynamics is more likely to be z̄(t) rather than z(t), because the observer

is looking at the quasi-steady-state subsystem when τ is sufficiently small.

6.3.3 Stability of Nominal Closed-loop System

Assuming the plant P (s) is of minimum phase, Assumption 6.1.3 is about the

stability of Pn(s) combined with the outer-loop controller C(s), and implies the

stability of the nominal closed-loop transfer function Pn(s)C(s)/(1 + PnC(s))

when the unity-feedback configuration is used. Obviously, since the primary goal

of the outer-loop controller is to stabilize the nominal closed-loop system, this

assumption naturally holds for most cases. Note that a stable Pn(s) can just be

taken without using the outer-loop controller C(s) because Assumption 6.1.3 is

satisfied with C(s) ≡ 0 and a stable Pn(s). In this way, a robust stabilization

of the plant P (s) may be achieved by the disturbance observer structure only.

(However, our philosophy is that stabilization of Pn(s) is the responsibility of

the outer-loop controller C(s) if Pn(s) is not stable. This point is in contrast to

[UH93, CYC+03], where the stabilization of P (s) is achieved by designing both

Pn(S) and Q(s).)

6.3.4 Infinite Gain Property with p-dynamics

It is known that a behind-the-scenes characteristic of the disturbance observer

structure is that the Q-filter QB(s) constructs an infinite gain block in the feed-

back loop. In other words, by noting that Fig. 6.3 is an equivalent to the shaded

block of Fig. 6.1, it is observed that the magnitude of 1/(1 − QB(jω)) tends

to infinity at low frequencies where QB(jω) ≈ 1. Indeed, the transfer function

1/(1−QB(s)) always has a pole at the origin, and this fact is already reflected in

our analysis as that, for (6.1.6) that is ṗ = (Aq +BqCq)p+B(ur −w), the (l, 1)-

element of the matrix Aq + BqCq is always zero. Therefore, the system (6.1.6)
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Figure 6.3: Equivalent configuration of the shaded block of Fig. 6.1

is not asymptotically stable by itself. Instead, the combined dynamics of (6.1.6)

and (6.1.5) is asymptotically stable for frozen slow variables if the matrix Af is

Hurwitz. This point is more easily seen in (6.1.11b). In fact, we note that, the

(l, 1)-element of (Aξ+BξCξ) for τ ζ̇ = (Aξ+BξCξ)ζ−BξCξξ+Bξur of (6.1.11b) is

zero, but thanks to the term g
gn
BξCξζ in ξ-dynamics of (6.1.11b), the Hurwitzness

of Af is possible. The source of the term g
gn
BξCξζ is the signal û in w̄ of (6.1.9).

Since the appearance of û in w̄ is due to the fact that w̄ depends on yν = ẋν

which has û as one of the inputs to the plant, it can be seen that the helpful term

comes through the plant P (s). Therefore, if the input to the plant is modified

by, for example, the actuator saturation, then the stability of fast dynamics is

affected accordingly.

Infinite gain property leads to an interesting fact that, unlike some intuition

that the signal w in Fig. is a low-pass filtered signal approximating (u + d)

while û approximates u, the signal w is mimicking the external input ur and û

approximates the important signal (1/g)(−F̃ (z, z̄, x)+ gnur − gd). (This is easily

seen from (6.2.1) keeping in mind that w = Cξξ → Cξξ
∗ and ū = Cξζ → Cξζ

∗.)

When the control system with the disturbance observer is working well, the signal

(ur −w) is nearly zero (but not identically zero) at low frequencies and this small

signal is amplified through the almost infinite gain block (see Fig. 6.3) so that

the signal u contains all the necessary signal components for making the overall

system be a nominal one with disturbance free.
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6.3.5 Peaking in Fast Transient

By choosing the design parameter τ sufficiently small, the poles of QA(s) (i.e.,

(6.1.5)) are located far left in the complex plane. More specifically, if λi’s are

roots of sl + al−1s
l−1 + · · · + a0 = 0, then the poles of (6.1.5) are λi/τ . Then,

under the structure of (6.1.5), the peaking phenomenon [SK91] happens for the

state q. Peaking phenomenon is briefly summarized as follows. The state q(t)

obeys that ∥q(t)∥ ≤ k1(τ)e
−(λ/τ)t∥q(0)∥ + k2(τ)

∫ t
0 e

−(λ/τ)(t−s)w̄(s)ds with some

λ > 0 and two positive constants k1 and k2 depending on τ . While we can speed

up the transient by reducing τ , the constant k1 (and k2, as well) increases in the

order of 1/τ l−1, which explains the fact that the state q(t) may have very large

value during the initial period for some initial conditions. This initial peaking

effect then increases the value of w (see the real implementation (6.1.7), and also

the equation for w in (6.1.5)). The peaks of w in the fast transient may perturb

the slow state x during the fast initial period (because Cξ(ζ− ξ)) in (6.1.11a) will

have unwanted large absolute vlaues then). Peaking phenomenon also happens

for the state p of (6.1.6).

Remark 6.3.1. Although the structure of (6.1.11b) (i.e., another representation

of (6.1.5) and (6.1.6)) does not seem to show peaking phenomenon for ξ and ζ,

the initial condition for ξ(0) and ζ(0) coming from (6.1.8) already reflects the

peaking phenomenon of (6.1.5) and (6.1.6), that is, they may be very large with

small τ . �

Peaking phenomenon becomes less apparent under the following cases.

1. The parameter τ is not very small.

2. The relative degree of the plant is not very high. (For mechanical systems,

it is usually two.)

3. The overall system begins its operation on the slow manifold. For example,

all the initial conditions of the overall control system including the distur-

bance d(0) are zero. (This is the case for some motion control systems.)

In summary, it is not true in general that the conventional linear disturbance

observer structure recovers the (slow) transient performance to the nominal one.
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A possible remedy to this problem is to modify the disturbance observer structure

as suggested in [BS08].

6.4 Nominal Performance Recovery with respect to Time

Constant of Q-filter

In the stability analysis discussed so far, the bound of τ for robust stability of

(6.1.11) is not explicitly provided. However, its bound must be determined for

the complete stability analysis. Therefore, in this section, we derive the stability

analysis based on Lyapunov theory. Furthermore, the nominal performance re-

covery by the disturbance observer with respect to τ is presented.

The closed-loop system (6.1.11) can be compactly written as

Ẋ = AsX +AxqZ + BxV,

τ Ż = AfZ +AqxX + BqV
(6.4.1)

where X := [η;x; z; z̄], Z := [ξ; ζ], and V := [r; d]. The matrices As, Axq, Bx,

Aqx, and Bq are as given by

As : =


Ac −EcC 0h×n−ν 0h×n̄−ν

gBCc A+B(F2 − gHcC) BF1 0ν×n̄−ν

0n−ν×h GC S 0n−ν×n̄−ν

0n̄−ν×h ḠC 0n̄−ν×n−ν S̄

 ,

Axq : =


0h×l 0h×l

−gBCξ gBCξ

0n×l 0n×l

0n̄×l 0n̄×l

 , Bx :=


Bc 0h×1

gBDc gB

0n×1 0n×1

0n̄×1 0n̄×1

 ,

Aqx : =

[
g
gn
BξCc

1
gn
Bξ[−F̄2 + F2 − gHcC] 1

gn
BξF1 − 1

gn
BξF̄1

BξCc −BξHcC 0l×n−ν 0l×n̄−ν

]
,

Bq : =

[
g
gn
BξDc

g
gn
Bξ

BξDc 0l×1

]
.
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Let h(X ,V) := −A−1
f (AqxX + BqV) = [ξ∗; ζ∗], which is the isolated equilibrium

of (6.1.11b) for each (frozen) slow variables. In fact, it is also equal to [ξ∗; ζ∗] in

(6.2.1). With Y := Z − h(X ,V), we have

Ẋ = FsX +AxqY + (Bx −AxqA−1
f Bq)V

Ẏ = FqX + (
1

τ
Af +A−1

f AqxAxq)Y

+A−1
f Aqx(Bx −AxqA−1

f Bq)V +A−1
f BqV̇.

(6.4.2)

where Fs := As −AxqA−1
f Aqx and Fq := A−1

f Aqx(As −AxqA−1
f Aqx). Note that

the X -dynamics without the term involving Y in (6.4.2) is the quasi-steady-state

model (6.2.3). In order to show that the closed-loop system (6.1.11) behaves

like (6.2.3), let the solution of (6.2.3) be XN (t), that is, XN (t) satisfies that

ẊN = FsXN + (Bx −AxqA−1
f Bq)V where Fs is Hurwitz by Assumption 6.1.1 and

6.1.3. The solution XN (t) is hence bounded. Then, with X̃ := X − XN , we have
˙̃X = FsX̃ +AxqY, while the Y-dynamics of (6.4.2) is rewritten as

Ẏ = FqX̃ +

(
1

τ
Af +A−1

f AqxAxq

)
Y + Brθ

where θ := [X T
N ,VT , V̇T ]T and Br is

Br :=
[
A−1

f AqxFs A−1
f Aqx(Bx −AxqA−1

f Bq) A−1
f Bq

]
.

If the matrices Af and Fs are Hurwitz, then there exist positive definite

matrices Pf and Ps such that PfAf + AT
f Pf = −2I and PsFs + FT

s Ps = −2I.

Let V (X̃ ,Y) = 1
2 X̃

TPsX̃ + 1
2Y

TPfY. Then, we obtain

V̇ ≤ −∥X̃∥2 − 1

τ
∥Y∥2 + γ1∥X̃ ∥∥Y∥+ γ2∥Y∥2 + γ3∥Y∥,

where γ1 = ∥PsAxq∥+∥PfFq∥, γ2 = ∥PfA−1
f AqxAxq∥, γ3 = ∥PfBr∥max0≤t≤∞ ∥θ(t)∥.

If τ < τ := 1/(γ21 + 2γ2), then it can be shown that V̇ < 0 when ∥Y∥ > 2γ3τ .

Now, define V := ∥X̃ ∥2 + 1
τ ∥Y∥2. Then, it holds that

V̇ ≤ −1

2
V + γ3

√
τ
√
V
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which means that, if V > 4γ23τ , then V̇ < 0. And, a positive constant µ1 is given

by

µ1 := max
V=4γ2

3τ
V (X̃ ,Y).

We define the set

Ωξ := {[X̃ ;Y] : V (X̃ ,Y) ≤ µ1}

Then, it is clear that all solutions of [X̃ ;Y] converge to the set Ωξ as t → ∞. If

it converges to the set Ωξ, then it remains the set Ωξ. By the definition of V and

V ,

V =
1

2
X̃ TPsX̃ +

1

2
YTPfY ≤ ρ1V

where ρ1 := max{1
2λmax(Ps),

1
2λmax(Pf )τ}. For all [X̃ ,Y1] ∈ Ωξ, ∥X̃ ∥2 ≤ µ1 ≤

4ρ1γ
2
3τ and thus,

∥X̃ ∥ ≤ 2γ3
√
ρ1
√
τ .

