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Abstract

In order to extract the recombination coefficient and the internal quantum
efficiency (IQE) of the GaN-based LEDs, a fast and reliable measurement method using
transient characteristics is developed. For accurate extraction of the recombination
coefficients and the IQE, an improved rate equation model for GaN-based LEDs
considering the effective volume of the active region is also proposed. Through TCAD
simulations, it is confirmed that the IQE, especially efficiency droop is related with
small effective volume. Also, it is confirmed that the effective volume is controlled by
polarization charge, the barriers between the quantum wells, and current density.

The trap and its impact on the GaN-based LEDs are also analyzed by measurement
and TCAD simulation. A reversible increase in the current of GaN-based blue LEDs is
observed when constant forward voltage is applied. This characteristic is assumed to be
the result of trapping process, and a trap activation energy of 0.30 eV is extracted.
Through TCAD simulations, it is confirmed that the multi-quantum well (MQW) barrier
height is reduced by the hole trapping process and that the current is increased by
lowering this barrier. It is also confirmed that the effect of this trap on the optical
characteristics of GaN-based blue LEDs by TCAD simulation and measurement.

To improve the IQE of GaN-based LEDs, a novel structure for GaN-based LED

featuring p-type trench in the MQW is proposed. Through TCAD simulation, it is



confirmed that the proposed structure shows quite uniform hole distribution in the
MQW than that of the conventional structure, because holes are injected efficiently into
the MQW along the p-type trench. It is also confirmed that the proposed structure also
has a significant effect on strain relaxation and reduction in quantum confined stark
effect by cathodo-luminescence (CL) measurement. In addition, two simple fabrication
methods using e-beam lithography and selective wet etching for manufacturing the
proposed structure are also proposed. From the measurement results of the
manufactured GaN-based LEDs, it is confirmed that the proposed structure using e-
beam lithography or selective wet etching shows improved light output power compared
to the conventional structure because of more uniform hole distribution and strain
relaxation effect.

From this study, methods for analyzing the IQE of the GaN-based LEDs and its
limiting factors are proposed and verified. It is also demonstrated that the p-type trench
structure in the MQW will be the promising candidate for solving the efficiency droop

problem of the GaN-based LEDs.

Key Words: GaN-based LEDs, internal quantum efficiency, efficiency droop,

current-transient methodology, p-type trench structure
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Chapter 1

Introduction

1.1 Background

During the last several years, GaN-based light emitting diodes (LEDs) (Fig. 1.1)
have gradually substituted for conventional fluorescent lights in the fields of backlights
of display and general lighting applications due to its advantages such as relatively long
lifetime and high energy efficiency [1, 2]. Although the market size has increased and
the efficiency of the GaN-based LEDs has improved rapidly [3-10], the general level of
understanding of the physics remains insufficient [11, 12].

In order to reduce electric power consumption and increase light output power of
the GaN-based LEDs, it is important to extract and analyze recombination coefficients
and internal quantum efficiency (IQE) which is the relative probability of radiative

recombination over the total recombination of injected carriers. There have been many



researches to analyze the IQE of the GaN-based LEDs and explain the origin of
‘efficiency droop’ (Fig. 1.2) which is the decrease of the IQE when current density

increases [13-21]. However, there is no consensus on this problem yet [11, 12].

Sapphire

Fig. 1.1 Schematic cross-sectional view of the GaN-based LEDs.
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The radiative recombination efficiency of GaN-based LEDs is very high (Fig. 1.3)

despite the high trap density (Fig. 1.4) caused by the lattice mismatch with sapphire

substrates [22]. Although there have been many studies to explain this phenomenon [23,

24], a generally accepted explanation has not yet been established. In addition, there

have also been many studies to analyze the relationships between the traps and the

‘efficiency droop’ of GaN-based LEDs when high current flows. Some researchers

concluded that trap density is not closely related to the efficiency droop [25]. In contrast,

some other researchers explained that the traps are the main cause of efficiency droop

[16, 26].
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Fig. 1.3 Dependence of luminescence efficiency of various compound semiconductor

materials on the dislocation density [22].
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Fig. 1.4 Surface of GaN grown on a sapphire substrate showing high dislocation density.

1.2 Scope of thesis

In Chapter 2, the recombination coefficients and the IQE of the GaN-based LEDs
are extracted by analyzing transient characteristics with the rate equation. In addition,
the concept of the effective volume of the active region is proposed and applied to the to
the rate equation of the LEDs

A temporal increase in the current of LEDs is found when a constant voltage is
applied to the anode. The activation energy of the traps causing this abnormal behavior
is extracted by current-transient methodology in Chapter 3. The process of current

increase caused by the trapping was also analyzed by a TCAD simulation. In addition,



the effects of the traps on the electrical and optical characteristics of LEDs were
predicted by a TCAD simulation and confirmed by measurement.

In Chapter 4, a novel structure using p-type trench in the MQW is proposed to
solve the efficiency droop problem with an improvement of the poor hole transport
characteristics and reduced quantum-confined stark effect (QCSE). In addition, the
optical and electrical characteristics are compared with the conventional structure by
using TCAD simulation and cathodo-luminescence (CL) measurement. Finally, in

Chapter 5, the work will be concluded with summary and suggestions for future work.



