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Abstract

Multi-Dimensional Range
Partitioning for Parallel Joins in

MapReduce

Jaeseok Myung

School of Computer Science & Engineering

The Graduate School

Seoul National University

Joins are fundamental operations for many data analysis tasks, but are not

directly supported by the MapReduce framework. This is because 1) the

framework is basically designed to process a single input data set, and 2)

MapReduce’s key-equality based data grouping method makes it difficult to

support complex join conditions. As a result, a large number of MapReduce-

based join algorithms have been proposed.

As in traditional shared-nothing systems, one of the major issues in

join algorithms using MapReduce is handling of data skew. We propose a

new skew handling method, called Multi-Dimensional Range Partitioning

(MDRP), and show that the proposed method outperforms traditional skew

handling methods: range-based and randomized methods. Specifically, the

proposed method has the following advantages: 1) Compared to the range-

based method, it considers the number of output tuples at each machine,
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which leads better handling of join product skew. 2) Compared with the

randomized method, it exploits given join conditions before the actual join

begins, so that unnecessary input duplication can be reduced.

The MDRP method can be used to support advanced join operations

such as theta-joins and multi-way joins. With extensive experiments using

real and synthetic data sets, we evaluate the effectiveness of the proposed

algorithm.

Keywords : Parallel Join, Data Skew, Multi-Dimensional Range Partition-

ing, MapReduce

Student Number : 2007-20973
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Chapter I

Introduction

Enterprises today collect vast amounts of data from different sources

and are expected to process them efficiently in order to provide new func-

tionalities and services to users. To handle the unprecedented amounts of

data, shared-nothing systems have received attention due to its scale-out fea-

tures. A representative example is the MapReduce framework [1]. After the

Apache Hadoop [2] community released an open-source MapReduce im-

plementation, the parallel data processing framework has been widely used

due to its salient features including scalability, fault-tolerance, and ease of

programming.

This dissertation is about handling data skew in join algorithms using

MapReduce. As in traditional shared-nothing systems, the processing time

of a MapReduce-based join algorithm depends on the completion time of its

longest running tasks. In this situation, skew handling methods are surely

important to MapReduce-based join algorithms. As a result, we propose a

new skew handling method that is applicable to a number of applications

involved in parallel joins. The proposed method is compared to traditional

skew handling methods: range-based and randomized methods. Throughout

the dissertation, we show strong and weak points of the proposed method

with illustrative examples in real-world applications.
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1.1 Motivation

Joins are fundamental operations for many data analysis tasks, but are

not directly supported by MapReduce [1]. The framework is basically de-

signed to process a single input data set, and MapReduce’s key-equality

based data grouping method makes it difficult to support complex join con-

ditions. Although a large number of MapReduce-based join algorithms have

been proposed so far, researches on this problem are still actively conducted:

recent studies [3, 4] provide insightful summaries on this problem.

One of the major issues in join processing with MapReduce is handling

of data skew. As in traditional shared-nothing systems, the processing time

of a join operation depends on the completion time of its longest running

tasks. If the underlying data is sufficiently skewed, any of the gains from

parallelism will be lost.

Unfortunately, most of MapReduce-based join algorithms exploit hash-

based partitioning approach. A main reason is that Hadoop —the most popu-

lar MapReduce implementation—uses hash partitioning as a default option

[2]. However, the basic approach does not consider skew inherent in the

data sets. Repeated values in a join attribute are representative examples of

data skew. Input tuples having the same join attribute value will be parti-

tioned into the same reducer, which leads to significant imbalances across

machines. Therefore, join algorithms based on the hash partitioning, such as

repartition join [5], will show unacceptable performance at the presence of

data skew.

An alternative approach to the hash partitioning is the range-based par-

2



titioning approach [6]. In this approach, each sub-range of join attribute

values is assigned to a reducer. Since all sub-ranges are expected to have

the same number of input tuples, some join attribute values can be over-

lapped across multiple sub-ranges. Repeated values are accordingly divided

into several reducers. An attractive aspect of the range-based approach is

that it is relatively easy to determine approximate sub-ranges via sampling.

As shown in [6], a small number of samples are still helpful to determine

boundaries of buckets. Thus, with a small cost for sampling, the range-based

approach is effective regardless of the actual distribution of join attribute

values. As a result, the range partitioning has been widely used in traditional

shared-nothing systems and has been recently adopted for MapReduce [7].

Another alternative is the randomized partitioning approach [8]. It ex-

ploits a cross-product space between two input relations S and T . A row and

a column represent individual input tuples from both relations. The cross-

product space is covered by k rectangles, each of which represents one re-

ducer. The areas covered by each rectangle should be the same so that we

can expect the same number of input tuples for each reducer. We now as-

sume an input tuple s from a relation S. For a given input tuple s, a random

row s′ is selected by the algorithm. Then, all reducers intersecting the s′ row

will receive the original input tuple s. Another input tuple t corresponding

to a certain column will be processed similarly. Eventually, s and t meet

at a certain reducer R, and a join result can be produced if s and t satisfy

given join conditions. Due to the random selection, there are some rows

and columns that are selected for multiple input tuples, while others are not

selected at all. However, the large data size prevents significant variations
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among rows and columns. This idea is applicable to arbitrary join condi-

tions and several join types.

In this dissertation, we present a new skew handling approach to effi-

cient processing of parallel joins in MapReduce. Since our approach extends

the range partitioning, we call it as Multi-Dimensional Range Partitioning

(MDRP). The proposed approach is designed to overcome limitations of

traditional approaches.

A limitation of the original range-based approach is that the size of

join results is ignored when it determines the sub-ranges. This is because

the range partitioning only exploits samples from the most skewed relation.

Joins are binary operations which two relations are participated. Without

information of both relations, a serious imbalance can arise, such as join

product skew1. Therefore, the basic idea underlying our improvement is a

creation of a partitioning matrix instead of a one-dimensional partitioning

vector. In our matrix, a dimension represents a relation to be joined. Then, a

cell in the partitioning matrix forms a sub-range considering both relations.

Using samples from both relations, we can estimate workloads of the cell in

terms of both input and output tuples without requiring whole scan of data.

If a cell has too heavy workloads to process, we can chop the heavy cell in

order to balance the workloads.

The randomized approach also has a limitation. In the approach, one

cannot specify a reducer in which an output tuple is actually produced. For

correctness of join results, all input tuples have to be duplicated for all reduc-

1The join selectivity on individual nodes may differ, leading to an imbalance in the num-
ber of output tuples produced
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ers intersecting with the randomly selected rows and columns. This random

selection provides us a strong guarantee of load balancing, but it also incurs

high input duplication. As the size of input relation increases, the amount

of input duplication is also increased. In addition, as more reducers are em-

ployed, more reducers intersect with a random row or column, which leads

more input duplication. In contrast, the MDRP approach assigns determin-

istic sub-ranges to a reducer. An input tuple is delivered to a reducer when

its sub-range satisfies given join conditions. This helps us to avoid unneces-

sary input duplication. For example, in equi-join cases, our approach does

not have to make a copy of an input tuple.

1.2 Contribution

We present a new skew handling technique, named Multi-Dimensional

Range Partitioning (MDRP), that provides several benefits:

• Efficiency: The proposed technique is more efficient than previous

skew handling techniques, range-based and randomized partitioning

techniques. When a join operation has join product skew, our algo-

rithm outperforms the range-based algorithms. When the size of input

relation is sufficiently large, our algorithm outperforms the random-

ized algorithms.

• Scalability: Regardless of the size of input data, we can create sub-

ranges that can be fit in memory. Moreover, the execution time of

a join operation can be reduced as we add more machines into the

5



cluster. On the other hand, the randomized algorithm produces more

intermediate results when we increase the number of processing units.

• Platform-Independence: Although we only examine our approach

with the MapReduce framework, the MDRP technique itself can ac-

tually work with traditional parallel DBMSs. The range-based ap-

proach already used in many shared-nothing systems. Our algorithm

improves the original range-based approach when we need to consider

join results.

• Advanced Join Processing: It is applicable to several join types such

as theta-joins and multi-way joins. We discuss several issues on ex-

tending our technique to handle other join types.

• Ease to Use: The implementation of our algorithms does not require

any modification on the original MapReduce environment. Moreover,

our technique can be embedded to other join algorithms, such as repar-

tition join [5].

Our main contributions are listed as follows:

• We propose a new skew handling technique that extends current range-

based approach. Benefits from our approach are described above.

• We provide implementation details of the approach with intuitive ex-

amples on the Hadoop’s MapReduce environment. The efficiency of

our approach is evaluated with extensive experiments.

• We investigate the effectiveness of our approach over applications in
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practice. In graph pattern matching and matrix multiplication prob-

lems, our approach improves the performance of current join algo-

rithms.

1.3 Outline

The rest of the dissertation is organized as follows. We briefly review

the MapReduce framework and representative MapReduce-based join al-

gorithms in Chapter 2. Then, we present our MDRP approach and discuss

the effectiveness of our approach in Chapter 3. Subsequently, we extend

the technique in order to process joins among multiple relations in Chapter

4. Especially, in Chapter 5, we investigate several applications that can be

benefit from our techniques. Finally, Chapter 6 concludes the dissertation.
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Chapter II

Backgrounds and Related Work

This chapter describes the background knowledge about join process-

ing in MapReduce. We briefly review the MapReduce framework in Section

2.1, and featured join algorithms using MapReduce are introduced in Sec-

tion 2.2. More importantly, we elaborate the problem of data skew in join

processing in Section 2.3 and describe current states-of-the-art skew han-

dling approaches in Section 2.4.

2.1 MapReduce

MapReduce provides a simple programming model for large-scale data

analysis tasks on a shared-nothing environment [1]. The programming model

consists of two primitives, Map and Reduce:

map (k1,v1) → list(k2,v2)

reduce (k2,list(v2))→ list(k3,v3)

The Map function is applied to an individual input record in order to produce

a list of intermediate key/value pairs. The Reduce function receives a list of

all values having the same key and produces a list of new output key/value

pairs.
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Figure 1 show the processing steps of a MapReduce job. Generally, a

shared storage, such as HDFS, RDBMSs, NoSQL databases, is employed in

order to store data. When a job is submitted to JobTracker, the data is split to

different mappers and is processed by the Map function. The Map function

receives an input tuple at a time and produces intermediate key-value pairs.

The intermediate pairs are initially stored in a memory buffer, but they are

spilled into local file systems when the buffer is filled with intermediate

data.

It is notable that the intermediate key-value pairs are partitioned and

sorted according to the key when they are spilled into the local disk. The

spill files are in the end merged into one sorted file. In Hadoop’s MapRe-

duce, an intermediate pair is basically partitioned by the hash function, i.e.

(partition id=key mod # reducers). Therefore, the system has several parti-

tions that are internally sorted by given key values.

The data from the Map function are shuffled, i.e., exchanged and merge-

sorted, to reducers executing the Reduce function. It should be mentioned

that the shuffle phase is a time-consuming task like the other map and reduce

phases (due to copy of data thourgh network and merge-sort of individual

partitions). Therefore, minimizing the size of intermediate key-value pairs

is an important issue in programming a MapReduce job.

The Reduce function is invoked once for each distinct key and is ap-

plied on the set of associated values for that key, i.e., the pairs with same

key will be processed as one group. As the mappers sort the intermediate

key-values, input tuples of each Reduce function are guaranteed to be pro-

cessed in increasing key order. Finally, the output of the Reduce function are
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stored to the shared storage.

Despite its evident merits, MapReduce has some limitations when we

want to implement a MapReduce-based join algorithm. First, the frame-

work is originally designed in order to process a single input data. A typical

MapReduce job is supposed to consume input from one file, thereby com-

plicating the implementation of join operations. Second, MapReduce has a

key-equality based data flow management scheme. When we want to im-

plement a theta-join algorithm or a multi-way join algorithm, the data flow

enforces us to make an inefficient algorithm.

2.2 Join Algorithms in MapReduce

In response to the limitations of MapReduce, a large and growing num-

ber of join algorithms have been proposed. Even though most of them do not

consider data skew, it is valuable to review some featured join algorithms

and discuss pros and cons of current algorithms.

2.2.1 Two-Way Join Algorithms

2.2.1.1 Map-Side Join vs. Reduce-Side Join

Join algorithms using MapReduce can be categorized into two classes:

Map-Side Join algorithm (MSJ) and Reduce-Side Join algorithm (RSJ).

Since the shuffle phase and the reduce phase require significant amount

of communication and computation costs, MSJ algorithms are preferred in

most cases. However, to execute a MSJ algorithm, the underlying data is

stored and partitioned in a specific way according to requirements of the
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join algorithm. On the other hand, the RSJ algorithms do not depend on

the preprocessing of data. Therefore, in general cases, users prefer the RSJ

algorithms because they do not have prior knowledge about data.

2.2.1.2 Repartition Join

The repartition join [5, 9] is a representative Reduce-Side Join algo-

rithm. The basic idea is that mappers attach a tag to an input tuple. The tag

represents a relation in which the input tuple is contained. According to the

intermediate key values, input tuples having the same join key are delivered

to the same reducer. Through the shuffle phase, the intermediate records are

sorted by the key and secondarily sorted by tags. In the Reduce function, we

can evaluate the join operation like traditional parallel hash join algorithms.

We create a buffer for input tuples from a (build) relation. And then input

tuples from the other (probe) relation are examined with tuples in the buffer

whether they satisfy given join conditions or not.

Since the algorithm is a fundamental building block of all MapReduce-

based join algorithms, let us explain more details on the repartition join.

Suppose that we want to compute an equi-join between two relations S and

T . Algorithm 1 to 3 show details of the implementation. Since we also pro-

vide an example (in the perspective of skew handling) in Example 1, more

detailed explanations will be provided later.
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Algorithm 1 Repartition join (Map)
Input : key, null
Input : value, a record from either S or T
jk← extract the join attribute from value
tagged input←add a tag of either S or T to value
composite key←(jk, tag)
output (composite key, tagged input)

Algorithm 2 Repartition join (Partition)
Input : key, composite key
return key.jk mod # of reducers

Algorithm 3 Repartition join (Reduce)
Input : key, composite key
Input : listValue, records for key, first from S, then T
create a buffer BS for S
for each record s of S in listValue do

store s in BS

end for
for each record t of T in listValue do

for each record s in BS do
output (null, new record(s,t))

end for
end for
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2.2.1.3 Directed Join

The directed join [5, 9] is classified into a Map-Side Join algorithm. A

requirement of this algorithm is that both S and T are already partitioned

on the join key before the algorithm begins. For example, let us suppose

that we have two relations S and T which are pre-partitioned on the join

key, i.e. S = S1∪S2∪ ...∪Sm, T = T1∪T2∪ ...∪Tn. It should be guaranteed

that joins are evaluated only in the same partition. Then, a map-only job is

sufficient to process the join operation. During the initialization of mappers,

Si is retrieved from a shared storage. We then make a hash table with tuples

from Si. In the Map function, a input tuple t from Ti is received. Then, we

can probe the hash table with the join key extracted from t. For each input

tuple s matched with t, a join result is produced and stored into the shared

storage. Without the shuffle and the reduce phases, the total processing time

can be saved significantly.

2.2.1.4 Broadcast Join

The broadcast join [5] is also a kind of Map-Side Join algorithms. The

requirement for the broadcast join is that the size of a relation |S| has to be

very small so that it can fit in the memory. For instance, let S be a user table

and T be a log table of all users. The size of |S| is usually very small than

|T | and is likely fit in memory.

Instead of moving both S and T across the network, the broadcast join

replicates the smaller table S to all machines. Then, each mapper receive the

entire S table and is able to create a hash table of S. In the Map function, an
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input tuple t is received and produces join results with s in the hash table.

This can also be implemented as a map-only job.

2.2.1.5 Semi Join

The semi join algorithm [5] requires three separate MapReduce jobs

for a join operation. This algorithm is neither Map-Side Join nor Reduce-

Side Join algorithms. The basic idea underlying this algorithm is to avoid

sending the input tuples in S that will not join with T . If the join selectivity

is low, it reduces the overall communication cost in MapReduce.

Specifically, in the first MapReduce job, unique join keys in S are ex-

tracted and stored in a single file S.uk. The unique join keys are used in the

next job to filter referenced input tuples in T . With first two phases, we know

which tuples are actually participated in the join operation. Therefore, in the

third phase, we can avoid sending unnecessary tuples through networks. Fi-

nally, we can compute the actual join with all attributes in tuples.

2.2.1.6 Bloom Join

The Bloom join algorithm [10] is a kind of Reduce-Side Join algorithm.

This algorithm exploits the Bloom filter [11] in order to filter input tuples

that are not joined. Hence, this is similar with the semi join algorithm, but

this algorithm provides a probabilistic solution. The Bloom filter is a prob-

abilistic data structure used to test whether an element is a member of a set.

It consists of an array of m bits and k independent hash functions. All bits

in the array are initially set to 0. When an element is inserted into the array,
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the element is hashed k times with k hash functions, and the positions in the

array corresponding to the hash values are set to 1. To test membership of

an element, if all bits of its k hash positions of the array are set to 1, we

can conclude that the element is in the set. This decision may yield false

positive, but false negatives are never produced.

Lee et al. [10] provides an implementation of Bloom join using a sin-

gle MapReduce job. In the first Map phase (only related to an input relation

and a part of mappers will be participated), the algorithm reads input tuples

from S and create a local filter. The local filters are then merged into a sin-

gle global filter. In the second Map phase (related to the other relation and

remained mappers), the global filter is used to filter out input tuples from T .

Therefore, if a tuple does not pass the filter, it would not be transferred to a

reducer. Finally, in the Reduce function, join results are produced as in the

other join algorithms.

2.2.1.7 Theta-Join Algorithms

Generally, theta-joins have not been considered in the MapReduce frame-

work because of its key-equality based data flow management. Recently, [8]

has shown that a randomized algorithm, called 1-Bucket-Theta, can address

this problem. In addition, the algorithm is good at skew handling because

of its random selection. Since the algorithm is an important previous work,

we will explain more details of the algorithm in Section 2.4.3. It should be

mentioned that the algorithm is one of state-of-the-arts for skew handling

and is extended by Zhang et al. [12] to handling multi-way join queries.
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2.2.2 Multi-Way Join Algorithms

Although a number of studies on join algorithms concentrate on two-

way equi-join operations, some featured algorithms have been proposed in

order to address other join types. Especially, some multi-way join queries

have been proposed in recent literatures [13, 14]. Since the MapReduce

framework is designed to process a single input data, processing n-way

operation is very challenging. The algorithms can be categorized into two

classes: iteration-based and replication algorithms.

2.2.2.1 Iteration-Based Algorithms

A multi-way join operation can be simply processed as a sequence of

two-way joins. However, a MapReduce job requires significant overhead for

its initialization. Moreover, intermediate results between different jobs have

to be stored in a shared storage. This yield unnecessary disk I/O over the

network. Therefore, [14] has proposed an algorithm to combine multiple

joins in a MapReduce job. According to key-equality of input relations, all

relations are participated into a MapReduce job. If relations have the same

join key, they form a group of relations to be joined within the job. The join

key attribute is selected in a greedy manner, and multiple join key attributes

can be selected for a single MapReduce job. Actually, even though relations

do not have the same join key, they can be processed in the MapReduce

job simultaneously because relations have their own tags. The Reduce func-

tion create several hash (build) tables and a probe input can be matched to

a corresponding build input table. This allows to reduce the number of job
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iterations. We will see more details of iteration-based multi-way join algo-

rithms in Section 4.3.4.

