

저작자표시-비영리-동일조건변경허락 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

l 이차적 저작물을 작성할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

동일조건변경허락. 귀하가 이 저작물을 개작, 변형 또는 가공했을 경우
에는, 이 저작물과 동일한 이용허락조건하에서만 배포할 수 있습니다.

http://creativecommons.org/licenses/by-nc-sa/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-sa/2.0/kr/

Ph.D. Dissertation

Bio-mimetic Models for Detection

and Tracking of Moving Objects

움직이는 물체 검출 및 추적을 위한 생체 모방 모델

By

Kwang Moo Yi

January 2014

SCHOOL OF ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Abstract

In this thesis, we propose bio-mimetic models for motion detection and visual

tracking to overcome the limitations of existing methods in actual environments.

The models are inspired from the theory that there are four different forms of

visual memory for human visual perception when representing a scene; visible

persistence, informational persistence, visual short-term memory (VSTM), and

visual long-term memory (VLTM). We view our problem as a problem of modeling

and representing an observed scene with temporary short-term models (TSTM)

and conservative long-term models (CLTM). We study on building efficient and

effective models for TSTM and CLTM, and utilizing them together to obtain

robust detection and tracking results under occlusions, clumsy initializations,

background clutters, drifting, and non-rigid deformations encountered in actual

environments.

First, we propose an efficient representation of TSTM to be used for moving

object detection on non-stationary cameras, which runs within 5.8 milliseconds

(ms) on a PC, and real-time on mobile devices. To achieve real-time capabil-

ity with robust performance, our method models the background through the

proposed dual-mode kernel model (DMKM) and compensates the motion of the

camera by mixing neighboring models. Modeling through DMKM prevents the

background model from being contaminated by foreground pixels, while still al-

lowing the model to be able to adapt to changes of the background. Mixing

neighboring models reduces the errors arising from motion compensation and

their influences are further reduced by keeping the age of the model. Also, to

decrease computation load, the proposed method applies one DMKM to multiple

pixels without performance degradation. Experimental results show the compu-

i

tational lightness and the real-time capability of our method on a smart phone

with robust detection performances.

Second, by using the concept from both TSTM and CLTM, a new visual

tracking method using the novel tri-model is proposed. The proposed method

aims to solve the problems of occlusions, background clutters, and drifting si-

multaneously with the new tri-model. The proposed tri-model is composed of

three models, where each model learns the target object, the background, and

other non-target moving objects online. The proposed scheme performs tracking

by finding the best explanation of the scene with the three learned models. By

utilizing the information in the background and the foreground models as well as

the target object model, our method obtains robust results under occlusions and

background clutters. Also, the target object model is updated in a conservative

way to prevent drifting. Furthermore, our method is not restricted to bounding-

boxes when representing the target object, and is able to give pixel-wise tracking

results.

Third, we go beyond pixel-wise modeling and propose a local feature based

tracking model using both TSTM and CLTM to track objects in case of un-

certain initializations and severe occlusions. To track objects accurately in such

situations, the proposed scheme uses “motion saliency” and “descriptor saliency”

of local features and performs tracking based on generalized Hough transform

(GHT). The proposed motion saliency of a local feature utilizes instantaneous

velocity of features to form TSTM and emphasizes features having distinctive

motions, compared to the motions coming from local features which are not from

the object. The descriptor saliency models local features as CLTM and empha-

sizes features which are likely to be of the object in terms of its feature descriptors.

Through these saliencies, the proposed method tries to “learn and find” the target

object rather than looking for what was given at initialization, becoming robust

ii

to initialization problems. Also, our tracking result is obtained by combining the

results of each local features of the target and the surroundings, thus being robust

against severe occlusions as well. The proposed method is compared against eight

other methods, with nine image sequences, and hundred random initializations.

The experimental results show that our method outperforms all other compared

methods.

Fourth and last, we focus on building robust CLTM with local patches

and their neighboring structures. The proposed method is based on sequential

Bayesian inference and focuses on solving both the problem of tracking under

partial occlusions and the problem of non-rigid object tracking in real-time on

desktop personal computers (PC). The proposed scheme is mainly composed of

two parts: (1) modeling the target object using elastic structure of local patches

for robust performance; and (2) efficient hierarchical diffusion method to perform

the tracking process in real-time. The elastic structure of local patches allows the

proposed scheme to handle partial occlusions and non-rigid deformations through

the relationship among neighboring patches. The proposed hierarchical diffusion

generates samples from the region where the posterior is concentrated to reduce

computation time. The method is extensively tested on a number of challenging

image sequences with occlusion and non-rigid deformation. The experimental re-

sults show the real-time capability and the robustness of the proposed scheme

under various situations.

Keywords: Bio-mimetic model, Visual tracking, Motion detection, Tempo-

rary short-term model, Conservative long-term model

Student ID Number: 2007-23039

iii

Contents

1 Introduction 1

1.1 Background and Research Issues 2

1.1.1 Issues in Motion Detection 2

1.1.2 Issues in Object Tracking 4

1.2 The Human Visual Memory . 11

1.2.1 Sensory Memory . 12

1.2.2 Visual Short-Term Memory 13

1.2.3 Visual Long-Term Memory 16

1.3 Bio-mimetic Framework for Detection and Tracking 17

1.4 Contents of the Research . 18

2 Detection by Pixel-wise Dual-Mode Kernel Model 22

2.1 Proposed Method . 23

2.1.1 Approximated Gaussian Kernel Model 24

2.1.2 Dual-Mode Kernel Model (DMKM) 26

2.1.3 Motion Compensation by Mixing Models 29

2.1.4 Detection of Foreground Pixels 31

i

2.2 Experimental Results . 32

2.2.1 Runtime Comparison . 33

2.2.2 Qualitative Comparison . 35

2.2.3 Quantitative Comparison 36

2.2.4 Effects of Dual-Mode Kernel Model 37

2.2.5 Effects of Motion Compensation 40

2.2.6 Mobile Results . 40

2.3 Remarks and Discussion . 41

3 Tracking by Pixel-wise Tri-Model Representation 42

3.1 Tri-Model Framework . 43

3.1.1 Overall Scheme . 43

3.1.2 Advantages . 47

3.1.3 Practical Approximation . 48

3.2 Tracking with the Tri-Model . 50

3.2.1 Likelihood of the Tri-Model 50

3.2.2 Likelihood Maximization 51

3.2.3 Estimating Pixel-Wise Labels 54

3.3 Learning the Tri-Model . 55

3.3.1 Target Model . 55

3.3.2 Background Model . 56

3.3.3 Foreground Model . 57

3.4 Experimental Results . 59

3.4.1 Experimental Settings . 59

3.4.2 Tracking Accuracy: Bounding Box 60

ii

3.4.3 Tracking Accuracy: Pixel-Wise 63

3.5 Remarks and Discussion . 64

4 Tracking by Feature-point-wise Saliency Model 65

4.1 Proposed Method . 66

4.1.1 Tracking based on GHT . 67

4.1.2 Descriptor Saliency and Feature DB Update 70

4.1.3 Motion Saliency . 73

4.2 Experimental Results . 75

4.2.1 Tracking with Inaccurate Initializations 77

4.2.2 Tracking Under Occlusions 81

4.3 Remarks and Discussion . 81

5 Tracking by Patch-wise Elastic Structure Model 84

5.1 Tracking with Elastic Structure of Local Patches 85

5.1.1 Sequential Bayesian Inference Framework 85

5.1.2 Elastic Structure of Local Patches 87

5.1.3 Modeling a Single Patch . 89

5.1.4 Modeling the Relationship between Patches 91

5.1.5 Model Update . 93

5.1.6 Hierarchical Diffusion . 94

5.1.7 Summary of the Proposed Method 96

5.2 Experiments . 96

5.2.1 Parameter Effects . 96

5.2.2 Performance Evaluation . 99

iii

5.2.3 Discussion on Translation, Rotation, Illumination Changes 103

5.2.4 Discussion on Partial Occlusions 104

5.2.5 Discussion on Non-Rigid Deformations 106

5.2.6 Discussion on Additional Cases 106

5.2.7 Summary of Tracking Results 108

5.2.8 Effectiveness of Hierarchical Diffusion 110

5.2.9 Limitations . 112

5.3 Remarks and Discussion . 116

6 Concluding Remarks and Future Works 117

Bibliography 120

Abstract in Korean 130

iv

List of Figures

1.1 Example of tracking in case of occlusions and with clumsy initial-

izations. 5

1.2 Contents of the research and their relatedness to short-term/long-

term memory and how data is treated (from pixel-wise to patch-wise). 19

2.1 Example of our method running on a mobile device. 23

2.2 Framework of the proposed method 24

2.3 Illustration of the effects of using dual-mode kernel model. 27

2.4 Illustration of the proposed motion compensation by mixing models. 30

2.5 Example critical frames for each method. 34

2.6 Example result with the kernel model and the dual-mode kernel

model. 38

2.7 Comparison between nearest neighbor warping and proposed warp-

ing. 39

2.8 Example detection results of our method on a mobile device. . . . 41

3.1 Example of each model. 44

3.2 Example of the pixel-wise likelihood values. 46

v

3.3 Example of each model and the observation warped into the target

domain. 48

3.4 Example of the pixel-wise likelihood values in the target domain. . 49

3.5 Precision plots for all sequences. 61

3.6 Bounding box results for critical frames. 62

3.7 Pixel-wise tracking results. 62

4.1 Overall scheme of the proposed method. 68

4.2 Illustration of GHT voting with SURF features 68

4.3 Illustration of the descriptor saliency in action. 71

4.4 Example of motion saliency obtained for the woman sequence. . . 74

4.5 Box plots for % correctly tracked with all initializations. 78

4.6 Critical frames for tracking results. 82

5.1 Example of elastic structure of local patches used to describe the

target object. 88

5.2 Example of a 21 dimensional feature descriptor for a single local

patch. 90

5.3 Example of neighboring local patches connected together. 91

5.4 Illustrative example of hierarchical diffusion performed for a single

sample l. 95

5.5 Example showing the effect of β parameter on non-rigid object

tracking. 98

5.6 Example showing the effect of β parameter on tracking objects

with partial occlusions. 98

5.7 Mean errors for each sequence. 102

vi

5.8 Tracking results for the Dudek sequence and the Sylvester se-

quence. 103

5.9 Tracking results for the Face sequence, the Woman sequence, and

the Caviar sequence. 105

5.10 Tracking results for the High Jump sequence, the Motocross 1

sequence, and the Mtn. Bike sequence. 107

5.11 Tracking results for the Robot sequence, the Dove sequence, the

Pedestrian sequence, and the Nemo sequence. 109

5.12 Mean error obtained using hierarchical diffusion and simple Gaus-

sian diffusion. 111

5.13 Example tracking results and their local patch structures. 113

5.14 Example tracking results with scale and orientation changes. . . . 114

5.15 Change in the coordinates of the top-left corner point of the esti-

mated bounding box for each frame. 115

vii

List of Tables

2.1 Average computation time for each method. 33

2.2 Quantitative results for each method. 36

3.1 Area under precision plots. 59

3.2 F-measure for pixel-wise tracking results. 63

4.1 Results for all sequences. 80

5.1 The mean error values and the percentage of meaningful tracking

results with all frames in all image sequences for each algorithm. . 108

5.2 The mean error and the percentage of meaningful tracking results

for each algorithms with all sequences. 108

viii

Chapter 1

Introduction

Detecting and tracking of moving objects in a scene is an important task for many

vision based systems. Intelligent visual surveillance systems require the motion

detection and object tracking as a preliminary for advanced inference tasks (Kim

et al., 2010). Over the last two decades, many object tracking methods have been

proposed (Yilmaz et al., 2006; Kalal et al., 2010; Babenko et al., 2011; Adam et al.,

2006; Godec et al., 2013) and various motion detection approaches have been

explored (Stauffer & Grimson, 1999; Elgammal et al., 2002; Sheikh & Shah, 2005;

Georgiadis et al., 2012; Sheikh et al., 2009). However, the practicability of these

methods has been limited due to many reasons. In case of motion detection, errors

arising from compensating the motion of the camera and the computational load

greatly limit the applicability. For object tracking, problems such as occlusions,

background clutters, deformations, sensitivity to initializations, and drifting are

just a few examples.

In this thesis, we focus on overcoming the limitations of the current state-

of-the-art methods for motion detection and tracking through bio-mimetic ideas

inspired from human visual perception mechanism. Although the mechanism of

1

human visual perception is not perfectly known, recent research suggests there are

four different forms of visual memory (Irwin, 1992; Palmer, 1999) which are used

to form a representation of a scene; visible persistence, informational persistence,

visual short-term memory (VSTM), and visual long-term memory (VLTM). In-

spired from this memory structure, we view our problem as a problem of modeling

and representing the observed scene with temporary short-term models (not to

be confused with VSTM) and conservative long-term models (not to be confused

with VLTM). The temporary short-term model (TSTM) takes roles similar to

what visible persistence, informational persistence, and VSTM do for human vi-

sual perception. The TSTM is focused on building the temporal integration of

the observation and the instantaneous motion and changes within the scene. The

conservative long-term model (CLTM) learns object-wise information, such as the

target object information in tracking, throughout the whole given sequence. This

is similar to how VLTM works for human visual perception. Through appropriate

use of each type of model (short-term and long-term), we aim to obtain robust

results outperforming the state-of-the-art.

1.1 Background and Research Issues

1.1.1 Issues in Motion Detection

Detection of moving objects in a scene is without doubt an important topic in the

field of computer vision. It is one of the basic steps in many vision-based systems.

For example, applications such as human computer interface (HCI), robot visions,

and intelligent surveillance systems (Kim et al., 2010) require detection of moving

objects. Various methods have been proposed and have proven to be successful for

detection of moving objects in case of stationary cameras (Stauffer & Grimson,

1999; Elgammal et al., 2002; Ko et al., 2010; Sheikh & Shah, 2005), but in case

2

of mobile or pan-tilt-zoom (PTZ) cameras these methods do not work well due

to many unaccounted factors that arise when using of movable cameras.

Many methods have been proposed for moving object detection with a non-

stationary camera, but the applicability of them is still doubtful. The most critical

reason restricting the applicability of these methods is the amount of computation

they require to work. In (Georgiadis et al., 2012), the authors noted that it took 30

to 60 seconds per frame with their un-optimized MATLAB implementation, and

also noted that (Sheikh et al., 2009) takes over 2.6 seconds. The method proposed

in (Kwak et al., 2011) also requires much computation and cannot run in real-time

since they use dense optical flows and nonparametric belief propagation (BP) to

optimize a Markov random field (MRF). Therefore, even though these algorithms

may provide promising results off-line, in real-time, they are unusable unless a

machine with great computation power is provided. The methods presented in

(Kim et al., 2013, 2012) work in real-time, but they are still not enough when

considering that other visual inference task are usually performed after detection,

or when considering platforms with less computation power. Smart phones or

embedded platforms, such as robots or head mount displays, would be examples

of platforms with relatively low computational power which could benefit much

from fast motion detection.

To reduce the computation load of methods targeted for non-stationary cam-

eras, it is important that the model design itself also considers the computa-

tion load required for applying the model, such as the computation load arising

from motion compensation. For example, the method proposed by Barnich and

Droogenbroeck (Barnich & Van Droogenbroeck, 2011) is one of the well-known

fast background subtraction algorithms showing robust performances. However,

when applied to non-stationary cameras, the motion compensation procedure for

the algorithm requires computation load proportional to the number of samples

3

used for a pixel. This could slow down the method in significant amounts (usually

requiring more computation than the detection algorithm itself), unless there is

some sort of hardware support.

Besides the computation load, when modeling the scene, it is also important

that the model considers not only the errors and noises that arise in stationary

cameras, but also the errors that arise when compensating for the motion of the

camera. This is a critical reason that we cannot just simply apply background

subtraction algorithms for stationary cameras with simple motion compensation

techniques. Stationary camera background modeling algorithms usually focus on

building a precise model for each pixel. But for non-stationary case, we cannot

guarantee that the model used to evaluate a pixel is actually relevant to that pixel.

Even the slightest inaccuracy in motion compensation could end up in making the

algorithm use wrong models for some pixels. To account for such motion compen-

sation errors, in (Rao et al., 2007; Kim et al., 2013; Mittal & Huttenlocher, 2000),

small nearby neighborhoods are considered. However, considering neighborhoods

increases the necessary computation, slowing down the whole algorithm.

1.1.2 Issues in Object Tracking

Object tracking is an important computer vision problem which can be used

for various applications. Example applications of object tracking include, robot

vision, video analysis, behavior recognition, and home automation, visual surveil-

lance (Kim et al., 2010). In order for the whole system to work properly for these

applications, accurate tracking results are required. Various tracking methods

have been tried during the last decade and they have proven to be successful for

these applications (Yilmaz et al., 2006). However, the applicability of these algo-

rithms are somewhat limited to “lab environments” and do not show satisfying

performances when applied on real-world scenarios.

4

2 215

2 215

−17 −16.8 −16.6 −16.4 −16.2 −16 −15.8 −15.6 −15.4 −15.2 −15
23

23.5

24

24.5

25

GT PROP OAB SEMI BEYOND HOUGH MIL TLD MST FRAG INVIS

Figure 1.1: Example of tracking in case of occlusions and with clumsy initializa-
tions. Different initializations for the occCup sequence (left column), leading to
different results for the same frame (right column). Best viewed in color.

The limitations of conventional methods arise from the fact that they have

strong assumptions about the input video sequence, such as constant movements

of the target object and consistent views. In real-world scenarios, occlusions may

occur frequently with the target object showing non-rigid deformations, degrading

the performance of conventional methods. These major issues in object tracking

include severe occlusions, uncertain initializations, drifting problems, background

clutter problems, and tracking objects with non-rigid deformations. Especially,

in case of automatic initialization, the applicability of conventional methods are

still limited (illustrated in Figure 1.1.)

5

Drifting and Background Clutter

The problem of tracking under occlusions and background clutters has been tack-

led by various methods. The methods for dealing with occlusions described in the

preceding subsection (Adam et al., 2006; Mei & Ling, 2009) have been used to

deal with occlusion from backgrounds. In case of clutter problems, Grabner et al.

(Grabner et al., 2006) proposed a method to train a discriminative classifier in an

online manner using online boosting to separate the object from the background.

Their method falls into the group of methods treating object tracking as a “two-

class” problem (Avidan, 2007), which try to solve background clutter problems.

The method is further extended by Stalder et al. (Stalder et al., 2009) to solve

drifting problems as well. The methods stated above however focus only on either

occlusion problems or background clutter problems, making the performance of

the methods limited when both problems occur simultaneously.

Drifting is another well-known problem of traditional tracking methods. As

trackers must adapt to various appearance changes of the target object, the target

model must be updated on-line. However, traditional methods use the tracking

result from previous frames to update the model, which may be incorrect. False-

positives and false-negatives may be used in this update process, which makes the

model “drift away” from correct answer. Babenko et al. (Babenko et al., 2011)

extended the results of Grabner et al. (Grabner et al., 2006) by employing multiple

instance learning, which updates the classifier with multiple positive examples

rather than just one, and reduced the risk of false positives getting involved in

the learning process. Also, in (Stalder et al., 2009), a multiple classifier system

composed of learned and un-learned parts is proposed to prevent the tracker from

drifting. Kalal et al. (Kalal et al., 2010) proposed a method using both tracker and

classifier to create training sets with structural constraints. Their method collects

training samples and uses them only when the structural constraint meets (i.e.

6

only when the classifier and the tracker agrees). Through this procedure, their

method becomes robust to drifting problems. However, these methods do not

consider occlusions, making the methods vulnerable to them.

Initializations Sensitivity and Occlusions

One of the major assumptions many conventional trackers have is that the target

object is given rather accurately. Therefore, the trackers are sensitive to how they

were initialized at the first frame. Practically, this is not a trivial task and leads

to loss in tracking performances. Also, in actual environments, severe occlusions

exist where almost all of the target object is occluded, which not many trackers

are capable of dealing with.

The performance degradation of conventional trackers under inaccurate ini-

tializations is a problem which has not been well addressed yet. There are methods

with automatic initialization for trackers such as the method by Mahadevan and

Vasconcelos (Mahadevan & Vasconcelos, 2009), but still, they do not account for

cases when these initializations fail to give an accurate initialization. Performance

degradation from inaccurate initializations is closely related to drifting problems.

In many tracking methods, such as (Comaniciu et al., 2003; Adam et al., 2006;

Grabner et al., 2006, 2008; Stalder et al., 2009), the model for the target object

is constructed using the initial target information given at the first frame. Then,

the methods adapt the target model with the tracking results for each frames.

During the adaptation, rather than learning about the target object and enhanc-

ing the model, noise gets involved in the learning process and the performance of

the tracker degrades. This drifting phenomenon is evident even in online boosting

based methods (Grabner et al., 2006) or methods which create classifiers (Avi-

dan, 2007; Mahadevan & Vasconcelos, 2009). This drifting would cause trackers

to be more sensitive to initializations, since having more noise from the beginning

7

would cause faster drifting. In (Grabner et al., 2008), (Stalder et al., 2009), and

(Babenko et al., 2011), the authors tackle the drifting problem with sophisticated

learning strategies. Both methods show robust results against drifting, but still

are vulnerable against inaccurate initializations. A recent method by Kalal et al.

(Kalal et al., 2010) uses P-N learning scheme, which incorporates results from

both detector and tracker to avoid such problems, but still, their work is mainly

focused on the problem of trackers drifting. Even without considering drifting

problems, a small inaccuracy in initialization can cause much problem.

A major cause for conventional trackers being over sensitive to initializations

is much based on the fact that they treat the given initialization as a fixed prior.

When we only have a single frame to use, constructing the target model solely

based on the initialization is reasonable. However, as more frames or more data

is given, it is obvious that we would need to figure out what the target object

is like, rather than just trying to adapt the model we learned from the initial-

ization. This means that we need to question the given prior and not believe it

thoroughly. Godec et al. (Godec et al., 2013) recognize this problem as a limitation

of bounding-box based approaches. Using the initialization by a bounding-box,

they build a classifier to roughly classify pixels into foreground and background.

With the rough classification result, they again perform Grab-cut (Rother et al.,

2004) to segment the target object. Though their aim was to well-describe non-

rigid deformations and reduce drifting effects, their method is closely related to

the initialization problem of trackers. Unfortunately, their method suffers from

randomness of the performance due to the purely random nature of their classifier.

Tracking objects undergoing occlusions have been the aim of many research,

but still have problems in case of severe occlusions which happens in actual

environments. Adam et al. (Adam et al., 2006) modeled the target object with

partial representations, making their method robust to partial occlusions. Their

8

method, however, is an extension of kernel-based methods (Comaniciu et al.,

2003) and therefore weak against scale changes or background clutters. In (Mei

& Ling, 2009) the authors built a sparse representation of the target object to

track the target object. They used trivial templates to describe occluded parts

and thus becoming robust to occlusions. However, both methods assume that

at least some parts or majority of the object is visible. This becomes critical

when severe occlusion occurs. Grabner et al. (Grabner et al., 2010) considered

nearby features as well as the target object to track the target object even when

the target object is fully occluded. Their method denotes these nearby feature

points as supporters, and the supporters help track the object when the primary

tracker fails to track. However, the performance of their method relies much on

the primary tracker being used since the primary tracker results are considered

to be accurate when learning supporters.

Non-Rigid Deformations

To solve the problem of non-rigid object tracking, Kwon and Lee (Kwon & Lee,

2009) proposed a method which models the target object as a collection of local

patches. In (Kwon & Lee, 2009), the target object is described with a star model

of local patches, and Adaptive Basin Hopping Monte Carlo (A-BHMC) sampling

is used to minimize the energy of the model. The patches in the model used to

describe target object are consistently updated through a heuristic scheme. This

enables the tracker to be able to adapt to drastic changes in the appearance and

the shape of the target. A-BHMC reduces the number of particles required for

tracking, making the computation time tractable. However, their method tends to

have trouble when tracking objects showing large displacements, and still requires

large amount of computation even with A-BHMC. Godec et al. (Godec et al.,

2013) proposed a tracking method based on the generalized Hough transform.

9

They extended the idea of Hough Forests to the online domain and coupled the

voting based detection and back-projection with a rough segmentation based

on GrabCut (Rother et al., 2004). Their method gets rid of the bounding-box

limitation and returns tracking results which contains only the target object.

However, their method is limited to handling non-rigid deformations only without

considering occlusions.

Limitations of Bounding Box Representation

Many modern trackers use bounding boxes for initializations and representation

of their results. This is due to the ease in initialization and the prominent use

in many object detection methods. However, using bounding boxes bring limita-

tions, as noted by Godec et al. (Godec et al., 2013). Trackers representing the

target object with a bounding box inevitably include non-target information in

their models and even use them when estimating the target object information.

This leads to many problems such as the performance degradation when tracking

objects under occlusions, background clutter problems, and drifting of models.

Also, representing tracking results with bounding boxes only gives limited infor-

mation about the target.

Various research has been done to overcome these limitations of bounding box

based trackers. Adam et al. (Adam et al., 2006) used fragments-based representa-

tions to obtain robust results even with occlusions, and “tracking-by-detection”

approaches using classifiers (Grabner et al., 2006, 2008; Stalder et al., 2009)

were proposed to deal with background clutter problems and drifting problems.

Babenko et al. (Babenko et al., 2011) further investigated the drifting problem

and proposed a learning strategy using multiple instance learning to solve drift-

ing. Kalal et al. (Kalal et al., 2010) also proposed a tracking method which uses

both tracker and a detector to avoid drifting and obtain robust tracking results.

10

For accurate representations of the target object, Godec et al. (Godec et al., 2013)

obtains accurate segmentation of the target by integrating the Hough forest clas-

sifier with a segmentation method. Though these methods have good tracking

performances when applied to their specific tasks, as demonstrated by Yi et al.

