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Abstract 

In order to extract the recombination coefficient and the internal quantum 

efficiency (IQE) of the GaN-based LEDs, a fast and reliable measurement method using 

transient characteristics is developed. For accurate extraction of the recombination 

coefficients and the IQE, an improved rate equation model for GaN-based LEDs 

considering the effective volume of the active region is also proposed. Through TCAD 

simulations, it is confirmed that the IQE, especially efficiency droop is related with 

small effective volume. Also, it is confirmed that the effective volume is controlled by 

polarization charge, the barriers between the quantum wells, and current density.  

The trap and its impact on the GaN-based LEDs are also analyzed by measurement 

and TCAD simulation. A reversible increase in the current of GaN-based blue LEDs is 

observed when constant forward voltage is applied. This characteristic is assumed to be 

the result of trapping process, and a trap activation energy of 0.30 eV is extracted. 

Through TCAD simulations, it is confirmed that the multi-quantum well (MQW) barrier 

height is reduced by the hole trapping process and that the current is increased by 

lowering this barrier. It is also confirmed that the effect of this trap on the optical 

characteristics of GaN-based blue LEDs by TCAD simulation and measurement. 

To improve the IQE of GaN-based LEDs, a novel structure for GaN-based LED 

featuring p-type trench in the MQW is proposed. Through TCAD simulation, it is 



 

ii 

 

confirmed that the proposed structure shows quite uniform hole distribution in the 

MQW than that of the conventional structure, because holes are injected efficiently into 

the MQW along the p-type trench. It is also confirmed that the proposed structure also 

has a significant effect on strain relaxation and reduction in quantum confined stark 

effect by cathodo-luminescence (CL) measurement. In addition, two simple fabrication 

methods using e-beam lithography and selective wet etching for manufacturing the 

proposed structure are also proposed. From the measurement results of the 

manufactured GaN-based LEDs, it is confirmed that the proposed structure using e-

beam lithography or selective wet etching shows improved light output power compared 

to the conventional structure because of more uniform hole distribution and strain 

relaxation effect. 

From this study, methods for analyzing the IQE of the GaN-based LEDs and its 

limiting factors are proposed and verified. It is also demonstrated that the p-type trench 

structure in the MQW will be the promising candidate for solving the efficiency droop 

problem of the GaN-based LEDs. 

 

Key Words: GaN-based LEDs, internal quantum efficiency, efficiency droop, 

current-transient methodology, p-type trench structure 

Student Number: 2008-20829 
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Chapter 1  

Introduction 

 Background 1.1

During the last several years, GaN-based light emitting diodes (LEDs) (Fig. 1.1) 

have gradually substituted for conventional fluorescent lights in the fields of backlights 

of display and general lighting applications due to its advantages such as relatively long 

lifetime and high energy efficiency [1, 2]. Although the market size has increased and 

the efficiency of the GaN-based LEDs has improved rapidly [3-10], the general level of 

understanding of the physics remains insufficient [11, 12]. 

In order to reduce electric power consumption and increase light output power of 

the GaN-based LEDs, it is important to extract and analyze recombination coefficients 

and internal quantum efficiency (IQE) which is the relative probability of radiative 

recombination over the total recombination of injected carriers. There have been many 
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researches to analyze the IQE of the GaN-based LEDs and explain the origin of 

‘efficiency droop’ (Fig. 1.2) which is the decrease of the IQE when current density 

increases [13-21]. However, there is no consensus on this problem yet [11, 12]. 

 

Fig. 1.1 Schematic cross-sectional view of the GaN-based LEDs. 

 

Fig. 1.2 Internal quantum efficiency of GaN-based LEDs showing efficiency droop at 

high current density. 
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The radiative recombination efficiency of GaN-based LEDs is very high (Fig. 1.3) 

despite the high trap density (Fig. 1.4) caused by the lattice mismatch with sapphire 

substrates [22]. Although there have been many studies to explain this phenomenon [23, 

24], a generally accepted explanation has not yet been established. In addition, there 

have also been many studies to analyze the relationships between the traps and the 

‘efficiency droop’ of GaN-based LEDs when high current flows. Some researchers 

concluded that trap density is not closely related to the efficiency droop [25]. In contrast, 

some other researchers explained that the traps are the main cause of efficiency droop 

[16, 26]. 

 

  

 

Fig. 1.3 Dependence of luminescence efficiency of various compound semiconductor 

materials on the dislocation density [22]. 
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Fig. 1.4 Surface of GaN grown on a sapphire substrate showing high dislocation density. 

 Scope of thesis 1.2

In Chapter 2, the recombination coefficients and the IQE of the GaN-based LEDs 

are extracted by analyzing transient characteristics with the rate equation. In addition, 

the concept of the effective volume of the active region is proposed and applied to the to 

the rate equation of the LEDs 

A temporal increase in the current of LEDs is found when a constant voltage is 

applied to the anode. The activation energy of the traps causing this abnormal behavior 

is extracted by current-transient methodology in Chapter 3. The process of current 

increase caused by the trapping was also analyzed by a TCAD simulation. In addition, 
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the effects of the traps on the electrical and optical characteristics of LEDs were 

predicted by a TCAD simulation and confirmed by measurement. 

In Chapter 4, a novel structure using p-type trench in the MQW is proposed to 

solve the efficiency droop problem with an improvement of the poor hole transport 

characteristics and reduced quantum-confined stark effect (QCSE). In addition, the 

optical and electrical characteristics are compared with the conventional structure by 

using TCAD simulation and cathodo-luminescence (CL) measurement. Finally, in 

Chapter 5, the work will be concluded with summary and suggestions for future work. 
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Chapter 2  

Extraction of IQE and recombination 

coefficients by measuring transient 

characteristics 

2.1 Model description and experimental setup 

The current continuity equation of carrier concentration injected into the active 

region can be written as Eq. (2.1a) while Eq. (2.1b) shows the solution of Eq. (2.1a). 

Since the initial carrier concentration (n0) can be calculated from Eq. (2.2) and the 

optical power is proportional to VactiveBn
2
, time-carrier concentration characteristics can 

be obtained by measuring the transient characteristics of the optical power. In addition, 

as Eq. (2.1b) shows the decaying characteristics of the carrier concentration (n), 

Shockley-Read-Hall (SRH) recombination coefficient (A), radiative recombination 

coefficient (B), and coefficient causing efficiency droop problem (C) of GaN-based 

LED can be extracted by fitting this equation to time-carrier concentration 

characteristics. In this equation, coefficient C includes Auger recombination coefficient 
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and leakage current caused by electron overflow which are proportional to n
3
 [11]. 