2.2.2.2 Replication-Based Algorithms

In [13], Afrati et al. have proposed a join algorithm with a single MapRe-

duce job. This algorithm create a virtual space among join key attributes.

Each join key represents a dimension of the space. After that, the space is

covered with reducers. In the Map function, an input tuple is received and

we extract the join key attribute in it. With a hash function h on the join key,

we can determine a dimension of the input tuple. However, we cannot know

the other dimensions. Therefore, to generate correct join results, we dupli-

cate the input tuple for all possible hash function values of other dimensions.

This requires a number of input duplication. If the duplication factor is very

large, the shuffle phase becomes very slow. As a result, there is a trade-off

between the iteration-based algorithm and replication-based algorithm. We

will explain more details on the trade-off in Section 4.3.4.

2.3 Data Skew in Join Algorithms

Although a number of MapReduce-based join algorithms have been

proposed so far, only a few algorithms consider data skew in processing of

parallel joins. However, traditional shared-nothing systems already suffered

from the skew handling problem. In this section, we review the data skew

problem studied in traditional shared-nothing systems.

Walton et al. [15] describes four types of data skew: tuple placement
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skew (TPS), selectivity skew (SS), redistribution skew (RS) and join product

skew (JPS). TPS occurs when different amounts of input tuples are stored

among machines. In a parallel DBMSs tuple placement is also a respon-

sibility of the system, so this is an important problem for administrators.

Next, SS occurs when the selectivity of selection predicates varies between

machines. RS is seen when there is a mismatch between a distribution of

a join attribute and a redistribution mechanism (e.g. poorly designed hash

functions). Finally, JPS is related to the difference of join selectivity at each

machine.

Figure 2 shows a taxonomy of data skew in parallel joins. We also high-

light the effects of data skew in terms of MapReduce. In parallel DBMSs,

TPS can be solved, before join processing, by a good hash function and

proper choices of partitioning column. If the data set is well partitioned ac-

cording to a join attribute, TPS will not occur. In MapReduce, TPS is also

not a problem because the Namenode coordinates entire data sets so that tu-

ples are evenly spread across Datanodes. Next, SS becomes a problem only

when it causes RS or JPS. In MapReduce, the selection of input tuples is

performed by mappers which receive entire input data sets. Therefore, re-

gardless of a join operation’s selectivity, the size of input tuples for each

Map function is the same. On the other hand, the size of input tuples of the

Reduce function can differ, but this can be seen as RS skew.
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However, RS and JPS can cause serious problems in both parallel DBMSs

and MapReduce. In fact, most of studies (about skew handling in paral-

lel DBMSs) focus on the RS problem with sampling and cost estimation

techniques. Likewise, in Hadoop, the default partitioning method is a sim-

ple hash partitioning method, leading a serious RS problem when there are

repeated values in input relations. Moreover, the JPS problem cannot be

avoided with a good hash function. The workloads for producing join re-

sults cannot be avoided so an efficient load balancing algorithm (in terms of

the number of output tuples) is essential.

There have already been a number of skew handling algorithms in par-

allel DBMSs. For example, Kitsuregawa and Ogawa [16], Hua and Lee [17]

proposed efficient parallel hash join algorithms. However, a limitation of

these algorithms is that they require the relations to be joined are com-

pletely scanned before the join begins. In terms of MapReduce, they require

two separate and expensive jobs. Thus, these algorithms may perform much

worse than the basic repartition join when the relations are not skewed. This

is the reason why the range-based and randomized approaches are widely

used in practice.

Although most of skew handling algorithms estimate the workloads

before the actual join evaluation, there are some algorithms that handle data

skew dynamically [18, 19]. In other words, they monitor workloads of each

machine at run time. However, the monitoring task can also be a burden to

systems in zero skew relations. Our approach is static but effective regard-

less of the presence of data skew.
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2.4 Skew Handling Approaches in MapReduce

Handling data skew is an important issue in MapReduce. TopCluster

[20] and SkewTune [21] are representative researches, but they only con-

sider a single input data set, which is not applicable to join operations.

Therefore, a MapReduce-based implementation [7] of the range-based ap-

proach can be seen as the first skew handling join algorithm in MapReduce.

Around the same time, Okcan and Riedewald [8] proposed the randomized

approach which is applicable to any join conditions. Recently Zhang et al.

[12] extended the randomized approach to multi-way theta-join queries. In

this paper, we compared these state-of-the-art approaches with our proposed

approach and discussed pros and cons of our approach.

2.4.1 Hash-Based Approach

A general and representative join algorithm using MapReduce is the

repartition join [5] (a.k.a. reduce-side join [9]). The algorithm uses the hash-

based redistribution method in order to balance workloads of join process-

ing. But, the hash partitioning algorithms is unable to prevent data skew

caused by repeated values. Let us consider a two-way equi-join example as

illustrated in Figure 3:

Example 1 (Repartition Join) Relation S and T have eight data tuples re-

spectively, and we have k = 4 machines in a cluster. The data schema is very

simple, which contains three attribute fields (pk, jk,others) where the jk at-

tribute is the join attribute. Input relations are split and stored in a distributed

file system. Once the join begins, input tuples are fed to a Map function. Let
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𝑺(𝑷𝑷, 𝑱𝑷,𝑶𝑶𝑶𝑶𝑶) ⋈ 𝑶(𝑷𝑷, 𝑱𝑷,𝑶𝑶𝑶𝑶𝑶) 
S 

PK JK 
s1 1 
s2 1 
s3 1 
s4 1 
s5 2 
s6 4 
s7 4 
s8 4 

T 
JK PK 
1 t1 
1 t2 
2 t3 
2 t4 
2 t5 
3 t6 
4 t7 
4 t8 

M1 

M2 

R1 

R2 

M1 

M2 

Map Map Reduce 

Hash Partitioning 
(jk mod # of PUs) 

R3 

R4 

M3 

M4 

M3 

M4 

Figure 3: Hash-based partitioning approach

s be an input tuple from S. The Map function takes s and create a key-value

(s. jk,s) pair. Then, the intermediate key-value pair is delivered to a Reduce

function in the (s. jk mod k)-th reducer. An input record t from the rela-

tion T is processed similarly. Eventually, the Reduce function receives a list

of input tuples that have the same jk attribute value, and we can use any

single-machine join algorithm in order to produce join results.

In the repartition join, data skew can degrade the system performance

seriously. With the hash-based partitioning, a reducer may receive too many

input records than the other reducers. In our example, a reducer R1 receives

four input tuples {s1,s2,s3,s4} from S and two input tuples {t1, t2} from

T respectively. The R1 reducer has to produce eight output tuples, which

is very heavy compared to other reducers. For example, R3 receives an in-

put tuple {t6} and produces zero output tuples. The completion time of a

MapReduce job depends on the last finished reducer. Therefore, handling
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𝑺(𝑷𝑷, 𝑱𝑷,𝑶𝑶𝑶𝑶𝑶) ⋈ 𝑶(𝑷𝑷, 𝑱𝑷,𝑶𝑶𝑶𝑶𝑶) 
S 

PK JK 
s1 1 
s2 1 
s3 1 
s4 1 
s5 2 
s6 4 
s7 4 
s8 4 

T 
JK PK 
1 t1 
1 t2 
2 t3 
2 t4 
2 t5 
3 t6 
4 t7 
4 t8 

R1 
[-∞,1] 

R2 
[1,1] 

Map Map Reduce 

R3 
(1,4] 

R4 
(4,∞] 

M1 

M2 

M3 

M4 

M1 

M2 

M3 

M4 

Figure 4: Range-based partitioning approach

data skew is very important in join algorithms in MapReduce.

2.4.2 Range-Based Approach

The range-based partitioning approach is a simple, but effective, solu-

tion to the skew handling problem [7, 6]. In the range-based approach, one

first takes a pilot sample of both relations S and T . By counting the number

of repeated samples in each, the most skewed relation can be determined

(e.g., in Figure 4, the most skewed relation is S due to ‘1’ values). Then, we

can create a partitioning vector and evaluate the join operation as shown in

the following example:

Example 2 (Range Partitioning) Let S′ be a sorted list of samples from a

relation S. In this example, for simplicity reasons, let us assume S′ = S.

Then, we have S′. jk = {1,1,1,1,2,4,4,4}. Since there are k = 4 reducers,

we can select k−1 ‘splitting values’ which form the partitioning vector. The
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⌊|S′|/(k−1)⌋-th elements are usual selections. In our example, as ⌊8/3⌋=

2, the 2-th, 4-th and 6-th elements {1,1,4} are selected. The partitioning

vector {1,1,4} creates 4 sub-ranges: [−∞,1], [1,1], (1,4] and (4,∞]. Sub-

ranges are assigned to different reducers. This contributes to balance the

input workloads.

When the join begins, we can use the fragment-replicate technique

[22]. Since R1 and R2 have sub-ranges [−∞,1] and [1,1], input tuples, where

s. jk = 1 or t. jk = 1, should be fragmented or replicated. To reduce the com-

munication cost, a reasonable heuristic is to fragment the most skewed re-

lation S and replicate the other relation T . Then, {s1,s2,s3,s4} are divided

into two reducers, and {t1, t2} are duplicated. As a result, we have 2 re-

ducers that produce 4 output tuples respectively instead of 1 reducer that

produces 8 output tuples. Compared to the hash partitioning, the range par-

titioning allows an input tuple to be assigned two or more reducers. With

the fragment-replicate technique, we can divide the expected output work-

loads.

Our question about this range-based approach is that why do we discard

samples from the less skewed relation, i.e. T . This can be a reason of serious

imbalances. In Example 2, R3 has a sub-range (1,4]. Then, all data tuples,

where jk ̸= 1, are delivered to R3. This shows two possible problems: First,

input tuples in the less skewed relation cannot be divided into the same

size across all reducers; Second, join product skew cannot be even detected

during the partitioning phase.
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1 2 3 4 5 6 7 8 

1 

R1 R2 
2 

3 

4 

5 

R3 R4 
6 

7 

8 

s2 

s1 

t1 t2 Input 
tuple 

Random 
row/col Output 

s1 3 (R1, s1), (R2, s1) 

s2 6 (R3, s2), (R4, s2) 

t1 2 (R1, t1), (R3, t1) 

t2 7 (R2, t2), (R4, t2) 

Map 

Reduce 

Reducer Input Output 

R1 s1, t1 (s1, t1) 

R2 s1, t2 (s1, t2) 

R3 s2, t1 (s2, t1) 

R4 s2, t2 (s2, t2) 

Figure 5: Randomized partitioning appraoch

Actually, DeWitt et al. [6] also proposed a technique, called virtual pro-

cessor partitioning, to alleviate the join product skew problem. This tech-

nique assigns many virtual processors for each actual reducer so that we

can create a longer partitioning vector than that of the original range parti-

tioning. Since the longer partitioning vector indicates small size sub-ranges,

highly sophisticated controls are enabled. However, a practical question still

remains: how many virtual processors are needed? It is difficult to answer

the question if we do not know the join selectivity. Obviously, we argue that

exploiting samples from both relations can solve these problems.

2.4.3 Randomized Approach

A recent research [8] has shown that a randomized algorithm is effec-

tive to handle data skew. In addition, the algorithm works equally well for

any join condition that belongs to {<,≤,=,≥,>, ̸=}. We briefly review the
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randomized algorithm with Figure 5 and the following example:

Example 3 (Random Partitioning) We first create a 8 by 8 matrix that rep-

resents the cross-product space between two relations S and T . The matrix

can be covered by k = 4 reducers. To balance reducer’s workloads, reducers

should cover the same number of cells. Since |S| = |T | = 8, the best case

is that a relation is divided to
√

k = 2 sub-ranges respectively. Therefore,

the optimal partition is shown in Figure 5. Each reducer covers 16 out of 64

cells in total.

It is relatively easy to use the matrix in a join algorithm. For an input

tuple s from S, the Map function finds all reducers intersecting the row cor-

responding to s in the matrix. A tuple t can be processed in a similar way.

A reducer, that intersects with both s and t, is able to produce a join result.

Since all reducers have the same number of cells, the number of input tu-

ples are the same. However, the number of output tuples are likely different

according to join selectivities for each reducer. This is the reason why the

randomized approach is proposed.

The randomized approach chooses a random row s′ for a given input

row s and pretends as if s corresponds to the s′ row. As shown in Figure 5,

the s1 tuple is mapped to the row 3. Since the row 3 intersects with R1 and

R2, the Map function creates two intermediate pairs (R1,s1) and (R2,s1).

The input s2 randomly selects the row 6, and the Map creates (R3,s2) and

(R4,s2). The random rows are represented as horizontal lines. They intersect

with a number of vertical lines, each of which represents an input tuple t.

Therefore, all combinations between s and t can be evaluated exactly once
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across all reducers. This completes the join algorithm.

Due to the random selection, there are some random rows and columns

that are selected for multiple input tuples, while others are not selected at all.

However, the large data size prevents significant variations among rows and

columns. According to [8], the randomized algorithm practically guarantees

that a reducer does not receive more than 1.1 times of its optimal input, and

its output is not exceed 1.21 times its optimal size.

However, the randomized algorithm cannot avoid high input duplica-

tion. Every rows and columns from S and T are duplicated
√

k times. As the

size of an input relation becomes larger, the amount of duplication will also

increase significantly. In addition, a large k also leads the high input dupli-

cation. This duplication always happens regardless of join conditions and a

distribution of join attribute values. Conceptually, in a cross-product space,

some cells can be filtered out according to the join condition (e.g. lower-left

and upper-right corners in equi-join cases). We argue that our approach can

remove non-candidate cells before the actual join begins because we use

deterministic sub-ranges.
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Chapter III

Our Approach

3.1 Multi-Dimensional Range Partitioning

We call our new skew handling approach as Multi Dimensional Range

Partitioning (MDRP). Our partitioning approach outperforms current state-

of-the-art approaches: the range partitioning and the random partitioning. In

this chapter, we describe our MDRP approach.

3.1.1 Creation of a Partitioning Matrix

We first consider an equi-join of two relations S and T on a join at-

tribute jk. We have k reducers, and the input relations can be partitioned

into k sub-ranges: {S1,S2, ...,Sk} and {T1,T2, ...,Tk}. For a relation S, the

sub-ranges cover the domain of jk from α to β, α < S. jk ≤ β. Two spe-

cial cases S1 and Sk cover sub-ranges [−∞,β] and (α,∞] respectively. The

sub-ranges are sorted by their join attribute values. In other words, for all i

and j, if i > j then Si.α ≥ S j.α and Si.β ≥ S j.β. Boundaries of sub-ranges

can be determined by a partitioning vector as in the range partitioning. For

example, let us consider two samples S′ and T ′ from S and T relations:

S′ = {1,1,1,1,2,4,4,4} and T ′ = {1,1,2,2,2,3,4,4}. As we have shown

in Example 2, we can select k−1 = 3 splitting values {1,1,4} and {1,2,3},

resulting k = 4 sub-ranges for each relation. As a result, we can create a
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Our Approach 

T1 
[∞-1] 

T2 
(1-2] 

T3 
(2-3] 

T4 
(3-∞] 

S1 
[∞-1] 8 

S2 
(1-1] 

S3 
(1-4] 3 0 6 

S4 
(4-∞] 0 

S 
PK JK 
s1 1 
s2 1 
s3 1 
s4 1 
s5 2 
s6 4 
s7 4 
s8 4 

T 
JK PK 
1 t1 
1 t2 
2 t3 
2 t4 
2 t5 
3 t6 
4 t7 
4 t8 

Figure 6: An example of a partitioning matrix

partitioning matrix M as shown in Figure 6.

In the partitioning matrix M, i-th row represents Si and j-th column

is mapped to Tj. A cell (Si,Tj) is classified into either a candidate cell or

a non-candidate cell. Considering the given join condition, non-candidate

cells will not produce any join results. In Figure 6, non-candidate (shaded)

cells show the area of not satisfying the equi-join condition. For instance,

(S1,T2) is mapped to sub-ranges S : [−∞,1] and T : (1,2] which are not

overlapped. Therefore, reducers do not have to cover non-candidate cells.

A candidate cell (Si,Tj) has a value denoted by M(i, j). The value in-

dicates workloads of the cell that has to be processed. In our approach, we

determine the workload M(i, j) = |S′i on T ′j | where S′i and T ′j are samples in

the sub-ranges. For example, M(1,1) = 8 because we have 4 and 2 samples

in S′ and T ′ whose jk attribute values are ‘1’. Similarly, M(3,2) = 3 be-

cause we have {s5} and {t3, t4, t5}. The workloads of the other candidate

cells can be computed in the same way.
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Then, the partitioning matrix can be used for a load balancing algo-

rithm. Before we start a MapReduce job, we can create a mapping between

candidate cells and reducers. Reducers should be assigned the same number

of cells and workloads as much as possible. When the Map function receives

an input tuple s, we find candidate cells that contains s. jk in its sub-ranges,

and we obtain a list of reducers according to the mappings between cells

and reducers. The load balancing algorithm has a responsibility to balance

workloads across reducers.

An interesting aspect of the workload computation is that we do not

consider the size of input tuples. The reason of this is every cell has almost

the same size of input tuples. When we create a partitioning vector, we select

splitting values from a sorted list of samples. Therefore, if the number of

samples is large enough, every sub-range Si has almost the same number of

input tuples. We will discuss about the enough number of samples in Section

3.5.1.

It is also notable that M(i, j) = 0 should not be ignored for the actual

join evaluation. Since we only exploit samples, some join results may not

be produced when we create the partitioning matrix. For correctness of join

results, all candidate cells have to be assigned to at least one reducer. In our

example, reducers have to cover (S3,T3) and (S4,T4) cells.

3.1.2 Identifying and Chopping of Heavy Cells

In the matrix M, each cell has different workloads. A load balancing

algorithm can be used for the same amount of workloads across reducers,

but it is sometimes impossible to obtain an optimal mapping between cells
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and reducers. We now define a heavy cell as follows:

Definition 1. (Heavy Cell) A heavy cell in the partitioning matrix M is a

cell (Si,Tj) where
M(i, j)∑k

s=1
∑k

t=1 M(s, t)
≥ 1

k

is satisfied.

Intuitively, the ratio of heavy cell’s workload to the total workloads is

greater than or equal to 1/k. Since, k is the number of reducers, 1/k indicates

the optimal workload ratio for each reducer. Therefore, if there is a heavy

cell, it is impossible to balance the workloads.

For example, in Figure 6, we have two heavy cells (S1,T1) and (S3,T4).

The total workload is 17, and the optimal workload ratio is 1/4 = 0.25.

Since M(1,1) = 8, the (S1,T1) cell is a heavy cell (8/17 ≃ 0.47 ≥ 0.25).

Similarly, (S3,T4) is also a heavy cell (6/17≃ 0.35≥ 0.25).

For the purpose of load balancing, the heavy cells have to be chopped.

We now define ω as the optimal workload, i.e. ω = (
∑k

r=1
∑k

s=1 M(r,s))/k.