Chapter 2

Extraction of IQE and recombination
coefficients by measuring transient
characteristics

2.1  Model description and experimental setup

The current continuity equation of carrier concentration injected into the active
region can be written as Eq. (2.1a) while Eq. (2.1b) shows the solution of Eq. (2.1a).
Since the initial carrier concentration (ny) can be calculated from Eg. (2.2) and the
optical power is proportional to V.eiveBN?, time-carrier concentration characteristics can
be obtained by measuring the transient characteristics of the optical power. In addition,
as Eq. (2.1b) shows the decaying characteristics of the carrier concentration (n),
Shockley-Read-Hall (SRH) recombination coefficient (A), radiative recombination
coefficient (B), and coefficient causing efficiency droop problem (C) of GaN-based
LED can be extracted by fitting this equation to time-carrier concentration

characteristics. In this equation, coefficient C includes Auger recombination coefficient



and leakage current caused by electron overflow which are proportional to n® [11].

—% = An + Bn? + Cn® (2.1a)

B+2Cn
2B tan‘l( )
£ = 1 JaAac-B?

=— W+ln(A+n(B+Cn))—21nn]—t0 (2.1b)

—1( B+2Cn,
2B tan 1(—0)

th = 1 [ Vaac-B2
0= — | ——=2"=

24 Vaac-s2 T In(A + n9(B + Cnp)) — 21n no] (2.1c)

(no and t, represent initial carrier concentration and time, respectively)

I = qVyctive (AN + Bn? + Cn?) (2.2)

Figure 2.1 illustrates the experimental setup for the transient characteristics in
optical power measurement. At first, a current pulse (100 mA (3.2 V) amplitude, 4 ps
duration and 6 us period) generated from 81110A pulse generator is applied to the
prepared GaN-based LED sample. In order to reduce the change of the band structure
and carrier sweep-out from the active region, the ‘off” state bias is set to 2.4 V instead of
0 V. When the LED sample emits the optical signal caused by the current pulse, a fast
response photo-receiver collects this optical signal and converts the optical signal to a
voltage signal. This voltage signal is recorded by an oscilloscope. Since the transient
characteristics can be obtained by applying a very short current pulse to the sample,
recombination coefficients can be extracted rapidly by this method. And, as it is

measured by applying operating current at room temperature, recombination



coefficients and the IQE are extracted under real operating circumstances.

HCA-S-400M-SI (Photo receiver)
81110A Pulse Generator = Converting Light to voltage

= Applying pulse to GaN based LED ’
Tektronix DPO 4140

(Oscilloscope)

I:] Observing signals from

I photo receiver and

pulse generator

—

.....................

Probe station

Fig. 2.1. Experimental setup for measuring transient characteristics of GaN-based LEDs.

2.2 Effective volume of the active region

For the calculation of the carrier concentration at each current from Eq. (2.2), the
volume of the active region should be known. In order to increase radiative
recombination of the electron-hole pairs, GaN-based LEDs employ multiple quantum
well (MQW) structure [7]. However, the carrier concentration and recombination
process of the GaN-based LEDs are not uniformly distributed in the MQW. Because of
the polarization of nitride-based materials, the wave-function of electron and hole is not
overlapped exactly in the quantum well [3]. Furthermore, as the effective mass of hole
is much larger than that of electron [27] and the activation energy of Mg acceptor is

high [28], most of the injected holes are concentrated in the single quantum well near



the p-GaN layer. Because of these characteristics of nitride-based materials, most of the
recombination processes are concentrated in the small volume of the active region. As
carrier concentration severely affects the IQE of the LEDs, carrier distribution in the
active region should be considered when the volume of the active region is analyze and
calculated [29].

The carrier distribution and the actual volume of active region are analyzed by
TCAD simulation. In this simulation, the physical parameters of nitride-based materials
are based on the research of I. Vurgaftman, et al [30]. Surface charges induced by
spontaneous and piezoelectric polarizations are also considered [31]. Shockley-Read-
Hall (SRH) recombination coefficient (A) and radiative recombination coefficient (B)
are kept constant at 5.0 x 10° s* and 1.0 x 10™ cm®™, which are in the range of
generally accepted values [12]. In the case of Auger recombination coefficient (Cauger),
theoretically calculated value (2.0 x 10" cm®s™) is used [5]. If the overflow current
needs to be considered, the value of C should be extracted experimentally. It is assumed,
however, that the theoretical Auger recombination coefficient can be used as a first-
order approximation in this calculation. The active region of the structure consists of
five 3-nm-thick undoped Ing,GaggN QWSs and four 6-nm-thick n-GaN (n-doping = 2 x
10""cm™®) barriers. The structure also includes 17.5-nm-thick p-Aly,GassN (p-doping =
5 x 10" cm™) electron blocking layer (EBL) to avoid electron leakage from the MQW.

Figure 2.2(a) and (b) show the electron and hole concentration in the five quantum

wells of the GaN-based LEDs calculated by TCAD simulation tools at current density of



10 mA and 1 A [32]. When the current is low (10 mA), both of electrons and holes are
concentrated at the each side of the MQW. As current becomes higher (1 A), electrons
spread in the MQW uniformly, but holes are still concentrated at the p-GaN side of the
MQW because of heavy effective mass. Therefore, carriers are concentrated at the p-
GaN side of the quantum well and recombination rate, especially Auger recombination
(Cin%p + Cpnpz) caused by high hole concentration, increases rapidly in this small
volume.

This ‘effective volume’ is defined and calculated as the Eq. (2.3) and (2.4).

