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Abstract

In this thesis, we propose a method to recognize human action and their orienta-

tion independently of viewpoints using generalized 4D [x,y,z,t] motion features.

The conventional action recognition methods assume that the camera view is

fixed and people are standing towards the cameras. However, in real life sce-

narios, the cameras are installed at various positions for their purposes and the

orientation of people are chosen arbitrarily. Therefore, the images can be taken

with various views according to the position of camera and the orientation of peo-

ple. To recognize human action and their orientation under this difficult scenario,

we focus on the view invariant action recognition method which can recognize the

test videos from any arbitrary view.

For this purpose, we propose a method to recognize human action and their

orientation independently of viewpoints by developing 4D space-time interest

points (4D-STIPs, [x,y,z,t]) using 3D space (3D-S, [x,y,z]) volumes reconstructed

from images of a finite number of different views. Since the 3D-S volumes and

the 4D-STIPs are constructed using volumetric information, the features for ar-

bitrary 2D space (2D-S, [x,y]) viewpoint can be generated by projecting the 3D-S

volumes and 4D-STIPs on corresponding test image planes. With these projected

features, we construct motion history images (MHIs) and non-motion history

images (NMHIs) which encode the moving and non-moving parts of an action re-

spectively. Since MHIs cannot guarantee a good performance when moving parts

of an object show similar patterns, we propose NMHIs and combine it with MHIs

to add the information from stationary parts of an object in the description of

the particular action class. To reduce the dimension of MHIs and NMHIs, we

apply class-augmented principal component analysis (CA-PCA) which uses class
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information for dimension reduction. Since we use the action label for reducing

the dimension of features, we obtain the principal axis which can separate each

action well. After reducing the feature dimension, the final features are trained

by support vector data description method (SVDD) and tested by support vector

domain density description (SVDDD). As for the recognition of action orienta-

tion, the features are reduced the dimension using orientation label. Similarly,

the reduced features are trained by SVDD and tested by SVDDD.

The proposed 4D-STIPs can be applied to view invariant recognition of ac-

tion and their orientation, and we verify that they represent the properties of

each action compactly in experiments. To assume arbitrary test view as in real

applications, we develop a new testing dataset which is totally different from the

training dataset. We verify our algorithm by training action models using the

multi-view IXMAS dataset and testing using SNU dataset. Experimental results

show that the proposed method is more generalized and outperforms the state-

of-the-art methods, especially when training the classifier with the information

insufficient about the test views. As for the recognition of action orientation,

we experiment with SNU dataset taken from 5 different orientations to verify

recognition performance. The recognition of action orientation can be helpful in

analyzing the video by providing the information about interactions of people.

Keywords: 4D space-time interest points, view invariant action recognition,

recognition of action orientation, 3D reconstruction

Student ID Number: 2009-30180
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Chapter 1

Introduction

1.1 Motivations

These days, surveillance cameras are everywhere and people do not aware of

cameras. Therefore, cameras may capture people from enormously various views

according to human orientation and camera positions as in Figure 1.1. However,

in the conventional view dependent action recognition datasets such as KTH

dataset (Figure 1.2 (a)) [1], the position of camera is fixed and people are stand-

ing towards the camera. The conventional view dependent action recognition

methods [3, 4, 5, 6, 7, 8, 9, 10, 11, 12] have shown good recognition performance

in the fixed camera view with the methods such as local features and bag of

visual-words. However, in real human action recognition scenarios unlike dataset

with artificially controlled views, not only the position of cameras but also the

orientation of people can be changed as in Figure 1.2 (b) [2]. The conventional

local features are highly dependent on the camera view because the information

captured by local features is significantly different for different camera views. In

order to achieve higher recognition rate, these methods should train classifier in
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Figure 1.1: Various views. Cameras may capture people from enormously various
views according to human orientation and camera positions.

2



(a)

(b)

Figure 1.2: Datasets for action recognition. (a) The KTH dataset for view depen-
dent action recognition. The position of camera is fixed and people are standing
towards the camera in the fixed position [1]. (b) The IXMAS dataset for view
invariant action recognition. The dataset is taken from various camera views and
the position and the orientation of actor are chosen arbitrarily [2].
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the same view where the testing will be carried out. Therefore, the model trained

on the dataset made in artificially controlled views is of no use in practical appli-

cations. Despite of new advancements in the action recognition, the gap between

its current capabilities and the use in real life applications remains large. The

substantial variations of camera positions and human orientation in the video

data make the action recognition a challenging task and limit the applicability

of the conventional methods. Hence we focus on the view invariant action recog-

nition which is applicable to real life scenarios by handling the test videos from

any arbitrary view.

The action recognition research can be categorized largely into two cases of

gesture and general action recognition. The gesture recognition is usually for

human-computer interaction in predefined settings. Most actual applications for

gesture recognition assume human and computer face each other and the recogni-

tion in front view images is performed. However, recognition of actions in general

settings such as surveillance environments requires view invariant recognition.

This is because the orientation of human in the surveillance camera vary signif-

icantly. The substantial variations of human pose in surveillance scenario make

the action recognition a challenging task and limit the applicability of the con-

ventional methods. To solve view invariant action recognition problem in general

condition, various methods are proposed and those methods can be separated as

3D space (3D-S, [x,y,z]) and 2D space (2D-S, [x,y]) approaches. In recognition

step, 3D-S approach requires special settings such as multiple number of cameras

or RGB-D sensors, whereas 2D-S approach uses just 2D-S images from a single

camera.

In the 3D-S approach, several test images from multiple views or the RGB-D

sensors to measure depth information are required. [2] proposed the motion his-

tory volumes which requires multiple view images in testing step. The methods
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in [13, 14] also required images from multiple cameras for 3D-S pose estimation

and [15] proposed multi-sensor fusion strategy. But for obtaining test images from

multiple views, those many cameras have to be deployed to overlap a target region

at all times, which is too expensive and so impractical in most of the situations

such as wide area surveillance. Recently, many approaches for action recognition

using RGB-D sensor were proposed in [16, 17, 18, 19, 20, 21]. The RGB-D sensor

offers discerning information by providing 3D-S structural information. However,

these methods require additional depth sensor which could not work well in out-

door or at long distance. In addition, they assume the action is captured from

the front view. Even when using RGB-D sensors, view invariant recognition still

requires multiple view information because the depth information from a single

RGB-D sensor could not cover the information in the opposite side.

As for the 2D-S approach, the research has been conducted in three direc-

tions: 1) designing of view invariant features, 2) designing a classifier based on

transfer learning, and 3) learning of features from multiple views. As for the first

issue, [22] proposed a view invariant feature by using the properties that the

significant changes of direction in 3D-S motion trajectory are preserved. [23] de-

veloped a quasi view invariant approach by representing each action as a unique

curve using trajectories of body-joints. [24] introduced the concept of fundamen-

tal ratios having view invariant characteristics. [25, 26] proposed a view invariant

feature using temporal self-similarities. However, the descriptors of this scheme

are inherently limited to be strictly view invariant and could not work well when

the view changes on a large scale. Furthermore, view invariant features can not

recognize the orientation of action since most of existing view invariant features

are still insufficient for making features used commonly for all the views.

To cope with the inherent limitation of view invariant features, transfer learn-

ing concept were reported. Recently many variants of the transfer learning ap-
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proach have been developed in [27, 28, 29, 30, 31, 32, 33]. In these methods,

source and target views were defined; source view is used for training purpose,

whereas the target view is for testing phase. This transfer learning approach has

an impractical assumption that source and target views are defined in advance.

[28, 29, 30, 33] suggested a visual dictionary based on features obtained from

both predefined source and target views. For association between source and tar-

get views, the visual dictionary has been constructed using features extracted

from both predefined source and target views. In this approach, the classifier is

trained with visual words from the source view, but the visual dictionary is made

using videos from the target view as well as the source view. Hence, this approach

could not guarantee the performance for the new view which does not partici-

pate in the process making visual dictionary. This implies the transfer learning

approach is limited to a set of predefined views and so it does not provide ar-

bitrary view invariant property. Furthermore, those methods can not recognize

the orientation of action, since they do not consider the orientation information

when they make visual dictionary.

To achieve the complete view invariant action recognition using single camera,

all the features from all of views should be accumulated. Since it is not possible

to obtain information from all of views in practice, most of the existing methods

deployed a finite number of views to generalize the recognition ability [34, 35,

36, 37, 38, 39]. [34] represented an image sequence using bag of spatio-temporal

features called video-words, and [35] made 3D space-time (3D-ST, [x,y,t]) volumes

by concatenating the actor’s 2D-S silhouettes. [36] proposed feature-tree to index

large scale 3D-ST features and [37] computed the features with 3D-ST histogram

of oriented gradients (HOG) obtained from the image sequence of multiple views.

[38] proposed action recognition method based on the local motion signatures by

tracking 2D-S HOG. [39] formulated the view label of action as a latent variable in
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latent kernelized structural support vector machine (SVM) and implicitly infer it

during both learning and inference. However, these methods still do not guarantee

a satisfying performance on the new test view which is not contained in the

training. To achieve a satisfactory result, acquiring data from different views using

a large number of cameras is required. Furthermore, the methods accumulating

features from finite number of views can not recognize the orientation of action

since they consider the same action from different views as the same class in

training step.

1.2 Contents of the research

We live in a three-dimensional [x,y,z] world, however, images taken are two-

dimensional [x,y]. The information such as depth is not available in the 2D-S

images (Figure 1.3 (a)). To recognize actions view invariantly with 2D-S images,

the best solution is to use the videos from all possible views as in Figure 1.3 (b),

however, it is impractical to deploy infinite number of cameras. Otherwise, 3D-S

volumes have complete three-dimensional information (Figure 1.4 (a)). There-

fore, if we have 3D-S volumes, we can generate all possible views by projecting

the 3D-S volumes into 2D-S image planes (Figure 1.4 (b)). My thesis starts from

the motivation that we can utilize 3D-S volumes for view invariant action recog-

nition rather than trying to understand 3D-S world with 2D-S images. For this

purpose, we first reconstruct 3D-S volumes by computing the visual hulls via

back projecting the multi-view 2D-S silhouettes [40] and calculate generalized

4D space-time (4D-ST, [x,y,z,t]) motion features from 3D-S volumes. With 3D-S

volumes and 4D space-time interest points (4D-STIPs, [x,y,z,t]) calculated from

3D-S volumes, we solve the view invariant action recognition problem.
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Figure 1.3: 2D-S images. (a) The information such as depth is not available in 2D-
S images [2]. (b) All possible views around a person in three-dimensional space
[26].
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Figure 1.4: 3D-S volume. (a) 3D-S volume for view invariant action recognition
[2]. (b) We can generate all possible views by projecting the 3D-S volumes into
2D-S image planes.
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1.2.1 Generalized 4D motion features

The system for action recognition can be divided into two parts of vision and

machine learning [41]. We represent posture or extract local features from videos

[42, 43, 44, 45, 46, 47, 48] in the vision part. In the machine learning part,

we develop action models by mapping posture or local features into meaningful

motion classes [49, 50, 51, 52, 53, 5, 54, 55, 56, 57]. We propose a method of

extracting local features from 3D-S volumes for view invariant action recognition.

In the 2D-S domain (2D-S image), interest points with a significant local vari-

ation of image intensities have been extensively investigated in [58, 59, 60, 61].

However, interest points extracted from 2D-S domain is inappropriate for re-

flecting characteristics of actions which are varied over time, since they do not

consider the variations along the time axis. To complement this, interest points in

3D space-time [x,y,t] domain (2D-S image sequences) which show significant vari-

ations along both space [x,y] and time [t] axis have been proposed in [47, 45]. How-

ever, these 3D space-time interest points (3D-STIPs, [x,y,t]) are highly dependent

on the camera view because the same actions in 2D-S image sequence captured

from different camera view are significantly different. To solve this problem, we

propose 4D-STIPs in 4D-ST domain (3D-S volume sequences) by extending the

3D-STIPs. Since the proposed 4D-STIPs are constructed using volumetric infor-

mation, the features for arbitrary 2D-S viewpoint can be generated by projecting

4D-STIPs on corresponding image planes, which enables action recognition in

any camera view point.

We first explain the basic concept of interest points by introducing the Harris

corner detector [59]. Then, we introduce the method of 3D-STIPs proposed by

[47] which extends the notion of Harris corner detector into the time [t] domain.

We also briefly explain two approaches of 3D reconstruction (calibration-based
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Figure 1.5: Generation of features. By projecting the features in 3D-S to the
arbitrary 2D-S image planes, we can generate the features from any number of
views even when just 5 cameras are used.

approach and image-based approach) for 3D-S volumes. With the 3D-S volumes

reconstructed from several images of different views, we propose 4D-STIPs by

extending the method based on 3D-STIPs. And we also propose the variant of

3D-STIPs which take into account the simultaneous gradient variation in all 3

dimensions [x,y,t] to focus on the motion of important spatial corner points.