In our example, ω = 17/4 = 4.25. Then, heavy cells are divided into d cells

until M(i, j)/d ≤ ω. For instance, (S1,T1) and (S3,T4) are chopped into 2

non-heavy cells because 8/2 and 6/2 are less than ω. By chopping a heavy

cell, we can assign the heavy cell to two or more different reducers. This

enables us to use the fragment-replicate technique. In Figure 7, we can see

that heavy cells are divided into several non-heavy cells and assigned to

different reducers.
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Figure 7: Mapping between cells and reducers

3.1.3 Assigning Cells to Reducers

We now have a set of non-heavy candidate cells C = {c1,c2, ...,c|C|} to

be assigned to reducers. It should be clarified that cl may differ from a cell

(Si,Tj) in the matrix M. The original (Si,Tj) cell can be divided into several

cells, and The C denotes a set of those non-heavy (chopped) cells. Thus,

two or more cells cl and cm may refer the same cell (Si,Tj). A cell cl ∈ C

consists of sub-ranges Si, Tj and its workload w(cl). In Example 4, we use

(Si,Tj,w(cl)) in order to refer a cell cl .

A load balancing algorithm assigns the cells to a set of reducers R =

{R1,R2, ...,Rk}. Let Ci be a disjoint subset of C assigned to i-th reducer Ri.

The number of cells in Ci is denoted |Ci|. We also use Wi in order to specify

the total workloads assigned to the reducer, i.e. Wi = Σcl∈Ciw(cl).

In our problem, the load balancing algorithm should satisfy the follow-

ing constraints: First, all reducers are assigned the same number of cells as

much as possible, i.e. λin = (max(|Ci|)/avg(|Ci|)) ≃ 1; Second, The total
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workloads for each reducer should be the same as much as possible, i.e.

λout = (max(Wi)/avg(Wi))≃ 1. Note that we have two criteria λin and λout .

The first λin is about the number of input tuples, and the second λout is about

the number of output tuples. Therefore, if we can satisfy both λin = 1 and

λout = 1, the load balancing algorithm is the optimal algorithm. However,

many load balancing algorithms, such as the greedy algorithm and the LPT

algorithms [23], only consider a single constraint. Hence, we design a new

load balancing algorithm that balances the input and output skew.

Algorithm 4 Assign
Input: C = {c1,c2, ...,c|C|}, a set of non-heavy cells
Output: {C1,C2, ...,Ck}, mappings b/w cells and reducers

1: for each cell cl in C in decreasing order of w(cl) do
2: Ri = getNextReducer()
3: Ci = Ci∪{cl}
4: end for
5: return C1,C2, ...,Ck

Algorithm 5 getNextReducer
Output: Ridx, a reducer to be assigned a cell

1: minCell = ∞,minLoad = ∞, idx = 0
2: for each reducer Ri do
3: if minCell < |Ci| then
4: minCell = |Ci|
5: end if
6: end for
7: for each reducer Ri do
8: if minCell = |Ci| and minLoad <Wi then
9: idx = i

10: minLoad =Wi

11: end if
12: end for
13: return Ridx
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In Algorithm 4 and 5, we show our load balancing algorithm. The al-

gorithm is based on a greedy selection of reducers. We first sort cells in

C according to their workload w(cl). For each cell cl , we select a reducer

Ri that has the minimum number of cells and workloads. Once Ri is deter-

mined by the getNextReducer() function, the cell cl is added to Ci. We

explain more details with Figure 7 and Example 4:

Example 4 (Load Balancing Algorithm) We have a set of non-heavy candi-

date cells C={(S1,T1,4), (S1,T1,4), (S3,T2,3), (S3,T4,3), (S3,T4,3), (S3,T3,0),

(S4,T4,0)}. Note that we have two (S1,T1,4) and (S3,T4,3) cells because

the original cells are chopped into two cells respectively. In addition, cells

are sorted according to their workload w(cl). Since, we have 4 reducers

{R1,R2,R3,R4}. The set C will be divided into 4 subsets C1,C2,C3,C4. Ini-

tially, all |Ci| = 0 and Wi = 0. First, we take (S1,T1,4) and a reducer R1.

Then, C1 = {(S1,T1,4)}, |C1| = 1 and W1 = 4. Next, we receive another

(S1,T1,4), and a reducer R2 is selected by the Algorithm 5. Then, C2 =

{(S1,T1,4)}, |C2|= 1 and W2 = 4. Similar process is applied to every cl ∈C.

Finally, C1 = {(S1,T1,4),(S4,T4,0)}, C2 = {(S1,T1,4)}, C3 = {(S3,T2,3),(S3,T4,3)},

and C4 = {(S3,T4,3),(S3,T3,0)}. The λin =(max(|Ci|)/avg(|Ci|))= 2/1.75=

1.14 where max(|C1|) = 2, and λout = (max(Wi)/avg(Wi)) = 6/4.25 = 1.41

where max(W3) = 6.

3.1.4 Join Processing using the Partitioning Matrix

Like the original range-based approach, we use the fragment-replicate

technique for actual join processing. The mappings between cells and re-
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Figure 8: Join processing with a partitioning matrix

ducers {C1,C2, ...Ck} are distributed and shared to all Map functions. Figure

8 shows how we use the mappings. Suppose that a Map function receives

an input tuple s1 from S. Since s1. jk = 1, the input tuple belongs to a cell

(S1,T1). The cell is mapped to two reducers R1 and R2. In other words,

(S1,T1,4) ∈C1 and (S1,T1,4) ∈C2. As the tuple belongs to two different re-

ducers, we now determine whether the input tuple should be fragmented or

replicated. By counting the number of samples in S1 and T1 where jk = 1,

we can know S has more repeated values than T . Therefore, we fragment

the s1 input tuple; One of reducers is randomly selected and the tuple is de-

livered to the reducer. On the other hand, input tuples from T is replicated

to both reducers. In Figure 8, dashed lines show the fragmentation of input

data whereas solid lines represent the replication.

Before we start a MapReduce job, we create a partitioning matrix via

sampling as described in Section 3.5.1. When the MapReduce job begins,

we copy the partitioning matrix into all mappers and reducers. The Dis-

tributedCache [9] mechanism is employed in order to share the partitioning
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matrix. Then, we can load the partitioning matrix from the setup() method

of each mapper and reducer.

We now explain the implementation of the Map and the Reduce func-

tions. Algorithm 6 shows the Map function. For simplicity reasons, the Map

function receives an input tuple from S, but T is processed similarly. The

Map function accesses the partitioning matrix which is loaded during the

initialization of the mapper. M is a p by p partitioning matrix that contains

candidate cells. In the M.listCell function, we examine the input tuple s. jk

whether it satisfies the join condition with regard to cell’s sub-range. Sat-

isfied cells are returned by the listCell function (line 1). Since we already

mapped cells and reducers, we can easily obtain a list of reducers for each

cell c in listCell (line 2-3). The next step is to determine the tuple to be

fragmented or replicated (line 4). As discussed in Section 3.1.4, it depends

on the existence of more repeated values. If an input tuple s would be frag-

mented, we can select a random reducer and deliver the input tuple to a

reducer (line 5-6). Otherwise, the input tuple is copied to all reducers that

are assigned to a cell (line 8-10).

The Reduce function receives a list of input tuples from both relations

S and T . Input tuples are sorted by the input relation, i.e. tuples from S are

followed by tuples from T . This is enabled by the ‘secondary sort’ feature

of the Hadoop MapReduce framework. We use the setGroupingCompara-

torClass() method in order to sort input tuples in the Reduce function. The

input tuples from S are used as a build input whereas the input tuples from

T are used as a probe input. Thus, we first create an empty set for the S re-

lation and then add all S tuples into the set listSTuple (line 1-4). After that,
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Algorithm 6 Map
Input: an input tuple s ∈ S
Input: a partitioning matrix M

1: listCell = M.listCell(s. jk,S)
2: for each cell c in listCell do
3: R = c.listReducer()
4: if M.fragment(s. jk,S) == true then
5: i=random() % |R|
6: output (R[i], (s, S))
7: else
8: for i=0 to |R| do
9: output (R[i], (s, S))

10: end for
11: end if
12: end for

for each combination of input s and t, we evaluate the join condition and

produce an output tuple (line 5-9).

Algorithm 7 Reduce
Input: (reducerId, [(s1,S),(s2,S),...,(t1,T ),(t2,T ),...])

1: listSTuple = {}
2: for each (si,S) in input list do
3: listStuple = listSTuple∪{si}
4: end for
5: for each (ti,T) in input list do
6: for each s j in listSTuple do
7: output si on t j

8: end for
9: end for

Note that, compared to the original range-based approach, our approach

provides sophisticated fragment-replicate controls. The range-based approach

determines an entire relation to be fragmented or replicated. However, our

approach makes a decision cell-by-cell. For a cell, S can be fragmented,
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while in the other cell S can be replicated. Generally, S and T have different

distributions on the join attribute. Therefore, our approach can handle data

skew in both relations.

Another aspect to be mentioned is that we do not duplicate an input

tuple for all reducers intersecting with a row in the partitioning matrix. For

example, the s5 and s6 tuples belong to a cell (S3,T2) and (S3,T4) respec-

tively. We know that the other cells cannot make a join result with given

input tuples. Therefore, we only consider reducers mapped to the cell. This

enables us to reduce unnecessary communication costs, compared to the

randomized approach.

3.2 Theoretical Analysis

The λin and λout show the effectiveness of a load balancing algorithm

in terms of input and output skew. As shown in Example 4, the values are

close to 1. In fact, it is impossible to exactly know the imbalance across

reducers because our load balancing algorithm works with samples from

entire data sets. However, assuming that we know the exact statistics about

input relations, it is possible to roughly guess the upper bound. We analyze

the worst case of our algorithm in terms of input and output skew.

Theorem 1. (Input Imbalance) In the worst case, the input imbalance λin is

less or equal to 2.

Proof. We have |C| cells to be assigned to different reducers. Since we

always select a reducer which is the minimum number of cells assigned

(greedy algorithm in Algorithm 4 and 5), a reducer is assigned either ⌊|C|/k⌋
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or ⌈|C|/k⌉ cells. The difference between the maximum and the minimum

number of cells is 1. Therefore, the worst case is that a reducer is assigned 2

cells whereas the others are assigned a single cell, i.e. |C|= k+1, max(|Ci|)=

2 and avg(|Ci|) = (k+1)/k. Then, the λin in the worst case is:

λin =
max(|Ci|)
avg(|Ci|)

=
2

(k+1)/k

Since k is a positive integer, λin ≤ 2.

Intuitively, in the worst case, the input imbalance does not exceed twice

than the optimal (average) case. Note that, the upper bound is still useful

even if we do not know the exact statistics of input relations. The unit of load

balancing is a cell (sub-range). Therefore, if we partition an input relation

into equal sized partitions, the upper bound of load balancing is still valid.

Next, we can analysis the output skew, λout :

Theorem 2. (Output Imbalance) In the worst case, the output imbalance

λout is less or equal to 2.

Proof. Since we divided a heavy cell, the maximum ratio of a cell does

not exceed 1/k. We now consider a cell c1 ∈C which has the largest w(cl)

among non-heavy cells. Suppose that the workload w(c1) is (1/k)−ε, where

ε is a small positive real number close to 0. Then, the worst case is that there

was a heavy cell which was already chopped into k cells, i.e. c2, ...ck+1.

The workload of the heavy cell was η = 1−w(c1) = (1− (1/k))+ ε. Then,

w(c2) = ...= w(ck+1) = η/k. While the optimal (average) workload is 1/k,
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the maximum workload for a reducer max(Wi) is:

max(Wi) = w(c1)+w(c2) = (
1
k
− ε)+(

(1− (1/k))+ ε

k
)

≃ (
1
k
)+(

(1− (1/k))
k

) =
2k−1

k2

Therefore, in the worst case, the output skew λout is:

λout =
max(Wi)
avg(Wi)

=
(2k−1)/k2

1/k
=

2k−1
k

Since k is a positive integer, λout ≤ 2.

In summary, the essence of our approach is as follows: First, compared

with the range partitioning, we create a partitioning matrix instead of a par-

titioning vector. This enables us to consider the size of join results; Second,

compared to the randomized algorithm, our approach exploits the partition-

ing matrix in order to filter out non-candidate (not satisfying given join con-

ditions) cells before the actual join processing. This reduces unnecessary

input duplication, leading lower communication cost.

3.3 Complex Join Conditions

Let us consider a general theta-join between two relations. Any theta-

join is a subset of the cross-product. Since the partitioning matrix represents

the cross-product space, any join condition can be considered. According to

a given join condition θ, candidate cells and non-candidate cells are clas-

sified. Using samples from both relations, we can determine workloads of
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each candidate cell.

In a theta-join case, an input tuple can belong to two or more cells.

Therefore, input duplication can be increased compared to the equi-join

cases. If the number of duplications is greater than
√

k, the randomized

approach is more effective than our approach. However, in practice, many

theta-join queries measure the distance of two tuples. For example, in a

spatial database, we usually find nearest neighbors from a query point. In

this case, the join condition θ is very selective and almost the same with

equi-join queries. Therefore, input duplication is likely smaller than
√

k. In

Section 3.4.3, we can see that our approach outperforms the current state-

of-the-art theta-join algorithm.

We now consider a join operation among multiple relations that shares

a single join attribute. This is a special case of multi-way joins. Actually, the

MapReduce programming model is known as a good choice for processing

multi-way joins. This is because the framework has the key-equality based

data flow. Regardless of the number of input relations, input tuples that have

the same join attribute value will be delivered to the same reducer. Then,

we can use any single machine join algorithm to produce the join results. In

our approach, we now consider a join among three relations R, S, T . They

has the same join attribute JK. The partitioning matrix is then extended to

a three-dimensional partitioning cube. A cell in the cube represents a sub-

range considering three relations. Then, we can find heavy cells in the cube,

and finally we can process the join operation similarly.
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3.4 Experiments

To verify the effectiveness of our algorithm, we conduct experiments

on a 13-machine Hadoop-1.1.2 cluster with both real and synthetic data sets.

One machine served as the master node (Namenode and JobTracker), while

the other 12 were the worker nodes (Datanode and TaskTracker). Every node

has a single Intel (R) Core (TM) i7-3820 CPU 3.60GHz processor, 10MB

cache, 8GB RAM, a 3.5TB hard disk. In total, the test bed has 48 cores

with 8 GB memory per core available for Map and Reduce tasks. Each core

is configured to run one map and one reduce task concurrently. All ma-

chines are directly connected to the same Gigabit network switch, and the

distributed file system block size is set to 64MB. We run each experiment

three times and report the average execution time.

In our experiments, we present results for following data sets:

Scalar Skew (xα): For a fixed α, we create a 100M tuple relation. The α

is the number of tuples in which the value ‘1’ appears in the join attribute

(these tuples are chosen at random). The other tuples have a join attribute

value chosen randomly from 2 to 100M. The data schema is very simple,

which contains three attribute fields (pk, jk, others). The size of each tuple

is 200 bytes. Thus, each relation occupies approximately 20GB (200 bytes

* 100M) of disk space. The term ‘scalar skew’ is used in [6], and this data

set helps us to understand exactly what experiment is being performed. This

is also used in many skew handling related researches [7, 6, 18, 15].

Zipf Distribution (zβ): For a 100M tuple relation R with a domain of D

distinct values, the i-th distinct join attribute value, for 1 ≤ i ≤ D, has the
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number of tuples given by the expression

|Di|=
|R|

iβ ∗
∑D

j=1 1/ jβ

where β is the skew factor. When β = 0, the distribution becomes uni f orm.

With β = 1, it corresponds to the pure Zipf distribution [24].

Cloud : This is a real data set containing extended cloud reports from ships

and land stations [25]. There are 382 million records, each with 28 attributes,

resulting in a total data size of 28.8GB. This data set is used by [8] in or-

der to demonstrate the performance of the randomized algorithm. Thus, we

selected this data set for a comparison purpose.

3.4.1 Scalar Skew Experiments

Figure 9 shows results for computing an equi-join on scalar skew data

sets. We compare four partitioning approaches (HASH, RANGE, RAN-

DOM and MDRP) with four different cases. For a fair comparison, we con-

sidered the followings: 1) The RANGE algorithm is an implementation of

the virtual processor range partitioning [6] which is an improvement of the

original range partitioning for handling join product skew. However, there

is no further researches on the number of virtual processors. Therefore, we

use 60 virtual processors for each reducers, which follows the best parameter

in [6]. 2) The RANDOM algorithm is an implementation of the 1-Bucket-

Theta algorithm proposed in [8]. The algorithm is the state-of-the-art theta-

join algorithm in MapReduce. However, it requires a square matrix for a

optimal mapping. As a result, in this experiment, we only use 36 reducers
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x1⋈x1 x100⋈x10M x1K⋈x1M x10K⋈x100K 
HASH 240 3826 3663 3325
RANGE 252 472 1243 3727
RANDOM 1151 1470 1373 1139
MDR 281 468 521 532
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Figure 9: Performance on scalar skew data sets

for all algorithms even though we have 48 cores in total.

The first case (x1 on x1) shows the zero skew case. We see that HASH

shows the best performance among all algorithms. A main reason of this is

that HASH does not incur the overhead of sampling, creating a partition-

ing matrix, and assigning cells to reducers. In addition, the Map function

only need to compute a hash function in order to determine a destination

reducer, while the other skew handling algorithms have to search a matrix

for appropriate cells. However, compared to the HASH algorithm, RANGE

and MDRP also show the similar elapsed time. Thus, we can see that the

overhead of sampling is not significant. Considering gains from skewed test

cases, this difference seems to be acceptable. Finally, the RANDOM algo-

rithm is the worst choice because of its high input duplication.

The other cases (x100 on x10M, x1K on x1M, x10K on x100K) show re-

sults when join product skew exists. The number of output tuples is greater

than 1 billion, and the output size is over 400GB. In this experiment, we
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vary the degree of skew with keeping the total number of output tuples. Ob-

viously, detecting join product skew from samples becomes more difficult

from the second case to the last case. The HASH algorithm is a baseline

which does not handle data skew.

In the second case, RANGE and MDRP algorithms are effective to

handle data skew similarly. The RANGE algorithm uses samples from the

x10M data set which leads a number of ‘1’s in its partitioning vector. In

the third case, the RANGE algorithm collect samples from x1M data set,

which means less number of reducers produce output tuples whose join at-

tribute values are ‘1’. As a result, longer elapsed time is required. This trend

continues to the last case. In contrast, we can see that the MDRP algorithm

shows consistent performance regardless of the degree of skew. It is notable

that the RANDOM algorithm is also robust in the presence of data skew.

However, its overhead of input duplication is significant, which leads longer

elapsed time than that of our approach.

Table 1 explains more details on the experiment. In the table, each algo-

rithm has three columns: In, Out and Time. The In and Out columns corre-

spond to the ratio between the maximum and the optimum (average) number

of input / output tuples respectively. The Time column represents the same

ratio in terms of the processing time of reducers.
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The Out column is most distinguishable than the other columns. We

can see that HASH’s poor performance is a result of the output skew. The

maximum number of output tuples is greater over 30 times than the optimal

number of output tuples. The RANGE algorithm detects and handles the

output skew in the x100 on x10M case, but data skew in the other cases are

not detected. However, the RANDOM and MDRP algorithms prevent load

imbalances in all cases.

In Table 1, it should be mentioned that the RANDOM algorithm is bet-

ter than MDRP in terms of load balancing. All ratios are close 1 which is

the optimal ratio. However, as shown in 9, the processing time of MDRP

is better than that of RANDOM. This is because the RANDOM algorithm

has to process more input tuples than MDRP. In this experiment, each rela-

tion contains 100M tuples, and the RANDOM algorithm duplicates a tuple
√

k =
√

36 = 6 times. Therefore, the number of input tuples for reducers is

1.2 billion (600M for each relation). However, MDRP only produced 261M

input tuples in total, which is about 1/4 times, compared to the RANDOM

algorithm.