. Total recombination in MQW
Volume correction factor = — —— - - (2.3)
Highest recombination rate X Volume of the active region

Effective volume (Vefrective) = Volume correction factor x Physical volume (Vphysical) (2.4)

The volume correction factor and the IQE of polar c-plane GaN-based LED having
5 MQW are calculated by a TCAD simulation. As shown in Fig. 2.3, effective volume is
reduced as current is increased. Because of the reduced effective volume of active
region, carrier concentration increases and IQE is reduced significantly as Auger

recombination increases.

10
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For comparison, the volume correction factor and the IQE of non-polar (m-plane)
MQW and SQW structure are also calculated and plotted in Fig. 2.4. Both structures
have the identical physical volume of the active region with the polar (c-plane) MQW
structure. In the case of non-polar MQW structure, since there is no polarization charge
in the active region, the recombination process is distributed more uniformly in the

single quantum well near the p-type GaN layer and the volume correction factor and the

12



IQE are improved as shown in Fig. 2.4(a) and (b). Figure 2.4(c) and (d) show the
volume correction factor, the IQE and recombination rate of non-polar SQW structure.
As the barriers between quantum wells blocking the transport of holes are removed,
holes are injected more efficiently into the active region. As a consequence, the volume
correction factor and the IQE of non-polar SQW structure are greatly improved even
though the volume correction factor could not reach 100 % because of poor hole
diffusion length. This result confirms that the IQE is influenced by the effective volume
of the active region. In addition, the effective volume of the GaN-based LEDs can be

changed by polarization charge, the barriers between quantum wells, and current density.
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Fig. 2.4. Effects of the polarization field and barriers of the MQW on the volume
correction factor and the 1QE. In order to confirm the effect of the polarization field, the
calculated effective volume and the IQE of non-polar m-plane GaN-based LED using five
MQW structure are analyzed (a), and the distribution of the recombination rate in the
MQW is shown (b). To analyze the effect of the barriers, the same simulations are
conducted for non-polar m-plane GaN-based LED using single quantum well structure

(©), (d).
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2.3  Extraction of recombination coefficients

Transient characteristics of the light output power obtained by this experiment are
illustrated in Fig. 2.5(a). As already mentioned, carrier concentration vs. time
characteristics can be obtained by measuring the light output power as a function of
time. Figure 2.5(b) shows the carrier concentration vs. time characteristics of an LED
sample for two cases: (1) the physical volume or (2) the effective volume is used as the
volume of the active region. By fitting the transient characteristics of carrier
concentration to Eg. (2.1b), recombination coefficients are extracted as can be seen in
Table 2.1. When the physical volume is used for calculating carrier concentration, the
extracted Auger recombination coefficient is 5.1(+0.2) x 10*° cm® s™, much higher than
the theoretically calculated Auger recombination coefficient [5]. In contrast, when the
effective volume is applied, the calculated carrier concentration becomes much larger,
and the extracted Auger recombination coefficient is 1.9(x0.2) x 10 cm® s™ which is
similar to the theoretically calculated value. In addition, the extracted SRH and radiative
recombination coefficients are also in the range of generally accepted values [12]. This
result shows that the proposed model considering the effective volume of the active
region is reasonable and more accurate than the conventional model using the physical

volume.
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When the effective volume is used, the calculated carrier concentration becomes much
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Table 2.1. Calculated recombination coefficients by measuring transient characteristics

-1 3 -1 6 -1
Vactive A(S ) B (CIl’l S ) C (crn S )

6 -11 -30
Vihysical  5.2(+0.1) x 10 3.0(£0.3) x 10 5.1(+£0.2) x10

1

6 -1 3
Vetteetive  8.4(+0.1) x 10 1.3(+£0.3) x 10 1.9(+0.2) x 10

2.4  Calculation of internal quantum efficiency

Figure 2.6 shows the calculated IQE using the physical volume or the effective
volume of the active region and the IQE measured by light output power measurement
with correctly calibrated light extraction efficiency. Recombination coefficients
extracted by transient measurements (Table 2.1) are used to calculate the IQE. The
calculated IQE based on the physical volume shows significant difference from the
result of the light output power measurement. In contrast, the calculated IQE based on
the effective volume shows good agreement with the result of the light output power
measurement. Figure 2.7(a) and (b) show the measured transient characteristics and the
calculated 1QE of GaN-based LEDs having different size of active area. As the carrier
concentration of the smaller LED is higher than that of the larger LED, carrier
recombination happens faster as shown in Fig. 2.7(a). In addition, the ‘efficiency droop’
problem of the smaller LED is more serious because of the high carrier concentration as

shown in Fig. 2.7(b).
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The proposed model considering the effective volume of the active region can also
explain the symmetry issue of the IQE and the origin of the efficiency droop. Figure 2.8
shows the IQE as a function of the square root of light output power, which is plotted in
logarithmic scale. When the conventional rate equation is used for calculating the IQE
of the LEDs, the square root of light output power is proportional to the carrier
concentration (n) and the 1QE should show symmetry about the peak IQE line. However,
the experimental IQE shows significant asymmetry, unlike the result that the
conventional equation predicts [33]. This symmetry problem of the IQE can be
explained by considering the effective volume when the carrier concentration increases.
As we already confirmed in Fig. 2.3, the effective volume is not constant and decreases
as the carrier concentration increases. Therefore, as the light output power increases,
injected carriers are more crowded in a small volume and the carrier concentration
becomes higher than that predicted by the conventional rate equation. This higher
carrier concentration in the effective volume is the origin of the asymmetry of the IQE

and the severe efficiency droop.
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Chapter 3

Analysis of trap and its impact

3.1 Experimental procedure

In this chapter, a temporal increase in the current of LEDs is analyzed when a
constant voltage is applied to the anode. The activation energy of the traps causing this
abnormal behavior is extracted by current-transient methodology and CL measurement.
The process of current increase caused by the trapping was also analyzed by a TCAD
simulation. In addition, the effects of the traps on the electrical and optical
characteristics of LEDs were analyzed by a TCAD simulation and measurement.

