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Abstract

In an ideal surveillance scenario, the instant response to the crime/incident should

be guaranteed for its purpose. For this reason, online approach is more preferred

for the algorithms implemented in a surveillance system, such as moving objects

detection and object tracking. Generally, online algorithms cannot break causal-

ity condition and only use past observations, which lead to lower performance

than batch algorithms with future observations. However, online algorithms are

more demanded than batch algorithms in a surveillance system because batch al-

gorithms require heavy computation time. Moreover, batch algorithms need the

whole video input, which makes the batch algorithms more suitable for video

analysis, not for the surveillance system. While online tracking for the single ob-

ject is quite normal and most current researches track its target object in online

manner, most multiple objects tracking methods have been researched with offline

scheme due to their heavy computation and lack of causality. Another reason why

the offline scheme is widely adopted in the field of the multiple objects tracking

is that the required quantity of clues to track each object and distinguish them

simultaneously is much larger than the single object tracking problem. To handle

this difficulty, the data association method is generally used to find temporal as-

sociation of each object over frames. However, this complexity still increases when

several number of cameras are used and both spatial and temporal association

should be achieved.

In this thesis, we propose an online data association approach for tracking

multiple number of people with both single camera and multiple cameras. With-

out delayed decision or future data input, we perform online data association

between the detection results and tracking models and show robust performance
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with a faster speed than offline data association. For multiple target tracking

in the single camera case, we formulate an online MAP (Maximum A posteriori

Probability) problem to find the temporal association among detection obser-

vations at the current frame and the tracking models from the last frame in

the same image domain. Because a single camera can provide a limited infor-

mation, the multiple target tracking with a single camera is especially weak for

occlusions and overlaps. To overcome these limitations, we use the head detector

which is robust against occlusions and overlaps. With head detection results and

the tracking models, we encode the problem of multiple target tracking to the

problem of finding matching in a graph and solve the matching problem on the

formulated MAP problem considering object size, center distance, motion and

appearance. During temporal association process to track multiple objects, our

solution initializes new tracking model automatically. Moreover, the corruption

of tracking models by missed detections from occlusions is prevented by selective

update of the tracking model through occlusion reasoning method. This occlu-

sion reasoning method prevents the tracking model from being corrupted with

unreliable information. Since the proposed MAP formulation only uses the last

tracking models and current observations, this proposed MAP formulation can

be solved without heavy computation. In order to demonstrate the validity of the

proposed method, we compare our method with the state-of-the-art methods and

show improvement in performance.

Extending the proposed framework for the single camera case, we also pro-

pose an online framework to track multiple objects with multiple number of

cameras. Multiple cameras can provide more information than a single camera

for tracking especially when occlusions among objects happen or overlaps behind

backgrounds occur. However, in the perspective of association, increased amount

of information is not always preferred. The problem of multiple target tracking in
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multiple cameras is much more complicated than single camera data association

because spatial and temporal association should be handled at the same time.

Moreover, most conventional approaches have large computational complexity

by taking the global optimization scheme for the accuracy. To solve this prob-

lem of heavy computational load, we formulate an online MAP problem to find

the spatial association among cameras and the temporal associations between

recently consecutive frames at the same time. As the case of the single camera,

we encode this online data association to a matching problem in the graph and

formulate a MAP problem. In the association of the tracking models and the

detection results, we use 2D position, appearance, motion, and 3D position (a

reconstructed point on the world coordinate with camera matrix.) With these

features of objects and tracking models, the geometric information (camera pa-

rameters) and assumptions for human models are considered in data association

process. Through experiments with several datasets, we show the performance of

the proposed online algorithm is comparable to the state-of-the-art offline method

even in low computation load.

Keywords: visual tracking, online multiple target tracking, data association,

matching graph, MAP optimization, multiple cameras

Student ID Number: 2008-22908
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Chapter 1

Introduction

1.1 Statement of problem

Object tracking is one of the fundamental issues in building an intelligent visual

surveillance system. Object tracking is a process of chasing objects and maintain-

ing their labels through frames and it is usually initiated after detection of objects

which users are interested in. With the object detection, object tracking is a very

important task for surveillance purpose. This area has been studied extensively in

decades and many single object tracking algorithms show good performance even

in the hard conditions (severe occlusions, background clutters, and uncertain ini-

tialization). They used different dynamic models [1, 2, 3], features [4, 5, 6, 7], and

learning skills [8, 9, 10, 11] to solve the upper problems. In general surveillance

scenario, however, there usually exist more than one object and the single object

tracking is not enough to achieve the goal of the surveillance system. While the

single object tracking algorithms show good performance, extending those single

object tracking methods for multiple target tracking by assigning an individual

tracking model to each object does not work successfully because the multiple
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target tracking problem is a much more complex problem than the single object

tracking problem. The reason why this simple extension of the single tracking

algorithm does not work well is that it cannot consider relationships among dif-

ferent objects and regards different objects as completely independent objects,

which is not true. In reality, objects move along other objects or avoid each other

or occlusions among them happen by crossover. This is the reason why the data

association scheme is widely adopted as a solution for the multiple target tracking

problem and recently shows good performance.

Tracking multiple pedestrians maintains identities of multiple people, pro-

vides their trajectories, and achieves information to recognize their personal be-

haviors in time sequences simultaneously. However, there exist several difficulties

for tracking multiple people in crowded video. The main sources of the difficul-

ties are occlusions, including inter-objects and object-background overlaps, and

closely-located people with similar appearance. To solve these difficulties, there

have been two types of approaches for multiple target tracking. The first type of

approach is to use multiple number of cameras and the second type of approach is

to develop a robust data association method in single camera with various cues.

The former type of approach can provide more information of objects with several

videos from different viewpoints and does not need to consider occlusion in one

viewpoint because it can perform data association in world coordinate by projec-

tion of one view with camera calibration information or homography estimation.

In the world coordinate domain, the occlusion between two different objects ac-

tually can not happen because two people locating at the same 3D position is

physically impossible. However, even though using multiple number of cameras

can handle the occlusion problem by providing 3D information of objects, spatial

(between cameras) and temporal (between consecutive frames) association of ob-

jects should be found simultaneously and this is one of the well known NP-hard
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problems, K-partite matching. On the other hand, the approaches for the data

association in single camera are not suffered from large solution space unlike the

multiple camera case requiring inter-cameras association as well as inter-frames

association at the same time. However, it is hard to get reliable cues to associate

data robustly when occlusion happens or there exist many objects with similar

appearance. For this reason, the available amount of information and the compu-

tation time are very different depending on the number of cameras, and several

algorithms have been proposed for both single and multiple camera cases. Cur-

rently, the number of researches with multiple number of cameras is increasing

largely with the improvement of computation power and performance of detection

algorithms.

1.2 Related works

• Approaches with a single camera

When multiple objects are tracked with a single camera, the amount of infor-

mation is much less than the multiple camera case and falsely detected objects,

occlusions, and missing detections are very crucial for reliable data association.

For this reason, the performance of multiple target tracking algorithms in the

single camera case is usually less than the multiple camera case. Without in-

formation from different camera views, multiple objects tracking algorithms in

the single camera case generally cannot use geometric information, such as re-

construction error and positions in the world coordinate system. However, more

cameras do not always guarantee better tracking result because the solution space

for the data association is drastically increased with amount of observations to

be associated. The conventional methods for multiple objects tracking based on

the tracking-by-detection scheme can be categorized to the global optimization
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method or the online optimization method with respect to the optimization do-

main, and the data association methods using a full-body detector or a head

detector with respect to the type of the detector. In the sense of optimization do-

main, the global optimization methods [12, 13, 14, 15, 16, 17, 18, 19, 20, 21] breaks

the causality condition using future information or deal with several frames for

data association. They usually show better performance with a global optimiza-

tion scheme, however, they suffer from a decision delay and high computational

complexity. The online optimization methods [22, 23, 24, 25] consider only the

last and current observations in association. These methods are suitable for on-

line applications, however, the performance of data association might be degraded

easily by noisy or missing detections.

For the type of detectors, most of tracking-by-detection approaches for track-

ing multiple objects in a single camera use full body detectors to detect interesting

targets [26, 27, 25, 13, 22]. Full body detection can provide many different cues for

tracking and discriminating objects. However, the object detection performance

of full body detector is easily degraded by occlusions, which leads to the failure

of data association. To overcome this problem, various types of detections were

adopted in many approaches. Bo and Ram proposed edgelet based part detectors

in [23] and Siyu et al. trained double person detector to detect occluded people

and separated them to track each individual in [28]. In [18, 24], head detection

results were used as observations for the data association problem. In crowded

scenes, detecting heads is more suitable for video sequences with occlusions be-

cause the head part is less occluded and can provide more reliable detection

results than the body of human in data association. However, the main reason

why head detector is not commonly used in data association is that the head has

insufficient features, such as shapes and colors, which makes the head detection

results less discriminative than full body detection results.
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• Approaches with multiple cameras

To solve the multiple object tracking problem with multiple number of cam-

eras, various tracking approaches have been proposed. Since multiple cameras

can watch the scene from different views, occluded objects in one camera view

can be located far and not under occlusion situation in different view. These ap-

proaches can be categorized with respect to its input for data association and its

optimization domain, and this is illustrated in Figure 1.1. In the perspective of

input data, there are two types of approaches to track multiple objects with mul-

tiple cameras, which are object detector based approaches[29, 30, 31, 32, 33] and

background subtraction based approaches[34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 43].

The object detector based approaches detect interesting objects such as human

body or human head in the videos with pre-trained classifier first, and, then,

perform the data association in spatial and temporal senses with detection re-

sults from multiple number of camera views. Detectors based on Histogram of

gradients (HOG) [44] and deformable part model(DPM) [45] are widely used de-

tectors. Several object detection algorithms, such as those mentioned above, show

a robust performance even in moving cameras or under small occlusions. In [29],

Leal-Taixe et al. modeled the input of detection result in a joint optimization

framework over the complete sequence. They divided the data association pro-

cess into two steps (spatial association and temporal association), and they solve

those two associations separately. In [30], Hofmann et al. proposed hypergraphs

for multiple object tracking and solve spatial and temporal association together

using the network flow concept. In [31], Sternig et al. adopted the idea of gener-

alized Hough voting in [46] and extended it for tracking with multiple cameras.

By exploiting the geometric constraints, they performed Hough voting on each

camera and projected the results to the top view map for the particle filter based

5



MULTIPLE TARGET
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DATA
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RANGE
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OPTIMIZATIONSUBTRACTION DETECTION OPTIMIZATION OPTIMIZATION

Figure 1.1: Conventional approaches for multiple target tracking. The conven-
tional approaches are categorized with respect to its input for data association
and its optimization domain. In the perspective of input data, conventional meth-
ods are divided into background subtraction based methods and object detector
based methods. In the perspective of optimization domain, they are divided into
global optimization methods and online optimization methods.
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tracking. Mittal and Davis, in their paper [32], tracked the centroid of estimated

object blobs, which was done by their own detector based on color and geomet-

ric information with Kalman filter, and Shitrit et al. built a multi-commodity

network to compute flows on the directed acyclic graph in [33]. This type of ap-

proach is known as the Tracking-by-Detection method because they perform the

object detection algorithm first and then give labels on the results of detection

algorithm. The Tracking-by-Detection method has been widely accepted as a so-

lution for multiple target tracking since the performance of detection algorithm

becomes quite confident to be used for the data association. However, there are

still false-positives or missing detection which makes the data association problem

hard to solve. Because the detection of interesting object is processed by compar-

ing the pattern of certain region with that of the pre-trained model (human body

or head), false positive regions can be repeatedly detected and they are burdens

to accomplish robust data association. Also, even though using multiple cameras

can bring better results than using a single camera, there is no guarantee that

every person is detected by exploiting multiple number of cameras. Once missing

detection of certain object happens, its position could be estimated with different

techniques to improve the performance of the tracking algorithm.

On the other hand, background subtraction based approaches find foreground

objects in each camera view first, and, then, merge them into the single world

coordinate system with camera calibration information or into the image coordi-

nate system of one camera view with homography estimation. In [34], Possegger

et al. introduced the concept of an occupancy volume and tracked each object

using the local mass density score with a particle filter based tracking algorithm.

They also adopted the idea of a Voronoi partitioning and divided the re-projected

occupancy map of the constructed visual hull. Khan et al. in [35] used the mo-

tion detection algorithm to find the foregrounds in the ground plane and adopted

7



the homography constraint so that any 3D point inside the foreground object

could be projected to a foreground pixel in every view. In [36], they applied

multiple number of homographies on different heights for 3D shape recovery of

non-occluded objects. Extending these previous works, Khan et al. in [37] built a

4D spatio-temporal sequence of synergy map, which was constructed by project-

ing foreground maps of each camera into 3D coordinate system and fusing them

together, and performed a graph cut on the sequence of the synergy map. Kim

and Davis [38] applied search-guided particle filtering and multiple hypotheses

tracking scheme in [47]. In [39], Berclaz et al. reformulated the data association

problem as a constrained flow optimization problem and solved it with a standard

linear programming technique. The result of this paper is improved compared to

that of their own previous paper which uses the sequential dynamic program-

ming [40]. Eshel and Moses [41] estimated heads at different height by geometric

information and tracked them to handle occlusion. This idea comes from the fact

that head is less occluded than body and foot in crowded scene. The tracking

is done only with motion information between consecutive frames. In [42], Wu

et al. encoded multiple target tracking problem to multi-dimensional assignment

problem and used a greedy randomized adaptive search procedure to solve the

problem. They relaxed the one-to-one constraint for unmatched/newly-appeared

objects and solved iteratively the relaxed problem. To improve the performance

of both detection and tracking, Wu et al. [43] coupled the object detection and

tracking problem together, which was solved with a single objective function.

This single objective function considers object presence and network flow based

data association at once. In [48], Liem and Gavrila used space volume carv-

ing technique to remove ghost artifacts in segmented foreground maps and they

formulated the multiple target tracking problem as an edge selection task on

a bipartite graph. Because background subtraction is much faster than object
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detection algorithms, acquiring data for data association by background subtrac-

tion is easy and suitable for real-time and online surveillance scenario. However,

the background subtraction itself cannot show good performance with illumina-

tion change and dynamic backgrounds. Moreover, merging foreground maps from

each different camera view can bring a phantom effect which is the appearance of

imaginary objects in merged world coordinate system by projection of adjacent

objects into the same coordinate system. As shown in Figure 1.2, the foreground

maps (black map) of each camera views are transformed to the single coordinate

system (blue map), and both actual human-stand regions (orange circles) and

phantoms (red circles) are detected by thresholding the fused score of the single

coordinate system. For tracking multiple targets, not phantoms which are not

actually interesting objects, those two regions should be distinguished first and

data association is performed only with actual human-stand regions (orange cir-

cles). Since distinguishing phantoms from actual objects is generally a difficult

task only with the fused score map of the single coordinate system, object detec-

tor based approaches are more preferred recently.