Table 2 shows details of data size. M-IN represent the number of records

(or bytes) of input data. M-OUT means the total number of output tuples

from all mappers. The output tuples are fed to reducers. Finally, R-OUT

records are stored into the distributed file system. With these results, we can

see that the RANDOM algorithm generates many M-OUT tuples compared

to the others.

48



zipf-0.0 zipf-0.6 zipf-0.8 zipf-1.0 zipf-1.2
HASH 2428 2541 2754 4662 7715
RANDOM 3534 3224 3626 3480 3308
MDR 2570 2640 2498 2518 2717
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Figure 10: Performance on Zipf’s distribution

3.4.2 Zipf’s Distribution

In this experiment, we create a pair of data sets (one for each join in-

put). For one data set, the join attribute values are drawn uniformly at ran-

dom from the range 1 - 1M. For other data set, we set the skew factor β from

0 (uniform) to 1.2. The skew factor is set to 1.0 in common, but we conduct

more experiments in order to see a clear trend in results. Regardless of the

skew factor, the number of output tuples is about 10 billion which occupies

4TB of disk space. As the number of tuples in a relation is 100M, each join

attribute value has 100 tuples in a relation when the skew factor is 0.

In Figure 10, we change the skew factor of a data set, while the other

data set has the same skew factor zipf-0.0. As predicted, we obtained a sim-

ilar result with the scalar skew experiment. The HASH algorithm is vulner-

able to the presence of data skew. The performance sharply degrades when

the skew factor is greater than 0.8. This kind of data is very common in real
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world such as word frequency, citation of papers, Web hits and so on [26].

The need for skew handling algorithms is reconfirmed. On the other hand,

RANDOM and MDRP show consistent performance regardless of the skew

factor. In the elapsed time, the MDRP algorithm outperforms the other al-

gorithms. We do not present results of the RANGE algorithm because the

results are similar with that of the MDRP algorithm. Since we only change

skew factors of a data set, this result is reasonable.

3.4.3 Non-Equijoin Experiments

We now compare our algorithm with the state-of-the-art theta-join al-

gorithm. In [8], the Cloud data set is used for evaluation of theta-join queries.

Especially, two types of theta-join queries are examined: input-size domi-

nated joins and output-size dominated joins. We employed the same queries

for the comparison purpose. The input-size dominated test query is as fol-

low:

SELECT R.date, R.longitude, R.latitude, S.latitude

FROM Cloud AS R, Cloud AS S

WHERE R.date = S.date AND R.longitude = S.longitude

AND ABS(S.latitude - T.latitude) <= 10

This join produces 390 million output tuples, a much smaller set than the

total of 382 * 2 million input tuples. On the other hand, the output-size

dominated test query is:

SELECT R.latitude, S.latitude

FROM Cloud-5-1 AS R, Cloud-5-2 AS S
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Output-Size
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MDR 331 798
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Figure 11: Performance on Non-Equijoin Queries

WHERE ABS(S.latitude - T.latitude) <= 2

For the output dominated query, we take two independent random samples

of 5 million records each from Cloud (Cloud-5-1 and Cloud-5-2). The result

contains 20 billion output tuples, a much larger set than the total 10 million

input tuples. Again, we adopted all data sets and test queries from [8].

Figure 11 shows results of two test queries. We only report results of

RANDOM and MDRP algorithms because HASH and RANGE do not deal

with non-equijoin queries. In the input-size dominated query, it is clear that

the MDRP algorithm outperforms the RANDOM algorithm. Since two al-

gorithms produce the same join results, the difference in elapsed time can

be seen the result of input duplications. If the input size grows, the per-

formance gap will be larger and larger. However, in the output dominated

query, RANDOM shows the better performance than ours. This is a reason-

able result due to the large data size. In practice, the RANDOM algorithm

actually provides near optimal solution in terms of load balancing. Our load

balancing algorithm though also achieves the similar result.
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• Speed-Up 
– |S|=100M, 1G bps 
– Vertical vs. Horizontal 
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– 수직적 확장 시 core 간 간섭 발생 
– 수평적 확장 시 네트워크 비용이 크지 않았음 
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Figure 12: Speed-Up Experiments

In a single machine, the cross-product operation requires comparisons

of n2 pairs where n is the input size. In a shared-nothing system, the n2

comparisons are distributed into multiple machines, but duplication of input

tuples cannot be avoided. The MDRP algorithm filters non-candidate cells

out so that we can reduce actual comparisons of n2 pairs and makes smaller

duplication compared to the RANDOM algorithm.

3.4.4 Scalability Experiments

Finally, we conduct speed-up and scale-up experiments. The speed-up

means that as we add more machines by a certain factor, the time taken

to compute a join operation should be decreased by the same factor. To

measure the speed-up, we compute a join x1 ◃▹ x1 and x10K ◃▹ x100K that

represent zero skew and skew cases respectively. We increase the number

of cores (for mappers and reducers) from 1 to 32. From 1 to 4, we use the

vertical scaling technique, i.e. we use a single machine that has multiple

cores. From 4 to 32, we use the horizontal scaling technique, i.e. we use 8

machines each of which has 4 cores.
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Table 3: Speed-Up Details

Core 1 2 4 8 16 32
x1 ◃▹ x1 8,837 4,716 2,816 1,429 707 364

x10K ◃▹ x100K 13,863 7,845 5,380 2,956 1,537 782

The results are shown in Figure 12 and Table 3. The ‘ideal’ line shows

the linear speed-up, and we can see that our algorithm also follows the lin-

ear speed-up. This trend does not depend on the existence of data skew.

However, it is notable that there is a difference between results of vertical

and horizontal scaling techniques. In vertical scaling, the performance does

not follow the linear speed-up. This indicates that there was an intervention

between cores in a single node. In contrast, the performance in horizontal

scaling shows the linear speed-up. This means that the input data is small so

that the network overhead does not affect the performance.

The scale-up measures that as we add more machines, the size of a task

that can be executed in a given time should be increased by the same factor.

In our experiment, we add a machine that contains 4 cores, i.e. horizontal

scaling. Since we deal with the join operation, we conduct two scale-up tests

for input-size dominated joins and output-size dominated joins. For input-

size dominated joins, we compute x1 ◃▹ x1 where the number of input tuples

varies according to the number of machines (from 100M to 800M). In other

words, for input-size dominated joins, we assume that each relation has the

uniform distribution on the join attribute. On the other hand, in output-size

dominated joins, we compute x10K ◃▹ xL where L varies from 100K to

800K. Therefore, the number of output tuples is greater than that of input

tuples. The input size is fixed to 100M.
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Scalability 

• Scale-Up 
– Horizontal Scaling 
– Input vs. Output Data Size 
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Figure 13: Scale-Up Experiments

Table 4: Scale-Up Details

# of Machines 1 2 4 8
Input-Size Dominated Join 2,816 3,320 3,378 4,479

Output-Size Dominated Join 5,380 3,972 3.119 2,883

The results are shown in Figure 13 and Table 4. In input-sized dom-

inated join queries, the scale-up ratio is 0.6 when machines are increased

from 1 to 8. In output-size dominated join queries, we found out an inter-

esting aspect. The total elapsed time ‘MDRP’ shows better scale-up than

the linear scale-up ‘ideal’. This is because we only change the number of

output tuples, while the input size is fixed. More mappers can process the

same input relations faster. We can see that the ’MDRP’ line increases lin-

early, which means that mappers also show the almost linear scale-up. The

‘MDRP-R’ line shows the average time for reduce tasks, and it almost fol-

lows the linear scale-up. We guess a reason of this is the low network cost.
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3.5 Discussion

3.5.1 Sampling

To balance the workloads across reducers, we need to create equal sized

cells. Since we determine sub-ranges via sampling, we need a sampling

method that guarantees the size of a sub-range. Specifically, we approxi-

mate quantiles of given join attribute values which make each sub-range

equal sized.

The Kolmogorov statistic [27] provides us a probabilistic guarantee for

sampling quantiles. Suppose that we want to estimate the median value (at

the 50% position in the sorted list of join attribute values). Let α be the

proportion of tuples in a relation that have smaller join attribute values than

the median value. Let β be the proportion of tuples in the sample that satisfy

the same condition. The Kolmogorov’s statistic tells us that |α−β| ≤ d with

probability≥ p if the sample size is at least n. d is called the precision and p

is the confidence. Given the values of p and d, n can be found using standard

tables. Table 5 shows some representative cases, reproduced from [28]. For

example, if we take 26,575 samples and select a value appeared at the 50%

position, then with 99% confidence the value appears between 49% and 51%

in the original relation. The Kolmogorov statistic works equally well for any

Table 5: Required sample size

d / p 0.90 0.95 0.98 0.99
0.10 149 185 234 266
0.05 596 740 937 1,063
0.01 14,900 18,500 23,425 26,575
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Matrix 생성 비용 

• 전체 수행 시간 대비 점유율 
– x1⋈x1 (skew 존재 시 점유율은 더 하락) 
– 𝑆  변경, 𝑆𝑆 = 26,575, 𝑘 = 48 

10M 40M 70M 100M
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* Negligible 하진 않지만, skew 발생 시 얻는 이득으로 상쇄 가능하다고 보임 Figure 14: Elapsed Time for the Sampling

distribution and used in many literatures [29, 28]. In our experiment, we use

p = 0.99, d = 0.01 and n = 26,575.

In our implementation, we assume that a relation is stored in HDFS

with a random order on a join attribute. The HDFS partitions a relation into

multiple splits according to a given block size (64MB). If q split needs to

take n samples, each split takes n/q samples. Using HDFS’s API, we call

getSplits() method to obtain a list of splits. After that, we take n/q samples

from the top of each split. Since we assume that the relation is sorted in a

random order on the join attribute, this sampling method is sufficient for our

purposes.

An important issue in the sampling process is the elapsed time for con-

structing the partitioning matrix. For this reason, we conduct an experiment

to measure the matrix creation time. We compute x1 ◃▹ x1 and measure the

ratio of the matrix creation time compared to the total elapsed time. The in-

put data sets are not skewed because if there is a skewed value, the ratio of

the matrix creation time would be smaller. The results are shown in Figure

14. We increase the size of input data set from 10M to 100M. Then, the ratio

decreases from 6 to 3 percent. We think this ratio is affordable because gains
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Map() 

Matrix 생성 과정 

HDFS 𝑆 𝑇 

SortedMap<jk, cnt> (sorted by jk) 

𝑆𝑆 𝑇𝑆 

List<jk> (partitioning vector) 

𝑆𝑆 𝑇𝑆 
T1 T2 T3 T4 

S1 8 

S2 

S3 3 0 6 

S4 0 

Matrix = Cell[][] 
 
Cell { 
   int startS, startT; 
   int endS, endT; 
   int load; 
   List<int> listReducerIDs; 
} 

Cell[][] (Partitioning Matrix) 

T1 T2 T3 T4 

S1 8 

S2 

S3 3 0 6 

S4 0 

R1, R2 

Map_1 

Map_k 

Mappings 

Figure 15: Processing Steps for the Sampling

Matrix 생성 세부 분석 

• Matrix 생성 과정 세분화 
– Sampling / Creation / Distribution 
– 𝑆 , 𝑆𝑆 , 𝑘 의 변화에 따라 관측 
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- Sampling이 대부분 
- Sampling 선형 증가 

𝑆𝑆 = 26,575, 𝑘 = 48 𝑆 = 100M, 𝑘 = 48 

- Sampling 선형 증가 
- Creation 선형 증가 

𝑆 = 100M, 𝑆𝑆 = 26,575 

- Creation 지수형 증가 
- Distribution 선형 증가 Figure 16: Processing Times for Sampling Processes

from skewed input data is relatively bigger than the sampling cost.

To understand the sampling process, Figure 15 shows the processing

steps of the partitioning matrix creation. We take samples from relations

stored in the HDFS (sampling), and we create the partitioning matrix using

the samples (creation). Finally, we distribute the partitioning matrix to all

mappers (distribution). Therefore, we can analyze the sampling cost step by

step.
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Figure 16 shows processing times for sampling processes. For differ-

ent input data size |S|, the sampling time is increased. For different number

of sample size |S′|, the sampling time and the creation time is increased.

However, the amount of increasing time is relatively small, so is seems to

be possible to sample more records in order to create the partitioning matrix.

Finally, the number of processing units k is important because the process-

ing time is increased exponentially. When k = 1000, it require almost 15

seconds to create the partitioning matrix. If input size is small, this can be

an overhead.

3.5.2 Memory-Awareness

Given k reducers, our approach initially create k2 cells in the partition-

ing matrix. Since the MapReduce framework is supposed to handle very

large data sets, the size of a cell is sometimes too big to fit in memory.

We can avoid this situation by making the implementation ‘memory-aware’.

Suppose that we have a memory limit m, the maximum number of input tu-

ples fit in the memory. Two input relations S and T use the memory m/2 re-

spectively. Given the maximum size of a relation max(|S|, |T |), we can sim-

ply select the number of sub-ranges for each relation, i.e p= ⌈max(|S|, |T |)/(m/2)⌉.

Then, the partitioning matrix contains p2 cells which fit in the memory.

It is difficult to determine p without knowing the size of input rela-

tions |S| and |T |. In Hadoop, we can effectively estimate the size with small

samples. When we take samples as described in Section 3.5.1, we use the

RecordReader class which is connected with data splits. The class provides

the getProgress() method which informs the progress of reading the split.
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Suppose that n/q sample tuples occupy γ percent of a split. Then, the num-

ber of input tuples in the split is q/n · γ. Since we have q splits, the total

number of input tuples in a relation is q2/n · γ.

3.5.3 Handling of Heavy Cells

We have defined a heavy cell and propose a technique to handle the

heavy cell. We chop the heavy cell so that many computing nodes can pro-

cess the heavy cell simultaneously. However, one can have a question about

the handling of heavy cells. For example, we can divide a heavy cell into

smaller cells in terms of input size. The smaller cells are involved to smaller

ranges of join key attribute values. Hence, the number of output tuples in

a cell can be decreased. An exceptional situation is that a join key attribute

value overwhelms the other values. For instance, in a scalar skew data set,

there are a number of input tuples having ‘1’ in its join attribute whereas the

other values follow the uniform distribution. In this case, a heavy cell con-

taining ‘1’ in its range cannot be divided by smaller sub-ranges. The divided

cell will also be a heavy cell.

In Figure 17, we show the effectiveness of small cells. In this exper-

iment, we have computed x10K ◃▹ x100K. The column ‘1’ is the original

setting, and ‘1/2’ represent the size of sub-range compared to the original

setting. We can see that the smaller cells does not affect to the elapsed time

of the join operation. The reason is that ‘1’ values cannot be divided as

we have already discussed. Another interesting point is that M-OUT is de-

creased as the size of cell is decreased. Using the fragment-and-replicate

technique, a cell can be replicated to several reducers. Therefore, small cells
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Heavy Cell 분해 방식 변화 

• Interval 중심의 분해 효과 
– 특정 Key 값의 조인 결과가 많을 경우, 짧은 

interval 과 관계 없이 heavy cell 로 판정 
– 복제 되는 데이터의 양을 줄이는데 도움 
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Figure 17: Dividing Heavy Cells with Small Sub-Ranges

reduce the number of tuples that have to be replicated.

3.5.4 Existing Histograms

In MDRP, the sampling process is required in order to create the par-

titioning matrix. However, if we maintain histograms of input data, we do

not have to perform the sampling process. This reduces the processing time

of overall join evaluation. Moreover, exploiting histograms is helpful for

load balancing. A number of studies have proposed algorithms to create and

maintain an equi-depth histogram. In the equi-depth histogram, the number

of data records in a bucket is similar with each other. Therefore, the data

buckets are similar with a cell in a partitioning matrix, and by assigning

buckets to the reducers, we can expect the optimal balance of workloads.

Exploiting histograms provides fine-grained balancing of workloads.

Without histogram, we only are able to use a range instead of join attribute

value itself. This yields unnecessary data replication as we have shown in
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Histogram 존재 시 활용 

• Partitioning Matrix 생성 시간 절약 
• Cell -> Key 단위 Skew Handling 

– Heavy Cell -> Heavy Key (M-OUT 감소) 

x1⋈x1 x100⋈x10M x1K⋈x1M x10K⋈x100K 
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Figure 18: Exploiting Histograms

the previous subsection. To measure benefits from exploiting histograms,

we compare the elapsed times as shown in Figure 18. MDRP-CELL indicate

the original algorithm without exploiting histograms. It is notable that in this

experiment, MDRP-CELL does not contain sampling time because we want

to measure the effectiveness of fine-grained balancing. MDRP-KEY shows

the elapsed time when we exploit existing histogram. Compared to MDRP-

CELL we can see that MDRP-KEY shows significant improvements. For

example, in x10K ◃▹ x100K data sets, the improvement is (1−(461/528))∗

100 = 12.69%.

The experimental results show that exploiting of histogram is helpful

for join processing. However, building and maintaining a histogram is a

difficult problem. In this case, spatial indexing structures can be used as a

histogram. For example, the grid file system [30] provides an overview of

underlying data. The grid file system create the grid directory that represents

and maintains the dynamic correspondence between record space and data
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buckets. The grid directory consists of two parts: a dynamic k-dimensional

array which contains pointers to data buckets and k one-dimensional arrays

which define a partition of a domain. Therefore, we can obtain the exact

number of records in a bucket (or a cell) by counting the number of pointers.

Since the grid file maintains sub-ranges of attribute values, it seems

to be seen similar with our approach. However, there are many different

points: 1) a dimension of the grid file represents an attribute in a relation.

In our approach, different dimensions correspond to different relations. 2)

The main purpose of our approach is processing of parallel joins instead of

creating of persistent indexes. Therefore, our partitioning matrix is created

on-the-fly whenever a join operation is evaluated. 3) We introduce the notion

of heavy cells and propose a technique to chop the heavy cells. Our heavy

cell definition is based on the join selectivity (result size) which is a feature

that only exists in the join operation. On the other hand, the spatial indexing

structure create partitions using their sub-ranges. Different sub-ranges can

have different width. Hence, the heavy cells can be viewed as a wide sub-

range. In join operations, this difference can cause input imbalance across

reducers.

3.6 Summary

Handling data skew is essential for efficient join algorithms using MapRe-

duce. The range-based and randomized partitioning approaches have been

widely used so far, but they also have some limitations. In this paper, we

proposed a new approach that outperforms traditional approaches. Our ap-
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proach is better than the range-based approach when join product skew ex-

ists in underlying data. This is because we consider samples from all rela-

tions to be joined, while the range-based approach only considers samples

from the most skewed relation. In addition, our approach outperforms the

randomized approach when the size of input relation becomes large. The

reason for this is that the randomized approach creates multiple copies of

input data regardless of given join conditions. Through extensive experi-

ments over synthetic and real world data, we demonstrated the effectiveness

of our proposed approach.
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Chapter IV

Extensions

In this chapter, we apply the MDRP technique to join operations in-

volved in multiple relations, i.e. multi-way joins. Joining multiple relations

are common in many data analysis tasks. In Section 4.1, we first introduce

some important applications that require multi-way joins. The applications

contain the graph pattern matching and the matrix chain multiplication.

With these two examples, we show that a multi-way join query can be de-

composed into two sub-join queries: single-key based join (SK-Join) and

multiple-key based join (MK-Join). In Section 4.2, we explain how the pro-

posed technique can be applied to each join type.