 

 
  

  
                      (2.1a) 

  
 

  
[
       (

     

√      
)

√      
   (   (    ))      ]                         (2.1b) 

   
 

  
[
       (

      

√      
)

√      
   (    (     ))       ]                   (2.1c) 

(n0 and t0 represent initial carrier concentration and time, respectively) 

𝐼  𝑞𝑉𝑎𝑐 𝑖𝑣𝑒(     
     )         (2.2) 

 

Figure 2.1 illustrates the experimental setup for the transient characteristics in 

optical power measurement. At first, a current pulse (100 mA (3.2 V) amplitude, 4 μs 

duration and 6 μs period) generated from 81110A pulse generator is applied to the 

prepared GaN-based LED sample. In order to reduce the change of the band structure 

and carrier sweep-out from the active region, the ‘off’ state bias is set to 2.4 V instead of 

0 V. When the LED sample emits the optical signal caused by the current pulse, a fast 

response photo-receiver collects this optical signal and converts the optical signal to a 

voltage signal. This voltage signal is recorded by an oscilloscope. Since the transient 

characteristics can be obtained by applying a very short current pulse to the sample, 

recombination coefficients can be extracted rapidly by this method. And, as it is 

measured by applying operating current at room temperature, recombination 
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coefficients and the IQE are extracted under real operating circumstances. 

 

 

 

Fig. 2.1. Experimental setup for measuring transient characteristics of GaN-based LEDs. 

2.2 Effective volume of the active region 

For the calculation of the carrier concentration at each current from Eq. (2.2), the 

volume of the active region should be known. In order to increase radiative 

recombination of the electron-hole pairs, GaN-based LEDs employ multiple quantum 

well (MQW) structure [7]. However, the carrier concentration and recombination 

process of the GaN-based LEDs are not uniformly distributed in the MQW. Because of 

the polarization of nitride-based materials, the wave-function of electron and hole is not 

overlapped exactly in the quantum well [3]. Furthermore, as the effective mass of hole 

is much larger than that of electron [27] and the activation energy of Mg acceptor is 

high [28], most of the injected holes are concentrated in the single quantum well near 
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the p-GaN layer. Because of these characteristics of nitride-based materials, most of the 

recombination processes are concentrated in the small volume of the active region. As 

carrier concentration severely affects the IQE of the LEDs, carrier distribution in the 

active region should be considered when the volume of the active region is analyze and 

calculated [29].  

The carrier distribution and the actual volume of active region are analyzed by 

TCAD simulation. In this simulation, the physical parameters of nitride-based materials 

are based on the research of I. Vurgaftman, et al [30]. Surface charges induced by 

spontaneous and piezoelectric polarizations are also considered [31]. Shockley-Read-

Hall (SRH) recombination coefficient (A) and radiative recombination coefficient (B) 

are kept constant at 5.0 × 10
6
 s

-1
 and 1.0 × 10

-11
 cm

3
s

-1
, which are in the range of 

generally accepted values [12]. In the case of Auger recombination coefficient (CAuger), 

theoretically calculated value (2.0 × 10
-31

 cm
6
s

-1
) is used [5]. If the overflow current 

needs to be considered, the value of C should be extracted experimentally. It is assumed, 

however, that the theoretical Auger recombination coefficient can be used as a first-

order approximation in this calculation. The active region of the structure consists of 

five 3-nm-thick undoped In0.2Ga0.8N QWs and four 6-nm-thick n-GaN (n-doping = 2 × 

1017
cm

-3
) barriers. The structure also includes 17.5-nm-thick p-Al0.2Ga0.8N (p-doping = 

5 × 10
19

 cm
-3

) electron blocking layer (EBL) to avoid electron leakage from the MQW. 

Figure 2.2(a) and (b) show the electron and hole concentration in the five quantum 

wells of the GaN-based LEDs calculated by TCAD simulation tools at current density of 
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10 mA and 1 A [32]. When the current is low (10 mA), both of electrons and holes are 

concentrated at the each side of the MQW. As current becomes higher (1 A), electrons 

spread in the MQW uniformly, but holes are still concentrated at the p-GaN side of the 

MQW because of heavy effective mass. Therefore, carriers are concentrated at the p-

GaN side of the quantum well and recombination rate, especially Auger recombination 

(Cnn
2
p + Cpnp

2
) caused by high hole concentration, increases rapidly in this small 

volume. 

This ‘effective volume’ is defined and calculated as the Eq. (2.3) and (2.4). 

 

                          
                          

                                                        
      (2.3) 

 

                 (          )                                             (         )    (2.4) 

 

The volume correction factor and the IQE of polar c-plane GaN-based LED having 

5 MQW are calculated by a TCAD simulation. As shown in Fig. 2.3, effective volume is 

reduced as current is increased. Because of the reduced effective volume of active 

region, carrier concentration increases and IQE is reduced significantly as Auger 

recombination increases.  



 

11 

 

 

 

(a) 

 

(b) 

Fig. 2.2. Calculated (a) electron and (b) hole concentration in the MQW when 10 mA or 

1 A current flows. 
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Fig. 2.3. Calculated volume correction factor and the IQE of polar c-plane GaN-based 

LED using 5 MQW structure. 

 

For comparison, the volume correction factor and the IQE of non-polar (m-plane) 

MQW and SQW structure are also calculated and plotted in Fig. 2.4. Both structures 

have the identical physical volume of the active region with the polar (c-plane) MQW 

structure. In the case of non-polar MQW structure, since there is no polarization charge 

in the active region, the recombination process is distributed more uniformly in the 

single quantum well near the p-type GaN layer and the volume correction factor and the 
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IQE are improved as shown in Fig. 2.4(a) and (b). Figure 2.4(c) and (d) show the 

volume correction factor, the IQE and recombination rate of non-polar SQW structure. 

