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Abstract 

In order to solve power crisis in highly-scaled CMOS technology, a novel tunnel 

field-effect transistors (TFETs), named L-shaped TFETs, have been proposed and its 

electrical properties are examined. It features band-to-band tunneling (BTBT) direction 

parallel to the normal electric field induced by gate electrode. Because carrier injection 

is occurred perpendicular to the channel direction, cross-sectional area and barrier width 

of BTBT junction could be defined by structural parameters. 

Using the commercial TCAD device simulator, its electrical characteristics are 

examined and optimized. It is expected that the L-shaped TFETs will reveal better 

performance than conventional ones in terms of subthreshold swing (S), on-current (Ion) 

and short channel effect. In addition, the performance of L-shaped TFET inverters has 

been compared with that of conventional TFET ones for its complementary logic 

application. 

After the key process techniques are obtained, control and comparison samples are 

fabricated at Inter-University Semiconductor Research Center (ISRC) of Seoul National 

University (SNU), Korea. The main process technique is as follow: in-situ doped 

epitaxial layer growth for constantly doped source region, selective epitaxial layer 

growth of silicon at low temperature for tunneling region, and guarantee sub-3-nm gate 

dielectric. 
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From the electrical measurement of transfer and output characteristics, it is verified 

that 102 mV/dec minimum S in conventional TFET is improve to 7, 34 and 59 mV/dec 

in L-shaped TFET. In addition, the Ion of L-shaped TFET is more than 10 times larger 

than that of conventional one. Extracting several parameters such as source/drain 

resistance, channel resistance, mobility, and tunneling resistance, it is clear that the 

improved performance comes from the reduction of tunneling resistance.  

From this study, it is demonstrated that L-shaped TFET will be one of the most 

promising candidate for a next-generation low-power device.  

 

Key Words: band-to-band tunneling, tunnel field-effect transistor, TFET, low-

power device, L-shaped TFET, subthreshold swing, current drivability 
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In order to reduce dynamic power (CV2
ddf) as well as static power (IoffVdd) of 

semiconductor device, the Vdd should be scale down. However, scaling of threshold 

voltage (Vth) is contradictory to off-state leakage current (Ioff) which is proportional to 

exp(-qVth/mkBT) as presented in Fig. 1.1. In the exponential expression, q represents 

electron charge and kB, m, and T denote Boltzmann’s constant, body coefficient, and 

temperature. In addition, without the Vth scaling, reduction of Vdd results in poor current 

drivability. In order to overcome above mentioned problems, there have been several 

approaches and significant changes over the last decades. For example, strained silicon 

(Si) technology, high-κ/metal gate stack, and FinFET based tri-gate structure have been 

introduced at 90, 45, and 22-nm technology nodes, respectively [3]. 

 

Fig. 1.1. Trade-off correlation between Ioff and Vth scaling. 
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In spite of these efforts, the Vdd below 0.6 V still remains one of the most difficult 

roadblocks for further scaling of MOSFETs [4]. For the reduction of power 

consumption in transistors while maintaining high on-current (Ion) and low-level Ioff, 

subthreshold swing (S) as well as Vdd should be scaled down (Fig. 1.2). However, 

MOSFETs cannot implement sub-60-mV/dec (~2.3kBT/q) S at room temperature 

because they use thermionic emission as a carrier injection mechanism [5]. Therefore, a 

novel device based on the different operation mechanism is necessary for sub-60-

mV/dec S and further Vdd reduction. 

 

 
Fig. 1.2. The Vdd reduction can be achieved by the use of steeper switching device 

without Ion and Ioff degradation. 
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Fig. 1.3. Schematic diagram of n-channel TFET structure. In the case of p-channel TFET, 

n+-doped source and p+-doped drain is used. In general, the TFET is fabricated on the 

silicon-on-insulator (SOI) substrate to suppress junction leakage current through the 

substrate. 
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(a) 

 

(b) 

Fig. 1.4. Energy band diagram of n-channel TFET from source to drain. The TFET is 

under (a) off-state and (b) on-state. 
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order to improve Ion, several strategies have been investigated. One of the approaches is 

the introduction of narrow Eg materials such as SiGe, Ge, GeSn, graphene, carbon 

nanotube (CNT), and III-V compound semiconductors. Because PT(E) is proportional to 

exp(-Eg
3/2), the Ion is increased hyper exponentially with the help of alternative materials 

with smaller Eg. The other approach is the increment of At adopting a novel structure 

which uses BTBT current perpendicular to the channel. 

Secondly, the disappointing S characteristic is in part related to the dependency of 

tunneling barrier width (Wt) on Vg and in part related to sequential turning-on of devices 

due to the Vth variations caused by doping gradient (Fig. 1.6). A plenty of previous 

studies have revealed that abrupt doping profile is helpful for the scaling of S. For 

example, an introduction of n+-pocket region beside p+-source or dopant segregation 

method with the nickel (Ni) silicide process is well known representatives for abrupt 

band bending at source-channel junction. The other point of view, S of TFET is deeply 

related to Wt once the EV-s,max is horizontally aligned with the EC-ch,min. However, in the 

case of conventional TFETs, Wt is determined by junction depletion width (Wd) which is 

expressed as function of Vg. Consequently, it is difficult to achieve small Wt even if two 

energy bands are aligned. In addition, reduction of effective oxide thickness (EOT) of 

gate dielectric with the use of high-κ gate dielectric is also necessary for further 

improvement of S properties [16], [21-29].  