1.2.2 View invariant action recognition

In this thesis, we propose a method to be able to extract 4D-ST motion features

covering arbitrary views from image sequences of finite camera views (5 camera

views in this thesis). Unlike the existing methods which extract features from the

limited number of 2D-S images of different views, we can generate the features

from any number of views even when just 5 cameras are used as in Figure 1.5.

This can be done by projecting the features in 3D-S to the arbitrary 2D-S image

planes. Consequently, the features in the proposed method contain characteristics

at each view, while most of the existing view invariant features lose characteristics
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at each view because they are obtained by extracting common properties from all

views. Unlike the methods which learn features from multiple views, the proposed

method shows good recognition results even when the images of test view are not

available during the training step and does not need to predefine the test view

as in transfer learning methods. And the proposed method assumes that just a

single test video from an arbitrary view is given and, therefore, extra equipments

such as multiple cameras or RGB-D sensor are not required.

We first introduce the features and machine learning algorithms used in our

proposed method and then explain the proposed method. In experiments, we

train and test in different datasets to evaluate the generalization performance

for arbitrary view videos. The proposed method is verified to outperform the

state-of-the-art methods for the images whose test view is not provided during

the training step.

1.2.3 Recognition of action orientation

We propose a method to recognize the orientation of action, i.e. the orientation of

human, which is not tried in view invariant action recognition field. The proposed

method can recognize the orientation of actor in the test video since our training

sets, which are projections of 4D-ST motion features to various image planes,

contain the orientation information. On the other hand, the view invariant fea-

tures can not recognize the orientation of action since most of the existing view

invariant features can not cover all the information about each view for making

features used commonly for all the views. Transfer learning related methods do

not consider the orientation information when they make visual dictionary, and,

therefore they can not recognize the orientation of action. The methods accumu-

lating features from finite number of views can not recognize the orientation of

action since they consider the same action from different views as the same class

12



in training step.

Since the process for making features is similar with the view invariant action

recognition method, we introduce the training and testing step for recognition

of action orientation. In experiments, we test the effectiveness of the proposed

method using SNU dataset which was taken from 5 different orientations. The

proposed method will be useful for recognizing the more complex human activities

such as human-human interactions.
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Chapter 2

Generalized 4D Motion

Features

2.1 Introduction

Human action recognition is becoming one of core parts in computer vision tech-

nology with its wide applicability such as visual surveillance, human-computer

interaction, and video retrieval. The system for action recognition can be di-

vided into two parts of vision and machine learning [41]. In the vision part,

we represent posture or extract local features for action recognition from videos

[42, 43, 44, 45, 46, 47, 48]. In the machine learning part, we develop action

models by mapping posture or local features into meaningful motion classes

[49, 50, 51, 52, 53, 5, 54, 55, 56, 57].

Many attempts to find local feature points for action recognition were re-

ported [45, 47]. Among them, 3D space-time interest points (3D-STIPs, [x,y,t])

[47] which is developed by extending Harris corner detector [59] were widely used

in action recognition. Harris corner detector finds 2D space interest points (2D-
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Figure 2.1: Interest points in various dimension. 2D-SIPs are extracted from one
2D-S image and therefore could not capture the important moment of varying
actions. 3D-STIPs are extracted from 2D-S image sequence and developed to
capture the significant variation along both space [x,y] and time [t] axis. How-
ever, 3D-STIPs are highly dependent on the camera view and the performance
of classifiers using 3D-STIPs are highly degraded when the camera view varies
significantly. 4D-STIPs are extracted from 3D-S volumes and, therefore, the fea-
tures for arbitrary 2D-S viewpoint can be generated by projecting 4D-STIPs on
corresponding image planes.

SIPs, [x,y]) such as spatial corner points in 2D space (2D-S, [x,y]) image. However,

Harris corner detector is not appropriate to represent the properties of actions

which vary according to the time, since it lacks of any information about time.

To complement this, [47] developed 3D-STIPs having significant variation along

both space [x,y] and time [t] axis in the 2D-S image sequence. However, these 3D-

STIPs are highly dependent on the camera view points because the information

captured from 2D-S image sequence is significantly different for different camera

views. In real life scenarios, human orientation and camera positions are unknown

and therefore it is necessary to research about view invariant action recognition.

We propose a method to recognize human actions independently of view-

15



Figure 2.2: 3D-S volume sequence [2]. 3D-S volume sequence of ‘kick’ action
reconstructed from images of several number of different views.

points when just one 2D-S image sequence from a single camera is available. To

solve this problem, we propose 4D space-time interest points (4D-STIPs, [x,y,z,t])

which extend the 3D-STIPs using 3D space (3D-S, [x,y,z]) volumes (Figure 2.2) re-

constructed from images of several number of different views. Since the proposed

features are constructed using volumetric information, the features for arbitrary

2D-S viewpoint can be generated by projecting 4D-STIPs on corresponding image

planes and used for training step. We also propose the variant of 3D-STIPs, which

take into account the simultaneous gradient variation in all 3 [x,y,t] dimension to

focus on the motion of important spatial corner points. The proposed 3D-STIPs

are used in recognition step since we assume that only one 2D-S image sequence

from arbitrary view is available. Figure 2.1 shows differences of interest points

according to the dimension. To calculate 4D-STIPs, we use 3D-S volumes from

INRIA Xmas Motion Acquisition Sequences (IXMAS) [2] and experiments show

that the proposed 4D-STIPs reflect the properties of each action well.
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Figure 2.3: Basic idea of Harris corner detector [62]. This Figure shows the basic
idea of Harris corner detector which finds corner points showing significant inten-
sity change in all directions. At flat region, no intensity change in all direction.
At edge, no intensity change along the edge direction. At corner point, significant
intensity change in all directions.

Figure 2.4: Eigenvalues of Harris corner detector [62]. We can find the corner
points with eigenvalues of matrix M in equation (2.8). If the λ−1/2 is small, that
means the intensity shows the fastest change along that direction and if the λ−1/2

is large, that means the intensity shows the slowest change along that direction.
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2.2 Preliminaries

2.2.1 Harris corner detector

Our method extends the existing 3D-STIPs which build on the idea of spatial

interest points, i.e. Harris corner detector [59], into the space [x,y] and time [t]

domain. Therefore, in this section, we review the basic idea of Harris corner

detector. The basic idea of Harris corner detector is to find corner points which

show large change in intensity by shifting a window in any direction. In Figure

2.3, flat region shows no change in all directions and edge shows no change along

the edge direction while corner point in an image shows significant change in all

directions. The sum of squared difference between an image patch and a patch

shifted by offset (u, v) can be represented by

E(u, v) = Σ
x,y

w(x, y)(I(x+ u, y + v)− I(x, y))2, (2.1)

where w(x, y) is a Gaussian window function. The equation above considers only

a set of shifts at every 45 degrees. To consider all small shifts, the equation is

changed by Taylor’s expansion as

E(u, v) = Σ
x,y

w(x, y)((Ixu+ Iyv +O(u2, v2))2. (2.2)

For small shifts of (u, v), we have a bilinear approximation as

E(u, v) ≃ Au2 + 2Cuv +Bv2, (2.3)

A = Σ
x,y

w(x, y)I2x(x, y), (2.4)

B = Σ
x,y

w(x, y)I2y (x, y), (2.5)

18



C = Σ
x,y

w(x, y)Ix(x, y)Iy(x, y). (2.6)

Equivalently we can represent the equation as

E(u, v) ≃
[
u, v

]
M

u

v,

 , (2.7)

M = Σ
x,y

w(x, y)

 I2x IxIy

IxIy I2y

 . (2.8)

To find the corner points, we modify the equation above to ellipse equation with

eigenvalues of M as

E(u, v) ≃
[
u, v

]
M

u

v,

 = const, (2.9)

E(u, v) ≃
[
u, v

]λ1 0

0 λ2

u
v

 = const, (2.10)

E(u, v) ≃ u2

( 1√
λ1
)2

+
v2

( 1√
λ2
)2

= const. (2.11)

Then we can find the corner points with eigenvalues λ1 and λ2. If the λ−1/2 is

small, that means the intensity shows the fastest change along that direction and

if the λ−1/2 is large, that means the intensity shows the slowest change along that

direction (Figure 2.4). Therefore, we can classify image points using eigenvalues

λ1 and λ2. If two eigenvalues are large, that point is corner point and if one of

eigenvalues is large, that point is on the edge. And if both eigenvalues are small

then the intensity of image around that point is almost constant in all directions.
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Figure 2.5: Detected Harris corner points [62]. This Figure shows the detected
Harris corner points in 2D-S image.

The measurement of corner response at each pixel is calculated as

R = detM − k(traceM)2, (2.12)

detM = λ1λ2, (2.13)

traceM = λ1 + λ2, (2.14)

where k is an empirical constant (k = 0.04 ∼ 0.06) and the threshold of R is

adjusted to obtain the desired number of corner points within an image. The

detected Harris corner points are shown in Figure 2.5 [62].
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2.2.2 3D space-time interest points

In this section, we review 3D-STIPs [47] which is developed by extending 2D-S

interest points (Harris corner detector) into the space-time [x,y,t] domain. This

3D-STIPs detect local structures in space-time where the image values have sig-

nificant local variations in both space [x,y] and time [t]. The resulting interest

points reflect interesting events in videos and, therefore, they are widely used in

action recognition area. The basic idea is very similar with Harris corner detector.

While the Harris corner detector finds space corner points in a 2D-S image, the

method of 3D-STIPs finds space-time corner point in an 2D-S image sequence.

To model a space-time image sequence, we use a function f : R2 × R 7−→ R and

construct its linear scale-space representation L : R2×R×R2
+ 7−→ R by convolu-

tion of f with an anisotropic Gaussian kernel with independent spatial variance

σ2
l and temporal variance τ2l

L(x, y, t;σ2
l , τ

2
l ) = g(x, y, t;σ2

l , τ
2
l ) ∗ f(x, y, t), (2.15)

g(x, y, t;σ2
l , τ

2
l ) =

1√
(2π)3σ4

l τ
2
l

exp(−(x2 + y2)

2σ2
l

− t2

2τ2l
). (2.16)

We construct linear scale-space representation to control the scale of interest

points, i.e. if we convolute an image sequence with large value of variances, large

scale points are detected as interest points. Using a separate scale parameter for

the temporal domain is essential, since the spatial and the temporal extents of

events are in general independent. Similar to Harris corner detector, we consider a

space-time second-moment matrix, which is 3-by-3 matrix composed of first order
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spatial and temporal derivatives averaged using a Gaussian weighting function as

µ(x, y, t) = g(x, y, t;σ2
i , τ

2
i ) ∗


L2
x LxLy LxLt

LxLy L2
y LyLt

LxLt LyLt L2
t

 , (2.17)

g(x, y, t;σ2
i , τ

2
i ) =

1√
(2π)3σ4

i τ
2
i

exp(−(x2 + y2)

2σ2
i

− t2

2τ2i
), (2.18)

Lx = ∂xL,Ly = ∂yL,Lt = ∂tL, (2.19)

here we relate the integration scales σ2
i and τ2i to the local scales σ2

l and τ2l

according to σ2
i = sσ2

l and τ2i = sτ2l . To detect interest points, we search for

regions in f having significant eigenvalues λ1, λ2, λ3 of µ(x, y, t). Among different

approaches to find such regions, we propose here to extend the Harris corner

function defined for the spatial domain into the space-time domain by combining

the determinant and the trace of µ as follows

R = det(µ)− k · trace(µ)3, (2.20)

det(µ) = λ1λ2λ3, (2.21)

trace(µ) = λ1 + λ2 + λ3. (2.22)

To show how positive local maxima of R correspond to points with high values

of λ1, λ2, λ3(λ1 ≤ λ2 ≤ λ3), we define the ratios α = λ2/λ1 and β = λ3/λ1 and

re-write R as

R = λ3
1(αβ − k(1 + α+ β)3). (2.23)

From the requirement that R ≥ 0, we get k ≤ αβ/(1+α+β)3 and it follows that

k assumes its maximum possible value k = 1/27 when α = β = 1. For sufficiently
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Figure 2.6: Detected 3D-STIPs [47]. This Figure shows the detected 3D-STIPs in
2D-S image sequence.

large values of k, positive local maxima of R correspond to points with high

variation of the image values along both the spatial and the temporal directions.

In particular, if we set the maximum value of α, β to 23 as in the spatial domain,

the value of k to be used in R will be then be k ≈ 0.005. Thus, space-time

interest points of f can be found by detecting local space-time maximum in R.

The detected 3D-STIPs are shown in Figure 2.6.

2.2.3 3D reconstruction

The goal of 3D reconstruction is to make a complete 3D-S object model with

images taken from many camera viewpoints. The 3D reconstruction have had an

enormous impact on a variety of applications including 3D-S modeling, object

localization, object recognition and motion capture applications. Recently, the

reconstructed 3D-S volumes are frequently used in action recognition area [2, 63,

35, 37].