Since we assume that τ is relatively small positive constant and ρ1 = λmax(Ps)/2

as τ → 0, the bound of ∥X − XN∥ is proportional to the
√
τ . This implies that

V (X̃ (t),Y(t)) tends to arbitrarily small so that the error X (t) − XN (t) becomes

arbitrarily small, by taking τ sufficiently small. Here, we summarize the result as

follows.

Theorem 6.4.1. Under Assumption 6.1.1, 6.1.2, and 6.1.3, there exists a constant

τ = 1/(γ21 +2γ2) > 0 such that, for all 0 < τ < τ , the closed-loop system (6.1.11)

is exponentially stable when r = 0 and d = 0. Furthermore, the part of the

solution (6.1.11) denoted by [η(t);x(t); z̄(t)] satisfies that

lim sup
t→∞

∥[η(t);x(t); z̄(t)]− [ηN (t);xN (t); zN (t)]∥ ≤ Γ1

√
τ

where Γ1 := 2γ3
√
ρ1 and [ηN (t);xN (t); zN (t)] is the solution of the nominal closed-

loop system (6.1.2) and (6.1.3). �

As can be seen in Theorem 6.4.1, the error decreases proportional to
√
τ . It

implies that the performance of the disturbance observer is improved as the time

constant τ goes to zero.





Chapter 7

Nominal Performance Recovery and
Stability Analysis for Disturbance
Observer under Unmodeled Dynamics

Feedback system design including the disturbance observer based control is often

achieved by neglecting fast unmodeled dynamics (e.g., actuator or sensor) for

reducing design complexity [SD02, LT96]. It is based on an assumption that

unmodeled dynamics is fast enough to be negligible. However, the disturbance

observer contains two Q-filters as fast dynamics; therefore the assumption may

not be satisfied when the time constant of the Q-filter is too small to enhance

the disturbance rejection performance. As discussed in Chapter 4, it causes the

degradation of performance and may be lead to instability. On the other hand,

in order to avoid instability caused by unmodeled dynamics, some guidelines for

robust stability have been proposed [KK99, CYC+03, WT04]. However, they are

also based on the small-gain theorem as well as can not deal with the plant with

unstable poles.

This chapter presents the nominal performance recovery and stability analysis

for the disturbance observer based control scheme under fast unmodeled dynamics.

The contribution of this chapter is as follows:

• The stability analysis of disturbance observer based control scheme under

the fast unmodeled dynamics is presented using the singular perturbation

theory.

99



100 Chap. 7. Nominal Performance Recovery under Unmodeled Dynamics

• In order to guarantee the robust stability, the explicit bound of a time

constant of Q-filter with respect to the unmodeled dynamics is derived based

on Lyapunov analysis.

• Finally, this chapter presents that the disturbance observer recovers a nom-

inal performance, which is designed for the nominal model for the plant and

the state error between the nominal and actual closed-loop system asymp-

totically converges to a set whose size is proportional to the square root of

the time constant of Q-filter.

7.1 Problem Formulation

In this section, we introduce the disturbance observer based control scheme for an

uncertain single-input single-output linear plant including unmodeled dynamics

to achieve the nominal performance recovery in the presence of the disturbances

and uncertainties. After the problem formulation, the overall closed-loop system

is transformed to a singular perturbation form.

Consider the following class of uncertain plants:

ż = Sz +Gy, y = Cx, (7.1.1a)

ẋ = Ax+B{F1z + F2x+ g(u+ d)}, (7.1.1b)

τvv̇ = Avv +Bvuv, u = Cvv, (7.1.1c)

where x ∈ Rν and z ∈ Rn−ν are the plant state, v ∈ Rm is the state of the un-

modeled dynamics, and u ∈ R1, uv ∈ R1, y ∈ R1, and d ∈ R1 are the plant input,

the control input, the plant output, and the unknown disturbance, respectively.

The matrices A, B, and C are given by

A :=

[
0ν−1 Iν−1

0 0Tν−1

]
, B :=

[
0ν−1

1

]
, C :=

[
1 0Tν−1

]
.

The positive constant τv is a time constant of unmodeled dynamics. The uncertain

matrices S, G, F1, F2, Av, Bv, and Cv are of appropriate dimensions and g is an

unknown constant. The disturbance d(t) and its derivative ḋ(t) are bounded with
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known constants φd and φdt such that ∥d(t)∥ ≤ φd and ∥ḋ(t)∥ ≤ φdt, respectively.

Assumption 7.1.1. The uncertain plant (7.1.1) satisfy the following assump-

tions:

1. All uncertainties are bounded and the bounds are known a priori. In par-

ticular, there exist positive constants g and g such that g ≤ g ≤ g.

2. The matrix S is Hurwitz. �

Note that, in the absence of the unmodeled dynamics (7.1.1c), the plant (7.1.1a)

and (7.1.1b) under consideration is in the normal form whose relative degree is

ν. In addition, the condition 2 implies that the plant (7.1.1a) and (7.1.1b) is of

minimum phase, which is a conventional assumption on the disturbance observer

approach.

Assumption 7.1.2. The unmodeled dynamics in the plant (7.1.1c) is exponen-

tially stable (i.e., the matrix Av is Hurwitz) and −CvA
−1
v Bv = 1. Furthermore,

the time constant τv is upper bounded by a positive constant τv which is known

a priori. �

The above assumption implies that the DC gain of (7.1.1c) equals to one. Even

though it is not, a non-unity gain can be integrated into the plant input gain g.

Now, we consider a nominal model for the uncertain plant (7.1.1) as follows:

żn = S̄zn + Ḡyn, yn = Cxn,

ẋn = Axn +B{F̄1zn + F̄2xn + gnur},
(7.1.2)

where xn ∈ Rν and zn ∈ Rn̄−ν are the state, ur ∈ R1 and yn ∈ R1 are the control

input and the output of the nominal model, respectively. Notice that the order

of the nominal zero dynamics zn may not be equal to that of the zero dynamics

(7.1.1a), i.e., n̄ may not be equal to n. S̄, Ḡ, F̄1, F̄2, and ḡ are the nominal values

of S, G, F1, F2, and g, respectively.

For the nominal model (7.1.2), consider an output feedback outer-loop con-

troller as

η̇ = Acη +Bcr − Ecyn, ur = Ccη +Dcr −Hcyn (7.1.3)



102 Chap. 7. Nominal Performance Recovery under Unmodeled Dynamics

where η ∈ Rh is the state of output feedback controller and r is the reference

input. The matrices Ac, Bc, Cc, Dc, Ec, and Hc are of appropriate dimensions.

It is assumed that r(t) and ṙ(t) are bounded with known bounds φr and φrt such

that ∥r(t)∥ ≤ φr and ∥ṙ(t)∥ ≤ φrt, respectively. As discussed in Chapter 6 , when

(7.1.3) is employed in the actual closed-loop system, ȳ should be replaced by y.

In addition, ur, the function of η, r, and y, will be often used for simplification.

Assumption 7.1.3. The nominal closed-loop system (7.1.2) and (7.1.3) is ex-

ponentially stable. It implies that it is input-to-state stable with respect to the

reference input r. �

As discussed in the previous chapters, Assumption 7.1.3 implies that the outer-

loop controller (7.1.3) has to be designed to stabilize the nominal model (7.1.2).

Now, we will show that the plant (7.1.1) with the disturbance observer behaves

as the disturbance-free nominal model (7.1.2) in the presence of the disturbance

and model uncertainties. The disturbance observer as an inner-loop controller is

proposed as

˙̄z = S̄z̄ + Ḡw̄, w =
1

gn
(−F̄1z̄ − F̄2w̄

† + w̄ν), (7.1.4a)

q̇ = Aq(τ)q +Bqy, w̄ = Cq(τ)q, (7.1.4b)

ṗ = Aq(τ)p+Bquv, û = Cq(τ)p, (7.1.4c)

uv = ur + û− w (7.1.4d)

where z̄ ∈ Rn̄−ν , q ∈ Rl, and p ∈ Rl are the state, w̄† =
[
w̄ ˙̄w · · · w̄ν−1

]T
,

and w̄i is the i-th derivative of the output w̄. The matrices Aq(τ), Bq, and Cq(τ)

are

Aq(τ) :=



0 1 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 1

−a0
τ l

− a1
τ l−1 · · · −al−1

τ


, Bq :=



0

0
...

0

1


,

Cq(τ) :=
[
c0
τ l

c1
τ l−1 · · · ck

τ l−k 0 · · · 0
]
.



7.1. Problem Formulation 103

where l − k ≥ ν, c0 = a0, and all ai’s are chosen such that the polynomial

sl + al−1s
l−1 + · · · + a1s + a0 is Hurwitz. The detailed design procedure for

coefficients ai, ci, and τ will be discussed later.

It is important to note that the disturbance observer in (7.1.4) is a state-space

realization of the conventional disturbance observer, which is already proposed in

Chapter 6. The dynamics (7.1.4a) has the same structure as an inverse dynamics

of (7.1.2) and the dynamics (7.1.4b) and (7.1.4c) are the controllable canonical

form realizations of a stable low-pass filter known as Q-filter. In addition, since

l − k ≥ ν, the signal w̄ν and w̄† can be implemented from the state of (7.1.4b)

and the output y.

Let us exchange the dynamics (7.1.4a) with (7.1.4b) as follows:

˙̄z = S̄z̄ + Ḡy, w̄ =
1

gn
(−F̄1z̄ − F̄2y

† + yν), (7.1.5a)

q̇ = Aq(τ)q +Bqw̄, w = Cq(τ)q, (7.1.5b)

ṗ = Aq(τ)p+Bquv, û = Cq(τ)p, (7.1.5c)

uv = ur + û− w (7.1.5d)

where y† =
[
y ẏ · · · yν−1

]
and yi is the i-th derivative of the output y. By

virtue of the linearity, the input-output behavior between y and w of (7.1.4a) and

(7.1.4b) is the same as that of (7.1.5a) and (7.1.5b). Throughout this chapter,

for simple analysis, the dynamics (7.1.5) is used instead of (7.1.4), although the

time response of q in (7.1.5) is different from that of (7.1.4).

In order to obtain a singular perturbation form, we change coordinates for

states q and p as follows:

ξi := τ i−(l+1)qi, ζi := τ i−(l+1)pi. (7.1.6)

With (7.1.6), the dynamics of ξ, ζ, and v are represented as
τ ξ̇

τ ζ̇

τvv̇

 = Au


ξ

ζ

v

+


1
gn
Bξ{F̃ (z, z̄, x) + gd}

Bξur

Bvur

 , (7.1.7)
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where

Au :=


Aξ Ol×l

g
gn
BξCv

−BξCξ Aξ +BξCξ Ol×m

−BvCξ BvCξ Av

 ,

F̃ (z, z̄, x) := −F̄1z̄− F̄2x+F1z+F2x, and Aξ, Bξ, and Cξ imply Aq, Bq, and Cq

when τq = 1, respectively.