Last of all, an ambipolar current (Iamb) comes from BTBT at channel/drain junction 

with negative Vg. In detail, if the gate is biased negatively, channel potential is decreased 
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and energy bands are aligned at the channel/drain junction. Finally, undesired tunneling 

current is flow and results in poor off characteristic. It could be restricted with the help 

of gate-drain underlap region and moderated doping concentration of drain [15], [18]. 

(a) 

(b) 

Fig. 1.6. Conventional planar TFETs with (a) low-Vg and (b) high-Vg. The tunneling 

junction is turned-on in sequence depending on Vg and gradual doping profile. 
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Chapter 2  

L-shaped TFET 

In this chapter, the features of L-shaped TFET, the effect of device parameters, and 

the optimal fabrication flow considering corner effects are examined with the help of 

TCAD device simulation. A non-local BTBT model is used with Synopsys SentaurusTM 

(version G-2012.06 and H-2013.03) and Silvaco AtlasTM (version 5.16.3.R) [30-32]. 

According to the simulation purpose, more appropriate tool is selected for the high 

reliability and efficiency. 

2.1 Features of L-shaped TFET 

Figure 2.1 shows the simulated structure of a conventional and the proposed TFET 

to overcome previously mentioned TFETs’ technical issues. The proposed one is called 

an “L-shaped TFET” because its channel resembles the alphabet L [20-22]. L-shaped 

TFETs feature mesa-shaped p+-doped source and intrinsic Si regions which are located 

between the source and the gate dielectric layer. The intrinsic Si layer is named as 
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“tunneling region” because it plays the important role of determining L-shaped TFETs’ 

electrical performance which will be discussed later. The length and height of a TFET 

are represented by Lt and Ht. The other device parameters are also listed in Table 2.1 

The results of L-shaped TFET simulation are as follows. First, as shown in the 

inset of Fig. 2.1(a), conventional TFETs have At defined by the channel inversion layer 

thickness which is only a few nm. Because BTBT current flows across the small cross-

sectional area, low Ion is inevitable. On the other hand, L-shaped TFET shows BTBT 

current perpendicular to the channel direction as shown in the inset of Fig. 2.1(b). Thus, 

as Ht increases, At increases, and this leads to higher Ion. Fig. 2.2 shows two-dimensional 

(2-D) contour plot of electron BTBT rates for the conventional planar TFET and the L-

shaped TFET when the devices are fully turned-on. Unlike the planar TFET, the L-

shaped TFET shows BTBT occurred all over the tunneling region simultaneously with 

almost the same amount. 

Table. 2.1. Simulated Device Parameters to Test Basic Operation of L-shaped TFET 

Symbol Quantity Magnitude 

Lg lateral gate length 50 nm 

Tox EOT of gate dielectric 2 nm 

TSOI SOI thickness 20 nm 

Ht height of tunneling region 40 nm (variable) 

Lt length of tunneling region 4 nm (variable) 

Wfn gate work function n+-polycrystalline Si (poly-Si)

NS doping concentration of source 1020 cm-3 

NB doping concentration of body 1015 cm-3 

ND doping concentration of drain 1018 cm-3 
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(a) 

(b) 

Fig. 2.1. Simulated device structure of (a) planar TFET and (b) L-shaped TFET. The 

insets of figures indicate electron tunneling direction. 
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The other expected effect with L-shaped TFET is scaling of S. In order to induce 

BTBT, two conditions should be satisfied as mentioned in the previous chapter. First, 

EV-s,max should be aligned with the EC-ch,min. Second, Wt between them should be small 

enough to induce BTBT because PT(E) depends on Wt hyper-exponentially. Among 

them, the latter factor of Wt, especially at the moment of both energy bands are aligned, 

is more deeply related to the determination of S characteristic. In other words, Wt should 

be small enough to induce large tunneling current when the device enters to the on-state, 

i.e. EV-s,max and EC-ch,min are aligned, for abrupt on-off transition [21]. Thus, the tunneling 

phenomenon can be discussed by using energy band diagrams as shown in Fig. 2.3 and 

2.4. 

In these figures, the hatched triangle shows the approximated BTBT barrier when 

the EV-s,max is aligned with the EC-ch,min. In the case of conventional TFETs, as shown in 

Fig. 2.3, Wt varies as a function of Vg because it is determined by junction depletion 

width. At low Vg, although the EC-ch,min is aligned with the EV-s,max, PT(E) is low due to 

large Wt. Thus, there still exists small BTBT current and it varies as a function of Vg. As 

a result, it makes the on-off transition less abrupt and the S larger. Furthermore, when 

the Lg is short, the Ioff degrades the device performance severely, which is analogous to 

the punch-through current of MOSFETs. 

On the other hand, in the case of L-shaped TFETs, as shown in Fig. 2.4, maximum 

Wt could be the same as Lt once EV-s,max is aligned with EC-ch,min. It means that Wt is 

determined by Lt which is not controlled by electrical bias but defined by fabrication 
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other hand, the Savg indicates the reciprocal of mean ratio of change in the log(Id)-Vg 

curve when Id is increased by five orders of magnitude. Ion means the Id where Vg is 

equal to gate overdrive (Vov) [33]. 