Over the last years, a number of high quality algorithms have been developed

[64, 65]. The algorithms can be divided into two categories whether it reconstructs
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Figure 2.7: Calibration-based approach for 3D reconstruction [67]. In the
calibration-based approach, we assume that several cameras are installed at fixed
positions and images of a planar checkerboard are taken from those cameras.

object models from calibrated views or not. The approaches using calibrated views

[66] are to start with an estimate of the silhouettes or boundaries of the object

that are projected in 3D space for visual hull intersection (alternatively voxels

are projected back to test if the silhouettes carve them out). The other image-

based approaches [40] perform the visual hull intersection in the image plane

without requiring to go in 3D space using planar homographies and foreground

likelihood information from a set of arbitrary views. In this section, we will briefly

introduce both categories (calibration-based and image-based approaches) for 3D

reconstruction.

In the calibration-based approach, we assume that several cameras are in-
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stalled at fixed positions and images of a planar checkerboard are taken from

those cameras as in Figure 2.7. From [68], the point x in an image plane (corre-

sponding to XW in world coordinates) can be calculated by multiplying camera

matrix P as

x = PXW = KR[I| − C̃]XW , (2.24)

K =


f 0 px

0 f py

0 0 1

 . (2.25)

The camera matrix P is consist of two parts of intrinsic parameter K and extrin-

sic parameter R[I|− C̃]. While the calibration matrix K contains the information

about camera intrinsic parameters such as focal length f and image center of the

camera (px, py), the extrinsic parameter contains rotation matrix of camera coor-

dinates R and the inhomogeneous coordinates of the camera center C̃. Calibration

is to find camera intrinsic and extrinsic parameters. With the grid positions of

checkerboard in images of cameras, the intrinsic and the extrinsic parameters

are calculated, and the camera calibration code is available on the website [67].

After calibration for all cameras are done, the object are taken from all cameras

and then the silhouettes or boundaries of the object are calculated. The object

is reconstructed by projecting the silhouettes or boundaries of the object in 3D

space for visual hull intersection (alternatively voxels are projected back to test

if the silhouettes carve them out).

In the image-based approach, instead of calibration we use planar homogra-

phies and foreground information from a set of arbitrary views. In Figure 2.8

(a), the scene is viewed from several angles with the cylinder object detected

as foreground (white regions) in each view. One of the views, say I1, is chosen

as the reference view. Warping view Ii to the reference view using homography
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Figure 2.8: Image-based approach for 3D reconstruction [40]. (a) Warping the
silhouettes of an object from the image plane to a plane in the scene using planar
homography is equivalent to projecting the visual hull of the object onto the plane.
The intersection of these shadows amounts to performing visual hull intersection
on the plane. The result is the dark blue region that can be considered a slice of
the cylinder cut out by π. (b) The same process can be performed on the second
plane ϕ which delivers another slice of the cylinder.

Hiπ1 induced by scene plane π can be viewed as the foreground object casting

a shadow on π. The shadow is then projected onto the reference view to com-

plete the operation of the homographic warping. Clearly computing the shadow

is equivalent to determining the region on π that falls inside the visual hull of

the object image in Ii. The fusion of these shadows projected from various views

therefore amounts to performing visual hull intersection on plane π, depicted by

the dark blue region in Figure 2.8 (a). This process is performed implicitly, when

we warp all the views onto the reference view and fuse them to obtain the red

region in the reference view I1. Without loss of generality, reference image plane

I1 after homographic fusion of foreground data can be viewed as a projectively

transformed planar slice of the object. Starting with a reference plane in the scene

(typically the ground plane), we perform visual hull intersection on successively

parallel planes in the up direction along the body of object as in Figure 2.8 (b).

If we have the homography Hiπj induced by a reference scene plane π between
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Figure 2.9: Two steps of proposed 3D-STIPs method. SIPs in each image (blue
dots in the first row) and 3D-STIPs (red dots in the second row) from an image
sequence.

views i and j, then the homography Hiϕj induced by a plane ϕ parallel to π in

the reference normal direction is given by

Hiϕj = (Hiπj + [0|γvref ])(I3×3 −
1

1 + γ
[0|γvref ]), (2.26)

where γ is scale factor and vref is the vanishing point which is computed by

detecting vertical line segments in the scene and finding their intersection. By

accumulating the occupancy grid, we can reconstruct 3D-S objects.

2.3 Proposed method

2.3.1 Modified 3D space-time interest points

We assume that actions can be described properly by focusing on the motion of

spatial corner points such as head, hands and feet because the movement of body

is meaningless for describing the details of actions. However, the conventional

3D-STIPs may be extracted from the body parts motions in addition to motions

of head, hands and feet since existing 3D-STIPs do not take into account an
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information about the simultaneous gradient variation in all 3 [x,y,t] dimensions.

Therefore the existing method might extract interest points even when any one of

the spatial or temporal derivatives becomes large. But, as the human action con-

sists of orderly movements of body parts, the interest point should be extracted

where the both spatial and temporal derivatives are simultaneously large. To ex-

tract temporal interest points only from spatially distinctive parts such as head,

hands and feet, we modify the existing 3D-STIPs method by hierarchically ex-

tracting the STIPs in two steps. We first find the space interest points (SIPs)

in each image and then decide SIPs having significant variation along time axis

as STIPs. Figure 2.9 shows the results of two steps of our 3D-STIPs method.

The first row shows the extracted SIPs (blue dots) in each 2D-S image and the

second row shows the 3D-STIPs (red dots) from an image sequence. Note that

the stationary SIPs are not selected as 3D-STIPs. To find SIPs, we define an im-

age as a function f : R2 7−→ R and construct its linear scale-space representation

L : R2×R+ 7−→ R by convolution of f with Gaussian kernel gl(x, y;σ2
l ) with zero

mean and spatial variance σ2
l as

L(x, y;σ2
l ) = gl(x, y;σ

2
l ) ∗ f(x, y), (2.27)

gl(x, y;σ
2
l ) =

1√
(2π)2σ4

l

exp(−(x2 + y2)

2σ2
l

). (2.28)

Similar to Harris corner detector, we construct a second-moment 2-by-2 matrix

µ(x, y). It is obtained after averaging out the first order spatial derivatives using

a Gaussian weighting function gi(x, y;σ
2
i ), where the relationship between inte-

gration scale and local scale is σ2
i = sσ2

l . The second-moment matrix is given

as

µ(x, y) = gi(x, y;σ
2
i ) ∗

 L2
x LxLy

LxLy L2
y

 , (2.29)
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gi(x, y;σ
2
i ) =

1√
(2π)2σ4

i

exp(−(x2 + y2)

2σ2
i

), (2.30)

Lx = ∂xL,Ly = ∂yL, (2.31)

where s is a scaling constant. To detect SIPs, we search for points having signif-

icant eigenvalues λx, λy of µ(x, y) with

λx ≥ Ts, λy ≥ Ts, (2.32)

where the threshold Ts can be adjusted to get desired number of SIPs. Now

STIPs are found by choosing the points among extracted SIPs, which show large

variation along the time axis. We use the function f : R2 ×R 7−→ R to represent

an image sequence and construct its linear scale-space representation L : R2 ×

R × R2
+ 7−→ R by convoluting it with the Gaussian kernel gl(x, y, t;σ2

l , τ
2
l ) with

zero mean, and spatial and temporal variance σ2
l , τ2l as

L(x, y, t;σ2
l , τ

2
l ) = gl(x, y, t;σ

2
l , τ

2
l ) ∗ f(x, y, t), (2.33)

gl(x, y, t;σ
2
l , τ

2
l ) =

1√
(2π)3σ4

l τ
2
l

exp(−(x2 + y2)

2σ2
l

− t2

2τ2l
). (2.34)

Then, the square of temporal derivative of L is convoluted with the Gaussian

kernel gi(t; τ2i ) with integration scale τ2i = sτ2l as

µ(x, y, t) = gi(t; τ
2
i ) ∗ L

2
t , (2.35)

gi(t; τ
2
i ) =

1√
2πτ2i

exp(− t2

2τ2i
), (2.36)

Lt = ∂tL. (2.37)
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Figure 2.10: Two steps of proposed 4D-STIPs method. SIPs in each 3D-S volume
(blue dots in the first row) and 4D-STIPs (red dots in the second row) from 3D-S
volume sequence.

STIPs are selected by applying the threshold on µ(x, y, t) as

µ(x, y, t) ≥ Tst, Tst = c · max
(x,y,t)∈SIPs

µ(x, y, t), (2.38)

where Tst is set by multiplying a constant c (0 < c ≤ 1) with the maximum value

of µ(x, y, t) evaluated at all positions of SIPs.

2.3.2 4D space-time interest points

Similar to 3D-STIPs, the 4D-STIPs are calculated by first extracting spatial

corner points within each 3D-S volume and then by selecting the corner points

having large variation along time axis (Figure 2.10). The first row shows the

extracted SIPs (blue dots) in each 3D-S volume and the second row shows the

4D-STIPs (red dots) from 3D-S volume sequence. Note that the stationary SIPs
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are not selected as 4D-STIPs. We model a 3D-S volume as f : R3 7−→ [0, 1] and

construct its linear scale-space representation L : R3 ×R+ 7−→ R by convoluting

f with Gaussian kernel gl(x, y, z;σ2
l ) with zero mean and spatial variance σ2

l as

L(x, y, z;σ2
l ) = gl(x, y, z;σ

2
l ) ∗ f(x, y, z), (2.39)

gl(x, y, z;σ
2
l ) =

1√
(2π)3σ6

l

exp(−(x2 + y2 + z2)

2σ2
l

). (2.40)

To find spatial corners where f has significant variations in all directions, we

consider a second moment matrix of µ(x, y, z) integrated over a Gaussian window

gi(x, y, z;σ
2
i ) with variance σ2

i , where the relationship between integration scale

and local scale is σ2
i = sσ2

l as

µ(x, y, z) = gi(x, y, z;σ
2
i ) ∗


L2
x LxLy LxLz

LxLy L2
y LyLz

LxLz LyLz L2
z

 , (2.41)

gi(x, y, z;σ
2
i ) =

1√
(2π)3σ6

i

exp(−(x2 + y2 + z2)

2σ2
i

), (2.42)

Lx = ∂xL,Ly = ∂yL,Lz = ∂zL. (2.43)

The points where all eigenvalues of µ(x, y, z) are greater than the threshold are

selected as the spatial corner points such as

λx ≥ Ts, λy ≥ Ts, λz ≥ Ts, (2.44)

where Ts is adjusted to obtain the desired number of spatial corner points within

each frames. A function f : R3 ×R 7−→ [0, 1] describes a 3D-S volume sequence,

and its linear scale-space representation L : R3 × R × R2
+ 7−→ R, is given by
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convolution with the Gaussian kernel gl(x, y, z, t;σ
2
l , τ

2
l ) with zero mean, and

spatial and spatial and temporal variance σ2
l , τ2l as

L(x, y, z, t;σ2
l , τ

2
l ) = gl(x, y, z, t;σ

2
l , τ

2
l ) ∗ f(x, y, z, t), (2.45)

gl(x, y, z, t;σ
2
l , τ

2
l ) =

1√
(2π)4σ6

l τ
2
l

exp(−(x2 + y2 + z2)

2σ2
l

− t2

2τ2l
). (2.46)

The square of Lt is convoluted with the Gaussian kernel gi(t; τ2i ) with integration

scale τ2i = sτ2l as

µ(x, y, z, t) = gi(t; τ
2
i ) ∗ L

2
t , (2.47)

gi(t; τ
2
i ) =

1√
2πτ2i

exp(− t2

2τ2i
), (2.48)

Lt = ∂tL. (2.49)

Then, the 4D-STIPs are computed from the previously obtained SIPs by applying

threshold on µ(x, y, z, t) as

µ(x, y, z, t) ≥ Tst, Tst = c · max
(x,y,z,t)∈SIPs

µ(x, y, z, t), (2.50)

where Tst is set as the fraction (0 < c ≤ 1) of the maximum value of µ(x, y, z, t)

evaluated at all positions of SIPs. The calculated 4D-STIPs are projected to the

2D-S views, which are defined with the camera matrices of the training views.

2.4 Experimental results

The IXMAS dataset (Figure 2.11) contains 1980 videos of total 11 action cat-

egories (check watch, cross arm, scratch head, sit down, get up, turn around,

walk, wave, punch, kick, pick up) captured from 5 different views. The 3D-S
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Figure 2.11: The IXMAS dataset [2]. Each row (1-5) shows ‘kick’ action sequence
from different views and the last row shows 3D-S volumes reconstructed from the
silhouettes of each column.
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Figure 2.12: Various 3D-S volumes [2]. 3D-S volumes of 11 actions in IXMAS
dataset.

volumes were reconstructed by computing the visual hulls via back projecting

the multi-view 2D-S silhouettes [40]. In Figure 2.11, each row (1-5) shows ‘kick’

action sequence from 5 different views and the last row shows 3D-S volumes

reconstructed from the silhouettes of each column. In this work, we used the re-

constructed 3D-S volumes (Figure 2.12) provided along with the 5 different view

videos. Each action in IXMAS was performed 3 times by 12 actors. The position

and the orientation of actors were chosen arbitrarily.