Then, from the equation (7.1.1), (7.1.3), (7.1.5a), and (7.1.7), the overall

closed-loop system can be written as

η̇ = Acη +Bcr − Ecy, ur = Ccη +Dcr −Hcy,

ẋ = Ax+B{F1z + F2x+ g(Cvv + d)},

ż = Sz +Gy,

˙̄z = S̄z̄ + Ḡy, y = Cx,

(7.1.8a)

and 
τ ξ̇

τ ζ̇

τvv̇

 = Au


ξ

ζ

v

+


1
gn
Bξ{F̃ (z, z̄, x) + gd}

Bξur

Bvur

 . (7.1.8b)

From the overall closed-loop system (7.1.8), it is observed that, for relatively

small τv and τ , the system is in the multi-parameter or the multi-time-scale sin-

gular perturbation form1.

7.2 Stability and Performance Analysis based on Singu-

lar Perturbation Thoery

In this section, we will discuss the nominal performance recovery and robust sta-

bility for the disturbance observer based control scheme under the unmodeled

dynamics using the singular perturbation theory. In order to present the nominal

1If time constants τ and τv are in same order, then the system is in the multi-parameter
singular perturbation form [LS83], [KK79]. Otherwise, it is in the multi-time-scale singular
perturbation form [LR85].
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performance recovery of the disturbance observer based control system, we first

obtain the quasi-steady-state system from the overall closed-loop system (7.1.8)

for the extreme case τ = τv = 0. And then, we investigate under what condition

the overall closed-loop system (7.1.8) is exponential stable and the nominal per-

formance is recovered.

7.2.1 Nominal Performance Recovery

It is observed from (7.1.8) that the variables x, z, z̄, η, r, and d are considered

as slow variables, while the state ξ, ζ, and v are regarded as fast variables. If

the fast dynamics has an isolated equilibrium for each (frozen) slow variables

and the equilibrium (depending on x, z, z̄, η, r, d) is exponentially stable, then

the overall closed-loop system behaves as the quasi-steady-state system (i.e., the

overall closed-loop system is restricted to the slow manifold) with sufficiently

small τ and τv, under the assumption that the slow variables are bounded and

not varying fast.

The equilibrium of (7.1.8) for each frozen slow variables is,
ξ∗

ζ∗

v∗

 = −A−1
u


1
gn
Bξ{F̃ (z, z̄, x) + gd}

Bξur

Bvur

 . (7.2.1)

With the help of the matrix inversion lemma (Lemma A. 8 in Appendix), each

equilibrium is computed as

ξ∗ = −gn + g

gn
(Aξ −

g

gn
BξCξ)

−1Bξur, (7.2.2)

ζ∗ =
1

gn + g
(Aξ +

gn
gn + g

BξCξ)
−1Bξ{F̃ (z, z̄, x) + gd− gnur}, (7.2.3)

v∗ =
1

g
A−1

v Bv{F̃ (z, z̄, x) + gd− gnur}. (7.2.4)

With the equilibrium, we derive the quasi-steady-state system (i.e., slow dy-
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namics on the slow manifold when τ = τv = 0) as follows:

η̇ = Acη +Bcr − Ecy, ur = Ccη +Dcr −Hcy,

ẋ = Ax+B{F̄1z̄ + F̄2x+ gnur},

˙̄z = S̄z̄ + ḠCx,

ż = Sz +GCx, y = Cx.

(7.2.5)

The quasi-steady-state system (7.2.5) is also the key role to explain the nominal

performance recovery of the disturbance observer based control scheme and the

extreme case when τ = τv = 0. In fact, the quasi-steady-state system (7.2.5) is

equivalent to (6.2.3). Since we already mentioned about the quasi-steady-state

system (6.2.3) in Section 6.2, we omit the detailed explanation here.

Now, we analyze robust stability for the overall closed-loop system (7.1.8)

based on the singular perturbation approach with respect to the ratio between τ

and τv.

7.2.2 Multi-time-scale Singular Perturbation Analysis

In this section, we first discuss the case that the time constants τ and τv are

in different order. When τv ≪ τ (i.e., the unmodeled dynamics is much faster

than p and q-dynamics), (7.1.8) can be considered as the three-time scale singular

perturbation form.

Theorem 7.2.1. Under Assumption 7.1.1, 7.1.2, and 7.1.3, there exists a positive

constant τ such that, for all 0 < τv ≪ τ < τ , the overall closed-loop system (7.1.8)

is robustly exponentially stable if the matrix Af

Af :=

[
Aξ − g

gn
BξCξ

g
gn
BξCξ

−BξCξ Aξ +BξCξ

]
(7.2.6)

is Hurwitz for all uncertain g. �

Proof. Since τv ≪ τ , we consider v-dynamics in (7.1.8) as fast dynamics, while

the other dynamics are slow dynamics. From the singular perturbation theory, if

both the quasi-steady-state and the boundary-layer subsystem are exponentially



7.2. Singular Perturbation Analysis 107

stable, then the overall closed-loop system is exponentially stable. By Assumption

7.1.2, it follows that the boundary-layer subsystem (v-dynamics) is exponentially

stable.

In the next step, we will show that the quasi-steady-state subsystem is ex-

ponentially stable. Since CvA
−1
v Bv = −1, the quasi-steady-state system is easily

calculated as follows:

η̇ = Acη +Bcr − Ecy, ur = Ccη +Dcr −Hcy,

ẋ = Ax+B{F1z + F2x+ gCξ(ζ − ξ) + gur + gd},

ż = Sz +Gy,

˙̄z = S̄z̄ + Ḡy, y = Cx,

(7.2.7a)

and

τ

[
ξ̇

ζ̇

]
= Af

[
ξ

ζ

]
+

[
1
gn
Bξ{F̃ (z, z̄, x) + gur + gd}

Bξur

]
, (7.2.7b)

Now, it can be observed that (7.2.7) is the two-time scale singular perturbation

form. In fact, it is exactly same as the system (6.1.11) in Section 6.1. By the

same manner in Section 6.2, the dynamics (7.2.7a) and (7.2.7b) are considered

as slow and fast dynamics, respectively. After a simple calculation, it is easy to

see that (7.2.5) is its quasi-steady-state subsystem. From Assumption 7.1.1 and

7.1.3, it follows that (7.2.5) is exponentially stable. The proof is completed since

the matrix Af is Hurwitz.

It is emphasized that the matrix Af plays a key role to determine the stability

of the overall closed-loop system (7.1.8). If it is satisfied, then (7.1.8) is robustly

stable for the sufficiently small τ . The detailed procedure so as to make the matrix

Af Hurwitz was discussed in Section 3.2.2 and 6.2.

Remark 7.2.1. When the dynamics of Q-filter is much faster than the unmodeled

dynamics v (i.e., τ ≪ τv), the stability of the overall closed-loop system does

not guaranteed. Since τ ≪ τv, the dynamics of Q-filter are considered as fast
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dynamics. Then, from (7.1.8), the system matrix of ξ and ζ is

[
Aξ Ol×l

−BξCξ Aξ +BξCξ

]

and always has one eigenvalue at the origin. Therefore, the singular perturbation

theory cannot be employed since the boundary-layer system is not exponentially

stable. In fact, if the relative degree of v-dynamics is greater than one, then

robust stabilization is impossible when the time constant τ is much smaller than

τv as discussed in Chapter 4. �

7.3 Nominal Performance Recovery by Disturbance Ob-

server under Unmodeled Dynamics

In the stability analysis discussed so far, the explicit bound of τ for robust stability

of (7.1.8) is not provided. However, in order to complete the stability analysis,

the bound of τ must be provided with respect to τv, especially when the time

constants τ and τv are in same order. In addition, the relation between the time

constant τ and the nominal performance recovery by the disturbance observer

will be presented. In fact, as can be seen in Section 6.4, the error decreases

proportional to
√
τ . It implies that the performance of the disturbance observer

is improved as the time constant τ tends to be small. However, in contrast with

Chapter 6, we cannot make the time constant τ arbitrarily small when unmodeled

dynamics exists. Furthermore, it may make the closed-loop system unstable.

Now, we investigate the nominal performance recovery of the disturbance observer

under unmodeled dynamics with respect to τ .

For the convenience, (7.1.8) can be compactly written as

Ẋ = ĀsX +AxvZ2 + B̄xV,

τ Ż1 = ĀfZ1 + ĀqxX +AqvZ2 + B̄qV,

τvŻ2 = AvZ2 +AvxX +AvqZ1 + BvV

(7.3.1)

where X = [η;x; z; z̄], Z1 := [ξ; ζ], Z2 := v, V := [r; d], and the matrices Ās, Axv,
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Āf , Āqx, Aqv, Avx, Avq, B̄x, B̄q, and Bv are

Ās :=


Ac −EcC 0h×n−ν 0h×n̄−ν

0ν×h A+BF2 BF1 0ν×n̄−ν

0n−ν×h GC S 0n−ν×n̄−ν

0n̄−ν×h ḠC 0n̄−ν×n−ν S̄

 , Axv :=


0h×m

gBCv

0n−ν×m

0n̄−ν×m

 ,

Āf :=

[
Aξ 0l×l

−BξCξ Aξ +BξCξ

]
, Avx :=

[
BvCc −BvHcC 0m×n−ν 0m×n̄−ν

]
,

Aqv :=

[
g
gn
BξCv

0l×m

]
, Āqx :=

[
0l×h

1
gn
Bξ[−F̄2 + F2]

1
gn
BξF1 − 1

gn
BξF̄1

BξCc −BξHcC 0l×n−ν 0l×n̄−ν

]
,

Avq :=
[
−BvCξ BvCξ

]
, B̄x :=


Bc 0h

0ν gB

0n−ν 0n−ν

0n̄−ν 0n̄−ν

 , B̄q :=

[
0l

g
gn
Bξ

BξDc 0l

]
,

Bv :=
[
BvDc 0m

]
.

Let h1(X ,V) := −A−1
f (AqxX +BqV) and h2(X ,Z1,V) := −A−1

v (AvxX +AvqZ1+

BvV) where

Aqx :=

[
g
gn
BξCc

1
gn
Bξ[−F̄2 + F2 − gHcC] 1

gn
BξF1 − 1

gn
BξF̄1

BξCc −BξHcC 0l×n−ν 0l×n̄−ν

]
,

Bq :=

[
g
gn
BξDc

g
gn
Bξ

BξDc 0l×1

]
.