In the perspective of optimization domain, conventional approaches for mul-

tiple objects tracking with multiple cameras can be categorized into the global

optimization method or the online optimization method. Most conventional meth-

ods which focus on high performance use the past and the future information al-

together for data association [29, 30, 33, 37, 39, 40, 43] and perform a global opti-

mization. This type of approach is known to find a better solution with abundant

information from multiple number of frames, however, they break the causality

condition and not suitable for online applications. Moreover, the computational

complexity increases significantly with increasing number of cameras and objects

in scenes, which causes the intractable solution or time-delayed results.

On the other hand, several online algorithms for multiple objects tracking
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Figure 1.2: The phantom effect. When moving foregrounds are extracted by back-
ground subtraction methods (black map) and they are transformed to the single
coordinate system (blue map), actual human-stand regions (orange circles) and
phantoms (red circles) are both detected. For multiple target tracking purpose,
those two regions should be distinguished first and data association is performed
only with actual human-stand regions.
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have been proposed [31, 32, 34, 35, 36, 38, 41, 42, 48] for online application pur-

pose. These algorithms are fast and available in online application, however, they

show poor tracking performance with large number of moving targets and large

number of cameras. Moreover, their tracking fails frequently when the tracking

model is drifted or deteriorated by neighbors because their algorithm is optimized

in an online scheme and cannot be recovered from the wrong solution. If the so-

lutions at the previous frames are incorrect, their solution at the current frame

will be most probably incorrect either since the online scheme does not have the

feedback procedure to fix the previous solutions. For this reason, this type of

approach assumes the solutions at the previous frames are perfectly correct and

choose/enumerate the solution at a certain frame based on the incorrect solution

at the previous frames. This characteristic of the online approach is the main

reason why online algorithms have lower tracking performance than the batch

algorithms using the global optimization scheme.

1.3 Contents of research

In this thesis, we overcome the limitations of conventional approaches with vari-

ous schemes and propose an online multiple objects tracking method with a single

camera as well as multiple number of cameras. We first focus on the problem of

the multiple objects tracking with a single camera and then extend our algorithm

for multiple cameras. The inputs for data association in both cases are acquired

at each frame by the object detection algorithms to get a human head detection

results for the case of single camera and human body detection results for the case

of multiple cameras. In the case of the single camera, the multiple object track-

ing problem is suffered from less amount of information than the multiple camera

case. To decrease the number of the missing detection by occlusions and overlaps,

11



we use the head detection algorithm and use the results in the data association.

Our algorithm constructs a matching graph whose nodes are detection results at

each frame, 2D tracking models from the previous frame and null node for the

initialization of new tracking model. The online MAP problem is formulated on

this matching graph and we find matchings among those three types of nodes

by Gibbs sampling method [49]. Because the proposed method does not break

the causality condition and work only with observations at the current frame

and the tracking models at the last previous frame, our method runs faster than

global optimization methods with good performance. We evaluate the proposed

multiple target tracking approach with several dataset and show improvement in

performance.

In the algorithm for multiple objects tracking with multiple cameras, we ex-

tend the algorithm proposed for the case of the single camera case. We construct

a matching graph whose nodes are detection results at each frame, 3D tracking

models from the previous frame and null node for the initialization of new track-

ing model. As the single camera case, the online MAP problem is formulated on

this matching graph considering the 2D information in image domain. However,

in the multiple camera case, we additionally formulated the likelihood and prior

probabilities with the 3D information in world domain, such as reconstruction

positions with camera matrix and geometrical cues from camera installation in-

formation. Moreover, the unmatched tracking models in 2D image domain are

differently updated with matching results in other cameras. Because the multiple

number of cameras can provide additional information especially when occlu-

sion happens, using multiple number of cameras to track multiple targets shows

good performance even in crowded scene. Moreover, by using only the current

detection and the last previous 3D tracking model, our method works faster than

conventional methods based on the global optimization and shows reasonable

12



performance even with large number of objects and cameras.

1.4 Organization of the thesis

In chapter 2, we propose the online algorithm to track multiple objects with

a single camera. With less information from the single camera, we successfully

track multiple objects under several difficult conditions, such as occlusions and

false positives. After describing our overall framework, we introduced the head

detection algorithm we used and the online MAP formulation. The likelihood

and prior probabilities are described in detail, and selective update scheme to

handle missing detection and occlusion is explained. In chapter 3, we extend our

algorithm with a single camera to the case of multiple cameras. After describing

the used matching graph with extra added node, our online MAP formulation

for the case of multiple number of cameras is introduced. In chapter 4, we finish

this thesis by making conclusions and describing the possible future research

directions.
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Chapter 2

Multiple Target Tracking in a

Single Camera

2.1 Introduction

In this chapter, we propose an online data association method with head detection

results based on a matching graph to achieve a comparable performance to the

global optimization approaches with a full-body detector. Because a single camera

cannot provide additional information from various number of views of multiple

cameras, the multiple targets tracking with a single camera is especially weak for

occlusions and overlaps. To overcome these limitations, the posterior probability

should be defined differently from the multiple camera case. For data association,

we formulate a matching problem between two groups of nodes; nodes in one side

of the matching graph are the current detection observations, and nodes in the

other side represent recently updated tracking models. Different to the paper by

Oh et al. [50], we construct a graph, which has a similar structure with bipartite

graph, and add a new node connected to all observation vertices. By adding this
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Figure 2.1: Multiple people tracking results by the proposed method in the single
camera case. The images in the right are the tracked heads with the same iden-
tity at different time step. It shows that the label of the people is successfully
maintained in the crowded scene.
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new node, we can deal with the problem of the tracking model initialization, which

is one of the main problems in both single object and multiple objects tracking.

To handle insufficient discriminative features of the observations from the head

detector, we build a MAP formulation for data association instead of the greedy

bipartite matching scheme adopted in [22, 23, 25]. By performing sampling on

the solution space of the MAP formulation considering the size, center distance,

motion and appearance, a robust data association can be achieved.

By using only the last tracking models and current observations for online

application, the proposed method decreases the computational complexity for the

MAP problem (data association for matching) and it can be solved with sampling

on the limited solution space. Moreover, the proposed solution on the modified

matching graph and selective update scheme can successfully track the heads and

maintain their identity even in the highly crowded scene without any prior scene

knowledge.

2.2 Overall framework

The overall framework of our algorithm is illustrated in Figure 2.2. With input

image, we perform object detection algorithm to find human or car, and filter

out unreliable detection results by the outlier rejection method with distance

and the meanshift clustering method. The reason why head detection algorithm

is applied instead of human detection algorithm is that human body is easily

occluded by other humans and backgrounds while human head is less occluded

even in the crowded scene. Because we cannot use the different view in the single

camera case, the occluded objects may not be detected, which can make the

data association problem much hard. For this reason, we adopt human head

detection algorithm while the human head has less information than human body,
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Figure 2.2: Overall framework of the proposed multiple targets tracking method
in single camera case. With input image from a single camera, we detect human
head in each frame and track multiple objects and maintain their labels by data
association process. To associate detections and tracking models, we formulate a
MAP problem and solve it by sampling.

for example, the object position in the ground plane. After noisy detection boxes

are filtered by outlier rejection and meashift clustering methods, we associate

them with tracking models from the previous frames. The association problem

is formulated by solving a MAP problem on the matching graph. To solve the

occlusion/missing detection problems, we propose a selective local search which

updates/destructs the tracking models selectively with the matching results.

2.3 Detection of heads

To acquire head detection results for data association, we apply the GPU version

[51] of the Histogram of Oriented Gradients (HOG) based detection algorithm
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Figure 2.3: Upper row: Row head detection results by [51]. Bottom row: Filtered
head detection result by the outlier rejection and the meanshift clustering al-
gorithm. The proposed data association method is processed with these filtered
boxes.

by Dalal and Trigg [44]. This method detects heads by convolution of pre-trained

HOG of head sample in various scales to the current frame. Without any prior

knowledge about the size of the head of the people, this method brings multiple

head detection results on a single person from different scales of HOG template,

and false positive detection results on human-similar region in HOG sense. This

is illustrated in the upper row of the Figure 2.3. Because these noisy detection

results make the data association problem much hard, we adopt two filtering

methods before performing the data association to remove multiple boxes on a

single person and false positives.

Each detection box, a blue box in Figure 2.3, is represented by a 4-D tu-

ple (x, y, w, h) where x,y is its top left corner and w,h is its width and height
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respectively. To filter out noisy observations, we build a voting distribution of

the detection boxes in 4-D coordinate and reject the boxes which are not located

in the frequently voted regions of the distribution. After rejection of outliers, we

apply meanshift clustering to cluster multiple boxes to a single box which cor-

responds to a single person. The kernel bandwidth for the clustering is set to

the same value for the whole experiments in this chapter. The results of the two

filtering methods is shown in the bottom row of the Figure 2.3. However, filter-

ing scheme cannot handle noisy observation completely (e.g. a region which has

similar HOG to the head template is continuously detected as heads in the left

bottom of the Figure 2.3). To handle remaining problems, we propose an online

data association method based on the matching scheme using these filtered heads

as observations.

2.4 MAP formulation on the matching graph

To track multiple objects over frames, the recursive Bayesian estimation method

is one of the well known solutions for this purpose. The recursive Bayesian es-

timation method is a mathematically well-posed method and its performance is

quite guaranteed. However, the recursive Bayesian estimation method requires

detection results at all frames, which is not available in online application. In this

section, we explain how the recursive Bayesian estimation method works for mul-

tiple targets tracking problem, and propose our own online framework to track

multiple objects by solving the formulated MAP problem in the following section.
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Figure 2.4: The Bayesian network for the problem of multiple target tracking. The
true state of human models (Ht) can be assumed to be an unobserved Markov
process, and the detection results from a camera (U t) are the observation of a
Hidden Markov Model. This Bayesian network can be solved by recursive filtering
scheme, such as Kalman filter [52].

2.4.1 Recursive Bayesian estimation

Recursive Bayesian estimation, also known as Bayes filter, is a probabilistic ap-

proach to estimate an unknown probability distribution. This filter works recur-

sively with incoming measurements and can be used to estimate the posterior

probability which is the probability of states given observations. Because data

association for multiple targets tracking is to find a human model corresponding

to an observed detection result, we can apply the Recursive Bayesian estimation

method which estimates the states (human models) for given observations (de-

tection results). The Bayesian network for this purpose is shown in Figure 2.4.

Because we want to find the tracking models associated with the detection re-

sults at every frame, the tracking model Ht can be regarded as the state and the

detection results U t can be regarded as observation.

Mathematically, we define the posterior probability function of human mod-

els given observations and estimate the human models which maximizes the fol-
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lowing posterior function

P (H0, H1, · · ·, Ht|U1, · · ·, U t), (2.1)

where Ht represents the set of tracking models at time t and U t is the total set

of detection results at time t. With the Bayes rule, the equation (2.1) can be

rewritten as

P (H0, H1, · · ·, Ht|U1, · · ·, U t)

=
P (H0, · · ·, Ht, U1, · · ·, U t)

P (U1, · · ·, U t)

=
P (U1, · · ·, U t|H0, · · ·, Ht)P (H0, · · ·, Ht)

P (U1, · · ·, U t)
. (2.2)

To expand the equation (2.2) more, we use the Markov assumption. The Markov

assumption refers to the property of the distribution with respect to the tempo-

ral domain, which enforces that the conditional probability distribution of future

states depends only upon the present state. In detail, with the Markov prop-

erty, the probability of current state (Ht) given the last previous state (Ht−1) is

conditionally independent of all the other earlier states (H0:t−2) as

P (Ht|Ht−1, · · ·, H0) = P (Ht|Ht−1), (2.3)

and the observations at time t (U t) is conditionally independent of all other states

(H0:t−1) given the current state (Ht) as

P (U t|Ht, · · ·, H0) = P (U t|Ht). (2.4)

If we apply the equation (2.3) and the equation (2.4) of the Markov assumption

to the equation (2.2), then, the posterior probability for multiple objects tracking
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can be expanded as

P (H0, H1, · · ·, Ht|U1, · · ·, U t)

=
P (U1, · · ·, U t|H0, · · ·, Ht)P (H0, · · ·, Ht)

P (U1, · · ·, U t)

=
1

P (U1, · · ·, U t)
P (U1|H0, · · ·, Ht) · · · P (U t|H0, · · ·, Ht)

·P (Ht|H0, · · ·, Ht−1)P (H0, · · ·, Ht−1) (2.5)

=
1

P (U1, · · ·, U t)
P (U1|H1) · · · P (U t|Ht)

·P (Ht|Ht−1)P (Ht−1|H0, · · ·, Ht−2)P (H0, · · ·, Ht−2) (2.6)

=
P (U1|H1) · ·P (U t|Ht)P (Ht|Ht−1) · ·P (H1|H0)P (H0)

P (U1, ··, U t1:Nc
)

(2.7)

=
P (H0)

P (U1, ··, U t)

t∑
i=1

P (U i|H i)P (H i|H i−1). (2.8)

With the posterior probability defined above, the state model Ht at time t can

be estimated via the prediction and the update steps of the Kalman filter [52].

The prediction part of Kalman filter (prediction of current state with earlier

observations) is

P (Ht|U t−1, · · ·, U1) =

∫
P (Ht|Ht−1)P (Ht−1|U t−1, · · ·, U1)dHt−1, (2.9)

and the update part of Kalman filter (update current state with all observations

including the observation at current time step) is

P (Ht|U t, · · ·, U1) =
P (U t|Ht)P (Ht|U t−1, · · ·, U1)

P (U t|U t−1, · · ·, U1)
(2.10)

∝ P (U t|Ht)P (Ht|U t−1, · · ·, U1). (2.11)
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As we can see in the equation (2.9) and the equation (2.11), both the predic-

tion and the update parts of the Kalman filter require all observations from the

first frame to the current frame. It means that the recursive Bayesian estimation

method estimates the state model at time t with all detection results until the

current tth frame. However, storing all of the observations until the current frame

t requires a large memory space and considering all of them for the whole video

sequences to calculate the several terms (the second term of the left handside

of the equation (2.9) and that of the equation (2.11)) makes the problem more

complex. Moreover, because the computation time of the estimation process in

this case is very closely related to the number of considered observations in poste-

rior probability, the situation becomes even worse as the time index of the frame

increases. Because the large computational load of the recursive Bayesian estima-

tion is not suitable for online application, we propose an online MAP formulation

for estimation of the state model at time t, the human tracking model Ht, only

using the current observations at time t, U t, and the one-step ahead tracking

model, Ht−1.

2.4.2 Online MAP formulation for the single camera case

For the online data association, we propose a new matching graph scheme and

solve a node matching problem in the graph. In this graphical model, we add

an extra node for the automatic tracking initialization and the MAP formu-

lation to associate detection observations and tracking models. An example of

the proposed matching graph with an added node is illustrated in the Fig-

ure 2.5. The modified matching graph Gt = (U t, Ht−1, H0, E
t) is composed of

a vertex set of observations (U t = {uti|1 ≤ i ≤ NUt}), a vertex set of hu-

man tracking models (Ht−1 = {ht−1j |1 ≤ j ≤ NHt−1}), an extra added node

(H0) for initialization of a new tracking model, and the edges between vertices
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Figure 2.5: An example of the modified matching graph. U t is a vertex set of
observations, Ht−1 is a vertex set of tracking model, H0 is an extra added node
for tracker initialization, and they are connected by non-directional edges, E. On
this graph, a matching problem is solved for data association.