Figure 2.5 shows transfer curves and extracted parameters under the various Vg 

condition. Fig. 2.5(b) shows that Savg increases as Lt increases from 2 to 10 nm. When Lt 

is large, even if EV-s,max is aligned with EC-ch,min, Wt is still large, which is the same as in 

conventional TFETs. It leads to high Ioff and large Savg. Furthermore, Ioff increase lowers 

Vturn-on as shown in Fig. 2.5. On the other hand, as Lt becomes smaller, Wt gets smaller as 

long as EV-s,max is aligned with EC-ch,min. At the same time, it becomes more difficult to 

make EV-s,max aligned with EC-ch,min due to small Lt. It results in small Savg and high Vturn-on. 

Quantitative analysis has been performed for more detailed discussion by using 

simple capacitance model. The tunneling region and the gate dielectric can be modeled 

as two capacitors in series as shown in Fig. 2.6 (a). Equation 2.1 shows the surface 

potential of the channel (߶ୗ), where Cox means density of gate oxide capacitance (εox/Tox) 

and Cd denotes density of depletion capacitance (εSi/Wd). If Lt is small, the whole 

tunneling region is fully depleted and the depletion region in the source is ignorable 

because the maximum Wd (Wdm) of 1020 cm-3 doped p-type Si is ~1 nm. In this case, the 

Wd is assumed to be the same as Lt which is independent on Vg and ߶ୗ can be 

expressed as a function of Lt as Eq. 2.2. Furthermore, ࣟ across the Si tunneling region 

has an almost constant value calculated by using Eq. 2.3. 
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Figure 2.6(b) shows the calculation results of ߶ୗ and ࣟ with the variation of Lt at 

Vg -Vfb= 1 V, where Vfb represents flat band voltage. It has been found that ߶ୗ 

gradually increases due to the decrease of the capacitance in the Si tunneling region as 

Lt increases. Thus, Vturn-on becomes smaller as shown in Fig. 2.6(b). On the other hand, 

ࣟ across the tunneling region is inversely proportional to Lt. Because ࣟ corresponds to 

the slope of energy band diagram, weak ࣟ at large Lt means less abrupt band bending, 

which leads to larger Savg. The relationship between Vturn-on, Savg and Lt in Fig. 2.5(a) can 

be explained by Fig. 2.6(b). Considering that low Savg and Vturn-on are suitable for low 

operating power (LOP) applications, there is a trade-off between Savg and Vturn-on with the 

variation of Lt. Finally, it is determined that the optimum Lt is 4 nm. If Lt is more than 4 

nm, minimal Savg cannot be achieved in spite of small Vturn-on. However, if Lt is less than 

4 nm, Vturn-on is high in spite of the same Savg value. To sum up, when Lt is 4 nm, minimal 

Savg value is achieved with reasonable Vturn-on [21]. 
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So far, L-shaped TFETs have been compared with conventional ones from the 

viewpoint of Savg. From now on, the former will be compared with the latter in terms of 

Ion. As mentioned above, at the same Vov, the L-shaped TFETs show higher Ion than 

conventional ones. In part, it is attributed to the low Savg of L-shaped TFETs as 

explained in the previous paragraph. Another reason for Ion boosting is the large At of L-

shaped TFETs. As shown in the inset of Fig. 2.1(a), conventional TFETs have At defined 

by the channel inversion layer thickness which is only a few nm. Because BTBT current 

flows across the small At, low Ion is inevitable. On the other hand, L-shaped TFETs have 

the tunneling direction perpendicular to the channel as shown in the inset of Fig. 2.1(b). 

Thus, as Ht increases, At increases, which leads to higher Ion. Figure 2.7(a) shows the 

simulated transfer characteristics of L-shaped TFETs as a function of Ht ranging from 

10 to 100 nm. Lt is fixed at 4 nm and Ion is extracted when the Vov is 0.7 V at the same 

drain bias (Vd). In spite of Ht variation, Vturn-on is fixed at ~0.93 V as shown in the inset 

of Fig. 2.7(a). Figure 2.7(b) shows the relationship between Ion and Ht. It has been 

observed that Ion is linearly dependent on Ht. As Ht increases from 10 to 100 nm, Ion 

increases from 0.12 to 0.23 μA/μm. It should be noted that Ion is ~0.11 μA/μm even if Ht 

is zero. It is due to the corner effect of the source region. The details about corner effect 

will be mentioned in Section 2.3. To sum up, L-shaped TFETs can boost Ion by 

increasing Ht without area penalty [21]. 
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Lastly, the L-shaped TFETs’ scale-down limit is compared with conventional 

TFETs. In the case of MOSFETs, reduction of Lg induces severe SCE such as drain-

induced barrier lowering (DIBL) or punch through current that leads to a large increase 

of Ioff and S. On the other hand, the characteristics of TFETs rarely change until Lg down 

to 22 nm, even though there exists a slight increase of Ioff due to DICE or DIBT, as 

shown in Fig. 2.9(a). The results imply that TFETs are superior to MOSFETs in the 

aspect of Lg scaling. The reason of that is well established by previous studies of [34-39]. 

Because Id of TFETs is dominated by tunneling resistance (Rtun) which is generally 

much larger than channel resistance (Rch), change of Lg or channel mobility (μ) seldom 

effect on the Ion [38], [39]. 