The electrical properties of the LED samples were analyzed using Agilent 4156C,
and the light output power generated from the LEDs was collected by an optical fiber
and measured by a photodiode (Femto HCA-S-400M-SI-FS). Gatan mono CL4 was

used for CL measurement.
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Fig. 3.1. Current-transient characteristics when a constant voltage ((a) 3.0 V and (b) 2.4
V) is applied. The same measurements are repeated five times without an interval.
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3.2  Extraction of trap activation energy

In order to check the electrical characteristics of the LED samples, current was
measured every 4 ms when a constant voltage is applied. Some of the as-prepared LED
samples show abnormal electrical characteristics as shown in Fig. 3.1. When a constant
voltage is applied to the anode, most of samples show constant current. However, the
current of some samples increases slowly and becomes saturated after 3-5 s. When a
high voltage (3.0 V) is applied and a high current flows, as shown in Fig. 3.1(a), the
junction temperature increases and influences the current. Therefore, it is difficult to
obtain repeatable current-transient characteristics. In order to eliminate the influence of
junction temperature and guarantee the repeatability of the experiments, a much lower
voltage (2.4 V) is applied and the current measurements are repeated five times without
an interval. As shown in Fig. 3.1(b), the measurement results are nearly identical. To
find the origin of the abnormality, the time interval between repeated measurements is
changed and the results are compared. The measurement results in Fig. 3.2 show that the
current increase due to the measurement completely reverses during a five-minute
interval. Given this result, it can be assumed that this abnormal process is reversible
similarly to the trapping and de-trapping process. In addition, the reversed current
characteristics also show that the abnormal process is related to the trapping process.
Figure 3.3(a) and 3.3(b) show the current-transient and the reverse current
characteristics of the three abnormal samples. As shown in these figures, the sample

showing a higher leakage current also shows a greater increase in current when a
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constant voltage is applied. As it is known that a higher reverse leakage current flows
with the increase in the amount of traps [34], it is expected that the abnormal increase in

current would become severe when the trap density increases.
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i 10.5 |- Without interval !
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S
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Fig. 3.2. Current-transient characteristics measured at different measurement intervals.
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On the basis of the assumption that the abnormality originates from the trapping
process, we analyzed the current-transient characteristics by fitting them using Eq. (3.1),

which models the increased current as the sum of pure single exponential terms [35, 36].

¢
Irittea = Xi=q @; exp(— T_z) + I . (3.1)

Each single exponential term means the change in the current influenced by the
traps having the time constant 7. | in this equation means the saturated current when
time goes to infinity. In this research, a total of 50 single exponential terms with time
constant, which are equally spaced logarithmically in time, are used for fitting the
experimental result. The fitting is performed to minimize the sum of |Ineasured- liitied |* DY
controlling the a;'s of each single exponential term. In this way, we can determine the
time constant of the traps affecting the current increase by comparing the obtained a;'s.
The current-transient characteristics shown in Fig. 3.2 are fitted using Eq. (3.1). Figure
3.4 shows the time constant (z;) of traps and the change in its amplitude as the interval

becomes longer.
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From this result, we can extract a time constant of trapping of 1 s, which causes the
increase in current. In order to calculate the activation energy of the trap, the current-
transient characteristics are measured under different temperature conditions (Fig.
3.5(a)). These time constants at different temperatures are plotted as an Arrhenius plot,

and the estimated activation energy of the traps is 0.30 eV (Fig. 3.5(b)).
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of the trap (inset).
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This result is consistent with the CL spectra of LED samples.30) CL spectra can be
constructed by plotting the light output power generated by injected electrons as a
function of wavelength. In this experiment, CL image and spectra are analyzed at room
temperature to obtain the activation energy of traps. Figure 3.7(a) and 3.7(b) show the
CL spectra of the LED sample surface shown in Fig. 3.6. The CL spectrum shows a
luminescence peak of 2.3-2.4 eV, which is 0.3-0.4 eV smaller than the bandgap of the
MQW and consistent with the trap activation energy calculated by current-transient

methodology.

b‘ﬁ A -
B2 4

Fig. 3.6. Cathodo-luminescence (CL) image of GaN-based LED.
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peak originating from the trap.
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3.3  Effects of traps on GaN-based LEDs

To find the relationship between the trapping process and the increase in current, a
simulation of GaN-based LEDs is conducted [32]. The physical parameters of nitride-
based materials are based on the research of 1. Vurgaftman, et al [30]. As the LED
samples are grown on c-plane sapphire substrates, we also considered the polarization
field induced by the difference in lattice constant [31]. The negatively charged trap
situated at 0.3 eV above the valence band of GaN is probably a Ga vacancy, which is
considered as the origin of the yellow luminescence [37]. In this simulation, the capture
cross section of the trap is 10™° cm, which is in the range of generally accepted values
[37]. Trapped hole concentration and conduction band are shown in Fig. 3.7(a). Figure
3.7(b) shows increase in current obtained by TCAD simulation. The barrier height of the
MQW is reduced by the hole trapping process and the current is increased by this barrier
lowering. As can be seen in Figs. 3.3(a) and 3.11, the increase in the current (47/inigar) Of
the abnormal samples is distributed between 1 and 5% of the initial current. From the
simulation results shown in Fig. 3.9, it is confirmed that current increases by 1.8 and 9.8%
of the initial current when the trap densities are 10" and 10 cm?, respectively.
Therefore, it can be assumed that the trap density of the measured LED samples is
distributed in this range.