(E = {(uti, h
t−1
j )|uti ∈ U t, h

t−1
j ∈ Ht−1}) which contains the similarity between

nodes on the each end of edges, uti and ht−1j . Then, a matching problem on the

graph is defined with the following criteria: 1) the matching prefers nodes with

similar features; 2) every node in the set U t is connected to either a node in

the set Ht−1 or the extra node H0; 3) no two nodes from the set U t should be

connected to the same node in the set Ht−1; 4) plural nodes from the set U t can

be matched to the extra node H0. Instead of using the greedy bipartite matching

algorithm, we formulate these criteria as a MAP problem and solve it with a sam-

pling method. For the probabilistic formulation, we define the random variables

representing the components of the matching graph as follows. The observation

random vector U t is defined as U t = [U t1, U
t
2, · · ·, U tNUt

] and the human tracking

model at time t, Ht, is defined as Ht = [Ht
1, H

t
2, · · ·, Ht

NHt
], in which Ht

j contains

the random variables of position Dt
j , velocity V t

j , and appearance model Atj .

As described above, we want to find matchings between nodes in the graphG.
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From the second criteria, this matching should be achieved for the given current

observation vector U t, so that it maximizes the posterior probability distribution.

This problem is to find the human tracking model at time t, Ht, by maximizing

the following conditional probability, that is,

P (Ht|U t, Ĥt−1), (2.12)

where Ĥt−1 is defined as

Ĥt−1 = argmax
Ht−1

P (Ht−1|U t−1, Ĥt−2). (2.13)

The equation in (2.12) can be expanded as

P (Ht|U t, Ĥt−1) =
P (Ĥt−1, Ht, U t)

P (U t, Ĥt−1)
(2.14)

=
P (Ĥt−1)P (U t, Ht|Ĥt−1)

P (U t, Ĥt−1)
(2.15)

=
P (Ĥt−1)P (U t|Ht)P (Ht|Ĥt−1)

P (U t, Ĥt−1)
(2.16)

∝ P (U t|Ht)P (Ht|Ĥt−1). (2.17)

In our MAP formulation of the equation (2.17), the first term in the right hand

side stands for the likelihood probability. With the assumption of independence

of each vertex given matching result, which is the current 2D tracking model Ht,

we can define the likelihood probability as

P (U t|Ht) =
∏
i

P (U ti = uti|Ht
m(uti)

= htm(uti)
), htm(uti)

∈ {Ht−1, H0}, (2.18)
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where hm(uti)
is the matched human tracking node of uti (either ht−1j or H0). Then,

the likelihood probability for each vertex uti is,

P (U ti = uti|Ht
m(uti)

= htm(uti)
) = P2D(U ti = uti|Ht

m(uti)
= htm(uti)

) (2.19)

·PM (U ti = uti|Ht
m(uti)

= htm(uti)
),

where P2D is the 2D likelihood probability and PM is matching likelihood prob-

ability, which are defined for the similarity measure between two nodes and the

physically plausible solution respectively. First, the 2D likelihood probability is

defined as

P2D(U ti = uti|Ht
m(uti)

= htm(uti)
∈ Ht−1)

= αm(uti)
· exp(−‖Pos(uti)− dtm(uti)

‖22)

+(1− αm(uti)
) · exp(−

Q∑
q=1

(IMq(u
t
i)− atm(uti),q

)2), (2.20)

where ht
m(uti)

= (dt
m(uti)

, vt
m(uti)

, at
m(uti)

) and IM(uti) is the image patch of the de-

tection uti, IMq(u
t
i) is the qth pixel of the image patch, at

m(uti),q
is the qth pixel

of appearance model of the m(uti)th tracking model, at
m(uti)

, and Q is the size of

the image patch of the detection uti.

In the equation (2.20), αm(uti)
is the weight factor of Euclidean distance con-

sidering the position and velocity information in 2D likelihood probability, which

is initially set to 0.5. This weight factor controls the importance of position and

appearance, and is updated during the matching process: αm(uti)
keeps decreasing

by 4α until zero if ht
m(uti)

is not matched to any detection vertices. The value

of 4α in our experiment is 0.05, which means if the 2D tracking model of the

m(uti)th 3D tracking model (ht
m(uti)

) is not matched to any detection within 10

frames, appearance information is only used in the calculation of the 2D likeli-
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hood probability; Once matched, the value of α is reset to 0.5. Changing α is

effective to improve the data association performance because it emphasizes the

appearance feature (SSD) more than the distance (EUC) in calculating the 2D

likelihood probability for the tracking model which has not been matched with

any detection results for periods. For example, when background-people overlaps

and inter-people occlusions happen, the detection is missed for long period and

actual position of the object at current time can be largely different to the po-

sition of the current tracking model. For this reason, the position information is

not reliable to be used in the data association process. In this case, emphasizing

appearance features more than the position in the matching likelihood can re-

cover the drifted tracking model because the appearance of the tracking model is

only updated when it is matched to the detection observation in update process,

which will be described later. Controlling α with this scheme can improve the

performance of the tracking algorithm.

In the calculation of of the equation (2.20), the sizes of tracking models and

the detection observation are usually different because the objects keep moving.

For this reason, we resize the size of the appearance model to the size of each

detection when we compute the sum of squared difference. This likelihood value

is only defined for the case that m(uti) is a tracking model ht−1j which has the po-

sition and the appearance from the past frames. When comparing the appearance

models of the currently detected boxes and the tracking models, the size of the

appearance model is resized for calculating the pixelwise SSD(Sum of Squared

Distance).

On the other hand, the matching likelihood for plausible solution, PM , is
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defined as

PM (U ti = uti|Ht
m(uti)

= htm(uti)
∈ Ht−1) (2.21)

=

 exp(−β) if there exists utk,m(utk) = m(uti), k 6= i

1 otherwise
, (2.22)

where β is a large constant (100 for all experiments in this chapter). This matching

likelihod probability prevents two different detection results from being matched

to the same tracking model, which is not physically plausible. As described before,

the tracking model initialization node (H0) does not have appearance information,

so, only matching likelihood can be defined between the detection node and this

tracking model initialization node. The likelihood value for the extra added node

(H0) is defined as

PM (U ti = uti|Ht
m(uti)

= htm(uti)
∈ H0) (2.23)

=

 0.5 if maxh
s(ut

i
)
P (U t = uti|Ht

s(uti)
= hs(uti)) ≤ T, hs(uti) ∈ H

t

0 otherwise
,(2.24)

where T is a threshold to check whether the detection uti has a close tracking

model or not. If the detection uti has no close tracking models, then the proba-

bility maxh
s(ut

i
)
P (U t = uti|Ht

s(uti)
= hs(uti)) will be less than the predefined T and

we increase the probability to initiate a new tracking model for that detection.

Otherwise, we give no chance to a new tracking model to be initiated. Unlike

the matching to the tracking models, there is no penalty for the case that multi-

ple number of detections are matched to this initialization node. Since multiple

number of objects can appear at the same frame, it is required to allow multiple

matchings to the node H0. Because this likelihood probability is influenced by

the matching configuration, discrete bipartite matching algorithm, such as Hun-

28



garian method, cannot model this likelihood.

The prior probability, P (Ht|Ĥt−1), is designed to enforce motion dynamics

of objects over frames. This prior probability is defined as

P (Ht|Ĥt−1) =

Np(Ht,Ĥt−1)∏
i

P (Ht
i = hti|Ĥt−1

i = ĥt−1i ) (2.25)

with the assumption of the independence between motion dynamics of objects. Np

is the number of pairs, and only paired tracking models in consecutive frames are

calculated for the prior probability value. Then, the equation (2.25) is calculated

as

P (Ht
i = hti|Ĥt−1

i = ĥt−1i )

= P (Dt
i = dti|D̂t−1

i = d̂t−1i , V̂ t−1
i = v̂t−1i ) (2.26)

= exp(−|dti − (d̂t−1i + v̂t−1i )|). (2.27)

This prior probability gives high values for the closely located people or slowly

moving objects, which is used to find closely located tracking model at time t

with respect to the tracking model at time t− 1.

With the posterior distribution from the likelihood and the prior defined in

the modified matching graph, a Gibbs sampling method is adopted to get a MAP

solution to find the matching between nodes. Because the solution space of our

data association problem is small by using only U t and Ht−1, iterative solution

by Gibbs sampling does not require a large number of iterations and can solve

the matching problem fast. After performing the data association with Gibbs

sampling, the different update procedures are processed from the association

result, which is shown in the Figure 2.6. If a detection vertex is connected to

the tracking model vertex as the Figure 2.6 (a), the appearances and motions of
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Figure 2.6: The three different procedures with association results. (a) Update
the tracking model (Ht−1) with the observation (U t). (b) Initialize the tracking
model (Ht−1) from the observation (U t). (c) Update the tracking model (Ht−1)
with local search result.

the tracking model is updated with the matched observation. A detection vertex,

which is connected to the extra added node H0 as the Figure 2.6 (b), initializes a

new tracker and gives it a new label. This MAP solution on the modified matching

graph performs a robust data association even with head detection results which

are less discriminative than full body detections. Moreover, because the solution

space of sampling contains the tracking model initialization with the node H0,

the data association step itself can initialize the tracking model different from the

traditional bipartite graph. In the case of the Figure 2.6 (c), the tracking model

is not matched with any detection vertex. This means that there was a tracking

model for certain person but the person is not detected in current frame. In this

perspective, the position of the person should be estimated without observation,

and we propose a selective update method to estimate the position of the tracking

model which is not matched to any detection node as Figure 2.6 (c). This scheme
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is explained in the next section.

2.5 Selective update to handle occlusions

After the data association step, there can exist the 2D tracking models which

are not matched to any detection observations from the incomplete performance

of the detectors as the Figure 2.6 (c). In this case, we search the image in the

local region of the all the 2D positions of the unmatched tracking model in each

camera and set the most plausible position in SSD sense as the new position of

the 2D tracking model in image coordinate system, similar to the conventional

tracking methods. However, some of the tracking models are unmatched from the

reason of the missing detection by occlusions. When occlusion happens, the true

position of the object is actually invisible and there exists no reliable information

to update the tracking model. This is illustrated in the Figure 2.7 (a) and (b).

In Figure 2.7, because of the occlusion by the background structure and other

person, the person of the red box (Figure 2.7 (a)) are hidden in the yellow box

(Figure 2.7 (b)) and the simply searched result of the person of the red box in the

yellow box can be incorrect. For this reason, updating the tracking model with

local search result can cause the drift or the corruption of the tracking model and

should be done carefully.

To decide whether we accept or reject the local search result as the source to

update the tracking model, we apply a selective accepting scheme for the occlusion

reasoning method. This algorithm is explained in Algorithm 1. In Algorithm 1, the

candidate positions are chosen in grid around the position of the tracking model.

Then, for all candidate positions in the local region, SSD values are calculated

and their spatial distribution is considered in decision. In detail, we trust the local

search result if the spatial distribution of the SSD has a solid minimum point,
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(a) (b) (c)

Figure 2.7: The examples of bacgkround-object and inter-object occlusions. (a)
currently tracked model (b) occlusion happens in yellow box and detection is
missing: update tracking model can corrupt the model. (c) the result by the
proposed selective update
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Algorithm 1 The selective update for a tracking model

Input: The unmatched tracking model at t− 1 time step, ht−1j

(2D position: dt−1j , 2D velocity: vt−1j ),

A set of candidate positions for the tracking model ht−1j , CP (ht−1j ).

Output: The position of the tracking model htj at t time step, dtj .

for all candidate points in the set CP (ht−1j ) do

evaluate SSD(dt−1j , P ′), P ′ ∈ CP (ht−1j )

(evaluate SSD value between the image patch with center in dt−1j and the
image patch with center in one of the candidate points)

end for
calculate
µ = 1

n

∑
P ′ SSD(P, P ′),

mn = minP ′ SSD(P, P ′),
σ2 = 1

n

∑
P ′(SSD(P, P ′)− µ)2, P ′ ∈ CP (ht−1j )

if µ−mn
σ ≤ T then

dtj := dt−1j + vt−1j

else
dtj := arg minP ′ SSD(dt−1j , P ′),

P ′ ∈ CP (vt−1j )
end if
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SSD distributionOriginal image

Accept

Reject

10Figure 2.8: The example of accepting and rejecting the local search results with
SSD distribution. When SSD distribution has strong minimum point, we accept
the local search results. Otherwise, the local search result is rejected and the
position of the tracking model is estimated with its previous position and its
velocity.

that is, the mean and the minimum of the distribution show large difference.

Otherwise, we reject the local search result and update the position of the tracking

model with the velocity of it at the previous time-step. The velocity of the tracking

model htj is calculated by

vtj = vt−1j + γ · (dtj − dt−1j ), (2.28)

where γ is a velocity smoothing factor, which is set to 0.9. The velocity of the

tracking model is updated with the equation (2.28) with the data association and

the selective update results. The example of accepting and rejecting the local

search results with SSD distribution is illustrated in Figure 2.8.

When a tracking model is not matched to any detection observations in data
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association step and the model is updated by its previous velocity from the rejec-

tion of the search result more than a certain number of frames, then, the tracking

model is terminated. The number of frames for termination used in the experi-

ment was 20.

The proposed selective update method can prevent the tracking models from

being corrupted by unreliable observations and being drifted to incorrect posi-

tions. As a result, it significantly reduces the number of identity switches and

false positives. The effect of the selective update method can be seen in the

quantitative experimental results.

2.6 Experimental results

In this section, we present the test results of the proposed algorithm on several

dataset, four public datasets, i-Lids AVSS 2007 dataset, Oxford Town Center

dataset [21], PETS 2007 dataset [53] and PETS 2009 dataset [54] and two our own

video sequences from the Smart Class dataset. The quantitative results are eval-

uated by CLEAR MOT metrics, Multiple Object Tracking Precision (MOTP),

Multiple Object Tracking Accuracy (MOTA), the detection precision, and the de-

tection recall from the paper [55]. MOTP is the precision score from intersection

over union of estimated tracking box and ground truth, and MOTA is calculated

with the number of false positives, false negatives, and identity switches. These

scores are measured in 2D image domain with detection and tracking box infor-

mation. In detail, MOTP is the precision score from intersection over union of

estimated tracking box and ground truth, and it is defined as

MOTP =

∑
i,t e

i
t∑

t ct
, (2.29)
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where eit is the number of errors in estimated position for the ith matched object-

hypothesis pairs and ct is the number of total matches made at time t. If the

intersection over union of estimated tracking box and ground truth is less than

threshold, the matching is counted as error, otherwise, correct match. This MOTP

measures the ability of the tracking algorithm to estimate the positions of the

object precisely. For this reason, the value of MOTP measure is closely related to

the ground truth annotation quality. Since the ground truth positions of people

are generally annotated on the image plane by users, it can be not as precise as the

actual positions of the moving targets. On the other hand, MOTA is calculated

with the number of false positives, false negatives, and identity switches as

MOTA = 1−
∑

t(mt + fpt +mmet)∑
t gt

, (2.30)

where mt, fpt, mmet, and gt are the number of misses, false positives, miss match-

ings, and ground truth, respectively, at time t. For both MOTP and MOTA, the

high value of MOTP/MOTA is better than the low values. We compared the pro-

posed method to the state-of-art methods and to the proposed method without

the selective update scheme. Also, the qualitative results visualize the perfor-

mance of the proposed multiple people tracking method. In all experiments, data

association does not assume any prior knowledge about the scene structures, but

estimating body regions of the people from their tracked head position is done

with the ground plane calibration to compare with performance of existing meth-

ods. For the Smart Class dataset, the torso region is used to evaluate the tracking

performance because some people sit on the chair and their body regions are not

visible. For PETS 2007 and PETS 2009 dataset, we only show qualitative results

in figure since we do not have ground truth data for those datasets.