However, the conventional planar TFETs show an obvious scaling limit of sub-22-

nm Lg, due to the significant Ioff increase. If the Lg reaches to ~10 nm, valence electrons 

at source could tunnel to the conduction band edge of drain directly because Wt is thin 

enough, i.e. almost the same as Lg. On the other hand, as shown in Fig. 2.9(b), the L-

shaped TFETs do not suffer from SCE since its vertical channel is little affected by the 

Vd. In addition, a large area of source compared to drain region results in electric field 

dispersion. Consequently, DIBT will be reduced drastically and L-shaped TFETs show 

high scalability beyond the 14-nm technology node. 
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It has been inferred that the kink is induced by electric field crowding around the 

sharp source corner edge [22], [40]. In order to confirm this assumption, the source 

corner is rounded off as shown in Fig. 2.12. The radius of the rounded region is ~4 nm. 

In order to investigate the effect of rounded corner, Gaussian doping profile is used at 

the junction between p+-source and tunneling region with peak concentration (Cpeak) of 

1020 cm-3 and standard deviation (stdDevy) of ~0.71 nm, respectively. The other 

simulated parameters are fixed at the same values as control samples for fair comparison. 

From the simulation result, it is observed that the fully depleted rounded corner with 

gradual doping profile (Fig. 2.12(c)) is helpful to suppress kinks (Fig. 2.13). As a result, 

Savg is reduced down to 85 mV/dec and Ion is doubled compared with that in Fig. 2.8. 

The results show that the kink phenomenon comes from the electric field crowding 

which can be alleviated by rounding off sharp source corner edges. However, Savg is still 

larger than 60 mV/dec. According to previous work, abrupt doping profile is necessary 

for narrow Wt which determines the Savg characteristics of TFETs. In other words, in 

terms of doping profile, there is trade-off between the kink phenomenon and the S. 



 

 

 

3

(a

(b

0 

a) 

b) 

 

 



 

 

Fig. 2.12

several d

simulatio

Extracte

Simulati

2. (a) Schem

device param

on. (c) 2-D

d doping p

ion tool: Syn

matic diagram

meters. (b) 2-

D contour pl

profile at so

nopsys Sentau

3

(c

(d

m of an L-sh

-D contour p

lot of dopin

ource and c

urusTM. 

1 

c) 

d) 

haped TFET 

plot of dopan

ng concentra

channel junc

with rounde

nt concentrat

ation and d

ction indicat

 

ed source cor

tion based on

epletion reg

ted in Fig. 

 

orner and 

n device 

gion. (d) 

2.12(b). 



 

 

Fig. 2.1

Synopsy

In o

has been

suppress

direction

achieve 

used as 

uniforml

epitaxial

3. Transfer 

ys SentaurusT

order to supp

n proposed.

sed to make 

n for the redu

abovementio

a substrate 

ly doped so

l growth step

curves with
TM. 

press kinks an

 The main 

Wt narrow, 

uction of kin

oned goals. F

(a). First, a 

ource region

p by in-situ d

3

h the structu

nd improve S

idea is tha

whereas gra

nk effects. Fi

For the reduc

Si epitaxial 

n (b). The d

doping techni

2 

ure shown in

Savg characte

at dopant di

adual doping

igure 2.14 su

ction of bulk 

layer is gro

dopants can 

ique. Then, m

n Fig. 2.12(

eristics, a nov

iffusion in l

g profile is p

ummarizes k

leakage curr

own on the S

be easily in

mesa-shaped

b). Simulati

vel fabricatio

lateral direc

referred in v

key process s

rent, a SOI w

SOI wafer to

njected duri

d source regio

ion tool: 

on flow 

ction is 

vertical 

steps to 

wafer is 

to form 

ing the 

ons are 



 

33 

 

patterned by anisotropic Si etch with hard mask of plasma-enhanced chemical vapor 

deposition (PECVD) oxide (c, d). In order to prevent stress induced by lattice mismatch 

between the Si and silicon-nitride (Si3N4), buffer layer is deposited by high-density 

plasma CVD (HDPCVD) oxide (e). The Si3N4 sidewall spacer is formed by etch-back 

process followed by deposition using low-pressure CVD (LPCVD) with dichlorosilane 

(DCS, SiH2Cl2) and ammonia (NH3) gas. The sidewall spacer is used as a masking layer 

from ion implantation to form drain regions (f), and as a stopper of chemical-

mechanical polishing (CMP) after oxide deposition with HDPCVD (g). For the 

convenient progress of following steps, the polished thickness should be sufficient to 

expose a Si3N4 layer. Then, the Si3N4 sidewall spacer and SiO2 buffer layer are stripped 

step by step with phosphoric acid (H3PO4) and diluted hydrofluoric acid (DHF), 

respectively (h, i). The L-shaped intrinsic Si layer is deposited by selective epitaxial 

growth (SEG) at ~670 °C to suppress lateral diffusion of dopants in the source region 

(j). After SEG, gate dielectric and gate regions are formed by well-established 

replacement gate technology of high-κ/metal gate stack (k, l). Back-end process is the 

same as that of the conventional CMOS process. 

In order to confirm the feasibility of the proposed fabrication steps, process 

simulation has been carried out. Because source-first and low-temperature SEG process 

are adopted, dopants are rarely diffused in lateral direction and abrupt junction profile is 

maintained between the source and the tunneling region as presented in Fig. 2.15(a). On 

the other hand, the diffusion of dopants in vertical direction is not negligible due to 
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thermal process steps including LPCVD step. The abrupt junction profile in lateral 

direction leads to narrower Wt and lower Savg, whereas gradual doping profile in vertical 

direction results in the decrease of kink phenomenon. As a result, the contradictory issue 

between the elimination of kink and the narrow Wt can be addressed simultaneously. 