(Yi et al., 2012) they tend to show not as good results for problems they have

not dealt with. Yi et al. (Yi et al., 2012) tries to overcome these problems simul-

taneously by modeling both the background and the target object and using a

likelihood measure constructed from both models. Their method shows good per-

formances in many cases, but is still limited to bounding boxes, and has problems

when dealing with occlusions caused by other moving objects.

1.2 The Human Visual Memory

To resolve the issues raised in Section 1.1, we draw our attention to how the

human visual memory works. In case of human, recognizing objects in a scene

and tracking them is not a hard thing to do. Even the state-of-the-art methods

consider the performance of human visual inference as the goal of the research.

Therefore, it is natural that understanding of how human visual system works

and mimicking it would help solving problems related to visual inference tasks

such as tracking and detection.

Though it is still not clearly known how human visual system works, Holling-

worth suggested that there are four different forms of visual memory (Holling-

worth et al., 2004). According to the theory, there are four different forms of visual

memory (Irwin, 1992; Palmer, 1999) which are used to form a representation of

a scene; visible persistence, informational persistence, visual short-term memory

(VSTM), and visual long-term memory (VLTM). The former two persistences

together, are also referred to as the sensory memory (or iconic memory). They

11

are directly related to low-level sensory traces point-by-point, decay very quickly,

and are affected by masking. In case of computer vision, visible persistence can be

understood as raw pixel data, or pixel data with some basic pre-processing, and

informational persistence are related to local features. The VSTM holds represen-

tations abstracted from precise sensory information. It is known to have limited

capacities from three to four objects (Luck & Vogel, 1997; Pashler, 1988), and to

be less precise in terms of spatial accuracy. However, VSTM is considerably more

robust than sensory memories in that it is not significantly affected by masking

or blinking, and can be maintained for longer durations. Finally, the VLTM is

known to maintain visual representations in a similar form as VSTM but has

massive capacity. The exact capacity of VLTM is not clearly known, but is able

to hold image representations of thousands of objects for long periods of time

(Brady et al., 2008).

1.2.1 Sensory Memory

The sensory memory, or the iconic memory in case of visual sense, is described

as a very brief (less than one second), pre-categorical, and high capacity memory

store (Sperling, 1960; Dick, 1974). Iconic memory is thought to act as input data

for VSTM, by providing a coherent representation of the scene for a brief period

of time. However, iconic memory stores a great deal more information than can

be stored normally in short-term memory, having virtually unlimited availability

(Dick, 1974). Classic experimental investigations such as the one by Sperling

(Sperling, 1960) was one of the early work giving insights to this component of

the human visual memory. Iconic memory assists in explaining phenomena such

as change blindness, continuity of experience during saccadic eye movements, and

the well-known temporal integration of still images (for example, movies).

The evidence for the existence of iconic memory was investigated through

12

experiments in early days (Dick, 1974). One of the classic experiments include

the “partial-report” experiment by Sperling (Sperling, 1960). In partial-report

experiments, a target stimulus is given tachistoscopically, followed by a cue stim-

ulus. Then, the subject is required to identify the portion of the target specified

by the cue. The target is typically an alphanumeric character, or some simple

mark such as arrows or lines. When the cue was given immediately, the accuracy

of report is high, and as the cue id delayed, accuracy declined monotonically.

The asymptote of the delay curve occurred at point between 250 and 1000 ms

after the termination of the stimulus (Dick, 1974). These results provide clues of

a memory system lasting very briefly.

1.2.2 Visual Short-Term Memory

The visual short-term memory is a memory system which keeps the visual infor-

mation for a few seconds, and is used for other ongoing cognitive tasks (Luck,

2007). In contrast to iconic memory, VSTM representations are longer lasting,

more abstract, and more durable. They can survive eye movements, blinks, and

other visual interruptions, maintaining continuity (Luck, 2007). However, VSTM

has highly limited storage capacity and creates largely schematic representations

rapidly.

In case of actual storage, VSTM representations are stored by sustained firing

of action potentials (Luck, 2007). This can be observed directly in monkeys by

recording the activity of neurons in VSTM tasks. When a monkey is exposed

to a to-be-remembered stimulus, specific neurons began to and continue to fire

during the delay interval. Neural activity during the delay period of a VSTM

task can also be seen in neuroimaging studies (Cohen et al., 1997) and event-

related potential studies (Vogel & Machizawa, 2004). It is also thought that delay

activity is related with recurrent neural networks. This means that the activities

13

in sensory neurons ultimately flows back to them and making them continue to

fire even when the stimulus has been removed (Raffone & Wolters, 2001).

The capacity and how representations are stored in VSTM is not clearly

known but it is well accepted that the capacity of VSTM is limited to 3 to 4

objects. In early studies of VSTM using alphanumeric characters, it was suggested

that the capacity limit was 4-5 items (Sperling, 1960), but it was not clear that

they were stored visually or verbally. Luck and Vogel (Luck & Vogel, 1997) used

basic visual features to limit the contributions from verbal short term memory

and estimated capacity of 3 to 4 objects. In fact, in their work they added verbal

loads to limit the recoding of visual information into verbal forms. The verbal

load was given by making participants to consistently speak out loud the given

two digits for each trial. Large number of studies (Besner et al., 1981; Henson,

1998; Levy, 1971; Murray, 1967) report that this procedure dramatically impairs

the recoding of visual information into verbal form.

Though the capacity of visual is limited to 3 to 4 objects, it is not yet clear

if the capacity depends on the amount of information or the number of objects.

One view considers objects as the storage unit for VSTM. This means that the

VSTM acts as if it consists of 3-4 high-resolution “slots” and therefore the num-

ber of objects is what affects the storage capacity. In the study by Luck and

Vogel (Luck & Vogel, 1997), they demonstrated that the performance of the ob-

server’s memory does not change significantly with the number of features. In

their experiment, the performance of the test subjects remained unchanged when

given both color and orientations as features, or only one of the two. They further

showed that objects defined by four features could be remembered in the same

performance as an object defined by only one feature. As an alternative, Mag-

nussen et al. (Magnussen et al., 1996) suggested that each feature dimension is

represented in separate memory store. This was further investigated to find that

14

VSTM performance is worse when multiple features are drawn from the same

feature dimension (Luck, 2007).

Another view on VSTM proposes that the capacity limit of VSTM is related

to the amount of information not the number of objects. In this view, it is consid-

ered that VSTM has limited “resources” which is divided among the memorized

items. Thus the resolution of the memory representation decreases as the number

of items increase (Alvarez & Cavanagh, 2004; Vogel et al., 2001; Wilken & Ma,

2004). In Alvarez and Cavanagh’s work (Alvarez & Cavanagh, 2004), they found

that estimated capacity of VSTM decreases as the difficulty among discriminat-

ing items increased. They also estimated that the maximum capacity with the

simplest items is approximately 4-5 items. Their results support the theory that

when more details are required VSTM becomes more limited.

VSTM can be thought as a buffer for temporary information storage. VSTM

takes role in bridging the sensory gaps coming from eye movements and blinks.

Saccadic eye movements occur a few times every second, which introduces gaps

in the sensory data. This results in a series of spatially shifted snapshots of the

overall scene, separated with brief gaps (Luck, 2007). When constructing a scene

representation with VSTM and VLTM (Hollingworth et al., 2004), VSTM is

thought to bridge the gaps between these snapshots (Irwin, 1991) and to allow

the relevant portions of each subsequent snapshots to be aligned with each other

(Currie et al., 2000). VSTM is also thought to play an important role in keeping

track of previously attended locations when searching for an object in complex

scenes (Luck, 2007). Results from inhibition-of-return experiments have shown

that after attention has visited a place, it tends not to revisit the same location

for some time (Klein, 2000; Peterson et al., 2001; Posner & Cohen, 1984). Further

study showed that visual system can exhibit inhibition at several previously at-

tended locations over a short time (Snyder & Kingstone, 2001), and the inhibition

15

is reduced when spatial VSTM is occupied by a concurrent task (Castel et al.,

2003), hinting the role of VSTM in inhibition.

1.2.3 Visual Long-Term Memory

Besides the iconic memory and the visual short-term memory, long-term memory

plays an important role in constructing a visual representation of natural scenes

(Hollingworth et al., 2004). It is obvious that human visual system has a long-

term memory, but its interference with scene representation has had some doubts.

For example, Irwin and Zelinsky (Irwin & Zelinsky, 2002) proposed that higher

level visual representations of previously attended objects get stored in VSTM

as the eye moves from fixation to fixations according to attention. However, from

Hollingworth and Henderson’s experiment (Hollingworth & Henderson, 2002),

it was shown that more than eight objects (which exceeds the known capacity

of VSTM (Luck, 2007)) can be retained in visual memory over relatively long

periods of time, showing the possibility of long-term memory component in online

scene representation. In Hollingworth’s work (Hollingworth et al., 2004), more

evidence is provided that VSTM and VLTM both contribute to the online scene

representation.

A general assumption is that VLTM lacks in detail and holds only the gist of

a certain object (Brainerd & Reyna, 2005). It is well known from Standing’s work

(Standing, 1973) that VLTM can store massive number of items. In his work, he

demonstrated that after viewing 10,000 scenes for a few seconds each, people

could distinguish which of the two images was in the 10,000 with 83% accuracy

(Standing, 1973). However, this experiment did not provide insights on whether

only the gist of the scene was stored in VLTM, or the fine details were also stored.

Hollingworth (Hollingworth et al., 2004) showed that when requiring memory

for more than hundred objects, observers remain significantly above chance at

16

remembering which exemplar of an object they have seen. This result hinted

that VLTM is capable of storing detailed representation of observed objects.

Hollingworth also argued that shares similar visual representations as VSTM

and demonstrated that the capacity of VLTM is not exhausted by retention of

visual properties of hundreds of objects (Hollingworth, 2005).

Contrary to the general assumption, recent work by Brady et al. (Brady et al.,

2008) showed that VLTM is capable of storing a massive number of objects with

details from the image. In their experiment, participants viewed pictures of 2,500

objects over the course of 5.5 hours, which then the participants were to choose

which of the two test images they had seen. The previously viewed item was paired

with either an object from a novel category, an object from the same basic-level

category (e.g . mirrors, starfish), or the same object in different state or pose.

The results from these tests were remarkably high, giving evidence to the theory

that VLTM holds detailed representation of the scene. They further examine the

results by investigating the lower bound of VLTM in the traditional information

theory concept and showed that the estimated memory capacity grows massively

according to the size of the representation stored in VLTM. This implies that

human VLTM has incredibly large storage with high fidelity.

1.3 Bio-mimetic Framework for Detection and Track-

ing

Inspired from the human vision perception model, we tackle the problem of de-

tecting and tracking moving objects through bio-mimetic models. We represent

the scene with a temporary short-term model (TSTM) and a conservative long-

term model (CLTM). The TSTM exists to model the quick changes in the scene

and to connect the observations from multiple time instances. The underlying

17

philosophy for TSTM is that through whatever method, we would like to estab-

lish a model which is able to describe the scene in a short-term and bottom-up

driven way. Thus, by utilizing TSTM, the entire modeling becomes robust against

such short-term noises and changes. An example of TSTM in our study can be a

conventional background model with a relatively fast learning rate. In this case,

the background model can be used to find quick changes in the scene, similar to a

way VSTM can be used in human visual perception. Also, TSTM is not restricted

to such background models only. Rather, TSTM can be in a totally different form

such as the distribution of optical flows for a single shot of the scene.

CLTM on the other hand, exists to model the long-term information required

to achieve a given visual inference task. Again, the philosophy here is that through

whatever method, we want to have a top-down driven long-term modeling com-

ponent solely designed for the task at hand. For object tracking, CLTM can be

the target model in the traditional sense. Though it is only about one object in

case of tracking single object, the target model needs to be effective throughout

the whole given sequence, which can be relatively long to be dealt with short-term

models. In case of multiple object tracking, CLTM, which is composed of models

for multiple objects, plays the role of VLTM in case of human visual perception.

Also, the use of the concept of CLTM is not restricted to object tracking. In

case of object recognition, the models used for the recognition task are actually

CLTMs. However, in this thesis, we focus on using TSTM and CLTM for the

purpose of motion detection and object tracking.

1.4 Contents of the Research

The thesis is mainly focused on developing bio-mimetic models for solving the

issues addressed in Section 1.1. Figure 1.2 is a summary of the contents and their

18

Input Image

Pixel-wise Patch-wise

Sh
or

t T
er

m

Lo
ng

 T
er

m

Pixel-wise Tri-Model Feature-point-wise Saliency
Model

Patch-wise
Elastic Structure

Model

Pixel-wise Dual Mode
Kernel Model

Figure 1.2: Contents of the research and their relatedness to short-term/long-term
memory and how data is treated (from pixel-wise to patch-wise).

relatedness to short-term/long-term memory and how data is treated (from pixel-

wise to patch-wise). Firstly, to build a robust motion detection scheme capable

of running real-time even on a mobile device, we propose an efficient pixel-wise

background model based on the concept of TSTM (bottom-left on Figure 1.2).

The current state-of-the-art methods used for such purpose are mostly with much

computation load (Sheikh et al., 2009; Kwak et al., 2011), limiting the applica-

bility of these methods greatly. Although Kim et al. (Kim et al., 2013) provide

real-time performance, for a detection method to be used with other higher-

level inference methods, the computation load can still be of burden. To achieve

real-time capability with satisfying performance, the proposed method models

the background through dual-mode kernel model (DMKM) and compensates the

motion of the camera by mixing neighboring models. Modeling through DMKM

prevents the background model from being contaminated by foreground pixels,

19

while still allowing the model to be able to adapt to changes of the background.

Mixing neighboring models reduces the errors arising from motion compensation

and their influences are further reduced by keeping the age of the model. The

details about our scheme is described in Chapter 2.

Next, to deal with the issues related to drifting, background clutter, occlu-

sions, and the limitation of bounding box representation in tracking, we propose

a tracking scheme using both pixel-wise TSTM and CLTM (mid to top-left in

Figure 1.2). The proposed scheme employs a novel tri-model to represent the

scene while tracking. The tri-model consists of the target object model (CLTM),

the background model (TSTM), and the foreground model (TSTM). The target

object model learns the object of interest as CLTM, the background model learns

the stationary parts of the scene in TSTM sense, and the foreground model learns

moving objects in the scene other than the target object. The proposed scheme

performs tracking by finding the best explanation of the scene with the three

learned models. By utilizing the information in the background and the fore-

ground models as well as the target object model, our scheme is robust against

occlusions, background clutters, and drifting. Furthermore, our scheme is not re-

stricted to bounding-boxes when representing the target object, and is able to

give pixel-wise tracking results. The scheme is explained in detail in Chapter 3.

In Chapter 4, to resolve the initialization sensitivity issue as well as the

occlusion issue, we go beyond the pixel-wise representation and apply TSTM and

CLTM using local features (center in Figure 1.2). The instantaneous velocities

of local features are modeled as TSTM and used to obtain saliencies related to

motions. The importance of local features when tracking are learned as CLTM and

used to obtain saliencies related to descriptors. The two saliencies are combined

through Hough voting to obtain promising tracking results even under occlusions

and clumsy initializations.

20

Lastly, to deal with non-rigid deformations and occlusions simultaneously, we

focus on building robust representation for CLTM (top-right in Figure 1.2). We go

beyond the pixel-wise or local feature-wise representations and use local patches.

Moreover, we consider the relationship among neighboring patches as well by

modeling the target object as an elastic structure of local patches. This modeling

allows more accurate description of the target object giving robust performances

in case of tracking objects showing non-rigid deformations and partial occlusions.

We also propose a hierarchical diffusion scheme to efficiently use this model. This

scheme is presented in Chapter 5. In Chapter 6, we offer some broad closing

remarks as well as future research directions.

21

Chapter 2

Detection by Pixel-wise

Dual-Mode Kernel Model

In this chapter, we focus on the computation efficiency problem of motion detec-

tion algorithms. Thus, we propose an efficient pixel-wise representation for TSTM

to be used for detecting moving objects on a non-stationary camera in real-time.

Our motion detection scheme is not only aimed to work in real-time for PC en-

vironments, but to work in real-time for mobile devices as well. Our background

model is designed in a way that minimizes computational requirements while still

showing robust detection performances. The motion compensation is performed

in a way so that not much warping computation is required, and the model tries

to learn compensation errors within the model itself. Experimental results show

that our method requires average of 5.8 milliseconds to run for a 320×240 image

sequence on a desktop PC, with acceptable detection performance compared to

other state-of-the-art methods. Also, our implementation of the proposed method

on a smart phone is able to run in real-time.

22

Figure 2.1: Example of our method running on a mobile device (foreground pix-
els highlighted in red). Our implementation runs approximately 20 frames per
second, comfortably in real-time.

2.1 Proposed Method

The proposed method consists of three major parts; pre-processing to reduce

noise, background modeling through the dual-mode kernel model (DMKM) with

age, and motion compensation for the background movements by mixing models.

Figure 2.2 is an illustration of the framework. Pre-processing on the image is per-

formed with simple spatial Gaussian filtering and median filtering on the image.

To reduce the amount of computation required, the number of DMKMs used is

smaller than the number of pixels in the input frame, meaning that the same

model can be used for multiple pixels. The motion compensation is performed

in a simple manner, with traditional KLT (Tomasi & Kanade, 1991). However,

rather than moving the background model to its correct positions, similar to

(Kwak et al., 2011), we mix the models from the previous frame to construct a

23

Dual-Mode Kernel Model
 – Sec.2.2.2

Input Image Detection Result
(Sec. 2.2.4)

Compare
&

Swap Models

Motion Compensation
By Mixing Models

(Sec. 2.2.3)

Match
Models Candidate Background Model

(Approx. Gaussian Kernel
Model – Sec. 2.2.1)

Mean Var Age

Apparent Background Model
(Approx. Gaussian Kernel

Model – Sec. 2.2.1)

Mean Var Age

Figure 2.2: Framework of the proposed method

model for the present frame. Finally, we obtain the detection results using the

trained model.

2.1.1 Approximated Gaussian Kernel Model

One of the main reasons for background subtraction methods with statistical

models failing for non-stationary cameras is that they usually have a fixed learn-

ing rate. Having a fixed learning rate means that for a pixel, the first observation

of the pixel is being considered as the mean of an infinitely learned model. This

does not cause critical problems for stationary camera since for many cases the

pixel value of a certain pixel does not change much for background pixels. How-

ever, for non-stationary cameras, motion compensation errors are apt to exist no

matter how accurate the compensation is, and we cannot assume that the first

observation of a pixel would be similar to the mean value we would actually get

by acquiring further observations. Therefore, we need a varying learning rate.

Although the authors of (KaewTrakulPong & Bowden, 2003) thought it to be

a problem with initialization and fast adaptation, the notion of constructing a

model with expected sufficient statistics works nicely for non-stationary cameras

as well. In (Kim et al., 2013), the authors also use the age of a pixel to define

24

a variable learning rate, which is actually the same as using expected sufficient

statistics.

To model the scene, we use a newly proposed kernel model which can be

understood as an approximated version of SGM. Similar to using SGMs, with

the notion of sufficient statistics to use only the observed data to form a model,

as in (Kim et al., 2013) we keep the age of kernel model as well as the mean and

the variance. Also, to reduce the computation load, we divide the input image into

equal grids of size N ×N and keep one kernel model for each grid. Here, to apply

a single model to all pixels inside the grid, our kernel model needs to account

for all statistics inside the grid. In case of the mean, we just need to observe the

mean value of the input observations inside the grid. However, in the case of the

variance, to get an exact update, we would need to obtain the variance of the

observations inside the grid and as well as complex update equations compared

to conventional SGM. This would harm the benefits of using grid representations,

and therefore we approximate the variance calculation in a simple way without

significant performance degradation.

If we denote the group of pixels in grid i at time t as G
(t)
i , the number of

pixels in G
(t)
i as

∣∣∣G(t)
i

∣∣∣, and the observed pixel intensity of a pixel j at time t as

I
(t)
j , then the mean µ

(t)
i , the variance σ

2 (t)
i , and the age α

(t)
i of the kernel model

applied to G
(t)
i is updated as

µ
(t)
i =

α̃
(t−1)
i

α̃
(t−1)
i + 1

µ̃
(t−1)
i +

1

α̃
(t−1)
i + 1

M
(t)
i (2.1)

σ
2 (t)
i =

α̃
(t−1)
i

α̃
(t−1)
i + 1

σ̃
2 (t−1)
i +

1

α̃
(t−1)
i + 1

V
(t)
i (2.2)

α
(t)
i = α̃

(t−1)
i + 1 (2.3)

25

where M
(t)
i and V

(t)
i are defined as

M
(t)
i =

1

|Gi|
∑
j∈Gi

I
(t)
j (2.4)

V
(t)
i = max

j∈Gi

(
µ
(t)
i − I

(t)
j

)2
(2.5)

and µ̃
(t−1)
i , σ̃

2 (t−1)
i , and α̃

(t−1)
i denote the kernel model of time t−1 compensated

for use in time t which will be discussed in detail at Section 2.1.3. Here, the update

equations regarding the mean (2.1) and (2.4) are the same as conventional SGMs.

However, in the case of the variance in (2.2) and (2.5), the equations are rough

approximations. To be exact, (2.2) should be the weighted mixing equations for

Gaussian distributions and (2.5) should be the observation variance. Calculating

these exact equations would actually negate the reduction of computation load

introduced from using grids. Therefore, we take advantage of the fact that the

kernel model is going to be used to find outliers (foreground pixels) and approx-

imate the model using the observation which is furthest away from the mean as

in (2.5). This approximated model in no longer a Gaussian model, but the model

is still in a radial kernel form, similar to the Gaussian. The advantage of the

proposed kernel model for grids is that it allows the motion compensation errors

to be learned in the model properly with a variable learning rate based on the

age of a model. Also, having the number of kernel models less than the number

of pixels reduces computation load.

2.1.2 Dual-Mode Kernel Model (DMKM)

Using the proposed kernel model to model the scene usually works well in sim-

ple cases, however, when fast learning rates are used, the kernel model suffers

from getting contaminated with the data coming from foreground pixels. In our

26

FG BG

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Kernel Model

FG BG

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Dual-Mode Kernel Model

Figure 2.3: Illustration of the effects of using dual-mode kernel model. Learning
results of (a) kernel model and (b) dual-mode kernel model with the same data.
In (b), the solid line denotes the apparent background model whereas the dotted
line denotes the candidate background model.

method, since we have a variable learning rate, having a fast learning rate is

a common case. For example at initialization, all pixels start with age of one,

meaning that the learning rate of these pixels at next frame would be 0.5. As

illustrated in Figure 2.3 (a), the fast learning rate causes the background model

to describe some portion of the foreground as well. This can be seen easily in the

case of large objects passing through the scene. A naive solution to this problem

would be to update with only the pixels determined as the background. However,

in this case, a single misclassification of pixel would have an everlasting effect on

the model since false foregrounds would never be learned.

To overcome this defect, we use another kernel model which acts like a can-

didate background model. The candidate background model remains ineffective

until its age becomes older than the apparent background model, when, at that

time, the two models are swapped. This dual-mode kernel model is different from

Gaussian mixture models (GMM) (Stauffer & Grimson, 1999) with two modals,

27

considering the fact that using a bi-modal GMM would still have the foreground

data contaminating the background whereas our method does not. If we denote

the mean, variance, and age of the candidate background model and the apparent

background model at time t for grid i as µ
(t)
C,i, σ

2 (t)
C,i , and α

(t)
C,i, and µ

(t)
A,i, σ

2 (t)
A,i ,

and α
(t)
A,i, respectively, then, if the squared difference between the observed mean

M
(t)
i and µ

(t)
A,i is less than a threshold with respect to σ

2 (t)
A,i , i.e.

(
M

(t)
i − µ

(t)
A,i

)2
< θsσ

2 (t)
A,i , (2.6)

we update µ
(t)
A,i, σ

2 (t)
A,i , and α

(t)
A,i according to (2.1), (2.2), and (2.3), where θs is a

threshold parameter. Also if the above condition does not hold and if the observed

mean matches the candidate background model,

(
M

(t)
i − µ

(t)
C,i

)2
< θsσ

2 (t)
C,i , (2.7)

then we update µ
(t)
C,i, σ

2 (t)
C,i , and α

(t)
C,i according to (2.1), (2.2), and (2.3). If none

of the conditions hold, we initialize the candidate background model with the

current observation. Also, the two kernel models for grid i are swapped if the age

of the candidate exceeds the apparent meaning,

α
(t)
C,i > α

(t)
A,i. (2.8)

The candidate background model is initialized after swapping. Finally, we only

use the apparent background model, which is now an uncontaminated pure back-

ground model, when determining foreground pixels in Section 2.1.4. Through

the dual-mode kernel model, we can prevent our background model from being

corrupted by the foreground data. As in Figure 2.3 (b), the foreground data is

learned by the candidate background model rather than the apparent background

28

model. Also, we do not have to worry about false foregrounds never being learned

into the model since if the age of the candidate background model becomes larger

than the apparent background model, the models will be swapped and correct

kernel model will be used.

2.1.3 Motion Compensation by Mixing Models

For image sequences obtained from a non-stationary camera, the model learned

until time t− 1 cannot be used directly for detection in time t. To use the model,

motion compensation is required. However, since we use a single model for all

the pixels inside a grid (i.e. a single model for all j such that j ∈ G
(t)
i), simple

warping on the background model based on interpolation strategies would cause

too much error. Thus, instead of simply warping the kernel model, we construct

the compensated kernel model at time t by merging the statistics of the model at

time t − 1. For obtaining the background motion, we divide the input image at

time t into 32 × 24 grids, and perform KLT (Tomasi & Kanade, 1991) on every

corner of the grid with the image from time t − 1. With these point tracking

results, we perform RANSAC (Fischler & Bolles, 1981) to obtain a homography

matrix Ht:t−1 which warps all pixels in time t to pixels in time t − 1 through a

perspective transform. We consider this to be the movement of the background.