To show the effectiveness of the proposed varying likelihood probability be-

tween detection and the initialization nodeH0, we modified the Hungarian method
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[56] by adding the same number of initialization nodes with the detection nodes

and assigned the same likelihood probability for all initialization nodes. For sim-

plicity, we refer this algorithm as m-hung below in tables. The measure values of

this algorithm are in Tables of each dataset, and we can see that our proposed

algorithm works better than m-hung with every dataset while it works 3 times

faster than our algorithm. However, our algorithm already works about 5 fps in

MATLAB without code optimization, which is expected to work in real-time if

the code is implemented in C++ with code optimization. The reason why our

varying likelihood probability works better than the conventional fixed likelihood

probability for the tracking model initialization is that we assign the probability

of the initialization of a certain detection considering its similarity with currently

existing tracking models. By comparing the similarities between detection and

tracking models, we encourage the initialization of the tracking model when a cer-

tain detection is most likely to be newly appeared one or block the initialization

completely if there exist a similar tracking model to the detection observation. On

the other hand, the fixed probability for initialization can initialize the tracking

model even when the detection is not a newly appeared object or do not initialize

the tracking model when the corresponding detection is a new appeared target

with the probability of the fixed value. Also, the tracking performance is very

sensitive to the value of this fixed likelihood probability for the tracking model

initialization. When this value is too high, too many labels are initialized and one

object has several number of labels, and when the initialization probability is too

low, different objects can share one label, which is incorrect. The performance of

the algorithm m-hung is described in each dataset.
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2.6.1 iLids 2007 AVSS dataset

The iLids 2007 AVSS dataset is a widely used dataset to evaluate the performance

of multiple people tracking methods. We tested iLids AB easy dataset. The res-

olution of this dataset is 720×576 and the frame rate is 25fps. In this dataset,

there exists a few inter-object occlusions, but people are frequently occluded by

the pillar in the background. Also, the HOG-based head detector shows weak

performance for the people close to the platform. For the quantitative compar-

ison, we estimated the body regions from our head tracking with ground plane

information as [21] and compared the result to state-of-art methods in Table 2.1.

The proposed method outperforms the existing methods in MOTP and has com-

parable performance in MOTA, precision and recall compared to them. Figure

2.9 shows that our algorithm successfully maintains the label of tracked people.

Method MOTP MOTA Prec Rec

Stalder
et al. [17] - - 89.4% 53.3%

Benfold
et al. [21] 73.6% 59.9% 80.3% 82.0%

m-hung 85.5% 59.8% 81.5% 77.4%

Breitenstein
et al. [22] 67.0% 78.1% - 83.6%

Ours w/o
s.update

85.4% 59.8% 68.7% 72.1%

Ours 87.1% 63.6% 84.3% 78.2%

Table 2.1: The quantitative results for the iLids 2007 AVSS dataset. We eval-
uated the proposed method and the proposed method without selective update
method on full-body region estimated from the head tracking results with camera
calibration.
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t =          360 387 498 

757 818 1914 

1995 2116 2194 

Figure 2.9: The qualitative results for the iLids 2007 AVSS dataset. The squares
are detected heads and the rectangles are estimated body of each person.
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2.6.2 Oxford Town Center dataset

We evaluated our method with the Oxford Town Center dataset with resolution of

1920×1080 and frame rate of 25fps. This sequence has a semi-crowded people and

few long-term occlusions. Most of people show a linear motion. We did experiment

with the same settings in several state-of-art methods and the quantitative result

comparison is shown in Table 2.2. For head region, only [21] has the result,

and our method works better in MOTA, precision and recall. For body region,

the proposed method shows the best MOTP, precision, and recall values and

comparable MOTA to the state-of-art methods. This quantitative result of the

state-of-art algorithms on the Oxford Town Center dataset is from [21] and [25].

The output images by the proposed method are shown in the Figure 2.10.

2.6.3 PETS 2007 and PETS 2009 dataset

For PETS 2007 and PETS 2009 dataset, only qualitative results are shown in the

Figure 2.11. Among different video sequences in PETS 2007 data set, we used the

sequence S06-BAG-STEAL because this video is more suitable to evaluate the

multiple people tracking method rather than the sequence used by [21]. For PETS

2009 dataset, we tested the S2.L1 walking sequence with the proposed method.

In both sequences, our algorithm shows reliable performance in maintaining the

identities of people.

2.6.4 Smart Class dataset

The Smart Class dataset is composed of four synchronized video sequences cap-

tured by different cameras in the same classroom and we used two sequences

from them. The frame resolution of these sequences is 640×480, and the frame

length is 883. In these videos, tables cover the lower body of people and it is
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t =          426 499 557 

2572 2637 2669 

3586 3675 3748 

Figure 2.10: The qualitative results for the Oxford Town Center dataset. The
squares are detected heads and the rectangles are estimated body of each person.
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Figure 2.11: The qualitative results for the PETS 2007 (upper two rows) and the
PETS 2009 (bottom two rows). The squares are detected heads and the rectangles
are estimated body of each person.
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hard to use other types of detectors, such as the full-body detector. There ex-

ist long-term occlusions with highly-crowded people, some of them sitting on the

chair for long period or walking around with non-linear motions and making even

full occlusions. Missing detections by occlusion happen more than other public

datasets. For tracking, the similar appearances of heads and different scales of the

head boxes with respect to their positions are the challenging problems in these

sequences, however, our algorithm maintains the identities of people successfully

as shown in the Table 2.3, the Figure 2.12, and the Figure 2.13.

Method Parts Video MOTP MOTA Prec Rec

m-hung Head
1 84.5% 75.5% 91.8% 83.7%
2 85.9% 91.5% 95.0% 97.0%

Ours Head
1 85.8% 79.1% 94.1% 85.2%
2 86.5% 93.5% 95.6% 98.0%

Ours w/o
s.update

Head
1 85.1% 74.3% 91.0% 83.4%
2 86.1% 88.7% 91.5% 97.6%

m-hung Torso
1 84.7% 75.6% 91.2% 84.7%
2 86.1% 91.7% 94.9% 97.4%

Ours Torso
1 85.4% 78.9% 93.4% 86.1%
2 86.3% 93.9% 95.5% 98.5%

Table 2.3: The quantitative results for the first and the second video sequence
of Smart Class dataset. We evaluate the proposed method, the proposed method
without selective update method (both on heads) and the proposed method on
torso regions.

2.7 Final remarks and discussion

In this chapter, we proposed an online data association for tracking multiple

people with a single camera in highly crowded scenes. We encoded the multiple

people tracking problem to the matching problem on the modified matching graph

and solved it with the MAP formulation. The solution can be calculated fast
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t =          74 144 191 

223 265 291 

314 336 336 

Figure 2.12: The qualitative results for the first video sequence of Smart Class
dataset. The squares are detected heads and the rectangles are estimated torso
of each person.
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t =          191 218 275 

315 363 429 

492 554 593 

Figure 2.13: The qualitative results for the second video sequence of Smart Class
dataset. The squares are detected heads and the rectangles are estimated torso
of each person.
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with a sampling method because the solution space of our formulation is small.

Selectively updating scheme for tracking model handles the occlusions and deals

with the missing detection from poor performance of detectors. Our quantitative

and qualitative evaluations show that our method tracks multiple people and

maintains their identity successfully comparable to the state-of-art algorithms.
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Chapter 3

Multiple Target Tracking in

Multiple Cameras

With increased number of cameras and improved system architecture in software

and hardware sense, current surveillance system or sport broadcasting system

are mostly composed of several number of cameras. The examples of areas using

multiple cameras are illustrated in Figure 3.1. Multiple number of cameras can

cover more wide areas than a single camera and handle occlusions among people

or hidden objects behind backgrounds by watching scene from different views:

overlapped people in one view can be located apart in other view and invisible

people behind backgrounds in one view can be visible from other camera views. In

this sense, using multiple cameras increases the effect of the surveillance system

significantly. However, building a surveillance system to track multiple objects

with multiple cameras has several issues to be solved. One of the most important

problems is the “who is who” problem. In multiple cameras, one person can ap-

pear differently in each camera and assigning the same label to that person in all

camera views is required as well as the tracking of that person in each camera.
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Figure 3.1: Examples of using multiple cameras. The multiple cameras can be
used for surveillance purpose and in sports analysis. Because multiple number of
cameras can cover wide areas and handle occlusions among people or hide be-
hind backgrounds, using multiple cameras increases the effect of the surveillance
system significantly.
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The assignment of the labels over views is called spatial association, and that of

the labels over frames is called temporal association. The second problem is the

online availability and computational load. For the purpose of surveillance and

sports analysis, the tracking should be done in online manner and fast for the

instantaneous response to the criminal/abnormal behaviors of people. However,

the amount of data to be associated and the possible number of matching config-

uration in tracking increases largely with the number of cameras and it is hard

to show good tracking performance within the online framework.

In this chapter, we extend the proposed multiple target tracking method for

the case of the single camera and propose a novel online method for tracking mul-

tiple objects with multiple cameras. By exploiting various number of views from

different cameras, we aim to find spatial and temporal association of objects

with less computation load using objects information, such as 2D information

(position, velocity, and appearance) and 3D information (position), and geomet-

ric information, such as camera matrix. Our association maintains the labels of

objects in the spatial and temporal domain. For this purpose, we formulate an

online MAP problem on the matching graph whose nodes are detection results

at each frame, 3D tracking models from the previous frame and null node for the

initialization of new tracking model. We solve the formulated MAP problem with

the Gibbs sampling method [49]. Our method can automatically initialize track-

ing models and successfully handle occlusion and missing detection problems by

selective local search scheme. Since the performance of detection algorithms is

incomplete, missing detection usually happens and it decreases the performance

of the data association. To solve this problem, existing approaches apply the par-

ticle filter [22, 24] and the meanshift tracker [61, 23], and use the result of the

tracking algorithms to update the tracking model. However, in occlusion scene,

updating the tracking model with observations can corrupt the model since the
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observations can be unreliable. To prevent the tracking model from being cor-

rupted, we reason an occlusion for the tracking model with spatial information

and selectively update the tracking models only with reliable observations. By

updating the tracking model selectively with the evidence from it, the proposed

scheme works more robust to occlusions than the existing tracking-by-detection

methods. We evaluate the proposed approach with several dataset composed of

multiple number of cameras and show improvement in performance.

3.1 Overall framework

Figure 3.2 shows the overall framework of the proposed method to track multiple

objects with multiple cameras. With each input sequence from cameras, we per-

form a human detection algorithm using cascade deformable part model (DPM)

[45] at each frame. Any detection algorithm, such as HOG-SVM based detector

[44] or crosstalk [62] can be used. Then, we build a matching graph whose nodes

are detection results at current frame, 3D tracking models from previous frames,

and an extra node for the initialization of new tracking model. To find match-

ings between nodes in the graph, we formulate an online MAP problem to find

the matching in the constructed graph. Our formulation considers 2D positions,

velocities, appearances in image coordinate system, and 3D position in world co-

ordinate system for the similarities among nodes. In addition, we enforce some

conditions for matchings, for example, two detection nodes in one camera should

not be matched to the same 3D human tracking model. The matchings on this

graph are found by applying Gibbs sampling method to maximize the formu-

lated posterior probability. After that, we update all 3D tracking models with

the associated detection results and update the unmatched tracking models by

the selective local search scheme within the neighborhood. The proposed selective
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Data 
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Figure 3.2: Overall framework of the proposed algorithm. In the proposed method,
we perform human detection algorithm on images from each camera view. Then,
we formulate an online MAP problem to associate those detection results at cur-
rent frame and tracking models at last previous frame, and the solution is found
by Gibbs sampling method. With calculated matching configuration, we update
the tracking model with different strategies. When a certain human tracking
model is not matched to any detection in all cameras, we update the models by
the selective update scheme.
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Figure 3.3: Human detection results for multiple camera case. The detection of
human is performed by cascade deformable part model [45]. The false positives
and missed detections may exist and they are burden to achieve a good perfor-
mance in tracking multiple objects.

local search scheme can prevent the tracking model from being corrupted by in-

correct association or missing detection from occlusions. Finally, the trajectories

of all people are estimated in the world coordinate domain and the association re-

sults are re-projected to the each camera coordinate to show the multiple targets

tracking results in all camera sequences of image domain.

3.2 Detection of humans

To acquire the input for data association, we apply one of the well known hu-

man detection algorithms, which is the cascade DPM [45], to the input images

from multiple number of cameras at every frame. This method is the improved
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version of the original DPM based detection algorithm [63] in the sense of com-

putational time. In the original DPM based detection algorithm [63], it trains the

interesting object model which is composed of several deformable parts. Then,

this algorithm detects the interesting object, which is a human in our case, in the

scene by performing the convolution operation between every part of the various

sized pre-trained models and the input image to detect the human in the scene.

For this reason, it requires a large computation time. On the other hand, the

cascade DPM [45] works much faster than the original algorithm by cutting the

convolution process with the similarity score of each part in the trained model.

When one part of the trained model shows low convolution score with a certain

region of the input image, then this region is eliminated in the convolution process

with the other parts of the trained model. The results of this human detection

algorithm in various scenes are illustrated in Figure 3.3.

The cascade DPM method is a good object detection algorithm especially

when occlusion occurs because they divide the human model into several de-

formable parts and compare those parts separately with the image candidate

region. As described in [64, 65], this algorithm is known to work better than con-

ventional object detection algorithms such as [66, 67, 68, 69, 70]. When some parts

of a human are occluded, the other parts of that person show a good convolution

score and it makes the person under part-occlusion be detected well. As you can

see in Figure 3.3, some of people in the scene are detected even under occlusions.

However, the performance of this detection algorithm is not perfect, and there

still exist many missed detections and false positives. The missed detection is the

undetected human in the scene and the false positives mean the detected regions

which are not actually part of human. The missed detection usually happen when

the training data is irrelevant and it is very different from the current test data.

However, it can also happen when one human is occluded by others partly or
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completely and when the human is overlapped by backgrounds. In the middle

row of Figure 3.3, many missed detections happens in the case of the people with

dynamic shapes and the people under severe occlusions while some of them under

small occlusions are successfully detected. When the missing detection problem

happens, the position and the velocity of people should be updated with other

information, such as motion model or local search based on appearance, to assign

the correct labels to people. These alternative solutions can maintain the tracking

performance in short period, but they are failed easily when complete occlusion

happens or the undetected target human moves dynamically. This leads to the

deterioration of the tracking models which makes the data association hard and,

at last, the change of labels of objects or drift of the tracking model happens.