As shown in Figs. 3.8 and 3.9, it is confirmed that the trapped charge changes the
height of the barriers and the electrical characteristics of the LEDs. Trap density also

has a strong influence on the optical characteristics of the LEDs as well as the electrical
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characteristics [38]. The internal quantum efficiency of the LEDs can be represented by
Eq. (3.2), where n, A, B, and C represent the carrier concentration in the active region,
SRH recombination coefficient determined by trap density, radiative coefficient, and

coefficient causing efficiency droop problem, respectively:

Bn?

IQF = —2%__ (32)

An+Bn2+Cn3
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Fig. 3.8. Trapped hole concentration and conduction of the MQW when 2.4 V is
applied to the anode (trap density = 10™° cm®).
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Fig. 3.9. Current-transient characteristics obtained by TCAD simulation.

In order to confirm the effect of traps, the recombination rate in the MQW and the
internal quantum efficiency are confirmed by TCAD simulation when the trap density is
changed. In this simulation, the radiative recombination B and the Auger recombination
coefficient, Cayger are kept constant at 1.0 x 10™ cm’™ and 2.0 x 10" cm®s™, which are
in the range of generally accepted values. Figures 3.10(a) and (b) show the calculated
SRH recombination rates in the MQW and the internal quantum efficiency of the LEDs.
From the results, it is found that the SRH recombination rate increases and the internal
quantum efficiency is reduced as trap density increases. The measurement result in Fig.
3.11 also shows that the LED samples with a larger abnormal current increase show a

reduced light output power.
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The effect of traps on the reliability characteristics is also analyzed. Figure 3.12(a)
shows the current-transient characteristics of an abnormal sample (Sample A) and a
normal sample (Sample B). Time-dependent light output power of Sample A and
Sample B is measured at high temperature (120°C) when 100 mA current flows. The

measurement result in Fig. 3.12(b) shows that light output power of Sample A degrades

faster than that of the Sample B due to the high trap density in the MQW layer.
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Fig. 3.12. (a) Current-transient characteristics of an abnormal sample (Sample A) and a

normal sample (Sample B). (b) Time-dependent light output power of Sample A and

Sample B measured at high temperature (120°C) when 100 mA current flows.
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Chapter 4

p-type trench structure for improving

IQE

4.1  Proposed structure

Although there is still no clear consensus on the origin of the ‘efficiency droop’
problem [11, 12], it is generally accepted that insufficient hole transport characteristics
of nitride-based material is strongly linked with the efficiency droop problem [29].
Although Multi-Quantum Well (MQW) layers are used in the LEDs, most light of GaN-
based LEDs is emitted in the single quantum well nearest to the p-GaN side because of
the poor hole transport characteristics [39]. This localized emission increases Auger
recombination rate and makes severe efficiency droop at high current density.

In this chapter, a novel structure using p-type trench in the MQW is proposed to

solve this problem and improve the poor hole transport characteristics. Figure 4.1 shows
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a bird’s-eye view of the proposed structure. p-type trenches are extended from the
electron blocking layer and inserted periodically into the MQW layer. Figure 4.2 shows
the expected advantage of these p-type trenches. Hole transport of nitride-based material
is insufficient because of high activation energy of Mg acceptors [28] and its heavy
effective mass [27]. This limits electron-hole pair recombination of nitride based LEDs
into the single well near the p-GaN, although the MQW layers are used for increasing
recombination layer as shown in Fig. 4.2(a). In contrast, p-type trench effectively
spreads the holes into the MQW and internal quantum efficiency (IQE) is improved (Fig.

4.2(b)).

Fig. 4.1. A bird’s-eye view of the p-type trench LED for improving IQE.
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The optical and electrical characteristics of the conventional structure (without
trench) and the proposed structure (with p-type trench) are analyzed by using Silvaco
simulation tools. The MQW layer consists of five 3-nm-thick Ing,GaggN QWSs,
separated by four 6-nm-thick GaN barriers. Physical parameters of nitride-based
materials are based on the research of I. Vurgaftman, et al [30]. Band offset ratio AE, :
AE, at InGaN/GaN interfaces and AlGaN/GaN interfaces is assumed to be 55 : 45.
Polarization charges induced by spontaneous and piezoelectric field are also considered.
As it is known that this built-in polarization charges are partially compensated by fixed
defects and interface charges [40], 73 % of the theoretical value is applied for this
TCAD simulation. For an accurate calculation of carrier transport characteristics,
transport model in the simulation includes thermionic emission and tunneling current in
heterojunctions as well as drift-diffusion current [41]. Shockley-Read-Hall (SRH)
recombination coefficient (A) and radiative recombination coefficient (B) are kept
constant at 5.0 x 10° s* and 1.0 x 10" cm®™, which are in the range of generally
accepted values. In the case of Auger recombination coefficient (Cayger), theoretically

calculated value (2.0 x 10" cm®s™) is used.