For further explanation, we will denote the position of pixel j as xj , the position of

the center of gravity for G
(t)
i as x̄

(t)
i , and the perspective transform of x according

to Ht:t−1 as fPT (x,Ht:t−1).

As in Figure 2.4, for each grid i, we consider x̄
(t)
i to have moved from

fPT

(
x̄
(t)
i ,Ht:t−1

)
. Then, assuming that there was no significant scale change,

if we think of an N ×N square region Ri having fPT

(
x̄
(t)
i ,Ht:t−1

)
as the center,

the model at time t − 1 for Ri would be the motion compensated kernel model

for pixels G
(t)
i . Ri overlaps with multiple grids and we mix the kernel models

29

𝑤𝑘
G𝑘

(𝑡)

R𝑖

Models from 𝑡 − 1

Compensated model

x�𝑖
(𝑡)
H𝑡:𝑡−1

Figure 2.4: Illustration of the proposed motion compensation by mixing models.
Models of overlapping regions are mixed together to a single model.

at time t − 1 of these overlapping grids to obtain µ̃
(t−1)
i , σ̃

2 (t−1)
i , and α̃

(t−1)
i of

the motion compensated kernel model. The mixture weights are assigned so that

they are proportional to the overlapping area. If we denote the group of grids

overlapping with Ri as O
(t)
i , and the mixture weights as wk where k ∈ O

(t)
i , then

we obtain the compensated kernel model simply by mixing the Gaussian models

µ̃
(t−1)
i =

∑
k∈O(t)

i

wkµ
(t−1)
k (2.9)

σ̃
2 (t−1)
i =

∑
k∈O(t)

i

wk

[
σ
2 (t−1)
k +

{
µ
(t−1)
k

}2
−
{
µ̃
(t−1)
i

}2
]

(2.10)

α̃
(t−1)
i =

∑
k∈O(t)

i

wkα
(t−1)
k , (2.11)

30

where the mixing weights are

wk ∝ Area
{

Ri ∩G
(t)
k

}
(2.12)

and ∑
k

wk = 1. (2.13)

Note that in (2.10)
{
µ
(t−1)
k

}2
−
{
µ̃
(t−1)
i

}2
exists, since when we merge multiple

Gaussian models into one, it is the expectation for the square of the observation

that is merged with weight wk and not the variance itself. During the mixing

process, as in Figure 2.4, models where nearby regions differ a lot (e.g . edges)

will have excessively large variances after compensation (as in (2.10)). Normally,

a kernel model would not have too large variances, and having such large variance

would mean that the model has not learned much of the target object. Therefore,

after compensation, if the variance is over a threshold θv, i.e. σ̃
2 (t−1)
i > θv, we

reduce the age of the model as

α̃
(t−1)
i ← α̃

(t−1)
i exp

{
−λ
(
σ̃
2 (t−1)
i − θv

)}
, (2.14)

where λ is a decaying parameter. This decaying of age prevents the model from

having a model with too large variance not having any significant meaning near

edges, in case of consistent camera movements.

2.1.4 Detection of Foreground Pixels

After obtaining the kernel model for time t as in Section 2.1.1, 2.1.2, and 2.1.3,

we select pixels that have distances larger than threshold from the mean as fore-

ground pixels. This is not an exact solution to the problem theoretically, since to

be exact, we should find pixels with lower probability of being the background

31

with respect to the learned kernel model. However, finding such pixels require

much computation, due to the square-root and natural logarithms operations in

the exact equation (Stauffer & Grimson, 1999). We found empirically that the

results are useable even with simple thresholding with respect to the variance,

without complicated computation. Mathematically, for each pixel j in group i,

we classify the pixel as a foreground pixel if

(
I
(t)
j − µ

(t)
A,i

)2
> θdσ

2 (t)
A,i , (2.15)

where θd is a threshold parameter. Note that we only use the apparent back-

ground model in determining the foreground. Through this way, we can avoid

false negatives arising from contamination of the kernel model.

2.2 Experimental Results

For the experiments, the proposed method was implemented using C++ with

the KLT from OpenCV1 library. For the parameters, the grid size N = 4, the

threshold for matching θs = 2, the decaying parameter for age λ = 0.001, the

threshold for decaying age θv = 50×50, and the threshold for determining detec-

tion θd = 4. For the initialization of the variance, we simply set variance to be a

moderate value (e.g . 20× 20). The age was truncated at 30 to keep a minimum

learning rate. The method was experimented with eleven image sequences, where

six are identical to the sequences used in the work by Kim et al. (Kim et al.,

2013), two are provided by Kwak et al. (Kwak et al., 2011), one from the work

by Godec et al. (Godec et al., 2013), and others are newly made datasets (Yi

et al., 2013). To evaluate the effectiveness of the proposed method, the method

is compared against three other methods by Barnich and Van Droogenbroeck

1http://opencv.com/downloads.html

32

Method Pre-Processing Motion Comp. Modeling Post-Processing Total
Proposed with N = 4 and OpenMP 0.82ms 2.00ms 0.88ms - 3.71ms

Proposed with N = 4 0.84ms 2.65ms 2.31ms - 5.81ms
Proposed with N = 1 0.84ms 18.72ms 6.40ms - 25.96ms

ViBe with simple motion comp. - 7.20ms 4.15ms - 11.35ms
ViBe with proposed motion comp. - 39.22ms 3.64ms - 42.86ms

Kim et al. (2013) 1.15ms 5.90ms 2.32ms 7.85 17.86ms
Kwak et al. (2011) NA NA NA NA > 30s

Table 2.1: Average computation time for each method. “NA”: Not available, “-”:
No such process.

(ViBe) (Barnich & Van Droogenbroeck, 2011), by Kim et al. (Kim et al., 2013),

and by Kwak et al. (Kwak et al., 2011). ViBe (Barnich & Van Droogenbroeck,

2011) was implemented with the pseudo code provided the authors and simple

warping of the background was applied based on the Ht:t−1 in Section 2.1.3. For

the method by Kim et al. and Kwak et al., the implementations were provided

by the authors. However, for Kwak et al. ’s method, for the sequences which

were not included in their implementation, it was not possible obtain the pre-

liminary labeling and therefore the ground truth label was used as the initial

labeling at the first frame, and the result of the method proposed in this paper

was used as preliminary labeling for other frames. Some critical frames are shown

in Figure 2.5.

2.2.1 Runtime Comparison

To demonstrate the computational efficiency of the proposed method, computa-

tion time required for each major steps were measured and compared to other

state-of-the-art methods. Also, for comparison, the computation time for the

proposed method with simple parallel processing, and with parameter setting of

N = 1, which means that all pixels have their own dual-mode kernel model,

were measured. All experiments were performed on a Dual-core 3.4GHz PC with

320 × 240 image sequences. Table 2.1 is the average runtime required for each

33

Figure 2.5: Example critical frames for each method. Input frames (first column),
proposed method (second column), ViBe (Barnich & Van Droogenbroeck, 2011)
with simple motion compensation (third column), method by Kim et al. (Kim
et al., 2013) (fourth column), and method by Kwak et al. (Kwak et al., 2011)
(last column). All datasets shown are non-commercial and publicly available (Kim
et al., 2013; Kwak et al., 2011; Yi et al., 2013; Godec et al., 2013)

34

algorithm. As shown in the table, the proposed method outperforms other meth-

ods with respect to computation load. Even the proposed method with N = 1

runs 25.96ms in average, which assures real-time performance. The computation

time of ViBe (Barnich & Van Droogenbroeck, 2011) is comparable to our method

(11.35ms) but shows relatively poor performance considering the quality of de-

tection results (discussed in detail in Section 2.2.2). Also, the influence of the

computation load arising from motion compensation increases when a more pre-

cise motion compensation method, such as the proposed compensation method,

is used rather than simple warping. The method by Kim et al. (Kim et al., 2013)

also require computation time suitable for real-time performance on a PC, but

is still computationally expensive to run on a machine with relatively less com-

putation power. In case of Kwak et al. ’s method (Kwak et al., 2011), which is a

state-of-the-art method focusing on the detection performance, takes more than

a 30 seconds per frame. The proposed method, however, can be further reduced

to run 3.71ms on average with simple parallelization.

2.2.2 Qualitative Comparison

Figure 2.5 is an example of qualitative comparison among each compared meth-

ods. As shown in the third column of Figure 2.5, results of ViBe (Barnich & Van

Droogenbroeck, 2011) with simple motion compensation have many false fore-

grounds. Most error arises near the edges, showing that simply using a method

designed for stationary cameras in case of non-stationary cameras is not sufficient

even with motion compensation. The proposed method (second column) generally

outperforms or is comparable to the method proposed by Kim et al. (Kim et al.,

2013) (fourth column) and the method by Kwak et al. (Kwak et al., 2011) (last

column). As shown in the second row, in cases where the parts of the foreground

is similar to the background, the proposed method does show false backgrounds.

35

Method Cycle Mtn. Bike Football
Proposed with N = 4 0.53 / 0.80 / 0.64 0.72 / 0.26 / 0.39 0.74 / 0.35 / 0.47
Proposed with N = 1 0.26 / 0.90 / 0.40 0.57 / 0.63 / 0.60 0.54 / 0.63 / 0.58

ViBe with simple motion comp. 0.22 / 0.86 / 0.35 0.02 / 0.75 / 0.04 0.44 / 0.69 / 0.53
Kim et al. (2013) 0.71 / 0.88 / 0.79 0.13 / 0.69 / 0.22 0.70 / 0.84 / 0.76
Kwak et al. (2011) 0.78 / 0.88 / 0.82 0.54 / 0.12 / 0.20 0.89 / 0.83 / 0.86

Method UAV Woman
Proposed with N = 4 0.68 / 0.34 / 0.46 0.36 / 0.56 / 0.46
Proposed with N = 1 0.57 / 0.63 / 0.60 0.11 / 0.82 / 0.19

ViBe with simple motion comp. 0.06 / 0.58 / 0.12 0.06 / 0.79 / 0.12
Kim et al. (2013) 0.29 / 0.80 / 0.43 0.49 / 0.77 / 0.60
Kwak et al. (2011) 0.66 / 0.34 / 0.45 0.19 / 0.55 / 0.28

Table 2.2: Quantitative results for each method. Results are shown in the form
[Precision / Recall / F-measure].

Still, the performance of the proposed method is acceptable even in such cases.

Also, for this sequence, Kwak et al. ’s method (last column) fails to detect newly

appearing cars on the top, whereas the proposed method succeeds.

2.2.3 Quantitative Comparison

To evaluate the proposed method quantitatively, pixel-wise precision, recall, and

F-measure for five sequences were measured. The Football and Cycle sequences

are provided by Kwak et al. (Kwak et al., 2011) with the results from the author’s

exact implementation. The UAV and Woman sequence is from the work by Kim

et al. (Kim et al., 2013), and Mountain Bike (Mtn. Bike) is from the work by

Godec et al. (Godec et al., 2013). For the UAV sequence, the first 40 frames were

cut out since the movements of objects in those frames were too small and Kwak

et al.’s method (Kwak et al., 2011) was not well initialized with the results of the

proposed method. Also, Mtn. Bike was resized to the half of its original size.

The ground truth label was generated manually for every ten frames. As shown

in Table 2.2, the proposed method shows good results in terms of precision (best

results for UAV and Mtn. Bike, comparable results for others). In terms of

recall, the proposed method tends to give results not as good as Kim et al. ’s

36

method (Kim et al., 2013). However, when both precision and recall are considered

using the F-measure, the proposed method gives comparable results to the state-

of-the-art. Results of the proposed method is not as good as Kwak et al.’s (Kwak

et al., 2011) or Kim et al.’s (Kim et al., 2013) in case of Cycle, Football, and

Woman, but is still acceptable (having F-measure above 0.4). In case of the

other two, the proposed method outperforms all other methods. Furthermore,

the proposed method requires significantly less computation load and does not

perform any post-processing. Note that since the foreground model of Kwak et

al.’s method (Kwak et al., 2011) tend to behave similar to tracking methods, the

foreground model of their method suffer from drifting problem, which is why they

give bad results for Mtn. Bike and Woman.

2.2.4 Effects of Dual-Mode Kernel Model

As noted in Section 2.1.2, using one kernel model causes the background model to

be contaminated by the foreground. This causes problems when the scene contains

objects that are relatively large or moving slowly, since they will contaminate the

background significantly and affect the final detection result. An example of this

is shown in Figure 2.6. In Figure 2.6 (a), it can be seen that traces of moving

objects are left in the background model when using one kernel model, whereas in

(b) and (c), with dual-mode kernel model, the traces are learned in the candidate

background model (c) and the apparent background model (b) is preserved and

clear. As in (d) and (e), this degradation of the background model decreases the

performance of the detection algorithm.

37

(a) (b) (c)

(d) (e)

Figure 2.6: Example result with the kernel model and the dual-mode kernel model.
(a) mean of the background model for the kernel model, (b) mean of the apparent
background model of the dual-mode kernel model, (c) mean of the candidate
background model of the dual-mode kernel model, (d) the kernel model result,
and (e) the dual-mode kernel model result. The mean of the background model of
the kernel model (a) is contaminated by the foreground, whereas the mean of the
apparent background model of dual-mode kernel model (b) remains unharmed.
This leads to different results as in (d) and (e).

38

(a) (b)

(c) (d)

Figure 2.7: Example results when simple nearest neighbor warping is performed
((a) and (b)) and when the proposed motion compensation by mixing models is
performed ((c) and (d)). (a) and (c) are the means of the apparent background
model, and (b) and (d) are the detection results.

39

2.2.5 Effects of Motion Compensation

Since we use the same dual-mode kernel model for multiple pixels inside a grid,

the motion compensation method proposed in Section 2.1.3 plays a critical role

for the performance of the whole algorithm. If we simply apply a nearest neighbor

warping to move the pixels, even the kernel model is not able to cope with such

compensation errors. Figure 2.7 is an example showing the effectiveness of the

proposed compensation scheme. In the case of simple nearest neighbor warping,

as shown in (a), the background model becomes distorted due to quantization

effects. This results in bad detection performance as shown in (b). However,

with the proposed motion compensation scheme, the background motion is well

compensated as in (c). Also, as in (d), detection performance is unharmed.

2.2.6 Mobile Results

We have also implemented our method on a mobile device to further test its

real-time capability. The implementation was done on an Quad-core 1.4 GHz

Cortex-A9 android device with OpenCV for android2 used to implement KLT.

The implementation does not have any optimization techniques used and is basi-

cally the same code for PC tweaked so that it matches the android interface. Our

method runs approximately 20 frames per second with the capture resolution set

to 160 × 120. Figure 2.8 shows actual still shots of our algorithm running on a

mobile device. Although some small details are not detected due to low resolu-

tion, it is possible to see that our method performs well in real-time even on a

mobile device.

2http://opencv.org/platforms/android.html

40

Figure 2.8: Example detection results of our method on a mobile device (fore-
ground pixels highlighted in red). Our implementation runs approximately 20
frames per second, assuring real-time performance.

2.3 Remarks and Discussion

A novel computationally efficient scheme for detecting moving objects in a scene

with non-stationary cameras was proposed. The proposed scheme modeled the

background through DMKM to cope with motion compensation errors and to

prevent the background model from being contaminated by the foreground. A

single DMKM was applied to multiple pixels to reduce the required computation

load, without performance degradation. To reduce errors arising from motion

compensation, models were mixed together in the compensation process. Ex-

perimental results showed that our scheme requires significantly less amount of

computation, running within 5.8ms, and yet with robust detection performances.

Also, our scheme was implemented on a mobile device, confirming its real-time

capability.

41

Chapter 3

Tracking by Pixel-wise

Tri-Model Representation

In this chapter, we focus on resolving the problems of drifting, background clut-

ter, occlusions, and the limitation of bounding box representation in tracking

simultaneously through a pixel-wise approach. Our method starts from the idea

that if we can estimate which pixels of the observed image are of the target object

and which are not, and apply these estimation results to the model updates and

the estimation of the target object position, we can easily overcome these limita-

tions. For example, in case of occlusions and background clutters, we can easily

overcome those problems by disregarding the pixels in the scene which are from

the background or from other moving objects during the tracking process. More-

over, disregarding those pixels during the update process would prevent drifting

problems as well. To achieve this aim, we build three pixel-wise models which

are dedicated in learning different aspects (the target, the background, and other

moving objects) of the scene.

The significant difference of our method compared to previous tracking meth-

42

ods is that we not only focus on modeling the target in a robust way, but also

focus on learning the background and other moving objects which may inter-

fere with tracking. Thus, if occlusions or background clutters are present in the

scene, the other two models can cope with them. The learning of the models

are performed similar to traditional background subtraction methods (Stauffer

& Grimson, 1999; KaewTrakulPong & Bowden, 2003). In fact, our framework

combines background subtraction based detection with traditional tracking, ben-

efiting from them both. Also, when estimating the position of the target object,

our method simultaneously finds which model fit best for each pixel (i.e. pixel

labels). As a result, we not only obtain the position of the target object, but also

the pixel-wise estimation of the target object, which provides more information

about the target than bounding box representations. These pixel labels are also

used in the learning process of the three models to prevent drifting.

3.1 Tri-Model Framework

3.1.1 Overall Scheme

The proposed tracking scheme is formulated as a maximization problem with a

newly defined tri-model likelihood, representing the degree of matching between

the observation and the tri-model w.r.t. the hypothesized position of the target

object. A key idea of our method is the way the tri-model likelihood is defined

using the likelihoods of the three models; the target model (T), the background

model (B), and the foreground model (F). Each model is represented using single

Gaussian Models (SGM) and learns the probability of each pixel being a certain

color, as shown in the example in Figure 3.1. For each pixel in the model, SGM

learns the mean and the variance of the observed data (colors), and keeps track

of how much data was observed as the age of the model. The age term is used to

43

H𝑇
𝑇𝑎𝑎𝑎𝑎𝑎

(a) Input Image (b) T Mean

(c) B Mean (d) F Mean

Figure 3.1: Example of each model. (a) The input image. The relationship between
the target model and the input image denoted with HT . Target candidate region
denoted with orange bounding box. (b) The mean values for the target model,
(c) the background model, and (d) the foreground model.

44

derive the variable learning rate, which in turn is employed to use the estimated

sufficient statistics for the SGM (KaewTrakulPong & Bowden, 2003). This allows

appropriate adaptation for pixels which have only a few observed data (having

small age). The target model is kept in a user-defined fixed size (MT ×NT , where

MT and NT is the width and height of the target model) and the relationship

between the target model and the input image is kept with a homography matrix

HT (Example shown in Figure 3.1(a)). The other two models are in the same size

as the input image (MI × NI , where MI and NI is the width and height of the

input image). For further explanation, we will denote the mean, the variance, and

the age of the SGM with M, V, and A, respectively. We will also use subscripts

T , B, and F to denote the three models; the target, the background, and the

foreground.

With the three models, we obtain the tri-model w.r.t. HT and then find ĤT

which gives maximum tri-model likelihood. As the first step of calculating the

tri-model likelihood, we match the observation to the three models in a pixel-

wise manner. Then, the likelihood of the best fitting model for each pixel is used

to obtain the overall tri-model likelihood. For a hypothesized HT , using log-

likelihoods for ease in notation, if we denote the log-likelihood for the ith pixel

using the target model, the background model and the foreground model with

LT,i (HT), LB,i, and LF,i, respectively (details on the likelihoods in Section 3.2.1),

then the tri-model log-likelihood for the ith pixel LTri,i (HT) is defined so that

LTri,i (HT) = max {LT,i (HT) , LB,i, LF,i} . (3.1)

Then, since we are using SGM and assuming independence among pixels, the tri-

model log-likelihood for the entire observed image is simply the sum of LTri,i (HT)

45

(a) T model (b) B model (c) F model

(d) Tri-Model (e) Pixel-Wise Label (f) Log-Likelihood

Figure 3.2: Example of the pixel-wise likelihood values (a) - (d) using the models
and HT in Figure 3.1, and the selected model for each pixel (e). All results are in
size MI×NI . (f) is the tri-model log-likelihood w.r.t. the hypothesized position of
the target object. In (e), white denotes T , gray denotes F , and black denotes B.
In (f), red denotes high log-likelihood value and blue denotes low value. Note that
for the target model in (a), the target model is warped to the target candidate
region in Figure 3.1(a) with HT and then applied.

over all pixels. Thus, the tracking problem is to find the estimate ĤT so that

ĤT = argmax
HT

MI×NI∑
i

LTri,i (HT). (3.2)

When estimating ĤT , as a bi-product, we also obtain which model fits best for

each pixel. During the calculation of LTri,i

(
ĤT

)
, the estimated pixel-wise label

R̂i can be obtained as

R̂i = argmax
T,B,F

{
LT,i

(
ĤT

)
, LB,i, LF,i

}
. (3.3)

46

Figure 3.2 shows examples of pixel-wise likelihood maps when applying the

tri-model setting in Figure 3.1. With the hypothesized HT in Figure 3.1(a), pixel-

wise likelihood maps, which indicate the probabilities of the observed colors

of each pixel being generated from the models, are obtained as shown in Fig-

ures 3.2(a), 3.2(b), and 3.2(c). Then, we use the pixel-wise maximum among the

three likelihood maps as the likelihood map of the tri-model, as shown in Fig-

ure 3.2(d). This means that with the three models, our tri-model likelihood is

designed so that we try to best describe the given observation in a pixel-wise

manner. When obtaining the estimate for HT by maximizing the tri-model like-

lihood (Figure 3.2(f)), we can also easily obtain pixel-wise labels by observing

which of the three models fits best (Figure 3.2(e)). Details of the log-likelihoods

for each model and the maximization process are presented in Section 3.2. Also,

for clarification, from now on we will denote pixel indices with i when dealing

with the pixels in the original observation dimension and with j when dealing

with the pixels in the target model dimension.

3.1.2 Advantages

The proposed pixel-wise tri-modeling has distinct advantages. In our framework,

occlusions and background clutters are naturally considered. With the proposed

likelihood, we consider all three models in a pixel-wise manner when finding ĤT .

For each pixel, we choose the model which fits best, meaning that we simulta-

neously estimate pixel-wise labeling when likelihood maximization is performed.

In other words, if there are occlusions or background clutters, we are considering

them during the maximization process. For example, as shown in Figures 3.2(e)

and 3.4(e), the leaf occluding the target object is described with the background

model. As a result, the occluding leaves do not interfere with the estimation of

ĤT .

47

(a) Input Image (b) B Mean (c) F Mean

Figure 3.3: Example of each model and the observation warped into the target
domain. The target object is a hand held tiger doll, which the left side of the
tiger doll is partially occluded by a leaf of a plant in the background at the
shown frame.

The proposed method is robust against drifting problems as well. Learning of

the three models is performed considering estimated pixel labels. This prevents

the target model from learning the background or other moving objects, reducing

the chance of drifting. Again, as in the example shown in Figures 3.2(e) and 3.4(e),

only the pixels estimated as the target object (denoted with white) is learned in

the target model. In case of pixels with occlusions, the target models for those

pixels remain unharmed. Moreover, the pixel-wise labeling further provides more

accurate target object information to be used for higher-level inference tasks.

3.1.3 Practical Approximation

Unfortunately, an exact solution to the above problem formulation would require

too much computation since all pixels need to be considered for all hypothesized

HT . To reduce computation load, we take advantage of the fact that we are

mostly interested on the target object, and the assumption that the target object

moves little between consecutive frames. Instead of considering all pixels, we

approximate by considering the pixel-wise likelihoods within the target candidate

region, in the target model domain. As shown in the example in Figures 3.2(f),

48

(a) T model (b) B model (c) F model (d) Tri-Model

(e) Pixel-Wise Label (f) Exact (g) Approximate

Figure 3.4: Example of the pixel-wise likelihood values in the target domain (a) -
(d) using the models and HT in Figure 3.1, and the selected model for each pixel
(e). All results are in size MT ×NT . In (e), white denotes T , gray denotes F , and
black denotes B. In (f) and (g), red denotes high log-likelihood value and blue
denotes low value. (f) is the exact tri-model log-likelihood in Figure 3.2(f) near
the target object, and (g) is the approximated log-likelihood in the same region.
Note that (f) and (g) share the same local maxima (marked with arrows).

49

3.4(f), and 3.4(g), this approximation shares the same local maxima around the

target object. Thus, as in Figures 3.3 and 3.4, we warp the current input, the

background model, and the foreground model according to H−1T and apply them

to obtain the likelihoods in the warped domain (MT ×NT). If we denote the pixel

indices of the target model with j, where j = 1, 2, ...,MT × NT , the pixel-wise

log-likelihood for the three models in the target domain as L̃T,j (HT), L̃B,j (HT),

and L̃F,j (HT) , then the pixel-wise log-likelihood of the tri-model in the target

domain L̃Tri,j (HT) is defined as

L̃Tri,j (HT) = max
{
L̃T,j (HT) , L̃B,j (HT) , L̃F,j (HT)

}
. (3.4)

With (3.4), we redefine ĤT in (3.2) as

ĤT = argmax
HT

MT×NT∑
j

L̃Tri,j (HT). (3.5)

3.2 Tracking with the Tri-Model

3.2.1 Likelihood of the Tri-Model

For a hypothesized HT , as in (3.4), we define the likelihood for each pixel as

the maximum value among the pixel-wise likelihoods given by each model. This

can be understood as if we are trying to reconstruct the observed image by

selecting the best model for each pixel, and then using the negative of squared

reconstruction error as the log-likelihood. As noted in Section 3.1.3, we consider

this likelihood in the target domain for computational reasons. In other words,

we warp the observation, the background model, and the foreground model with

H−1T , and then consider the likelihood. Then, if we let I denote the observed

data, and M̌B, V̌B, M̌F , V̌F , and Ǐ denote MB, VB, MF , VF , and I warped

50

with H−1T , respectively, the log-likelihoods of each model for pixel j in the target

domain, L̃T,j (HT), L̃B,j (HT), and L̃F,j (HT) are defined as,

L̃T,j (HT) = LN
(
MT,j ,VT,j , Ǐj

)
(3.6)

L̃B,j (HT) = LN
(
M̌B,j , V̌B,j , Ǐj ,

)
(3.7)

L̃F,j (HT) = LN
(
M̌F,j , V̌F,j , Ǐj ,

)
, (3.8)

where LN (µ,σ2,o) is the log-likelihood of a normal distribution with mean µ,

variance σ2, and observation o. Note that these log-likelihoods are log-likelihoods

of SGM using the corresponding models with correct warping.