We calculated variant 3D-STIPs using image sequences from 5 different views

and 4D-STIPs using 3D-S volumes in IXMAS dataset. The 3D-STIPs were com-

puted by using scale-normalized image sequences (161×161). The SIPs were cal-

culated within convoluted images with σ2
l = 6.25 and integration scale σ2

i = 3σ2
l .

Ts was adjusted to have 7 ∼ 10 SIPs in each frame. For convoluting image se-

quences along time axis the parameters were set as τ2l = 1 and τ2i = 4τ2l . The
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constant c which determines Tst was set to 0.05.

The calculated 3D-STIPs are shown in Figure 2.13. The SIPs represented by

blue dots are spatial corner points such as head, hands and feet and the red dots

are 3D-STIPs which were obtained by selecting the corner points having large

variation along time axis among SIPs. In the ‘check watch’ action, the 3D-STIPs

are shown near the arms and hands parts, while they are shown near the legs and

feet in the ‘kick’ action. Actions can be represented compactly using positions of

3D-STIPs.

For calculating 4D-STIPs, we used scale-normalized 3D-S volumes (64×64×

64). The SIPs were calculated within convoluted volumes with σ2
l = 0.5 and

integration scale σ2
i = 2σ2

l . Ts was adjusted to get 3 ∼ 6 SIPs in each frame. For

convoluting volume sequences along time axis the parameters were set as τ2l = 1

and τ2i = 4τ2l . The constant c which determines Tst was set to 0.3.

The calculated 4D-STIPs are shown in Figure 2.14. The SIPs represented by

blue dots are spatial corner points such as head, hands and feet and the red dots

are 4D-STIPs which were obtained by selecting the corner points having large

variation along time axis among SIPs. Actions can be represented compactly

using positions of 4D-STIPs. Furthermore the features for arbitrary 2D-S view-

point can be generated by projecting 4D-STIPs on corresponding image planes

since 4D-STIPs are constructed using volumetric information, which enables view

invariant action recognition. Figure 2.15 shows 4D-STIPs accumulated from 36

video sequences (3 times repeated by 12 actors) of each action. The positions

of 4D-STIPs from different video sequences are similar and, therefore, 4D-STIPs

show the properties of each action well.
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Figure 2.13: Detected 3D-STIPs. 3D-STIPs of 11 actions in IXMAS dataset using
2D-S image sequences. The SIPs represented by blue dots are spatial corner points
such as head, hands and feet and the red dots are 3D-STIPs which are obtained
by selecting the corner points having large variation along time axis among SIPs.
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Figure 2.14: Detected 4D-STIPs. 4D-STIPs of 11 actions in IXMAS dataset using
3D-S volume sequences. The SIPs represented by blue dots are spatial corner
points such as head, hands and feet and the red dots are 4D-STIPs which are
obtained by selecting the corner points having large variation along time axis
among SIPs.
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Figure 2.15: Collected 4D-STIPs. 4D-STIPs accumulated from 36 video sequences
(3 times repeated by 12 actors) of each action. The positions of 4D-STIPs from
different video sequences are similar and, therefore, 4D-STIPs show the properties
of each action well.
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2.5 Concluding remarks

In this chapter, we proposed a variant 3D-STIPs and new 4D-STIPs by extending

the widely used 3D-STIPs using 3D-S volume sequences. With the proposed 4D-

STIPs, we can generate features of all the views by projecting them to arbitrary

2D-S image planes. Therefore, the 4D-STIPs enable view invariant action recog-

nition which is very useful for practical applications. The proposed 3D-STIPs

and 4D-STIPs were calculated using multi-view IXMAS dataset and verified that

they represent the properties of each action compactly.
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Chapter 3

View Invariant Action

Recognition

3.1 Introduction

In computer vision, human action recognition is a multifaceted research area,

encompassing wide applications such as visual surveillance, human-computer in-

teraction, and video retrieval. In chapter 1, we categorized action recognition

research largely into two cases of gesture and general action recognition. Most

actual applications for gesture recognition assume human and computer face each

other and the recognition in front view images is performed. However, recognition

of actions in general settings such as surveillance environments requires view in-

variant recognition. To solve view invariant action recognition problem in general

condition, various methods are proposed and those methods can be separated as

3D space (3D-S, [x,y,z]) and 2D space (2D-S, [x,y]) approaches. In recognition

step, 3D-S approach requires special settings such as multiple number of cam-

eras or RGB-D sensors, whereas 2D-S approach uses just 2D-S images from a
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single camera. Therefore the proposed method follows the 2D-S approach, the

research has been conducted in three directions: 1) designing of view invariant

features [22, 23, 25, 24, 26], 2) designing a classifier based on transfer learn-

ing [27, 28, 29, 30, 31, 32, 33], and 3) learning of features from multiple views

[34, 35, 36, 37, 38, 39]. View invariant features are designed by extracting features

which are observed or maintained for almost all views. However, the descriptors of

this scheme are inherently limited to be strictly view invariant and could not work

well when the view changes on a large scale. To cope with the inherent limitation

of view invariant features, transfer learning concept were reported. However, this

transfer learning approach has an impractical assumption that source and target

views are defined in advance. In this approach, the classifier is trained with vi-

sual words from the source view, but the visual dictionary is made using videos

from the target view as well as the source view. Hence this approach could not

guarantee the performance for the new view which does not participate in the

process making visual dictionary. This implies the transfer learning approach is

limited to a set of predefined views and so it does not provide arbitrary view in-

variant property. To achieve the complete view invariant recognition using single

camera, all the features from all of views should be accumulated. Since it is not

possible to obtain information from all of views in practice, most of the existing

methods deployed a finite number of views to generalize the recognition ability.

However, these methods still do not guarantee a satisfying performance on the

new test view which is not contained in the training. To achieve a satisfactory

result, acquiring data from different views using a large number of cameras is

required.

In this chapter, we propose a method for view invariant action recognition

using the 4D space-time (4D-ST [x-y-z-t]) motion features proposed in chapter 2.

To extract the 4D-ST features, 3D-S volumes are constructed by back-projecting
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Figure 3.1: The IXMAS dataset [2]. Each row (1-5) shows ‘kick’ action sequence
from different views and the last row shows 3D-S volumes reconstructed from the
silhouettes of each column.
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the silhouettes from 5 cameras of different views (Figure 3.1) with the method

given by [40]. Then the 4D space-time interest points (4D-STIPs, [x,y,z,t]) are

computed from the constructed 3D-S volumes. Unlike the existing methods which

extract features from the limited number of 2D-S images of different views, de-

pending on the number of used cameras, we can generate the features from any

number of views even when just 5 cameras are used. This can be done by pro-

jecting the features in 3D-S to the arbitrary 2D-S image planes. Consequently,

the proposed method shows good recognition results even when the images of

test view are not available during the training step. A classifier is trained for

each action class with the features projected from the 3D-S volumes and the 4D-

STIPs. Silhouettes are formed for 2D-S planes after projecting the 3D-S volumes

on the respective image planes. The silhouettes and the projected 4D-STIPs are

used to build the motion history images (MHIs) [69] and the non-motion history

images (NMHIs), which encode moving and non-moving aspects of an action re-

spectively. While other methods rely on only moving aspects of an action, we

use both aspects (moving and non-moving) to design features since the history of

non-moving parts also reveals a discriminative information for action recognition.

NMHIs give clues about the position of the body parts during the course of the

action. To reduce the dimension of MHIs and NMHIs, we apply class-augmented

principal component analysis (CA-PCA) proposed by [70]. CA-PCA is the di-

mension reduction algorithm which is appropriate for classification problem since

it preserves separability of classes while reducing the feature dimension by using

the class information. Since we use the action label for reducing the dimension

of features, we obtain the principal axis which can separate each action well.

After reducing the feature dimension, the final features are trained by support

vector data description method (SVDD) [71]. In the recognition step, similarly

we obtain MHIs and NMHIs from an image sequence by calculating silhouettes
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Figure 3.2: The SNU dataset. Each row (1-4) shows ‘kick’ action sequence from
different views.

and 3D space-time interest points (3D-STIPs, [x,y,t]). The two features (MHIs,

NMHIs) are reduced the dimension by the principal axis obtained using action

label, and then recognized action with support vector domain density description

(SVDDD) [72] classifier. In experiments, we train the models using INRIA Xmas

Motion Acquisition Sequences (IXMAS) (Figure 3.1) [2] and test them a new

SNU dataset (Figure 3.2) made for evaluating the generalization performance for

arbitrary view videos.
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Figure 3.3: MEIs [69]. An example of someone sitting. The first row shows key
frames and the second row shows the cumulative motion images.

3.2 Preliminaries

3.2.1 Motion history images

To reduce the data size and represent actions compactly, we adopt the notion of

MHIs [69] which encodes the history of motion occurrences in an image. We first

present the construction of a binary motion energy images (MEIs) which represent

where motion has occurred in an image sequence. Next, we explain MHIs which

is a scalar valued image where intensity is a function of recent motion. The MEIs

and MHIs can be considered as a two component version of a temporal template.

When the action occurs, the action sequence sweeps out a particular region

of the image, and the shape of region (where there is motion) can be used as a

feature for action recognition. We refer to these binary cumulative motion images

as MEIs. Let I(x, y, t) be an image sequence and let D(x, y, t) be a binary image

sequence indicating regions of motion. D(x, y, t) is equal to 1 if there exists motion

at (x, y, t) in an image sequence and 0 otherwise. Then the binary MEIs Eτ (x, y, t)
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Figure 3.4: MHIs [69]. Examples of MHIs. (a) Sit down, (b) arms wave, and (c)
crouch down.
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is defined

Eτ (x, y, t) =

τ−1∪
i=0

D(x, y, t− i), (3.1)

where the duration τ is the maximum duration for which a motion is stored.

Figure 3.3 shows the example of MEIs.

To represent how (as opposed to where) motion the image is moving, we form

MHIs. In the MHIs Hτ , pixel intensity is a function of the temporal history of

motion at that point and represented as follows

Hτ (x, y, t) =

 τ if D(x, y, t) = 1

max(0,Hτ (x, y, t− 1)− 1) otherwise
. (3.2)

The result is a scalar-valued image where more recently moving pixels are brighter.

The MEIs can be generated by thresholding the MHIs above zero. Figure 3.4

shows the example of MHIs.

3.2.2 Class-augmented principal component analysis

Feature dimension reduction is to generate a set of features that have smaller

dimension than original data. While reducing the dimension of features the char-

acteristics of data should be preserved sufficiently to classify the data. These

dimension reduced features can improve not only the computational speed but

also classification performance by removing non-relevant characteristics in a data

set. The principal component analysis (PCA) [73] is a well known dimension re-

duction method which seeks the projection which best represents the data in a

least square sense. This method is very effective to find the features for reducing

the dimension, however, the reduced features may not appropriate for classifica-

tion problem since the class information is not considered during the reducing

the dimension. For example, if PCA is applied to the data set presented in Figure
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3.5 (a), the calculated principal axis w1 can not properly separate the data which

belong to different classes. To solve this problem, [70] proposed the CA-PCA

method which utilizes the class information while reducing the dimension of fea-

tures. In order to use the class information, the new dimension which encodes the

class information is augmented to the original data. A new data representation

is defined by augmenting a new axis which is orthogonal to all original axis and

assigning a value along this new axis according to the class information of each

data.

In Figure 3.5 (b), the new represented data are plotted. By applying PCA

to these new data representation, we can find the axis w
′′
1 , w

′′
2 . The projection

onto the axis w
′′
1 , w

′′
2 requires the value of data on class axis, and therefore these

axis cannot be immediately applied to the test data whose class information is

unknown. If the value of each data along class axis is carefully adjusted such that

the variance along class axis is very small, w′′
1 , w

′′
2 can be approximated to w

′
1, w

′
2

which are composed of the original data axis and they can be used for reducing

the dimension of data in classification problem.

Now we will explain how to 1) encode and 2) normalize the class information

on class axis. Let the number of classes by nclass, then each class information for

data X is represented by

C(X) = [c1, c2, ..., cnclass
]T , (3.3)

where class label ci of X is a constant p if X belongs to class i, otherwise ci is

another constant ni. Values of ni are determined so that the mean of ci becomes

0. p is determined so that the sum of the variances
∑nclass

i=1 var(ci) becomes σ2

in which σ is selected as a scalar value much less than 1. Since the number of

equation is nclass + 1 and the number of variables is nclass + 1, all ni and p can
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Figure 3.5: An example of CA-PCA [70]. (a) The axis w1, w2 extracted by PCA.
(b) The axis w

′′
1 , w

′′
2 extracted by PCA applied to the new data. (c) The axis

w
′
1, w

′
2 selected from w

′′
1 , w

′′
2 .
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be determined.