Efficient processing of multi-way joins using MapReduce contains sev-

eral issues including handling of data skew. In this chapter, we address

another issue for multi-way joins, i.e. handling of complex queries (com-

binations of SK-Join and MK-Join). In Section 4.3, We review iteration-

based and replication-based algorithms to handle complex queries, and we

then propose a join-key selection algorithm combining iteration-based and

replication-based algorithms in Section 4.4. After that, we take Section 4.5

in order to demonstrate the effectiveness of our skew handling technique for

multi-way joins.
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4.1 Joining Multiple Relations in a MapReduce
Job

In this section, we introduce two representative applications that re-

quire joins of multiple relations: graph pattern matching and matrix multi-

plications. These applications are related to graph analysis tasks. Actually,

graph analysis includes a number of multi-way joins because of its underly-

ing triple (subject, predicate, object) data model. It requires many self-joins

when we try to analyze relationships between entities. Moreover, graphs

usually have significant skew in terms of the degree distribution, e.g. scale-

free networks [31]. With these practical examples, we identify important

sub-types of multi-way joins: SK-Join and MK-Join.

4.1.1 Example: SPARQL Basic Graph Pattern

Processing of SPARQL Basic Graph Pattern (BGP) [32] is a good ex-

ample of the graph pattern matching problem. SPARQL is a query language

for RDF data [33] which is W3C’s standard graph representation format. A

SPARQL query contains a BGP which is a set of triple patterns. For exam-

ple, Figure 19 contains a BGP that consists of 5 triple patterns (TP) which

have a shared variable x. As shown in the example, each triple pattern has

to be joined with each other, thereby efficient processing of multi-way join

is very essential. Especially, the example query is an exact SK-Join query

which we will see in Section 4.1.3.

Basically, the example query requires four two-way joins, as expressed

in Figure 20(a). However, the MapReduce framework can evaluate the query
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Graph Pattern Matching 

• SPARQL Basic Graph Pattern 

SELECT ?x ?y1 ?y2 ?y3 
WHERE {  
   ?x rdf:type ub:Professor. 
   ?x ub:worksFor <Department0>. 
   ?x ub:name ?y1. 
   ?x ub:emailAddress ?y2. 
   ?x ub:telephone ?y3 
} 

TP#1 

BGP 

TP#2 

TP#3 

TP#4 

TP#5 

S P O 

Student_0 type Student 

Student_0 name “Student_0” 

Student_0 memberOf Department_0 

Student_0 takesCourse Course_0 

Student_0 takesCourse Course_1 

Student_1 type Student 

Student_1 name “Student_1” 

Student_1 memberOf Department_0 

Student_1 takesCourse Course_0 

Student_2 type Student 

Student_2 name “Student_2” 

Figure 19: Joins in graph pattern matching queries

Two-Way Joins vs. Multi-Way Joins 

 

SELECT ?x ?y1 ?y2 ?y3 
WHERE {  
   ?x rdf:type ub:Professor. 
   ?x ub:worksFor <Department0>. 
   ?x ub:name ?y1. 
   ?x ub:emailAddress ?y2. 
   ?x ub:telephone ?y3 
} 
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Figure 20: Two-way joins vs. multi-way joins
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( ) ( )

Figure 21: An example of powers of a matrix

all at once as in the five-way join expressed in Figure 20(b). In MapReduce,

a multi-way join can be viewed as a MapReduce job that contains multiple

joins in it. As RDF has a simple triple data model, it is not unusual that

a SPARQL query includes several triple patterns having the same variable

as shown in Figure 19. Hence, dealing with SK-Join in MapReduce is very

common in many data analysis tasks.

4.1.2 Example: Matrix Chain Multiplication

Matrix chain multiplication is another example of multi-way joins. Ac-

tually, matrix operations are also substantially related to many graph algo-

rithms. In Figure 21, we consider Warshall’s transitive closure algorithm

[34]. As shown in the example, we have a graph and a zero–one adjacency

matrix that represents the graph. Then, the union of powers of the adjacency

matrix produces the transitive closure. The computation of PageRank [35]

can be another example. It requires iterative matrix-vector multiplications,

which can be seen as the matrix chain multiplication problem.

Actually, the semantics of matrix multiplication can be implemented

by the join operation in database systems [36]. Figure 22 shows an example.

67



We have two n by n matrices M1 and M2. The (i, j)-th element of M1×M2

is
∑n

j=1 m1i, j×m2 j,i . Now suppose that we have two relations R1 and R2 that

have the same attributes {row,col,val}. A record in a relation corresponds

to a non-zero element in a matrix. We then are able to express a binary

multiplication in terms of SQL.

SELECT R1.row, R2.col, sum(R1.val*R2.val)

FROM R1, R2

WHERE R1.col=R2.row

GROUP BY R1.row, R2.col

The result of this query represents a matrix whose (R1.row,R2.col)-th

element is a sum of (R1.val ∗R2.val). Although representation schemes can

be different, the results of a multiplication are equivalent. We denote this

relational expression of matrix multiplication by R1 ◃▹∗ R2.

The multi-way join operation allows us to combine multiple, separate

two-way joins, meaning that we can compute (R1 ◃▹∗ R2 ◃▹∗ R3) at once.

Since join conditions in R1 ◃▹∗ R2 and R2 ◃▹∗ R3 are different, we can see

that this is a ‘pure’ MK-Join as we will see in Section 4.1.3.

We focus on a single multiplication that evaluates M1×M2×M3 in

parallel. Since matrix multiplication is associative, this approach helps to

improve the overall performance of an algorithm. However, it is difficult to

optimize the multi-way join operation in MapReduce because of the I/O and

communication overhead despite the research done in this field [13], [14].

Therefore, we will examine existing multi-way join algorithms in order to

improve the performance of matrix chain multiplication.
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     Matrix operation 

Join operation 

Figure 22: Join operations in matrix multiplications

4.1.3 Single-Key Join and Multiple-Key Join Queries

As shown in previous sections, a multi-way join queries can be decom-

posed into two types of sub queries: SK-Join and MK-Join. We first define

SK-Join and MK-Join.

Definition 2. (SK-Join) Let R be a set of relations. A single-key join is a

join operation between a subset of R in which all relations have a single

join attribute, jk.

In other words, let us suppose that we have a set of join-keys JK for

a multi-way join operation. As represented in its name, SK-Join query has

only a single join-key jk in JK. Therefore, all relations are related to each

other via a single join-key attribute jk, thereby can be joined in a MapRe-
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duce job. For example:

R(A,B)on S(A,C)on T (A,D)onU(A,E)

is a SK-Join because they can be joined by a join key attribute A.

It should be noted that the definition of the SK-Join is a special case of

the traditional star-joins performed over the star-schema. For example,

R(A,B,C,D)on S(B, I)on T (C,J)onU(D,K)

is a traditional star-join query. However, this special case is also involved to

multiple relations, and we want to distinguish this special case from chain-

joins which are involved in multiple join attributes. Hence, in this paper, we

denote the special case by SK-Join.

Definition 3. (MK-Join) Let | jk| be the number of relations joined by the

given join-key attribute jk. A multiple-key join query is a join operation in

which | jk| is at most 2 for all jk ∈ JK.

For example, a pure chain-join operation implies several 2-way joins

as follows:

R(A,B)on S(B,C)on T (C,D)onU(D,E)

is a MK-Join query. A set of join keys is JK = {B,C,D}, and |B| = |C| =

|D|= 2. This type of query requires iterative MapReduce jobs or replication

of input relations.

It should be noted that both SK-Join and MK-Join can exist together
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in a query. Thus we should consider combinations of query types as well

as SK-Join and MK-Join queries separately. We first deal with two joins in

Section 4.2, and combinations of joins are discussed in Section 4.3.

4.2 Skew Handling for Multi-Way Joins

We now discuss how the proposed skew handling technique, MDRP,

can be applied to multi-way join queries. As we have seen, multi-way join

queries can be decomposed into two sub-classes. Therefore, we deal with

each join types in different subsections.

4.2.1 Skew Handling for SK-Join Queries

We first consider a SK-Join query among three relations R, S and T .

Suppose that they have the same join key jk. Then we can create a partition-

ing cube instead of the partitioning matrix. In other words, the partitioning

matrix is a two-dimensional space between two relations, but the partition-

ing cube is a three-dimensional space among three relations.

Figure 23 shows an example of the partitioning cube. Each relation

is projected to a dimension of the partitioning cube. Each cell indicates a

sub-range considering three relations that is participated in the given join

operation. Then, the other processing steps are the same with the processing

steps of two-way joins. We first find heavy cells. If exists, we chop the heavy

cells into non-heavy cells and create a mapping between cells and reducers.

In join phase, we use the fragment-replicate technique so that we can obtain

correct join results.
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Skew Handling in Star-Joins 

• The partitioning matrix can be extended to a 
multi-dimensional partitioning cube 

 
• Other processing steps 

are the same 
– Heavy Cell 
– Mapping 
– Fragment-Replicate 

𝑶. 𝑱𝑷 

𝑺. 𝑱𝑷 

𝑶. 𝑱𝑷 

Figure 23: Skew handling in SK-Join queries

In the randomized approach, it is notable that multi-way SK-Join re-

quires more input duplication than two-way join queries. To produce correct

join results, we fragment a relation while we replication the other two rela-

tions. Therefore, we have to duplicate two relations. Suppose that we have k

reducers and m relations. Then, we have to make k(m−1)/m duplications for

replicate relations. Therefore, the randomized approach is not a good choice

for multi-way join queries. We will discuss more details about this issue in

Section 4.5.1.

4.2.2 Skew Handling for MK-Join Queires

We now consider a MK-Join query among four relations R, S, T and U .

In this case, we have join keys which are only related to two input relations.

It is worthwhile to mention that it is difficult to compute the entire joins

in a MapReduce job. However, it is at least possible that we can make all

input relations to participate in a MapReduce job. In other words, computing
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Skew Handling in Chain-Joins 

• We can use two or more partitioning 
matrices (or cube) in a MapReduce job 
 

• 𝑀𝑖,𝑗(𝑅, 𝑆) 
 

– 𝑗-th matrix  
for 𝑅 ⋈ 𝑆 
in 𝑖-th MR job 

R S T U 
⋈ ⋈ 

⋈ 

𝑀1,1(𝑅, 𝑆) 𝑀1,2(𝑇, 𝑈) 

𝑀2,1(𝑅𝑆, 𝑇𝑈) 

Figure 24: Skew handling in MK-Join queries

(R on S on T onU) in a job is difficult, while computing (R on S) and (T onU)

in a job is relatively simple. We will compare these approaches in the next

section, and in this section, we use the second approach.

To compute (R on S) and (T on U) in the same MapReduce job, we

can create two partitioning matrices (or cube) using samples from all in-

put relations. Figure 24 shows an example of processing steps for the given

chain-join. In the first MapReduce job, we create two partitioning matrix

M1,1(R,S) and M1,2(T,U) respectively, where Mi, j(R,S) represents j-th ma-

trix for R on S in i-the MapReduce job. Note that, input tuples from differ-

ent input relations can be distinguished from each other because the input

tuples have their own tag attached from the Map function. Therefore, a Re-

duce function can compute several join operations simultaneously. But, we

have to consider the size of input relation for each reducer in order to avoid

memory overflows.

After the first MapReduce job is finished, we have two joined realtions

R on S and T on U . Therefore, in the second MapReduce job, we can create
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M2,1(RS,TU) as in typical two-way joins in order to evaluate the final join

operation.

4.3 Combinations of SK-Join and MK-Join

In this section, we deal with complex queries defined in subsection

4.3.1. Simply, complex queries are combinations of MK-Join and MK-Join.

To process a complex query, we need an efficient algorithm because a

MK-Join query cannot be processed using a single MapReduce. Algorithms

for complex queries can be categorized into two classes: iteration-based and

replication-based algorithms. We take subsection 4.3.2 and 4.3.3 in order to

explain the algorithms.

Although replication-based algorithm works well in small data sets,

many real-world data contains huge amount of data that should not be dupli-

cated. In Section 4.3.4, we compare two approaches in order to understand

the trade-off between iteration and replication costs.

4.3.1 Complex Queries

Simply, a complex query is a combination of SK-Join queries and MK-

Join queries. Therefore, the number of distinct join-keys should be greater

than or equal to 2. Let us consider the following example query:

R1(a,b)on R2(b,c)on R3(b,d)on R4(d,e)

This query contains four input relations and two join-key attributes {b,d}.

Therefore, the query be seen as a complex query.
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R(A,B) 

S(B,C) 

Input 

T(B,D) 

After 1st MR After 2nd MR 

U(D,E) 

R ⨝ S ⨝ T 
(A,B,C,D) 

R ⨝ S ⨝ T ⨝ U 
(A,B,C,D,E) 

Cascade of Multi-way joins 

𝐴 𝐴1 = {𝑏}, 𝐴2 = {𝑆}  

𝑃 𝑃1 𝑏 = {𝑅1, 𝑅2, 𝑅3}, 𝑃2 𝑆 = {𝐽 1,2,3 , 𝑅4}  

R1(a,b) ⨝ R2(b,c) ⨝ R3(b,d) ⨝ R4(d,e) 

Figure 25: Cascade of multi-way joins

Note that, typical two-way join algorithms cannot process the complex

query within a MapReduce job. This is because the query involves in two

or more join-key attributes. Therefore, we should employ an algorithm for

handling multi-way joins.

4.3.2 Iteration-Based Algorithms

A basic algorithm for processing complex queries is to evaluate 2-way

joins step-by-step. We refer this algorithm to serial 2-way joins or cascade of

2-way joins. This algorithm is applicable to any complex queries. However,

it does not take advantages of MapReduce’s key-equality based data flows.

An alternative algorithm of the serial 2-way joins is the serial (cascade

of) m-way joins. This iteration-based algorithm process relations that have

the same join key attribute in a MapReduce job. In the above example, can-

75



Iteration-Based Multi-Way Join 

R1(A,B) 

R2(B,C) 

Input 

R3(B,D) 

After 1st MR After 2nd MR 

R4(D,E) 

R1 ⨝ R2 ⨝ R3 
(A,B,C,D) 

R1 ⨝ R2 ⨝ R3 ⨝ R4 
(A,B,C,D,E) 

Cascade of Multi-way joins 

𝐴 𝐴1 = {𝑏, 𝑆}, 𝐴2 = {𝑏}  

𝑃 𝑃1 𝑏 = {𝑅1, 𝑅2, 𝑅3}, 𝑃1 𝑆 = {𝑅3, 𝑅4}, 𝑃2 𝑏 = {𝐽 1,2,3 , 𝐽(3,4)}  

R1(a,b) ⨝ R2(b,c) ⨝ R3(b,d) ⨝ R4(d,e) 

R3 ⨝ R4 
(B,D,E) 

Figure 26: Cascade of parallel multi-way joins

didate join keys are b and d. Hence, we can first select b as a join key and

create a partial result R1 on R2 on R3. In the next MapReduce job, we select

d as a join key and create the final result. Compared with the cascade of

two-way joins, it differs in the perspective of joining multiple relations at

once.

We have another alternative iteration-based algorithm so called the cas-

cade of parallel multi-way joins. Figure 26 shows an example of the cascade

of parallel multi-way joins. For each MapReduce job, we select all join keys.

In the first MapReduce job, we select b and d and process R1 on R2 on R3 and

R3 on R4 simultaneously. In the second MapReduce job, we can produce the

final result with a simple two-way join algorithm.

Note that the cascade of parallel multi-way join algorithm also incurs

the replication of input relations (e.g. R3 in the example). However, the

amount of replication is relatively small and both replica contribute to pro-

76



duces the final results. On the other hand, in the replication-based algorithm,

some replica do not used at all.

4.3.3 Replication-Based Algorithms

To explain the replication-based multi-way join algorithm [13], let us

consider a join:

R(A,B)on S(B,C)on T (C,D)

The Map function processes send each tuple of R and T to many differ-

ent Reduce functions, although each tuple of S is sent to only one Reduce

function. This is because S contains both join-keys whereas R and T has a

partial single join-key. The duplication of data increases the communication

cost above the theoretical minimum, but in compensation, it does not have

to communicate the result of the first join. As we can see, the replication-

based multi-way join algorithm can therefore be preferable if the typical

tuple of one relation joins with many tuples of another relations, as would

be the case, for example if we join copies of the matrix of the Web. In that

case, the size of intermediate results is too large to temporarily store in to

the shared storage.

As shown in Figure 27, suppose that we have k = m2 reducers for m =

4. Values of B and C (join-keys) will each be hashed to m buckets, and each

Reduce function will be associated with a pair of buckets, one for B and one

for C. That is, we choose to make B and C part of the map-key, and we give

them equal shares.

Let h be a hash function with range 1,2, ...,m, and associate each re-
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(# of Reduce processes: 42 = 16) 
m=4, k=16 

h(c) = 0 1 2 3 

h(b) = 0 
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2 

3 

h(R.b) = 2 

h(T.c) = 1 
h(S.b) = 2 
h(S.c) = 1 

Reduce processes 

R(A,B)      S(B,C)      T(C,D) 

Figure 27: Replication-based multi-way join algorithm

ducer with a pair (i, j), where integers i and j are each between at the

same range. Each tuple S(b,c) is sent to the Reduce function numbered

(h(b),h(c)). Each tuple R(a,b) is sent to all reducers numbered (h(b),x),

for all x. Each tuple T (c,d) is sent to all reducers numbered (y,h(c)) for any

y. Thus, each reducer (i, j) gets 1/m2-th of S, and 1/m-th of R and T .

Each reducer computes the join of the tuples it receives, It is easy to

observe that if there are three tuples R(a,b), S(b,c), and T (c,d) that join,

then they will all be sent to the Reduce function numbered (h(b),h(c)).

Thus, the algorithm computes the join correctly. However, we can see that

input tuples duplicated to other reducers are discarded. This unnecessary

communicate can be a burden to the system.

4.3.4 Iteration-Based vs. Replication-Based

We now compare I/O cost and communication cost of iteration-based

and replication-based algorithms. We assume that a MapReduce job con-
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sists of two operations related to disk I/O and a network-related operation.

In other words, (1) an operation that reads input tuples from relations stored

in a distributed file system; (2) an operation that sends input tuples to appro-

priate reducers, i.e. a network part of the shuffle phase (3) an operation that

write the final join results from each reducer to the distribution file system.

Actually, this assumption is not exactly matched to the processing steps of

the Hadoop MapReduce framework. However, in the conceptual level, we

believe that this abstraction is still useful.

We now define some terminologies in order to conduct the cost analy-

sis. Suppose that we want to compute an equi-join operation among relations

R = {R1,R2, ...,Rn}. For simplicity reasons, we denote R1 on R2 on ... on Rn

by J(1,2, ...n). In i-th MapReduce job, relations in a partition Pi are joined

by a set of join key attributes Ai. In other words, A1 = {a,b} represents that

join attributes for the first MapReduce job are a and b. On the other hand, Pi

is a map that contains sets of relations with an associated join key attribute.

In addition, Pi(a) is a function from a join key attribute a to a set of joined

relations by the join attribute.

Example 5 (Partition Pi) Let us consider an example partition P1 = [(a→

{R1,R2}),(b→{R2,R3})]. This indicates that the first MapReduce job con-

tains two join key attributes a and b. And participating relations for the join

key a in the first MapReduce job is denoted by P1(a) = {R1,R2}. Similarly,

P1(b) = {R2,R3}.