On the other hand, the false positives, which are usually located in the sta-

tionary background, can be repeatedly detected when they have similar pat-

terns to the pre-trained human model because the stationary background rarely

changes in frames. For example, as we can see in the bottom row of Figure 3.3,

false positives are detected in the corner of the table or near the region of the

chairs, and these false alarms are detected over and over because they do not

move during the entire frame of the sequences but have similar patterns to the

pre-trained human body model. It is hard to distinguish those false positives

from the true positive detection results, however, they should be removed be-

cause tracking those uninteresting objects is not suited for surveillance purpose.

Moreover, since humans keep moving over frames, they can approach to the false

positives and closely located false positives might steal the label of the approach-

ing people. From this perspective, the false positives are burden to accomplish

high performance in data association.

As described above, the missed detections and the noisy detection results,

such as false positives, can decrease the tracking performance significantly. To
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compensate these insufficient detection results in the tracking phase, we formu-

late a MAP problem based on several 2D and 3D information, and use an online

data association method based on the matching scheme in graph.

3.3 MAP formulation on the matching graph

3.3.1 The matching graph

For tracking multiple objects with the data association scheme, we encode the

data association problem to the matching problem in a graph. In this section, we

explain the conventional K-dimensional matching scheme in the K-partite graph

for tracking multiple objects with multiple number of cameras and then describe

our proposed matching graph for the same purpose to show the difference between

conventional matching graphs and the proposed one. The conventional K-partite

graph is usually used to associate detection observations in spatial domain and

assign the same label to the same objects in different camera views, and they

find the spatial association and the temporal association separately by concepts

of Reconstruction-Tracking or Tracking-Reconstruction. On the other hand, the

proposed matching graph is used to find both the spatial and temporal association

simultaneously. For this purpose, the proposed matching graph has the nodes of

3D tracking models and matches them with detection observations in various

cameras.

3.3.1.1 The conventional K-partite matching graph

The K-partite matching problem is a generalization of the bipartite matching prob-

lem. While the bipartite matching problem is defined as finding the connection

between nodes in the two disjoint set, the K-partite matching problem deals with
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K number of disjoint sets. It is one of the well known NP-hard problems. When

K-partite matching problem finds matchings among K disjoint sets, the match-

ing can be represented by K-tuples, where each element of the tuple is from each

disjoint set and any distinct two matchings have no common node from the same

set. The examples of K-partite graph and K-partite matching are illustrated in

Figure 3.4. Figure 3.4 (a) is general K-partite matching graph with K number

of disjoint set, and Figure 3.4 (b) is the examples of K-partite matching, where

a shaded cylindrical link from the set S1 to the set SK is one matching. For

example, in the top right graph in Figure 3.4, there exist two people associated

together, and four people in the bottom left and in the bottom right graph. In

K-partite graph, the number of matchings is decided via the defined objective

function to optimize, and it is not required to find the maximum number of K-

partite matching.

The conventional algorithms using K-partite matching scheme use the set

of detection observations from each camera view as the disjoint set for the K-

partite graph. That is, every node in the K-partite graph is actually a detection

observation. From this perspective, the K-partite matching in the K-partite graph

represents the spatial association among detection observations of different cam-

eras. This across-camera data association problem is known as multidimensional

assignment problem, and many conventional approaches solve this problem by

minimizing the following linear cost function

c = min

n1∑
i1=1

n2∑
i2=1

· · ·
nK∑
iK=1

ci1,i2,···,iKxi1,i2,···,iK (3.1)
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Figure 3.4: The examples of K-partite graph and K-partite matching. (a) The
K-partite graph. The total sets of nodes is composed of K number of disjoint
sets. (b) The examples of K-partite matching. A shaded cylindrical link from the
set S1 to the set SK is one matching. The matchings have a single element from
each disjoint set and any distinct two matchings have no common node from the
same set. From the matching process, two people are associated together in the
top right graph, and four people in the bottom left and in the bottom right graph.
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s. t.

n2∑
i2=1

n3∑
i3=1

· · ·
nK∑
iK=1

xi1,i2,···,iK = 1; i1 = 1, 2, ..., n1

n1∑
i1=1

n3∑
i3=1

· · ·
nK∑
iK=1

xi1,i2,···,iK = 1; i2 = 1, 2, ..., n2

...
n1∑
i1=1

n2∑
i2=1

· · ·
nK−1∑
iK−1=1

xi1,i2,···,iK = 1; iK = 1, 2, ..., nK ,

where ci1,i2,···,iK is the association cost and xi1,i2,···,iK is the binary variable to

indicate if the corresponding observation is associated or not.

However, this formulation and matching graph assumes that the performance

of detection is perfect and no missing detection happens. Moreover, it even as-

sumes that all people in the scene are detected in every view of cameras. Within

this formulation and graph, every K-partite matching should have exactly K

number of nodes, where each of them is selected in each disjoint observation set

from different cameras. This assumption is unrealistic because every people can-

not be in all the views of every camera unless all of their field of view is exactly

same. Moreover, the detection algorithm cannot be perfect with 100% precision

and recall values. To relax this assumption and solve the data association prob-

lem in spatial domain practically, the objective function in the equation (3.1) can

be modified as

c = min

n1∑
i1=0

n2∑
i2=0

· · ·
nK∑
iK=0

ci1,i2,···,iKxi1,i2,···,iK (3.2)
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s. t.

n2∑
i2=0

n3∑
i3=0

· · ·
nK∑
iK=0

xi1,i2,···,iK = 1; i1 = 1, 2, ..., n1

n1∑
i1=0

n3∑
i3=0

· · ·
nK∑
iK=0

xi1,i2,···,iK = 1; i2 = 1, 2, ..., n2

...
n1∑
i1=0

n2∑
i2=0

· · ·
nK−1∑
iK−1=0

xi1,i2,···,iK = 1; iK = 1, 2, ..., nK ,

and the modified K-partite graph is illustrated in Figure 3.5. The difference be-

tween the formulations in the equation (3.1) and the equation (3.2) is that one

extra node is added for each disjoint set. This node has the index of 0 in the

equation (3.2) and is the blank node in each disjoint observation set in Figure

3.5 (a). This blank node is an imaginary node for handling the missing detection

problem. Different to the previous definition of the K-partite matching, this blank

node can be selected multiple times in different matchings as shown in Figure 3.5

(b). For example, if we see the bottom left matching graph in Figure 3.5, we can

see that the blank node in the set S2 is selected in the matchings for the first

and the second objects. Also, this graph can describe the situation where the first

object is located only in the last camera, the second object in the first and the

last camera, and the third object in all camera views while the original K-partite

graph and K-partite matching cannot describe this situation because they do not

consider the missing detection case from the geometrical condition and the low

performance of detection algorithms.

However, this modified conventional K-partite matching and the graph is not

enough to solve the problem of multiple objects tracking with multiple number

of cameras since this conventional K-partite matching and the graph only target

to solve the spatial data association problem. To consider both the spatial and

the temporal association, conventional approaches use one of the two concepts,
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Figure 3.5: The examples of modified K-partite graph and K-partite matching. (a)
The modified K-partite graph. The total sets of nodes is composed of K number
of disjoint sets and each disjoint set has an extra node (blank node) for missed
detection. (b) The examples of K-partite matching in the modified K-partite
graph. A shaded cylindrical link from the set S1 to the set SK is one matching.
The matchings have a single element from each disjoint set and any distinct two
matchings has no common node from the same set. However, the added node can
be selected in several matchings. The label of objects is indicated with numbers.
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Reconstruction-Tracking or Tracking-Reconstruction. The difference between two

concepts is illustrated in Figure 3.6. Reconstruction-Tracking firstly reconstructs

3D tracking model (yellow nodes) by spatial association process among 2D de-

tections (green nodes), and then finds temporal association between these 3D

tracking models (3Dt−1 and 3Dt in Figure 3.6). On the other hand, Tracking-

Reconstruction finds temporal association (2D tracking) between detections at

current frame and tracking models at the last previous frame in image domain,

and then perform spatial association process among cameras. These two types of

approaches, Reconstruction-Tracking and Tracking-Reconstruction, finds spatial

and temporal association but separately, and this can make incorrect solution by

considering tracking and reconstruction process independently. To overcome this

limitation of the conventional approaches, we modify the conventional K-partite

graph and matching scheme to associate data in both spatial and temporal do-

main simultaneously.

3.3.1.2 The proposed matching graph

Different to the conventional Reconstruction-Tracking and Tracking-Reconstruction

approaches, we need to perform the data association process considering both spa-

tial and temporal domain at once. For this purpose, we modify the conventional

K-partite matching graph by adding the node set of the 3D tracking models

as shown in Figure 3.7 and associate those tracking models with detection ob-

servations from each camera. In our K-partite graph Gt = (U t, Ht−1, H0, E
t)

as shown in Figure 3.7, there exist detection observations (U t), 3D tracking

models (Ht−1), and a null node for the tracking model initialization (H0). For

the probabilistic formulation, we define the random variables representing the

components of the matching graph as follows. The observation random vector

U t is defined as U t = [U t1, U
t
2, · · ·, U tNc

], in which U tk is the vector for detec-
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Reconstruction-Tracking Tracking-Reconstructionvs
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cam 1

cam 2cam 2
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t t

Figure 3.6: The difference between the two concepts of Reconstruction-Tracking or
Tracking-Reconstruction. Reconstruction-Tracking firstly reconstructs 3D track-
ing model (yellow nodes) by spatial association process among 2D detections
(green nodes), and then finds temporal association between these 3D tracking
models (3Dt−1and3Dt). On the other hand, Tracking-Reconstruction finds tem-
poral association between detections at current frame and tracking models at
the last previous frame in image domain, and then perform spatial association
process.
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Figure 3.7: The K-partite matching graph for multiple camera case. Multiple
objects tracking with multiple cameras is a data association problem between
observations in current frame and 3D tracking models (each 3D tracking model
represent an individual object).
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tion observation on the kth camera. U tk is a random vector composed of Nk

number of random variables as U tk = [U tk,1, U
t
k,2, · · ·, U tk,Nk

], that is, Nk is the

number of detection observation in the kth camera. The 3D human tracking

model Ht−1 is defined as Ht−1 = [Ht−1
1 , Ht−1

2 , · · ·, Ht−1
NHt−1

], in which Ht−1
i is

the random variable of the ith 3D human tracking model. Each 3D tracking

model (Ht−1
i ) is composed of position in the three dimensional world coordi-

nate system (Dt−1
3,i ), and positions, velocities and appearances in every camera

coordinate system is defined as (Dt−1
2,i,1:Nc

, V t−1
2,i,1:Nc

, At−12,i,1:Nc
) respectively. That is,

Ht
i = [Dt

3,i, D
t
2,i,1:Nc

, V t
2,i,1:Nc

, At2,i,1:Nc
]. D represents position information, V is

for velocity, and A for appearance. Those nodes of detection observations and 3D

tracking models are linked each other with edges (E), and no edges are connected

between nodes in the same camera set and between nodes in the tracking model

set.

To track multiple objects and maintain their labels over frames, we find

matchings in this graph among human detection results of each camera at cur-

rent frame (U tk,j , 1 ≤ k ≤ Nc, 1 ≤ j ≤ Nk), which is extracted by the method

explained in the previous section, and 3D tracking models at the last previous

frame (Ht−1
i , 1 ≤ i ≤ NHt−1) which represent individual objects being tracked

until the last previous frame. Here, NUt
k

is the number of detection on the kth

camera at time t, and NHt−1 is the number of 3D human tracking model at time

t− 1. In detail, matching between two nodes U tk,j and Ht−1
i means that the jth

detection from the kth camera at time t is matched to the ith 3D tracking model

at time t − 1. By assigning the label of the ith tracking model at time t − 1 to

the jth detection from the kth camera at time t, the temporal tracking process is

accomplished, and the spatial tracking process is finished by assigning the same

label to all detections which are connected to the same 3D tracking model. On

the other hand, the matching between the detection node (U tk,j) and the added
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imaginary node (H0) is defined for different purpose. When the detection result

U tk,j is from an individual who appears newly in the scene, there is no current 3D

tracking model which can explain this detection result. In this case, all of those

nodes of newly appeared detections are connected to the imaginary node (H0).

This matching between U tk,j and H0 initializes a new tracking model with a new

label for the detection U tk,j .

With this definition of matching and graph, we assume several conditions in

matching solutions for the physically plausible tracking result. First, the nodes

with similar features, such as 2D, 3D positions, velocities, etc., are likely to be

matched. Because we compare the observed detection at time t and the 3D track-

ing models at time t − 1, we assume the object, which is a human in our case,

does not move or change significantly and they look similar between short time

steps. This is reflected in the likelihood probability, which will be described in

the next section, MAP formulation. Second, all of the nodes of the detection re-

sults are in matching. This means all detection nodes are matched to either 3D

tracking model or the imaginary node for tracking model initialization. Because

the detection at current time t should be either the object in the last previous

frame or the newly appeared object in current frame, it is adequate to enforce the

entire detection node to be in one of the matchings. Third, two detections from

different camera can be connected to one 3D tracking model. This comes from

the fact that the actual object which corresponds to a single 3D tracking model

can appear and be detected differently in each camera. However, the link which

connects two detections from the same camera to a single 3D tracking model

should be avoided because one single target cannot be detected twice in the same

camera, which is physically implausible. Fourth, any number of detection can be

linked to the imaginary node even the detection nodes from the same camera. The

first-appeared objects cannot be described by previous tracking models and all

66



those detections should be initialized via the imaginary node for the next frame.

In our matching solution, detection nodes which are connected to the same 3D

tracking model are regarded as spatially associated detections and the matching

between one detection node and one 3D tracking model is temporally associated.

The spatially and temporally associated nodes share the same label and this

achieves the multiple target tracking. This spatial and temporal association on

the matching graph will be found by a sampling method on the proposed online

framework to solve a MAP problem described in the next section.