For example, assume that three data X1, X2, X3 are given and the number of

total classed nclass is 2. X1 belongs to the first class, and the others belong to the

second class. In this case the class information C(X) for input data is expressed

as follows

C(X1) = [p, n2]
T , (3.4)

C(X2) = [n1, p]
T , (3.5)

C(X3) = [n1, p]
T . (3.6)

For this representation, if p =
√
10σ/5, n1 =

√
10σ/10, and n2 = −2

√
10σ/5,

the average of c1 and c2 becomes 0 and the sum of the variances
∑2

i=1 var(ci)

becomes σ2.

The purpose of normalization is to maximize the effect of class information

in the selection of principal components. The principal components in Figure

3.5 (a) are rotated to (c) by variances on the class axis. For this, the variance

of data along the class axis needs to be set larger than the difference between

the variances along axis on data plane. This condition can be described by the

following equation. For all i and j,

σ2 ≥ ∥σ2
wi

− σ2
wj
∥, (3.7)

where σ2
wi

is the variance along the axis wi. This condition can be simultaneously

satisfied for all pairs (i, j) by normalizing the variance along each axis to be 1.

The difference between variances along each axis becomes 0 and the condition

can be satisfied for any values of σ which is larger than 0. The normalization is
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carried out for j = 1, 2, ..., ninput by

xj = xj/σj , (3.8)

where X is the normalized data of X and xj is the jth element of X, and σj is

the standard deviation of jth element over the entire data set. After encoding the

class information and normalization, each X is represented by

X
a
i =

 Xi

C(Xi)

 . (3.9)

Then, the normal PCA is applied to the set of X
a in order to obtain the

principal components. The dimension of each principal component is (ninput +

nclass). To reduce the input dimension, the reduced dimension should satisfy

the condition nreduced < ninput and, therefore, nreduced principal components are

selected along which the variance of the data is large as

W
a
= [xa1, x

a
2, ..., x

a
nreduced

]. (3.10)

Then the reduced data can be found by

Xreduced = W
aT

X
a
. (3.11)

To avoid repeating the normalization for new data, the scaling factor of normal-

ization can be introduced in W by following equation for i = 1, 2, ..., nreduced and

j = 1, 2, ..., ninput as

wa
ij = w2

ij/σj . (3.12)

The other elements for j = ninput + 1, ninput + 2, ..., ninput + nclass need not be
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modified since the class information of test data will not be given. Then the

equation (3.11) can be rewritten as

Xreduced = W aTXa, (3.13)

where W a = [w2
1, w

2
2, ..., w

2
nreduced

] = [W T
input,W

T
class]

T .

The dimension of augmented data is reduced by

Xreduced = W aTXa, (3.14)

= [W T
input,W

T
class]

 X

C(X)

 ,

= W T
inputX +W T

classC(X).

However, the class information of test data is not given and, therefore, we can

not adopt the equation (3.14) and should modify for the test data. If σ2 is set

to a much smaller value than 1, the elements from W T
classC(X) tend to be much

smaller than those from W T
inputX and the second term in equation (3.14) can be

omitted. After omitting the second term, the final equation becomes as follows

Xreduced = W T
inputX +W T

classC(X), (3.15)

≃ W T
inputX,

= W TX.

The equation can be applied for any test data X without class information, in

order to reduce the dimension of data.
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3.2.3 Support vector data description

The objective of SVDD [71, 74] which is inspired by SVM [75, 76, 77] is to find a

sphere or domain with minimum volume containing all or most of the data. Let

{x⃗i} ⊂ X be the given training data set of n points with data space X ⊂ Rd.

To minimize the volume of sphere, the objective function should be designed for

minimizing the radius of sphere with constraints that the distance between the

center of sphere and data is smaller than the radius as

F (R, a⃗) = R2, (3.16)

∥x⃗i − a⃗∥2 ≤ R2, ∀i, (3.17)

where R is radius of sphere and a⃗ is the center position of the sphere. To allow

the possibility of outliers in the training data set, the slack variable ξi ≥ 0 are

introduced with constraints that almost all objects are within the sphere as

F (R, a⃗) = R2 + CΣ
i
ξi, (3.18)

∥x⃗i − a⃗∥2 ≤ R2 + ξi, ξi ≥ 0, ∀i, (3.19)

where C gives the trad-off between the volume of sphere and the number of error.

To solve this problem, the Lagrangian is introduced as

L = R2 + CΣ
i
ξi − Σ

i
αi(R

2 + ξi − ∥x⃗i − a⃗∥2)− Σ
i
γiξi. (3.20)

By KKT conditions we can get

Σ
i
αi = 1, (3.21)
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a⃗ =
Σ
i
αix⃗i

Σ
i
αi

= Σ
i
αix⃗i, (3.22)

C − αi − γi = 0, ∀i, (3.23)

αi(R
2 + ξi − ∥x⃗i − a⃗i∥2) = 0, (3.24)

γiξi = 0. (3.25)

Since αi ≥ 0 and γi ≥ 0, we can get 0 ≤ αi ≤ C using equation (3.23). Therefore,

the primal form of equation (3.16) can be transformed into the dual form with

constraints as

L = Σ
i
αi(x⃗i · x⃗i)− Σ

i,j
αiαj(x⃗i · x⃗j), (3.26)

Σ
i
αi = 1, (3.27)

0 ≤ αi ≤ C,∀i. (3.28)

By maximizing equation (3.26) with respect to αi, we obtain the solution αi for

i = 1, ..., n. When a sample xi satisfies the inequality of (3.19), the corresponding

Lagrange multiplier goes to zero. For samples satisfying the equality of (3.19),

the Lagrange multiplier will become nonzero. The solution αi is categorized into

three types as follows

∥x⃗i − a⃗∥2 < R2 → αi = 0, γi = C, (3.29)

∥x⃗i − a⃗∥2 = R2 → 0 < αi < C, γi > 0, (3.30)

∥x⃗i − a⃗∥2 > R2 → αi = C, γi = 0. (3.31)

From the above results, the domain description is represented in terms of only

support vectors whose Lagrange multipliers satisfy 0 < αi < C, which provides

the sparse representation of the domain description. The domain center and the
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Figure 3.6: The linear SVDD [74]. The sphere by linear SVDD where the sam-
ple data are generated from the combination of 3 Gaussian distribution in two
dimensional space.

boundary radius are determined by

a⃗ = Σ
i
αix⃗i, (3.32)

R2 = ∥x⃗k − a⃗∥2 = (x⃗k · x⃗k)− 2Σ
i
αi(x⃗i · x⃗k)− Σ

i,j
αiαj(x⃗i · x⃗j), (3.33)

where xk is a support vector. To determine whether a test point z⃗ is within the

sphere, the distance between z⃗ and the center of the sphere can be calculated as

follows

D2(z⃗) = ∥z⃗ − a⃗∥2 = z⃗ · z⃗ − 2Σ
i
αi(z⃗ · x⃗i) + Σ

i,j
αiαj(x⃗i · x⃗j). (3.34)

When D2(z⃗) ≤ R2, a test data z⃗ is within the sphere.

The Figure 3.6 shows the sphere by linear SVDD where the sample data are
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generated from the combination of 3 Gaussian distribution in two dimensional

space. Normally, data are not spherically distributed and, therefore, in general

we cannot expect to obtain a very tight description as shown in Figure 3.6. Since

the problem is stated completely in terms of inner product between vectors, the

method can be made more flexible, analogous to SVM. We replace all inner

product x⃗i · x⃗j by a proper K(x⃗i, x⃗j) and the problem of finding a data domain

description is given by

L = Σ
i
αiK(x⃗i, x⃗i)− Σ

i,j
αiαjK(x⃗i, x⃗j), (3.35)

Σ
i
αi = 1, (3.36)

0 ≤ αi ≤ C,∀i. (3.37)

After the cost function (3.35) with constraints is solved, the distance between

test data z⃗ and the center of domain in feature space can be calculated as follows

D2(z⃗) = 1− 2Σ
i
αiK(z⃗, x⃗i) + Σ

i,j
αiαjK(x⃗i, x⃗j). (3.38)

Figure 3.7 shows the domain by kernel SVDD using Gaussian kernel K(x⃗i, x⃗j) =

exp(−∥x⃗i− x⃗j∥2/s2), where the sample data are generated from the combination

of 3 Gaussian distribution in two dimensional space. It shows that the domain

in high dimensional feature space is more suitable than that in original input

space for describing the data domain that characterizes the non-linearity of data

structure.

3.2.4 Support vector domain density description

Since SVDD can determine whether a test point is within the domain by cal-

culating the distance between test point and the center of the domain, it can
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Figure 3.7: The kernel SVDD [74]. The domain by kernel SVDD where the sam-
ple data are generated from the combination of 3 Gaussian distribution in two
dimensional space.
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be applied to multi-class problems by obtaining each class boundary. When the

training data between classes are separable, we can determine the class of data

by choosing the class where the test data is included. However, since the clas-

sification problems often contain overlapping classes, the SVDD is not suitable

for most multi-class classification task. To solve this problem [72, 74] proposed

the SVDDD method which is based on the assumption that the probability of

a sample to be in a class is proportional to its distance from the domain center

(previously trained using SVDD in equation (3.38)) of that class. The following

lemma shows the relation between distance function and probability density.

Lemma 3.2.1. Assume that x⃗a, x⃗b are drawn from unknown probability density

function p(x⃗) in one class. Then, the distance function in (3.38) has the following

property as

If p(x⃗a) ≥ p(x⃗b), D2(x⃗a) ≤ D2(x⃗b). (3.39)

Proof. For explaining the relation between SVDD and density, given n sample

data x⃗i ⊂ X where X is drawn from probability density function p(x⃗) which is

fixed but unknown, consider the following case

p(x⃗a) ≥ p(x⃗b), (3.40)

where x⃗a and x⃗b are elements of data set X. If equation (3.35) from data set X is

maximized, because the quadratic optimization in SVDD assigns the large weight

to the sample in low density region [71], we can obtain the inequality as follows

αa ≤ αb. (3.41)
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By differentiating equation (3.35) for maximizing the cost function, we have

dL

dαi
= 1− Σ

j
αjK(x⃗i, x⃗j)− αi = 0. (3.42)

From equation (3.41) and (3.42), the following inequality can be given by

1− αa ≥ 1− αb, (3.43)

Σ
i
αiK(x⃗a, x⃗i) ≥ Σ

i
αiK(x⃗b, x⃗i). (3.44)

By multiplying both sides of equation (3.44) by −2 and adding them by constant,

1 + Σ
i,j
αiαjK(x⃗i, x⃗j), this leads to

1− 2Σ
i
αiK(x⃗a, x⃗i) + Σ

i,j
αiαjK(x⃗i, x⃗j) (3.45)

≤ 1− 2Σ
i
αiK(x⃗b, x⃗i) + Σ

i,j
αiαjK(x⃗i, x⃗j).

The above inequality indicates that if p(x⃗a) ≥ p(x⃗b), D2(x⃗a) ≤ D2(x⃗b).

Therefore, the decision function can be designed by employing the above

relation between probability density and the data description as

p̄(x⃗|σ) = 1

(2πσ2)d/2
exp(−D2(x⃗)

2σ2
). (3.46)

Then, the parameter σ of equation (3.46) can be estimated as following lemma.

Lemma 3.2.2. The maximum likelihood estimate of σ is given by

σ̂2 =
1

nsvd

nsv∑
k=1

∥ϕ(x⃗sk)− a⃗∥2, (3.47)

where nsv, d, and x⃗sk denote the number of support vectors, sample dimension,

and support vector respectively.
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Proof. Suppose that X drawn independently from p(x⃗|σ) contains n samples,

x⃗1, . . . , x⃗n. Then, because the samples were drawn independently, we have

p̄(X|σ) =
n∏

i=1

1

(2πσ2)d/2
exp

(
−D2(x⃗i)

2σ2

)
. (3.48)

Instead of maximizing p̄(X|σ), we maximize the following log-likelihood

L(σ) ≡ ln p̄(X|σ), (3.49)

=
n∑

i=1

ln p̄(x⃗i|σ),

=

n∑
i=1

(
ln 1

(2πσ2)d/2
− D2(x⃗i)

2σ2

)
.

Then, the derivative of L(σ) with respect to σ is given by

∇σL =

n∑
i=1

(
−d

σ
+

D2(x⃗i)

σ3

)
. (3.50)

Therefore, σ̂2 can be obtained as follows by setting ∇σL to zero

σ̂2 =
1

nd

n∑
i=1

D2(x⃗i) =
1

nd

n∑
i=1

∥ϕ(x⃗i)− a⃗∥2, (3.51)

where a⃗ =
∑n

i=1 αiϕ(x⃗i). The proposed method uses only support vectors for

estimating σ̂ since the center of domain is described in terms of support vectors.