In fact, h1(X ,V) = [ξ∗; ζ∗] and h2(X ,Z1,V) = v∗ when Z1 = h1(X ,V) which are

the equilibrium in (7.2.2). With Y1 := Z1−h1(X ,V) and Y2 := Z2−h2(X ,Z1,V),
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we have

Ẋ = FsX +AxqY1 +AxvY2 + (Bx −AxqA−1
f Bq)V

Ẏ1 = FqX + (
1

τ
Af +A−1

f AqxAxq)Y1 + (
1

τ
Aqv +A−1

f AqxAxv)Y2

+A−1
f Aqx(Bx −AxqA−1

f Bq)V +A−1
f BqV̇

Ẏ2 = FvX + (
1

τ
A−1

v AvqAf +A−1
v AvxAxq)Y1

+ (
1

τv
Av +

1

τ
A−1

v AvqAqv +A−1
v AvxAxv)Y2

+A−1
v Avx(Bx −AxqA−1

f Bq)V +A−1
v BvV̇

(7.3.2)

where Fs := As−AxqA−1
f Aqx, Fq := A−1

f Aqx(As−AxqA−1
f Aqx), Fv := A−1

v Avx(As−
AxqA−1

f Aqx), and

As :=


Ac −EcC 0h×n−ν 0h×n̄−ν

gBCc A+B(F2 − gHcC) BF1 0ν×n̄−ν

0n−ν×h GC S 0n−ν×n̄−ν

0n̄−ν×h ḠC 0n̄−ν×n−ν S̄

 ,

Axq :=


0h×l 0h×l

−gBCξ gBCξ

0n×l 0n×l

0n̄×l 0n̄×l

 , Bx :=


Bc 0h×1

gBDc gB

0n×1 0n×1

0n̄×1 0n̄×1

 .

Note that the X -dynamics without the term involving Y1 and Y2 in (7.3.2)

is the quasi-steady-state model (7.2.5). Then, with X̃ = X − XN , we have ˙̃X =

FsX̃ +AxqY1 +AxvY2, while the Y1 and Y2-dynamics of (7.3.2) are rewritten as

Ẏ1 = FqX̃ + (
1

τ
Af +A−1

f AqxAxq)Y1

+ (
1

τ
Aqv +A−1

f AqxAxv)Y2 + Brθ

Ẏ2 = FvX + (
1

τ
A−1

v AvqAf +A−1
f AqxAxq)Y1

+ (
1

τv
Av +

1

τ
A−1

v AvqAqv +A−1
v AvxAxv)Y2 + B̄rθ

(7.3.3)
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where θ := [X T
N ,VT , V̇T ]T ,

Br :=
[
Fq A−1

f Aqx(Bx −AxqA−1
f Bq) A−1

f Bq

]
,

B̄r :=
[
Fv A−1

v Avx(Bx −AxqA−1
f Bq) A−1

v Bv

]
.

By Assumption 7.1.2 and 7.1.3, the matrix Fs and Av are Hurwitz. If the

matrix Af is Hurwitz, then there exist positive definite matrices Pf , Ps, and Pv

such that PsFs +FT
s Ps = −2I, PfAf +AT

f Pf = −2I, and PvAv +AT
v Pv = −2I.

Let V2(X̃ ,Y1,Y2) =
1
2 X̃

TPsX̃ + 1
2Y

T
1 PfY1+

1
2δY

T
2 PvY2 where a positive constant

δ will be chosen later. Then, we obtain

V̇2 ≤ −∥X̃∥2 − 1

τ
∥Y1∥2 −

δ

τv
∥Y2∥2 + γ1∥X̃ ∥∥Y1∥+ (γ2 + δγ7)∥X̃ ∥∥Y2∥

+ (γ4
1

τ
+ γ5 + δ

1

τ
γ8 + δγ9)∥Y1∥∥Y2∥+ γ3∥Y1∥2 + (δ

1

τ
γ10 + δγ11)∥Y2∥2

+ γ6∥Y1∥+ δγ12∥Y2∥

where

γ1 = ∥PsAxq + FT
q Pf∥, γ2 = ∥PsAxv∥, γ3 = ∥PfA−1

f AqxAxq∥, γ4 = ∥PfAqv∥,

γ5 = ∥PfA−1
f AqxAxv∥, γ6 = ∥PfBr∥ max

0≤t≤∞
∥θ(t)∥, γ7 = ∥FT

v Pv∥,

γ8 = ∥PvA−1
v AvqAf∥, γ9 = ∥PvA−1

f AqxAxq∥, γ10 = ∥PvA−1
v AvqAqv∥,

γ11 = ∥PvA−1
v AvxAxv∥, γ12 = ∥PvB̄r∥ max

0≤t≤∞
∥θ(t)∥.

We choose δ such that 32γ22τv ≤ δ ≤ 1/(32γ27τv) and assume τv ≤ 1/(16γ11).

It is possible because we already assume that the time constant of unmodeled

dynamics, τv, is sufficiently small. By Assumption 7.1.1, 7.1.2, and 7.1.3, values

of γ1 − γ12 also can be obtained. If we select τ that satisfies τ † < τ < τ where

τ † := max{16γ10τv, 64γ24
1

δ
τv, 64γ

2
8δτv},

τ := min{ 1

8(2γ21 + γ3)
,

δ

64γ25τv
,

1

64δγ29τv
},

then it can be shown that V̇2 < 0 when ∥Y1∥ > 2γ6τ and ∥Y2∥ > 2γ12τv. Define
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V̄2 :=
1
2∥X̃ ∥2 + 1

τ ∥Y1∥2 + δ
τv
∥Y2∥2. Then, it holds that

V̇2 ≤ −1

2
V̄2 +

√
2

4
γ̄(τ, τv)

√
V̄2

where γ̄(τ, τv) := 4max{γ6, γ12} · max{
√
τ ,
√

τv/δ}. If ∥V̄2∥ > 1
2 γ̄

2(τ, τv), then

V̇2 < 0. And, a positive constant µ2 is given by

µ2 := max
V̄2=

1
2
γ̄2(τ,τv)

V2(X̃ ,Y1,Y2)

Now, we define the set Ωv := {[X̃ ;Y1;Y2]|V2(X̃ ,Y1,Y2) ≤ µ2}. It is obvious that

the state [X̃ ;Y1;Y2] converges to the set Ωv as t → ∞. Also,

V2 =
1

2
X̃ TPsX̃ +

1

2
YT
1 PfY1 +

δ

2
YT
2 PvY2 ≤ ρ2V̄2

where ρ2 := max{λmax(Ps),
1
2λmax(Pf )τ,

1
2λmax(Pv)τv}. For all [X̃ ,Y1,Y2] ∈ Ωα,

∥X̃ ∥2 ≤ µ2 ≤ 1
2ρ2γ̄

2(τ, τv) and thus,

∥X̃ ∥ ≤
√

ρ2
2
γ̄(τ, τv).

Since we assume that τv is relatively small positive constant, ρ2 = λmax(Ps)/2

as τ is reduced and the bound of ∥X − XN∥ is proportional to the γ̄(τ, τv). It

means that V2 tends to small depending on τ so the error X (t)−XN (t) becomes

small, by taking τ appropriately.

Theorem 7.3.1. Under Assumption 7.1.1, 7.1.2, and 7.1.3, for a sufficiently small

τv, there exist positive constants τ † = max{16γ10τv, 64γ24 1
δ τv, 64γ

2
8δτv} and τ =

min{ 1
8(2γ2

1+γ3)
, δ
64γ2

5τv
, 1
64δγ2

9τv
} such that, for all τ † < τ < τ , the overall closed-

loop system (7.1.8) is exponential stable when yr = 0 and d = 0. Furthermore,

the part of solution of (7.1.8) denoted by [c(t);x(t); z(t); z̄(t)] satisfies that

lim sup
t→∞

∥[c(t);x(t); z̄(t)]−[cN (t);xN (t); z̄N (t)]∥≤Γ2γ̄(τq, τv)

where Γ2 :=
√
ρ2/2 and [cN (t);xN (t); z̄N (t)] is the solution of the nominal closed-

loop system (7.1.2) and (7.1.3). �
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Compared to results in Section 6.4, the error X (t) − XN (t) cannot become arbi-

trarily small in Theorem 7.3.1 because the time constant τ , which is the design

parameter of the disturbance observer is bounded by τv. If τ is selected too small

to reduce the error, it can lead to the instability of the overall closed-loop system.

Remark 7.3.1. In Theorem 7.3.1, we assume that the upper bound of the time

constant of unmodeled dynamics τv is smaller than 1/(16γ11) where γ11 is de-

termined by the uncertain system under consideration. It seems to be conserva-

tive, and thus difficult to apply in real applications. However, when the relative

degree of the plant is equal to or greater than 2, γ11 = 0 and 1/(16γ11) = ∞.

Therefore, for an arbitrarily τv, this assumption is always satisfied. Furthermore,

in this case, γ10 is also equal to 0. On the other hand, when the relative degree

of the plant is equal to 1, for an arbitrarily small τ , robust stabilization of the

disturbance observer based control system can always be achieved regardless of

τv, which was discussed in Chapter 4. �

Remark 7.3.2. When the time constant of unmodeled dynamics τv is sufficiently

small compared with the time constant of Q-filter τ (i.e., τv ≪ 1 and τv ≪ τ),

the upper and lower bounds of time constant become τ † ≈ 0 and τ = 1
8(2γ2

1+γ3)
,

respectively. In addition, the magnitude of γ(τ, τv) is determined by not τv but

τ . As a result, Theorem 7.3.1 provides the same results as Theorem 6.4.1. �





Chapter 8

Extensions of Disturbance Observer for
Guaranteeing Robust Transient
Performance

In control system design, the existence of disturbances and model uncertainties

is unavoidable. To overcome this problem, a disturbance observer approach has

been widely used in industry [UH91, UH93, BT99, SD02, BSPS10, LT96, KK99,

CYC+03]. The versatility of the disturbance observer for many applications comes

from its simple structure as well as powerful ability for rejecting disturbances

and compensating model uncertainties. Furthermore, the disturbance observer is

convenient for use because it is an inner-loop controller, that is, if it is added in

the inner-loop, then the existing (pre-designed outer-loop) controller is enabled

without taking into account effects from disturbances and model uncertainties.

Although the characteristic of the disturbance observer is easily understood

in the frequency domain, an analysis was performed in the state-space domain

based on the singular perturbation theory for the purpose of obtaining the deeper

understanding of the effects of each block as shown in Chapter 6 and 7. Under

an assumption that the cutoff frequency of the Q-filter is sufficiently fast, they

exhibit well-known properties as well as some interesting points:

• it shows not only the input disturbance is almost completely rejected but

also the plant with the disturbance observer, inner-loop blocks, behaves as

a nominal model of the plant.

115
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• the zero dynamics of the plant is replaced by the zero dynamics of the

nominal model. It means that the zero dynamics of the plant is nearly

unobservable from the output and implies why the zero dynamics should be

stable (i.e., minimum phase system).

However, the classical linear disturbance observer does not ensure the recovery

of transient response. In order to guarantee the robust transient response and

to extend to nonlinear systems, a modified nonlinear disturbance observer, in

which all the benefits of the classical one are still preserved, was suggested [BS08].

MIMO (multi-input multi-output) extensions having the same number of inputs

and outputs with a linear nominal model was also proposed [BS09].

In this chapter, we review a modified nonlinear disturbance observer and show

that it recovers the nominal trajectory, that is, steady-state as well as transient

trajectory, which is designed for nominal model.