As the barriers between quantum wells blocking the transport of holes are removed, 

holes are injected more efficiently into the active region. As a consequence, the volume 

correction factor and the IQE of non-polar SQW structure are greatly improved even 

though the volume correction factor could not reach 100 % because of poor hole 

diffusion length. This result confirms that the IQE is influenced by the effective volume 

of the active region. In addition, the effective volume of the GaN-based LEDs can be 

changed by polarization charge, the barriers between quantum wells, and current density. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Fig. 2.4. Effects of the polarization field and barriers of the MQW on the volume 

correction factor and the IQE. In order to confirm the effect of the polarization field, the 

calculated effective volume and the IQE of non-polar m-plane GaN-based LED using five 

MQW structure are analyzed (a), and the distribution of the recombination rate in the 

MQW is shown (b). To analyze the effect of the barriers, the same simulations are 

conducted for non-polar m-plane GaN-based LED using single quantum well structure 

(c), (d). 
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2.3 Extraction of recombination coefficients 

Transient characteristics of the light output power obtained by this experiment are 

illustrated in Fig. 2.5(a). As already mentioned, carrier concentration vs. time 

characteristics can be obtained by measuring the light output power as a function of 

time. Figure 2.5(b) shows the carrier concentration vs. time characteristics of an LED 

sample for two cases: (1) the physical volume or (2) the effective volume is used as the 

volume of the active region. By fitting the transient characteristics of carrier 

concentration to Eq. (2.1b), recombination coefficients are extracted as can be seen in 

Table 2.1. When the physical volume is used for calculating carrier concentration, the 

extracted Auger recombination coefficient is 5.1(±0.2) x 10
-30

 cm
6
 s

-1
, much higher than 

the theoretically calculated Auger recombination coefficient [5]. In contrast, when the 

effective volume is applied, the calculated carrier concentration becomes much larger, 

and the extracted Auger recombination coefficient is 1.9(±0.2) x 10
-31

 cm
6
 s

-1
 which is 

similar to the theoretically calculated value. In addition, the extracted SRH and radiative 

recombination coefficients are also in the range of generally accepted values [12]. This 

result shows that the proposed model considering the effective volume of the active 

region is reasonable and more accurate than the conventional model using the physical 

volume. 
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(a) 

 

(b) 

Fig. 2.5. Measured transient characteristics of the light output power (a) and the 

calculated carrier concentration (b) after the current pulse is applied to the LED sample. 

When the effective volume is used, the calculated carrier concentration becomes much 

larger. 
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Table 2.1. Calculated recombination coefficients by measuring transient characteristics 

Vactive A (s
-1

) B (cm
3 

s
-1

) C (cm
6 

s
-1

) 

Vphysical 5.2(    ) x 10
6

 3.0(    ) x 10
-11

 5.1(    ) x 10
-30

 

Veffective 8.4(    ) x 10
6

 1.3(    ) x 10
-11

 1.9(    ) x 10
-31

 
 

2.4 Calculation of internal quantum efficiency  

Figure 2.6 shows the calculated IQE using the physical volume or the effective 

volume of the active region and the IQE measured by light output power measurement 

with correctly calibrated light extraction efficiency. Recombination coefficients 

extracted by transient measurements (Table 2.1) are used to calculate the IQE. The 

calculated IQE based on the physical volume shows significant difference from the 

result of the light output power measurement. In contrast, the calculated IQE based on 

the effective volume shows good agreement with the result of the light output power 

measurement. Figure 2.7(a) and (b) show the measured transient characteristics and the 

calculated IQE of GaN-based LEDs having different size of active area. As the carrier 

concentration of the smaller LED is higher than that of the larger LED, carrier 

recombination happens faster as shown in Fig. 2.7(a). In addition, the ‘efficiency droop’ 

problem of the smaller LED is more serious because of the high carrier concentration as 

shown in Fig. 2.7(b). 
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Fig. 2.6. Calculated IQE applying the physical volume or the effective volume of the 

active region and the IQE obtained by light output power measurement. 
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(a) 

 

(b) 

Fig. 2.7. (a) Measured transient characteristics and (b) calculated IQE of GaN-based 

LEDs having different size of active area. 
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The proposed model considering the effective volume of the active region can also 

explain the symmetry issue of the IQE and the origin of the efficiency droop. Figure 2.8 

shows the IQE as a function of the square root of light output power, which is plotted in 

logarithmic scale.  When the conventional rate equation is used for calculating the IQE 

of the LEDs, the square root of light output power is proportional to the carrier 

concentration (n) and the IQE should show symmetry about the peak IQE line. However, 

the experimental IQE shows significant asymmetry, unlike the result that the 

conventional equation predicts [33]. This symmetry problem of the IQE can be 

explained by considering the effective volume when the carrier concentration increases. 

As we already confirmed in Fig. 2.3, the effective volume is not constant and decreases 

as the carrier concentration increases. Therefore, as the light output power increases, 

injected carriers are more crowded in a small volume and the carrier concentration 

becomes higher than that predicted by the conventional rate equation. This higher 

carrier concentration in the effective volume is the origin of the asymmetry of the IQE 

and the severe efficiency droop. 
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Fig. 2.8. Calculated IQE applying the effective volume of the active region as a function 

of the square root of light output power. 
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Chapter 3  

Analysis of trap and its impact 

3.1 Experimental procedure 

In this chapter, a temporal increase in the current of LEDs is analyzed when a 

constant voltage is applied to the anode. The activation energy of the traps causing this 

abnormal behavior is extracted by current-transient methodology and CL measurement. 

The process of current increase caused by the trapping was also analyzed by a TCAD 

simulation. In addition, the effects of the traps on the electrical and optical 

characteristics of LEDs were analyzed by a TCAD simulation and measurement.  

The electrical properties of the LED samples were analyzed using Agilent 4156C, 

and the light output power generated from the LEDs was collected by an optical fiber 

and measured by a photodiode (Femto HCA-S-400M-SI-FS). Gatan mono CL4 was 

used for CL measurement. 
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(a) 

 

(b) 

Fig. 3.1. Current-transient characteristics when a constant voltage ((a) 3.0 V and (b) 2.4 

V) is applied. The same measurements are repeated five times without an interval. 
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3.2 Extraction of trap activation energy 

In order to check the electrical characteristics of the LED samples, current was 

measured every 4 ms when a constant voltage is applied. Some of the as-prepared LED 

samples show abnormal electrical characteristics as shown in Fig. 3.1. When a constant 

voltage is applied to the anode, most of samples show constant current. However, the 

current of some samples increases slowly and becomes saturated after 3-5 s. When a 

high voltage (3.0 V) is applied and a high current flows, as shown in Fig. 3.1(a), the 

junction temperature increases and influences the current. Therefore, it is difficult to 

obtain repeatable current-transient characteristics. In order to eliminate the influence of 

junction temperature and guarantee the repeatability of the experiments, a much lower 

voltage (2.4 V) is applied and the current measurements are repeated five times without 

an interval. As shown in Fig. 3.1(b), the measurement results are nearly identical. To 

find the origin of the abnormality, the time interval between repeated measurements is 

changed and the results are compared. The measurement results in Fig. 3.2 show that the 

current increase due to the measurement completely reverses during a five-minute 

interval. Given this result, it can be assumed that this abnormal process is reversible 

similarly to the trapping and de-trapping process. In addition, the reversed current 

characteristics also show that the abnormal process is related to the trapping process. 