3.2.2 Likelihood Maximization

To find ĤT which maximizes the log-likelihood in (3.5), we perform an iterative

process based on mean-shift (Comaniciu et al., 2003) and random sampling. The

iterative process begins with random sampling of alterations on HT , then uses

the samples to estimate the mean-shift vector. The mean-shift vector is in fact an

estimate of the gradient (Comaniciu et al., 2003), thus iteratively updating HT

with the mean-shift vector gives ĤT . For further explanation, we will denote the

alterations on HT with vector h[s], where s = 1, 2, ..., S and S is the number of

random samples used. Each dimension of vector h[s] corresponds to a tracked di-

mension (e.g. translation in vertical direction, translation in horizontal direction,

change in scale, etc.). For example, in case of translation only tracking, if we use

the notation g
(
HT ,h

[s]
)

for the result of applying h[s] =
[
dx[s] dy[s]

]ᵀ
to HT ,

where dx[s] and dy[s] are scalar values denoting alterations in x and y directions

51

for sample s,

g
(
HT ,h

[s]
)

=


1 0 dx[s]

0 1 dy[s]

0 0 1

HT . (3.9)

To obtain the mean-shift vector, we first generate random samples using a

Gaussian distribution for each tracked dimension. In our implementation, the

tracked dimension is limited to translational movements only, but sampling can

be done for any affine movement as long as a sufficient number of samples is

provided. When considering translational movements only, h[s] =
[
dx[s] dy[s]

]ᵀ
is sampled as

h[s] ∼ N

0,

 (0.1MT)2

(0.1NT)2

 , (3.10)

where N (µ,σ2) denotes a Gaussian distribution with mean µ and variance σ2.

In the sampling process, we balance the sampling by first sampling S/2 samples

and assigning h[s] = −h[S−s] to the remaining half to ensure easy calculation of

the mean-shift vector. If we denote the kth element of h as hk, then the equation

for obtaining the mean-shift vector ∆h with the samples is

∆hk =

∑
s h

[s]
k exp

{
λ

MTNT

∑
j L̃Tri,j

(
g
(
HT ,h

[s]
))}

∑
s exp

{
λ

MTNT

∑
j L̃Tri,j

(
g
(
HT ,h[s]

))} , (3.11)

where λ is a parameter controlling the convergence speed.

If we apply (3.11) directly, we need to apply g
(
HT ,h

[s]
)

to all three models

for every sample, which requires large amount of computation load. Thus, to

ensure real-time performance, we approximate this process as in Section 3.1.3.

Instead of applying h[s] directly to HT and calculating L̃Tri,j
(
g
(
HT ,h

[s]
))

with

52

(3.6), (3.7), and (3.8), we first apply HT to the three models and apply h[s]

only to the target model. In other words, instead of warping the background

model, the foreground model, and the input image according to the inverse of

g
(
HT ,h

[s]
)

for each sample to calculate (3.6), (3.7), and (3.8), we warp them

only once according to H−1T , and warp the target model according to h[s]s. If we

denote the mean and the variance of the target model warped with h[s] as M
[s]
T

and V
[s]
T , and the approximation of L̃Tri,j

(
g
(
HT ,h

[s]
))

as L̂Tri,j
(
HT ,h

[s]
)
,

L̂Tri,j

(
HT ,h

[s]
)

= max
{
L̂T,j

(
HT ,h

[s]
)
, L̃B,j (HT) , L̃F,j (HT)

}
, (3.12)

where

L̂T,j

(
HT ,h

[s]
)

= LN
(
M

[s]
T,j ,V

[s]
T,j , Ǐj

)
. (3.13)

Note that in this approximation using (3.12) and (3.13), only the target model

needs to be warped for each sample, which reduces the amount of warping re-

quired to one third of the exact method.

This approximation means that we are evaluating each h[s] by applying the

change to the target model only, and not changing the target candidate region

(defined by HT). In other words, we keep the target candidate region from previ-

ous iteration (or frame) and evaluate how much each sampled h[s] would make the

current observation plausible. To summarize, instead of ∆h, we use ∆ĥ, which

∆ĥk =

∑
s h

[s]
k exp

{
λ

MTNT

∑
j L̂Tri,j

(
HT ,h

[s]
)}

∑
s exp

{
λ

MTNT

∑
j L̂Tri,j

(
HT ,h[s]

)} , (3.14)

where ∆ĥk is the kth element of ∆ĥ. Finally, with ∆ĥ, we update HT at the end

53

of every iteration.

HT ← g
(
HT ,∆ĥ

)
(3.15)

Usually, this iteration should be done until convergence but we found out ex-

perimentally that 10 iterations for each frame are enough to get an acceptable

result.

3.2.3 Estimating Pixel-Wise Labels

With the estimated position of the target object ĤT , we estimate the pixel-

wise labels by finding the best matching model of the three. However, unlike

Sections 3.2.1 and 3.2.2, we obtain results with respect to the pixels in the same

dimension as the observation, denoted with indices i. In case of the background

and the foreground model, we can easily obtain the log-likelihoods according to

(3.7) and (3.8) without warping.

LB,i = LN (MB,i,VB,i, Ii) (3.16)

LF,i = LN (MF,i,VF,i, Ii) . (3.17)

For the target model, we warp the SGMs with ĤT to match the observation. For

pixels which are out of bounds, we simply consider the log-likelihood as minus

infinite, so that the other two models take care of those pixels. If we denote the

mean and the variance of the target model warped with ĤT as M̌T and V̌T (note

that warping is performed with ĤT), then, for i where M̌T,i and V̌T,i is within

bounds,

LT,i

(
ĤT

)
= LN

(
M̌T,i, V̌T,i, Ii

)
. (3.18)

54

With LT,i

(
ĤT

)
, LB,i, and LF,i, we choose the model which gives the largest

log-likelihood among the three for each pixel. The estimated pixel-wise labeling

result R̂i is obtained as in (3.3).

3.3 Learning the Tri-Model

Another key idea of our method is the learning strategy for the three models. In

order for the proposed method to work robustly under occlusions and background

clutters, it is important that the three models learn the desired different aspects of

the scene. The target model learns the object that is tracked, similar to the models

of conventional tracking methods. The background model learns the whole scene

with respect to the global movement. The foreground model learns the moving

objects in the scene except for the object learned by the target model. To achieve

this aim, we use the pixel-wise labels, the estimated position of the target object,

and the current observation, with different learning strategies applied to each of

the three models.

3.3.1 Target Model

With the estimation results for frame t, i.e. the estimates Ĥ
(t)
T and R̂(t), we update

the target model using the observed image. To make the target model only learn

the target object, we update the model only when we are sure that the observation

is the target object. In other words, for the jth pixel of the target model, we only

update mean MT,j , variance VT,j , and age AT,j when the labeling result in the

target domain (obtained by warping R̂(t) with Ĥ−1T) denotes the target model.

55

For j which the condition is met,

M
(t+1)
T,j =

(
1− α(t)

T,j

)
M

(t)
T,j + α

(t)
T,j Ǐ

(t)
j (3.19)

V
(t+1)
T,j =

(
1− α(t)

T,j

)
V

(t)
T,j + α

(t)
T,j

(
Ǐ
(t)
j −M

(t+1)
T,j

)2
(3.20)

A
(t+1)
T,j = A

(t)
T,j + 1, (3.21)

where α
(t)
T,j = 1

A
(t)
T,j+1

is the varying learning rate. For pixels which do not meet

the update condition, they are preserved and not changed. To keep the model

from becoming overly too stiff, we cap the age at γT . This is to ensure that when

learning is performed, we have learning rate at least over 1
γT+1 . We also set a

minimum value σT for the variance to keep the model from being too sensitive

to noise.

3.3.2 Background Model

The background model learns the whole scene similar to background models

used in conventional background subtraction methods (Stauffer & Grimson, 1999;

KaewTrakulPong & Bowden, 2003). Thus, the dimension of the background

model is the same as the input observation. To correctly apply the model to

a moving scene, we continuously transform the learned model according to the

estimated global motion of the scene. We estimate the global motion from time

t to time t + 1 simply by observing the optical flows of the whole scene and ob-

taining the global affine movement. We divide the input image at time t+ 1, i.e.

I(t+1), into 32 × 24 grids and perform optical flow (Tomasi & Kanade, 1991) on

each corners of the grid with I(t). With the point tracking results, we perform

RANdom SAmpling and Consensus (RANSAC) (Fischler & Bolles, 1981) to ob-

tain the homography matrix Ĥt+1:t which matches pixels in image I(t+1) to pixels

from time I(t). The inverse of this matrix is Ĥt:t+1, which is the estimated global

56

motion.

With the estimated global motion Ĥt:t+1, if we let fĤt:t+1
(i) denote the result

of the coordinate transform Ĥt:t+1 for pixel i, then the SGM for the ith pixel of

the background model is updated as

M
(t+1)
B,fĤt:t+1

(i) =
(

1− α(t)
B,i

)
M

(t)
B,i + α

(t)
B,iI

(t)
i (3.22)

V
(t+1)
B,fĤt:t+1

(i) =
(

1− α(t)
B,i

)
V

(t)
B,i + α

(t)
B,i

(
I
(t)
i −M

(t+1)
B,fĤt:t+1

(i)

)2

(3.23)

A
(t+1)
B,fĤt:t+1

(i) = A
(t)
B,i + 1, (3.24)

where α
(t)
B,i = 1

A
(t)
B,i+1

is the varying learning rate. Note that since we do not have

I(t+1) at time t, the update is performed immediately after the new observation at

time t+ 1 is given, and before other tracking process is carried out. The update

equations are similar to the update equations for the target model (equations

(3.19), (3.20)), and (3.21)), but for the background model, we learn all pixels

without considering the pixel label R(t). Also, we use I(t) instead of Ǐ(t). We cap

the age for a pixel at γB as we do for the target model. We also keep a lower

bound σB for the variance. However, we set σB to be larger than that for the

target model σT , so that the target model would provide a better description of

the observation when learning with the same data. For example, when a moving

target object stops, the background model would also learn the target object, but

would not provide as accurate explanation as the target model. Figure 3.1(c) is

an example of the mean values of the background model.

3.3.3 Foreground Model

The foreground is designed to have the same dimension as the observed image

and learns observation from pixels that are estimated to be from moving objects

57

(excluding the target object). When looking for pixels that are from moving

objects, we look for pixels which do not fit well to the background model. In

other words, we design the foreground model to learn the background subtraction

results, i.e. pixels i which
(
M

(t)
B,i − I

(t)
i

)2
> V

(t)
B,i. However, since we do not want

the target object to be learned in this model, we use the pixel-wise label R
(t)
i

to exclude observations from the target object from being learned. Since the

foreground is learning the outliers of the background model, motion compensation

is performed with the same Ĥt:t+1 as the background model. Thus, the update is

performed as in (3.22), (3.23), and (3.24), but with subscripts Bs replaced with

F s, and only for the pixel i satisfying the condition of

[
R

(t)
i 6= T

]
∧
[(

M
(t)
B,i − I

(t)
i

)2
> V

(t)
B,i

]
. (3.25)

As in the case of other models, A
(t)
F,i is capped at γF . However, for the foreground

model, we keep the age cap γF of the foreground model to be a relatively small

value (5 in our experiments). The reason we keep γF low to have a fast learn-

ing rate is because of the temporary nature of the foreground model. Since we

are compensating the foreground model with the global movement and not the

movements of each individual object, positions of moving objects are temporary

and change consistently. Thus, the foreground model needs a fast learning rate

to deal with these changes. We also keep the lower bound for variance σF to be

higher than the other two models, i.e. σF > σB and σF > σT . If either of the two

models can explain the observed scene better, due to the fast adaptation prop-

erty of the foreground model, we trust the two models more than the foreground

model. Figure 3.1(d) is an example of objects being learned which are not learned

in the background model in Figure 3.1(c).

58

FRAG OAB BEYOND MIL HOUGH TLD DM Proposed
Caviar 0.728 0.765 0.057 0.533 0.871 0 303 0.939 0.935
FaceOcc 0.965 0.920 0.883 0.785 0.657 0.902 0.952 0.956
Woman 0.180 0.546 0.128 0.186 0.364 0.582 0.802 0.802
Sylvester 0.723 0.581 0.453 0.738 0.165 0.821 0.894 0.894
Tiger1 0.552 0.431 0.175 0.397 0.207 0.412 0.858 0.860
Motocross1 0.269 0.221 0.042 0.165 0.138 0.124 0.400 0.879
CupOcc 0.216 0.193 0.069 0.298 0.265 0.487 0.932 0.913
Cheetah 0.141 0.792 0.054 0.856 0.081 0.386 0.833 0.897
GreenMan 0.410 0.461 0.056 0.426 0.313 0.306 0.417 0.898

Table 3.1: Area under precision plots in Figure 3.5. Best result denoted with bold,
sequences with large performance improvement marked with red.

3.4 Experimental Results

3.4.1 Experimental Settings

We implemented our method with C++ using the openCV1 library. All parame-

ters were fixed during the experiments. MT = NT = 32, γT = γB = 60, γF = 5,

σT = 20, σB = 25, and σF = 30. These parameters are not optimized parameters

but we found that they work well for most cases. Also to reduce effects from

noise, we applied simple spatial median filtering with window size five to the

input image. We compared our method with seven representative trackers with

respect to the bounding box based results. We will denote these methods as FRAG

(Adam et al., 2006), OAB (Grabner et al., 2006), BEYOND (Stalder et al., 2009),

MIL (Babenko et al., 2011), HOUGH (Godec et al., 2013), TLD (Kalal et al.,

2010), and DM (Yi et al., 2012). Also, to evaluate the performance of the pixel-

wise results of our method, we compared it with HOUGH (Godec et al., 2013)

which is a state-of-the-art method also able to give pixel-wise tracking results. We

have tested the methods using nine image sequences. Caviar is from CAVIAR2

data set, FaceOcc and Woman are from (Adam et al., 2006), Sylvester and

1http://opencv.com/downloads.html
2EC Funded CAVIAR project/IST 2001 37540, found at URL:

http://homepages.inf.ed.ac.uk/rbf/CAVIAR/

59

Tiger1 are from (Babenko et al., 2011), Motocross1 is from (Godec et al.,

2013), CupOcc and Cheetah are from (Yi et al., 2012), and GreenMan is

from a part of the festival dataset in (Krausz & Bauckhage, 2011). Sequences

contain various situations including occlusions from background objects, occlu-

sions from other moving objects, and background clutters. For the experiments,

we used the implementation provided by the authors of each paper. Some critical

frames are shown in Figures 3.6 and 3.7.

3.4.2 Tracking Accuracy: Bounding Box

To evaluate the performance of the proposed method, we compared each tracker

using precision plots used in (Babenko et al., 2011). The plots show ratio of

correctly tracked frames w.r.t. thresholds. However, to consider the different sizes

of the target objects, we used relative thresholds. This means that if we let wGT

and hGT denote the ground truth object width and height, and let εx and εy

denote the horizontal and vertical center point errors, the precision is the ratio

of frames with results satisfying (εx < wGT)∧ (εy < hGT). This relative threshold

measure is more strict in case of evaluating sequences with target objects having

small width or height (Caviar, Tiger1, Sylvester, CupOcc, and Cheetah).

Precision plots for all sequences are shown in Figure 3.5, and the summary of

these plots using the area under the precision plots are presented in Table 3.1.

As shown in Table 3.1, our method outperforms or is comparable to the

compared methods. Note that the performances of the compared methods are

not as good as they were reported in other papers (Babenko et al., 2011; Yi

et al., 2012; Godec et al., 2013) due to the strictness of the used measure. For

example, in the Tiger1 sequence, the width of the ground truth is only about 40

pixels at start, and is even smaller than that in some occasions. Also for HOUGH,

due to the pure random nature of their classifier, their performance differs from

60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold

P
r
e

c
is

io
n

(a) Caviar

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold

P
r
e

c
is

io
n

(b) FaceOcc

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold

P
r
e

c
is

io
n

(c) Woman

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold

P
r
e

c
is

io
n

(d) Sylvester

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold

P
r
e

c
is

io
n

(e) Tiger1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold

P
r
e

c
is

io
n

(f) Motocross1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold

P
r
e

c
is

io
n

(g) CupOcc

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold

P
r
e

c
is

io
n

(h) Cheetah

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold

P
r
e

c
is

io
n

(i) GreenMan

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

FRAG OAB BEYOND HOUGH MIL TLD DM Proposed

Figure 3.5: Precision plots for all sequences. See text for details. Best viewed in
color.

61

(a) Caviar #75 (b) Sylvester #1000 (c) CupOcc #110 (d) CupOcc #150

(e) FaceOcc #540 (f) Woman #120 (g) Woman #250 (h) Tiger1 #195

(i) GreenMan #45 (j) Motocross1 #120 (k) Cheetah #20

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

FRAG OAB BEYOND HOUGH MIL TLD DM Proposed

Figure 3.6: Bounding box results for critical frames. Best viewed in color.

Figure 3.7: Pixel-wise tracking results. Input image (first column), ground truth
(second column), results from HOUGH (third column), and the results of our
method (last column). Each row is from Caviar frame 61 (first row), and Woman
frame 161 (second row).

62

HOUGH
(Godec et al., 2013)

Proposed

Caviar 0.70 0.71
FaceOcc 0.73 0.75
Woman 0.32 0.70
Sylvester 0.07 0.52
Tiger1 0.10 0.53
Motocross1 0.44 0.41
CupOcc 0.13 0.56
Cheetah 0.004 0.62
GreenMan 0.22 0.44

Table 3.2: F-measure for pixel-wise tracking results. Best result denoted with
bold, sequences with large performance improvement marked with red.

the results reported by Godec et al. (Godec et al., 2013). Our method shows

promising results even with the strict measure. Yi et al.’s method (Yi et al.,

2012) shows good results as well but in case of Motocross1 and GreenMan,

where the movement of the entire scene is complex or there are many moving

objects, our method outperforms all others by significant amounts.

3.4.3 Tracking Accuracy: Pixel-Wise

To evaluate the performance of the pixel-wise results quantitatively, we obtained

the F-measure for each sequence using manually annotated ground truth. The

ground truth was made for every ten frames in the sequence. Table 3.2 is the

comparison result. Except for Motocross1, which is a sequence from the work

which HOUGH was introduced (Godec et al., 2013), our method shows better

results. Especially for sequences Woman, CupOcc, and Tiger1, which have

numerous occlusions, our method outperforms HOUGH (Godec et al., 2013) by

large amounts. This is also true for Cheetah as well, where the target object

is not so distinctive from the background. Some qualitative comparison of the

pixel-wise results are shown in Figure 3.7.

63

3.5 Remarks and Discussion

A new pixel-wise visual tracking method using the novel tri-model representa-

tion has been proposed. The proposed tri-model was composed of three models,

which each learned the different aspects of the scene. Using the tri-model, the

proposed method estimated both the holistic position of the target object and the

pixel-wise labels simultaneously. The contributions of the proposed method are

summarized as follows. First, the proposed method not only focused on building

a robust model, but also focused on learning the background and other moving

objects in the scene which may interfere with tracking. Thus, in case background

clutters or occlusions exist in complex scenes, the background and foreground

models stopped them from hampering the tracking performances. Second, the

proposed method was able to give pixel-wise labels outperforming the state-of-

the-art. This pixel-wise labeling was also used in the learning process to prevent

drifting. Third and last, experimental validation regarding the bounding box

representation shows that the proposed method outperforms the state-of-the-art

with promising results.

64

Chapter 4

Tracking by Feature-point-wise

Saliency Model

In this chapter, to track objects robustly with inaccurate initializations and se-

vere occlusions, we propose a method employing motion saliency and descriptor

saliency of local features to learn and track the target object based on GHT

(a voting based method which combines partial solutions effectively to obtain a

global solution) (Ballard, 1981). In order to achieve good tracking results even

with inaccurate initializations, we define the two saliencies related to motions and

descriptors (explained in detail in Section 4.1). With the two proposed saliencies,

our model learns to put more weight on good partial results when obtaining the

global solution with GHT voting. In other words, rather than just trying to find

what was given at initialization, the two saliencies work together to learn the

salient characteristics of the target object, which also results in change of the

influences of initial features. Method in (Mahadevan & Vasconcelos, 2009) also

uses the concept of saliency, but their definition of saliency is a criterion for se-

lection of features (features such as colors or or edges, not to be confused with

65

feature points) similar to (Avidan, 2007). Also, the bottom-up saliency they use

for initialization is a center-surround saliency (unlike ours which considers target

and non-target rather than center and surround), and does not always guarantee

that it highlights the target object.

With the two saliencies, we use GHT in order to properly combine the esti-

mates from multiple local feature points. GHT is a powerful method for combining

partial estimates into a whole used in many tracking methods (Godec et al., 2013;

Grabner et al., 2010; Asadi et al., 2007). Unlike them, in our case, the mapping

table of GHT containing partial solutions (votes) acts as a model learning de-

scriptor saliencies. Since we use GHT voting to combine multiple estimates from

local features, our method gives robust results even if some features of the target

object become occluded. Furthermore, we learn the model using all local features

in the scene and keep local features which move along with the target object, thus

giving robust results even when all of the target object is occluded (and in case

of severe occlusions). This is similar to the method by Grabner et al. (Grabner

et al., 2010), which creates supporters with nearby features, and use them to aid

tracking in case of severe occlusions. However, the performance of their method

relies much on the primary tracker being used, which is not always accurate and

suffers from initialization problems, whereas our method successfully deals with

both problems simultaneously. Dinh et al. (Dinh et al., 2011) also use supporters

to aid tracking, but their method still treats initialization to be accurate.

4.1 Proposed Method

The overall scheme of the proposed method is depicted in Figure 4.1. Our method

is based on GHT. For each frame, we extract local features. Then, using the

learned feature database (DB), we match each feature to obtain partial solutions

66

for the center of the target object. We then combine the partial results with

GHT to obtain a global solution. When collecting the partial results using GHT,

in order to deal with inaccurate initializations, each solution is weighted according

to the two proposed saliencies (the descriptor saliency and the motion saliency).

The feature DB is learned on-the-fly during the tracking process. The feature

DB keeps track of distinctive features w.r.t. their descriptors (descriptor saliency),

and where the center of the target object would be for each item. The proposed

motion saliency is obtained using the learned descriptor saliency of features and

the optical flow of the local feature. The motion saliency is designed so that

the features showing distinctive motion characteristics of the target object have

higher values. With the two saliencies, the salient characteristics of the target

object are learned in the model (feature DB). Details of the proposed method are

explained in the following subsections.

4.1.1 Tracking based on GHT

The proposed tracking scheme using GHT starts by building a likelihood map

for the center position of the target object and obtains the result by finding the

maximum on this map. The likelihood map is created through GHT by combining

the center estimates (votes) from each local feature point. When combining the

estimates, we weight them w.r.t. their saliencies so that salient features are more

accounted for. Figure 4.2 is an illustration of this process. Mathematically, if

we denote the estimated center for the jth feature in the current observation as

(xc,j , yc,j) and its weight as wj , the likelihood map A is defined as

A (x, y) =
∑
j

wj exp

{
−(xc,j − x)2 + (yc,j − y)2

2σ2A

}
, (4.1)

67

Input Image

Tracking Result

Descriptor Saliency
(Sec. 4.1.2)

U
pd

at
e

(S

ec
. 4

.1
.2

)

GHT with Saliencies
(Sec. 4.1.1)

Local Feature Extraction

Motion Saliency
(Sec. 4.1.3)

KLT Voting

Feature Database

 F1
Desc. Vote
Sal. Age

 F2
Desc. Vote
Sal. Age

Figure 4.1: Overall scheme of the proposed method.

𝜃𝑗
𝑑𝜃𝑖𝑗∗ 𝑠𝑗𝑑𝑟𝑖𝑗∗

(𝑥𝑗 ,𝑦𝑗)

(𝑥𝑐,𝑗 ,𝑦𝑐,𝑗)

𝑠𝑗

f𝑗

Figure 4.2: Illustration of GHT voting with SURF features

68

where σA is the standard deviation of the Gaussian kernel used for combining

estimates, which is a parameter controlling the smoothness of the likelihood map.

This combining process is referred to as voting in GHT, each partial estimates

as votes, wj as voting weights, and the resultant likelihood map as the vote

map. Since the target object position changes little between frames, we apply

temporal low-pass filtering (temporal weighted averaging) to the vote map to

take advantage of this fact. Then, with this vote map, we can find the target

object position x̂ as

x̂ = (x̂, ŷ) = arg max
x,y

A (x, y) . (4.2)

Local Estimates. The estimates from each local feature point are obtained

by matching with the feature DB. The feature DB consists of multiple items, of

which each item contains descriptor information (d), distance to the estimated

object center normalized with the square-root of the size of the feature (dr), angle

difference between the major orientation and the vector to the estimated center

(dθ), saliency of the item (ζ), and the age (α) of the item. If we denote ith item

of the feature DB F as Fi then,

Fi = (di, dri, dθi, ζi, αi) . (4.3)

For the jth local feature of the current scene, we denote it as fj = (xj ,dj , sj , θj),

where xj = (xj , yj), dj , sj , and θj is the pixel position, the descriptor, the size

(area), and the major orientation of the feature, respectively. Then, we find the

best matching item using the learned feature DB F(t) at time t (learning strategy

detailed in Section 4.1.2) in terms of dj and d
(t)
i , and use this match for voting.