Then,

σ̂2 =
1

nsvd

nsv∑
k=1

∥ϕ(x⃗sk)− a⃗∥2, (3.52)

where k and nsv denote the index and the number of support vectors, respectively,

and x⃗sk is kth support vector.
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Figure 3.8: The process of SVDDD. The process of SVDDD is compactly sum-
marized as 3 steps.
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Figure 3.9: The density information of SVDDD [74]. The example of the density
from the data in Figure 3.7. We can know that 3 high density region and the
skewness of data can be described by the proposed method.
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In Figure 3.8, the process of SVDDD is compactly summarized as 3 steps.

Figure 3.9 shows the example of the density from the data in Figure 3.7. In this

Figure, we can know that 3 high density region and the skewness of data can be

described by the proposed method.

3.3 Proposed method

Figure 3.10 and Figure 3.11 illustrates the overall framework of our proposed ap-

proach. The training procedure is shown in Figure 3.10. First, 3D-S volumes are

constructed by back-projecting the silhouettes from 5 cameras of different views

(Figure 3.1) with the method given by [40]. To catch variation of body shape

during actions, we obtain 2D-S silhouettes in N number of candidate views by

projecting the 3D-S volume sequence with the camera matrix. Furthermore, to

capture the interior movement of an object, we propose 4D-STIPs which are cal-

culated from 3D-S volume sequences by extending the method based on 3D-STIPs

[47] which finds variation points in the space [x,y] and time [t]. The 4D-STIPs are

then projected to any desired candidate views. The projected silhouettes and 4D-

STIPs are used to make the motion and non-motion features which correspond

to the moving and stationary parts of an action. To describe moving parts of an

action, MHIs [69] are constructed from both projected silhouettes and 4D-STIPs.

Silhouettes reflect the changes in outlines of an object and the STIPs encode the

variations occurring inside of an object. Similarly NMHIs are used, which encode

the history of stationary parts of an action. While other methods rely on only

moving aspects of an action, we use both aspects (moving and non-moving) to

design features. For training, the dimension of MHIs and NMHIs is reduced by

CA-PCA [70] which uses class information for dimension reduction. We use the

action label of the training data for CA-PCA. The final features with reduced
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Figure 3.10: Overview for training step. In training step, reconstructed 3D-S vol-
umes and 4D-STIPs are projected to N number of candidate views. The projected
silhouettes and 4D-STIPs are then represented by MHIs and NMHIs. We reduce
the dimension of MHIs and NMHIs using CA-PCA with action label and then
train the resulting features with SVDD. The features from MHIs and NMHIs are
trained separately by SVDD.

64



Figure 3.11: Overview for testing step. In testing step, silhouettes and 3D-STIPs
are extracted from the test image sequence and reduced MHIs and NMHIs are
tested by SVDDD. Final score for each class is calculated by summing the SVDDD
scores of the features from MHIs and NMHIs.

dimension are trained using SVDD [71].

In the test stage (Figure 3.11) silhouettes and 3D-STIPs are extracted using

an image sequence from the test camera view. For action recognition, both fea-

tures (motion and non-motion) are tested separately by SVDDD [72]. The score

for action recognition is calculated for each action class by summing the SVDDD

scores of two features.

3.3.1 Silhouettes

Silhouettes are used as features in many action recognition approaches [27, 35].

By projecting the scale-normalized-3D-S volumes with camera matrices, the sil-

houettes in candidate 2D-S views can be obtained (Figure 3.12). From [68], the

point x in an image plane (corresponding to XW in world coordinates) can be

calculated by multiplying camera matrix P as

x = PXW = KR[I| − C̃]XW , (3.53)
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Figure 3.12: Projection. Scale-normalized-3D-S volumes are projected to desired
image planes using camera matrix P . By changing P , the silhouettes in a large
numbers of views can be easily produced.

C̃ = r


sinφ cos θ

sinφ sin θ

cosφ

 ,K =


f 0 px

0 f py

0 0 1

 , R = inv(
[
XC̃ YC̃ ZC̃

]
). (3.54)

In equation (3.54), the inhomogeneous coordinates of the camera center C̃ at

desired view are defined in the spherical coordinate system as (r, θ, φ). K is the

calibration matrix and R is the rotation matrix of camera coordinates. In the

calibration matrix, f and (px, py) are focal length and principal point (image

center) of the camera respectively. The rotation matrix can be calculated by

inverse of the matrix consisting of camera axes XC̃ , YC̃ , ZC̃ . Different silhouettes

from different views are constructed by changing P and projecting the 3D-S

volume sequence with this camera matrix. This can produce numerous silhouettes,

corresponding to those many views, which exceeds the actual number of camera

views.
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Figure 3.13: Projection example. 3D-S volumes and 4D-STIPs are projected to
predefined image planes using camera matrices. The left side of the Figure shows
the positions of predefined 5 image planes (i.e. N is 5 in Figure 3.10) and the
right side shows the sequence of projected silhouettes and 4D-STIPs at each view.

3.3.2 Space-time interest points

Actions can be recognized using silhouettes to some extent, however, they do not

properly describe the interior motion and shape. To solve this problem, we use

4D-STIPs to capture the interior movement of an object for better recognition

performance. These features are constructed by extending the concept of widely

used 3D-STIPs. We extract 4D-STIPs from 3D-S volume sequence and project

them to the candidate views for training. Here, only visible points which are

not screened by occupancy grids of 3D-S volume are projected to the image

plane. For example, if certain 4D-STIPs are located at the backside of body

and the image plane is in the front side, then those 4D-STIPs are regarded as

being occluded by the body and they are not projected to the image plane.

Figure 3.13 shows the projection examples of 3D-S volumes and 4D-STIPs using

camera matrices. The left side of the Figure shows the positions of predefined 5
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Figure 3.14: The comparison of 3D-STIPs and 4D-STIPs. We compare 3D-STIPs
and 4D-STIPs projected to similar view image planes of action (a) ‘check watch’
and (b) ‘kick’. The 3D-STIPs and projected 4D-STIPs are strictly different, how-
ever, both capture the important moments of an action.
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Figure 3.15: The process for MHI and NMHI. MHI encodes the history of motion
occurrences in an image while NMHI provides an information about stationary
parts of an object.

image planes (i.e. N is 5 in Figure 3.10) and the right side shows the sequence

of projected silhouettes and 4D-STIPs at each view. On the contrary, in the

test step, we extract 3D-STIPs in test video because only a single test video is

available from an arbitrary view. In Figure 3.14, we compare 3D-STIPs and 4D-

STIPs projected to image planes of similar view. The 3D-STIPs and projected

4D-STIPs are strictly different, however, both capture the important moments of

an action. The detailed explanation about STIPs are described in chapter 2.

3.3.3 Motion history images and Non-motion history images

To reduce the data size and represent actions compactly, we adopt the notion

of MHIs which encodes the history of motion occurrences in an image. However,
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Figure 3.16: MHIs of silhouettes and STIPs. MHIs of ‘cross arm’ and ’check watch’
using silhouettes (Left) and using both silhouettes and STIPs (Right).

only MHIs cannot guarantee a good performance when moving parts of an object

show similar patterns. For this reason, we propose NMHIs and combine it with

MHIs to add an information from stationary parts of an object in the description

of the particular action class. By combining the moving as well as non-moving

information, the recognition performance is increased. Figure 3.15 shows the pro-

cess of MHI and NMHI.

To make MHIs for moving part of an object, the spatio-temporal positions of

motion occurrence are captured, either by variations of silhouettes or by positions

of STIPs at time t. Figure 3.16 shows two different MHIs of the action ‘cross arm’

using only silhouettes (left) and using both silhouettes and STIPs (right). We can

notice that the MHIs using only silhouettes cannot reflect the movement occurring

in front of the actor while the MHIs using both silhouettes and STIPs can also
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Figure 3.17: Examples of MHIs and NMHIs. Examples of MHIs and NMHIs for
11 actions and 5 camera positions in IXMAS dataset.

reflect the movement of the arm inside the silhouettes. The MHIs is defined as

hM (x, y, t) =

 τ if D(x, y, t) = 1

max(0, hM (x, y, t− 1)− 1) otherwise
, (3.55)

where τ is the maximum duration for which a motion is stored and D(x, y, t) is

equal to 1 if there exists motion at (x, y, t) in an image sequence and 0 otherwise.

While the MHIs capture motion information within image sequences, we also

encode non-motion information by introducing NMHIs, which have a large value
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when certain part is stationary for long time. The NMHIs are defined as

hNM (x, y, t) =

 hNM (x, y, t− 1) if D(x, y, t) = 1

hNM (x, y, t− 1) + 1 otherwise
. (3.56)

Using information of the stationary part can provide additional evidence in many

cases. For example, MHIs of ‘kick’ and ‘get up’ are similar, however, they are

different in NMHIs since an upper body of ‘kick’ action is stationary while that

of ‘get up’ action is not. Figure 3.17 shows examples of MHIs and NMHIs for 11

actions and 5 camera positions in IXMAS dataset [2].

3.3.4 Training and Testing

Figure 3.18 shows the process of training step for view invariant action recog-

nition. When we make MHIs and NMHIs, we divide the total sequence into L

sections and calculate MHIs and NMHIs for each section as in the Figure 3.19.

With this scheme, each action sequence is represented by L number of MHIs

and L number of NMHIs. The reason why we divide each action sequence into

small one is that any interesting motion history at a given location can be oblit-

erated by recent movement. Then, each section of MHI (NMHI) is represented as

a feature vector by concatenating its columns. The same sections of vectorized

MHIs (NMHIs) for all action class are collected and the dimension is reduced

with CA-PCA using action class labels. After reducing the feature (derived from

MHIs and NMHIs) dimension, they are separately trained using SVDD. Finally,

we obtain 2L number of CA-PCA principal axis and 2L number of SVDD results

(the center and the radius of each action domain).

Figure 3.20 shows the process of testing step for view invariant action recog-

nition. In testing step, similarly we compute L number of MHIs and L number of

NMHIs using silhouettes and 3D-STIPs from 2D-S image sequence and they are
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Figure 3.18: Training for view invariant action recognition. The dimension of
MHIs (NMHIs) for all action class is reduced with CA-PCA using action class
labels. After reducing the feature (derived from MHIs and NMHIs) dimension,
they are separately trained using SVDD.

vectorized. Then, each section of MHI (NMHI) are reduced with corresponding

CA-PCA principal axis and recognized the actions with SVDDD classifier. The

SVDDD algorithm is based on the assumption that the probability of a sample

to be in a class is proportional to its distance from the domain center (previously

trained using SVDD) of that class. We use the sum of the 2L number of SVDDD

scores (MHIs and NMHIs) as a final decision score and assign the samples of

input test video to the class of the highest decision score.

3.4 Experimental results

The performance of the proposed algorithm was evaluated on the IXMAS (Figure

3.1) and our own SNU datasets (Figure 3.2). The IXMAS dataset contains videos

of total 11 action categories captured from 5 different views. The 3D-S volumes
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Figure 3.19: Sections of MHIs and NMHIs. We divide the total sequence into L
sections and calculate MHIs and NMHIs for each section. The same sections of
vectorized MHIs (NMHIs) for all action class are collected and the dimension is
reduced with CA-PCA using action labels. After reducing the feature (derived
from MHIs and NMHIs) dimension, they are separately trained using SVDD.
Finally, we obtain 2L number of CA-PCA principal axis and 2L number of SVDD
results.
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Figure 3.20: Testing for view invariant action recognition. The dimension of MHIs
(NMHIs) is reduced with CA-PCA calculated in training step using action label.
After reducing the feature (derived from MHIs and NMHIs) dimension, they are
separately tested using SVDDD.

were reconstructed by computing the visual hulls via back projecting the multi-

view 2D-S silhouettes. In this work, we used the reconstructed 3D-S volumes

provided along with the multi-view videos. The each action was performed 3 times

by 12 actors. The position and the orientation of actors were chosen arbitrarily. To

show robustness of the proposed algorithm, we collected a new SNU dataset which

contains 4 different views for 11 actions as in IXMAS, and each was performed

3 times by 15 actors. We developed the proposed algorithm using Matlab on PC

with i5 core2duo, 3.3GHz, and 4GB RAM. The total training time for 15840

(11actions× 12actors× 3times× 40views) features was around 3 days, and the

most of the training time was spent for extracting 4D-STIPs. The testing time

for one video input with 40 frames is around 13s (3.08fps), and the most of the

testing time are for calculating 3D-STIPs.