3.3.2 MAP formulation

With the matching graph and several matching conditions described in the pre-

vious section, we formulate a MAP problem to find matchings in the graph and

to solve the multiple targets tracking problem. Among various possible match-

ing configurations, we find a matching configuration composed of several number

of matchings which maximizes the defined posterior probability. However, this

posterior probability distribution is very complicated with its large number of

possible combinatorial solutions. It is difficult to know the shape of this posterior

probability exactly, which leads to the fact that it is hard to find a solution which

maximizes this posterior probability distribution. For this reason, the problem of

multiple target tracking with multiple cameras is well known as a NP-hard prob-

lem. To solve this NP-hard problem fast in online manner, we propose an online

framework to track multiple objects by solving our formulated MAP problem

in the following section. Our online framework to solve multiple target tracking

problem with multiple number of cameras is based on the similar framework with

a single camera in the previous chapter.
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3.3.2.1 Online MAP formulation for the multiple cameras case

To build an online framework for multiple target tracking, the posterior probabil-

ity should be formulated in an online form, which means it has to deal with only

the detection at current frame and the state model at the last previous frame. In

this perspective, we define our online posterior probability for tracking multiple

objects as

P (Ht|U t, Ĥt−1), (3.3)

where Ĥt−1 is defined as

Ĥt−1 = argmax
Ht−1

P (Ht−1|U t−1, Ĥt−2). (3.4)

Different to the recursive Bayesian estimation, the state model at the current

frame (Ht) is calculated given the current observation from multiple number of

cameras (U t = [U t1, · · ·, U tNc
]) and the last previous state model (Ĥt−1)in the

equation (3.3). The reason why we use the hat mark on the state model at the

time t − 1 is that we want to distinguish the usage of the state model at time

t−1 (Ht−1) between the recursive Bayesian estimation method and the proposed

online method. While we assume that the estimated state at the last previous

frame can explain the observations until the last previous frame well and regard

it as the fixed variable like observations for the posterior probability, the recursive

Bayesian estimation method regards it as the state model which is an unobserved

variable required to be estimated. For this reason, we use the last state model

as observation (Ĥt−1) instead of the state model to be estimated (Ht−1). In the

equation (3.4), we remove the observations from the first frame to the last frame in

the equation (2.11) and substitute them with the state at the last previous frame

(Ĥt−1). The resulting graphical model of our online framework for estimation of

the posterior probability in the equation (3.3) is illustrated in Figure 3.8.
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Figure 3.8: The graphical model of the proposed online framework for estimation
of the posterior probability. The state at the current frame is estimated given
the solution at the last previous frame and current obsetvations from multiple
number of cameras.

The directed graph in Figure 3.8 describes the process of estimation of the

3D tracking model at time t (Ht) given the 3D tracking model at time t − 1

(Ht−1) and the detection observation at time t (U t). In this perspective, this

directed graph and the defined posterior probability in the equation (3.3) can

describe well our online matching problem on the graph in Figure 3.8. Similar

to the matching process between the 3D tracking model at time t − 1 (Ht−1)

and the detection observation at time t (U t) and the building process of the 3D

tracking model at time t (Ht) with their matching results on the graph in Figure

3.8, estimation process in this directed graph and posterior probability deals with

the 3D tracking model at time t−1 (Ht−1) and the detection observation at time

t (U t) to find 3D tracking model at time t (Ht).

With this online framework, the MAP problem for multiple targets tracking
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can be defined as

P (Ht|U t, Ĥt−1) =
P (Ĥt−1, Ht, U t)

P (U t, Ĥt−1)
(3.5)

=
P (Ĥt−1)P (Ht|Ĥt−1)P (U t1|Ht) · · · P (U tNc

|Ht)

P (U t, Ĥt−1)
(3.6)

=
P (Ĥt−1)P (U t|Ht)P (Ht|Ĥt−1)

P (U t, Ĥt−1)
(3.7)

∝ P (U t|Ht)P (Ht|Ĥt−1), (3.8)

where Ht = [Ht
1, · · ·, Ht

NHt
] and Ht−1 = [Ht−1

1 , · · ·, Ht−1
NHt−1

], and Nc is the number

of camera in the system. Here, NHt is the number of 3D tracking models at the

tth time step, and NHt−1 is the number of 3D tracking models at the t − 1th

time step. In the equation (3.8), the first term P (U t|Ht) represents a likelihood

probability and the second term P (Ht|Ĥt−1) represents a prior probability. With-

out calculation of the normalization term of the equation (3.7), finding a solution

which maximizes the product of the likelihood probability and the prior probabil-

ity can guarantee the solution of the original posterior probability in the equation

(3.3). In following sections, the likelihood probability and the prior probability

are defined with several features.

• The likelihood probability

For the calculation of likelihood probability of this MAP formulation, we define

four types of likelihood probability, which are 2D likelihood probability, 3D assign-

ment likelihood probability, camera overlap likelihood probability, and separation

likelihood probability. Each likelihood is calculated based on different features or

current matching status. The features we used for the likelihood probability are

2D position, velocity, appearance, 3D position, and geometry of the scene which is

closely related to the view of camera. On the other hand, the likelihood probabil-
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ity considering the current matching status is related to the physically plausible

matching conditions we described in the previous section. The total likelihood

probability is the production of the four likelihood probabilities, 2D likelihood

probability (P2D), 3D assignment likelihood probability (P3D), camera overlap

likelihood probability (PCO), and separation likelihood probability (PS), as

P (U t|Ht) = P2D(U t|Ht) · P3D(U t|Ht)

·PCO(U t|Ht) · PS(U t|Ht). (3.9)

In the equation (3.9), 2D likelihood probability deals with information in each

camera domain, and 3D assignment likelihood considers the 3D positions of the

detections which have the same label by association process. The camera overlap

likelihood is based on the geometric information of the scene such as the internal

matrices and the positions of cameras, and the separation likelihood gives low

probability for implausible solution, such as the matchings of two detections in

the same camera and the single tracking model. Assuming these informations are

independent to each other, we multiply the likelihoods on the informations to

define the total likelihood probability. The detailed description of each likelihood

probability is described in the following sections.

2D likelihood probability

In the equation (3.9) of the total likelihood probability, the 2D likelihood proba-

bility is defined as

P2D(U t|Ht) =
∏
k,j

P2D(U tk,j = utk,j |Ht
m(utk,j)

= htm(utk,j)
), (3.10)

where k is the camera index, j is the object index in a single camera view.

In this sense, utk,j is the jth detection observation in the kth camera at time t.
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m(utk,j) is the index of the matched human model of the object utk,j and ht
m(utk,j)

is

the matched 3D tracking model, where ht
m(utk,j)

= (dt3,i, d
t
2,i,1:Nc

, vt2,i,1:Nc
, at2,i,1:Nc

).

This 2D likelihood probability is calculated with all of the detection observations.

This probability is related to the 2D information of the observed detection results

in each camera and that of 3D human tracking models. In detail, we use the

informations from each single camera, which are Dt
2,m(utk,j),k

and At
2,m(utk,j),k

of

the tracking model ht
m(utk,j)

as the equation (2.20). The features we use in this

likelihood probability are their positions and appearances in image domain of the

each camera view as below,

P2D(U tk,j = utk,j |Ht
m(utk,j)

= htm(utk,j)
)

= αm(utk,j)
· exp(−‖Pos(utk,j)− dt2,m(utk,j),k

‖22)

+(1− αm(utk,j)
) · exp(−

Q∑
q=1

(IMq(u
t
k,j)− at2,m(utk,j),k,q

)2), (3.11)

where Pos, IMq and α is defined in chapter 2. at
2,m(uti),k,q

is the qth pixel of ap-

pearance model of the m(utk,j)th tracking model in the kth camera, at
2,m(utk,j),k

.

The above 2D likelihood probability can be well defined if the index of

m(utk,j) indicates one of the indices of the 3D human models ht, which means

1 < m(utk,j) < NHt . However, if utk,j is a detection result from a newly appeared

human at the tth frame, as it is explained in the previous section, this detection

node is connected to the tracking model initialization node (H0). Since the track-

ing model initialization node (H0) is an imaginary node, it does not have position

and velocity information, and it exists independently in the time domain. For this

reason, the 2D likelihood probability between the detection node and the imag-

inary node (H0) cannot be calculated with the definition in the equation (3.11).

To handle this case, the likelihood probability for the extra added node (H0) is
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defined as

P2D(U tk,j = utk,j |Ht
m(utk,j)

= H0) (3.12)

=

 δ if max
k

P2D(U tk = utk,j |Ht
m(utk,j)

= ht
m(utk,j)

) ≤ T,

0 otherwise
, (3.13)

where T is a threshold to check whether the detection utk,j has a similar 3D track-

ing model in the 2D likelihood probability (P2D) sense. If the detection utk,j has

no similar 3D tracking model, then the value of max
k

P2D(U tk = utk,j |Ht
m(utk,j)

=

ht
m(utk,j)

) will be less than the predefined threshold value of T . In this case, we

assign a constant value of δ to the probability to initiate a new 3D tracking model

for that detection. Otherwise, we assign 0 to the probability and give no chance

to a new 3D tracking model to be initiated. The values of δ and T we used in

this thesis are 0.2 and 0.5 respectively.

3D assignment likelihood probability

In the equation (3.9) of the total likelihood probability, we formulate the 3D as-

signment likelihood probability by considering the 3D positions of detection nodes

which are matched to the same human tracking model. Because the assignment

of different detection nodes to the same human tracking model means that those

detection nodes are actually from the same object in each different camera, their

positions should be close enough in the three dimensional world coordinate sys-

tem. To check whether they are close, we assume that the probability follows the

exponential distribution with respect to the distance among detections. In this

perspective, we transform the position of the detection result in image coordinate

system of the each camera to the world coordinate system together and compute

the mean of the Euclidean distances from the mean position to the each trans-
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Figure 3.9: The illustration of the definitions in 3D assignment likelihood. The set
of detections connected to the the same human model hti (linked with green edges)
are defined as S(hti). After transformation of positions of detection nodes with
camera calibration matrix, the mean of those 3D positions in world coordinate
system is calculated as mwp(hti).
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formed points. The definition of the 3D assignment likelihood is illustrated in

Figure 3.9. If we think the case that there are three detection nodes ut1,l, u
t
2,m and

ut3,n which are connected together to the same 3D tracking model (hti). Define

wp(g) be a function of transforming the position vector g in the image coordinate

system into the world coordinate system with the pre-calculated camera calibra-

tion matrix. The set S(hti) is the set of positions of the detection observations

which are connected to the tracking model hti in the three dimensional world

coordinate system and Sl(h
t
i) is the lth element of the set S(hti). Then, the mean

point among the 3D points transformed from the positions of detections at the

cameras, mwp(hti), is defined as

mwp(hti) =
1

NS(hti)

N
S(ht

i
)∑

l=1

wp(Sl(h
t
i)), (3.14)

where NS(hti)
is the number of element in the set S(hti). The matching assignment

which produces the small distance from each of them to the mean point mwp(hti)

is more preferred in our formulation than the matchings with large gap among

transformed points. Finally, the 3D assignment likelihood probability is defined

as

P3D(U t|Ht) =

NHt∏
i

P3D(U tm−1(hti)
= utm−1(hti)

|Ht
i = hti)

=

NHt∏
i

exp(−max
l

(|mwp(hti)− wp(Sl(hti)|))), (3.15)

where m−1(hti) is the index of detection observation which is connected to the

tracking model hti.

This 3D assignment likelihood is well known as the reconstruction error of

the assignment and widely used to solve the multiple targets tracking problem in

75



several conventional approaches. However, using this likelihood probability of the

reconstruction error only can cause severely incorrect data association because

assigning different labels to all of the detection results can maximize this likeli-

hood probability. For this reason, several different types of likelihood probability

should be applied together or a constant probability should be defined for the

case of a single detection result for a human tracking model.

camera overlap likelihood probability

In the equation (3.9) of the total likelihood probability, the camera overlap likeli-

hood probability is adopted to prevent the insufficient spatial association among

the detections of different cameras. The insufficient spatial association is the case

that the detection observations, which are actually from a single object, are not

associated together. The example of this insufficient spatial association is illus-

trated in Figure 3.10. In Figure 3.10, there exist four number of cameras, where

the black box means images from each camera and the shaded regions represent

the overlapped area among these four cameras. In the images from the multiple

cameras, the circles ((ut1,l, u
t
2,m, ut3,n, and ut4,o)) are the observed detections of

the same object. Because the detection at the first camera is located within the

overlapped area (shaded region), the corresponding object should be detected in

other cameras and all of the four detection observations should be spatially asso-

ciated as S∗(hti). However, if we see S(hti), there exists only one observation ut1,l

in S(hti), and insufficient spatial association happens in this case. The insufficient

association occurs a lot in the sampling process by initializing all of the detection

nodes as new tracking models. This initialization from insufficient association is

mainly caused by the 3D assignment likelihood probability in the equation (3.15)

because the tracking model connected to the single detection observation brings

the 3D assignment likelihood of 1. To give lower likelihood when insufficient as-
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signment happens, we formulate the camera overlap likelihood probability.

To prevent insufficient spatial assignment, we need to know the set S∗(hti)

from the set S(hti) first. The set S∗(hti) can be obtained by using all of the ele-

ments in the set of S(hti) and camera calibration matrices of all camera views.

After knowing the set S∗(hti), we penalize the current association S(hti) by com-

paring the number of S(hti) and that of the set S∗(hti). That is, we formulate the

camera overlap likelihood probability to give lower likelihood when the numbers

of above two sets are different. In detail, the camera overlap likelihood is defined

as

PCO(U t|Ht) =

NHt∏
i

PCO(U tm−1(hti)
= utm−1(hti)

|Ht
i = hti)

=

NHt∏
i

exp(−|NS(hti)
−NS∗(hti)

|), (3.16)

where NS(hti)
is the number of elements in the set S(hti) and NS∗(hti)

is the number

of elements in the set S∗(hti). When a certain object is located within overlapped

area and the number of spatially associated set of that object is not enough which

is not a good solution, these two numbers of NS(hti)
and NS∗(hti)

are different. In

this respect, those numbers should be similar to prevent the insufficient matching

assignment.

separation likelihood probability

In the equation (3.9) of the total likelihood probability, the separation likelihood

probability is defined to prevent physically implausible matching configuration,

for example, it is implausible that two different detections in one camera is con-

nected to the single tracking model. The illustration example of this separation

likelihood is shown in Figure 3.11. In Figure 3.11, two detection nodes (the node
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Figure 3.10: The illustration example for the camera overlap likelihood. The black
box means images from each camera, and the shaded regions are overlapped area.
The circles ((ut1,l, u

t
2,m, ut3,n, and ut4,o)) in each camera view are the observed

detections of the same person. Because the detection at the first camera (ut1,l)
is located within the overlapped area (shaded region), it should also be detected
in other cameras and the association should be done to include all of the four
elements of detections as the set S∗(hti) rather than S(hti).
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Figure 3.11: The illustration example for the separation likelihood probability.
When two detection nodes from the same camera (the node on green edge and
the node on red edge in the first camera) are in the S(hti)) at the same time,
it means one object is detected separately in the same camera. Because this
association is not physically plausible, we assign low likelihood probability for
this type of the matching solution.
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on green edge and the node on red edge in the first camera) are connected to the

same 3D tracking model. However, this association means one object is detected

twice in the same camera, which is physically impossible. On the other hand,

multiple detections from different cameras (the nodes on the green edges) can be

associated together. To prevent the physically impossible solution, we formulate

the separation likelihood probability as

PS(U t|Ht) =

NHt∏
i

PS(U tm−1(hti)
= utm−1(hti)

|Ht
i = hti)

=

NHt∏
i

exp(−Nsc(S(hti))), (3.17)

where Nsc is a function that counts the number of nodes in the set which have

the same camera index. For each solution, we count the number of detection ob-

servations in the same camera connected to the same 3D tracking model. As the

number of this type of the matching increases, we assign lower likelihood proba-

bility.