Figure 3.3(a) and 3.3(b) show the current-transient and the reverse current 

characteristics of the three abnormal samples. As shown in these figures, the sample 

showing a higher leakage current also shows a greater increase in current when a 
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constant voltage is applied. As it is known that a higher reverse leakage current flows 

with the increase in the amount of traps [34], it is expected that the abnormal increase in 

current would become severe when the trap density increases. 

 

 

 

 

Fig. 3.2. Current-transient characteristics measured at different measurement intervals. 
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(a) 

 

(b) 

Fig. 3.3. (a) Current-transient characteristics and (b) reverse current characteristics of 

three abnormal samples. 
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On the basis of the assumption that the abnormality originates from the trapping 

process, we analyzed the current-transient characteristics by fitting them using Eq. (3.1), 

which models the increased current as the sum of pure single exponential terms [35, 36]. 

 

𝐼𝑓𝑖  𝑒   ∑ 𝛼𝑖  xp ( 
 

𝜏𝑖
) 

𝑖=   𝐼∞    (3.1) 

 

Each single exponential term means the change in the current influenced by the 

traps having the time constant τi. I∞ in this equation means the saturated current when 

time goes to infinity. In this research, a total of 50 single exponential terms with time 

constant, which are equally spaced logarithmically in time, are used for fitting the 

experimental result. The fitting is performed to minimize the sum of |Imeasured- Ifitted |
2
 by 

controlling the αi's of each single exponential term. In this way, we can determine the 

time constant of the traps affecting the current increase by comparing the obtained αi's. 

The current-transient characteristics shown in Fig. 3.2 are fitted using Eq. (3.1). Figure 

3.4 shows the time constant (τi) of traps and the change in its amplitude as the interval 

becomes longer.  
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Fig. 3.4. Time constant spectrum with measured at different intervals. Amplitudes of all 

time constants are obtained by the fitting process. 

 

From this result, we can extract a time constant of trapping of 1 s, which causes the 

increase in current. In order to calculate the activation energy of the trap, the current-

transient characteristics are measured under different temperature conditions (Fig. 

3.5(a)). These time constants at different temperatures are plotted as an Arrhenius plot, 

and the estimated activation energy of the traps is 0.30 eV (Fig. 3.5(b)). 
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(a) 

 

(b) 

Fig. 3.5.  (a) Current-transient characteristics under different temperature conditions. (b) 

Time constant of different measurement temperatures and the extracted activation energy 

of the trap (inset). 
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This result is consistent with the CL spectra of LED samples.30) CL spectra can be 

constructed by plotting the light output power generated by injected electrons as a 

function of wavelength. In this experiment, CL image and spectra are analyzed at room 

temperature to obtain the activation energy of traps. Figure 3.7(a) and 3.7(b) show the 

CL spectra of the LED sample surface shown in Fig. 3.6. The CL spectrum shows a 

luminescence peak of 2.3-2.4 eV, which is 0.3-0.4 eV smaller than the bandgap of the 

MQW and consistent with the trap activation energy calculated by current-transient 

methodology. 

 

 

 

Fig. 3.6. Cathodo-luminescence (CL) image of GaN-based LED.  
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(a) 

 

(b) 

Fig. 3.7. CL spectrum showing (a) a main peak of 2.7 eV and (b) a peak of 2.3 ~ 2.4 eV 

peak originating from the trap. 
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3.3 Effects of traps on GaN-based LEDs 

To find the relationship between the trapping process and the increase in current, a 

simulation of GaN-based LEDs is conducted [32]. The physical parameters of nitride-

based materials are based on the research of I. Vurgaftman, et al [30]. As the LED 

samples are grown on c-plane sapphire substrates, we also considered the polarization 

field induced by the difference in lattice constant [31]. The negatively charged trap 

situated at 0.3 eV above the valence band of GaN is probably a Ga vacancy, which is 

considered as the origin of the yellow luminescence [37]. In this simulation, the capture 

cross section of the trap is 10
-16

 cm
-2

, which is in the range of generally accepted values 

[37]. Trapped hole concentration and conduction band are shown in Fig. 3.7(a). Figure 

3.7(b) shows increase in current obtained by TCAD simulation. The barrier height of the 

MQW is reduced by the hole trapping process and the current is increased by this barrier 

lowering. As can be seen in Figs. 3.3(a) and 3.11, the increase in the current (ΔI/Iinitial) of 

the abnormal samples is distributed between 1 and 5% of the initial current. From the 

simulation results shown in Fig. 3.9, it is confirmed that current increases by 1.8 and 9.8% 

of the initial current when the trap densities are 10
17

 and 10
18

 cm
-3

, respectively. 

Therefore, it can be assumed that the trap density of the measured LED samples is 

distributed in this range. 

As shown in Figs. 3.8 and 3.9, it is confirmed that the trapped charge changes the 

height of the barriers and the electrical characteristics of the LEDs. Trap density also 

has a strong influence on the optical characteristics of the LEDs as well as the electrical 
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characteristics [38]. The internal quantum efficiency of the LEDs can be represented by 

Eq. (3.2), where n, A, B, and C represent the carrier concentration in the active region, 

SRH recombination coefficient determined by trap density, radiative coefficient, and 

coefficient causing efficiency droop problem, respectively: 

 

𝐼𝑄𝐸   
   

  +   +  3
     (3.2) 

 

 

Fig. 3.8. Trapped hole concentration and conduction of the MQW when 2.4 V is 

applied to the anode (trap density = 10
16

 cm
-3

). 
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Fig. 3.9. Current-transient characteristics obtained by TCAD simulation. 

 

In order to confirm the effect of traps, the recombination rate in the MQW and the 

internal quantum efficiency are confirmed by TCAD simulation when the trap density is 

changed. In this simulation, the radiative recombination B and the Auger recombination 

coefficient, CAuger are kept constant at 1.0 × 10
-11

 cm
3
s

-1
 and 2.0 × 10

-31
 cm

6
s

-1
, which are 

in the range of generally accepted values. Figures 3.10(a) and (b) show the calculated 

SRH recombination rates in the MQW and the internal quantum efficiency of the LEDs. 