To compute training features, we used scale-normalized 3D-S volumes (64×
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64 × 64) and calculated 4D-STIPs on them. The space interest points (SIPs)

were calculated within convoluted volumes with σ2
l = 0.5 and integration scale

σ2
i = 2σ2

l . Ts was adjusted to get 3 ∼ 6 SIPs in each frame. For convoluting volume

sequences along time axis the parameters were set as τ2l = 1 and τ2i = 4τ2l . The

constant c, which determines Tst, was set to 0.3. For all datasets, the projected

image size was 61×61 and the number of frames was fixed to 40. When we made

MHIs and NMHIs, we divided the total sequence into 3 (i.e. L is 3 in Figure 3.19)

and calculated MHIs and NMHIs for each part. With this scheme, each action

sequence was represented by 3 MHIs and 3 NMHIs. The dimension of each MHIs

and NMHIs was reduced to 10 using CA-PCA. We trained 6 MHIs and NMHIs

separately using SVDD and the parameter C, which controls the error rate and

complexity of the class boundary, was set to 0.9 and variance of Gaussian kernel

was set to 0.09.

During testing, the features were computed by using scale-normalized image

sequences (161× 161) and then 3D-STIPs were computed. The SIPs were calcu-

lated within convoluted images with σ2
l = 6.25 and integration scale σ2

i = 3σ2
l . Ts

was adjusted to have 7 ∼ 10 SIPs in each frame. For convoluting image sequences

along time axis the parameters were set as τ2l = 1 and τ2i = 4τ2l . The constant

c, which determines Tst, was set to 0.05 and the image sequence was rescaled

to 61 × 61 × 40. Similar to training step, we made 3 MHIs and 3 NMHIs for a

test image sequence. The dimension of each MHIs and NMHIs was reduced to

10 using CA-PCA. Finally, the 6 SVDDD scores (3 for MHIs and 3 for NMHIs)

were calculated separately and summed together for the final decision score.

We proposed NMHIs to add the information from stationary parts of an object

in the description of the particular action class. To verify the effects of the NMHIs,

we measured the classification performance with and without NMHIs. In table

3.1, we show recognition rates per camera. Without NMHIs, large degradation
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Table 3.1: Effect of NMHIs. To verify the effects of the NMHIs, we measured
the classification performance with and without NMHIs. Without NMHIs, large
degradation in performance (5.7%) is shown which implies NMHIs take a signif-
icant role in recognition performance.

in performance (5.7%) is shown which implies NMHIs take a significant role in

recognition performance.

To analysis the separability of the SVDD domains in high dimensional feature

space, we measured the within-class and between-class distances for all actions.

In Figure 3.21, the features included in the chosen action are depicted as blue

dots while the features of all actions except the chosen action are depicted as

the red dots. Here, we used the inverse of SVDDD score (equation (3.46)) as a

distance since the inverse of SVDDD score is proportional to the distance from a

feature to the center of SVDD domain. Figure 3.21 (a) shows the distances from

all features to SVDD center of ‘check watch’ action and Figure 3.21 (b) shows

the distances from all features to SVDD center of ‘walk’ action in feature space.

In Figure 3.21 (a), since the action ‘check watch’ is similar with actions which

use arms and hands such as ‘cross arm’, ‘scratch head’, ‘wave’, and ‘punch’, the

distance from that features to ‘check watch’ SVDD domain center is similar with

that of ‘check watch’ features. However, in Figure 3.21 (b), since the action ‘walk’

is much different from other actions, we can see that the SVDD domain of ‘walk’

is well separable. Figure 3.22, 3.23, 3.24 show the within-class and between-class

distances of all 11 actions.

For a direct comparison to the results reported in [63, 25, 35, 36, 37, 38, 39],

we first experimented with IXMAS dataset using leave-one-out strategy. With
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Figure 3.21: Within-class and between-class distances. Within-class (red dots)
and between-class (blue dots) distances of all features. (a) The distances from
all features to SVDD center of ‘check watch’ action in feature space. Since the
action ‘check watch’ is similar with actions which use arms and hands such as
‘cross arm’, ‘scratch head’, ‘wave’, and ‘punch’, the distance from that features to
‘check watch’ SVDD domain center is similar with that of ‘check watch’ features.
(b) The distances from all features to SVDD center of ‘walk’ action in feature
space. Since the action ‘walk’ is much different from other actions, we can see
that the SVDD domain of ‘walk’ is well separable.
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Figure 3.22: Within-class and between-class distances. Within-class (red dots)
and between-class (blue dots) distances of action (a) check watch, (b) cross arm,
(c) scratch head, and (d) sit down.
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Figure 3.23: Within-class and between-class distances. Within-class (red dots)
and between-class (blue dots) distances of action (a) get up, (b) Turn around, (c)
walk, and (d) wave.
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Figure 3.24: Within-class and between-class distances. Within-class (red dots)
and between-class (blue dots) distances of action (a) punch, (b) kick, and (c)
pick up.
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Table 3.2: Experimental result of IXMAS dataset. The recognition rates (in %)
per camera when we train and test using IXMAS dataset.

IXMAS dataset, we experimented in two cases: In the first case (Ours (known

view) in Table 3.2), training were performed under the same experimental condi-

tions with the existing methods for fare comparison, where we used images from 5

different known camera views in IXMAS dataset. And we tested an image whose

view is included in the training. In the second case (Ours (unknown view) in

Table 3.2), instead of the known view images, we used the proposed generalized

4D-ST motion features to train the model in arbitrary views. When projecting

the 4D-ST motion features into arbitrary view for training, we do not know the

exact camera matrices to make the 5 different camera views in IXMAS dataset.

Therefore features in exact testing views may not be included in training and

only features in similar views were included. This is a reasonable testing for com-

pletely view invariant action recognition method, where test view is completely

unknown. To cover the various orientation of people and the camera view, for

each action the 3D-S volumes were projected on 40 different image planes (i.e. N

is 40 in Figure 3.10).

In Table 3.2, we show recognition rates per camera and compare it against

other methods. We have excluded the experimental results related to transfer
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Figure 3.25: Confusion matrix of IXMAS dataset. The confusion matrix of IXMAS
dataset when we use generalized 4D-ST motion features.

learning since they assume predefined source and target views, which have differ-

ent experimental settings. When we use images from multiple known views for

training (the first case), the accuracies of our method for camera 0 ∼ 4 are in Ta-

ble 3.2 (Ours (known view)). The proposed method shows the best performance

except the results in [37] and [39]. We used 3D-S volumes, which have 0 or 1

values, to generate features of all the views. However, [37] and [39] used features

like HOG from gray images which can not be calculated in 3D-S volumes, which

leads to improved performance.

When using our proposed generalized 4D-ST motion features for training

(the second case), the accuracies of our method for camera 0 ∼ 4 are in Table 3.2

(Ours (unknown view)). Performance is slightly degraded than the first case ‘Ours

(known view)’ because the test view is completely random and might be entirely

different from the training views. [37] and [39] have some prior information about
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Table 3.3: Experimental result of SNU dataset. The recognition rates (in %) per
camera when we train using IXMAS dataset and test using SNU dataset.

Figure 3.26: The comparision of IXMAS and SNU dataset. The ‘wave’ action in
IXMAS (first row) dataset with 5 different views and the proposed SNU dataset
(second row) with 4 different views.

test views (i.e. some test view information is included in the training set), which

leads to improved performance but makes the system modeling ad-hoc in nature.

On the other hand, we are proposing a more generalized model which does not use

any information about test views i.e. they are completely arbitrary. Figure 3.25

shows the confusion matrix for testing 11 actions from IXMAS dataset when we

use generalized 4D-ST motion features. The reason why the actions using arms

and hands are misclassified is due to the high similarity among these actions.

In real-life scenarios, the information about orientation of people and the

camera view in the test inputs might not be available during training. Therefore,
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Figure 3.27: Confusion matrix of SNU dataset. The confusion matrix when we
train using IXMAS dataset and test using SNU dataset.

in our second experimental setup, training and testing datasets were totally dif-

ferent. To evaluate the view invariant performance with testing images, which

are different from the training images, we developed the SNU dataset containing

4 different camera views as shown in Figure 3.2. For evaluating generalization of

all models (Ours and [37] and [39]), the training parameters and training dataset

(IXMAS) were kept same as previous experimental setup. Table 3.3 shows our

recognition rates per camera in SNU test dataset and compares it against the

state-of-the-art methods ([37] and [39]), where the proposed method shows the

best performance in all camera views. In this experiment, the recognition perfor-

mance of methods by [37] and [39] is degraded than the IXMAS dataset because

the testing view is not included in the training step. However, our algorithm

outperforms this method even when the images of test view are not provided

in the training step since we use generalized features. In Figure 3.26, the views
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of camera 0, 1 and 2 in SNU dataset are similar to the IXMAS dataset, while

the camera 3 view (bottom view) is much different. The performance of [37] and

[39] shows unstable recognition performance even with the video sequences on

similar viewpoint and is degraded largely for testing on camera 3 view, which (or

similar to this view) is not in the training set at all. Contrarily, the performance

of the proposed algorithm is consistent regardless of views. Figure 3.27 shows the

confusion matrix for testing 11 actions from SNU dataset.

3.5 Concluding remarks

In this chapter, we proposed a view invariant action recognition method useful

for practical applications. We developed new 4D-STIPs by extending the widely

used 3D-STIPs using 3D-S volume sequences. With the 3D-S volumes and the

proposed 4D-STIPs, we can generate features of all the views by projecting them

to arbitrary 2D-S image planes. We also proposed non-motion features to encode

stationary part of an action, increasing the recognition performance. The pro-

posed method was evaluated with multi-view IXMAS and our own SNU dataset

and was verified to outperform the state-of-the-art methods, especially for the

test view not provided during the training step. The model is said to be general-

ized in view point of that it robustly recognize actions from any arbitrary view

and even from video captured at different views from training sets.
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Chapter 4

Recognition of Action

Orientation

4.1 Introduction

The ultimate purpose of computer vision is to interpret what happened in video

clip. If we can recognize the orientation of action, it can be helpful in analyzing

the video by providing the information about interactions of people. For example,

if we recognize that someone shake hands and recognize the orientation of that

actor, we can know to whom that actor shake hands with according to the ori-

entation of that actor. In chapter 1, we divided 2D space (2D-S, [x,y]) approach

for view invariant action recognition in three directions: 1) designing of view in-

variant features [22, 23, 25, 24, 26], 2) designing a classifier based on transfer

learning [27, 28, 29, 30, 31, 32, 33], and 3) learning of features from multiple

views [34, 35, 36, 37, 38, 39]. As for the first issue, view invariant features can

not recognize the orientation of action since view invariant features lack of any

information about each view for making features which are commonly used for
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all the views. Transfer learning related methods do not consider the orientation

information when they make visual dictionary, and, therefore they can not rec-

ognize the orientation of action. The methods accumulating features from finite

number of views can not recognize the orientation of action since they consider

the same action from different views as the same class in training step. [39] infer

the view label of action in the training step using latent variable in latent kernel-

ized structural support vector machine (SVM), however, there is no information

about the exact orientation of learned view.

In this chapter, we propose a method to recognize the orientation of action,

which is not tried in view invariant action recognition field. We can recognize the

orientation of actor in the test video since our training sets, which are projections

of 4D space-time (4D-ST [x-y-z-t]) motion features to various image planes, con-

tain the orientation information. Differently from the action recognition, the fea-

tures motion history images (MHIs) [69] and non-motion history images (NMHIs)

are reduced the dimension using orientation label and trained by support vector

data description method (SVDD) [71]. In the recognition step, MHIs and NMHIs

are reduced the dimension by the principal axis obtained using orientation label,

and then recognized orientation of action with support vector domain density de-

scription (SVDDD) [72]. The performance of the proposed algorithm is evaluated

on the SNU dataset taken from 5 different orientations to show good recognition

rates.

4.2 Proposed method

Figure 4.1 and Figure 4.2 illustrate the overall framework of our proposed ap-

proach. The training procedure is shown in Figure 4.1. The process to make MHIs

and NMHIs is the same as the methods in the view invariant action recognition.
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Figure 4.1: Overview for training step. In training step, reconstructed 3D-S vol-
umes and 4D-STIPs are projected to N number of candidate views. The projected
silhouettes and 4D-STIPs are then represented by MHIs and NMHIs. For each
action class, we reduce the dimension of MHIs and NMHIs using CA-PCA with
orientation label and then train the resulting features with SVDD. The features
from MHIs and NMHIs are trained separately by SVDD.
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Figure 4.2: Overview for testing step. In testing step, silhouettes and 3D-STIPs
are extracted from the test image sequence and MHIs and NMHIs are constructed.
After recognizing action class, MHIs and NMHIs are reduced the dimension and
tested by SVDDD using the SVDD results of recognized action class. Final score
for each class is calculated by summing the SVDDD scores of the features from
MHIs and NMHIs.

In the recognition of action orientation step, we collect train data for each action

class and then apply class-augmented principal component analysis (CA-PCA)

[70] using orientation label. Similarly the final features with reduced dimension

for each action class are trained by SVDD.