• The prior probability

The prior probability from the equation (3.8) is dealing with the motion informa-

tion of the tracking models without considering the detection observations. With

the assumption of the independence of each 3D tracking model, we calculate the

prior probability considering each tracking model independently. The illustration

of the prior probability is shown in Figure 3.12. As shown in Figure 3.12, the 3D

positions of tracking models with the same label at time t−1 and t are compared

and their distances are measured for the prior probability. On the other hand,

the fourth 3D tracking model ĥt−14 is not connected to any 3D tracking model at

current t frame because it is a disappeared human. Also, the seventh 3D tracking
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model ht7 is not connected to any 3D tracking model at the t− 1 frame because

it is a newly appeared human.

With the assumption of the indepdence of each 3D tracking model, the prior

probability in the equation (3.8) is formulated as

P (Ht|Ĥt−1) =

Np(Ht,Ĥt−1)∏
i

P (Ht
i = hti|Ĥt−1

i = ĥt−1i ), (3.18)

where Np the number of pairs of Ht and Ĥt−1. Because this prior probability is

defined with respect to the possible motion dynamics of the objects, we do not

calculate the prior probability for newly appeared objects (Ht is existed but no

corresponding Ĥt−1) and disappeared objects (Ĥt−1 is existed but no correspond-

ing Ht). Then, the prior probability of each 3D tracking model, P (Ht
i |Ĥ

t−1
i ), is

defined as

P (Ht
i = hti|Ĥt−1

i = ĥt−1i )

= P (Dt
3,i = dt3,i|D̂t−1

3,i = d̂t−13,i )

·
Nc∏
k

P (Dt
2,i,k = dt2,i,k|D̂t−1

2,i,k = d̂t−12,i,k, V̂
t−1
2,i,k = v̂t−12,i,k), (3.19)

where hti = (dt3,i, d
t
2,i,1:Nc

, vt2,i,1:Nc
, at2,i,1:Nc

) (the ith 3D tracking model at time t)

and ĥt−1i = (d̂t−13,i , d̂
t−1
2,i,1:Nc

, v̂t−12,i,1:Nc
, ât−12,i,1:Nc

) (the ith 3D tracking model at time

t−1). Each term in the equation (3.19) is defined as the exponential distribution,

i.e.,

P (Dt
3,i = dt3,i|D̂t−1

3,i = d̂t−13,i ) = exp(−|dt3,i − d̂t−13,i |), (3.20)
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Figure 3.12: The illustration example for the prior probability. For the human
model which corresponds to hti and ĥt−1i , the prior probability is calculated ac-
cording to the exponential distribution on the random variable of Euclidean dis-
tance between hti and ĥt−1i . Because ĥt−14 is a disappeared object and ht−17 is a
newly appeared object at the current frame, we do not calculate the prior prob-
ability for these two human models.
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and

P (Dt
2,i,k = dt2,i,k|D̂t−1

2,i,k = d̂t−12,i,k, V̂
t−1
2,i,k = v̂t−12,i,k)

= exp(−|dt2,i,k − (d̂t−12,i,k + v̂t−12,i,k)|). (3.21)

From equations (3.20) and (3.21), the closely located models hti and ĥt−1 gets

high probability by exponentially defined prior with respect to the 3D distance.

In detail, we assume a human cannot move large distance at a single time step

and the data association result which associates two human models at a long

distance gets less prior value. For the distance in the world domain, assuming

that the data association result at time t is known, the 3D position of the ith 3D

tracking model can be calculated with averaging the 3D positions of associated

detection results by camera calibration matrix.

On the other hand, in the equation (3.19), we use the velocity information

of the tracking model. Considering the velocity in the association can handle the

occlusion case when two objects are approaching to each other from distance.

When those two objects are located closely, the position without motion infor-

mation is not enough to distinguish them and even changes their labels. However,

by exploiting the velocity information of the tracking models, the labels of two

objects approaching each other are well maintained after the occlusion. This is

illustrated in Figure 3.13. As we can see in the last column of Figure 3.13 (a)

and (b), using velocity information can prevent the label switch of the objects

approaching each other from different directions.
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(a)

(b)

t =          159                     164                     165                     171 

Figure 3.13: The illustration of the effect of using the velocity information. (a)
the tracking results without considering the velocity information in the image
domain. (b) the tracking results of considering the velocity information in image
domain. By using the velocity information, we can solve the occlusion case when
two objects are approaching from different directions.

84



3.3.2.2 Solving the MAP Problem

With the posterior probability of the product of the defined likelihood proba-

bility and the prior probability, the Gibbs sampling method [49] is adopted to

get a MAP solution and to find the matchings between nodes. Because the solu-

tion space of our data association problem to find Ht is reduced by using only

U t and Ĥt−1, the iterative method using the Gibbs sampling does not require

a large number of iterations to solve the matching problem. On the other hand,

the conventional global optimization methods require large number of detections

through all the frames. As a result, the computational time increases significantly

with the number of detections and frames.

3.4 Tracking model update processes

After the data association process with the Gibbs sampling method, the tracking

models are updated according to the resultant types of matchings as illustrated

in Figure 3.14: (a) Update of 2D tracking model matched to a detection node.

(b) Update of the tracking model initialization node H0. Because the newly ap-

peared detection uti,j is not explainable by currently existing 3D human models,

new tracking model is initialized with the detection uti,j . (c) Update of 2D track-

ing models unmatched to any detection nodes. In some cameras, the object may

not be detected or not visible by occlusion and in this case, the corresponding

2D models can not be matched to any detection nodes. (d) Update of 3D hu-

man models unmatched to any detection nodes. This case happens when some

objects disappear. In Figure 3.14, the green nodes are detection observations,

the red nodes are 3D human models, the yellow nodes are 2D tracking models

within 3D human models, and the blue node is the tracking model initialization
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node. In (a) and (b), the red line represents accomplished matching results and

related nodes are the encircled nodes in blue color. Those matchings are used to

update and initialize tracking models respectively. In the cases of (c) and (d),

the encircled nodes in blue color are not matched with any detection nodes and

they are required to be updated with different cues. Here, the black edges are

also matchings, but the cases of (c) and (d) concern only the blue encircled 2D

tracking models and 3D human models.

In Figure 3.14 (a), the detection-tracking model matchings are shown in red

lines. When the detection node is matched to the 3D tracking model, it is actually

matched to a 2D tracking model within the 3D human tracking model. In this

case (a), the 2D tracking models (yellow nodes) within the 3D tracking model,

which are matched to the detection nodes (green nodes), are updated with the

information of the detection results such as position and size. The velocities of

the tracking model are also computed in each camera domain with the informa-

tion of detections. After every tracking models are updated, the corresponding

3D tracking model is also modified with the updated 2D tracking models. In (b),

the detection-initialization node matchings are illustrated in red lines. Because

the detection node is actually from the object appeared newly in the scene at

the current frame, there exist no appropriate tracking model which can explain

the detection observation. In this case, the detection node should initiate a new

tracking model with a new label for tracking purpose. Even though two different

detection nodes from the same camera cannot be matched to a single human

model, any number of detection nodes can be linked to the same H0 node for

initializing multiple number of different tracking models with different labels.

The Figure 3.14 (c) is the case for the 3D tracking models which have un-

matched 2D tracking models to any detection node. The blue encircled node in

the graph of Figure 3.14 (c) is the undetected 2D tracking model within the
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Figure 3.14: The update types according to the matching results. Green, red,
and yellow nodes indicate detection, 3D tracking model, and 2D tracking model,
respectively.(a) Update of 2D tracking model matched to a detection node. (b)
Update of the tracking model initialization node H0. Because the newly appeared
detection uti,j is not explainable by currently existing 3D human models, new
tracking model is initialized with the detection uti,j . (c) Update of 2D tracking
models unmatched to any detection nodes. In some cameras, the object may not
be detected or not visible by occlusion and in this case, the corresponding 2D
models can not be matched to any detection nodes. (d) SUpdate of 3D human
models unmatched to any detection nodes. This case happens when some objects
disappear.
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3D tracking model. Because we have multiple number of cameras, several ob-

jects can be detected in some cameras but not in other cameras. If we see the

graph of Figure 3.14 (c), the second 3D human tracking model (red node) is

composed of several number of 2D tracking models, but only two 2D tracking

models are matched with the detection nodes in the first and the second camera.

This matching means the second human is detected in the first and the second

camera, so the first and the second 2D tracking model can be updated with the

matched detection nodes. However, the other 2D tracking models of the second

3D human tracking model are not matched with detection nodes. This missing

detection problem can happen by occlusion or that the position of the object is

not yet visible in that camera from geometrical reason. In former case, the posi-

tion of this tracking model should be updated with different cues. By exploiting

multiple number of cameras, the position of unmatched 2D tracking model can

be estimated by other matched 2D tracking models within the same 3D tracking

model. This estimation is achieved by projection of 2D tracking models from other

cameras and reprojection to the camera where unmatched 2D tracking model is

located. However, when 2D tracking model in certain camera is not initialized,

we regard the object is not yet visible in that area of the corresponding camera

and nothing is done for the 2D tracking model. In the graph of Figure 3.14 (d),

two blue encircled 3D tracking models are not matched to any detections in mul-

tiple cameras views, so all of the 2D tracking models of those 3D tracking models

should be updated either. Because those 3D tracking models are not matched to

any detection node, there is no reliable information of detections as the case of

(c). For this reason, to find the appropriate positions and velocities of those blue

encircled tracking models in Figure 3.14 (d), we use a selective update method

which was described in the single camera case.
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3.5 Computational complexity analysis

In this section, we analyze the computational complexity of the proposed algo-

rithm to track multiple targets with multiple number of cameras. This analysis

is for the case at time t, in which there exist C number of cameras, Di number of

detection observation on the ith camera, and NHt−1 number of human models.

Before the sampling process, we find the initial configuration of the 3D tracking

model Ht−1 by assigning the labels to the each detection on a certain camera

independently to the other cameras. In this perspective, the computational com-

plexity of calculation of the initial state is

O(D1 ×NHt−1 + · · ·+DC ×NHt−1) = O((D1 + · · ·+DC)×NHt−1). (3.22)

In each step of the sampling process, we change the matching configuration of one

detection observation probabilistically by calculating the posterior probability of

the possible move of the matching configuration. When this move of the matching

configuration is done for all of the detection observations of multiple number of

cameras, one iteration of the sampling process is done. If we want to perform this

sampling process until R number of iteration, the computational complexity of

the total sampling process is

O(
R∑
r=1

D1+···+DC∑
k=1

NHt,k,r), (3.23)

where NHt,k,r is the number of 3D human tracking model at the kth step of sam-

pling of the rth iteration. NHt,k,r keeps changing with the result of the sampling

process, which is the step for the kth detection out of total number of detections

at the rth iteration. To validate this analysis experimentally, we test PETS 2009

dataset with the measures of Multiple Object Tracking Precision (MOTP) and
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Figure 3.15: The computational complexity analysis for PETS 2009 dataset with
different iteration number. The left graph shows that the MOTA values increase
with large number of iterations and the right graph shows the linear increase of
the computation time with the iteration number.
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Multiple Object Tracking Accuracy (MOTA) which will be described detail in

the next section with different number of iterations in the sampling process. This

result is illustrated in Figure 3.15. In Figure 3.15, the left graph shows the track-

ing performance of MOTA and MOTP values with different iteration number R.

As we iterate the sampling process more, the values of MOTA increases until

R = 10. After that, the posterior probability is not increased with more number

of iteration and the measure values are maintained. On the other hand, MOTP

values are not changing much with different iteration numbers. The right graph

of Figure 3.15 shows the change of the computation time of the sampling process

with respect to the iteration number. As the complexity is defined in the equation

(3.23), the computational complexity of the sampling process is proportionally

increased with the iteration number, however, the term of NHt,r is changing in

each iteration. With this varying number of 3D human model at each iteration,

the computational complexity is not perfectly linearly increased as shown in the

right graph of Figure 3.15.

3.6 Experimental results

To evaluate our proposed algorithm and compare it to the conventional state-

of-the-art algorithms, we tested PETS 2009 dataset [54] and APIDIS basketball

dataset [71, 72], and we made ETRI dataset for solving the multiple target track-

ing problem with multiple number of camera in the case of indoor scene (a small

room). There are two video sequences in this ETRI dataset. The detail description

of each dataset is described in each section. The quantitative results were eval-

uated by CLEAR MOT metrics, Multiple Object Tracking Precision (MOTP),

Multiple Object Tracking Accuracy (MOTA), the detection precision, and the

detection recall from the paper [55]. The definitions of MOTP, MOTA are in
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the equation (2.30) and the equation (2.29). Moreover, we additionally used the

other metrics to measure the tracking performance that were presented in [73],

including identity switches (IDS), mostly tracked (MT), mostly lost (ML), and

partly tracked (PT). The measure of IDS is the total number of times that a

tracked trajectory changes its identity with respect to the labels of the ground

truth. For this reason, the smaller value of IDS is more preferred. MT is the

percentage of the tracking successes which mean that the tracker should track

the ground truth trajectories for more than the predefined threshold in length. In

conventional algorithms and our proposed method, the threshold was set to 80%.

ML is the percentage of the tracking failures which mean that the tracker could

not track the ground truth trajectories for less than the predefined threshold in

length. The threshold was set to 20%. Finally, PT is the percentage of partially

tracked objects, which can be calculated by 1 −MT −ML. The different tech-

niques used to calculate the above measures for each data set is explained in each

section below.

3.6.1 PETS 2009 dataset

The publicly available PETS 2009 dataset [54] is composed of three scenarios

with different levels of difficulty. The easiest one is the set (S2.L1) with low

density of people in the scene, and the sets of (S2.L2) and (S2.L3) contains much

more number of people with higher densities. We tested our algorithm on the set

of (S2.L1) and compared our algorithm with several state-of-the-art algorithms

including online and global optimization algorithms. In this dataset, there exist

eight camera sequences from eight cameras which have overlapping areas. These

eight camera views of PETS 2009 (S2.L1) set are illustrated in Figure 3.16. As

we can see in Figure 3.16, several people are walking across or along, and small

number of occlusions happen. The motions of people are quite linear and easy
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Figure 3.16: PETS 2009 dataset (S2.L1). The PETS 2009 dataset is composed
of eight number of cameras which have overlapping areas, and the set of (S2.L1)
in PETS 2009, which we used for the experiment, has low density number of
pedestrians.

to estimate. However, the frame rate of the video sequences of PETS 2009 is

only 7 frames per seconds, and it makes people move fast/jump in far distance

between consecutive frames and it makes the tracking problem in this dataset

challenging.

To evaluate the performance of conventional tracking algorithms and the

proposed one, we used the ground truth provided in [74]. This ground truth

is composed of actual 3D positions of multiple people in the world coordinate

system. We reconstructed this 3D positions of multiple people with four number

of cameras, whose numbers are 5,6,7, and 8. The quantitative and qualitative

results are shown in Table 3.1 and in Figure 3.17 respectively. As we can see

in Table 3.1, our online algorithm shows better performance in every measures

than the previous works [39, 29], and comparable results to the paper [30]. All

of these conventional algorithms are based on global optimization method, which
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Figure 3.17: The qualitative result of PETS 2009 dataset. The labels of multiple
objects are temporally and spatially associated successfully. Each row is for the
same frame index, and each column represents each camera view.
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uses all of the detection observations of the video sequence. As described in the

introduction, this type of methods is not suitable for online application, which is

the most important thing for the surveillance purpose, and they are preferred in,

rather, video analysis. Moreover, they could not provide the results fast because

of the large computation space by the characteristic of the combinatorial problem.