In other words, if there exists i∗j such that

i∗j = arg min
i

{∥∥∥d(t)
i − dj

∥∥∥ | ∥∥∥d(t)
i − dj

∥∥∥ < εd

}
, (4.4)

69

where εd is a threshold, we consider feature j to be matched with F
(t)
i∗j

and vote

to (xc,j , yc,j) with weight wj as in Figure 4.2, where

xc,j =
√
sjdri∗j cos

(
dθi∗j + θj

)
+ xj (4.5)

yc,j =
√
sjdri∗j sin

(
dθi∗j + θj

)
+ yj . (4.6)

Any type of affine invariant feature can be used such as SIFT (Lowe, 2004) or

SURF (Bay et al., 2008) but we used SURF for ease in implementation. Note

that in (4.5) and (4.6), we take advantage of the affine invariant properties of

the local features and compensate the voting vector to fit the current observation

with
√
sj and θj . This lets the proposed method to be able to vote regardless of

the scale and rotation change of the target object.

Voting Weights. The weight wj is designed to account both the motion

saliency ηj and the descriptor saliency ζ
(t)
i∗j

. We use the multiplication of the two

saliencies to emphasize features which have both saliency values high. Therefore

for the jth detected local feature, the weight is defined as

wj = ηjζ
(t)
i∗j
. (4.7)

Details about these saliencies and their effects are presented in Section 4.1.2 and

Section 4.1.3.

4.1.2 Descriptor Saliency and Feature DB Update

To learn the salient features of the target object w.r.t. the shape of the target

object, we define the descriptor saliency as how much the descriptor coincided

with past consensus. For each item in F(t), the descriptor saliency ζ(t) is learned

to hold how good the partial (voting) results were when using the item, i.e. the

70

(a) (b) (c)

Figure 4.3: Illustration of the descriptor saliency in action. Detected local features
are depicted with circles, having their sizes as their descriptor saliency values
(larger means high). Red means having higher vote map value A. (a) Initial
voting for the target object position, (b) voting after t frames, and (c) voting
in case of occlusion. Note that these are not actual experimental results and are
only illustrations.

value of the vote map A. Since our framework is based on GHT, we can simply

achieve this by looking at each votes and DB matches (back projection). For

example, the feature items matched with the features pointing to the center of

the cup in Figure 4.2 would be updated with high saliency values, whereas items

matched with the feature pointing at the wrong direction (e.g . feature point on

the hand) would be updated with low saliency value.

Initially, F(0) is an empty set without any elements. As the target object

information is provided with a bounding box in the first frame, feature points

inside the bounding box are added to F(1) with descriptor saliency ζ = 1, and

feature points outside the bounding box are added to F(1) with descriptor saliency

ζ = 0 (Figure 4.3(a)). Then, we continuously update the descriptor saliencies

using the back projection result of each vote on A(t). This means that at time t,

if item F
(t)
i has been matched with Mi features (i.e. there exists Mi number of

j such that
∥∥∥d(t)

i − dj

∥∥∥ < εd), the descriptor saliency of this item ζ
(t)
i is updated

71

with the average of the vote map value for all matches.

ζ
(t+1)
i = βiζ

(t)
i + (1− βi)

1

Mi

Mi∑
m=1

A (xc,m, yc,m)

max A (·)
(4.8)

where m is the index of the matched local feature in the current frame, βi is

the variable learning rate βi = α
(t)
i /(α

(t)
i + 1). Similarly, we update the voting

information of the item with the average normalized distance and angle from each

feature to the obtained tracking result, and also increment the age of the item.

At time t, with the tracking result x̂(t) and position of the matched features xm

dr
(t+1)
i = βidr

(t)
i + (1− βi)

1

Mi

Mi∑
m=1

∥∥x̂(t) − xm
∥∥
2√

sm
(4.9)

dθ
(t+1)
i = βidθ

(t)
i + (1− βi)

1

Mi

Mi∑
m=1

[
∠
(
x̂(t) − xm

)
− θm

]
(4.10)

α
(t+1)
i = α

(t)
i + 1, (4.11)

where ‖.‖2 and ∠ (.) is the Euclidean norm and the angle of a vector, respectively.

If an element in F(t) has no match, i.e. Mi = 0, we do not update that element.

Also, the elements of F(t) which were added in the first frame are treated as an

exception and we never update dr
(t)
i and dθ

(t)
i for them to prevent the tracker

from drifting. Still, since we update ζ
(t)
i , the effects of initial elements can change.

Figure 4.3(a) and Figure 4.3(b) is an example of some local features (features on

leaves) having high descriptor saliency at initialization, but becoming low after

learning them correctly as tracking is performed.

Practical Implementation. Ideally, it would be best if we add all new

unmatched features into the database, but this would not be practical due to

computational and memory requirements. Thus, to keep F(t) in a reasonable size

without harming the overall performance, we apply an update strategy inspired

72

by the work of Avidan (Avidan, 2007). Except for the elements of F(t) which were

added in the first frame, we keep the K best elements in terms of ζ
(t)
i and get

rid of others from F(t). After removing bad elements from F(t), we add L most

motion-salient unmatched feature points into the DB. The L best considering

the motion saliency ηj are added to F(t+1) with its motions saliency as initial

descriptor saliency, i.e. the following 5-tuple

(dj , drj , dθj , ηj , 1) (4.12)

is added, where

drj =

∥∥x̂(t) − xj
∥∥
2√

sj
, (4.13)

dθj = ∠
(
x̂(t) − xj

)
− θj . (4.14)

With this update strategy, if we denote the number of elements initially added

to F(1) as Kinit, the size of F(t) will always be smaller than Kinit +K + L. Note

that during the feature DB update, all current local features are considered.

This means that if there are background local features which help in estimating

the target object position, they will also be learned. These un-occluded salient

features can act as supporters similar to (Grabner et al., 2010), aiding in case of

severe occlusions as in Figure 4.3(c).

4.1.3 Motion Saliency

To capture the characteristics of the target object in terms of motion, we define

the motion saliency of a feature point with its descriptor saliency and optical flow

(Figure 4.4(b)), and emphasize motions which are distinctive (Figure 4.4(d)). By

distinctive, we expect the motion of the target object to stand-out from back-

73

(a) (b) (c) (d) (e)

Figure 4.4: Example of motion saliency obtained for the woman sequence. (a)
Detected local feature points, (b) descriptor saliency of matched local features and
their optical flows (denoted yellow if high saliency and red if low saliency, optical
flows displayed 3 times their original magnitude), (c) motion vote map B, (d)
motion saliency for each detected local feature, and (e) final voting weight from
both saliencies. Arrows from (b) to (c) and (c) to (d) illustrate where motions
are mapped. Best viewed in color.

ground motion (including motion from other non-target objects). For obtaining

motions for each feature points, we use backward optical flow from time t to time

t − 1. The backward optical flow b = (bx, by), where bx and by are backward

optical flows in horizontal and vertical direction, can be easily obtained though

KLT (Tomasi & Kanade, 1991).

The way we measure the distinctiveness is by constructing a likelihood map

of background motions through consensus (Figure 4.4(c)). This likelihood map is

constructed using voting strategy similar to the GHT voting used for tracking.

When constructing the likelihood map, we weight each motion of the detected

local feature points so that the resultant likelihood map would have higher values

if the motion is likely to be from background. Therefore, with the likelihood map

we are able to know which motions are similar to background motions and which

are distinct. We will refer to this likelihood map as the motion vote map. We

obtain the motion saliency of feature point by simply using the inverse of the

motion vote map value. By doing so, the motion saliency value will be high when

the vote map value is low, i.e. not similar to background motions. If we denote

74

the motion vote map as B, then for a feature point fj in the current observation

with backward optical flow bj , the motion saliency for this feature ηj can be

defined as

ηj = 1− B (bj)

max B (.)
, (4.15)

where the motion vote map B is constructed by all features in the current frame

having a matched item i∗j from (4.4) as

B (b) =
∑
∀j|∃i∗j

(
1− ζ(t)i∗j

)
exp

{
−‖b− bj‖2

2σ2B

}
, (4.16)

where σB is the standard deviation of the Gaussian kernel used for voting. Note

that for the motion vote map, we weight the votes with
(

1− ζ(t)i∗j
)

, which is the in-

verse of descriptor saliency so that the vote map is about background motions. ηj

from (4.15) has a value in range [0, 1], representing how distinctive the backward

optical flow of a feature point is from background motions.

The advantage of our method using motion vote map is that we are able

to capture distinctive motions regarding the target object robustly without any

sophisticated motion grouping. As in Figure 4.4(d), even though there are other

motions due to the camera movement, only the distinctive motions similar to the

target object is emphasized.

4.2 Experimental Results

We implemented our method (PROP) in C++ with the OpenCV1 library for

SURF and KLT. For all experiments, the threshold for determining feature point

matches εd = 0.1, the variances of the Gaussian kernels for voting σA and σB

are both set to 10, the number of elements to keep K = 500, and the num-

1http://opencv.com/downloads.html

75

ber of features added L = 100. We also considered tracking results having

A(t)
(
x̂(t)
)
< 0.05 as tracking failures.

We tested our method against nine other representative trackers. MST (Co-

maniciu et al., 2003) and FRAG (Adam et al., 2006) are kernel-based trackers,

where FRAG is mainly focused on solving occlusion problems. OAB (Grabner

et al., 2006), SEMI (Grabner et al., 2008), BEYOND (Stalder et al., 2009), and

MIL (Babenko et al., 2011) are boosting based methods. HOUGH (Godec et al.,

2013) is a method based on Hough forests and TLD (Kalal et al., 2010) is a

method with P-N learning strategy combining the result of both tracker and de-

tector. SEMI, BEYOND, MIL, and TLD are mostly targeted for solving drifting

issues and HOUGH is a method targeted to overcome inaccuracies arising from a

bounding box representation of the target. Finally INVIS (Grabner et al., 2010)

is a method using GHT similar to ours. For the experiments, we used the im-

plementation provided by the authors of each paper except for MST and INVIS.

For MST and INVIS, we implemented them in C++ according to the papers. We

performed our experiments with nine image sequences. Sequences coke, tiger1,

and tiger2 are from (Babenko et al., 2011), sylvester is from (Ross et al., 2008),

occFace and woman are from the (Adam et al., 2006), motocross1 and mtn.

bike are from (Godec et al., 2013), and occCup is our own. Implementation of

the proposed method and the datasets used are available at the first author’s

website2. . Results for critical frames are shown in Figure 4.6.

To compare results quantitatively, we used manually annotated bounding box

representation of the target object as the ground truth. Two measures were used

to evaluate the algorithms; mean error between the ground truth center point

and the tracking result, and the percentage of correctly tracked frames. By cor-

rectly tracked frames, we counted the tracking result as correct if the center of the

2https://sites.google.com/site/homekmyi

76

tracking result was inside the ground truth bounding box. The reason we applied

this measure instead of the commonly used overlap criterion is because we are

using random initializations which may have little overlap even from the begin-

ning. This measure can be understood as a weak condition of tracking success.

When the overlap measure is used, results for all trackers become degraded since

some initializations would be counted as failures even at the first frame. Still, the

relative performances of trackers remain similar since this happens equally for all

trackers. For trackers being able to detect tracking failures, we did not use these

frames for computing the mean error. However, they are considered as tracking

failures in the percentage of correctly tracked frames for fair comparison.

4.2.1 Tracking with Inaccurate Initializations

To validate the robustness of our method against clumsy initializations, we have

tested trackers with 100 random initializations. Of the 100, the first initialization

is identical to the ground truth and 20 contain initializations having the center

point of the bounding box fixed at the ground truth but having different width and

height (sampled uniformly having maximum difference to be 20% of the original

width or height). Another 20 contain initializations having the same width and

height as the ground truth, but with the center point differing (sampled uniformly

having maximum difference to be 50% of the width or height of the target object.)

Finally, the remaining 59 have both the width and height, and the center point

differing from the ground truth in the same sense above.

Results for all sequences with all initializations are shown in Table. 4.1

(PROPm and PROPd are the results of our method using only motion saliency

and descriptor saliency, respectively). Initialization overlap in the table is de-

fined as the percentage ratio between the intersection and the union of the initial

bounding box and the ground truth. In Table. 4.1, it can be observed that as

77

PROP OAB SEMI BEYOND HOUGH MIL TLD MST FRAG INVIS

0

20

40

60

80

100

Figure 4.5: Box plots for % correctly tracked with all initializations.

initialization overlap decreases, the average performance of trackers generally de-

grade (lower percentage of correctly tracked frames and larger mean errors). For

percentage of correctly tracked frames, when considering best results, our method

shows 94.2% whereas the second best except the results of our method is TLD

with 60%∼40% overlap showing 89.3% (denoted by bold blue text). However,

when considering the average performance, with the same condition, our method

shows 84.5% whereas TLD shows 51.3%. Note that the gap between the best per-

formance and the average performance our method is relatively small compared

to other methods. This shows that our method is less sensitive to initializations.

Also, in terms of average performance, our method significantly outperforms other

methods including INVIS, which uses BEYOND as a primary tracker and uses

GHT similar to ours. In case of mean error in the correctly tracked frames, our

method is not best but shows comparable results against other methods. Occa-

sionally, BEYOND shows best results in terms of mean error, but the percentage

of correctly tracked frames shows that only a limited number of frames were

tracked. Note that using only one of the two saliencies degrades performance

(PROPm and PROPd).

Figure 4.5 is a box plot demonstrating the performance of trackers against

78

different initializations. The whiskers (denoted with red pluses) are data points

having values more than 1.5 inter quartile range away from the median (red

line). In Figure 4.5, it can be seen that the best performances (dotted lines) do

not differ much. This implies that with a particular initialization designed for

each algorithm, the performances may not differ much. However, this is not a

trivial task, and when considering average performance, our method outperforms

all other compared methods by significant amounts.

79

A
lg

or
it

h
m

In
it

ia
li

za
ti

o
n

O
ve

rl
a
p

10
0%
∼

8
0
%

8
0
%
∼

6
0
%

6
0
%
∼

4
0
%

4
0
%
∼

2
0
%

2
0
%
∼

0
%

C
or

re
ct

ly
T

ra
ck

ed
F

ra
m

es
(%

)

P
R

O
P

8
7
.7
±

1
5
.3

(9
0
.5

)
8
8
.0
±

1
5
.7

(9
2
.6

)
8
4
.6
±

1
8
.6

(9
4
.2

)
7
2
.8
±

2
7
.0

(9
2
.9

)
5
5
.3
±

3
2
.9

(7
5
.8

)
P

R
O

P
m

80
.7
±

2
0
.7

(8
2
.2

)
7
7
.2
±

2
3
.8

(8
5
.4

)
7
0
.5
±

2
7
.2

(8
8
.5

)
6
4
.1
±

2
9
.5

(8
7
.7

)
4
6
.9
±

3
4
.3

(7
0
.0

)
P

R
O

P
d

41
.3
±

3
9
.9

(4
2
.6

)
4
0
.8
±

3
4
.9

(4
7
.9

)
3
8
.2
±

3
2
.5

(4
8
.5

)
3
4
.2
±

3
0
.5

(4
8
.1

)
2
2
.8
±

2
5
.3

(3
4
.0

)
O

A
B

55
.0
±

3
5
.1

(7
6
.3

)
5
5
.4
±

3
4
.7

(8
0
.6

)
5
0
.5
±

3
4
.6

(8
8
.6

)
4
3
.0
±

3
2
.6

(7
8
.4

)
3
4
.8
±

3
1
.2

(6
2
.9

)
S

E
M

I
28

.3
±

2
3
.0

(4
6
.2

)
3
4
.3
±

2
4
.6

(5
4
.7

)
3
0
.8
±

2
3
.0

(6
5
.9

)
3
1
.2
±

2
4
.6

(6
7
.9

)
2
3
.9
±

2
3
.4

(4
2
.2

)
B

E
Y

O
N

D
28

.1
±

2
9
.7

(4
4
.1

)
2
3
.9
±

2
7
.8

(5
5
.7

)
2
2
.9
±

2
4
.8

(5
7
.6

)
2
1
.7
±

2
3
.8

(5
6
.8

)
1
8
.9
±

2
1
.7

(3
9
.9

)
H

O
U

G
H

50
.0
±

3
4
.0

(6
3
.9

)
4
6
.9
±

3
3
.1

(7
1
.3

)
4
4
.1
±

3
3
.1

(7
9
.1

)
3
7
.7
±

3
3
.6

(7
7
.1

)
2
6
.4
±

2
9
.6

(5
1
.7

)
M

IL
56

.0
±

3
2
.2

(6
2
.8

)
5
2
.5
±

3
0
.6

(7
0
.3

)
4
6
.7
±

3
2
.3

(7
5
.4

)
3
7
.8
±

3
1
.6

(7
4
.1

)
2
4
.4
±

2
5
.7

(5
5
.7

)
T

L
D

61
.7
±

3
2
.2

(7
2
.0

)
5
4
.3
±

3
0
.1

(8
1
.8

)
5
1
.3
±

3
3
.7

(8
9
.3

)
4
1
.3
±

3
1
.7

(8
8
.5

)
2
6
.6
±

2
6
.4

(5
8
.5

)
M

S
T

43
.6
±

3
8
.1

(5
0
.5

)
4
3
.7
±

3
7
.2

(5
5
.2

)
4
0
.1
±

3
5
.1

(6
2
.4

)
2
9
.5
±

2
7
.3

(5
6
.2

)
1
7
.8
±

1
7
.5

(3
1
.9

)
F

R
A

G
43

.8
±

3
3
.9

(5
7
.5

)
4
6
.1
±

3
1
.4

(6
4
.2

)
3
5
.6
±

2
8
.8

(5
9
.1

)
2
5
.7
±

2
8
.5

(4
6
.6

)
1
6
.0
±

2
3
.9

(3
1
.4

)
IN

V
IS

50
.2
±

3
1
.4

(7
1
.5

)
5
1
.5
±

2
9
.0

(7
8
.2

)
4
7
.9
±

2
7
.5

(7
7
.5

)
4
3
.2
±

2
7
.2

(7
1
.1

)
3
3
.4
±

2
6
.1

(5
6
.7

)

M
ea

n
E

rr
or

(p
ix

el
s)

P
R

O
P

21
.1
±

1
9
.7

(1
7
.8

)
2
0
.7
±

1
7
.8

(1
3
.4

)
2
5
.2
±

1
9
.2

(1
5
.5

)
3
4
.5
±

2
4
.4

(1
9
.8

)
4
7
.6
±

3
1
.6

(3
3
.7

)
O

A
B

38
.4
±

4
1
.6

(1
4
.8

)
4
1
.1
±

3
5
.8

(1
8
.3

)
4
5
.4
±

3
3
.5

(1
8
.6

)
5
0
.4
±

3
4
.5

(2
3
.3

)
6
3
.6
±

4
0
.0

(3
5
.6

)
S

E
M

I
19

.6
±

2
1
.7

(9
.6

)
2
3
.0
±

1
7
.7

(8
.0

)
4
1
.0
±

3
7
.7

(1
6
.6

)
5
2
.5
±

3
6
.8

(2
3
.1

)
7
2
.7
±

4
5
.7

(4
5
.4

)
B

E
Y

O
N

D
1
2
.0
±

1
2
.9

(6
.1

)
1
4
.5
±

1
2
.3

(4
.2

)
2
5
.9
±

1
9
.3

(7
.2

)
3
8
.8
±

2
7
.1

(1
4
.0

)
5
7
.0
±

3
4
.7

(3
7
.8

)
H

O
U

G
H

58
.3
±

4
5
.5

(3
1
.5

)
5
6
.8
±

4
1
.9

(2
6
.6

)
5
7
.8
±

4
2
.4

(2
4
.8

)
6
4
.2
±

4
4
.7

(2
4
.6

)
8
9
.1
±

5
5
.7

(4
4
.7

)
M

IL
39

.3
±

3
4
.4

(2
0
.5

)
4
3
.6
±

3
5
.6

(1
4
.9

)
4
8
.9
±

3
8
.7

(1
7
.3

)
6
0
.5
±

4
3
.2

(2
0
.7

)
7
3
.4
±

4
9
.4

(3
9
.1

)
T

L
D

85
.7
±

9
5
.1

(5
2
.3

)
8
7
.0
±

8
9
.2

(4
0
.4

)
9
2
.1
±

9
3
.8

(3
0
.7

)
1
0
1
.5
±

9
7
.1

(3
8
.9

)
1
2
4
.2
±

1
0
3
.4

(7
5
.4

)
M

S
T

75
.1
±

5
6
.6

(5
1
.6

)
6
9
.0
±

5
1
.5

(4
8
.5

)
7
5
.6
±

5
4
.3

(3
8
.4

)
8
3
.8
±

5
6
.4

(4
9
.2

)
1
0
0
.7
±

5
8
.6

(7
6
.9

)
F

R
A

G
66

.8
±

4
7
.4

(4
4
.7

)
6
5
.3
±

4
6
.2

(4
0
.7

)
8
1
.4
±

5
5
.9

(4
9
.0

)
9
5
.3
±

6
6
.1

(7
2
.9

)
1
1
3
.7
±

7
0
.7

(8
6
.9

)
IN

V
IS

60
.1
±

5
2
.0

(3
4
.6

)
6
0
.8
±

5
0
.5

(3
2
.1

)
6
3
.2
±

4
8
.0

(3
6
.3

)
6
8
.8
±

4
9
.4

(4
2
.5

)
8
3
.5
±

5
0
.9

(5
4
.3

)

T
ab

le
4
.1

:
R

es
u

lt
s

fo
r

al
l

se
q
u

en
ce

s.
[a

v
er

ag
e±

st
an

d
ar

d
d

ev
ia

ti
on

(b
es

t
av

er
ag

e)
].

F
or

b
es

t
av

er
a
ge

,
b

es
t

re
su

lt
s

fo
r

a
ll

se
q
u

en
ce

s
w

er
e

av
er

a
ge

d
.

B
ol

d
d

en
ot

es
b

es
t

re
su

lt
am

on
g

th
e

co
m

p
ar

ed
al

go
ri

th
m

s.

80

4.2.2 Tracking Under Occlusions

To evaluate the performance of our method against occlusions, we have tested

our method on sequences coke, tiger1, tiger2, occFace, woman, and occCup.

In these sequences, occlusion of the target object exist, expecially with the coke

sequence having the object fully occluded at occasions, and occCup having the

object occluded even at initialization. Critical frames for sequences with occlu-

sions are shown in Figures 4.6(a) to 4.6(i). Figure 4.6(b) is an example of severe

occlusion where the target object gets fully occluded. Our method successfully

tracks the target object even in such case, by learning the features of the hand

which moves together with the target object. In Figure 4.6(e), the target object

is occluded even at initialization. As in Figure 4.6(f), many compared methods

fail to recognize the cup as the target object and fail. However, our method

successfully tracks the target object.

4.3 Remarks and Discussion

A new visual tracking method for tracking objects in case of severe occlusions

and uncertain initialization has been proposed. The proposed method used motion

saliency and descriptor saliency of local features and obtained the target posi-

tion through GHT. The motion saliency of a local feature emphasized features

having distinctive motions, compared to the motions coming from local features

which are not from the object. The descriptor saliency emphasized features which

are likely to be of the object in terms of its feature descriptors. Through these

saliencies, the proposed method learned and found the target object in the image

sequence. The saliencies and GHT combined allowed the tracker to have robust

performances under occlusions and clumsy initializations.

The proposed method was extensively tested against nine other methods,

81

2

(a) coke #2

256

(b) coke #256

106

(c) tiger1 #106

239

(d) tiger2 #239

2

(e) occCup #2

211

(f) occCup #211

144

(g) woman #144

301

(h) woman #301

562

(i) occFace #562

1093

(j) sylvester #1093

75

(k) motocross1 #75

132

(l) mtn. bike #132

−17 −16.8 −16.6 −16.4 −16.2 −16 −15.8 −15.6 −15.4 −15.2 −15
23

23.5

24

24.5

25

GT PROP OAB SEMI BEYOND HOUGH MIL TLD MST FRAG INVIS

Figure 4.6: Critical frames for tracking results. Subcaptions denote sequence
names and frame numbers. Best viewed in color.

82

using nine image sequences, and with hundred random initializations. The ex-

perimental results demonstrated the robustness of our method against occlusions

and initializations, outperforming the other compared methods significantly.

83

Chapter 5

Tracking by Patch-wise Elastic

Structure Model

In this chapter, to solve the issues related to tracking of non-rigid objects with

occlusions in real-time, we focus on building a robust representation for CLTM.

The proposed algorithm models the target object through a structure of local

patches with spring-like connections, formulated under the Maximum A Posterior

- Markov Random Field (MAP-MRF) framework. Each local patch is considered

to be connected with its neighbors and, therefore, the local structures of the tar-

get object are embedded into the MRF structure. When partial occlusions occur,

un-occluded patches will enforce the maintenance of the local structures owing

to the spring-like connections among the patches. As a result, the neighboring

occluded patches will be directed to their correct positions through the relation-

ship between patches, thus making our method robust against partial occlusions.

Non-rigid deformations are also well described since they can be explained as a

collection of local movements of patches. Unlike other methods which concentrate

on occlusions (Adam et al., 2006; Mei & Ling, 2009), or methods which focus on

84

non-rigid movements only (Kwon & Lee, 2009; Godec et al., 2013), our method

addresses both problems simultaneously. In addition, to achieve real-time per-

formance, which is critical in most tracking applications, a hierarchical diffusion

approach is proposed to overcome the curse of dimensionality.