In the test stage (Figure 4.2), similarly silhouettes and 3D-STIPs are ex-

tracted using an image sequence from the test camera view. The process for

recognizing action orientation is performed after recognizing action class. After

recognizing action, the test input is reduced using CA-PCA principal axis which

is calculated previously for recognition of action orientation. Then the score for

recognition of action orientation is calculated for each orientation class by sum-

ming the SVDDD scores of two features.
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Figure 4.3: Training for recognition of action orientation. The dimension of MHIs
(NMHIs) for each action class is reduced with CA-PCA using orientation class
labels. After reducing the feature (derived from MHIs and NMHIs) dimension,
they are separately trained using SVDD.
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Figure 4.4: Sections of MHIs and NMHIs. We divide the total sequence into L
sections and calculate MHIs and NMHIs for each section. The same sections of
vectorized MHIs (NMHIs) for each action class are collected and the dimension
is reduced with CA-PCA using orientation labels. After reducing the feature
(derived from MHIs and NMHIs) dimension, they are separately trained using
SVDD. Finally, we obtain (2L × NC) number of CA-PCA principal axis and
(2L×NC) number of SVDD results, where NC is the number of action class.
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4.2.1 Training and Testing

The proposed method can recognize the orientation of action since the features,

which are projections of 3D-S volumes and 4D-STIPs to various image planes,

contain the orientation information. Figure 4.3 shows the process of training

step for recognition of action orientation. Similar with the training step for view

invariant action recognition, we use the vectorized L number of MHIs and L

number of NMHIs for training for orientation of action recognition (Figure 4.4).

When we classify actions, we collect features from all action classes and reduce

the dimension using CA-PCA which uses action class information. However, when

we classify the orientation of action, we collect the same sections of vectorized

MHIs (NMHIs) for each action class and dimension is reduced with CA-PCA

using orientation labels. The reason why we do not collect data for all action

classes is that we want to find the more appropriate principal axis for recognition

of action orientation. After reducing the feature (derived from MHIs and NMHIs)

dimension, they are separately trained using SVDD. Finally, we obtain (2L×NC)

number of CA-PCA principal axis and (2L×NC) number of SVDD results, where

NC is the number of action class.

Figure 4.5 shows the process of testing step for recognition of action orien-

tation. The recognition of action orientation is performed after classifying action

class. The each section of vectorized L number of MHIs and L number of NMHIs,

which are calculated using silhouettes and 3D-STIPs from 2D-S image sequence

in the previous action recognition step, are reduced with corresponding CA-PCA

principal axis and recognized the actions with SVDDD classifier. We use the

sum of the 2L number of SVDDD scores (MHIs and NMHIs) as a final decision

score and assign the samples of input test video to the orientation of the highest

decision score.
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Figure 4.5: Testing for recognition of action orientation. The recognition of action
orientation is performed after classifying action class. While the test input is
reduced using CA-PCA with action label when we recognize action, the test
input is reduced using CA-PCA with orientation label when we recognize the
orientation of action.
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Figure 4.6: SNU dataset for recognition of action orientation. SNU dataset is
taken from 5 different orientations for recognition of action orientation.

4.3 Experimental results

To recognize the orientation of action, we developed SNU dataset which was

taken from 5 different orientations as in Figure 4.6. The SNU dataset contains 4

different views related to φ value and each view is consist of 5 orientations related

to θ value of C in Figure 3.12. For recognition of action orientation experiment,

we aligned 3D-S volumes as in Figure 4.7 and then projected 4D-ST motion

features into 13 orientations with 15◦ interval to cover various camera views and

orientation of people. Then the number of different image planes used for training

becomes 13×8 = 104 (i.e. N is 104 in Figure 4.1), where 13 different orientations
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Figure 4.7: Alignment of 3D-S volumes. 3D-S volumes are aligned to look at the
front for the recognition of action orientation.

Figure 4.8: The accuracy of recognition of action orientation in two cases. This
Figure shows (a) when we recognize correctly (0◦) and (b) when we allow the
adjacent orientation 45◦ as correct one.

Table 4.1: The recognition rates of action orientation in SNU dataset. The recog-
nition rates of action orientation (in %) per camera when we recognize correctly
(0◦) and when we allow the adjacent orientation as correct one (15◦ ∼ 45◦).

96



Table 4.2: The recognition rates of action orientation per action and camera. The
recognition rates of action orientation (in %) per action and camera (a) when we
recognize correctly and (b) when we allow the adjacent orientation 15◦ as correct
one.
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Table 4.3: The recognition rates of action orientation per action and camera. The
recognition rates of action orientation (in %) per action and camera when we
allow the adjacent orientation (a) 30◦ (b) 45◦ as correct one.
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are related to θ value and 8 different views are related to φ value of C in Figure

3.12. We recognized the orientation of action only when the action classification

result was correct. Table 4.1 shows recognition rates of action orientation (in %)

per camera when we recognize correctly (0◦) and when we allow the adjacent

orientation as correct one (15◦ ∼ 45◦) (Figure 4.8). We allowed an error 45◦ as

a maximum value since the SNU dataset was taken from 5 different orientations

with 45◦ interval. In table 4.1, we can see that the recognition rates of action

orientation show good performance when we allow the adjacent orientation 45◦

as correct one. Table 4.2, 4.3 show the recognition rates of action orientation (in

%) per action and camera when we recognize correctly and allow the adjacent

orientation (15◦ ∼ 45◦) as correct one.

4.4 Concluding remarks

In this chapter, we proposed a method to recognize the orientation of action and

the experimental results showed good recognition rates. The proposed method

for recognition of action orientation can be useful for recognizing the complex

human activities such as human-human interactions.
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Chapter 5

Conclusions

In this thesis, we proposed a framework for the view invariant recognition of action

and their orientation using generalized 4D [x,y,z,t] motion features with 3D space

(3D-S, [x,y,z]) volumes to understand actions occurring in the three-dimensional

[x,y,z] world. The contributions of this thesis are summarized as follows.

First, we proposed 4D space-time interest points (4D-STIPs, [x,y,z,t]) which

extended the 3D space-time interest points (3D-STIPs, [x,y,t]) using 3D-S vol-

umes reconstructed from images of several number of different views. Since the

proposed features were constructed using volumetric information, the features

for arbitrary 2D space (2D-S, [x,y]) viewpoint could be generated by projecting

4D-STIPs on corresponding image planes and used for training step. We also pro-

posed a variant of 3D-STIPs by taking into account the simultaneous gradient

variation in all 3 dimensions [x,y,t] to focus on the motion of important spatial

corner points such as head, hands and feet. The conventional 3D-STIPs may be

extracted from the body parts motions which are meaningless for describing the

details of actions in many cases. This is because the existing method might ex-

tract interest points even when any one of the spatial or temporal derivatives
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becomes large. To extract temporal interest points only from spatially distinctive

parts such as head, hands, and feet, we modified the existing 3D-STIPs method

by hierarchically extracting the STIPs in two steps. We first found the spatial

interest points (SIPs) in each image and then decided SIPs having significant

variation along time axis as STIPs. The same hierarchical process were applied

in calculating 4D-STIPs. By doing this, we could focus on the discriminative

movements of body parts for action recognition. We calculated the variant of 3D-

STIPs using image sequences from 5 different views and 4D-STIPs using 3D-S

volumes in IXMAS dataset. The proposed interest points were verified to be able

to represent the properties of each action compactly.

Second, we proposed a method to recognize human action independently of

viewpoints by using the proposed 4D space-time (4D-ST, [x,y,z,t]) motion features

which can generalize the information from a finite number of views in training

phase so as to show a satisfactory performance in arbitrary testing views. With

the 3D-S volumes and the proposed 4D-STIPs, we could generate features of

all the views by projecting them to arbitrary 2D-S image planes. In addition,

we proposed non-motion features to encode stationary part of an action, which

increased the recognition performance. The model is said to be generalized in

that it robustly recognize actions from any arbitrary view and even from video

captured at entirely different views from training sets. In experiments, we trained

the models using IXMAS dataset constructed from 5 views and tested them

with a new SNU dataset made for evaluating the generalization performance for

arbitrary view videos and the proposed method showed the best performance in

all camera views.

Third, we also proposed a method to recognize the orientation of action.

We could recognize the orientation of actor in a reasonable performance since

our training sets, which are projections of 3D-S volumes and 4D-STIPs to vari-
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ous image planes, contain the orientation information. In the experiment for the

recognition of action orientation, we subdivided the projection interval in training

step and represented recognition rates depending on the required accuracies. The

experimental results showed reasonable recognition performance. The recognition

of action orientation can be very useful for recognizing the more complex human

activities such as human-human interactions.
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국문 초록

본 논문은 일반화된 4차원 [x,y,z,t] 동작 특징을 이용하여 시선각에 무관한 행동

및 행동 방향 인식 문제를 해결하는 것을 목적으로 수행되었다. 기존의 행동 인식

연구는 주로 카메라의 위치는 고정되어있고 사람들은 카메라를 바라보고 서있는

상황을 가정하였다. 그러나 실제 비디오나 감시카메라에 등장하는 사람들은 카메

라를 의식하지 않고 자연스럽게 행동하기 때문에 제한된 조건, 환경에서 행동을

인식하는 것과 달리, 카메라의 위치와 사람의 방향에 따라서 다양한 시선각에서

영상이 촬영될 수 있다. 따라서 실제 어플리케이션에 적용하기 위해서는 무작위의

시선각에서영상이들어왔을때행동인식을하는것이필수적이며, 어떤 방향으로

행동하는 지 알 수 있다면 누구와 상호작용을 하는 지 아는데 도움을 줄 수 있다.

본 논문에서는 몇 개의 다른 시선각에서 찍힌 영상을 이용하여 3차원 [x,y,z]

입체를 복원하고, 연속된 3차원 입체에서 4차원 시공간 특징점을 구하는 방법을

제안하여 시선각에 무관한 행동 및 행동 방향 인식을 수행하였다. 3차원 입체 및

연속된 3차원 입체에서 구한 4차원 시공간 특징점은 모든 시선각에서의 정보를

갖고 있으므로, 원하는 시선각으로 사영을 하여 각 시선각에서의 특징을 얻을 수

있다. 사영된 실루엣과 4차원 시공간 특징점의 위치를 바탕으로 각각 움직이는 부

분과 움직이지 않는 부분에 대한 정보를 포함하는 motion history images (MHIs)

와 non motion history images (NMHIs)를 만들어 행동 인식을 위한 특징으로

사용을 하였다. MHIs만으로는 행동 시 움직이는 부분이 비슷한 패턴을 보일 때

좋은 성능을 보장할 수 없고 따라서 행동 시 움직이지 않는 부분에 대한 정보를 줄

수 있는 NMHIs를 제안하였다. 행동 인식을 위한 학습 단계에서 MHIs와 NMHIs

는 클래스를 고려한 차원 축소 알고리즘인 class-augmented principal component

analysis (CA-PCA)를통해서차원이축소되며, 이때행동라벨을이용하여차원을

축소하므로각행동이잘분리가되도록하는 principal axis를찾을수있다. 차원이

축소된MHIs와 NMHIs는 support vector data description (SVDD)방법으로학습
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되고, support vector domain density description (SVDDD)를이용하여인식된다.
행동 방향을 학습할때에는 각 행동에 대해 방향 라벨을 사용하여 principal axis를

구하며, 마찬가지로 SVDD로 학습을 하고 SVDDD를 이용하여 인식된다.

제안된 4차원 시공간 특징점은 시선각에 무관한 행동 및 행동 방향 인식에

사용될 수 있으며 실험을 통해 4차원 시공간 특징점이 각 행동의 특징을 압축

적으로 잘 보여주고 있음을 보였다. 또한 실제 어플리케이션에서처럼 무작위의

시선각에서 영상이 들어왔을 경우를 가정하기 위하여 학습 데이터셋과 전혀 다른

새로운 인식 데이터셋을 구축하였다. 기존의 여러 시선각에서 촬영 된 IXMAS

행동 인식 데이터셋을 이용하여 학습을 하고, 학습 데이터셋과 다른 시선각에서

촬영한 SNU 데이터셋에서 인식 실험을 하여 제안한 알고리즘을 검증하였다. 실험

결과 제안한 방법은 학습을 위해 촬영한 영상에 포함되지 않는 시선각에서 테스트

영상이 들어왔을 경우에도 좋은 성능을 보이는 것을 확인하였다. 또한 5개의 방

향으로 촬영된 SNU 데이터셋을 이용하여 행동 방향 인식 실험을 하였으며, 좋은

방향인식률을보이는것을확인하였다. 행동방향인식을통해서영상내에서여러

사람이 등장할 때 다른사람들과 어떻게 상호 작용을 하는지 정보를 알 수 있고,

이는 영상을 해석하는데 도움을 줄 수 있을 것으로 생각된다.

주요어: 4차원 시공간 특징점, 시선각에 무관한 행동 인식, 행동 방향 인식, 3

차원 복원

학번: 2009-30180
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