4.2  Simulation results
Figure 4.3 shows the calculated hole concentration for the conventional LED and

the p-type trench LED cut through the A-A’ line of Fig. 4.2. Figure 4.4(a) and (b) show
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the calculated radiative recombination rate for the conventional LED and the p-type
trench LED, respectively. And Figure 4.4(c) shows the calculated radiative
recombination rate cut through the A-A’ line of Fig. 4.2.The width of the p-type trench
and the distance between the trenches are 50 nm and 1 pum, respectively. In the case of
the conventional structure, holes are concentrated at the single quantum well near the p-
GaN layer and the recombination rate is also crowded in the single quantum well
because of large hole effective mass. In contrast, holes are effectively injected and
spread into the quantum wells near the n-GaN side and radiative recombination rates are
improved by using the p-type trench in the MQW. The IQE characteristics are also
confirmed by the TCAD simulation as shown in Fig. 4.5. Efficiency droop is reduced

and IQE of p-type trench is 12 % higher at 1A current.
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Fig. 4.3. Calculated hole concentration at current of 1 A for the conventional LED and the

p-type trench LED.
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As holes are injected and distributed through the p-type trench, it is important to
determine proper physical parameters (the width of the p-type trench and the distance
between the trenches) of the p-type trench (Fig. 4.6). In order to optimize these
parameters, we analyzed the optical and electrical characteristics of the proposed
structure when the width of the p-type trench and distance between the trenches are
changed. Figure 4.7 shows how the width of the p-type trench influences the IQE of the
proposed structure. As the volume of the active region is reduced and the leakage
current through the p-type trench increases, the IQE of the proposed structure decreases
when the width of the p-type trench increases as shown in Fig. 4.7. The change of the
IQE according to the distance between the trenches is also analyzed, and the result is
illustrated in Fig. 4.8. As the distance between the trenches is reduced, holes are
distributed more uniformly and the IQE is improved. From these results, it can be
concluded that the IQE and the light output power are improved by inserting narrower

p-type trench more frequently into the MQW layer.
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Fig. 4.8. Internal quantum efficiency of the proposed structure when the distance between
the p-type trench is changed.

Figure 4.9 shows a simple fabrication method for manufacturing the proposed
structure. First, n-GaN and MQW layers are grown on sapphire substrate by MOCVD
process (Fig. 4.9(a)). Then, trench structures are patterned by e-beam lithography or
selective wet etching process (Fig. 4.9(b)). After the trench patterning process, p-type
layer is grown laterally to fill the trench region in the MQW layer (Fig. 4.9(c)) [42].
These figures indicate that the p-type trench can be easily defined by adding the trench

patterning process and lateral overgrowth process.
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Fig. 4.9. Fabrication process for the p-type trench LED. (a) n-GaN and MQW layers are
grown on sapphire substrate by MOCVD process. (b) Trench structures are patterned in
by e-beam lithography or selective wet etching process. (¢) p-GaN layer is filled in the
trench by using lateral overgrowth process.
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4.3  Trench patterning using e-beam lithography

The major fabrication processes of the trench patterning process using e-beam
lithography are as follows. Epitaxial layers were grown by metal-organic chemical
vapor deposition (MOCVD) on a c-plane sapphire substrate. After the growth of
undoped GaN layer and n-type GaN layer, InGaN/GaN MQW layer was grown as an
active region emitting blue light. The MQW layer consists of seven pairs of 3-nm-thick
InGaN wells and 12-nm-thick barriers. 100-nm-thick polymethyl methacrylate (PMMA)
resist was coated on the prepared sample by spin coating process, and periodic trench
structures were defined by electron-beam (e-beam) lithography with an accelerating
voltage of 100 keV and a beam current of 1 nA. These trench patterns were transferred
into the InGaN/GaN MQW layer by inductively-coupled plasma (ICP) dry etching
process using the defined PMMA layer as a hard mask. After the dry etching process,
the remaining PMMA layer was removed with acetone and the samples are rinsed in
deionized (DI) water.

In addition to the improved hole injection, the proposed structure has an effect on
the strain relaxation and reduction of the quantum-confined stark effect (QCSE). For the
continuous improvement of the efficiency in the GaN-based LEDs, it is important to
reduce QCSE in multi-quantum-well (MQW) induced by polarization field [3, 43]. The
polarization field in the MQW is mainly attributed to the strain caused by large lattice
constant mismatch between InGaN and GaN. In order to reduce the strain and the QCSE,

several solutions have been proposed and investigated, such as growing on non- or
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semi-polar substrate [44-46], applying external stress [47], and patterning nanostructure
MQW [48-50]. Among these methods, nanostructure patterning in the MQW has been
investigated as a promising solution for reducing the stain and the QCSE. As the strain
induced by lattice mismatch can be reduced with the size of the MQW, the proposed
structure can increase the electron and hole wave-function overlap and radiative
recombination rate. In order to analyze this effect, the wavelength and the intensity of
the light emitting from the MQW are confirmed by CL measurement. Figure 4.10 shows
the schematic cross-section of the prepared sample. To study the effects of the period of
the trench, the period was split into four cases (200 nm, 500 nm, 1 pm, 2 pm), while the
width of the trench was fixed at 50 nm. We prepared two types of the samples (square
pattern structure and stripe pattern structure), and Figures 4.11(a) and (b) show the plan
view scanning electron microscope (SEM) pictures of the square pattern structure and
the stripe pattern structure, respectively. For an accurate comparison, all structures are

close to each other and on the same wafer.