8.1 Extensions to MIMO Nonlinear Systems

We consider uncertain MIMO nonlinear systems having the same number of inputs

and outputs given in the Byrnes-Isidori normal form [Isi95] as follows:

ż = F0(z, x),

ẋ = Amx+Bm(F (z, x, t) +G(z, x, t)(u+ d)),

y = Cmx

(8.1.1)

where u ∈ Rm, d ∈ Rm, and y ∈ Rm are the control input, unknown distur-

bance, and output, respectively. x ∈ Rν and z ∈ Rn−ν are system states such

that x = [x1; · · · ;xm] and xi = [xi1, · · · , xiνi ]T ∈ Rνi with ν = ν1 + · · · + νm.

The matrices Am ∈ Rν×ν , Bm ∈ Rν×m, and Cm ∈ Rm×ν are defined as Am =

diag{Am
1 , · · · , Am

m}, Bm = diag{Bm
1 , · · · , Bm

m}, and Cm = diag{Cm
1 , · · · , Cm

m}, in

which

Am
i :=

[
0νi−1 Iνi−1

0 0Tνi−1

]
, Bm

i :=

[
0νi−1

1

]
, Cm

i :=
[
1 0Tνi−1

]
.
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Here, we assume that the functions F0, F , and G are twice continuously differen-

tiable (C2) but uncertain1.

We now consider a disturbance-free nominal model of (8.1.1) as

˙̄z = F̄0(z̄, x̄)

˙̄x = Amx̄+Bm(F̄ [z̄; x̄] + Ḡur)

ȳ = Cmx̄

(8.1.2)

where F̄0(z̄, x̄), F̄ [z̄; x̄], and Ḡ the nominal counterparts of F0(z, x), F (z, x, t),

and G(z, x, t), respectively. Note that F̄ and Ḡ are constant matrices so that the

x̄−dynamics becomes linear, while F̄0 is assumed to be C2.2 We also assume that

an (dynamic) output feedback outer-loop controller C is designed a priori for the

nominal plant (8.1.2), which is represented by

η̇ = Γ(η, ȳ, r), η ∈ Rl

ur = γ(η, ȳ, r), ur ∈ Rm
(8.1.3)

where Γ and γ are C2 functions, and r is a vector of C2 reference command. It is

assumed that r(t) and ṙ(t) are bounded so that r(t) ∈ Sr, t ≥ 0, where Sr is a

known compact set.

Assumption 8.1.1. For the considered class of references r(t), the nominal

closed-loop system (8.1.2) and (8.1.3) has the following properties:

1. the solution [z̄(t); x̄(t); η(t)] of (8.1.2) and (8.1.3) evolves in a bounded,

connected, and open set U ∈ Rn+l if the initial condition [z̄(0); x̄(0); η(0)]

is located in a compact set S ∈ U .

2. each solution [z̄(t); x̄(t); η(t)] initiated in S is locally asymptotically stable.

�

1Considering uncertain single-input single-output (SISO) nonlinear systems, we assume that
F and G are not depend on the time.

2When we consider a SISO nonlinear nominal model, F̄0, F̄ , and Ḡ are C2 functions. More
details are in [BS08].
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Assumption 8.1.2. Let Ux ⊂ Rν and Uz ⊂ Rn−ν be the projections of the set

U to the x subspace and the z subspace, respectively. The system ż = F0(z, x)

with z(0) ∈ Uz is input-state stable (ISS) with respect to any constrained input

x(t) ∈ Ux. �

Let Z be the bounded set which contains all feasible solutions z(t) of Assump-

tion 8.1.2.

Assumption 8.1.3. There are positive constants lf0 , lf , lft, and lgt such that

|F0(z, x)| ≤ lf0 , |F (z, x, t)| ≤ lf , |(∂F/∂t)(z, x, t)| ≤ lft, and |(∂G/∂t)| ≤ gt, for

all (z, x, t) ∈ Z×Ux×R+. For the uncertain input gain matrix G(z, x, t), there ex-

ist a nonsingular matrix K,G− := diag{g−1 , · · · , g−m} and G+ := diag{g+1 , · · · , g+m}
such that 0 < G− < G+ and that

(G(z, x, t)Kϑ−G−ϑ)TΠ2(G(z, x, t)Kϑ−G+ϑ) ≤ 0.

∀ϑ ∈ Rm,∀(z, x, t) ∈ Z × Ux × R+

where Π = diag{π1, · · · , πm} := 2(G+ + G−)−1. In addition, the disturbance

signal d(t) is at least C2, and d(t) and ḋ(t) are bounded with known bounds ld

and ldt such that |d(t)| ≤ ld and |ḋ(t)| ≤ ldt, respectively. �

The Q-filter, a key ingredient for the design of the disturbance observer, is

given by
ai0

sνi + ai,νi−1sνi−1 + · · ·+ ai0
. (8.1.4)

Compared to (2.1.2), we restrict the structure of Q-filter in such a form whose

degrees of the numerator and denominator equal to zero and the relative degree of

the plant, respectively. However, by the virtue of simple structure, a systematic

design procedure of the disturbance observer can be obtained.

8.1.1 SISO Nonlinear Disturbance Observer with Nonlinear Nom-

inal Model

In some applications, the systems are required to generate signals or trajectories,

which cannot be generated by linear systems, with high accuracy. Therefore,
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Figure 8.1: Proposed SISO nonlinear disturbance observer structure. P ,
Qq(s), and Qp(s) correspond to (8.1.1) and (8.1.10), respectively.

a SISO nonlinear disturbance observer with the nonlinear nominal model was

proposed in [BS08]. To deal with SISO uncertain systems, it is assumed that

m = 1 in (8.1.1), all matrices and coefficients are appropriately defined (e.g.,

A1 = A, ai0 = a0, and so on), and positive constants G− and G+ satisfy the

inequality 0 < G− ≤ 1 ≤ G+. It is always achieved by scaling the control input

and disturbance.

Fig. 8.1 shows the structure of the proposed inner-loop controller where P

denotes the plant (8.1.1). We begin by introducing some essential design param-

eters and components of the proposed controller. Let a = [a0, a1, · · · , aν−1] such

that all the roots of (8.1.5) and (8.1.6) shown below are in C−. (When ν = 1,

consider the equation (8.1.5) only.)

sν + aν−1s
ν−1 + · · ·+ a1s+ a0 = 0, (8.1.5)

sν−1 + aν−1s
ν−2 + · · ·+ a1 = 0. (8.1.6)

From Lemma A. 3 in Appendix, such ai’s always exist.

Now, choose a constant ρ > 0 from the following procedure. First, let

H(s) :=
1

s

a0
sν−1 + aν−1sν−2 + · · ·+ a1

. (8.1.7)
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Consider a disk D(ρG−, ρG+), which is defined as a closed disk in the complex

plane whose diameter is the line segment connecting −1/(ρG−) and −1/(ρG+).

Then, choose a sufficiently small ρ > 0 such that the disk D is disjoint from the

Nyquist plot and the plot does not encircle the disk.

s̄x and s̄, globally bounded continuous differentiable (C1) saturation functions,

are used in the scheme and satisfy the following:

s̄x(x) = x, ∀x ∈ Ux, and
∣∣∣∣∂s̄x∂x

(x)

∣∣∣∣ ≤ k0, ∀x ∈ Rν

s̄(s) = s, ∀s ∈ Sφ, and 0 ≤ s̄
′ ≤ 1, ∀s ∈ R

(8.1.8)

where ′ denotes the derivative, k0 > 0 is a constant, and

Sφ =
{
s =

(
1

G(z, x)
− ρ

)
(F̄ (z̄, x) + Ḡ(z̄, x)γ(η, x1, r))

− F (z, x)

G(z, x)
− d : z ∈ Z, [z̄;x; η] ∈ U, r ∈ Sr, |d| ≤ ld

}
.

The set Sφ indicates the steady-state range of the signal φ(t) to be defined in

(8.1.10). In fact, it is enough to have the saturation levels of s̄x and s̄ sufficiently

large so that the saturation functions are not active during the nominal transient

and steady-state operation. Note that the knowledge of the bounds for F and G

is used for choosing the function s̄.

In addition to the saturation functions, we introduce a dead-zone function

d̄(s) := s− s̄, which will be used shortly.

Let τ > 0 which will be chosen later and define

∆τ = diag
{ 1

τν
,

1

τν−1
, · · · , 1

τ

}
,

Aaτ =


0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

− a0
τν − a1

τν−1 · · · −aν−1

τ

 .
(8.1.9)

With all the components introduced so far, we now present an inner-loop
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controller given by

˙̄z = F̄0(z̄, s̄x(q)),

q̇ = Aaτq +
a0
τν

By,

ṗ = Aaτp+
a0
τν

B(φ− ρd̄(φ) + ρw),

u = s̄(φ) + ρw,

(8.1.10)

where q = [q1, · · · , qν ]T ∈ Rν , p = [p1, · · · , pν ]T ∈ Rν , and

φ = p1 − ρq̇ν = p1a
T∆τq − ρ

a0
τν

y,

w = F̄ (z̄, s̄x(q)) + Ḡ(z̄, s̄x(q))ur.

Theorem 8.1.1. [BS08] Let Spq be a compact set for the initial condition [p(0); q(0)],

S̄ be a compact set slightly small than S (i.e., S̄ ⊂ S and their boundaries are

disjoint), and S̄z be the projection of S̄ into the z plane. Under Assumption

8.1.1–8.1.3, for given ϵ > 0, there exists a τ > 0 such that, for each 0 < τ ≤ τ ,

the solution of the closed-loop system (8.1.1), (8.1.3), and (8.1.10) denoted by

[z(t); z̄(t);x(t); η(t)], initiated at [z(0); z̄(0);x(0); η(0)] ∈ S̄z × S̄, is bounded and

satisfies that

|[z̄(t);x(t); η(t)]− [z̄N (t); x̄N (t); ηN (t)]| ≤ ϵ, ∀t ≥ 0. (8.1.11)

where [z̄N (t); x̄N (t); ηN (t)] is the solution of the nominal closed-loop system, i.e.,

(8.1.2) and (8.1.3), with [z̄N (0); x̄N (0); ηN (0)] = [z̄(0);x(0); η(0)]. �

8.1.2 MIMO Nonlinear Disturbance Observer with Linear Nomi-

nal Model

The result in Section 8.1.1 was extended to a class of MIMO nonlinear systems

having the same number of inputs and outputs under the restriction that the

nominal model is linear. But, this restriction allows a much simpler control struc-

ture than the result in Section 8.1.1. Recalling that the linear nominal models are

sufficient for many applications, we may enjoy the benefit of the simpler control
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structure even for SISO cases.

Now, we present the design procedure of an inner-loop controller, MIMO

nonlinear disturbance observer. First, let ai = [ai0, ai1, · · · , ai,νi−1], i = 1, · · · ,m.