Figure 2.15(b) shows that Savg characteristic is further improved with the value of 45 

mV/dec in accompany with the reduction of kink. 

Fig. 2.14. Key fabrication steps. 
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2.4 Further Improvement and Circuit Application 

For further optimization of L-shaped TFETs and its complementary logic 

application, 2-nm hafnium dioxide (HfO2) is used as gate dielectric rather than SiO2 to 

improve gate controllability over the channel. In addition, in the case of p-channel L-

shaped TFETs, p+-doped poly-Si is used as gate material for Vturn-on adjustment. 

Figure 2.17 shows the transfer and output curves of optimized n- and p-channel L-

shaped TFETs. For both types of TFETs, Lt is set to be 4 nm following the simulation 

results and Ht is set by 40 nm to alleviate convergence issues in device simulation. They 

show better performance than those with SiO2 gate dielectric, in terms of Vturn-on, Savg 

and Ion as shown in Fig. 2.17(a). One noteworthy thing is that n- and p-channel TFETs 

have almost the same Ion unlike MOSFETs. It is described well in Fig. 2.17(b). Output 

curves are symmetric with respect to the origin although electrons have different 

mobility values than holes. It is because Ion is determined by BTBT rather than carrier 

drift in the case of TFETs. The other interesting point is small channel conductance (gd) 

when Vd is small. This is due to large tunneling resistance Rtun and it is a common 

phenomenon of TFETs. The saturation characteristics of L-shaped TFETs along with 

high Ion promise their low-power applications with high operation speed. 

Finally, in order to evaluate operation speed, an inverter has been designed by 

adopting the optimized n- and p-channel TFETs. Figure 2.16 shows simulation 

conditions. The load capacitance (CL) is set to be 6 fF referring 0.13 μm technology 

nodes and it is not much different from simulated device. The mixed-mode simulation 
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of Silvaco AtlasTM is used for transient simulation. Figure 2.18 presents the effect of 

high-κ gate dielectric on its operation speed. As dielectric constant increases from 10 to 

25, delay time decreases from 29.1 ns to 356 ps. In the case of L-shaped TFET inverters 

with the SiO2 gate dielectric, Vturn-on is too high and Ion is too small to show static 

inverter operation and it is not shown in here. On the other hand, using the high-κ gate 

dielectric, it shows high operation speed up to GHz which is ~1000 times faster than 

conventional ones even though Vd is scaled to 0.5 V. The voltage overshoot comes from 

Miller capacitance which entirely depends on gate-to-drain capacitance [17], [41-43]. 

 
Fig. 2.16. Schematic of an inverter and its input pulse. 
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National University (SNU). Therefore, high-κ/metal gate stack process should be set up 

and introduced in the process. 

For abrupt doping profile between the source and the tunneling region, the intrinsic 

layer beside the source is grown by low temperature SEG process. In addition, thermal 

process with high temperature is performed prior to the SEG step. For example, an 

annealing process for activating the dopants in drain is performed before the SEG. The 

use of high-κ/metal gate stack rather than SiO2/poly-Si also has the advantage of low 

thermal budget. 

According to the simulation results regarding thermal diffusion, the optimum Lt is 

set by ~6 nm and Ht is determined by 50 nm. Considering the measurable base current 

limit is usually dozens of fA, active width more than 80 μm is included in the layout. 

For the simple process flow, self-aligned process is excluded and the minimum Lg is 0.5 

μm. Because the L-shaped TFETs are rarely affected by Lg, it is sufficient to verify the 

ideas. 
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Chapter 3  

Device Fabrication 

3.1 Fabrication of Control TFETs 

In order to prepare control samples, planar TFETs have been fabricated following 

the process sequence as shown in Fig. 3.1. First, active region is defined on 30-nm SOI 

substrate using i-line photolithography followed by reactive ion etch (RIE). The gate 

stack consists of 30-Å thermal SiO2 with dry oxidation process and 2500 Å poly-Si with 

LPCVD process by the use of silane (SiH4) gas. In order to make highly doped n+-poly-

Si gate, arsenic (As) ions are injected by ion-implantation process while dose and 

energy are set by 3×1015 cm-2 and 70 keV. And then, gate is patterned by anisotropic 

RIE process followed by photolithography with Lg from 0.5 μm to 7 μm. Since there 

exists just a 30-Å gate dielectric for etch-stop layer, the RIE process should be 

performed very carefully. Fig. 3.2 shows microtrenching effects that are usually caused 
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by specular reflection of high energy ions due to angles of mask and trench [44]. As a 

result, there exist up to 38-nm differences of etch thickness between the nearby gate 

region and the source/drain side. Regarding the SOI substrate is much thinner than gate 

thickness and it is ~30 nm, a slight over-etch and microtrenching effects influence on 

substrate thickness and, in the worst case, the active region can be disappeared. The 

problem is solved by two-tiered RIE process with different recipe and the latter is 

adjusted for high selectivity with moderated etch rate. After gate patterning, 

source/drain implantation is performed by the use of PSD and NSD mask, respectively. 

In order to suppress dopant diffusion, rapid thermal annealing (RTA) process of 850 °C, 

30sec is used for dopant activation. Finally, inter-layer dielectric (ILD) is formed by 

tetra-ethyl-ortho-silicate (TEOS) oxide with PECVD process and metal layers are 

deposited by physical vapor deposition (PVD) process using Ti/TiN/Al/TiN stacks. 