From the results, it is found that the SRH recombination rate increases and the internal 

quantum efficiency is reduced as trap density increases. The measurement result in Fig. 

3.11 also shows that the LED samples with a larger abnormal current increase show a 

reduced light output power. 
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(a) 

 

(b) 

Fig. 3.10. (a) SRH recombination rates in the MQW obtained by TCAD simulation. (b) 

Internal quantum efficiency of the LEDs obtained by TCAD simulation. 
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Fig. 3.11. Measured light output power of the abnormal samples when 100 mA current 

flows. 

The effect of traps on the reliability characteristics is also analyzed. Figure 3.12(a) 

shows the current-transient characteristics of an abnormal sample (Sample A) and a 

normal sample (Sample B). Time-dependent light output power of Sample A and 

Sample B is measured at high temperature (120
◦
C) when 100 mA current flows. The 

measurement result in Fig. 3.12(b) shows that light output power of Sample A degrades 

faster than that of the Sample B due to the high trap density in the MQW layer. 
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(a) 

 

(b) 

Fig. 3.12. (a) Current-transient characteristics of an abnormal sample (Sample A) and a 

normal sample (Sample B). (b) Time-dependent light output power of Sample A and 

Sample B measured at high temperature (120
◦
C) when 100 mA current flows. 
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Chapter 4  

p-type trench structure for improving 

IQE 

4.1 Proposed structure 

Although there is still no clear consensus on the origin of the ‘efficiency droop’ 

problem [11, 12], it is generally accepted that insufficient hole transport characteristics 

of nitride-based material is strongly linked with the efficiency droop problem [29]. 

Although Multi-Quantum Well (MQW) layers are used in the LEDs, most light of GaN-

based LEDs is emitted in the single quantum well nearest to the p-GaN side because of 

the poor hole transport characteristics [39]. This localized emission increases Auger 

recombination rate and makes severe efficiency droop at high current density.  

In this chapter, a novel structure using p-type trench in the MQW is proposed to 

solve this problem and improve the poor hole transport characteristics. Figure 4.1 shows 
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a bird’s-eye view of the proposed structure. p-type trenches are extended from the 

electron blocking layer and inserted periodically into the MQW layer. Figure 4.2 shows 

the expected advantage of these p-type trenches. Hole transport of nitride-based material 

is insufficient because of high activation energy of Mg acceptors [28] and its heavy 

effective mass [27]. This limits electron-hole pair recombination of nitride based LEDs 

into the single well near the p-GaN, although the MQW layers are used for increasing 

recombination layer as shown in Fig. 4.2(a). In contrast, p-type trench effectively 

spreads the holes into the MQW and internal quantum efficiency (IQE) is improved (Fig. 

4.2(b)). 

 

 

 

Fig. 4.1. A bird’s-eye view of the p-type trench LED for improving IQE. 
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(a) 

 

(b) 

Fig. 4.2. Hole distribution in the MQW of (a) the conventional LED and (b) the p-type 

trench LED. 
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The optical and electrical characteristics of the conventional structure (without 

trench) and the proposed structure (with p-type trench) are analyzed by using Silvaco 

simulation tools. The MQW layer consists of five 3-nm-thick In0.2Ga0.8N QWs, 

separated by four 6-nm-thick GaN barriers. Physical parameters of nitride-based 

materials are based on the research of I. Vurgaftman, et al [30]. Band offset ratio ΔEc : 

ΔEv at InGaN/GaN interfaces and AlGaN/GaN interfaces is assumed to be 55 : 45.  

Polarization charges induced by spontaneous and piezoelectric field are also considered. 

As it is known that this built-in polarization charges are partially compensated by fixed 

defects and interface charges [40], 73 % of the theoretical value is applied for this 

TCAD simulation. For an accurate calculation of carrier transport characteristics, 

transport model in the simulation includes thermionic emission and tunneling current in 

heterojunctions as well as drift-diffusion current [41]. Shockley-Read-Hall (SRH) 

recombination coefficient (A) and radiative recombination coefficient (B) are kept 

constant at 5.0 × 10
6
 s

-1
 and 1.0 × 10

-11
 cm

3
s

-1
, which are in the range of generally 

accepted values. In the case of Auger recombination coefficient (CAuger), theoretically 

calculated value (2.0 × 10
-31

 cm
6
s

-1
) is used. 

4.2 Simulation results 

Figure 4.3 shows the calculated hole concentration for the conventional LED and 

the p-type trench LED cut through the A-A’ line of Fig. 4.2. Figure 4.4(a) and (b) show 
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the calculated radiative recombination rate for the conventional LED and the p-type 

trench LED, respectively. And Figure 4.4(c) shows the calculated radiative 

recombination rate cut through the A-A’ line of Fig. 4.2.The width of the p-type trench 

and the distance between the trenches are 50 nm and 1 μm, respectively. In the case of 

the conventional structure, holes are concentrated at the single quantum well near the p-

GaN layer and the recombination rate is also crowded in the single quantum well 

because of large hole effective mass. In contrast, holes are effectively injected and 

spread into the quantum wells near the n-GaN side and radiative recombination rates are 

improved by using the p-type trench in the MQW. The IQE characteristics are also 

confirmed by the TCAD simulation as shown in Fig. 4.5. Efficiency droop is reduced 

and IQE of p-type trench is 12 % higher at 1A current.  

 

Fig. 4.3. Calculated hole concentration at current of 1 A for the conventional LED and the 

p-type trench LED. 
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(a) 

 

(b) 



 

45 

 

 

(c) 

Fig. 4.4. Calculated radiative recombination rate at current of 1 A for (a) the conventional 

LED and (b) the p-type trench LED. (c) Radiative recombination rates cut through the A-

A’ line of Fig. 4.2. 

 

Fig. 4.5. Internal quantum efficiency of the conventional LED and the p-type trench LED. 
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As holes are injected and distributed through the p-type trench, it is important to 

determine proper physical parameters (the width of the p-type trench and the distance 

between the trenches) of the p-type trench (Fig. 4.6). In order to optimize these 

parameters, we analyzed the optical and electrical characteristics of the proposed 

structure when the width of the p-type trench and distance between the trenches are 

changed. Figure 4.7 shows how the width of the p-type trench influences the IQE of the 

proposed structure. As the volume of the active region is reduced and the leakage 

current through the p-type trench increases, the IQE of the proposed structure decreases 

when the width of the p-type trench increases as shown in Fig. 4.7. The change of the 

IQE according to the distance between the trenches is also analyzed, and the result is 

illustrated in Fig. 4.8. As the distance between the trenches is reduced, holes are 

distributed more uniformly and the IQE is improved. From these results, it can be 

concluded that the IQE and the light output power are improved by inserting narrower 

p-type trench more frequently into the MQW layer. 
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Fig. 4.6. Critical physical parameters of the p-type trench LED (the width of the p-type 

trench and the distance between the trenches). 