For each i, choose ai1, · · · , ai,νi−1 such that

sνi−1 + ai,νi−1s
νi−2 + · · ·+ ai1 = 0 (8.1.12)

has all roots in C−. When νi = 1, there is nothing to choose. For each i, with

ai1, · · · , ai,νi−1 fixed, we choose ai0 as follows. Let λmax = ||Π(G+ − G−)/2||.
Define D(1−λmax, 1+λmax) by a closed disk in the complex plane whose diameter

is the line segment connecting the points −1/(1−λmax)+j0 and −1/(1+λmax)+

j0. Let

Hi(s) :=
1

s

ai0
sνi−1 + aνi−1sνi−2 + · · ·+ ai1

. (8.1.13)

and find a positive constant ai0 such that the Nyquist plot of Hi(s) is disjoint

from the disk D(1 − λmax, 1 + λmax) and does not encircle the disk. Such ai0

always exists.

Now, we define saturation functions φ : Rr → Rr and Φ : Rm → Rm as

globally bounded C1 functions satisfying

φ(x) = x, ∀x ∈ Ux, and
∣∣∣∣∂φ∂x (x)

∣∣∣∣ ≤ 1, ∀x ∈ Rν

Φ(ω) = ω, ∀ω ∈ Sω, and
∣∣∣∣∂Φ∂ω (ω)

∣∣∣∣ ≤ 1, ∀ω ∈ Rm

(8.1.14)

where

Sω =
{
ω ∈ Rm : ω = (G−1(z, x, t)−Π)Ḡγ(η, Cmx, r)

+G−1(z, x, t)(F̄ [z̄;x]− F (z, x, t))− d : z ∈ Z, t ∈ R+,

[z̄;x; c] ∈ U, r ∈ Sr, |d| ≤ ld for all admissible F and G
}
.

The set Sω indicates the steady-state range of the signal ω(t) to be defined in

(8.1.16). In fact, it is enough to have the saturation levels of φ and Φ sufficiently

large so that the saturation functions are not active during the steady-state op-
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Figure 8.2: Proposed MIMO nonlinear disturbance observer structure. P
corresponds to (8.1.1).

eration.

With a positive parameter τ (to be designed), let

Aaiτ =


0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

− ai0
τνi − ai1

τνi−1 · · · −ai,νi−1

τ

 . (8.1.15)

The proposed inner-loop controller, MIMO nonlinear disturbance observer, is

given by

˙̄z = F̄0(z̄, φ(q)),

q̇i = Aaiτqi +
ai0
τνi

Biyi, 1, · · · ,m,

ṗi = Aaiτpi +
ai0
τνi

Biui, 1, · · · ,m,

u = Φ(ω) + ΠḠur,

(8.1.16)

where q = [q1; · · · ; qm] ∈ Rν , qi = [qi1, · · · , piνi ]T ∈ Rνi , p = [p1; · · · ; pm] ∈ Rν ,
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pi = [pi1, · · · , piνi ]T ∈ Rνi , ω = [ω1, · · · , ωm]T ∈ Rm, and

ωi = pi1 − πiq̇iνi + πiF̄i[z̄; q], i = 1, · · · ,m.

Here, we write Fi, Gi, F̄i, and Ḡi to indicate the i−th row (or component) of

F , G, F̄ , and Ḡ, respectively.

Fig. 8.2 shows the structure of the proposed inner-loop controller where P

denotes the plant (8.1.1) and the matrices are Aaτ = diag{Aa1τ , · · · , Aamτ} and

Baτ = diag{(a10/τν1)B1, · · · , (am0/τ
νm)Bm}. It is noted that the structure is

much simpler than that of [BS08] (i.e., SISO nonlinear disturbance observer in

Section 8.1.1) since we consider the linear nominal model.

Theorem 8.1.2. [BS09] Let Spq be a compact set for the initial condition [p(0); q(0)],

S̄ be a compact set slightly small than S (i.e., S̄ ⊂ S and their boundaries are

disjoint), and S̄z be the projection of S̄ into the z subspace. Under Assumption

8.1.1–8.1.3, for given ϵ > 0, there exists a τ > 0 such that, for each 0 < τ ≤ τ ,

the solution of the closed-loop system (8.1.1), (8.1.3), and (8.1.16) denoted by

[z(t); z̄(t);x(t); η(t)], initiated at [z(0); z̄(0);x(0); η(0)] ∈ S̄z × S̄, is bounded for

all t ≥ 0, and satisfies that

|[x(t); η(t)]− [x̄N (t); ηN (t)]| ≤ ϵ, ∀t ≥ 0. (8.1.17)

where [x̄N (t); ηN (t)] is from the solution [z̄N (t); x̄N (t); ηN (t)] of the nominal closed-

loop system (8.1.2) and (8.1.3), with [z̄N (0); x̄N (0); ηN (0)] = [z̄(0);x(0); η(0)]. �



Chapter 9

Conclusions

Throughout the dissertation, we have discussed the stability and performance of

the disturbance observer based control system both in the frequency and time

domain. This chapter summarizes the results of the dissertation discussed so far.

In the frequency domain, we have dealt with the robust stability of the distur-

bance observer based on the observation about the pole locations of the closed-loop

system and derived a robust stability condition. To overcome the approximate

disturbance rejection property, based on the internal model principle, we proposed

a method to embed the internal model into the disturbance observer structure so

as to achieve asymptotic disturbance rejection in Chapter 3. In chapter 4, we have

focused on the robust stability when the relative degree of the plant is unknown

and proposed a universal design method for guaranteeing robust stability of the

closed-loop system for the case that the relative degree of the plant is less than or

equal to 4. In Chapter 5, focusing on the role of each Q-filter, we have generalized

the design of disturbance observer structure and proposed a reduced order type-k

disturbance observer so as to enhance the disturbance rejection performance and

reduce the design complexity simultaneously.

As a counterpart of the frequency domain analysis, Chapter 6 has analyzed

the disturbance observer in the state space. Based on the singular perturbation

theory, not only the equivalence relation between the frequency and time domain

but also the behaviour of each block of the disturbance observer structure have

been clarified. It has also revealed new facts such as peaking phenomenon as

well as well-known properties of disturbance observer. In addition, the robust
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stability of the closed-loop system with and without unmodeled dynamics and

the nominal performance recovery depending on the time constant of Q-filter have

been investigated in Chapter 6 and 7. Finally, the robust transient performance

recovery of the nonlinear disturbance observer with saturation functions has been

discussed.



APPENDIX

Theorem A. 1. [Rouché’s Theorem] [Fla83]

Let f(s) and g(s) be analytic on and inside a simple closed curve C, with

∥g(s)∥ < ∥f(s)∥ on C. Then, f(s) and f(s)+ g(s) have the same number of roots

inside C (counting multiplicity). �

Lemma A. 2. [SJ09]

Let p(s) and qj(s), j = 1, . . . , k, be polynomials of complex variable s. Define

R(s; τ) := p(s) + τq1(s) + τ2q2(s) + · · · + τkqk(s). Assume that deg(p) = n and

let s∗i , i = 1, . . . , n, be the roots of R(s; 0) = 0. Then, for a sufficiently small

τ > 0, there exist n roots of R(s; τ) = 0, say si(τ), i = 1, . . . , n, such that

limτ→0 si(τ) = s∗i (even if R(s; τ) may have more than n roots for τ > 0). �

Lemma A. 3. [BS08]

If a polynomial

sl−1 + al−1s
l−2 + · · ·+ a1 (9.0.1)

is Hurwitz, then there exists γ̄0 such that the polynomial

sl + al−1s
l−1 + · · ·+ a1s+ γ0 (9.0.2)

is Hurwitz for all γ0 ∈ (0, γ̄0). �

Proof: Indeed, let H(S) = 1/(sl+al−1s
l−1+ · · ·+a1s). Then, since H(s) has

one pole at the origin and all other poles in the C−, the root locus of the unity

feedback system with the gain γ0 remains in the C− for sufficiently small γ0 > 0.

Take γ0 such that the plot remains in the C− for all γ0 ∈ (0, γ0). As a result, it

is proved. �

127
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Lemma A. 4. [Kharitonov Theorem] [BCK95]

Consider a set of polynomials given by I := {θµsµ+θµ−1s
µ−1+ · · ·+θ1s+θ0 :

ai ∈ [θi, θi], i = 0, 1, . . . , µ} where θi and θi are positive constants such that

θi ≤ θi. Define four extreme polynomials given by

p̃1(s) = θµs
µ + θµ−1s

µ−1 + θµ−2s
µ−2 + θµ−3s

µ−3

+ θµ−4s
µ−4 + θµ−5s

µ−5 + · · · ,

p̃2(s) = θµs
µ + θµ−1s

µ−1 + θµ−2s
µ−2 + θµ−3s

µ−3

+ θµ−4s
µ−4 + θµ−5s

µ−5 + · · · ,

p̃3(s) = θµs
µ + θµ−1s

µ−1 + θµ−2s
µ−2 + θµ−3s

µ−3

+ θµ−4s
µ−4 + θµ−5s

µ−5 + · · · ,

p̃4(s) = θµs
µ + θµ−1s

µ−1 + θµ−2s
µ−2 + θµ−3s

µ−3

+ θµ−4s
µ−4 + θµ−5s

µ−5 + · · · .

(9.0.3)

Then, every polynomial in I is Hurwitz if and only if the polynomials p̃1(s), . . . , p̃4(s)

are Hurwitz. �

From Lemma A. 4, we derive the following remark.

Remark A. 5.

For the set I in Lemma A. 4, suppose that m be a positive integer such that

m < µ and that θi = θi = bi, for i = m + 1, . . . , µ. Then, every polynomial in I
is Hurwitz if and only if the following four extreme polynomials are Hurwitz:

p̄1(s) = sµ + bµ−1s
µ−1 + · · ·+ bm+1s

m+1

+ θmsm + θm−1s
m−1 + θm−2s

m−2 + θm−3s
m−3 + · · · ,

p̄2(s) = sµ + bµ−1s
µ−1 + · · ·+ bm+1s

m+1

+ θmsm + θm−1s
m−1 + θm−2s

m−2 + θm−3s
m−3 + · · · ,

p̄3(s) = sµ + bµ−1s
µ−1 + · · ·+ bm+1s

m+1

+ θmsm + θm−1s
m−1 + θm−2s

m−2 + θm−3s
m−3 + · · · ,

p̄4(s) = sµ + bµ−1s
µ−1 + · · ·+ bm+1s

m+1

+ θmsm + θm−1s
m−1 + θm−2s

m−2 + θm−3s
m−3 + · · · .
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This follows easily from the fact that p̃j(s) of (9.0.3) corresponds to p̄l with

l = j + ((µ−m) mod 4). �

Definition A. 6. [Value Set]

Let Q be an uncertainty boundeded set defined by

Q := {q = [q1, · · · , ql] | qi ∈ [q
i
, qi], i = 1, · · · l}

where q
i

and qi are known constants. Given a family of polynomials P (s,Q) :=

{p(s, q) | q ∈ Q}, the value set is given by

P(jω,Q) = {p(jω, q) | q ∈ Q, ω ≥ 0}.

�

Lemma A. 7 [Zero Exclusion Theorem] [Ack02]

Given a polynomial family P (s,Q), the set P (s,Q) is robustly stable if and

only if the following two conditions are hold:

1. There exists a stable polynomial p(s, q) ∈ P (s,Q),

2. 0 /∈ P(jω,Q) for all ω ≥ 0.