To demonstrate the effectiveness of our method, we have experimented with

a number of challenging image sequences. The experimental results show that

our method is the most robust against both partial occlusions and non-rigid

deformations, compared with other methods. Especially, our method runs in real-

time (20 to 50 frames per second), whereas other state-of-the-art methods capable

of tracking non-rigid objects proposed in (Kwon & Lee, 2009) and (Godec et al.,

2013) runs only a few frames per second.

5.1 Tracking with Elastic Structure of Local Patches

5.1.1 Sequential Bayesian Inference Framework

The proposed tracking method is based on a sequential Bayesian inference frame-

work. We denote the object state at time t as Xt, where Xt =
(
X1
t ,X

2
t , · · · ,XN

t

)
and Xk

t denotes the state of the kth local patch of the object (e.g ., the position

of the patch) among the N local patches used to describe the object. Then, if we

denote the observations up to time t as Y1:t, the problem of object tracking can

be defined as finding X̂t such that,

X̂t = arg max
Xt

P (Xt|Y1:t). (5.1)

85

For sequential Bayesian inference, the posterior probability P (Xt|Y1:t) is sequen-

tially updated as the following:

P (Xt|Y1:t) ∝ P (Yt|Xt)

∫
P (Xt|Xt−1)P (Xt−1|Y1:t−1)dXt−1. (5.2)

Here, P (Yt|Xt) is the likelihood between the current state Xt and the current

observation Yt, and P (Xt|Xt−1) is the transition probability from Xt−1 to Xt.

Typically, for object tracking, since we consider many types of movements

(e.g ., translation, rotation, scale, and affine motions), obtaining an exact analytic

solution is not an easy task. Especially, in our formulation, it is more challenging

since the dimension of the solution space increases as the number of local patches

increases. Therefore as in (Isard & Blake, 1998), we use particle filtering (also

known as sequential Monte Carlo sampling) to solve the problem. If we denote

the lth sample in particle filtering as Xt,[l], then (5.1) can be re-written as

X̂t = Xt,[l̂], (5.3)

where

l̂ = arg max
l

P (Yt|Xt,[l]). (5.4)

Note that since we are performing particle filtering, the likelihood of each particle

P (Yt|Xt,[l]) corresponds to the posterior probability. Thus, the problem of object

tracking is now the problem of simulating the posterior distribution P (Xt|Y1:t)

with particle filtering, and then taking the particle with the best probability as

a solution.

Our method differs from the traditional particle filtering methods due to the

fact that the likelihood P (Yt|Xt) is obtained through an MRF-style manner.

Through this MRF-style method, both the individual likelihood of each patch

86

and the relationship among them are maximized while tracking. The MRF-style

elastic structure of local patches, which will be explained in Section 5.1.2, has an

advantage that the resultant posterior distribution considers both the underlying

local structures and the non-rigid deformations simultaneously. To allow the pro-

posed method to perform the tracking procedure within the real-time constraint,

we adopt a hierarchical diffusion scheme which benefits from the assumption that

local deformation is not large between consecutive frames. Details of the proposed

hierarchical diffusion is explained in Section 5.1.6.

5.1.2 Elastic Structure of Local Patches

In our work, we treat the target object as a collection of local parts, rather than

treating the target object as a whole. Local parts are described with n × n size

local patches, and local patches are assumed to be connected with nearby neigh-

bors forming an elastic structure as in Figure 5.1. This model of the target object

is realized using MRF. The likelihood of each local patch is considered to be the

unary likelihood of the MRF, and the structure among them is considered to be

the neighborhood relationship of the MRF. Since each local patch is connected

with its neighbors forming an MRF, our model prefers solutions with the local

structure of the target object preserved. Therefore, even if some of the patches are

occluded, other un-occluded patches will drive occluded patches to the correct po-

sitions, causing the proposed model to be robust against partial occlusions. Also,

since we describe the target object using local patches, we are able to represent

non-rigid deformations as a collection of movements of local patches. We consider

the initial patch positions and connections are given in the first frame. This initial

setting can be given manually or automatically by some other detection system

or by some certain strategy (e.g ., dividing the target bounding box into equal

grids and considering each grids to be connected to its direct neighbors). The

87

Figure 5.1: Example of elastic structure of local patches used to describe the
target object. Black boxes denote each local patch and red lines denote each
connection.

given patches should cover most of the target object with connections describing

the structure of the target object.

The likelihood P (Yt|Xt) in (5.2) is modeled with the posterior probability

of the MRF describing the structure of local patches. Therefore, P (Yt|Xt) is

designed as

P (Yt|Xt) ∝
N∏
k=1

P (Yt|Xk
t)
∏
j∈Nk

P (Xk
t |X

j
t)

, (5.5)

where P (Yt|Xk
t) is the likelihood of a single patch, P (Xk

t |X
j
t) is the prior prob-

ability describing the relationship among neighboring patches, and Nk denotes

the neighbors of the kth patch. Note that we are following the standard MRF

configuration and are assuming conditional independence among patches which

are not neighbors, as well as the independence among unary likelihoods of each

patch P (Yt|Xk
t). In the energy form, if we denote the total energy of the config-

uration as E(Yt; Xt), the energy of a single patch as E(Yt; X
k
t), the energy from

the relationship between patches as E(Xk
t ,X

j
t), we can write the total energy of

the MRF model (which is simply the sum of the observation and neighborhood

88

energy of all patches) as

E(Yt; Xt) ≡ Z +
N∑
k=1

E(Yt; X
k
t) +

∑
j∈Nk

E(Xk
t ,X

j
t)

, (5.6)

where Z is a normalizing constant. Here, the relationship between (5.5) and (5.6)

is that Probability ∝ exp(−λEnergy), assuming the Gibbs distribution. Here,

λ is a design parameter controlling the smoothness of the posterior distribution.

Now, with (5.6), (5.4) can be re-written as

l̂ = arg max
l

P (Yt|Xt,[l]) = arg min
l

E(Yt; Xt,[l]). (5.7)

Also, the sample weights for particle filtering is now

w(l) ∝ P (Yt|Xt,[l]) ∝ exp(−λ E(Yt; Xt,[l])). (5.8)

Generally speaking, if λ is large, the posterior distribution becomes spiky and

particles become concentrated near the MAP solution, whereas if λ is small, the

posterior distribution becomes smooth and more particles far away from the MAP

survive the resampling process. We empirically found that λ = 10 work well in

most cases.

5.1.3 Modeling a Single Patch

In order to obtain the energy of a single patch E(Yt; X
k
t), we model each in-

dividual patch using a linear classifier in 21 dimensional space. The first nine

dimensions are HOG (Histogram of Oriented Gradients) features. We build our

HOG by dividing the orientation into eight equal bins, and one bin to denote

gradients with response 0. To obtain image gradients, filter kernels
[
−1 0 1

]

89

TRACKING VIA LOCAL PATCHES AND HIERARCHICAL SAMPLING

Perception and Intelligence Lab.

6

9-D HOG RGB + RGB RGB RGB

Figure 5.2: Example of a 21 dimensional feature descriptor for a single local patch.

and
[
−1 0 1

]T
are used. When applying these filters, if the responses were

below 10 on a 0 to 250 scale, we considered the response to be 0 to increase ro-

bustness to noise. We then assigned the image gradients to one of the eight bins

according to their orientations, or the ninth bin if both filter responses were 0.

For simplicity, we assigned each gradient to one of the nine bins without weighing

them. For the remaining 12 dimensions, we divide a single local patch into four

equal parts (upper left, upper right, bottom left, and bottom right) and obtain

the mean RGB values for each sub region as in Figure 5.2 (3 dimension for each

sub region). More sub regions may be used depending on the level of accuracy

required for a single local patch tracking. This feature is similar to the one used

in (Avidan, 2007), but one feature is assigned to a single patch not a single pixel

as in (Avidan, 2007). The advantage of using this 21 dimensional feature is that

this feature can be obtained efficiently using integral images.

For each patch, we use the classifier score of the observed 21 dimensional

vector to obtain the energy of a single patch, E(Yt; X
k
t) in (5.6). The classifier

is trained so that it gives high scores when the observation is likely to be the

modeled patch, and gives low scores (possibly negative) when it is not likely. For

the classifier, we use linear Support Vector Machine (SVM) (Cortes & Vapnik,

90

11

v𝑚 j,k

k j

(a) Model

14

v𝑐 j,k

k

j

v𝑐 j,k − v𝑚 j,k

(b) Observation

Figure 5.3: Example of neighboring local patches connected together.

1995; Fan et al., 2008) with logistic fitting performed on the classification score

(Platt et al., 1999) to perform scaling. Training strategies for both linear SVM

and logistic fitting are described in detail in Section 5.1.5. If we let fkc denote

the 21 dimension feature vector of the current observation for the kth patch, let

sk
(
fkc
)

denote the linear SVM classification score for fkc , and let Ak and Bk denote

the learned logistic parameters, then

E(Yt; X
k
t) = 1− 1

1 + eAksk(fkc)+Bk

. (5.9)

Note that the logistic fitting (Platt et al., 1999) scales the classifier scores to

be in range [0, 1], considering the distribution of scores from the training data.

This prevents the problem of certain patches having higher priority than others

due to different score range when using raw classifier scores. We also use the

classification result of each patch when updating the model to prevent drifting

(detailed in Section 5.1.5).

5.1.4 Modeling the Relationship between Patches

The relationship between neighboring patches is modeled so that the local struc-

tures among neighboring patches are preserved while tracking. To deal with non-

91

rigid deformations, patches behave as if they are connected by springs. Also, to

be robust to partial occlusions, the springs of each patch behave as if they are

connected to the patch’s expected positions from its neighbors. As in Figure 5.3,

if we consider an observed patch (patch j in Figure 5.3) and its neighbor (patch

k in Figure 5.3), then in our model, the observed patch j tends to return to its

expected position from its neighbor k (expected position is denoted by the dotted

box) by the restoring force of a virtual spring connection between the expected

position and patch j, which is length zero at rest. In other words, the energy of

the connection between the two neighboring patches k and j is be defined as the

elastic energy of this spring. If we denote the vector difference between jth and

kth patches of the current observation and the model as vc(j, k) and vm(j, k),

respectively, then the displacement change x of this virtual spring is

x = ‖vc(j, k)− vm(j, k)‖2 . (5.10)

Also, to make close patches have more effect on one another, the strength of this

spring is designed to be inversely proportional to the squared distance between

the neighbors. Therefore, the spring constant κ is designed as

κ =
2

‖vm(j, k)‖22
β, (5.11)

where the neighbor strength β is a design parameter controlling the trade-off

between the flexibility to adapt to non-rigid motion and the ability to keep the

structure against occlusion. Details on the effect of β will be addressed in Sec-

tion 5.2.1. Then, the elastic energy between connected local patches E(Xk
t ,X

j
t)

in (5.6) is defined as

E(Xk
t ,X

j
t) =

1

2
κx2 = β

‖vc(j, k)− vm(j, k)‖22
‖vm(j, k)‖22

. (5.12)

92

5.1.5 Model Update

The model of the target object needs to be updated consistently in order for the

tracker to be able to adapt to various changes in the target object. Illumination

changes and deformations of the target object must be learned by the model to

correctly evaluate (5.5). In our case, the model update is performed in two steps:

(1) updating the linear classifiers and the logistic parameters for each patch, and

(2) updating the neighborhood relationship. To prevent the model from drift-

ing, the update is performed only when the observed patch is classified as the

model, i.e. for patch k, only when sk
(
fkc
)
> 0. Also in case of the neighborhood

relationship, we only update when the observation for both patches forming the

relationship are classified as the model.

The way we update the linear classifiers is through updating training samples.

For each patch, we keep a pool containing positive and negative training samples

of size 2M (M positive samples and M negative samples). The positive samples

represent the target object and the negative samples are simply the 21 dimension

feature vectors drawn randomly from nearby. At the initial frame, we initialize

the positive pools with M identical copies of the initial patches of the target

object. For each frame, after obtaining the local patch tracking results, we add

the tracking results to the positive pools and take out the oldest samples from

the positive pools. When taking samples out from the positive pools, to prevent

drifting, we make sure that at least one sample is from the first frame (i.e.

one sample representing the patch from the initial frame is never taken out for

each pool). Then we completely discard the previous negative pools and refresh

negative samples from random nearby patches. Again, for each patch, the classifier

from the previous frame is discarded and a new classifier is trained using the new

training pools. Note that for each pool, since we update one positive sample at

a time, the pool size M acts as a design parameter controlling the update speed

93

of the target object model. When M is large the model is updated slowly and

when M is small the model is updated quickly. In general, we empirically found

that M = 100 gives good performance as well as low computational cost for the

update process.

For the relationship update, we simply update vm(j, k) by weighted averag-

ing, but only when both patches are classified as the model. In other words, for

all j and k, if [
sj

(
f jc

)
> 0
]
∧
[
sk

(
fkc

)
> 0
]
, (5.13)

then

vm (j, k)← 1

M
vc (j, k) +

(
1− 1

M

)
vm (j, k) . (5.14)

Note that the learning rate is 1
M so that the update rate would be the same as

for the training pools for the classifiers.

5.1.6 Hierarchical Diffusion

In our model, the dimension of the solution space is too large to apply simple

motion models such as the random-walk model. For instance, if we were to need

100 particles to track an object with only one patch using the random-walk motion

model, then with N patches we would require 100N particles to track the target

object with our model. This would require an infeasible amount of calculation,

making our method impossible to run in real-time. Therefore, we propose an

efficient hierarchical diffusion method.

To use a small number of samples, we focus on sampling from the region where

the actual solution would exist with high probability. In case of tracking situations

the deformation of the target object is not large between subsequent frames.

Considering this as an assumption, we diffuse particles hierarchically in two steps:

globally for the motion of the whole object and locally for the deformations

94

𝛿j,[l] 𝛿k,[l]

k j

Δ[l]

Figure 5.4: Illustrative example of hierarchical diffusion performed for a single
sample l. Global movement of the total configuration of patches ∆[l] is sampled
first, then local movements of individual patches δk,[l] and δj,[l] are sampled.

of the target object. We first diffuse all local patches equally according to the

Gaussian distribution with a relatively large variance, and then diffuse each patch

separately according to the Gaussian distribution with a relatively small variance

(illustrated in Figure 5.4). In the global step, the samples are diffused so that

the relative positions between local patches in the sample are preserved. Then,

in the local step, each local patch is diffused independently. Mathematically the

proposed hierarchical diffusion method can be described as

Xk
t,[l] = Xk

t−1,[l] + ∆[l] + δk,[l], (5.15)

where, Xk
t,[l] denotes the state of the kth local patch of the lth sample at time t,

∆[l] denotes the 2-dimensional global diffusion (translation in x, y direction for

the whole object) for the lth sample, and δk,[l] denotes the 2-dimensional local

diffusion (translation in x, y direction for a local patch) for the kth local patch of

95

the lth sample. Here,

∆[l] ∼ N (0, σ2G), (5.16)

and

δk,[l] ∼ N (0, σ2L), (5.17)

where N (0, σ2) denotes a Gaussian distribution with zero mean and standard

deviation σ. σG and σL are parameters for the diffusion. The optimal choice of

σG and σL may vary depending on the image sequence but we empirically found

that σG = 8 and σL = 4 works well for most cases. The proposed diffusion

produces an accurate solution with a relatively less number of particles than the

simple random walk approach, which allows the proposed method to achieve real-

time performance. Details and discussion on experimental results regarding the

effectiveness of hierarchical diffusion are given in Section 5.2.8.

5.1.7 Summary of the Proposed Method

The proposed method uses particle filtering to get an MAP solution for the object

tracking problem. Given the initial patches and connections
{
fkm,vm(j, k);∀j, k,

}
,

the proposed method can be summarized as Algorithm 1.

5.2 Experiments

5.2.1 Parameter Effects

The parameter β in subsection 5.1.2 controls the strength of the neighborhood

connections. In other words, large β means that tracking is performed so that the

local structure does not change much. In other words, β is a parameter controlling

the tradeoff between the tracker’s ability to track non-rigid objects and ability to

96

Algorithm 1 Tracking with Local Patches (for each frame)

1: For each sample, compute

E(Yt; Xt) ≡ Z +
∑m

k=1

[
E(Yt; X

k
t) +

∑
j∈Nk

E(Xk
t ,X

j
t)
]

((5.6))

where,

E(Yt; X
k
t) = 1−

(
1 + eAksk(fkc)+Bk

)−1
((5.9))

E(Xk
t ,X

j
t) = β

‖vc(j,k)−vm(j,k)‖22
‖vm(j,k)‖22

((5.12))

2: Find MAP solution
X̂t = Xt,[l̂] ((5.3))
where,
l̂ = arg max

l
P (Yt|Xt,[l]) = arg min

l
E(Yt; Xt,[l]) ((5.7))

3: Update object model (Section 5.1.5)
4: Assign sample weights w[l] according to the likelihood
w[l] ∝ P (Yt|Xt) ∝ exp(−λ× E(Yt; Xt,[l])) ((5.8))

5: Re-sample according to weights
6: Diffuse samples

Xk
t+1,[l] = Xk

t,[l] + ∆[l] + δk,[l] ((5.15))

cope with partial occlusions. Figure 5.5 is an example showing the effect of the

β parameter when tracking object with deformation. As in (b) if parameter β is

small, then object deformation is well tracked. On the other hand, if β is large,

then deformation is less accounted for. For our method, β is the only parameter

which requires tuning. In case of other parameters, we found empirically that the

parameters noted in the beginning of Section 5.2.2 works well in most situations

and does not require tuning . Thus, unlike the case for traditional particle filtering

methods (Ross et al., 2008; Pérez et al., 2002; Kwon et al., 2009; Mei & Ling,

2009) which require the tuning of the diffusion parameters in each dimension when

changing the tracker’s behaviors, our method only requires tuning of β. Also,

tuning β is intuitive and simple. Figure 5.6 shows the effect of parameter β when

tracking objects with partial occlusions. The tracker better handles occlusions

when β is large as in (c). Generally, for highly deformative scenes β = 0.2 shows

good results, for scenes with heavy occlusion β = 2.0, and normally β = 1.0 is

97

(a) Input image (b) β = 0.2 (c) β = 2.0

Figure 5.5: Example showing the effect of β parameter on non-rigid object track-
ing. Tracking results for the Robot sequence, frame #40, with β = 0.2 (b) and
β = 2.0 (c).

(a) Input image (b) β = 0.2 (c) β = 2.0

Figure 5.6: Example showing the effect of β parameter on tracking objects with
partial occlusions. Tracking results for the Face sequence, frame #215, with
β = 0.2 (b) and β = 2.0 (c).

98

good enough.

5.2.2 Performance Evaluation

Evaluation of the proposed method was performed through twelve image se-

quences. Each image sequence consists of different types of situations (occlusion,

outer-plane motion, non-rigid deformation, etc.) Throughout the experiments, all

parameters except β were fixed. The pool size M was set to 100, and the number

of particles was set to 1000. For the linear SVM, we used default parameters

provided in (Fan et al., 2008). For the sampling parameters, σG = 8 and σL = 4.

Parameter λ controlling the concentration of samples, was set to 10. The imple-

mentation was done in C++. All experiments were held on a 3.0GHz desktop

and ran comfortably about 20-50 frames per second depending on the number of

patches (except for the Dudek sequence which was of size 720× 480, and ran 12

frames per second).

The test sequences are composed of some well-known sequences and some

of our own. The Dudek sequence and the Sylvester sequence are from the

work of Lim et al. (Ross et al., 2008), and the Face sequence and the Woman

sequence are from the (Adam et al., 2006). The Caviar sequence is from the

CAVIAR1 dataset. These five sequences are some of the well-known sequences

for evaluating tracking performances. The High Jump sequence is from Kwon

et al.’s work (Kwon & Lee, 2009), and the Motocross 1 and the Mtn. Bike

sequences are from recent work by Godec et al. (Godec et al., 2013). The Robot

sequence and the Pedestrian sequence are from (Yi et al., 2010), and the Dove

sequence is from (Yin et al., 2011). Finally, the Nemo sequence is of our own.

For quantitative analysis, we compared the mean error of the four corner

1EC Funded CAVIAR project/IST 2001 37540, found at URL:
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/

99

points of the tracking bounding box. The ground truth data was annotated by

human hand, so that the target object fitted in the bounding box. In (Godec

et al., 2013), Godec et al. used the Agarwal-criterion (Agarwal et al., 2004), which

was defined as score = RT∩RGT
RT

, where RT is the tracking rectangle and RGT the

ground truth, but this measure is not suitable for describing how accurate tracking

is. A single dot in the ground truth region would return maximum measure.

However, by using the mean of the errors of the four corner points of the tracking

bounding box we can measure the accuracy of a tracker without such problem.

Also, this measure is easily applicable to many trackers since most trackers are

based on giving a bounding box of the target object as a result.

The proposed method has been compared against seven other trackers. Be-

yond Semi-supervised Tracking (BEYOND) in (Stalder et al., 2009) and Mul-

tiple Instance Learning (MIL) in (Babenko et al., 2011) are methods based on

the concept “tracking by detection”, Frag-Track (FRAG) in (Adam et al., 2006)

and l1 minimization (L1) in (Mei & Ling, 2009) are some representative methods

for solving occlusion problems, Basin Hoppin Monte Carlo Tracking (BHMC)

in (Kwon & Lee, 2009) and Hough-based Tracking (HOUGH) in (Godec et al.,

2013) are state-of-the-art methods for solving non-rigid object tracking, and TLD

Tracking (TLD) (Kalal et al., 2010) is a method which uses both detectors and

trackers. For the experiments, we used the implementation provided by the au-

thors of each paper. Also, we implemented our method in three different ways.

The first is with manual initialization (LPT), the second is with initialization by

dividing the target bounding box into equal grids (LPT GRID), and the last

one is applying simple temporal low-pass filtering to LPT (LPT SMOOTH).

For LPT GRID, we assumed the patches were connected to its direct neighbors

(patches which share boundaries) and the number of grids was set to 3 × 3. For

LPT SMOOTH, the temporal smoothing was performed by weighted averaging

100

the new estimated result and the old estimate (the tracking result from previous

frame). When averaging, we applied different weights for the smoothing of the

center position and the smoothing of the width and height. For the position, 0.3

weight was applied to the new estimate and 0.7 for the previous estimate. For

the width and height, we applied stronger smoothing than we did for the posi-

tion since width and height do not change much between consecutive frames; 0.1

weight to the new estimate and 0.9 to the previous estimate. All other parameters

were identical for all three implementations.

Figure 5.7 shows the mean error value of each tracker for each image se-

quence. β was set as in the sub-captions. The mean error value was calculated

only for the frames the tracker returned results. This is because BEYOND and

TLD returned results only when they are confident, and if they are not, returned

results indicating tracking failures. The number on top of each marker denotes

the percentage of frames that gave meaningful results, which mean that, if we de-

note the mean error of the four corner points as emean, width of the ground truth

as wGT , and height of the ground truth as hGT , then emean < min (wGT , hGT).

The tracker with lowest mean error and with over 90% of the tracking results

meaningful is marked with red bold text. The red dotted horizontal line denotes

the mean value of min (wGT , hGT) throughout each sequence. Tracker with mean

error above the dotted red line means that most of the tracking results from that

tracker were meaningless for that sequence. In general, all three implementations

of our method consistently outperform or show comparable results against other

compared methods. Note that the compared methods sometimes give better re-

sults than ours depending on the image sequence, but our method consistently

gives good results, regardless of the image sequence used.

101

0

20

40

60

80

100

120

140

160

180

200

Algorithm

M
e

a
n

 E
rr

o
r

41%

83%

81%

63%

18%

75%

99%
100%100%100%

(a) Dudek, β = 1.0

0

10

20

30

40

50

60

Algorithm

M
e

a
n

 E
rr

o
r

50%

92%

83%

66%

46%

55%

97%
99%

99%
98%

(b) Sylvester, β = 1.0

0

20

40

60

80

100

120

Algorithm

M
e

a
n

 E
rr

o
r

90%

100%

100%100%

46%

100%

100%100%100%100%

(c) Face, β = 2.0

0

50

100

150

200

250

Algorithm

M
e

a
n

 E
rr

o
r

14%

21%

19%

7%

20%

42%

70%

100%96% 99%

(d) Woman, β = 1.0

0

10

20

30

40

50

60

70

Algorithm

M
e
a
n

 E
rr

o
r

5%

65%

86%

55%

68%

97%

45%

100%

100%

100%

(e) Caviar, β = 2.0

0

20

40

60

80

100

120

140

160

Algorithm
M

e
a

n
 E

rr
o

r

2%

8%

68%

10%

98%
93%

16%

93% 91% 91%

(f) High Jump, β = 0.2

0

50

100

150

200

Algorithm

M
e

a
n

 E
rr

o
r

4%

27%

32%

26%

49%

99%
16%100%100%

100%

(g) Motocross 1, β = 0.2

0

20

40

60

80

100

120

140

160

180

Algorithm

M
e

a
n

 E
rr

o
r

99%

56%

46%

41%

37%

100%

44%

100%
100%

100%

(h) Mtn. Bike, β = 0.2

0

20

40

60

80

100

120

Algorithm

M
e

a
n

 E
rr

o
r

8%

100%
99%

20%

58%
50%

56%

100%
100%

100%

(i) Robot, β = 1.0

0

20

40

60

80

100

120

Algorithm

M
e

a
n

 E
rr

o
r

43%100%

72%

35%

17%

100%100%
100%100%

100%

(j) Dove, β = 1.0

0

20

40

60

80

100

120

140

160

Algorithm

M
e

a
n

 E
rr

o
r

51%

100%

100%
98%

86%

100%

100%
100%

100%
100%

(k) Nemo, β = 1.0

0

50

100

150

200

Algorithm

M
e

a
n

 E
rr

o
r

89%100%

7%

10%

6%

87%
100%100%100%100%

(l) Pedestrian, β = 0.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

BEYOND MIL FRAG L1 BHMC HOUGH TLD LPT LPT_GRID LPT_SMOOTH

Figure 5.7: Mean errors for each sequence. Best tracker denoted by red bold text.