For the fair comparison, we tested our algorithm with different combinations of

cameras (camera index (5,6,7,8) and camera index (1,5,7,8)). In Figure 3.17, we

can see that the labels of multiple objects are successfully maintained over frames

and among different cameras. Each column shows the results in each individual

camera, and each raw represents the images from different cameras at the same

frame index. Because we use the limitied tracking area as the paper [74] not the

whole image region, the labels of people are disappeared when they exit this area

and they get new labels when those people re-enter the tracking region. In the

third row of Figure 3.17, all people except the human with the label 1 get new

labels with this limitation of the tracking area. Afterwards, the labels of people

keep changing with exiting and re-entering the tracking zone as we can see in the

next frames.

3.6.2 APIDIS basketball dataset

The publicly available APIDIS basketball dataset [71, 72] is composed of 7 cam-

eras. Five cameras are located on ground, and two fish-eye cameras are installed

on ceiling and looking from above. The frame speed of this dataset is 25 fps.

As conventional tracking algorithms, the proposed algorithm for multiple objects

tracking with multiple cameras is only processed within the left half court to en-

sure the fair comparison the tracking performance. This APIDIS dataset is shown

in Figure 3.18.

This dataset contains various challengeable things to be solved for tracking
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view 1 view 2 view 3 view 4 

view 5 view 6 view 7 

Figure 3.18: APIDIS basketball dataset. APIDIS basketball dataset is composed
of seven number of cameras which have overlapping areas. Five of these cameras
are installed on ground and two fish-eye cameras are on ceiling.

purpose. First, because this dataset is tracking basketball players and referees

in a basketball game, the occlusions between players and referees happen often

and severely. Different from the dataset which is taken under controlled scenario,

the players in this dataset actually play the basketball, defending the others and

blocking the opponent team players, and this makes severe occlusion among peo-

ple. Secondly, the motions of players are so dynamic and they show nonlinear

and abrupt motion. They even jump and violate the assumption that people are

walking on the ground plane. With this respect, simple motion dynamic models

of conventional algorithms cannot explain this type of motion. Thirdly, all play-

ers of the same team have very similar appearance except the height by wearing

the same uniforms. In conventional multiple targets tracking algorithms, the two

main features widely used to distinguish multiple number of objects are motion

information and appearance cue. However, in this dataset, the motion informa-

97



tion is not reliable as explained before, and the appearance cue is also not a good

feature. Lastly, several cameras share almost the same view point and using those

cameras only increases the solution space without providing additional informa-

tion from multiple number of cameras. The main reason in using multiple number

of cameras is exploiting the abundant number of views and handling the occlusion

by information from different views. However, in this APIDIS basketball dataset,

the effect of adding more cameras is not large compared to the increase of solu-

tion space, which leads to low performance of tracking by the difficult association

process. With these hard conditions of the dataset, almost all of the conventional

algorithms show bad performance in this dataset.

Among the camera views of the APIDIS basketball dataset shown in Figure

3.18, the views 1,2,4, and 7 are used to track people and localize them in 3D

world coordinate. The quantitative and qualitative results are shown in Table

3.2 and in Figure 3.19 respectively. In Table 3.2, KSP represents the algorithm

using K-shortest path optimization in [75], and POM represents a method us-

ing the probabilistic occupancy map for multiple target tracking [40]. Different

to the case of PETS 2009 dataset, the conventional algorithms for this dataset

is measured with the number of TP (true positives), FP (false positives), FN

(false negatives), and IDS (label switch). In detail, the true positive is the case

of assigning the same label to the same objects as the ground truth, and the

false positive counts the number of the case that more labels are assigned to the

objects than the ground truth. Finally, the false negative is the case of the missed

human. Compared to the conventional algorithms, our proposed algorithm shows

better MOTA, MOTP, TP, FN values. For fair comparison with conventional

approaches, we tested every 10th frames of data association results as [34], and

showed the result with all frames. As shown in Table 3.2, the values of TP, FP,

and FN increase proportionally when we testing more number of frames. However,
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the value of IDS does not increase significantly with more number of frames. The

difference between these two cases are from the characteristic of measures that

TP, FP, FN are calculated in every frame independently while IDS is measured

by comparing the label between two frames. When we sampled every 10th frame

and performed data association, the false positives and missings which happened

between two sampled frames was not counted. On the other hand, when the label

of the objects was changed between two sampled frames, this label switch was

counted. For this reason, when we tested every frame, our solution showed that

the value of IDS is not proportionally increased with number of frames but gave

better MOTA value. In the qualitative results of Figure 3.18, we can see that the

spatial and temporal association is successfully done and people have the same

labels over frames. This label may change when false positive or false negative

happens.

3.6.3 ETRI dataset

In the ETRI dataset, there are two video sequences in which one is a video se-

quence with three people and the other with six people. For the video sequence

with six people, ETRI-S1, the qualitative result is illustrated in Figure 3.20 re-

spectively, and, for the video sequence with three people, ETRI-S2, the qualitative

result is illustrated in Figure 3.21. This dataset is taken in a small room, so the

camera calibration matrix can be more precisely computed without errors than

the previous two datasets. However, in this dataset, there exist many false positive

detections by human-shaped backgrounds, such as chairs, robots, etc., and these

falsely detected objects become burdens to accomplish the good performance

of the multiple targets tracking algorithms. Different from the false positives in

other dataset, these false positives of detection algorithm are repeatedly detected

in the same position on the image, which makes it difficult to remove it with
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Figure 3.19: The qualitative result of APIDIS basketball dataset. The labels of
multiple objects are temporally and spatially associated successfully. Each row is
for the same frame index, and each column represents each camera view.
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temporal frequency. However, as we can see in Figure 3.20, and Figure 3.21, our

proposed algorithm maintains the labels of moving targets well over frames and

within images from multiple number of cameras compared to the conventional

algorithms.

3.7 Final remarks and discussion

In this chapter, we proposed an online data association for tracking multiple peo-

ple using multiple cameras. We encoded the multiple people tracking problem to

the matching problem on the matching graph and solved the spatial and temporal

data association problem with the MAP formulation. We considered the 2D po-

sition in image coordinate, the 3D position in world coordinate, the velocity, and

several other information to track objects in temporal domain and connect the

same objects in the different cameras. The solution can be calculated fast with a

sampling method because the solution space of our formulation is small by using

only the observation at current frame and the 3D tracking models at the last

previous frame. Moreover, we can solve the missing detection problem and the

tracking model drift problem by selectively update scheme for the tracking model

with local information. Our quantitative and qualitative evaluations showed that

our method could track multiple people and maintains their identity successfully

comparable to the state-of-art algorithms.

102



Figure 3.20: The qualitative result of ETRI-S1 dataset. The labels of multiple
objects are temporally and spatially associated successfully. Each row is for the
same frame index, and each column represents each camera view.
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Figure 3.21: The qualitative result of ETRI-S2 dataset. The labels of multiple
objects are temporally and spatially associated successfully. Each row is for the
same frame index, and each column represents each camera view.
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Chapter 4

Concluding Remarks

4.1 Conclusions

In this thesis, we proposed an online multiple objects tracking method with both

multiple number of cameras and a single camera via a MAP optimization. In

the case of the single camera, to track multiple objects in temporal domain, we

formulate a MAP problem on the matching graph which is composed of detection

observation and 2D tracking model in the same camera view. By constructing a

matching graph and finding a matching configuration which maximizes the for-

mulated MAP problem, we can track multiple objects in a single camera. Our

MAP formulation considers only 2D information in image domain. The data as-

sociation between the detection results at the current frame and the 2D tracking

models from the last previous frame enables an online framework which runs

faster than conventional methods which mostly use a global optimization frame-

work. The missing detection problem, which is generally caused by occlusions or

overlaps, is solved by our occlusion reasoning scheme and the selective update

scheme. When missing detection happens, updating tracking models should be
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done carefully because incorrectly estimated position of the tracking models can

corrupt the tracking model and cause the drift. We selectively update the track-

ing model with its local neighborhood information and prevent this problem from

being happened.

On the other hand, to track multiple objects in multiple cameras, we need to

find the association in spatial as well as temporal domain. For this purpose, we

build a matching graph and encode the tracking problem to the matching problem

on the graph, which is composed of the detection results from each camera, 3D

tracking models which represent each human in the world coordinate system, and

extra added node for tracking model initialization. To find the matchings in our

graph, we extended our formulation in the case of single camera and formulated

a MAP problem on the matching graph. In our matching graph, the spatial and

temporal association is achieved simultaneously by solving the formulated MAP

problem with the Gibbs sampling method. Because we used only the detection

observations at current frame and the 3D tracking models at the last frame, which

we assume that they can describe all the previous association results, the solution

space for the sampling is small and the solution can be calculated efficiently in

online framework. To handle the occlusion and missing detection problems from

poor performance of detectors in data association, we also used the proposed

selective updating scheme as multiple camera case. Our quantitative and qualita-

tive evaluations showed that our method tracked multiple people and maintained

their identity successfully comparable to the state-of-art algorithms in both the

single camera case and the multiple camera case.
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4.2 Future Works

Even though the proposed method in this thesis shows reliable performance to

the existing approaches, there are still many future works to improve the per-

formance of the algorithm. Adopting online scheme for multiple objects tracking

is the most important factor to be applied in online applications, however, the

online optimization solution has limitation that the recovery from the degraded

solution is very difficult. This is why we require the recovery method. One of the

possible direction is the K-best matching scheme to enrich the solution space and

find better solutions. However, selecting and storing multiple number of matching

solutions should be done carefully. There can be different strategies in picking K

number of solutions, such as picking the K matching solutions with the highest

posterior probabilities or choosing K matching solutions which have significantly

different matching configurations. Moreover, the way to visualize the tracking

results from multiple number of hypotheses and how to measure the performance

should be decided either. In the perspective of the design of the MAP formulation,

the association likelihood can be improved by considering more complex infor-

mation, such as volumetric shape of human and interactions among people. With

these future researches, the multiple objects tracking method might improve the

performance significantly and can be used in online applications.
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국문 초록

이상적인 영상감시 시스템은 영상 감시의 본연의 목적에 부합하기 위해서는 범

죄나사건에대한즉각적인대응이보장되어야한다.이러한이유로움직이는물

체를 탐지하거나 추적을 하는 등의 영상 감시 알고리즘은 온라인으로 동작하는

것이더선호된다.일반적으로이러한온라인알고리즘들은인과관계 (causality

condition) 을 어길 수 없기 때문에 과거의 입력 데이터만을 사용하기 때문에

영상 전체를 사용하는 알고리즘들 (일괄 처리에 기반한 알고리즘) 에 비해 낮은

성능을 보일 수 밖에 없다. 하지만 일괄 처리에 기반한 알고리즘들은 연산 량과

연산 시간이 많기 때문에 영상 감시 시스템 에서는 여전히 온라인 알고리즘이

더 요구된다. 단일 물체에 대한 추적 알고리즘은 일반적으로 온라인으로 동작하

는 반면에 대부분의 다중 물체 추적 방법은 그 어려움 때문에 일괄 처리방법을

사용하는 방향으로 개발되고 있다. 일괄 처리 기반의 알고리즘이 더 널리 이용

되는 이유는 각각의 단일 물체를 추적하며 동시에 그들을 구별하는 데에 필요한

정보양이 단일 물체에 비해서 훨씬 많기 때문에 좋은 성능을 위해선 많은 양의

데이터가 필요하기 때문이다. 다수의 물체를 시간적으로 추적하는 데 있어 많

은 양의 데이터를 동시에 고려해야 하는 어려움을 해결하기 위해 일반적으로

데이터 연관 기법이 많이 사용된다.

본 논문에서는 먼저 복잡한 상황에서도 단일 카메라만을 이용하여 다중 물

체를 강인하게 추적하는 방법을 개발하였다. 시간적으로 지연된 결과나 미래의

입력 데이터 없이 우리는 현재 시간의 입력 데이터와 바로 이전 시간의 추적

모델간의 온라인 데이터 연관 기법을 통해 강인한 성능을 보이면서 일괄 처리

기법에 비해 빠른 속도로 알고리즘을 수행한다. 우리는 다중 물체 추적 문제를

그래프에서 물체간 연결을 찾는 문제로 변환하고 이 문제를 풀기 위하여 물체의

크기,중심간거리,움직임,모양정보등을이용하여사후확률을정의하였다.그

결과 매우 혼잡한 환경에서도 정보양이 적은 머리 부분 탐지기를 잘 활용하여
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좋은 추적 성능을 보였다. 또한 본 논문에서 제안된 방법은 현재의 탐지 결과가

기존의 추적 모델로 설명되지 않을 시 자동적으로 새로운 추적 모델을 생성하고

물체 간의 겹침 등으로 만들어 질 수 있는 부정확한 정보에 의한 추적 모델의

오염을 막기 위한 겹침 추정 알고리즘을 사용하였다. 제안된 단일 카메라 기반

다중 물체 추적 알고리즘의 성능을 보이기 위해 다양한 데이터 셋에서 실험을

하고 기존 알고리즘과 비교를 하였다.

이어본논문에서는단일카메라에서제안된방법을확장하여다중카메라에

서다중물체를추적하는온라인데이터연관기법을제안하였다.다중카메라는

물체간 겹침이나 배경 뒤에 가려짐이 발생할 때 단일 카메라 보다 좋은 양질의

정보를 제공할 수 있지만 데이터 연관 알고리즘의 입력 데이터에 대한 관점에서

보면이러한증가된정보량이항상더선호되는것은아니다.다중카메라에서의

데이터 연관 기법을 수행하는 것은 데이터를 시,공간적으로 동시에 연결을 해

야 하므로 단일 카메라에서의 데이터 연관 기법보다 훨씬 복잡하다. 이 문제의

가능한 해 공간 (solution space) 가 매우 크기 때문에 이 문제는 NP-난해 문제

(NP-hard) 로 알려져 있다. 하지만 대부분의 기존의 방법들은 정확도를 위해서

영상 전체를 모두 사용하는 일괄 처리 기반의 알고리즘을 채택함으로써 문제의

복잡도를매우크게한다는단점이있다.이러한기존알고리즘들의문제를풀기

위하여우리는온라인데이터연관기법을단일카메라와마찬가지로그래프에서

물체간시,공간적연결을찾는문제로바꾸고이를위하여사후확률최대화방법

을 통하여 이를 해결하였다. 제안된 방법은 현재 시간의 탐지 결과와 바로 이전

시간까지의 추적 모델만을 연결함으로써 온라인 어플리케이션에 적용할 수 있

다는장점이있다.데이터간의연결및유사도를측정하기위하여영상내에서의

위치, 모양, 속도 정보 및 카메라 정보를 활용한 3D 좌표 상에서의 위치 정보를

사용하였다. 마지막으로 본 논문에서는 여러 다양한 데이터 셋에 대해 제안된

알고리즘을 실험함으로써 기존의 뛰어난 알고리즘들과 비교성능을 보였다.
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