Fig. 3.1. Device fabrication flow for conventional planar TFETs. 
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Fig. 3.4. Modified fabrication flow. 

Figure 3.5 shows transmission electron microscope (TEM) images just after SEG 

process. In this experiment, source is doped by BF2 ion implantation with the amount of 

1015 cm-2 doses and 30 keV accelerating energy. After that, RTA process is performed at 

1000 °C, 10sec to activate the dopants and moderate an implant damage. However, in 

spite of these efforts, there exist several dislocations and they result in non-uniform 

growth rates in SEG process, as shown in Fig. 3.5. Furthermore, from the other point of 

view, BTBT phenomena should occur simultaneously with the same amount over the 
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3.3 Fabrication of L-shaped TFET 

On the basis of previous experiments, n-channel L-shaped TFET is fabricated as 

follows. After Si epitaxial layer growth on the ~100-nm SOI substrate, mesa-shaped 

source is patterned by RIE process with HDP oxide hard mask of ~200-nm thick. Figure 

3.9 shows scanning electron microscope (SEM) images at (a) source and (b) drain after 

mesa patterning. The inset of Fig. 3.9(a) indicates the thickness of epitaxially grown 

source is about 45 nm. Furthermore, all of highly doped p+-region is removed at drain 

side as well as at mesa boundary although etch thickness differs from each other ~10 nm 

due to the microtrenching effect.  

After the mesa-shaped source formation, As ions are implanted on the drain side 

with PR mask. A PLY mask layer is used for this process based on active region as a 

reference layer. The same layer of PLY mask is also used for gate patterning. In order to 

make up for weak point of non-self-aligned process flow, mis-aligned length between 

the two processes is checked and minimized by in-line SEM as shown in Fig. 3.10. In 

order to suppress thermal diffusion, dopant activation is performed by RTA process of 

850 °C, 30 sec which is equivalent to the control groups as mentioned in Section 3.1. 

As mentioned in Chapter 2, the gate stack is composed of high-κ gate dielectric of 

HfO2 and metal gate of TiN. As shown in Fig. 3.11, a 5.1-nm HfO2 layer is deposited by 

atomic layer deposition (ALD) process, followed by SEG process and interfacial 

oxidation. In order to enhance the stability and electrical property at Si/HfO2 interface, 

~1.3-nm interfacial oxide is grown with the help of chemical oxidation. The process is 
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performed by the use of hydrogen peroxide (H2O2) at 120 °C, 3 min. Its electrical 

characteristics will be examined in Chapter 4. 

The TiN gate is patterned by RIE etch process with Cl2 and BCl3 gases. Although 

the etchants have poor selectivity among the TiN gate, HfO2 gate dielectric, and Si 

substrate, the source region is out of concern since there exist sufficient amount of 

etching stop layer of HDP oxide as shown in Fig. 3.12(a). On the other hand, it is 

necessary to approach more carefully at the drain side. Several tests have been 

performed, and TiN on the main wafers are well patterned by almost just etch (Fig. 

3.12(b)). The residual HfO2 has been removed by 50 : 1 diluted hydrofluoric acid (DHF) 

at room temperature, 1 min. 

For the first step of back-end process, in order to have moderate level difference 

between the source and the drain, the HDP oxide located on the source region is 

removed by the use of PSD mask layer that could selectively open at the source side. 

After that, ~3000 Å of TEOS oxide is deposited by PEVCD process for ILD. Finally, 

metal layers are deposited and patterned, followed by contact hole formation. A TEM 

image of fabricated L-shaped TFET is shown in Fig. 3.13. 
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Fig. 3.14. Modified process flow to minimize mis-alignment. 
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Chapter 4  

Device Characteristics 

4.1 Metal-Oxide-Semiconductor (MOS) Capacitor 

As mentioned in Sections 1.3 and 2.4, the EOT of gate dielectric influences on the 

Savg and Ion properties. Because sub-3-nm gate dielectric technology is not established at 

ISRC, the quality of gate dielectric is characterized with MOS capacitor on bulk wafers. 

It is used for monitoring the gate stack of L-shaped TFETs and composed by high-

κ/metal gate stack for low temperature process flow. 

Figure 4.1 shows the capacitance-voltage (C-V) characteristics of 5.8-nm HfO2 

gate dielectric with TiN gate, measured by Agilent HP4284 precision LCR meter. They 

show frequency dispersion behavior due to parasitic series resistance (RS). In order to 

remove dispersion component for exact capacitance value, two-frequency method has 

been used [45], [46] (Fig. 4.2).  
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4.2 Control Samples of Conventional Planar TFETs 

For the control samples, n- and p-channel planar TFETs are fabricated by following 

the process flow depicted in Section 3.1. For the measurement system, Agilent 4156C 

and B1500 have been used to obtain the current-voltage (I-V) characteristics. 

Figure 4.4 shows transfer and output curves of n-channel TFET and detailed 

doping condition for source is BF2, 3×1013 cm-2 and that for drain is As, 3×1013 cm-2. 

The device shows minimum S of 102 mV/dec and Ion of ~3 nA/μm when the Vg and Vd 

is equal to 1.5 V. 

On the other hand, Fig. 4.5 presents electrical performance when the device under 

the p-channel operation condition. Also, the doping condition for source is As, 3×1014 

cm-2 and that for drain is BF2, 3×1013 cm-2. Because both devices have used n+-poly-Si 

gate, a Vturn-on of p-channel TFET is higher than that of n-channel device even though 

doping concentration of source is higher than its counterpart. The device shows 

minimum S of 78 mV/dec and Ion of ~0.8 nA/μm when the Vg and Vd is equal to -1.5 V. 