102

325

(a) Dudek #325

375

(b) Dudek #375

573

(c) Dudek #573

330

(d) Sylvester #330

1070

(e) Sylvester #1070

1344

(f) Sylvester #1344

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

GroundTruth BEYOND MIL FRAG L1 BHMC HOUGH TLD LPT LPT_GRID LPT_SMOOTH

Figure 5.8: Tracking results for the Dudek sequence and the Sylvester sequence.
Best viewed in color.

5.2.3 Discussion on Translation, Rotation, Illumination Changes

The Dudek sequence and the Sylvester sequence are well known datasets for

testing robustness on translation, rotation, illumination changes. In both image

sequences, BEYOND gave the most accurate result (Figure 5.7 (a) and (b)).

However, in both sequences, BEYOND was able to track less than half of the

whole sequence, whereas our method (LPT) was able to track most of the se-

quence (100% for Dudek and 99% for Sylvester) with promising results. For

the Sylvester sequence, LPT GRID and LPT SMOOTH show similar results.

Critical frames for the two sequences are shown in Figure 5.8. In Figure 5.8 (a),

as the target person stands up, L1, BHMC, and HOUGH loses track. Also, as the

person turns around in (b), FRAG fails whereas our method successfully tracks

the whole sequence. In (b), LPT SMOOTH also drifts a bit due to the abrupt

103

change in motion, but still keeps track of the target object and recovers after

a few frames. In (d), we can see that HOUGH starts to drift off. The authors

of (Godec et al., 2013) reported that they were able to track 99% of the image

sequence, but even with same initial conditions the authors provided, we were

not able to reproduce their result (slightly degraded result). We suspect that this

is because HOUGH uses fully randomized trees, meaning that the accuracy of

their algorithm may vary according to the random seed. For all image sequences,

even with the same initial settings, HOUGH returned various results, making the

tracking accuracy unstable. In (e) and (f), our method (LPT) successfully keeps

track of the target object but with relatively inaccurate results, due to the large

outer-plane motion of the target object.

5.2.4 Discussion on Partial Occlusions

The sequences Face, Woman, and Caviar are sequences which contain partial

occlusions. For the Face sequence, all three implementations of our method gave

comparable results against other compared methods (Figure 5.7 (c), (d), and

(e)). Moreover, our method was also capable of tracking objects showing non-

rigid deformations, whereas methods showing good performances on this sequence

(BEYOND, FRAG, and L1) did not show good performances in other situations

(High Jump, Motocross 1, and Mtn. Bike). Also, note that the methods

designed for non-rigid object tracking (BHMC and HOUGH) do not show good

results for Face and Woman. For the Face and Woman sequences, the target

object is occluded gradually and severely, where some parts of the sequence have

over half of the target occluded. Critical frames for these sequences are shown

in Figure 5.9. In Figure 5.9 (b), as occlusion occurs, we can see other methods

failing, whereas our method, LPT, LPT GRID, and LPT SMOOTH all three,

successfully tracks. As in (c), TLD re-detects the target object when the occlusion

104

550

(a) Face #550

120

(b) Woman #120

255

(c) Woman #255

55

(d) Caviar #55

80

(e) Caviar #80

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

GroundTruth BEYOND MIL FRAG L1 BHMC HOUGH TLD LPT LPT_GRID LPT_SMOOTH

Figure 5.9: Tracking results for the Face sequence, the Woman sequence, and
the Caviar sequence. Best viewed in color.

105

is gone, but as the target object gets occluded again, the tracker fails. This

sequence was used in (Adam et al., 2006), and FRAG was able to track the

target object throughout the whole sequence in their paper. However, in (Adam

et al., 2006), only a portion of the whole sequence was used. When started from

the first frame, FRAG loses track as well.

5.2.5 Discussion on Non-Rigid Deformations

The sequences High Jump, Motocross 1, and Mtn. Bike are sequences with

non-rigid deformations. For all sequences, all three implementation of our method

gave promising results (Figure 5.7 (f), (g), and (h)). BHMC and HOUGH show

good results for objects with non-rigid deformations, but do not show good re-

sults in general (especially for sequences with occlusions) and run only a few

frames per second, whereas our method runs 20 to 50 frames per second. Note

that the trackers showing good performance against partial occlusions (FRAG

and L1) tend to show unsatisfactory results in these cases, whereas our method

consistently gives good results. Critical frames for these sequences are shown in

Figure 5.10.

5.2.6 Discussion on Additional Cases

The Robot sequence contains both non-rigid deformations and partial occlusions.

The Dove and the Pedestrian sequences show fast and abrupt movements. Fi-

nally, the Nemo sequence has scale changes and in-plane rotations. Some critical

frames for these sequences are shown in Figure 5.11. For the Robot sequence, as

in Figure 5.7 (i), the proposed method outperformed all other trackers (BEYOND

showed lower mean error, but was able to track only 7.7% of the sequence). Also,

for the sequences Dove, Pedestrian, and Nemo, both LPT and LPT GRID

106

5

(a) High Jump #5

25

(b) High Jump #25

120

(c) High Jump #120

5

(d) Motocross 1 #5

60

(e) Motocross 1 #50

90

(f) Motocross 1 #90

10

(g) Mtn. Bike #10

130

(h) Mtn. Bike #130

228

(i) Mtn. Bike #228

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

GroundTruth BEYOND MIL FRAG L1 BHMC HOUGH TLD LPT LPT_GRID LPT_SMOOTH

Figure 5.10: Tracking results for the High Jump sequence, the Motocross 1
sequence, and the Mtn. Bike sequence. Best viewed in color.

107

Table 5.1: The mean error values and the percentage of meaningful tracking
results with all frames in all image sequences for each algorithm. Red underlined
text indicates best result and the plain blue text indicates second best.

Mean Error % Meaningful

BEYOND 10.10 48.43
MIL 48.57 82.11

FRAG 43.51 73.04
L1 88.00 54.11

BHMC 97.80 42.93
HOUGH 53.53 74.57

TLD 26.52 83.86
LPT 17.03 99.48

LPT GRID 16.03 99.14
LPT SMOOTH 17.85 99.33

Table 5.2: The mean error and the percentage of meaningful tracking results for
each algorithms with all sequences. Red underlined text indicates best result and
the plain blue text indicates second best.

outperformed or showed comparable results against other trackers. In case of

LPT SMOOTH, the accuracy degraded for the Dove sequence due to the fast

movement of the target object (example shown in Figure 5.11 (g)), but is still

comparable to other trackers. Note that in (a), (c), and (f), the toy shows com-

plex movements (spreading legs apart, bending, and sitting down), which other

trackers fail to describe. Since the neighborhood connections in the grid initial-

ization are not accurate, LPT GRID also fails to describe the movement of the

target object in this case. In (d) and (e), LPT shows robust performance against

severe partial occlusions.

5.2.7 Summary of Tracking Results

The evaluation results are summarized in Table 5.2. As in Table 5.2, our method

(LPT) outperforms other compared trackers with respect to the percentage of

108

150

(a) Robot #150

220

(b) Robot #220

335

(c) Robot #335

490

(d) Robot #490

535

(e) Robot #535

630

(f) Robot #630

50

(g) Dove #50

150

(h) Dove #150

10

(i) Nemo #10

70

(j) Nemo #70

300

(k) Nemo #300

525

(l) Nemo #525

10

(m) Pedestrian #10

45

(n) Pedestrian #45

400

(o) Pedestrian #400

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

GroundTruth BEYOND MIL FRAG L1 BHMC HOUGH TLD LPT LPT_GRID LPT_SMOOTH

Figure 5.11: Tracking results for the Robot sequence, the Dove sequence, the
Pedestrian sequence, and the Nemo sequence. Best viewed in color.

109

meaningful tracking results. Except for BEYOND, our method (LPT GRID) also

outperforms all other compared method in terms of mean error as well. BEYOND

showed the lowest mean error, but showed the worst result when considering the

percentage of meaningful tracking results. Note that as shown in Figure 5.7, our

method may perform slightly worse than the compared methods depending on the

image sequence, but when all frames in all sequences are considered, our method

outperforms all compared methods. This means that our method gives consis-

tent results among all sequences. Note that the grid initialization version of our

method, LPT GRID, shows similar results as LPT. This is because in many track-

ing situations, the local structure of the target object is preserved, and the grid

configuration is accurate enough for the tracker to work. Also, LPT SMOOTH

shows slightly degraded performance, but gives more stable results than LPT (see

Section. 5.2.9 for details on the stability of the estimated tracking result).

5.2.8 Effectiveness of Hierarchical Diffusion

To demonstrate the effectiveness of hierarchical diffusion, we have compared the

mean error of the tracking results obtained with hierarchical diffusion and with

simple Gaussian diffusion (the random-walk motion model). During the experi-

ment, to compare only the effect of different diffusion strategies, all parameters

including the number of particles were fixed except for the diffusion parameters.

For hierarchical diffusion, σG = 8 and σL = 4, whereas for simple Gaussian dif-

fusion, we varied σ from σ = 0.5 to σ = 10 having 0.5 as step size. Comparison

results are shown in Figure 5.12. In Figure 5.12, results of hierarchical diffusion

are denoted by the solid black lines, the mean results of simple Gaussian diffusion

are denoted by the grey dashed lines, and the range in which results of simple

Gaussian diffusion lie in are denoted with the grey area. As shown in Figure 5.12,

the proposed hierarchical diffusion generally gives better tracking results with the

110

50 100 150 200 250 300 350 400 450 500 550
0

50

100

150

200

250

300

350

400

450

Frame Number

M
e

a
n

 E
r
r
o

r

Hierarchical Diffusion

Gaussian Diffusion (Mean)

(a) Dudek

200 400 600 800 1000 1200
0

20

40

60

80

100

Frame Number

M
e

a
n

 E
r
r
o

r

Hierarchical Diffusion

Gaussian Diffusion (Mean)

(b) Sylvester

100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

90

100

Frame Number

M
e

a
n

 E
r
r
o

r

Hierarchical Diffusion

Gaussian Diffusion (Mean)

(c) Face

50 100 150 200 250 300 350 400 450 500 550
0

50

100

150

200

250

Frame Number

M
e

a
n

 E
r
r
o

r

Hierarchical Diffusion

Gaussian Diffusion (Mean)

(d) Woman

10 20 30 40 50 60 70 80 90 100 110
0

20

40

60

80

100

120

140

160

Frame Number

M
e

a
n

 E
r
r
o

r

Hierarchical Diffusion

Gaussian Diffusion (Mean)

(e) Caviar

20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100

Frame Number

M
e

a
n

 E
r
r
o

r

Hierarchical Diffusion

Gaussian Diffusion (Mean)

(f) High Jump

20 40 60 80 100 120 140 160
0

50

100

150

200

250

300

350

Frame Number

M
e

a
n

 E
r
r
o

r

Hierarchical Diffusion

Gaussian Diffusion (Mean)

(g) Motocross 1

20 40 60 80 100 120 140 160 180 200 220
0

10

20

30

40

50

60

70

80

90

100

Frame Number

M
e

a
n

 E
r
r
o

r

Hierarchical Diffusion

Gaussian Diffusion (Mean)

(h) Mtn. Bike

100 200 300 400 500 600
0

20

40

60

80

100

120

Frame Number

M
e

a
n

 E
r
r
o

r

Hierarchical Diffusion

Gaussian Diffusion (Mean)

(i) Robot

20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

Frame Number

M
e

a
n

 E
r
r
o

r

Hierarchical Diffusion

Gaussian Diffusion (Mean)

(j) Dove

50 100 150 200 250 300 350 400 450 500
0

50

100

150

Frame Number

M
e

a
n

 E
r
r
o

r

Hierarchical Diffusion

Gaussian Diffusion (Mean)

(k) Nemo

50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

80

90

100

Frame Number

M
e

a
n

 E
r
r
o

r

Hierarchical Diffusion

Gaussian Diffusion (Mean)

(l) Pedestrian

Figure 5.12: Mean error obtained using hierarchical diffusion and simple Gaussian
diffusion. See text for details.

111

same number of particles. Note that there are some frames which simple Gaus-

sian diffusion provides better results, such as in (i) and (k). These are special

cases when the global motion of the target object is not large. However this is

not a common case and when all sequences are considered, hierarchical diffusion

achieves lower mean error. Also, note that the same diffusion parameters were

used for all sequences.

5.2.9 Limitations

Though our method outperforms other methods in terms of mean error and the

percent of meaningful frames, there are some limitations to the proposed method.

The first limitation is the accuracy of individual local patches. The accuracy of

individual patches may not be as good when large deformations exist or when the

local patch is not very distinctive from its surroundings. However, when all local

patches are considered together, the overall tracking result for the whole object is

quite accurate owing to the proposed elastic structure. Example tracking results

and their local patch structures are shown in Figure 5.13. As shown in Figure 5.13

(a) - (c), the position of each individual patch is quite accurate when the patches

are discriminant from its surroundings. In (d) - (f), the patch near the head of

the person drifts and the position of the patches is not as accurate as in (a) -

(c) due to large deformation and fast motion. An extreme case for the individual

patch accuracy limitation is shown in Figure 5.13 (g) - (l). In this hand tracking

sequence, the target object is highly deformative and the local patches look similar

to their surroundings. As a result, patches in the lower part of the hand drift.

However, note that the majority of the hand is still tracked when considering the

entire configuration (the blue rectangle), which is one of the advantages of the

elastic structure.

The second limitation is related to the robustness of the proposed method

112

(a) Robot #150 (b) Robot #490 (c) Robot #630

(d) Motocross 1 #5 (e) Motocross 1 #50 (f) Motocross 1 #90

(g) Hand #5 (h) Hand #200 (i) Hand #700

(j) Hand #950 (k) Hand #1030 (l) Hand #1350

Figure 5.13: Example tracking results and their local patch structures. Blue rect-
angle is the final tracking result, green rectangles are local patches with high
confidence (SVM score above 0), red rectangles are local patches with low confi-
dence, and the orange lines denote the neighborhood relationships. Best viewed
in color.

113

(a) Dudek #5 (b) Dudek #561 (c) Mtn.Bike #147 (d) Mtn.Bike #215

(e) Woman #535 (f) Woman #590 (g) Nemo #11 (h) Nemo #515

Figure 5.14: Example tracking results with scale and orientation changes. Blue
rectangle is the final tracking result, green rectangles are local patches with high
confidence (SVM score above 0), red rectangles are local patches with low confi-
dence, and the orange lines denote the neighborhood relationships. Best viewed
in color.

against scale and orientation changes. The proposed method models the move-

ment of individual patches considering translational movements only. In general,

this does not cause major problems since minor scale and orientation changes can

be described as the change in elastic structure. Example of the proposed method

adapting to minor scale change is shown in Figure 5.14 (a) and (b), and example

of the proposed method tracking a target object with minor orientation change

is shown in Figure 5.14 (c) and (d). As shown in the examples, small scale and

orientation changes are explained as change in the elastic structure. Also, even if

the structure fails to describe the change, a few local patches with good matching

scores are enough to track the target object. Figure 5.14 (e) - (h) are examples of

such failures. In Figure 5.14 (e) and (f), the target object undergoes a drastic scale

change as the camera zooms in. Our method fails in adapting to the fast scale

change, but still does not lose track of the target object. In Figure 5.14 (g) and

114

50 100 150 200 250 300 350 400 450 500 550
0

5

10

15

20

25

30

Frame Number

C
h

a
n

g
e
 i
n

 T
o

p
−

le
ft

 C
o

o
rd

.

LPT

LPT_SMOOTH

(a) Sylvester

200 400 600 800 1000 1200
0

5

10

15

20

25

30

Frame Number

C
h

a
n

g
e
 i
n

 T
o

p
−

le
ft

 C
o

o
rd

.

LPT

LPT_SMOOTH

(b) Woman

Figure 5.15: Change in the coordinates of the top-left corner point of the estimated
bounding box for each frame. Note that the smoothed version (LPT SMOOTH,
solid black line) shows much less change than the original (LPT, gray dashed
line) in each frame.

(h), the target object undergoes large in-plane orientation change. Our method

also fails to accurately describe the target object motion in this case. However,

note that in both cases, though the accuracy of the estimate may decrease, our

method does not lose track of the target object, owing to a few patches with

strong matches directing the entire structure to the correct position.

The last limitation is the noisy nature of the estimated tracking result. Since

our problem space is high-dimensional, even with an efficient diffusion scheme,

the number of particles is relatively scarce when trying to obtain a real-time

solution. As a result, we end up with noisy estimates, since particles are relatively

positioned sparsely. As shown in Figure 5.15 with the dashed gray lines, this leads

to abrupt changes in the estimated position. However, as shown in Table 5.2, when

all frames are considered, the results are good with small mean error on average.

Thus, we can simply apply a temporal low-pass filtering to reduce the noise in

the estimate, which is LPT SMOOTH. As shown in Figure 5.15 with the black

solid lines and overall performance in Table 5.2, this simple low-pass filtering

reduces the abruptness in the tracking result greatly without much harm in the

115

performance.

5.3 Remarks and Discussion

A new tracking method based on sequential Bayesian inference has been pro-

posed. The proposed method tackled both the problem of partial occlusions and

non-rigid deformation when tracking objects, by modeling the target object with

an elastic structure of local patches, and by performing hierarchical diffusion in

the solution space. By modeling the target object with an elastic structure of local

patches, the proposed method was able to track objects with partial occlusions

and non-rigid deformations. Also, through hierarchical diffusion, the tracking pro-

cedure was performed in real-time on a desktop PC. The method was evaluated

against state-of-the-art trackers through twelve image sequences with large oc-

clusions and non-rigid deformations. The experimental results showed that the

proposed method outperformed other compared methods, and demonstrated the

robustness of the proposed method against various situations including partial oc-

clusion, non-rigid motion, abrupt motion, translation, rotation, and illumination

change.

As shown in the experiments, the proposed method showed good performance

even with simple initialization strategy. However, with better initialization, the

performance of our method would be enhanced. Therefore, providing sophisti-

cated initializations would be one of the most beneficial directions for future re-

search. Recently, detecting and recognizing objects with part-based models have

drawn much interest (Mikolajczyk et al., 2004; Felzenszwalb et al., 2010). As

a result, importance of part-based tracking methods is increasing. Incorporating

part-based detection and recognizing methods for the initialization of our method

would be a promising way to enhance initialization.

116

Chapter 6

Concluding Remarks and

Future Works

In this thesis, we have proposed bio-mimetic schemes for motion detection and

visual tracking to overcome the limitations of existing methods in actual environ-

ments. The methods were inspired from the theory that four different forms of

visual memory exists for human visual representations of a scene; visible persis-

tence, informational persistence, visual short-term memory (VSTM), and visual

long-term memory (VLTM). We tackled the vision inference problem as model-

ing and representing the observed scene with the temporary short-term models

(TSTM) and the conservative long-term models (CLTM). We have studied on

building efficient and effective models for TSTM and CLTM, and utilized them

together to obtain robust detection and tracking results under occlusions, clumsy

initializations, background clutters, drifting, and non-rigid deformations encoun-

tered in actual environments. We have also combined the key ideas of our pro-

posed methods to form a new method for detection and tracking giving accurate

pixel-wise results.

117

First, to reduce the computation load required for motion detection on non-

stationary cameras, we proposed an efficient representation of TSTM. To achieve

real-time capability with satisfying performance, the proposed method modeled

the background through dual-mode kernel model and compensated the motion

of the camera by mixing neighboring models. Modeling through dual-mode ker-

nel model prevented the background model from being contaminated by fore-

ground pixels, while still allowing the model to be able to adapt to changes of the

background. Mixing neighboring models reduced the errors arising from motion

compensation and their influences were further reduced by keeping the age of

the model. Also, to decrease computation load, the proposed method applied the

proposed modeling grid-wise rather than pixel-wise without performance degra-

dation.

Second, for tracking, to solve the problems of occlusions, background clutters,

and drifting simultaneously with the new tri-model using both TSTM and CLTM.

The proposed tri-model was composed of three models, where each model learned

the target object, the background, and other non-target moving objects online.

The proposed method performed tracking by finding the best explanation of

the scene with the three learned models. By utilizing the information in the

background and the foreground models as well as the target object model, our

method obtained robust results under occlusions and background clutters. Also,

the target object model was updated in a conservative way to prevent drifting.

Furthermore, our method was not restricted to bounding-boxes when representing

the target object, and was able to give pixel-wise tracking results.

Third, a feature-point based tracking method using both TSTM and CLTM

to track objects in case of uncertain initializations and severe occlusions was pro-

posed. To track objects accurately in such situations, the proposed method used

“motion saliency” and “descriptor saliency” of local features and performed track-

118

ing based on generalized Hough transform (GHT). The proposed motion saliency

of a local feature utilized instantaneous velocity of features to form TSTM and

emphasized features having distinctive motions. The descriptor saliency modeled

local features as CLTM and emphasized features which are likely to be of the

object in terms of its feature descriptors. Through these saliencies, the proposed

method tried to “learn and find” the target object rather than looking for what

was given at initialization, thus being insensitive to initialization problems.

Fourth and last, we focused on solving both the problem of tracking under

partial occlusions and the problem of non-rigid object tracking in real-time. We

have built robust CLTM with local patches and their neighboring structures based

on sequential Bayesian inference. The proposed method was mainly composed

of two parts. The modeling part which the target object was modeled using

elastic structure of local patches, and the solver part which employed efficient

hierarchical diffusion method to perform the tracking process in real-time. The

elastic structure of local patches allowed the proposed method to handle partial

occlusions and non-rigid deformations and the proposed hierarchical diffusion

method reduced the required computational load.

Though the four schemes have their own pros and cons, they share the same

philosophy of being inspired from the human visual memory structure. Thus,

combining them into an overall scheme which has all the benefits of each indi-

vidual scheme is our future research direction. The first two schemes and chapter

two and three are based on pixels and are directly related in that chapter two can

be used for modeling the background model for the tri-model in chapter three.

The scheme presented in chapter four can be understood as a feature-point-wise

implementation of the same idea. The last scheme provides a more abstract and

higher-level representation for the target object. We believe by appropriately us-

ing their results in parallel, we would be able to benefit from each scheme.

119

Bibliography

Adam, A., Rivlin, E., & Shimshoni, I. (2006). Robust fragments-based tracking

using the integral histogram. In Proceedings of Computer Vision and Pattern

Recognition, IEEE Conference on, vol. 1, (pp. 798 – 805).

Agarwal, S., Awan, A., & Roth, D. (2004). Learning to detect objects in im-

ages via a sparse, part-based representation. Pattern Analysis and Machine

Intelligence, IEEE Transaction on, 26 , 1475–1490.

Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory

is set both by visual information load and by number of objects. Psychological

Science, 15 (2), 106–111.

Asadi, M., Dore, A., Beoldo, A., & Regazzoni, C. (2007). Tracking by using

dynamic shape model learning in the presence of occlusion. In Proceedings of

Advanced Video and Signal Based Surveillance, IEEE Conference on, (pp. 230

–235).

Avidan, S. (2007). Ensemble tracking. Pattern Analysis and Machine Intelligence,

IEEE Transaction on, 29 (2), 261 –271.

Babenko, B., Yang, M.-H., & Belongie, S. (2011). Robust object tracking with

online multiple instance learning. Pattern Analysis and Machine Intelligence,

IEEE Transaction on, 33 (8), 1619 –1632.

120

Ballard, D. H. (1981). Generalizing the Hough transform to detect arbitrary

shapes. Pattern Recognition, 13 (2), 111–122.

Barnich, O., & Van Droogenbroeck, M. (2011). ViBe: A universal background

subtraction algorithm for video sequences. Image Processing, IEEE Transac-

tions on, 20 (6), 1709–1724.

Bay, H., Ess, A., Tuytelaars, T., & Van Gool, L. (2008). Speeded-up robust

features (surf). Computer Vision and Image Understanding , 110 (3), 346–359.

Besner, D., Davies, J., & Daniels, S. (1981). Reading for meaning: The effects of

concurrent articulation. The Quarterly Journal of Experimental Psychology ,

33 (4), 415–437.

Brady, T. F., Konkle, T., Alvarez, G. A., & Oliva, A. (2008). Visual long-term

memory has a massive storage capacity for object details. Proceedings of the

National Academy of Sciences, 105 (38), 14325–14329.

Brainerd, C. J., & Reyna, V. F. (2005). The science of false memory . Oxford

University Press New York.

Castel, A. D., Pratt, J., & Craik, F. I. (2003). The role of spatial working memory

in inhibition of return: Evidence from divided attention tasks. Perception &

Psychophysics, 65 (6), 970–981.

Cohen, J. D., Perlstein, W. M., & Smith, E. E. (1997). Temporal dynamics of

brain activation during a working memory task. Nature, 386 , 604.

Comaniciu, D., Ramesh, V., & Meer, P. (2003). Kernel-based object tracking.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 25 (5), 564

– 577.

121

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning ,

20 (3), 273–297.

Currie, C. B., McConkie, G. W., Carlson-Radvansky, L. A., & Irwin, D. E. (2000).

The role of the saccade target object in the perception of a visually stable world.

Perception & Psychophysics, 62 (4), 673–683.

Dick, A. (1974). Iconic memory and its relation to perceptual processing and

other memory mechanisms. Perception & Psychophysics, 16 (3), 575–596.