We now consider an example join R1(a,b) on R2(b,c) on R3(b,d) on

R4(d,e). Then, I/O cost of four different multi-way join algorithms can be
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Multi-Way Join (IO Cost) 

Cascade of 2-way 
joins 

Cascade of multi-
way joins 
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𝑃2 𝑆 =
{𝐽 1,2,3 , 𝑅4}  
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{𝐽 1,2,3 , 𝐽(3,4)}  
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{𝑅1, 𝑅2, 𝑅3, 𝑅4}  
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𝑖=1

 

Write � � |𝐽𝐽𝐽𝐽(𝑃𝑖 𝑆 )|
𝑚∈𝐴𝑖

|𝐴|

𝑖=1

 

R1(a,b) ⨝ R2(b,c) ⨝ R3(b,d) ⨝ R4(d,e) 

Figure 28: I/O cost analysis of multi-way join algorithms

estimated as shown in Figure 28. The cascade of 2-way joins consists of

three phases of MapReduce jobs. In the first job, P1(b) is {R1,R2}. The

result J(1,2) is joined with R3 in the second MapReduce job. Similarly,

P3(d) consists of J(1,2,3) and R4. Likewise, all iteration-based algorithms

require multiple MapReduce jobs. On the other hands, the replication-based

one-shot multi-way join requires a single MapReduce job, i.e. P1(b,d) =

{R1,R2,R3,R4}. We can summarize that every i-th iteration reads all rela-

tions that are participated into the iteration, and every join results of each

iteration should be materialized into the disk. The input and output costs

then be formulated as follows:

Input : Σ
|A|
i=1

(
ΣRn∈Pi(a),a∈Ai |Rn|

)
Out put : Σ

|A|
i=1 (Σa∈Ai |J(Pi(a))|)

We can see that the I/O cost becomes heavier as the number of iteration

becomes large. In case of replication-based algorithm, it only read all input

relations once, and then it also writes the final result only once. Therefore,
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I/O cost of iteration-based algorithms is bigger than that of the replication-

based algorithm.

Next, let us consider the communication costs. The communication

cost should be distinguished by processing steps of a MapReduce job. Ac-

tually, read and write operations also need network overhead because input

relations are stored in a networked storage. In addition, in the shuffle phase

of a MapReduce job, we have to consider intermediate key-value pairs from

mappers to reducers.
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Figure 29 shows the result of communication cost analysis. In the first

MapReduce job of cascade of 2-way joins, the shuffle phase have to transfer

|R1|+ |R2| input tuples from mappers to reducers because P1 = {R1,R2}.

Similarly, all iteration-based algorithms transfer input tuples to an appro-

priate reducer. However, replication-based algorithm makes copies of input

tuples. For R1 and R2, we have to make |h(d)| copies. We do not have to

make copy of R3, but R4 have to be copied |h(b)| times. Therefore, the com-

munication cost incurred by the shuffle phase can be written as follow:

Σ
|A|
i=1 (ΣRn∈Pidup(Rn) · |Rn|)

It should be noted that dup(Rn) = 1 for iteration-based algorithms, while

dup(Rn) = h(a) for the replication-based algorithm. In [13], the duplication

factor dup(Rn) is called share. The communication cost of the replication-

based algorithm is clearly bigger than that of iteration-based algorithms.

4.4 Join-Key Selection Algorithms for Complex
Queries

In our previous work [14], we have proposed two join key selection al-

gorithms for processing multi-way join queries. With an example of SPARQL

Basic Graph Pattern (BGP) in Section 4.1.1, we re-emphasize the impor-

tance of join-key selection algorithms.

It is worthwhile to note that we can determine join-keys for a complex

query before the actual join begins. Using schema of data and the given
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Key Selection in Multi-Way Joins 
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<Greedy Key Selection> <Multiple Key Selection> 

select a variable as a mapkey  
according to the number of related tps  

select variables until  
every tp is participated in an iteration 

<No Selection> 

Figure 30: Join key selection strategies

query, we can extract candidate join-keys in the join operation and create

a query execution plan. In a basic graph pattern in SPARQL, we can eas-

ily determine a join-key by selecting a shared variable because a join-key

should be a shared variable. However, it is difficult to select a join-key when

a BGP has two or more shared variables. In these complex queries, a join-

key cannot cover all triple patterns. This implies that iterations of MapRe-

duce jobs will occur. To minimize the number of MapReduce iterations, we

have employed two heuristic join-key selection strategies: Greedy-Selection

and Multiple-Selection. In this section, we describe these join-key selection

algorithms.

4.4.1 Greedy Key Selection

Suppose that we have several join-key candidates which are variables

that appear in two or more triple patterns. With the greedy selection strategy,
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Figure 31: Typical examples of complex queries

we select a variable according to the number of related triple patterns. In

other words, we sort the candidate join-keys according to the number of

related triple patterns in an decreasing order. The greedy selection strategy

benefits from the multi-way join technique. The strategy accelerates eager

evaluation of multiple triple patterns, which is a specialty of the multi-way

join technique (handling star-joins first). At least, it will not lead to a loss

when reducing the number of MapReduce iterations. Figure 31(a) shows a

case in which the greedy selection is particularly useful. Variables b, c, and

d are join-key candidates because they are related to two triple patterns. If

we select one of them, we can join only three variables: (a, b, e), (a, c, e),

and so on. On the other hand, variables a and e are related to three or more

triple patterns; hence, we can merge many variables all at once. The result

will be the same, but the number of MapReduce iterations will be different.

4.4.2 Multiple Key Selection

MapReduce is a parallel processing framework implying that we can

select multiple join-keys in a MapReduce job. It has an effect on resource
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utilization. Let us consider the query shown in Figure 31(b). The query ap-

pears as a path expression; this is one of the most commonly used query

patterns. Particularly, a RDF reasoning engine frequently uses these queries

to compute values of transitive properties such as rdf:type. For the example

query, we can select b and d together. A join-key, b preserves triple patterns

among a, b, and c. Another join-key, d covers triple patterns among c, d,

and e. In the next iteration, we can finally join them by selecting c or d as a

join-key.

4.4.3 Hybrid Key Selection

Essentially, the greedy selection strategy and the multiple selection

strategy can be used together. Let us consider the following chain-join ex-

ample:

R(A,B)on S(B,C)on T (C,D)onU(D,E)

In this example, we have three join keys JK = {B,C,D} in total. Since the

number of relations to be joined by a join key is the same, we first select a

random join-key B. Then, relation R and S can be participated into a MapRe-

duce job. At the same time, we can realize there still remains relations T and

U . Therefore, we can select another join key D for the same MapReduce job.

Then, the example join query can be represented as follow:

{R(A,B)on S(B,C)}on {T (C,D)onU(D,E)}
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The result of first MapReduce job is Ron S and T onU . In the second MapRe-

duce job, we can select a join key C so that we can generate final join results.

4.5 Experiments

In this section, we conduct experiments on skew handling algorithms

over multi-way join queries. In Section 4.5.1, we first examine the per-

formance of SK-Join queries with several skew handling algorithms. The

experiment requires only a single MapReduce job. We vary the degree of

skewness in each relation. In Section 4.5.2, we test another type of multi-

way joins: MK-Join queries. Processing MK-Join queries require multiple

MapReduce jobs. In each job, the elapsed time depends on the longest pro-

cessing time of individual joins. Finally, in Section 4.5.3, we conduct a case

study on multi-way joins in analyzing TV watch logs.

4.5.1 SK-Join Experiments

The first experiment is about SK-Join queries. By extending a parti-

tioning matrix to a cube, our approach handles SK-Join queries in the same

manner. As shown in Figure 32, we tested two extreme cases of join product

skew: (x10 on x10 on x10M) and (x1K on x1K on x1K). Therefore, the sec-

ond case has higher possibility of join product skew than the first case. Each

relation has 100M input tuple, and the output size is over 10 billion tuples

and 600GB. Since we have three relations to be joined, we use 27 cores for

reducers because the RANDOM algorithm requires k1/3 to be an integer.

Experimental results in Figure 32 reconfirm conclusions of the scalar
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Figure 32: Performance on SK-Join queries

skew experiments. The RANGE algorithm is vulnerable to the presence of

join product skew, and the RANDOM algorithm has a burden of input du-

plication. Actually, in star-join queries, the problem of input duplication be-

comes worse than that of the two-way join queries. To produce correct join

results, the RANDOM algorithm has to duplicate all input tuples 272/3 = 9

times regardless of the presence of skew. We have 100M tuples in each re-

lation, which means that 300M * 9 = 27B tuples are entered to the shuffle

phase in MapReduce. Therefore, our approach outperforms the other ap-

proaches as shown in the experimental results.

However, it should be noted that our approach requires more time to

lookup candidate cells. In listCell function of Algorithm 6, we has to ex-

amine k3 cells in order to filter our non-candidate cells. On the other hand,

RANGE just has a one-dimensional partitioning vector whose length is k,

and RANDOM has a cube consisting of k cells. We guess this is a reason of

that the RANGE algorithm is faster than ours in the (x10 on x10 on x10M)

experiment. Even though the difference is not so significant, we think the
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Chain-Join Experiments 
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Figure 33: Performance on MK-Join queries

margin can become narrow if we adopt a spatial index structure [37] in or-

der to reduce the lookup time.

4.5.2 MK-Join Experiments

The next experiment is about a MK-Join query. In this experiment, we

compute a join R on S on T on U . Each relation has 100M input tuples and

follows the scalar skew. Although the data schema (pk, jk) is the same so

that we can compute the join as a star-join query, we intentionally process it

with two MapReduce jobs. In the first job, Ron S and T onU are evaluated si-

multaneously. We create M1,1(R,S) and M1,2(T,U) with samples from four

relations. In the second job, we evaluate the join between intermediate join

results.

It should be noted that we slightly modify original Map and Reduce

functions in Algorithm 6 and 7. The difference is that we attach a matrix tag

in addition to a relation tag. In repartition join, we add a relation tag to an

input tuple in order to distinguish input relations in the Reduce function. In
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two-way joins, a Reduce function receives input tuples from two relations.

In multi-way joins, the number of input relations becomes larger, and we

have to decide a join in which an input tuple contribute to. Therefore, for an

input tuple r from R, we added M1,1 tag and R tag. In the Reduce function,

we create different build input tables according to the matrix tag.

Experimental results in Figure 33 shows the execution time of given

chain-join query. As shown in other experiments, the MDRP algorithm out-

performs the other skew handling algorithms.

4.5.3 Analysis of TV Watching Logs

In previous sections, we evaluate the effectiveness of our algorithm

with synthetic data sets. However, there are a number of real-world data sets

which require joins between skewed relations. In this section, we conduct a

case study with a real-world data set.

Analyzing TV watching logs is closely related to the skew handling

problem. Generally, people watch only a few channels on the television. In

Korea, some public TV channels, such as 6 - 13, occupy over 70% of the

broadcasting rating. Therefore, every analysis task incurs skewed execution

times.

First of all, we simply describe our test data set. The data set contains

four relations: User(U), Program(P), Channel(C) and Channel Category(CC).

There are foreign key constraints between U −P, P−C and C−CC. Al-

though we have examined many test queries, we will report a result on a
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Figure 34: Graph analysis using matrix multiplication

representative test query which shows clear trends of data skewness:

U−P−U−P−C−CC−C

In above query, U −P indicates programs p that have watched by a spe-

cific user u. U − P−U means that users who have seen at least one the

same programs with the specific user u, and similarly U − P−U − P is

a set of programs that have been watched by the similar users. Similarly,

C−CC−C represents a set of channels which belong to the same category.

Therefore, the given query means that channels that belong to the same cat-

egory watched by similar users for each user u.

The data set can be represented in a graph. Since we have four rela-

tions, we have four different entity types corresponding each relation. Rela-

tionships between entities can be described by the foreign key constraints.

Then, with the matrix multiplication algorithm, the test query can provide

us a recommendation result for each user in the graph. Let us suppose that

there is a user corresponding to the v1 in Figure 34. We now want to decide

the most close node from v1 among v5, v6, v7. We first are able to decide
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Figure 35: Performance comparison between w/ and w/o skew handling

weights of all edges according to the number of edges of each vertex. Then,

we can compute the distance between v1 and other candidate nodes as shown

in the example. The vertex v7 has gained the highest weight so we can draw

a conclusion that v1 and v7 are close.

In our experiment, join operation between U−P−U−P and C−CC−

C incurs skewed distribution of processing times among reducers. In the left

of Figure 35, we show the elapsed time of each reducer. Some reducers

spend most of processing times while the others are already finished. The

maximum time is 219 seconds. On the other hand, the right figure shows that

our algorithm moderates the difference of processing times across reducers.

The maximum time here is only 71 seconds which is 1/3 compared to the

previous case. This result shows that our skew handling algorithm is useful

in real-world applications.

4.6 Summary

In this chapter, we addressed the problem of data skew in multi-way

joins. Our proposed MDRP technique was extended to deal with SK-Join
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queries and MK-Join queries which are sub types of multi-way joins. For

SK-join queries, we extend the partitioning matrix to a multi-dimensional

partitioning cube. For MK-join queries, we exploit two or more partitioning

matrices (or cubes) in a MapReduce job.

Efficient processing of multi-way joins requires more sophisticated

techniques beyond handling of data skew. Handling of iterative MapReduce

job is one of the most important issues. We have analyzed costs of iteration-

based and replication-based algorithms to process iterative jobs. In addition,

we have proposed join-key selection strategies and algorithms for minimiz-

ing the number of MapReduce jobs.
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Chapter V

Applications

In Chapter 4, we have already introduced two applications that require

joins of multiple relations. We now discuss about detail implementations

and experimental evaluations for those applications. In Section 5.1 and 5.2,

we show how our techniques can be integrated with algorithms for graph

pattern matching and matrix chain multiplication problems.

5.1 Algorithms for SPARQL Basic Graph Pat-
tern

As shown in Section 4.1.1, the graph pattern matching problem is an

important application of multi-way joins. In this section, we offer general

and efficient MapReduce algorithms in addition to our skew complex join

processing algorithm in order to handle entire basic graph patterns. Es-

pecially, we focus on two aspects of the problem. First, in a MapReduce

world, it is known that the join operation requires computationally expen-

sive MapReduce iterations. We minimize the number of iterations with the

followings: 1) We adopt traditional multi-way join into MapReduce instead

of multiple individual joins. 2) By analyzing a given query, we select a good

join-key to avoid unnecessary iterations. Second, each join operation ex-

ploits the skew handling algorithm proposed in the previous chapter. As a
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result, the algorithm shows good performance and scalability in terms of

time and data size.

The main contribution of this section is that we offer an efficient multi-

way MapReduce algorithm for processing SPARQL BGP queries. For queries

having two or more join-key candidates, we use two join-key selection strate-

gies introduced in Section 4.4. These strategies have the effect of reduc-

ing the number of unnecessary MapReduce jobs. An experiment with the

Lehigh University Benchmark (LUBM) [38] shows that the algorithm pro-

vides scalable access to the RDF data.

Most SPARQL queries contain a set of triple patterns known as a Basic

Graph Pattern. Triple patterns are similar to RDF triples (s, p, o) except

that each of the subject, predicate and object can be a variable. We assumed

that RDF triples are stored in a N-Triples format file. To evaluate a BGP,

we offer two separate MapReduce operations: namely MR-Selection and

MR-Join. MR-Selection obtains RDF triples which satisfy at least one triple

pattern and MR-Join merges matched triples into a matched graph. MR-Join

can be performed iteratively when a BGP has two or more shared variables.

5.1.1 MR-Selection

MR-Selection obtains RDF triples which satisfy at least one triple pat-

tern. In addition, MR-Selection projects a given triple onto the satisfied

triple pattern in order to assign a value to a corresponding variable. The

input format of MR-Selection is simple. The algorithm receives a (s, p, o)

triple expressed in N-Triple format. On the other hand, the output format

of the algorithm is quite complex. An output result, which is in a pair of
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computationally expensive. For this reason, we offer two join-key 
selection strategies: namely greedy selection and multiple 
selection. 

3.1 MR Selection for BGP Processing 
MR selection obtains RDF triples which satisfy at least one triple 
pattern. In addition, MR selection projects a given triple onto the 
satisfied triple pattern in order to assign a value to a 
corresponding variable. The input format of MR selection is 
simple. The algorithm receives a (s, p, o) triple expressed in N-
Triple format. On the other hand, the output format of the 
algorithm is quite complex. An output result, which is in a pair of 
parentheses, can be divided into a key part and a value part 
separated by a comma. The key part consists of a satisfied triple 
pattern number and variables included in the triple pattern. The 
value part can be divided by vertical bar characters; each subpart 
consists of a variable name and a corresponding value. With a 
SPARQL query given from the introduction section, let us 
consider example inputs and outputs of MR selection: 

Input: (<Prof0>, rdf:type, ub:Professor) 
           (<Prof0>, ub:worksFor, <Department0>) 
           (<Prof0>, ub:name, "Professor0") 
           (<Prof0>, ub:emailAddress, "prof0@email.com") 
           (<Prof0>, ub:telephone, "000-0000-0000") 
           (<Prof1>, rdf:type, ub:Professor) 
           (<Dept0>, ub:name, "Department0") 
           … 

Output: (<1>x, [x]Prof0) (<1>x, [x]Prof1) 
(<2>x, [x]Prof0) (<3>x|y1, [x]Prof0|[y1]Professor0) 
(<4>x|y2, [x]Prof0|[y2]prof0@email.com) 
(<5>x|y3, [x]Prof0|[y3]000-0000-0000) 

In the above example, a result of an input triple (<Prof0>, rdf:type, 
ub:Professor) is (<1>x, [x]Prof0). A triple (<Dept0>, ub:name, 
"Department0") will be filtered out because the triple does not 
satisfy any triple patterns. 

Table 1 explains the algorithms of the Map and Reduce functions. 
The Map function filters unnecessary triples out, and the Reduce 
function creates the final results according to the output format. 
Conceptually, the MR selection algorithm produces temporal 
tables which satisfy each triple pattern. A result table has variable 
names as a relational table has attribute names. It also has values 
for the variable names, as does the relational table. The resulting 
table will be used for the next MR join operation if necessary. 

3.2 MR Join for BGP Processing 
MR join merges matched triples or partially matched graphs into a 
matched graph. The output of MR selection is delivered to MR 
join if a BGP contains one or more shared variables. If a BGP has 
no shared variables, there is no reason to proceed to the next MR 
join operation. MR selection and MR join can be connected 
because the input format of MR join is identical to the output 
format of MR selection. The output format of MR join is also 
identical to the output format of the MR selection algorithm. It is 
notable that the same data format enables the MR join iteration. 