 

Fig. 4.7. Internal quantum efficiency of the proposed structure when the width of the p-

type trench is changed. 
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Figure 4.9 shows a simple fabrication method for manufacturing the proposed 

structure. First, n-GaN and MQW layers are grown on sapphire substrate by MOCVD 

process (Fig. 4.9(a)). Then, trench structures are patterned by e-beam lithography or 

selective wet etching process (Fig. 4.9(b)). After the trench patterning process, p-type 

layer is grown laterally to fill the trench region in the MQW layer (Fig. 4.9(c)) [42]. 

These figures indicate that the p-type trench can be easily defined by adding the trench 

patterning process and lateral overgrowth process. 

 

Fig. 4.8. Internal quantum efficiency of the proposed structure when the distance between 

the p-type trench is changed. 
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(a) 

 

 

(b) 

 

 

(c) 

Fig. 4.9.  Fabrication process for the p-type trench LED. (a) n-GaN and MQW layers are 

grown on sapphire substrate by MOCVD process. (b) Trench structures are patterned in 

by e-beam lithography or selective wet etching process. (c) p-GaN layer is filled in the 

trench by using lateral overgrowth process. 
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4.3 Trench patterning using e-beam lithography 

The major fabrication processes of the trench patterning process using e-beam 

lithography are as follows. Epitaxial layers were grown by metal-organic chemical 

vapor deposition (MOCVD) on a c-plane sapphire substrate. After the growth of 

undoped GaN layer and n-type GaN layer, InGaN/GaN MQW layer was grown as an 

active region emitting blue light. The MQW layer consists of seven pairs of 3-nm-thick 

InGaN wells and 12-nm-thick barriers. 100-nm-thick polymethyl methacrylate (PMMA) 

resist was coated on the prepared sample by spin coating process, and periodic trench 

structures were defined by electron-beam (e-beam) lithography with an accelerating 

voltage of 100 keV and a beam current of 1 nA. These trench patterns were transferred 

into the InGaN/GaN MQW layer by inductively-coupled plasma (ICP) dry etching 

process using the defined PMMA layer as a hard mask. After the dry etching process, 

the remaining PMMA layer was removed with acetone and the samples are rinsed in 

deionized (DI) water. 

In addition to the improved hole injection, the proposed structure has an effect on 

the strain relaxation and reduction of the quantum-confined stark effect (QCSE). For the 

continuous improvement of the efficiency in the GaN-based LEDs, it is important to 

reduce QCSE in multi-quantum-well (MQW) induced by polarization field [3, 43]. The 

polarization field in the MQW is mainly attributed to the strain caused by large lattice 

constant mismatch between InGaN and GaN. In order to reduce the strain and the QCSE, 

several solutions have been proposed and investigated, such as growing on non- or 



 

51 

 

semi-polar substrate [44-46], applying external stress [47], and patterning nanostructure 

MQW [48-50]. Among these methods, nanostructure patterning in the MQW has been 

investigated as a promising solution for reducing the stain and the QCSE. As the strain 

induced by lattice mismatch can be reduced with the size of the MQW, the proposed 

structure can increase the electron and hole wave-function overlap and radiative 

recombination rate. In order to analyze this effect, the wavelength and the intensity of 

the light emitting from the MQW are confirmed by CL measurement. Figure 4.10 shows 

the schematic cross-section of the prepared sample. To study the effects of the period of 

the trench, the period was split into four cases (200 nm, 500 nm, 1 μm, 2 μm), while the 

width of the trench was fixed at 50 nm. We prepared two types of the samples (square 

pattern structure and stripe pattern structure), and Figures 4.11(a) and (b) show the plan 

view scanning electron microscope (SEM) pictures of the square pattern structure and 

the stripe pattern structure, respectively. For an accurate comparison, all structures are 

close to each other and on the same wafer. 

 

Fig. 4.10. Schematic cross-sectional view of the trench structure in the MQW. 
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(a) 

 

(b) 

Fig. 4.11. Plan view SEM pictures of (a) the square pattern structure and (b) the stripe 

pattern structure. 
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Fig. 4.12. Energy band structure in the MQW when the strain is (a) present or (b) 

eliminated. 

 

 In order to confirm the relaxation effects of the strain and the QCSE caused by the 

periodic trench patterns, the prepared samples were investigated by CL spectroscopy. 

When strain is present in the MQW, the polarization field induced by this strain can 

bend the energy band structure in the MQW as shown in Fig. 4.12(a). This band bending 

leads to narrowing of effective bandgap and increases the peak wavelength of emitted 

light. In addition, the polarization field shifts the positions of electrons and holes to the 

opposite side of the well, resulting in reduced wave function overlap and decreased light 

output intensity. In the case of the prepared samples, it is expected that the trench 

structures in the MQW reduce this strain effect and change the energy band structure as 

illustrated in Fig. 4.12(b). The peak wavelength would be blue-shifted and the light 

output intensity would increase since the strain will decrease as the period of trenches 

decreases. 
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Fig. 4.13(a) and Fig. 4.13(b) show measured CL spectra of the square pattern 

structure and the stripe pattern structure, respectively. The CL spectra were obtained for 

an electron energy of 5 keV and the size of scanning area (50 μm
2
) remained constant. 

The curves with black square symbols in these figures represent CL spectra recorded 

from the as-grown sample without the periodic trench structure. The peak of the CL 

spectrum is located at the wavelength of 450 nm. By comparing the measured CL 

spectra of the prepared samples with that of the as-grown sample, we can confirm that 

the inserted trench structures change the peak wavelength and intensity of the CL 

spectra significantly. In order to investigate the effects of the trench structures more 

precisely, peak wavelength and peak intensity of the CL spectra are plotted as a function 

of the remaining active region (%) in Fig. 4.14(a) and Fig. 4.14(b), respectively. Fig. 

4.14(a) shows that the peak wavelength of the CL spectra is blue-shifted due to the 

strain relaxation effect when the percentage of the remaining active region is reduced. 