Fig. 4.10. Schematic cross-sectional view of the trench structure in the MQW.
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Fig. 4.11. Plan view SEM pictures of (a) the square pattern structure and (b) the stripe

pattern structure.
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Fig. 4.12. Energy band structure in the MQW when the strain is (a) present or (b)
eliminated.

In order to confirm the relaxation effects of the strain and the QCSE caused by the
periodic trench patterns, the prepared samples were investigated by CL spectroscopy.
When strain is present in the MQW, the polarization field induced by this strain can
bend the energy band structure in the MQW as shown in Fig. 4.12(a). This band bending
leads to narrowing of effective bandgap and increases the peak wavelength of emitted
light. In addition, the polarization field shifts the positions of electrons and holes to the
opposite side of the well, resulting in reduced wave function overlap and decreased light
output intensity. In the case of the prepared samples, it is expected that the trench
structures in the MQW reduce this strain effect and change the energy band structure as
illustrated in Fig. 4.12(b). The peak wavelength would be blue-shifted and the light
output intensity would increase since the strain will decrease as the period of trenches

decreases.
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Fig. 4.13(a) and Fig. 4.13(b) show measured CL spectra of the square pattern
structure and the stripe pattern structure, respectively. The CL spectra were obtained for
an electron energy of 5 keV and the size of scanning area (50 um®) remained constant.
The curves with black square symbols in these figures represent CL spectra recorded
from the as-grown sample without the periodic trench structure. The peak of the CL
spectrum is located at the wavelength of 450 nm. By comparing the measured CL
spectra of the prepared samples with that of the as-grown sample, we can confirm that
the inserted trench structures change the peak wavelength and intensity of the CL
spectra significantly. In order to investigate the effects of the trench structures more
precisely, peak wavelength and peak intensity of the CL spectra are plotted as a function
of the remaining active region (%) in Fig. 4.14(a) and Fig. 4.14(b), respectively. Fig.
4.14(a) shows that the peak wavelength of the CL spectra is blue-shifted due to the
strain relaxation effect when the percentage of the remaining active region is reduced.
When the remaining active region is the smallest (56.25 %), the peak wavelength
shifted most (from 450 nm to 435 nm). It means that the effective bandgap of the MQW
changed from 2.76 eV to 2.85 eV by the reduced QCSE. Meanwhile, the peak intensity
of the CL spectra does not increase monotonically as the percentage of the remaining

active region decreases (Fig. 4.14(b)).
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Fig. 4.13. Measured CL spectra of (a) the square pattern structure and (b) the stripe
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The peak intensity shows a maximum value at the remaining active region of 90 %
and decreases as the remaining active region becomes smaller. This is because the
trench structures also reduce the volume of the light emitting region while decreasing
the strain and the QCSE. Rapid reduction of the peak intensity for remaining active
region of less than 90 % indicates that the strain relaxation is almost complete in this
condition. Consequently, in order to improve the light output intensity, it is important to
maintain the proper ratio between the trench and the remaining active region. From this
experiment, it is confirmed that the light output intensity can be maximized when 90 %

of the active region remains.

4.4  Trench patterning using selective wet etching

In the previous chapter, the trench pattering method using e-beam lithography was
introduced. However, e-beam lithography has some disadvantages like long exposure
time and high fabrication cost. In order to overcome these problems of e-beam
lithography, trench patterning method using selective wet etching is proposed. It is well
known that threading dislocations in nitride-based materials can be selectively etched by
using several etchants like NaOH-KOH eutectic melt, KOH melt, or mixture of H,SO,
and H;PO, in various temperature conditions. This selective wet etching method has
been widely used for determination of dislocation density or surface texturing to

enhance the extraction efficiency of GaN-based LEDs.
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In this research, the selective wet etching method was used for the trench
patterning in the MQW of GaN-based LEDs. For the selective wet etching process, an
etchant solution of 5 M KOH solution in ethylene glycol was used at 165°C. This
process condition is based on the research of S.-I. Na et al [51]. Figure 4.15 shows the

microscope image of before and after 30 min selective wet etching process.

Fig. 4.15. Microscope picture of before (left) and after (right) selective wet etching.

Figure 4.16(a) and (b) show the plan view and the cross-sectional view SEM
images of 30 nm selective wet etching sample, respectively. As shown in Fig. 4.7, the
IQE of the proposed structure increases when the width of the p-type trench decreases.
On the basis of these experiments and simulation results, selective wet etching time for

main samples was split into three cases (4, 5, 6 min).
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SNU 5.0kV 15.4mm x500 SE(M)

.OkV 12.7mm x2

(b)
Fig. 4.16. (a) Plan view and (b) cross-sectional view SEM pictures of selective wet
etching sample for 30 min etching time.
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Fig. 4.17. Plan view SEM pictures of selective wet etching sample for (a) 15 min etching

time and (b) 5 min etching
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4.5 Measurement results

After the trench patterning process using e-beam lithography or selective wet
etching, p-type layer is grown laterally to fill the trench region in the MQW layer at
950°C and at a pressure of 200 Torr. ITO layer is used for current spreading and Cr/Ni
metal contact layer is deposited by e-beam evaporation. Figure 4.18 shows the plan
view microscope image of the fabricated GaN-based LED. Cross-sectional views of the
p-type trench are captured by tunneling electron microscope (TEM) as shown in Fig.
4.19(a) and (b). It can be confirmed that the p-type trench is successfully fabricated by
e-beam lithography and re-growth process.