The following input and output examples show the role of MR 
join: 

Input: (<1>x, [x]Prof0) (<1>x, [x]Prof1) 
(<2>x, [x]Prof0) (<3>x|y1, [x]Prof0|[y1]Professor0) 
(<4>x|y2, [x]Prof0|[y2]prof0@email.com) 
(<5>x|y3, [x]Prof0|[y3]000-0000-0000) 

Output: (<1|2|3|4|5>x|y1|y2|y3, [x]Prof0|[y1]Professor0|[y2] 
prof0@email.com|[y3]000-0000-0000) 

As with MR selection, MR join has both Map and Reduce 
functions. The Map function of MR join creates separate maps 
according to the join-key variable and the corresponding value. 
Suppose that variable x is used as a join-key. In the above 
example, there will be two separate maps because the inputs have  

 

Table 2. Map and Reduce functions for MR join 

Map: (k1, v1) -> [(k2, v2)] Reduce: (k2, [v2]) -> [(k3, v3)] 
function map {  

read input   
// example: ((<1>a|b), ([a]a1|[b]b1)), ((<3>a|c), ([a]a1|[c]c1)) 
 
split the input 
// triple pattern number (tpn) = 1, 3 
// variable name (vn) = a, b, c 
// variable name & value (vv) = ([a]a1|[b]b1), ([a]a1|[c]c1) 
 
get a set of join key(mkey_vn) and corresponding triple pattern 
numbers(mkey_tpn) to be satisfied 
 
for each(mkey_vn determined by BGP analyzer){ 
   if(mkey_vn is in vn && mkey_tpn contains tpn) { 
      // example: mkey_vn = a, mkey_tpn = [1, 3] 
 
      key = mkey_vv            // key = [a]a1 
      value = (tpn, vv)          // value = (<1>, [a]a1|[b]b1)) 
      output(key, value) 
   } 

}  

function reduce { 
read inputs 
// key = [a]a1 
// values = [(<1>, [a]a1|[b]b1), (<3>, [a]a1|[c]c1)] 
 
get a set of join key(mkey_vn) and corresponding triple pattern 
numbers(mkey_tpn) to be satisfied 
 
for each(value in values){ 
   make a temp hashtable H 
   // a key for H: (tpn, vn), values for H: [(vv)] 
   // example H = {((<1>,a|b):[(a1|b1)]), ((<3>,a|c):[(a1|c1)])} 
} 
 
if( (tpn,(mkey_vn)) is the same with the key in H ) { 
      make a Cartesian product among values in H 
      // (a1,b1), (a1,c1) -> (a1, b1, c1) 

output(key, value) 
} 

} 

Figure 36: An example of MR-Selection

parentheses, can be divided into a key part and a value part separated by a

comma. The key part consists of a satisfied triple pattern number and vari-

ables included in the triple pattern. The value part can be divided by vertical

bar characters; each subpart consists of a variable name and a corresponding

value.

With a SPARQL query example in Figure 19, let us consider example

inputs and outputs of MR-Selection as shown in Figure 36. In this exam-

ple, a result of an input triple (<Prof0>, rdf:type, ub:Professor) is (<1>x,

[x]Prof0). A triple (<Dept0>, ub:name, ”Department0”) will be filtered out

because the triple does not satisfy any triple patterns.
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computationally expensive. For this reason, we offer two join-key 
selection strategies: namely greedy selection and multiple 
selection. 

3.1 MR Selection for BGP Processing 
MR selection obtains RDF triples which satisfy at least one triple 
pattern. In addition, MR selection projects a given triple onto the 
satisfied triple pattern in order to assign a value to a 
corresponding variable. The input format of MR selection is 
simple. The algorithm receives a (s, p, o) triple expressed in N-
Triple format. On the other hand, the output format of the 
algorithm is quite complex. An output result, which is in a pair of 
parentheses, can be divided into a key part and a value part 
separated by a comma. The key part consists of a satisfied triple 
pattern number and variables included in the triple pattern. The 
value part can be divided by vertical bar characters; each subpart 
consists of a variable name and a corresponding value. With a 
SPARQL query given from the introduction section, let us 
consider example inputs and outputs of MR selection: 

Input: (<Prof0>, rdf:type, ub:Professor) 
           (<Prof0>, ub:worksFor, <Department0>) 
           (<Prof0>, ub:name, "Professor0") 
           (<Prof0>, ub:emailAddress, "prof0@email.com") 
           (<Prof0>, ub:telephone, "000-0000-0000") 
           (<Prof1>, rdf:type, ub:Professor) 
           (<Dept0>, ub:name, "Department0") 
           … 

Output: (<1>x, [x]Prof0) (<1>x, [x]Prof1) 
(<2>x, [x]Prof0) (<3>x|y1, [x]Prof0|[y1]Professor0) 
(<4>x|y2, [x]Prof0|[y2]prof0@email.com) 
(<5>x|y3, [x]Prof0|[y3]000-0000-0000) 

In the above example, a result of an input triple (<Prof0>, rdf:type, 
ub:Professor) is (<1>x, [x]Prof0). A triple (<Dept0>, ub:name, 
"Department0") will be filtered out because the triple does not 
satisfy any triple patterns. 

Table 1 explains the algorithms of the Map and Reduce functions. 
The Map function filters unnecessary triples out, and the Reduce 
function creates the final results according to the output format. 
Conceptually, the MR selection algorithm produces temporal 
tables which satisfy each triple pattern. A result table has variable 
names as a relational table has attribute names. It also has values 
for the variable names, as does the relational table. The resulting 
table will be used for the next MR join operation if necessary. 

3.2 MR Join for BGP Processing 
MR join merges matched triples or partially matched graphs into a 
matched graph. The output of MR selection is delivered to MR 
join if a BGP contains one or more shared variables. If a BGP has 
no shared variables, there is no reason to proceed to the next MR 
join operation. MR selection and MR join can be connected 
because the input format of MR join is identical to the output 
format of MR selection. The output format of MR join is also 
identical to the output format of the MR selection algorithm. It is 
notable that the same data format enables the MR join iteration. 

The following input and output examples show the role of MR 
join: 

Input: (<1>x, [x]Prof0) (<1>x, [x]Prof1) 
(<2>x, [x]Prof0) (<3>x|y1, [x]Prof0|[y1]Professor0) 
(<4>x|y2, [x]Prof0|[y2]prof0@email.com) 
(<5>x|y3, [x]Prof0|[y3]000-0000-0000) 

Output: (<1|2|3|4|5>x|y1|y2|y3, [x]Prof0|[y1]Professor0|[y2] 
prof0@email.com|[y3]000-0000-0000) 

As with MR selection, MR join has both Map and Reduce 
functions. The Map function of MR join creates separate maps 
according to the join-key variable and the corresponding value. 
Suppose that variable x is used as a join-key. In the above 
example, there will be two separate maps because the inputs have  

 

Table 2. Map and Reduce functions for MR join 

Map: (k1, v1) -> [(k2, v2)] Reduce: (k2, [v2]) -> [(k3, v3)] 
function map {  

read input   
// example: ((<1>a|b), ([a]a1|[b]b1)), ((<3>a|c), ([a]a1|[c]c1)) 
 
split the input 
// triple pattern number (tpn) = 1, 3 
// variable name (vn) = a, b, c 
// variable name & value (vv) = ([a]a1|[b]b1), ([a]a1|[c]c1) 
 
get a set of join key(mkey_vn) and corresponding triple pattern 
numbers(mkey_tpn) to be satisfied 
 
for each(mkey_vn determined by BGP analyzer){ 
   if(mkey_vn is in vn && mkey_tpn contains tpn) { 
      // example: mkey_vn = a, mkey_tpn = [1, 3] 
 
      key = mkey_vv            // key = [a]a1 
      value = (tpn, vv)          // value = (<1>, [a]a1|[b]b1)) 
      output(key, value) 
   } 

}  

function reduce { 
read inputs 
// key = [a]a1 
// values = [(<1>, [a]a1|[b]b1), (<3>, [a]a1|[c]c1)] 
 
get a set of join key(mkey_vn) and corresponding triple pattern 
numbers(mkey_tpn) to be satisfied 
 
for each(value in values){ 
   make a temp hashtable H 
   // a key for H: (tpn, vn), values for H: [(vv)] 
   // example H = {((<1>,a|b):[(a1|b1)]), ((<3>,a|c):[(a1|c1)])} 
} 
 
if( (tpn,(mkey_vn)) is the same with the key in H ) { 
      make a Cartesian product among values in H 
      // (a1,b1), (a1,c1) -> (a1, b1, c1) 

output(key, value) 
} 

} 

Figure 38: An example of MR-Join

Figure 37 explains the algorithms of the Map and Reduce functions.

The Map function filters unnecessary triples out, and the Reduce function

creates the final results according to the output format. Conceptually, the

MR-Selection algorithm produces temporal tables which satisfy each triple

pattern. A result table has variable names as a relational table has attribute

names. It also has values for the variable names, as does the relational table.

The resulting table will be used for the next MR-Join operation if necessary.

5.1.2 MR-Join

MR-Join merges matched triples or partially matched graphs into a

matched graph. The output of MR-Selection is delivered to MR-Join if a

BGP contains one or more shared variables. If a BGP has no shared vari-

ables, there is no reason to proceed to the next MR-Join operation. MR-

Selection and MR-Join can be connected because the input format of MR-

Join is identical to the output format of MR-Selection. The output format

of MR-Join is also identical to the output format of the MR-Selection algo-

rithm. It is notable that the same data format enables the MR-Join iteration.
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The input and output examples in Figure 38 show the role of MR-Join.

As with MR-Selection, MR-Join has both Map and Reduce functions. The

Map function of MR-Join creates separate maps according to the join-key

variable and the corresponding value. Suppose that variable x is used as a

join-key. In this example, there will be two separate maps because the inputs

have two distinct value [x]Prof0 and [x]Prof1 as a join-key. The Reduce

function for MR-Join merges inputs in a given map. A reducer for a map

created by [x]Prof0 generates a merged output, as expressed in the example.

On the other hand, a reducer for a map created by [x]Prof1 cannot generate

an output because the inputs in the map do not satisfy all triple patterns

related to a variable x. Figure 39 shows how the MR-Join algorithm works

in detail.
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5.1.3 Performance Evaluation

In this section, we demonstrate performance of our approach. The ex-

perimental results show that our proposed algorithm benefits from the multi-

way join technique.

5.1.3.1 Experimental Setup

As mentioned earlier, we used LUBM [38] for all experiments to as-

sess the performance and the scalability of our approach. LUBM offers a

synthetic data generator and test queries for evaluating SPARQL query pro-

cessors. The generator produces OWL [39] format data that contains the

people and activities of a university. We used the Jena [40] framework to

pre-compute the transitive closure expressed in the OWL document because

the goal of our research is RDF graph pattern matching rather than OWL

reasoning. We first created 6 datasets with 1, 5, 10, 25, 50, 100 universities,

respectively, with random seed 0. In this experiment, LUBM (n) indicates

that the dataset contains the n universities.

We built an environment using Amazon Web Services (AWS). Cloud-

era’s Hadoop Distribution (CDH) was used on the Amazon EC2 (1.7GB of

RAM, 5 EC2 Compute Units). The Hadoop Distributed File System (HDFS)

was built on the Amazon Elastic Block Store.

5.1.3.2 Performance Evaluation

We first show the effect of multi-way join algorithms. Table 6 shows

the execution times for all test queries. Multi-way join technique reduces
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the execution time by joining several triple patterns at once. However, some

queries do not show a significant difference because they are too simple to

take advantages of multi-way joins. In addition, Table 7 shows the execution

times for all queries and data size. While we increase the data size, the

algorithm shows scalable execution times.
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Figure 40: Average execution time of LUBM queries

Figure 40 represent the average execution times for each data size. The

average execution time for LUBM(1) is 48.2 seconds, while LUBM(100)

requires 91.9 seconds to finish the request. Hence, the algorithm effectively

utilizes the computing resources. The execution time is increased only 2

times while the number of triples is increased 100 times. One likely reason

for this result is the format of the map-key used in the MR operations. A

map-key contains a variable name and a corresponding value for the vari-

able. A number of distinct values produce a number of reducers, which im-

plies that the MR framework effectively utilizes distributed resources. If we

use only the variable name, the number of reducers is decreased, which in-

dicates that the most of triples are skewed to a reducer. The MR framework

attempts to assign a reducer to an independent node in order to enable mas-

sive parallel processing. Consequently, it is a reasonable implementation

that the number of reducers is greater than the number of nodes.
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Figure 5. Time used for selection and join iterations 

MR Pipelining: One of the features of the MR framework is the 
writing of intermediate results into a file system. In other words, 
the framework materializes all intermediate data. Thus, the 
execution time of a MR task is relatively slower compared to 
other approaches. Particularly, MR join occasionally requires 
iterative processing, which passes data through the disk I/O and 
the network data transfer. To improve the performance of MR, 
two methods were recently reported [10] and [19]. They transfer 
intermediate data to the next step while the previous step is still 
running. This improves the overall performance.  

However, it is controversial to use MR pipelining for large-scale 
fault-tolerant data analysis. The MR framework achieves fault-
tolerance due to materialization and replication. Clearly, there is a 
trade-off between performance and reliability. Hence, this trade-
off should be considered carefully. For an accurate calculation, 
reliability is more important than performance. 

Dictionary Encoding: In this paper, we used raw text instead of 
an encoded string. For example, we use a join-key format such as 
'[variable]value'. However, as mentioned in earlier research [8], it 
is inefficient to parse the ad-hoc format. There are some available 
open-source frameworks [16, 21], and we have a plan to adopt an 
encoding scheme.  

Clearly, the algorithm introduced in this paper has some 
optimization points. However, BGP processing is just a starting 
point of our vision. We will thoughtfully adopt above issues as a 
future work. 

6. CONCLUSION 
In this paper, we have proposed a MR algorithm for BGP 
processing. We also discussed various aspects of the algorithm 
with experimental results. In a comparison with an existing 
approach, the algorithm showed superior performance. Although 
there are several implementation issues remaining, the algorithm 
reduces the number of join iterations, which has a considerable 
effect on the overall execution time. In a future work, we plan to 
implement other operations of a SPARQL query, such as FILTER 
constraints. We expect that implementations of other operations 
must be simple because they do not need iterations.  
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Figure 41: Time used for MR-Selection and MR-Join

5.1.4 Discussion

Several implementation issues remain which may have an effect on the

scalability and the performance of the algorithm. In this subsection, we deal

with some of the issues related to this.

Selection Optimization using Indexes: The execution times of the algo-

rithm in actuality appear to be slow. We can apply some optimization tech-

niques to improve the performance of the algorithm. First, we considered

that the MR-Selection algorithm can be a bottleneck because we do not use

any indexes. Therefore, MR-Selection must examine all of the RDF triples

in a distributed file system whenever a SPARQL query is issued. Figure

41 supports that the MR-Selection should be managed with specific opti-

mization techniques. It shows the individual execution time spent by MR-

Selection and MR-Join operations. Some complex queries have several join

iterations, but most of the test queries require a MR-Selection and a MR-Join

operation. The MR-Selection should be verified because it requires more
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than 40 seconds for all test queries. For this reason, the construction of an

index using HBase can be considered [41]. HBase is a distributed storage

system that runs on the HDFS file system. The index structure is simple in

this case. For a triple (s, p, o), s is employed as a row key and p is used for

a column key. The value of a cell is o. If we have several object values for

a certain cell, we can use timestamps to distinguish values. We may be able

to exploit the exhaustive indexes introduced in two related studies [42] and

[43].

However, we have to consider that it is a very time-consuming task

to load RDF data into HBase. As mentioned in earlier research [44], for

some of the benchmarks, it is possible to run 50 separate MR analyses over

the data before the data can be loaded into a database and a single analysis

completed. As an example, an earlier research, [45] takes 16 minutes to

load 100 million triples. Hence, we have to consider the purpose of the data

analyses.

MR Pipelining: One of the features of the MapReduce framework is the

writing of intermediate results into a file system. In other words, the frame-

work materializes all intermediate data. Thus, the execution time of a MapRe-

duce job is relatively slower compared to other approaches. Particularly,

MR-Join occasionally requires iterative processing, which passes data through

the disk I/O and the network data transfer. To improve the performance of

MapReduce jobs, two methods were recently reported [46] and [47]. They

transfer intermediate data to the next step while the previous step is still

running. This improves the overall performance.
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However, it is controversial to use MapReduce pipelining for large-

scale fault-tolerant data analysis. The MapReduce framework achieves fault-

tolerance due to materialization and replication. Clearly, there is a trade-off

between performance and reliability. Hence, this trade-off should be consid-

ered carefully. For an accurate calculation, reliability is more important than

performance.

Dictionary Encoding: In this paper, we used raw text instead of an encoded

string. For example, we use a join-key format such as ’[variable]value’.

However, as mentioned in earlier research [44], it is inefficient to parse the

ad-hoc format.

In this section, we have proposed a MapReduce algorithm for BGP

processing. We also discussed various aspects of the algorithm with exper-

imental results. In a comparison with an existing approach, the algorithm

showed superior performance. Although there are several implementation

issues remaining, the algorithm reduces the number of join iterations, which

has a considerable effect on the overall execution time.

5.2 Algorithms for Matrix Chain Multiplication

In this section, we address the matrix chain multiplication problem in-

troduced in Section 4.1.2. Although several studies have investigated the

problem [48, 49, 50, 51], most of them have focused on the efficiency of

a binary multiplication. For example, suppose that we evaluate the multi-

plication of three matrices, i.e. M1×M2×M3. The previous studies solve

this problem with sequential (pipelined) multiplications of two matrices,
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(M1×M2)×M3. Therefore, they focus on an efficient parallel algorithm for

an individual binary multiplication. However, we adopt the multi-way join

operations into the problem [52].

Actually, the join-based matrix multiplication ◃▹∗ is associative, as is

the matrix multiplication. Therefore, the following multiplications are all

equivalent, when we have matrices A, B, C, and D.

A ◃▹∗ B ◃▹∗ C ◃▹∗ D = (((A ◃▹∗ B) ◃▹∗ C) ◃▹∗ D)

= ((A ◃▹∗ B) ◃▹∗ (C ◃▹∗ D))

= (A ◃▹∗ B ◃▹∗ C ◃▹∗ D)

There are a number of ways to compute a matrix chain multiplication. A typ-

ical method is to use sequential multiplication, as described in the first equa-

tion. We refer to this as serial two-way join (S2). In S2, each ◃▹∗ operation

requires a separate MapReduce job. Although S2 employs the concept of

parallelism, it is limited in its operation, i.e., it involves intra-operation par-

allelism. Another way to evaluate the above expression is through a parallel

two-way join operation (P2). This approach follows inter-operation paral-

lelism, which means that we can compute A ◃▹∗ B and C ◃▹∗ D simultane-

ously. We can expand the concept of inter-operation parallelism so as to

compute the matrix chain with an MapReduce job, as represented in the last

equation. We refer to this approach as a parallel m-way join operation (PM).

In this section, we explain our implementation of these operations with the

MapReduce framework.

A MapReduce job incurs considerable cost in terms of computation
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time. Whenever a MapReduce job is launched, the job tracker makes copies

of the program for all task nodes. The task nodes read data from the dis-

tributed file system and write the result after the job is finished. When it-

eration of the job occurs, unnecessary cost will be incurred again for the

described tasks. Therefore, exploiting inter-operation parallelism reduces

the number of MapReduce job iterations, leading to improvements in the

algorithms.

5.2.1 Serial Two-Way Join (S2)

In S2, we implemented the improved repartition join as described in

Section 2.4. Because we are focusing on the matrix chain multiplication

process, the driver function, which controls the sequence of MapReduce

jobs, is important. In this section, we explain the driver function; pseudo-

code for the map and reduce functions are outlined in the literature [5]. As

described in Algorithm 8, S2 computes the join operation between the first

two relations, and then produces the next join results between the previous

result relation and the next relation. A join operation requires a MapReduce

job.