The lower level of Ion than n-channel TFET is caused by high Vturn-on. 

In summary, conventional planar TFETs suffer from higher Savg and lower Ion than 

theoretical expectation. The differences of output characteristics, especially in the linear 

region, are suspected by coming from different junction profile and abruptness as well 

as doping conditions.  
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Figure 4.6 shows abnormal behaviors in TFETs’ output curves. In the aspect of 

further increase of Id beyond current saturation, it is similar to the MOSFET breakdown 

or SCE including channel length modulation. However, it is obvious that physics behind 

the phenomena are fundamentally different. For example, if the Vg is small, Id increases 

more severely with low Vd and it is contrast trend compared with the abovementioned 

phenomena of MOSFETs. In order to verify these results, a 2-D device simulation has 

been performed with the help of Synopsis SentaurusTM. The geometrical parameters of 

simulated device are the same as fabricated n-channel TFETs except the Lg is 0.1 μm. As 

shown in Fig. 4.7, simulation results are well corresponded to the experimental data of 

Fig. 4.4(b) and 4.6(a).  

Figure 4.8(a) shows energy band diagrams with various Vd’s while Vg is fixed at 0.5 

V. It suggests that the output characteristics of TFETs can be classified by three different 

operating regions. First, if the Vd is increased approximately from 0 to 1 V, most of Vd 

appear across source/channel tunnel junction due to large Rtun. Because Wt is decreased 

with large ࣟ, Id is increased rapidly in this region, as shown in Fig. 4.4-4.7. Secondly, if 

the Vd is in the range of 1 to 2 V, depletion region at source/channel junction is 

expanded all over the channel and only the potential near the drain side is affected by Vd 

[48]. Because electric field from the drain cannot effect on the tunnel junction, Id is 

saturated. Last of all, if Vd is higher than 2.0 V, valence electrons at channel can tunnel 

to the drain side as depicted in Fig. 4.8(b), i.e. ambipolar behavior is induced by Vd.  

Until now, most of researches have concerned about Iamb in the aspect of Ioff 
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increase as a function of Vg. However, these results imply that Iamb also induced by Vd. If 

the Vg is small, channel potential is much lower than drain potential. As a result, valence 

band maximum of channel (EV-ch,max) and conduction band minimum of drain (EC-d,min) 

can be aligned even though Vd is low, i.e. occurrence of ambipolar behavior. Because 

the main application filed of TFETs is LOP device, these phenomena are problematic 

severely and should be suppressed for its applications with large amount of operating 

voltage window.  

There exist many solutions to reduce Iamb and first of all, the uses of gate material 

with appropriate Wfn. As mentioned at the beginning of this section, n+-poly Si is used 

for both kinds of control TFETs. As a result, the potential difference between channel 

and drain of p-channel TFET is larger than that of n-channel TFET. It is consistent with 

Fig. 4.6, which shows the ambipolar behavior is much severer in the case of p-channel 

operation. Consequently, gate material with appropriate Wfn should be selected for small 

୤ܸୠ ൎ ߶୫ୱ and for constraint of Iamb. In addition to the Wfn engineering, gate-drain 

underlap region and moderated drain doping is also helpful to decrease Iamb, since they 

can effectively reduce the ࣟ at channel/drain tunnel junction [14-16]. Last of all, using 

hetero gate dielectric to make large EOT localized at drain side is also one of well-

known methods to suppress Iamb [18]. 
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4.3 L-shaped TFETs 

The electrical characteristic of p-i-n junction is carefully examined prior to the 

measurement of L-shaped TFET. For that purpose, L-shaped TFET with 1-μm Lg and 

80-μm active width has been used while gate is floated. As shown in Fig. 4.9, the 

junction of L-shaped TFET is well operated as a p-i-n diode depending on Vd. 

Figure 4.10(a) presents the transfer characteristics of n-channel L-shaped TFET 

with the Vd of 0.05, 0.5 and 0.95 V, respectively. First of all, a Vturn-on is ~0.43 V and it is 

~0.63 V higher than planar TFETs as shown in Fig. 4.4(a). It is in part attributed to 

difference of Wfn and in part attributed to increase of depletion capacitance and body 

coefficient as mentioned in Section 2.2. From Fig. 4.10(a), minimum S is extracted as 7, 

34, 59 and 68 mV/dec and Savg is calculated by ~120 mV/dec.  

 Figure 4.11 shows the comparison of transfer characteristics between planar TFET, 

L-shaped TFET without (w/o) SEG region and L-shaped TFET with (w/) SEG region 

while Vd is biased by 0.1 V. If there doesn’t exist SEG region in L-shaped TFETs, its 

transfer characteristic becomes similar to the gate-induced drain leakage (GLDL) of 

MOSFETs. Because source potential as well as channel potential is affected by Vg, Vturn-

on becomes higher and Ion gets lower. It is consistent with the simulation results of Fig. 

2.5 and 2.6 that predict the reduction of Lt results in increase of Vturn-on and larger Savg. 