At first, electrical and optical characteristics of the proposed structure using e-
beam lithography are analyzed. As shown in Fig. 4.20, forward current of the proposed
samples is higher because of the improved hole injection through the p-type trench.
Reverse current of the proposed samples is also increased because of the leakage current
through the p-type trench as shown in Fig. 4. 21. Figure 4.22 and 4.23 show the light
output power and efficiency of the proposed structure using e-beam lithography and the
conventional structure. Because the proposed structure has effects on hole distribution
in the MQW and strain relaxation, the light output power and efficiency of the proposed
structure are much improved. By comparing the measured (electro-luminescence) EL
spectra of the proposed structure with that of the conventional structure in Fig. 4.24, it is
also confirmed that the p-type trench structure changes the peak wavelength and

improves the intensity of the EL spectra significantly by strain relaxation.
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Fig. 4.18. Microscope picture of fabricated GaN-based LEDs.
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(b)
Fig. 4.19 Cross-sectional view TEM images of (a) 50 nm target trench structure and  (b)
3 um target trench structure
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Fig. 4.20. Forward current characteristics of the p-type trench structure using e-beam
lithography and the conventional structure.
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Fig. 4.21. Reverse current characteristics of the p-type trench structure using e-beam
lithography and the conventional structure.
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Fig. 4.22 Light output power of the p-type trench structure using e-beam lithography and
the conventional structure.
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Fig. 4.24 Electro-luminescence (EL) of the p-type trench structure using e-beam

lithography and the conventional structure.
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For a more detailed analysis, recombination coefficients and IQE of 1 um period p-
type trench structure are extracted. Figure 4.25 shows the measured transient
characteristics of the light output power when 100-mA current pulse is applied. By
fitting the transient characteristics to Eqg. (2.1b) in Chapter 2, the recombination
coefficients are extracted and compared to the data of the conventional structure
analyzed in Chapter 2 (Table 4.1). The IQE of the p-type trench structure is also
calculated with the recombination coefficients extracted by transient measurement
(Figure 4.26). As shown in Table 4.1, radiative recombination coefficient B increases
and coefficient C causing efficiency droop decreases compared to the conventional
structure. In contrast, SRH recombination coefficient A of the p-type trench structure is
severely increased. It is assumed that the trap density is increased during the p-type

trench patterning process.
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Fig. 4.25. Measured transient characteristics of the light output power of the 1 um period
p-type trench structure.

66



Table 4.1. Calculated recombination coefficients of thel um period p-type trench
structure and the conventional structure.
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Fig. 4.26. Calculated IQE of the 1 um period p-type trench structure.
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Electrical and optical characteristics of the proposed structure using selective wet
etching are also analyzed. Figure 4.27 and 4.28 show the light output power and
efficiency of the proposed structure using selective wet etching and the conventional
structure. Like e-beam lithography samples, selective wet etching samples also show
higher light output power and efficiency than the conventional structure because the
hole distribution in the MQW is improve by the p-type trench. However, the peak
wavelength of the EL spectra is barely changed as shown in Fig. 29. From this result, it
can be confirmed that the light output power improvement of the selective wet etching

sample is originated from the better hole injection, not from the strain relaxation effect.
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Fig. 4.27. Light output power of the p-type trench structure using selective wet etching
and the conventional structure.
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Chapter 5

Conclusions

A simple and rapid method is introduced to extract recombination coefficients and
IQE by using transient analysis of GaN-based LED. A modified rate equation model of
GaN-based LED:s is also proposed considering the effective volume of the active region.
It is confirmed that polarization charge, quantum well barriers, and high current density
reduce the effective volume and cause the efficiency droop. By analyzing the transient
characteristics of the LED sample, it is confirmed that the proposed model can extract
the recombination coefficients and IQE of GaN-based LEDs correctly.

An abnormal increase in the current of GaN-based LEDs is analyzed and a trap
activation energy of 0.30 eV is extracted by current-transient methodology. It is
confirmed that this activation energy is consistent with the peak energy of the CL
spectrum. In addition, the relationship between the current increase and the trapping
process is analyzed by a TCAD simulation. It is also confirmed that this trapping
process reduces the internal quantum efficiency and light output power owing to the

increased SRH recombination rate.
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In addition, p-type trench LED is proposed to inject hole into the MQW uniformly
and improve the IQE at high current density. Through a TCAD simulation, it is
confirmed that the hole distribution in the MQW is improved by inserting p-type trench
into the MQW layer. Because of improved hole injection and distribution through the p-
type trench, the IQE of the proposed structure is significantly increased. Through CL
measurements, it is also confirmed that the proposed structure has a significant effect on
strain relaxation and the consequent reduction in quantum confined stark effect. In
addition, two simple fabrication methods using e-beam lithography and selective wet
etching for manufacturing the proposed structure are also suggested. From the analysis
of the electrical and optical characteristics of the manufactured GaN-based LEDs, it is
confirmed that the proposed structure using e-beam lithography or selective wet etching

shows improved forward current characteristics and light output power.
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