When the remaining active region is the smallest (56.25 %), the peak wavelength 

shifted most (from 450 nm to 435 nm). It means that the effective bandgap of the MQW 

changed from 2.76 eV to 2.85 eV by the reduced QCSE. Meanwhile, the peak intensity 

of the CL spectra does not increase monotonically as the percentage of the remaining 

active region decreases (Fig. 4.14(b)).  
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(a) 

 

(b) 

Fig. 4.13. Measured CL spectra of (a) the square pattern structure and (b) the stripe 

pattern structure. 
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(a) 

 

(b) 

Fig. 4.14. (a) Peak wavelength and (b) peak intensity of the CL spectra plotted as a 

function of the remaining active region except trench region. 
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The peak intensity shows a maximum value at the remaining active region of 90 % 

and decreases as the remaining active region becomes smaller. This is because the 

trench structures also reduce the volume of the light emitting region while decreasing 

the strain and the QCSE. Rapid reduction of the peak intensity for remaining active 

region of less than 90 % indicates that the strain relaxation is almost complete in this 

condition. Consequently, in order to improve the light output intensity, it is important to 

maintain the proper ratio between the trench and the remaining active region. From this 

experiment, it is confirmed that the light output intensity can be maximized when 90 % 

of the active region remains. 

4.4 Trench patterning using selective wet etching 

In the previous chapter, the trench pattering method using e-beam lithography was 

introduced. However, e-beam lithography has some disadvantages like long exposure 

time and high fabrication cost. In order to overcome these problems of e-beam 

lithography, trench patterning method using selective wet etching is proposed. It is well 

known that threading dislocations in nitride-based materials can be selectively etched by 

using several etchants like NaOH-KOH eutectic melt, KOH melt, or mixture of H2SO4 

and H3PO4 in various temperature conditions. This selective wet etching method has 

been widely used for determination of dislocation density or surface texturing to 

enhance the extraction efficiency of GaN-based LEDs. 
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In this research, the selective wet etching method was used for the trench 

patterning in the MQW of GaN-based LEDs. For the selective wet etching process, an 

etchant solution of 5 M KOH solution in ethylene glycol was used at 165
◦
C. This 

process condition is based on the research of S.-I. Na et al [51]. Figure 4.15 shows the 

microscope image of before and after 30 min selective wet etching process. 

 

Fig. 4.15. Microscope picture of before (left) and after (right) selective wet etching. 

 

 Figure 4.16(a) and (b) show the plan view and the cross-sectional view SEM 

images of 30 nm selective wet etching sample, respectively.  As shown in Fig. 4.7, the 

IQE of the proposed structure increases when the width of the p-type trench decreases. 

On the basis of these experiments and simulation results, selective wet etching time for 

main samples was split into three cases (4, 5, 6 min). 
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(a) 

 

(b) 

Fig. 4.16. (a) Plan view and (b) cross-sectional view SEM pictures of selective wet 

etching sample for 30 min etching time. 
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(a) 

 

(b) 

Fig. 4.17. Plan view SEM pictures of selective wet etching sample for (a) 15 min etching 

time and (b) 5 min etching 
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4.5 Measurement results 

After the trench patterning process using e-beam lithography or selective wet 

etching, p-type layer is grown laterally to fill the trench region in the MQW layer at 

950
◦
C and at a pressure of 200 Torr. ITO layer is used for current spreading and Cr/Ni 

metal contact layer is deposited by e-beam evaporation. Figure 4.18 shows the plan 

view microscope image of the fabricated GaN-based LED. Cross-sectional views of the 

p-type trench are captured by tunneling electron microscope (TEM) as shown in Fig. 

4.19(a) and (b). It can be confirmed that the p-type trench is successfully fabricated by 

e-beam lithography and re-growth process.  

At first, electrical and optical characteristics of the proposed structure using e-

beam lithography are analyzed. As shown in Fig. 4.20, forward current of the proposed 

samples is higher because of the improved hole injection through the p-type trench. 

Reverse current of the proposed samples is also increased because of the leakage current 

through the p-type trench as shown in Fig. 4. 21. Figure 4.22 and 4.23 show the light 

output power and efficiency of the proposed structure using e-beam lithography and the 

conventional structure. Because the proposed structure has effects on hole distribution 

in the MQW and strain relaxation, the light output power and efficiency of the proposed 

structure are much improved. By comparing the measured (electro-luminescence) EL 

spectra of the proposed structure with that of the conventional structure in Fig. 4.24, it is 

also confirmed that the p-type trench structure changes the peak wavelength and 

improves the intensity of the EL spectra significantly by strain relaxation. 
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Fig. 4.18. Microscope picture of fabricated GaN-based LEDs. 

 

 

(a). 



 

63 

 

 

(b) 

Fig. 4.19 Cross-sectional view TEM images of (a) 50 nm target trench structure and  (b) 

3 μm target trench structure 

 

Fig. 4.20. Forward current characteristics of the p-type trench structure using e-beam 

lithography and the conventional structure. 
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Fig. 4.21. Reverse current characteristics of the p-type trench structure using e-beam 

lithography and the conventional structure. 

 

Fig. 4.22 Light output power of the p-type trench structure using e-beam lithography and 

the conventional structure. 
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Fig. 4.23 Efficiency of the p-type trench structure using e-beam lithography and the 

conventional structure. 

 

Fig. 4.24 Electro-luminescence (EL) of the p-type trench structure using e-beam 

lithography and the conventional structure. 
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For a more detailed analysis, recombination coefficients and IQE of 1 μm period p-

type trench structure are extracted. Figure 4.25 shows the measured transient 

characteristics of the light output power when 100-mA current pulse is applied. By 

fitting the transient characteristics to Eq. (2.1b) in Chapter 2, the recombination 

coefficients are extracted and compared to the data of the conventional structure 

analyzed in Chapter 2 (Table 4.1). The IQE of the p-type trench structure is also 

calculated with the recombination coefficients extracted by transient measurement 

(Figure 4.26). As shown in Table 4.1, radiative recombination coefficient B increases 

and coefficient C causing efficiency droop decreases compared to the conventional 

structure. In contrast, SRH recombination coefficient A of the p-type trench structure is 

severely increased. It is assumed that the trap density is increased during the p-type 

trench patterning process. 

 

Fig. 4.25. Measured transient characteristics of the light output power of the 1 μm period 

p-type trench structure. 
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Table 4.1. Calculated recombination coefficients of the1 μm period p-type trench 

structure and the conventional structure. 