Algorithm 8 Driver function for serial two-way join
Input: Relations M1,M2, ...,Mn representing matrices

1: Mle f t = M1
2: for i = 2 to n do
3: Mright = Mi

4: Mresult = doMR-S2 (Mle f t ,Mright)
5: Mle f t = Mresult
6: end for

It should be noted that a binary multiplication ◃▹∗ can be separated
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into two MapReduce jobs: a job for the join operation and another job for a

sum of join results. For example, consider two matrices A and B, with i× k

elements in A and k× j elements in B. The first MapReduce job computes

AikBk j for all i, j and k. This can be done by the join MapReduce job as

described in Alg. 8. However, we need the second job that computes Ci j =

ΣkAikBk j. Here, we present an algorithm that yields a join result for several

relations at once. Then, the sum of the join result has to be equal to the join

result of serial two-way joins.

Theorem 3. The sum of the multi-way join result is equal to the sum of the

join result of serial two-way joins.

((A ◃▹∗ B) ◃▹∗ C) = (A ◃▹∗ B ◃▹∗ C)

Proof. According to relational algebra, equation (4) is true when Σ(Σ(A ◃▹

B) ◃▹ C) = Σ(A ◃▹ B ◃▹ C). It is easy to see that the above equation is true,

because the join operation takes only elements sharing the same join key. In

other words, ((R1 ◃▹ R2) ◃▹ R3) is equal to (R1 ◃▹ R2 ◃▹ R3), so the position

of the sigma does not affect the final result. For example, suppose that D =

A ◃▹∗ B ◃▹∗ C. Then, d11 = ((a11b11 +a12b21)c11 +(a11b12 +a12b22)c21) =

a11b11c11 + a12b21c11 + a11b12c21 + a12b22c21. This shows that the sum of

join results among several relations is equal to the join result of serial two-

way joins.
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5.2.2 Parallel M-Way Join (P2, PM)

Several studies, such as [53], [49], and [54], have examined binary

multiplication between two matrices using the MapReduce framework in

order to achieve intra-operation parallelism. However, we focus here on

inter-operation parallelism. Therefore, the driver function of PM must be

implemented in a different way.

Algorithm 9 Driver function for parallel m-way join
Input: Relations M1,M2, ...,Mn representing matrices
Input: An integer m indicating m-way join

1: LIST Mnext ⇐ [M1,M2, ...,Mn]
2: while |LIST Mnext |> 1 do
3: for i = 1 to |LIST Mnext | do
4: if (i mod m) == 1 then
5: add Mi to LIST Mle f t
6: Mle f t = Mi

7: else
8: add Mi to LIST Mright(Mle f t)
9: end if

10: end for
11: LIST Mnext = doMR-PM (LIST Mle f t ,LIST Mright)
12: end while

Algorithm 9 shows pseudo-code for the driver function for a parallel

m-way join. It should be noted that the parallel two-way join is a special

case of the m-way join, where m is 2. In the algorithm, we prepare a list

of matrices for a MapReduce job. We refer to this list as LIST Mnext . Ev-

ery matrix will be included on the list for the first job. We then add every

(m+ 1)-th matrix to another list, LIST Mle f t . Every matrix in LIST Mle f t

has a list of matrices to be multiplied. We denote these individual lists for

Mle f t as LIST Mright(Mle f t). As a result, a MapReduce job can compute all
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log = 2

log = 2 log = 1

Figure 42: Required number of MapReduce jobs

multiplications for each left matrix in the list LIST Mle f t . The result will be

passed to the next MapReduce iteration, when the number of matrices in the

LIST Mnext is greater than 1.

The multi-way join algorithm reduces the number of MapReduce jobs.

In the case of the S2 algorithm, we need (n− 1) iterations where n is the

number of matrices. Figure 42 shows an example. We have four matrices

from A to D. S2 requires 3 = 4−1 MR jobs because it takes only two ma-

trices in a job. However, If we use the P2 algorithm, the number of MR jobs

is reduced to ⌈log2 n⌉. The P2 algorithm takes all matrices as inputs of a

MR job and produces ⌈n/2⌉ intermediate result matrices. In Figure 42(2),

A ◃▹∗ B and C ◃▹∗ D are computed within a MR job. This reduces the total

number of MR jobs. Similarity, if we set m = 3, a MR job produces ⌈n/3⌉

intermediate result matrices and finally requires ⌈log3 n⌉MR jobs.

Theorem 4. Let n be the total number of matrices and m be an integer
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Algorithm 10 Map function for parallel m-way join
Input: LIST Mle f t from the driver function
Input: An integer m indicating m-way join
Input: An input record r = (tag,row,col,val)

1: if m == 2 (parallel two-way join) then
2: if r comes from matrices in LIST Mle f t then
3: output (r.col,r)
4: else
5: output (r.row,r)
6: end if
7: else
8: K⇐ a list of composite keys (i.e. identifiers for reducers)
9: for k in K do

10: output (k,r)
11: end for
12: end if

that indicates the m-way joins. The number of MapReduce jobs for the PM

algorithm is ⌈logm n⌉.

Proof. The first MR job takes all matrices as its inputs and produces ⌈n/m⌉

number of intermediate result matrices. The second MR job takes the inter-

mediate results and produces ⌈⌈n/m⌉/m⌉. This process is repeated until the

number of intermediate result matrices is equal to one. Therefore, n < mx is

valid where the x is the total number of MR jobs.

There are several ways to implement the map and the reduce func-

tions of the multi-way join operation in terms of the join key construction.

We use different startigies for P2 and PM, as demonstrated in Algs. 10 and

11. In the case of P2, we can use a raw key. Suppose that we have matri-

ces M1(r1,c1,v1),M2(r2,c2,v2), and M3(r3,c3,v3). Then, the first MR job

matches M1.c1 = M2.r2 and produces the records (r1,c2,v1 ∗v2). In the rela-
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Algorithm 11 Reduce function for parallel m-way join
Input: LIST Mle f t , LIST Mright , from the driver function
Input: R, a list of input record (tag,row,col,val) sorted by the tag

1: cur⇐ a cursor for a list R
2: for le f t in LIST Mle f t do
3: if |LIST Mright(le f t)| == 0 (a leftover matrix for the next iteration)

then
4: output the current matrix R[cur] for the next MR job
5: continue
6: end if
7: if |LIST Mright(le f t)|== 1 (the two-way join) then
8: create partitions for the left matrix R[cur]
9: do a hash-join between the left matrix and the current right matrix

R[cur]
10: end if
11: for right in LIST Mright(le f t) (the m-way join) do
12: do serial two-way hash-joins in a local machine
13: end for
14: end for

tional algebra, this is denoted by the natural join. We can use the raw values

of c1 and r2 without any modification, meaning that the join key is ”raw”.

On the other hand, PM has to consider M3 in a MapReduce job. There

should be two different join keys for M1 ◃▹∗ M2 and M2 ◃▹∗ M3. Therefore,

PM uses a composite key rather than a raw key. For example, A join key

for M1, M2, and M3 is (c1 = r2,c2 = r3). If a mapper of PM takes a record

(r2,c2,v2) from M2, then it can generate a single join key (r2,c2). How-

ever, the use of a composite key leads to record duplications. If the mapper

takes a record (r1,c1,v1) from M1, then it can know only a part of the join

key (c1,∗). Therefore, we have to duplicate the record as if the ∗ repre-

sents all possible values of r3. More detail explanations of the construction

method regarding the number of machines is described in [13]. Although
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the composite key enables PM to reduce the number of MR jobs, the use of

a composite key leads to record duplications, with results of the communi-

cation overhead. In the next subsection, we will discuss other limitations of

the composite key.

5.2.3 Serial Two-Way vs. Parallel M-Way

In the previous subsection, we see that there is a trade-off between

iteration-based algorithms and the replication-based algorithm. Iteration-

based algorithms require high I/O costs whereas the replication-based al-

gorithm needs high communication cost.

This analysis support that the hybrid of iteration-based and replication-

based algorithm is a good choice for many normal join queries. Our greedy-

key-selection strategy is based on iteration-based algorithms. There is no

duplication in the processing steps of greedy-key-selection algorithm. How-

ever, when given join operation is a pure chain-join, the greedy-key-selection

algorithm is equal to cascade of 2-way joins which requires several MapRe-

duce iterations. This is the reason why we need the multiple-key-selection

strategy. Since the MapReduce framework has the key-equality based data

flow, we can distinguish input tuples from different relations.

In addition, even in a pure chain-join, we can use a hybrid approach

between the iteration-based approach and the replication-based approach.

PM shows an example. The matrix chain multiplication problem contains

the pure chain-join. But we can compute m relations in a join unit using

replication-based algorithm. Then, the multiplication of n relations can be

produced by only logmn MapReduce jobs. Moreover, we can reduce the I/O
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costs between iterative jobs. We show the idea in the next subsection.

5.2.4 Performance Evaluation

We now present the performance results of the different algorithms de-

scribed in this section. We built an 8-node Hadoop (v1.1.0) [2] cluster, with

each node having an Intel i3-2100 dual-core CPU with 3.10 GHz speed and

4 GB memory. We used graph data sets from the Stanford Large Network

Dataset Collection [55] to create an adjacency matrix. Specifically, we used

‘p2p-Gnutella04.txt’, ‘amazon0302.txt’, ‘roadNet-PA.txt’ files. The size of

data sets is specified in Figure 44.

5.2.4.1 Efficiency of the Parallel M-way Join

Our first experiment is concerned with the efficiency of the parallel

m-way join algorithm. We created an adjacency matrix of a graph dataset

containing about 10,000 vertices, from which we computed powers of the

matrix. For comparisons with state-of-the-art, we employed the Hive sys-

tem (v0.9.0, released in 2012) [56]. The system provides users with a SQL

interface for the MapReduce-based data management. Therefore, the S2 al-

gorithm can be implemented with the Hive system as we can see the SQL

query in Section 4.1.2.

The result is described in Figure 43. In the cube of M, the baseline

(HIVE) and our implementations (S2, P2, and PM) are equivalent. How-

ever, our algorithms outperform the baseline when the number of input ma-

trices become large. The Hive, S2 and P2 algorithms both take about 60 s
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Figure 43: Execution time for computing powers of a matrix

to compute M3 because they need the same number of MR jobs and use the

same raw key. On the other hand, PM requires only 35 s. This result summa-

rizes that reducing the number of MR iterations is indeed important. As the

degree of powers increases, the gap between S2 and PM gradually grows.

Even P2 outperforms the S2 algorithm. This result shows the importance of

the inter-operation parallelism approach.

5.2.4.2 Limitations of the Parallel M-way Join

After the first experiment with small matrices, we increased the matri-

ces’ size. Figure 44 shows the experimental results. We used three data sets

as described above. This result shows that the computation time for the PM

algorithm is rapidly increased. Potential reasons for this are given below.

• As described in section 5.2.2, the parallel m-way join operation du-

plicates a (row,col,val) record according to the number of machines.

The record duplication leads to a higher network cost between map-

117



Figure 44: Trade-off between disk I/O and network overhead

pers and reducers.

• The composite key implementation of PM sacrifices intra-operation

parallelism. In S2, we have a number of values for a join key. How-

ever, the maximum number of values for a join key in PM is the num-

ber of machines. Therefore, S2 has a number of partitions, each with

a small number of records, while P2 has a small number of parti-

tions, each with a large number of records. Moreover, Hadoop’s map-

per sorts local (key,value) pairs according to their keys. Because PM

generates many records for a key, its sorting overhead is larger than

that of S2.

Although PM reduces the number of MR iterations, the cost of the shuffle

phase of PM is higher than that of S2. P2 implements the raw key, so it still

shows good performance for a large dataset.
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5.2.5 Discussion

These experimental results show that we have to resolve the job iter-

ation and network overhead. Implementing PM with the raw key will lead

to the best performance. To do this, we can change the underlying record

representation, thereby reducing the number of duplications and increasing

the diversity of the join key within a MapReduce job. However, the scalable

algorithm requires the sparse matrix representation scheme (row, col, val),

which means that we cannot change the underlying record representation.

Therefore, we need another approach to improve the performance of the al-

gorithms. According to the experimental results, the parallel two-way join

algorithm balances the inter-operation parallelism and the intra-operation

parallelism approaches, because it can still use the raw key implementation.

As a result, P2 shows the best performance for a large dataset. In the next

section, we discuss how to adopt the P2 algorithm appropriately into the

existing Hadoop infrastructure.

5.2.6 Extension: Embedded MapReduce

As we have shown through the experiments in Section 5.2.4, exploit-

ing inter-operation parallelism is helpful for matrix chain multiplication.

However, the existing Hadoop MapReduce framework is not sufficient to

leverage the inter-operation parallelism for a chain of matrix multiplica-

tions. Data is stored in a shared storage. Once a MapReduce job is launched,

data is split and delivered to mappers. The map function emits (k,v) pairs

that will be sorted locally according to k. In the shuffle phase, (k,v) pairs
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Figure 45: Embedded MapReduce jobs in a map-only job

are transferred to reducers and sorted again. After the reduce function, the

results will be written back to the shared storage.

This processing flow has some demerits in optimizing the P2 algorithm.

First, an iterative MapReduce job needs unnecessary disk I/O on the shared

storage. Sorting in a mapper and a shuffle phase is also unnecessary. As a

result, we need to modify the existing Hadoop implementation.

Our modification idea is a map-only job. As demonstrated in Figure 45,

the Hadoop MapReduce framework allows a map-only job to avoid sorting

in a mapper or the shuffle phase. Therefore, we can optimize the P2 algo-

rithm if we can simulate the MapReduce framework inside a map task.

To implement the idea, we adopt the Apache Giraph framework [57].

This framework was started as an open-source version of Google’s Pregel

[58] which follows the BSP (Bulk Synchronous Parallel) model [59] for

large-scale graph processing. One of important aspects of this framework is

that it helps us to launch a map-only job on the existing Hadoop infrastruc-
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Figure 46: Execution time of BSP-based implementation

ture easily. We reimplement our P2 algorithm in order to use the map-only

job feature.

It should be noted that the BSP model is convertible into the MapRe-

duce programming model, a result proven by [60]. Therefore, a MapReduce

job can be implemented with a series of supersteps and vice versa. Alg. 12

shows a detailed implementation of the P2 algorithm within the BSP frame-

work. It can be divided into three parts. In the first superstep, we simulate

the map function of the MapReduce algorithm. The second part plays the

role of the reduce function. It computes join results between two matrices

with a local hash-join algorithm. The last part aggregates the join results.

Figure 46 shows a comparison result on the efficiency. BSP-based P2

outperforms MR-based P2 because of reduced overhead between MapRe-

duce job iterations. This is because the BSP-based implementation reduces

unncessary disk I/Os. Consequently, our MapReduce-based algorithms can

be adopted into existing Hadoop clusters with significant improvement in

performance.
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Algorithm 12 Compute function for P2 in the BSP framework
Input: LIST Mle f t , LIST Mright , from the driver function
Input: r, an input vertex value, (tag,row,col,val)

1: // the map() function in P2
2: if getSuperstep() == 0 then
3: if LIST Mle f t contains r.tag then
4: sendMsg((r.tag,r.col), r)
5: else
6: sendMsg((r.tag,r.row), r)
7: end if
8: removeVertex(this)
9: end if

10:

11: // the reduce() function in P2
12: if getSuperstep() == 1 then
13: computeJoin()
14: for each join result (left, right) do
15: sendMsg((le f t.row,right.col), le f t.val ∗ right.val)
16: end for
17: removeVertex(this)
18: end if
19:

20: // compute sum() for join results
21: if getSuperstep() == 2 then
22: sum⇐ 0
23: while msgIterator.hasNext() do
24: sum+= msgItertor.next()
25: end while
26: voteToHalt()
27: end if
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Chapter VI

Conclusion

Since the size of data to be processed is increasing dramatically, the

MapReduce frameworks has gained attention recently. Although many data

analysis tasks benefit from the framework, processing of n-way operation is

still difficult. Joins are fundamental n-way operations which integrate dif-

ferent data sources.

There have been a number of studies on the join processing in MapRe-

duce. In this paper, we added a new study on the effects of data skew in join

algorithms using the framework. Specifically, we proposed a new skew han-

dling technique, called Multi-Dimensional Range Partitioning, for efficient

processing of parallel joins.

The proposed technique is more efficient than previous skew handling

techniques, range-based and randomized partitioning techniques. When a

join operation has join product skew, our algorithm outperforms the range-

based algorithms. When the size of input relation is sufficiently large, our

algorithm outperforms the randomized algorithms.

The proposed technique is scalable. Regardless of the size of input data,

we can create sub-ranges that can be fit in memory. Moreover, the execution

time of a join operation can be reduced as we add more machines into the

cluster. On the other hand, the randomized algorithm produces more inter-

mediate results when we increase the number of processing units.
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In addition, the proposed technique is platform-independent. Although

we examine our algorithms with the MapReduce framework, the MDRP

technique itself can actually work with traditional parallel DBMSs. The

range-based approach already used in many shared-nothing systems. Our

algorithm improves the original range-based approach when we need to con-

sider join results.

Finally, the proposed technique is applicable to several join types such

as theta-joins and multi-way joins. We have demonstrated the effectiveness

of our technique with extensive experiments on many synthetic and real-

world data sets.
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초록

조인은 대부분의 데이터 분석 작업에서 사용되는 중요한 연산이

지만,맵리듀스에서직접적으로지원되지는않는다.이것은맵리듀스

가기본적으로하나의입력데이터만을다루도록설계되었고,또한맵

리듀스의 ‘키-일치 (key-equality)’ 방식의 데이터 처리 흐름이 다양한

조인조건을수용하기어려웠기때문이다.이에따라,맵리듀스에서의

조인에대한수많은연구결과와알고리즘들이발표되었으며,지금도

활발하게연구가진행중이다.

여타의 비공유(shared-nothing) 시스템에서와 마찬가지로, 맵리듀

스에서의조인알고리즘이갖는중요한문제가운데하나는데이터의

불균형(skew)에대한처리문제이다.이것은가장늦게종료하는계산

노드가전체수행시간을결정하는비공유시스템의특징때문이다.이

를해결하기위해서지금까지범위분할 (range partitioning)방식과임

의분할 (random partitioning)방식이사용되어왔으나,이들은각각특

정한상황에서약점을가지고있다.

따라서이논문에서는이전방식들의문제점을살펴보고,이에대

응할수있는새로운불균형처리기법을제시한다.제안된기법은다

차원범위분할 (Multi-Dimensional Range Partitioning)방식으로명명했

으며, 이 논문에서는 다양한 실험을 통해 제안 방식이 기존 방식보다

좋은성능을보임을입증한다.보다구체적으로, 1)제안된방식은기존

의범위분할방식에비하여조인결과의크기에대한고려를가능하게

한다.이는개별적입력에서불균형이없더라도결과에서불균형이발

생하는 경우를 처리하는데 도움이 된다. 2) 제안 방식은 기존의 임의
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분할 방식과 비교하여, 조인 조건을 사전에 활용하여 발생 가능성이

없는입력쌍에대해여과를가능하게한다.이는불필요한입력의중

복전송을방지하여네트워크비용을감소시키고,불균형이존재하지

않을경우에도좋은성능을발휘하도록해준다.

제안방식은기존의맵리듀스프레임워크에대한수정없이,세타

조인및멀티웨이조인과같은진보된연산에대해서도처리가가능하

다.우리는여러데이터셋에서수행된다양한실험결과를통해제안

방식이기존방식보다효과적임을보인다.

주요어 : 병렬조인,불균형데이터,다차원범위분할,맵리듀스

학번 : 2007-20973
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