�

Lemma A. 8. [Matrix Inversion Lemma] [ZD98]

Let A be a square matrix partitioned as follows:

A :=

[
A11 A12

A21 A22

]

where A11 and A22 are also square matrices. If A and A11 are nonsingular, then

[
A11 A12

A21 A22

]−1

=

[
A−1

11 +A−1
11 A12∆

−1A21A
−1
11 −A−1

11 A12∆
−1

−∆−1A21A
−1
11 ∆−1

]
,

∆ : = A22 −A21A
−1
11 A12.
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And, if A and A22 are nonsingular, then

[
A11 A12

A21 A22

]−1

=

[
∆̂−1 −∆̂−1A12A

−1
22

−A−1
22 A21∆̂

−1 A−1
22 +A−1

22 A21∆̂
−1A12A

−1
22

]
,

∆̂ : = A11 −A12A
−1
22 A21.

�



BIBLIOGRAPHY

[Ack02] J. Ackermann. Robust Control: The Parameter Space Approach.

Springer, 2002.

[AHDW94] B. Armstrong-Hélouvry, P. Dupont, and C. C. De Wit. A survey of

models, analysis tools and compensation methods for the control of

machines with friction. Automatica, 30(7):1183–1138, 1994.

[BCK95] S. P. Bhattacharyya, H. Chapellat, and L. H. Keel. Robust Control:

The Parametric Approach. Prentice Hall PTR, 1995.

[BS08] J. Back and H. Shim. Adding robustness to nominal output-feedback

controllers for uncertain nonlinear systems: A nonlinear version of

disturbance obser. Automatica, 44(10):2528–2537, 2008.

[BS09] J. Back and H. Shim. An inner-loop controller guaranteeing robust

transient performance for uncertain mimo nonlinear systems. IEEE

Transactions on Automatic Control, 54(7):1601–1607, 2009.

[BSPS10] J. S. Bang, H. Shim, S. K. Park, and J. H. Seo. Robust tracking and

vibration suppression for a two-inertia system by combining back-

stepping approach with disturbance observer. IEEE Transactions

on Industrial Electronics, 57(9):3197–3206, 2010.

[BT99] R. Bickel and M. Tomizuka. Passivity-based versus disturbance ob-

server based robot control: Equivalence and stability. Journal of

Dynamic Systems, Measurement, and Control, 121(1):41–47, 1999.

131



132 BIBLIOGRAPHY

[CCY96] Y. Choi, W. K. Chung, and Y. Youm. Disturbance observer in h∞

framework. In Proceedings of the 1996 IEEE IECON 22nd Interna-

tional Conference, volume 3, pages 1394–1400, 1996.

[Che99] C. T. Chen. Linear system theory and design. Oxford University

Press, 3rd edition, 1999.

[CLP06] B. M. Chen, T. H. Lee, and K. Peng. Hard disk drive servo systems.

Springer, 2nd edition, 2006.

[CYC+03] Y. Choi, K. Yang, W. K. Chung, H. R. Kim, and I. H. Suh. On

the robustness and performance of disturbance observers for second-

order systems. IEEE Transactions on Automatic Control, 48(2):315–

320, 2003.

[Dav76] E. J. Davision. The robust control of a servomechanism problem for

linear time-invariant multivariable systems. IEEE Transactions on

Automatic Control, 21(1):25–34, 1976.

[DFT92] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum. Feedback control

theory. Macmillan Publishing Company, New York, 1992.

[DGKF89] J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis. State-

space solutions to standard h2 and h∞ control problems. IEEE

Transactions on Automatic Control, 34(8):831–847, 1989.

[EKK+96] S. Endo, H. Kobayashi, C. J. Kempf, S. Kobayashi, M. Tomizuka,

and Y. Hori. Robust digital tracking controller design for high-

speed positioning systems. Control Engineering Practice, 4(4):527–

536, 1996.

[ESC01] K. S. Eom, I. H. Suh, and W. K. Chung. Disturbance observer

based path tracking control of robot manipulator considering torque

saturation. Mechatronics, 11:325–343, 2001.

[Fla83] F. J. Flanigan. Complex variables. Dover Publications, 1983.



BIBLIOGRAPHY 133

[FPEN06] G. F. Franklin, J. D. Powell, and A. Emami-Naeini. Feedback control

of dynamic systems. Prentice-Hall, 2006.

[FW76] B. A. Francis and W. M. Wonham. The internal model principle of

control theory. Automatica, 12(5):457–465, 1976.

[GG01] B. A. Güvenc and L. Güvenc. Robustness of disturbance observers

in the presence of structured real parametric uncertainty. In Pro-

ceedings of the 2001 American Control Conference, volume 6, pages

4222–4227, 2001.

[GG02] B. A. Güvenc and L. Güvenc. Robust two degree-of-freedom add-

on controller design for automatic steering. IEEE Transactions on

Control Systems Technology, 10(1):137–148, 2002.

[GGK09] B. A. Güvenc, L. Güvenc, and S. Karaman. Robust yaw stability

controller design and hardware-in-the-loop testing for a road vehicle.

IEEE Transactions on Vehicular T, 58(2):555–571, 2009.

[Hah81] H. Hahn. Higher order root-locus technique with applications in con-

trol system design. F. Vieweg, 1981. Graduate Texts in Mathemat-

ics, vol. 207.

[HJ85] R. A. Horn and C. R. Johnson. Matrix Analysis. Chmbridge Uni-

versity Press, 1985.

[HKJ+13] J. Han, H. Kim, Y. Joo, N. H. Jo, and J. H. Seo. A simple noise

reduction disturbance observer and q-filter design for internal stabil-

ity. In 13th International Conference on Control, Automation and

Systems, pages 755–760, 2013.

[HM98] Y. Huang and W. Messner. A novel disturbance observer design for

magnetic hard drive servo with a rotary actuator. IEEE Transac-

tions on Magnetics, 34(4):1892–1894, 1998.

[Hua04] J. Huang. Nonlinear output regulation: Theory and Applications.

SIAM, 2004.



134 BIBLIOGRAPHY

[IS96] P. A. Ioannou and J. Sun. Robust adaptive control. Prentice Hall,

1996.

[Isi95] A. Isidori. Nonlinear Control Systems. Springer-Verlag, New York,

New York, 3rd edition, 1995.

[IT98] J. Ishikawa and M. Tomizuka. Pivot friction compensation using

an accelerometer and a disturbance observer for hard disk drives.

IEEE/ASME Transactions on Mechatronics, 3(3):194–201, 1998.

[JJS11] N. H. Jo, Y. Joo, and H. Shim. Can a fast disturbance observer

work under unmodeled actuators? In 11th International Conference

on Control, Automation and Systems, pages 561–566, 2011.

[JJS14] N. H. Jo, Y. Joo, and H. Shim. A study of disturbance observers

with unknown relative degree of the plant. Automatica, 50(6):1730–

1734, 2014.

[JJSS12] N. H. Jo, Y. Joo, H. Shim, and Y. I. Son. A note on disturbance

observer with unknown relative degree of the plant. In Proceedings

of the 51th IEEE Conference on Decision and Control, pages 943–

948, 2012.

[Joh71] C. D. Johnson. Accommodation of external disturbances in linear

regulator and servomechanism problems. IEEE Transactions on Au-

tomatic Control, 16(6):635–644, 1971.

[Joh86] C. D. Johnson. Disturbance-accommodating control: An overview.

In American Control Conference, pages 526–536, 1986.

[JPBS14] Y. Joo, G. Park, J. Back, and H. Shim. Embedding internal model

in disturbance observer with robust stability. Submitted to IEEE

Transactions on Automatic Control, 2014.

[JS13] N. H. Jo and H. Shim. Robust stabilization via disturbance observer

with noise reduction. In 2013 European Control Conference (ECC),

pages 2861–2866, 2013.



BIBLIOGRAPHY 135

[JSS10] N. H. Jo, H. Shim, and Y. I. Son. Disturbance observer for non-

minimum phase linear systems. International Journal of Control,

Automation, and Systems, 8(5):994–1002, 2010.

[JWS00] G. P. Jiang, S. P. Wang, and W. Z. Song. Design of observer with in-

tegrators for linear systems with unknown input disturbances. Elec-

tronics Letters, 36:1168–1169, 2000.

[KC03a] B. K. Kim and W. K. Chung. Advanced disturbance observer design

for mechanical positioning systems. IEEE Transactions on Industrial

Electronics, 50(6):1207–1216, 2003.

[KC03b] S. Kwon and W. K. Chung. A discrete-time design and analysis of

perturbation observer for motion control applications. IEEE Trans-

actions on Control Systems Technology, 11(3):399–407, 2003.

[KCO02] B. K. Kim, W. K. Chung, and S. R. Oh. Disturbance observer

based approach to the design of sliding mode controller for high

performance positioning systems. In 15th IFAC World Congress on

Automatic Control, 2002.

[Kha02] H. K. Khalil. Nonlinear systems. Prentice Hall, 3rd edition, 2002.

[KIO08] S. Katsura, K. Irie, and K. Ohishi. Wideband force control by

position-acceleration integrated disturbance observer. IEEE Trans-

actions on Industrial Electronics, 55(4):1699–1706, 2008.

[KK79] H. K. Khalil and P. V. Kokotovic. d-stability and multi-parameter

singular perturbation. SIAM Journal on Control and Optimization,

17(1):56–65, 1979.

[KK99] C. J. Kempf and S. Kobayashi. Disturbance observer and feedfor-

ward design for a high-speed direct-drive positioning table. IEEE

Transactions on Control Systems Technology, 7(5):513–526, 1999.

[KKO07] H. Kobayashi, S. Katsura, and K. Ohnishi. An analysis of parameter

variations of disturbance observer for motion control. IEEE Trans-

actions on Industrial Electronics, 54(6):3413–3421, 2007.



136 BIBLIOGRAPHY

[KMH00] S. Komada, N. Machii, and T. Hori. Control of redundant manipu-

lators considering order of disturbance observer. IEEE Transactions

on Industrial Electronics, 47(2):413–420, 2000.

[KRK10] K. S. Kim, K. H. Rew, and S. Kim. Disturbance observer for es-

timating higher order disturbances in time series expansion. IEEE

Transactions on Automatic Control, 55(8):1905–1911, 2010.

[KT13] K. Kong and M. Tomizuka. Nominal model manipulation for en-

hancement of stability robustness for disturbance observer-based

control systems. International Journal of Control, Automation, and

Systems, 11(1):12–20, 2013.

[LR85] G. S. Ladde and S. G. Rajalakshmi. Diagonalization and stability of

multi-time-scale singularly perturbed linear systems. Applied math-

ematics and computation, 16(2):115–140, 1985.

[LS83] G. S. Ladde and D. D. Siljak. Multiparameter singular perturbations

of linear systems with multiple time scales. Automatica, 19(4):385–

394, 1983.