Dinh, T. B., Vo, N., & Medioni, G. (2011). Context tracker: Exploring supporters

and distracters in unconstrained environments. In Proceedings of Computer

Vision and Pattern Recognition, IEEE Conference on.

Elgammal, A., Duraiswami, R., Harwood, D., Davis, L. S., Duraiswami, R., &

Harwood, D. (2002). Background and foreground modeling using nonpara-

metric kernel density for visual surveillance. In Proceedings of the IEEE , (pp.

1151–1163).

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., & Lin, C.-J. (2008). Liblin-

ear: A library for large linear classification. The Journal of Machine Learning

Research, 9 , 1871–1874.

Felzenszwalb, P., Girshick, R., McAllester, D., & Ramanan, D. (2010). Object

detection with discriminatively trained part-based models. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, 32 (9), 1627 –1645.

Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: a paradigm for

model fitting with applications to image analysis and automated cartography.

Communications of the ACM , 24 (6), 381–395.

122

Georgiadis, G., Ayvaci, A., & Soatto, S. (2012). Actionable saliency detection:

Independent motion detection without independent motion estimation. In Pro-

ceedings of Computer Vision and Pattern Recognition, IEEE Conference on,

(pp. 646–653). IEEE.

Godec, M., Roth, P., & Bischof, H. (2013). Hough-based tracking of non-rigid

objects. Computer Vision and Image Understanding , 117 (10), 1245 – 1256.

Grabner, H., Grabner, M., & Bischof, H. (2006). Real-time tracking via on-line

boosting. In Proceedings of the British Machine Vision Conference, vol. 1, (pp.

47–56).

Grabner, H., Leistner, C., & Bischof, H. (2008). Semi-supervised on-line boosting

for robust tracking. In Proceedings of the European Conference on Computer

Vision, (pp. 234–247).

Grabner, H., Matas, J., Van Gool, L., & Cattin, P. (2010). Tracking the invisible:

Learning where the object might be. In Proceedings of Computer Vision and

Pattern Recognition, IEEE Conference on, (pp. 1285 –1292).

Henson, R. N. (1998). Short-term memory for serial order: The start-end model.

Cognitive psychology , 36 (2), 73–137.

Hollingworth, A. (2005). The relationship between online visual representation

of a scene and long-term scene memory. Journal of Experimental Psychology:

Learning, Memory, and Cognition, 31 (3), 396.

Hollingworth, A., & Henderson, J. M. (2002). Accurate visual memory for previ-

ously attended objects in natural scenes. Journal of Experimental Psychology:

Human Perception and Performance, 28 (1), 113.

123

Hollingworth, A., et al. (2004). Constructing visual representations of natural

scenes: The roles of short-and long-term visual memory. Journal of Experi-

mental Psychology-Human Perception and Performance, 30 (3), 519–537.

Irwin, D. (1992). Visual memory within and across fixations. In K. Rayner (Ed.)

Eye Movements and Visual Cognition, Springer Series in Neuropsychology, (pp.

146–165). Springer New York.

Irwin, D. E. (1991). Information integration across saccadic eye movements.

Cognitive psychology , 23 (3), 420–456.

Irwin, D. E., & Zelinsky, G. J. (2002). Eye movements and scene perception:

Memory for things observed. Perception & Psychophysics, 64 (6), 882–895.

Isard, M., & Blake, A. (1998). Condensation–conditional density propagation for

visual tracking. International Journal of Computer Vision, 29 , 5–28.

KaewTrakulPong, P., & Bowden, R. (2003). A real time adaptive visual surveil-

lance system for tracking low-resolution colour targets in dynamically changing

scenes. Image and Vision Computing , 21 (10), 913 – 929.

Kalal, Z., Matas, J., & Mikolajczyk, K. (2010). P-n learning: Bootstrapping

binary classifiers by structural constraints. In Proceedings of Computer Vision

and Pattern Recognition (CVPR), IEEE Conference on, (pp. 49 –56).

Kim, I., Choi, H., Yi, K., Choi, J., & Kong, S. (2010). Intelligent visual surveil-

lance - a survey. International Journal of Control, Automation and Systems,

8 (5), 926–939.

Kim, J., Wang, X., Wang, H., Zhu, C., & Kim, D. (2012). Fast moving object

detection with non-stationary background. Multimedia Tools and Applications,

(pp. 1–25).

124

Kim, S. W., Yun, K., Yi, K. M., Kim, S. J., & Choi, J. Y. (2013). Detection of

moving objects with a moving camera using non-panoramic background model.

Machine Vision and Applications, 24 (5), 1015–1028.

Klein, R. M. (2000). Inhibition of return. Trends in cognitive sciences, 4 (4),

138–147.

Ko, T., Soatto, S., & Estrin, D. (2010). Warping background subtraction. In

Proceedings of Computer Vision and Pattern Recognition, IEEE Conference

on, (pp. 1331–1338).

Krausz, B., & Bauckhage, C. (2011). Automatic detection of dangerous motion

behavior in human crowds. In Proceedings of Advanced Video and Signal Based

Surveillance, IEEE International Conference on, (pp. 224–229).

Kwak, S., Lim, T., Nam, W., Han, B., & Han, J. H. (2011). Generalized

background subtraction based on hybrid inference by belief propagation and

bayesian filtering. In Proceedings of Computer Vision, IEEE International

Conference on, (pp. 2174–2181).

Kwon, J., & Lee, K. M. (2009). Tracking of a non-rigid object via patch-based dy-

namic appearance modeling and adaptive basin hopping monte carlo sampling.

In Proceedings of Computer Vision and Pattern Recognition, IEEE Conference

on, (pp. 1208 –1215).

Kwon, J., Lee, K. M., & Park, F. (2009). Visual tracking via geometric particle

filtering on the affine group with optimal importance functions. In Proceedings

of Computer Vision and Pattern Recognition, IEEE Conference on, (pp. 991

–998).

Levy, B. A. (1971). Role of articulation in auditory and visual short-term memory.

Journal of Verbal Learning and Verbal Behavior , 10 (2), 123–132.

125

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints.

International Journal of Computer Vision, 60 (2), 91–110.

Luck, S. J. (2007). Visual short term memory. Scholarpedia, 2 (6), 3328.

Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for

features and conjunctions. Nature, 390 (6657), 279–281.

Magnussen, S., Greenlee, M. W., Thomas, J. P., et al. (1996). Parallel process-

ing in visual short-term memory. Journal of experimental psychology. Human

perception and performance, 22 (1), 202.

Mahadevan, V., & Vasconcelos, N. (2009). Saliency-based discriminant tracking.

In Proceedings of Computer Vision and Pattern Recognition, IEEE Conference

on, (pp. 1007 –1013).

Mei, X., & Ling, H. (2009). Robust visual tracking using l1 minimization. In

Proceedings of Computer Vision, IEEE International Conference on, (pp. 1436

–1443).

Mikolajczyk, K., Schmid, C., & Zisserman, A. (2004). Human detection based

on a probabilistic assembly of robust part detectors. In Proceedings of the

European Conference on Computer Vision, (pp. 69–82).

Mittal, A., & Huttenlocher, D. (2000). Scene modeling for wide area surveil-

lance and image synthesis. In Proceedings of Computer Vision and Pattern

Recognition, IEEE Conference on, (pp. 160–167).

Murray, D. J. (1967). The role of speech responses in short-term memory. Cana-

dian Journal of Psychology , 21 (3), 263.

Palmer, S. E. (1999). Vision science: Photons to phenomenology , vol. 1. MIT

press Cambridge, MA.

126

Pashler, H. (1988). Familiarity and visual change detection. Perception & Psy-

chophysics, 44 (4), 369–378.

Pérez, P., Hue, C., Vermaak, J., & Gangnet, M. (2002). Color-based probabilistic

tracking. In Proceedings of the European Conference on Computer Vision, (pp.

661–675).

Peterson, M. S., Kramer, A. F., Wang, R. F., Irwin, D. E., & McCarley, J. S.

(2001). Visual search has memory. Psychological Science, 12 (4), 287–292.

Platt, J., et al. (1999). Probabilistic outputs for support vector machines and

comparisons to regularized likelihood methods. Advances in large margin clas-

sifiers, 10 (3), 61–74.

Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. Attention

and performance X: Control of language processes, 32 , 531–556.

Raffone, A., & Wolters, G. (2001). A cortical mechanism for binding in visual

working memory. Journal of Cognitive Neuroscience, 13 (6), 766–785.

Rao, N. I., Di, H., & Xu, G. (2007). Panoramic background model under free

moving camera. In Proceedings of Fuzzy Systems and Knowledge Discovery,

IEEE International Conference on, (pp. 639–643).

Ross, D. A., Lim, J., Lin, R.-S., & Yang, M.-H. (2008). Incremental learning for

robust visual tracking. International Journal of Computer Vision, 77 , 125–141.

Rother, C., Kolmogorov, V., & Blake, A. (2004). ”grabcut”: interactive fore-

ground extraction using iterated graph cuts. ACM Transaction on Graphics,

23 , 309–314.

Sheikh, Y., Javed, O., & Kanade, T. (2009). Background subtraction for freely

127

moving cameras. In Proceedings of Computer Vision, IEEE International Con-

ference on, (pp. 1219–1225).

Sheikh, Y., & Shah, M. (2005). Bayesian modeling of dynamic scenes for object

detection. Pattern Analysis and Machine Intelligence, IEEE Transaction on,

27 , 1778–1792.

Snyder, J. J., & Kingstone, A. (2001). Inhibition of return at multiple locations

in visual search: When you see it and when you don’t. The Quarterly Journal

of Experimental Psychology: Section A, 54 (4), 1221–1237.

Sperling, G. (1960). The information available in brief visual presentations. Psy-

chological monographs: General and applied , 74 (11), 1–29.

Stalder, S., Grabner, H., & van Gool, L. (2009). Beyond semi-supervised tracking:

Tracking should be as simple as detection, but not simpler than recognition.

In Computer Vision Workshops (ICCV Workshops), IEEE International Con-

ference on, (pp. 1409 –1416).

Standing, L. (1973). Learning 10000 pictures. The Quarterly journal of experi-

mental psychology , 25 (2), 207–222.

Stauffer, C., & Grimson, W. E. L. (1999). Adaptive background mixture models

for real-time tracking. In Proceedings of Computer Vision and Pattern Recog-

nition, IEEE Conference on, vol. 2, (pp. 246–252).

Tomasi, C., & Kanade, T. (1991). Detection and tracking of point features. Tech.

rep., Carnegie Mellon University.

Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual

differences in visual working memory capacity. Nature, 428 (6984), 748–751.

128

Vogel, E. K., Woodman, G. F., Luck, S. J., et al. (2001). Storage of features,

conjunctions, and objects in visual working memory. Journal of experimental

psychology Human perception and performance, 27 (1), 92–114.

Wilken, P., & Ma, W. J. (2004). A detection theory account of change detection.

Journal of Vision, 4 (12).

Yi, K. M., Jeong, H., Kim, S. W., & Choi, J. Y. (2012). Visual tracking with

dual modeling. In Proceedings of the 27th Conference on Image and Vision

Computing New Zealand , IVCNZ ’12, (pp. 25–30). New York, NY, USA: ACM.

Yi, K. M., Kim, S. W., Jeong, H., Oh, S., & Choi, J. Y. (2010). Non-rigid object

tracking with elastic structure of local patches and hierarchical sampling. In

Image and Vision Computing New Zealand (IVCNZ), 2010 25th International

Conference of , (pp. 1 –8).

Yi, K. M., Yun, K., Kim, S. W., Chang, H. J., Jeong, H., & Choi, J. Y. (2013).

Detection of moving objects with non-stationary cameras in 5.8ms: Bringing

motion detection to your mobile device. In Computer Vision and Pattern

Recognition Workshops (CVPRW), 2013 IEEE Conference on, (pp. 27–34).

Yilmaz, A., Javed, O., & Shah, M. (2006). Object tracking: A survey. ACM

Computing Surveys, 38 (4).

Yin, S., Na, J. H., Choi, J. Y., & Oh, S. (2011). Hierarchical kalman-particle

filter with adaptation to motion changes for object tracking. Computer Vision

and Image Understanding , 115 (6), 885 – 900.

129

국문 초록

본 논문에서는 실제 환경에서 발생하는 기존 움직이는 물체 검출 및 추적 방법들의

한계를 극복하기 위한 생체 모방(bio-mimetic) 모델들을 제안한다. 제안하는 모델

들은 인간의 시각 인지(visual perception) 과정에 있어서 네 가지 서로 다른 형태의

시각기억(visual memory)이작용한다는이론을기반으로한다.인간의네가지시각

기억은 가시 지속성(visible persistence), 정보 지속성(informational persistence),

시각단기기억(visual short-term memory, VSTM),및시각장기기억(visual long-

term memory)으로 분류된다. 이를 바탕으로 본 논문에서는 움직이는 물체 검출 및

추적 문제를 관측된 장면(scene)을 임시적 단기 모델(temporary short-term model,

TSTM) 및 보수적 장기 모델(conservative long-term model, CLTM)로 모델링하고

나타내는 문제로 이해한다. 즉, TSTM 및 CLTM을 효율적이고 효과적인 방법으로

구성하고, 둘을 함께 사용함으로써 가려짐(occlusion), 부정확한 초기화, 배경 간섭

(background clutter), 드리프팅(drifting), 및 비-강체(non-rigid) 변화등의 문제가

일어나는 실제 환경에서 강인한 물체 검출 및 추적 성능을 얻을 수 있음을 보인다.

첫 번째로 본 논문에서는 비-고정(non-stationary) 카메라에서 움직이는 물체

를 검출하기 위한 효율적인 TSTM 방법을 제안한다. 제안하는 방법은 개인 컴퓨터

(personal computer, PC) 상에서 프레임 당 5.8밀리초(millisecond, ms) 내에 동작

하며 또한 모바일 기기에서도 실시간으로 동작한다. 실시간 성능 및 강인한 성능을

달성하기 위하여 제안하는 방법은 이중모드 커널 모델(dual-mode kernel model,

DMKM)을 사용하여 배경(background)을 모델링 하며, 인접한 모델들을 혼합하여

카메라 움직임을 보정한다. DMKM을 통한 배경 모델링은 전경(foreground) 정보

의 배경 모델 간섭을 방지하면서도 배경의 다양한 변화에 모델이 적응 가능하도록

한다. 제안하는 인접 모델 혼합 방법은 움직임 보정(motion compensation) 시 발생

하는 오차를 감소시키며, 이 오차의 영향은 모델의 나이(age)를 저장함으로써 더욱

감소된다. 또한 연산량을 줄이기 위하여 제안하는 방법은 하나의 DMKM을 다중 픽

130

셀에 적용한다. 다양한 비교 실험을 통하여 제안하는 방법의 적은 연산량 및 강인한

성능을확인하며,제안하는방법이모바일기기에서도실시간으로동작함을보인다.

두 번째로 TSTM과 CLTM의 개념(concept)을 모두 활용하는 새로운 물체 추

적 방법인 삼중 모델링(tri-model) 방법을 제안한다. 제안하는 방법은 가려짐, 배경

간섭, 및 드리프팅 문제를 새로운 삼중 모델링 방법을 통하여 동시에 해결하는 것을

목표로 한다. 제안하는 삼중 모델링 방법은 세개의 모델로 구성되며 각 모델은 추

적 대상, 배경, 및 추적 대상이 아닌 움직이는 물체를 온라인(online)으로 학습한다.

제안하는 방법은 학습된 세 모델을 활용하여 현재 장면을 가장 잘 설명하는 구성을

찾는방식으로물체추적을수행한다.이에따라추적대상모델외에도배경및전경

모델에학습된정보를활용함으로써가려짐및배경간섭에강인한결과를획득하는

것이 가능하다. 또한, 추적 대상은 이들 모델을 활용하여 보수적인 방식으로 갱신

(update)되어 드리프팅이 방지된다. 나아가 제안하는 방법은 물체를 나타냄에 있어

서 사각형 표시(bounding-box)에 국한되지 않고 픽셀 단위 결과를 추출하는 것이

가능하다.

세 번째로 본 논문에서는 픽셀 단위 모델링 방법을 넘어서 TSTM 및 CLTM

을 모두 활용하는 로컬 특징점(local feature) 기반 물체 추적 방법을 제안한다. 제안

하는 방법은 부정확한 초기화 및 극심한 가려짐에 강인한 방법으로 로컬 특징점의

“움직임 특출성(motion saliency)” 및 “모양 특출성(descriptor saliency)”을 새롭게

제안하여 활용하며, 일반화된 허프 변환(generalized Hough transform, GHT)으로

최종 추적 결과를 획득한다. 제안하는 움직임 특출성은 각 로컬 특징점의 순간적인

속도를 TSTM으로 구성하며 추적 대상 외의 물체들의 움직임들을 기반으로 두드러

지는움직임들을강조하도록동작한다.모양특출성의경우로컬특징점들을 CLTM

으로모델링하며특징점모양을기반으로추적대상의특징점일가능성을학습한다.

제안하는방법은이들특출성을바탕으로처음에주어진그대로를찾는것이아니라

추적 대상이 어떠한 특징을 지니는지 지속적으로 학습하고 찾으며, 이에 따라 초기

화에 덜 민감한 성능을 보인다. 또한 제안하는 방법은 추적 대상 외에도 주변의 모든

특징점들로부터의 추정 결과를 합하여 물체의 위치를 구하며, 이에 따라 가려짐에

131

도 강인한 성능을 보인다. 아홉 개의 영상에 대해 100개의 랜덤(random) 초기화를

사용한 비교 실험으로, 제안하는 방법이 다른 여덟 개의 비교된 알고리듬에 비하여

우수함을 보인다.

마지막으로 본 논문에서는 로컬 패치(local patch) 및 인접한 패치들 간의 구조

를 활용하는 강인한 CLTM 방법을 제안한다. 제안하는 방법은 순차 베이지안 추론

(sequential Bayesian inference)에 기반한 방법으로 부분적인 가려짐 및 물체의 비-

강체 변화가 있는 환경 하에서 실시간으로 물체를 추적하는 것을 주안점으로 한다.

제안하는 방법은 크게 (1) 강인한 성능을 위한 로컬 패치들의 탄성적 구조로 이루어

진물체모델링법및 (2)실시간성능을위한효율적인계층적확산(diffusion)방법의

두 부분으로 구성된다. 로컬 패치의 탄성적 구조는 인접한 패치들 간의 관계를 통하

여 부분적인 가려짐 및 물체의 비-강체 변화 문제를 해결한다. 계층적 확산 방법은

연산 시간을 줄이기 위하여 사후분포(posterior distribution)가 집중된 부분에 샘플

(sample)들을 생성한다. 또한, 본 논문에서는 제안된 방법의 유효성을 검증하기 위

하여 가려짐 및 비-강체 변화가 존재하는 다수의 어려운 영상에서 실험을 수행하며,

제안된방법을통하여다양한상황하에서실시간으로강인한결과를얻을수있음을

보인다.

주요어:생체모방모델,물체추적,움직임검출,임시적단기모델,보수적장기

모델

학번: 2007-23039

132

	1 Introduction
	1.1 Background and Research Issues
	1.1.1 Issues in Motion Detection
	1.1.2 Issues in Object Tracking

	1.2 The Human Visual Memory
	1.2.1 Sensory Memory
	1.2.2 Visual Short-Term Memory
	1.2.3 Visual Long-Term Memory

	1.3 Bio-mimetic Framework for Detection and Tracking
	1.4 Contents of the Research

	2 Detection by Pixel-wise Dual-Mode Kernel Model
	2.1 Proposed Method
	2.1.1 Approximated Gaussian Kernel Model
	2.1.2 Dual-Mode Kernel Model (DMKM)
	2.1.3 Motion Compensation by Mixing Models
	2.1.4 Detection of Foreground Pixels

	2.2 Experimental Results
	2.2.1 Runtime Comparison
	2.2.2 Qualitative Comparison
	2.2.3 Quantitative Comparison
	2.2.4 Effects of Dual-Mode Kernel Model
	2.2.5 Effects of Motion Compensation
	2.2.6 Mobile Results

	2.3 Remarks and Discussion

	3 Tracking by Pixel-wise Tri-Model Representation
	3.1 Tri-Model Framework
	3.1.1 Overall Scheme
	3.1.2 Advantages
	3.1.3 Practical Approximation

	3.2 Tracking with the Tri-Model
	3.2.1 Likelihood of the Tri-Model
	3.2.2 Likelihood Maximization
	3.2.3 Estimating Pixel-Wise Labels

	3.3 Learning the Tri-Model
	3.3.1 Target Model
	3.3.2 Background Model
	3.3.3 Foreground Model

	3.4 Experimental Results
	3.4.1 Experimental Settings
	3.4.2 Tracking Accuracy: Bounding Box
	3.4.3 Tracking Accuracy: Pixel-Wise

	3.5 Remarks and Discussion

	4 Tracking by Feature-point-wise Saliency Model
	4.1 Proposed Method
	4.1.1 Tracking based on GHT
	4.1.2 Descriptor Saliency and Feature DB Update
	4.1.3 Motion Saliency

	4.2 Experimental Results
	4.2.1 Tracking with Inaccurate Initializations
	4.2.2 Tracking Under Occlusions

	4.3 Remarks and Discussion

	5 Tracking by Patch-wise Elastic Structure Model
	5.1 Tracking with Elastic Structure of Local Patches
	5.1.1 Sequential Bayesian Inference Framework
	5.1.2 Elastic Structure of Local Patches
	5.1.3 Modeling a Single Patch
	5.1.4 Modeling the Relationship between Patches
	5.1.5 Model Update
	5.1.6 Hierarchical Diffusion
	5.1.7 Summary of the Proposed Method

	5.2 Experiments
	5.2.1 Parameter Effects
	5.2.2 Performance Evaluation
	5.2.3 Discussion on Translation, Rotation, Illumination Changes
	5.2.4 Discussion on Partial Occlusions
	5.2.5 Discussion on Non-Rigid Deformations
	5.2.6 Discussion on Additional Cases
	5.2.7 Summary of Tracking Results
	5.2.8 Effectiveness of Hierarchical Diffusion
	5.2.9 Limitations

	5.3 Remarks and Discussion

	6 Concluding Remarks and Future Works
	Bibliography
	Abstract in Korean

<startpage>15
1 Introduction 1
 1.1 Background and Research Issues 2
 1.1.1 Issues in Motion Detection 2
 1.1.2 Issues in Object Tracking 4
 1.2 The Human Visual Memory 11
 1.2.1 Sensory Memory 12
 1.2.2 Visual Short-Term Memory 13
 1.2.3 Visual Long-Term Memory 16
 1.3 Bio-mimetic Framework for Detection and Tracking 17
 1.4 Contents of the Research 18
2 Detection by Pixel-wise Dual-Mode Kernel Model 22
 2.1 Proposed Method 23
 2.1.1 Approximated Gaussian Kernel Model 24
 2.1.2 Dual-Mode Kernel Model (DMKM) 26
 2.1.3 Motion Compensation by Mixing Models 29
 2.1.4 Detection of Foreground Pixels 31
 2.2 Experimental Results 32
 2.2.1 Runtime Comparison 33
 2.2.2 Qualitative Comparison 35
 2.2.3 Quantitative Comparison 36
 2.2.4 Effects of Dual-Mode Kernel Model 37
 2.2.5 Effects of Motion Compensation 40
 2.2.6 Mobile Results 40
 2.3 Remarks and Discussion 41
3 Tracking by Pixel-wise Tri-Model Representation 42
 3.1 Tri-Model Framework 43
 3.1.1 Overall Scheme 43
 3.1.2 Advantages 47
 3.1.3 Practical Approximation 48
 3.2 Tracking with the Tri-Model 50
 3.2.1 Likelihood of the Tri-Model 50
 3.2.2 Likelihood Maximization 51
 3.2.3 Estimating Pixel-Wise Labels 54
 3.3 Learning the Tri-Model 55
 3.3.1 Target Model 55
 3.3.2 Background Model 56
 3.3.3 Foreground Model 57
 3.4 Experimental Results 59
 3.4.1 Experimental Settings 59
 3.4.2 Tracking Accuracy: Bounding Box 60
 3.4.3 Tracking Accuracy: Pixel-Wise 63
 3.5 Remarks and Discussion 64
4 Tracking by Feature-point-wise Saliency Model 65
 4.1 Proposed Method 66
 4.1.1 Tracking based on GHT 67
 4.1.2 Descriptor Saliency and Feature DB Update 70
 4.1.3 Motion Saliency 73
 4.2 Experimental Results 75
 4.2.1 Tracking with Inaccurate Initializations 77
 4.2.2 Tracking Under Occlusions 81
 4.3 Remarks and Discussion 81
5 Tracking by Patch-wise Elastic Structure Model 84
 5.1 Tracking with Elastic Structure of Local Patches 85
 5.1.1 Sequential Bayesian Inference Framework 85
 5.1.2 Elastic Structure of Local Patches 87
 5.1.3 Modeling a Single Patch 89
 5.1.4 Modeling the Relationship between Patches 91
 5.1.5 Model Update 93
 5.1.6 Hierarchical Diffusion 94
 5.1.7 Summary of the Proposed Method 96
 5.2 Experiments 96
 5.2.1 Parameter Effects 96
 5.2.2 Performance Evaluation 99
 5.2.3 Discussion on Translation, Rotation, Illumination Changes 103
 5.2.4 Discussion on Partial Occlusions 104
 5.2.5 Discussion on Non-Rigid Deformations 106
 5.2.6 Discussion on Additional Cases 106
 5.2.7 Summary of Tracking Results 108
 5.2.8 Effectiveness of Hierarchical Diffusion 110
 5.2.9 Limitations 112
 5.3 Remarks and Discussion 116
6 Concluding Remarks and Future Works 117
Bibliography 120
Abstract in Korean 130
</body>