 A (s
-1

) B (cm
3 

s
-1

) C (cm
6 

s
-1

) 

Conventional structure 

(Measured in Chapter 2) 
8.4 x 10

6

 1.3 x 10
-11

 1.9 x 10
-31

 

1 μm period p-type trench 

structure 
5.0 x 10

7

 2.1 x 10
-11

 1.7 x 10
-31

 

 

 

 

Fig. 4.26. Calculated IQE of the 1 μm period p-type trench structure. 
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Electrical and optical characteristics of the proposed structure using selective wet 

etching are also analyzed. Figure 4.27 and 4.28 show the light output power and 

efficiency of the proposed structure using selective wet etching and the conventional 

structure. Like e-beam lithography samples, selective wet etching samples also show 

higher light output power and efficiency than the conventional structure because the 

hole distribution in the MQW is improve by the p-type trench. However, the peak 

wavelength of the EL spectra is barely changed as shown in Fig. 29. From this result, it 

can be confirmed that the light output power improvement of the selective wet etching 

sample is originated from the better hole injection, not from the strain relaxation effect. 

 

Fig. 4.27. Light output power of the p-type trench structure using selective wet etching 

and the conventional structure. 
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Fig. 4.28. Efficiency of the p-type trench structure using selective wet etching and the 

conventional structure. 

 

Fig. 4.29 EL of the p-type trench structure using selective wet etching and the 

conventional structure. 
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Chapter 5  

Conclusions 

A simple and rapid method is introduced to extract recombination coefficients and 

IQE by using transient analysis of GaN-based LED. A modified rate equation model of 

GaN-based LEDs is also proposed considering the effective volume of the active region. 

It is confirmed that polarization charge, quantum well barriers, and high current density 

reduce the effective volume and cause the efficiency droop. By analyzing the transient 

characteristics of the LED sample, it is confirmed that the proposed model can extract 

the recombination coefficients and IQE of GaN-based LEDs correctly. 

An abnormal increase in the current of GaN-based LEDs is analyzed and a trap 

activation energy of 0.30 eV is extracted by current-transient methodology. It is 

confirmed that this activation energy is consistent with the peak energy of the CL 

spectrum. In addition, the relationship between the current increase and the trapping 

process is analyzed by a TCAD simulation. It is also confirmed that this trapping 

process reduces the internal quantum efficiency and light output power owing to the 

increased SRH recombination rate. 
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In addition, p-type trench LED is proposed to inject hole into the MQW uniformly 

and improve the IQE at high current density. Through a TCAD simulation, it is 

confirmed that the hole distribution in the MQW is improved by inserting p-type trench 

into the MQW layer. Because of improved hole injection and distribution through the p-

type trench, the IQE of the proposed structure is significantly increased. Through CL 

measurements, it is also confirmed that the proposed structure has a significant effect on 

strain relaxation and the consequent reduction in quantum confined stark effect. In 

addition, two simple fabrication methods using e-beam lithography and selective wet 

etching for manufacturing the proposed structure are also suggested. From the analysis 

of the electrical and optical characteristics of the manufactured GaN-based LEDs, it is 

confirmed that the proposed structure using e-beam lithography or selective wet etching 

shows improved forward current characteristics and light output power.  
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초 록 

질화갈륨 발광다이오드의 재결합 상수들과 내부 양자 효율을 추출하기 

위해, 과도(transient) 특성을 이용한 빠르고 신뢰성 있는 측정 방법을 

개발하였다. 또한 재결합 상수와 내부 양자 효율의 보다 정확한 측정을 위해, 

발광 영역(active region)의 실질적인 부피를 고려한 질화갈륨 발광다이오드의 

보다 개선된 반응 모델을 제안하였다. TCAD 시뮬레이션 연구를 통해 내부 

양자 효율, 특히 ‘effciency droop’ 현상이 실질적인 발광 영역의 감소와 

관련되어 있는 것을 확인하였다. 또한 이러한 발광 영역의 감소가 극성 

전하(polarization charge), 양자 우물 간의 장벽, 전류 밀도에 의해 결정되는 

것을 확인하였다. 

질화갈륨 발광다이오드의 트랩(trap)과 그 영향에 대해서도 측정과 TCAD 

시뮬레이션을 통해 분석하였다. 질화갈륨 소자에 일정한 전압을 인가하였을 

때, 회복 가능한 전류의 증가가 나타남을 확인하였으며, 이러한 현상은 

트랩에 의해 나타나는 현상으로 생각되며 이 때, 트랩의 활성화 

에너지(activation energy)가 0.30 eV 임을 추출하였다. TCAD 시뮬레이션을 통해 

정공이 이 트랩에 갇히면서 양자 우물 간의 장벽의 높이가 감소하고 그에 

따라 전류가 증가하는 현상이 나타남을 확인하였다. 또한, 이러한 트랩이 

발광 소자의 광학적 특성과 신뢰성에 미치는 영향을 TCAD 시뮬레이션과 

측정을 통해 확인하였다.  
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질화갈륨 발광다이오드의 내부 양자 효율 향상을 위해, 다중 양자 우물 

내에 p-type trench를 삽입한 새로운 구조를 제안하였다. TCAD 시뮬레이션을 

통해 p-type trench를 통해 정공이 다중 양자 우물 내에 효율적으로 주입되고, 

그에 따라 제안한 구조의 다중 양자 우물 내의 정공의 분포가 훨씬 더 

균일해짐을 확인하였다. 또한 CL 측정을 통해 제안한 구조가 strain 

relaxation과 QCSE의 감소에도 상당한 효과가 있음을 확인하였다. 더불어, 

제안한 구조를 제작하기 위해 e-beam lithography, 또는 selective wet etching을 

활용한 간단한 공정 방법을 제시하였다. 제작된 소자의 측정을 통해, e-beam 

lithography나 selective wet etching을 통해 제작한 소자에서 기존 소자에 비해 

균일한 정공 분포와 strain의 감소로 광 출력이 크게 향상됨을 확인하였다.  

본 연구를 통해 질화갈륨 발광다이오드의 내부 양자 효율과 이를 

제한하는 요소들을 분석할 수 있는 방법들을 제시하였다. 또한 다중 양자 

우물 내에 p-type trench를 삽입한 구조가 질화갈륨 발광다이오드의 ‘efficiency 

droop’ 문제 해결에 강력한 후보가 될 수 있음을 검증했다. 

 

주요어: 질화갈륨 발광 소자, 내부 양자 효율, efficiency droop, 전류 과도 

특성 분석, p-type trench 구조 
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