In order to compensate Vturn-on effects due to the difference of Wfn and depletion 

capacitance, transfer curves are shifted with the reference of 0.1 pA. As a result, it is 

clear that Ion of L-shaped TFET is more than 10 times higher than that of conventional 
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4.4 Extraction of Several Electrical Parameters 

For the analysis of TFETs’ operation, several device parameters are extracted with 

the help of co-integrated MOSFETs. First of all, effective channel length (Leff) excluding 

gate overlap and source/drain resistance (Rsd) are extracted by Terada-Muta method as 

shown in Fig. 4.13. In detail, p-type source resistance (Rs) and n-type drain resistance 

(Rd) refer to half of Rsd in p- and n-channel MOSFETs, respectively. In order to increase 

the accuracy of experiments, physical gate (Lmask) lengths are examined by in-line SEM 

as depicted in the inset of Fig. 4.13. 

 Figure 4.14 presents extracted effective channel mobility (μeff) as a function of Vg 

and effective normal electric field (ࣟୣ୤୤) which is calculated using Eq. 4.5. Comparing 

the universal mobility curves of [52], the extracted μeff has reasonable as shown in Fig. 

4.14 (b). Because the SOI thickness is just about 30 nm, the μeff is much smaller than 

that of [52] with same doping concentration of 1015 cm-3. 

ࣟୣ୤୤ ൌ
୲ܸ୦ െ ୤ܸୠ െ 2߶୆

୭୶ݐ3
൅

୥ܸ െ ୲ܸ୦

୭୶ݐ6
																																																																																				ሺ4.5ሻ 

Finally, assuming Rch of L-shaped TFET is not much different from that of planar 

MOSFETs and all of resistors are connected in series, the Rch and Rtun could be extracted 

as shown in Fig. 4.15. From the results, it is verified that L-shaped TFETs show much 

smaller Rtun, thanks to the novel structure. In addition, in spite of large amount of Rtun 

scaling, it still plays a role of dominant factor to determine Id.  
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Chapter 5  

Conclusions 

In this dissertation, a novel L-shaped TFET has been proposed which features 

BTBT direction perpendicular to the channel. Because Wt and At area are determined by 

Lt and Ht, respectively, L-shaped TFETs are expected to show better performance than 

conventional ones in terms of Savg and Ion characteristics. The effects of several device 

parameters on the performance of L-shaped TFETs have been investigated and a design 

optimization is performed by TCAD simulation. 

In order to fabricate L-shaped TFETs with improved performance, reduction of 

thermal budget is essential to restrict dopant diffusion to the tunneling region. For low 

temperature process flow and reduction of EOT below 3 nm, high-κ/metal gate stack 

process is adopted. In addition, abrupt doping profile is implemented with the help of 

in-situ doped epitaxial layer growth technique for source and Si SEG process for 

tunneling region. Finally, in order to minimize mis-alignment between the gate and the 

drain, sidewall spacer technique using twice is demonstrated for sub-100-nm Lg.  

Device characteristics are examined through the electrical measurement test. 
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초 록 

상보형 금속-산화물-반도체(CMOS) 축소화 기술의 발달과 늘어나는 

단위면적당 전력 소비 문제를 해결하기 위해 L자 형태의 터널링 전계효과 

트랜지스터(L-shaped tunnel field-effect transistor, L-shaped TFET)를 제안, 

제작하고 그 전기적 특성을 검증해 보았다. 제안한 소자는 밴드간 

터널링(band-to-band tunneling)이 게이트(gate)에 의해 형성된 수직방향 

전기장과 평행하게 발생한다. 반송자(carrier)가 채널의 방향과 수직으로 

주입되기 때문에 터널링 접합의 단면적과 장벽의 폭을 구조적 변수들로 

정의할 수 있다. 

상용 TCAD 시뮬레이션 연구를 통하여 전기적 특성을 살펴보고 최적화 

하였다. 시뮬레이션 결과, L자 형태의 TFET은 문턱전압 이하 기울기의 

역수(subthreshold swing, S), 구동 전류, 짧은 채널 효과 측면에서 기존 TFET에 

비해 우수한 성능을 보일 것으로 예상되었다. 뿐만 아니라, 기존 TFET과 

L자 형태의 TFET으로 구성된 인버터들의 특성을 비교해 보았다. 

주요 공정기술을 확보한 이후, 대조군과 비교군을 위한 소자들을 

서울대학교 반도체 공동연구소에서 제작하였다. 주요 공정기술은 균일한 

도핑 농도를 가지는 소스 영역 형성을 위한 실리콘 에피막 성장과 동시에 

불순물 주입을 하는 기술, 터널링 영역을 형성하기 위해 실리콘 에피막을 

선택적으로 저온에서 성장하는 기술, 3 nm 이하의 게이트 산화막 확보하는 
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기술 등을 포함한다. 

전기적 측정을 통하여 얻은 전달 특성과 출력 특성에서, 102 mV/dec에 

불과하였던 기존 TFET의 최소 S 값이 7, 34, 59 mV/dec으로 향상되는 것을 

검증하였다. 뿐만 아니라, 구동 전류 또한 10배 이상 향상 되었다. 

소스/드레인 저항, 채널 저항, 이동도, 터널링 저항등 TFET의 주요 

파라미터들을 추출하여 성능 향상이 터널링 저항의 감소에 의한 것임을 

명백히 확인할 수 있었다. 

본 연구를 통해 L자 형태의 TFET이 차세대 저전력 소자의 강력한 

후보가 될 수 있음을 검증했다.  

 

주요어: 밴드간 터널링, 터널링 전계효과 트랜지스터, 저전력 소자, L자 

형태의 TFET, 문턱전압 이하 기울기, 전류 구동 능력 
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