[LT96] H. S. Lee and M. Tomizuka. Robust motion controller design for

high-accuracy positioning systems. IEEE Transactions on Industrial

Electronics, 43(1):48–55, 1996.

[MGB06] A. Al Mamun, G. Guo, and C. Bi. Hard disk drive: Mechatronics

and control. CRC press, 2006.

[MGÖ08] S. Moberg, S. Gunnarsson, and J. Öhr. A benchmark problem for

robust control of a multivariable nonlinear flexible manipulator. In

Proceedings of the 17th IFAC World Congress, pages 1206–1211,

2008.

[MHMZ98] T. Mita, M. Hirata, K. Murata, and H. Zhang. h∞ control versus

disturbance-observer-based control. IEEE Transactions on Indus-

trial Electronics, 45(3):488–495, 1998.



BIBLIOGRAPHY 137

[MÖ05] S. Moberg and J. Öhr. Robust control of a flexible manipulator

arm: A benchmark problem. In Proceedings of the 16th IFAC World

Congress, pages 960–966, 2005.

[NA89] K. S. Narendra and A. M. Annaswamy. Stable adaptive systems.

Courier Dover Publications, 1989.

[OÅdW+98] H. Olsson, K. J Åström, C. C. de Wit, M. Gäfvert, and P. Lischinsky.

Friction models and friction compensation. European Journal of

Control, 4(3):176–195, 1998.

[OC99] Y. Oh and W. K. Chung. Disturbance-observer-based motion con-

trol of redundant manipulators using inertially decoupled dynamics.

IEEE/ASME Transactions on Mechatronics, 4(2):133–146, 1999.

[OHH08] S. Oh, N. Hata, and Y. Hori. Integrated motion control of a

wheelchair in the longitudinal, lateral, and pitch directions. IEEE

Transactions on Industrial Electronics, 55(4):1855–1862, 2008.

[Ohn87] K. Ohnishi. A new servo method in mechatronics. Transactions

of Japanese Society of Electrical Engineers, 107-D:83–86, 1987. in

Japanese.

[OOH10] Y. Oonishi, S. Oh, and Y. Hori. A new control method for power-

assisted wheelchair based on the surface myoelectric signal. IEEE

Transactions on Industrial Electronics, 57(9):3191–3196, 2010.

[PJSB12] G. Park, Y. Joo, H. Shim, and J Back. Rejection of polynomial-in-

time disturbances via disturbance observer with guaranteed robust

stability. In Proceedings of the 51th IEEE Conference on Decision

and Control, pages 949–954, 2012.

[SD02] E. Shrijver and J. V. Dijk. Disturbance observers for rigid mechani-

cal systems: equivalence, stability, and design. Journal of Dynamic

Systems, Measurement, and Control, 124(4):539–548, 2002.



138 BIBLIOGRAPHY

[SJ07] H. Shim and Y. Joo. State space analysis of disturbance observer

and a robust stability condition. In Proceedings of the 28th IEEE

Conference on Decision and Control, pages 2193–2198, 2007.

[SJ09] H. Shim and N. H. Jo. An almost necessary and sufficient condition

for robust stability of closed-loop systems with disturbance observer.

Automatica, 45(1):296–299, 2009.

[SK91] H. J. Sussmann and P. V. Kokotovic. The peaking phenomenon and

the global stabilization of nonlinear systems. IEEE Transactions on

Automatic Control, 36(4):424–440, 1991.

[SK10] Y. I. Son and I. H. Kim. A robust state observer using multiple

integrators for multivariable lti systems. IEICE Transactions on

Fundamentals of Electronics, 93(5):981–984, 2010.

[SSJH02] R. T. Stefani, B. Shahian, C. J. Savant Jr, and G. H. Hostetter.

Design of feedback control systems. Oxford University Press, 4rd

edition, 2002.

[TLT00] A. Tesfaye, H. S. Lee, and M. Tomizuka. A sensitivity optimization

approach to design of a disturbance observer in digital motion con-

trol systems. Mechatronics, 5(1):32–38, 2000.

[Tom96a] M. Tomizuka. Model based prediction, preview and robust controls

in motion control systems. In Proceedings of 4th International Work-

shop on Advanced Motion Control, volume 1, pages 1–6, 1996.

[Tom96b] M. Tomizuka. Robust digital motion controllers for mechanical sys-

tems. Robotics and autonomous systems, 19(2):143–149, 1996.

[UH91] T. Umeno and Y. Hori. Robust speed control of dc servomotors us-

ing modern two degrees-of-freedom controller design. IEEE Trans-

actions on Industrial Electronics, 38(5):363–368, 1991.

[UH93] T. Umeno and Y. Hori. Robust servosystem design with two degrees

of freedom and its application to novel motion control of robot ma-



BIBLIOGRAPHY 139

nipulators. IEEE Transactions on Industrial Electronics, 40(5):473–

485, 1993.

[Utk92] V. I. Utkin. Sliding modes in control and optimization. Springer-

Verlag, 1992.

[WT04] C. Wang and M. Tomizuka. Design of robustly stable disturbance

observers based on closed loop consideration using h∞ optimization

and its applications to motion control systems. In Proceedings of the

2004 American Control Conference, pages 3764–3769, 2004.

[WTS00] M. T. White, M. Tomizuka, and C. Smith. Improved track following

in magnetic disk drives using a disturbance observer. IEEE/ASME

Transactions on Mechatronics, 5(1):3–11, 2000.

[YAMT97] B. Yao, M. Al-Majed, and M. Tomizuka. High-performance robust

motion control of machine tools: an adaptive robust control ap-

proach and comparative experiments. IEEE/ASME Transactions

on Mechatronics, 2(2):63–76, 1997.

[YCC05] K. Yang, Y. Choi, and W. K. Chung. On the tracking performance

improvement of optical disk drive servo systems using error-based

disturbance observer. IEEE Transactions on Industrial Electronics,

52(1):270–279, 2005.

[YCS09] J. Yi, S. Chang, and Y. Shen. Disturbance-observer-based hysteresis

compensation for piezoelectric actuators. IEEE/ASME Transactions

on Mechatronics, 14(4):456–464, 2009.

[YKIH96] K. Yamada, S. Komada, M. Ishida, and T. Hori. Characteristics of

servo system using high order disturbance observer. In Proceedings

of the 35th IEEE Conference on Decision and Control, pages 3252–

3257, 1996.

[YKIH97] K. Yamada, S. Komada, M. Ishida, and T. Hori. Analysis and clas-

sical control design of servo system using high order disturbance ob-



140 BIBLIOGRAPHY

server. In in Proceedings IEEE International Conference on Indus-

trial Electronics, Control and Instrumentation (IECON), pages 4–9,

1997.

[YKMH96] K. Yamada, S. Komada, Ishida M, and T. Hori. Analysis of servo

system realized by disturbance observer. In in Proceedings of IEEE

International Workshop on Advanced Motion Control, pages 339–

343, 1996.

[YKMH99] K. Yamada, S. Komada, M.Ishida, and T. Hori. A study on higher-

order disturbance observer and robust stability. Electrical Engineer-

ing in Japan, 128(1):37–44, 1999.

[YT99] L. Yi and M. Tomizuka. Two-degree-of-freedom control with robust

feedback control for hard disk servo systems. IEEE/ASME Trans-

actions on Mechatronics, 4(1):17–24, 1999.

[ZD98] K. Zhou and J. C. Doyle. Essentials of robust control. Prentice-Hall,

Inc., 1998.



국문초록

Theoretical Analysis of Disturbance Observer:
Stability and Performance

외란 관측기의 이론적 해석 : 안정성 및 성능

본 논문은 외란관측기의 안정성과 성능에 대한 해석을 제공하고 강인안정성과

외란 제거 성능을 강화하기 위한 새로운 외란관측기 설계 방법을 제안한다. 실제

산업 현장에서의 다양한 적용에도 불구하고 제어 공학자들은 외란관측기 자체에

대한 이론적인 해석에 많은 관심을 기울이지 않았다. 외란관측기 구조와 특성을

명확히 분석하고 그 적용 대상을 확장하기 위하여 본 논문에서는 외란관측기를 주

파수 공간과 상태 공간 모두에서 엄밀하게 이론적으로 해석한다.

주파수공간에서본논문은외란관측기의외란제거성능과강인안정성을다룬

다. 외란관측기는 뛰어난 외란 제거 성능을 가졌음에도 외란을 근사적으로만 제거

한다. 이런 단점을 보완하기 위하여 본 논문에서는 외란의 내부 모델을 외란관측

기 구조에 추가하는 설계 방법을 제시한다. 그러므로 제안된 외란관측기는 기존의

근사적 외란 제거 성능을 유지함과 동시에 사인파나 시간에 대한 함수 형태의 외

란을 완벽하게 제거 할 수 있다. 이와 함께, 제안된 외란관측기에 대한 강인안정성

조건을 유도하며, 그 조건을 만족할 수 있는 설계 과정을 제시한다. 또 다른 중요

주제는 모델 불확실성이 존재할 때 외란관측기의 강인안정성이다. 본 논문에서는

실제 시스템의 상대 차수를 명확히 알지 못하여 외란관측기가 잘못된 정보를 바

탕으로 설계되었을 때의 강인안정성에 대해 다룬다. 이에 대한 결과를 바탕으로

실제 시스템의 상대 차수가 4차 이하인 경우에 대해 항상 강인안정성을 보장할 수

있는 외란관측기 설계 방법을 제시한다. 다음으로 외란관측기 각 블록의 역할에

대한관측을통하여,본논문은외란관측기의설계방법을확장하고이를바탕으로

저차원 k−유형 (type-k) 외란관측기를 제안한다. 저차원 k−유형 외란관측기는
외란 제거 성능 향상과 간단한 설계를 동시에 달성할 수 있다.

주파수 공간 해석에 대응하여, 본 논문에서는 외란관측기의 상태 공간 해석을

제시한다. 상태 공간에서의 해석은 외란관측기 구조와 특성에 대한 더 명확한 이

해를 제공하고 비선형 시스템 등으로 외란관측기의 적용 대상을 확장할 수 있게

한다. 특이 섭동 이론을 바탕으로, 이 해석은 기존에 잘 알려진 특성 뿐만 아니라
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과도 상태 응답에서의 왜곡과 같은 새로운 사실들을 알려준다. 이와 함께, 본 논문

의 모델링되지 않은 동역학이 실제 시스템에 존재하거나 존재하지 않을 때 모두에

대한외란관측기기반제어시스템의강인안정성에대해논하고외란관측기의공칭

상태 회복 능력과 Q 필터의 시상수와의 명확한 관계를 제시한다. 마지막으로, 기

존의 선형 외란관측기는 과도 상태에서의 성능을 보장하지 못한다. 그러므로 정상

상태 뿐만 아니라 과도 상태에서 외란관측기의 공칭 성능 회복을 보장하는 비선형

외란관측기에 대한 논의를 제시한다.

주요어 : 외란관측기, 강인안정성, 외란 제거 성능, 내부 모델 이론, 불확실한 동역

학, 공칭 성능 회복

학 번 : 2008–30244
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