

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학박사학위논문

Join Processing with Filtering Techniques on

MapReduce Cluster

맵리듀스클러스터에서필터링기법을사용한조인처리

2014년 2월

서울대학교대학원

전기·컴퓨터공학부
이 태 휘

Join Processing with Filtering Techniques on

MapReduce Cluster

맵리듀스클러스터에서필터링기법을사용한조인처리

지도교수 김 형 주

위논문을공학박사학위논문으로제출함

2013년 11월

서울대학교대학원

전기·컴퓨터공학부
이 태 휘

이태휘의공학박사학위논문을인준함

2014년 1월

위 원 장 이 상 구 (인)

부위원장 김 형 주 (인)

위 원 문 봉 기 (인)

위 원 김 선 (인)

위 원 임 동 혁 (인)

Ph.D. DISSERTATION

Join Processing with Filtering Techniques on

MapReduce Cluster

FEBRUARY 2014

DEPARTMENT OF ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

TAEWHI LEE

Abstract

Join Processing with Filtering Techniques
on MapReduce Cluster

Taewhi Lee

Department of Electrical Engineering and Computer Science

College of Engineering

Seoul National University

The join operation is one of the essential operations for data analysis because it is nec-

essary to join large datasets to analyze heterogeneous data collected from different sources.

MapReduce is a very useful framework for large-scale data analysis, but it is not suitable for

joining multiple datasets. This is because it may produce a large number of redundant inter-

mediate results, irrespective of the size of the joined records. Several existing approaches

have been employed to improve the join performance, but they can only be used in spe-

cific circumstances or they may require multiple MapReduce jobs. To alleviate this prob-

lem, MFR-Join is proposed in this dissertation, which is a general join framework for pro-

cessing equi-joins with filtering techniques in MapReduce. MFR-Join filters out redundant

intermediate records within a single MapReduce job by applying filters in the map phase.

To achieve this, the MapReduce framework is modified in two ways. First, map tasks are

scheduled according to the processing order of the input datasets. Second, filters are cre-

ated dynamically with the join keys of the datasets in a distributed manner. Various filter-

ing techniques that support specific desirable operations can be plugged into MFR-Join. If

i

the performance of join processing with filters is worse than that without filters, adaptive

join processing methods are also proposed. The filters can be applied according to their

performance, which is estimated in terms of the false positive rate. Furthermore, two map

task scheduling policies are also provided: synchronous and asynchronous scheduling. The

concept of filtering techniques is extended to multi-way joins. Methods for filter applica-

tions are proposed for the two types of multi-way joins: common attribute joins and distinct

attribute joins. The experimental results showed that the proposed approach outperformed

existing join algorithms and reduced the size of intermediate results when small portions of

input datasets were joined.

Keywords: adaptive join, join filtering, join processing, MapReduce, multi-way join

Student Number: 2004-21603

ii

Contents

Abstract . i

Contents . iii

List of Figures . vii

List of Tables . ix

1 Introduction 1

1.1 Research Background and Motivation . 1

1.2 Contributions . 4

1.2.1 Join Processing with Filtering Techniques in MapReduce 4

1.2.2 Adaptive Join Processing with Filtering Techniques in MFR-Join . 5

1.2.3 Multi-way Join Processing in MFR-Join 6

1.3 Dissertation Overview . 6

2 Preliminaries and Related Work 9

2.1 MapReduce . 9

2.2 Parallel and Distributed Join Algorithms in DBMS 11

2.3 Join Algorithms in MapReduce . 12

2.3.1 Map-side joins . 13

2.3.2 Reduce-side joins . 14

iii

2.4 Multi-way Joins in MapReduce . 17

2.5 Filtering Techniques for Join Processing 19

3 MFR-Join: A General Join Framework with Filtering Techniques in MapRe-

duce 23

3.1 MFR-Join Framework . 24

3.1.1 Execution Overview . 24

3.1.2 Map Task Scheduling . 27

3.1.3 Filter Construction . 28

3.1.4 Filtering Techniques Applicable to MFR-Join 29

3.1.5 API and Parameters . 29

3.2 Cost Analysis . 30

3.2.1 Cost Model . 31

3.2.2 Effects of the Filters . 39

3.3 Evaluation . 41

3.3.1 Experimental Setup . 41

3.3.2 Experimental Results . 43

4 Adaptive Join Processing with Filtering Techniques in MFR-Join 53

4.1 Adaptive join processing in MFR-Join . 54

4.1.1 Execution Overview . 55

4.1.2 Additional Filter Operations for Adaptive Joins 57

4.1.3 Early Detection of FPR Threshold Being Exceeded 58

4.1.4 Map Task Scheduling Policies . 59

4.1.5 Additional Parameters for Adaptive Joins 60

4.2 Join Cost and FPR Threshold Analysis . 61

iv

4.2.1 Cost of Adaptive Join . 61

4.2.2 Effects of FPR Threshold . 62

4.2.3 Effects of Map Task Scheduling Policy 63

4.3 Evaluation . 64

4.3.1 Experimental Setup . 64

4.3.2 Experimental Results . 65

5 Multi-way Join Processing in MFR-Join 77

5.1 Applying filters to multi-way joins . 78

5.1.1 Common Attribute Joins . 79

5.1.2 Distinct Attribute Joins . 80

5.1.3 General Multi-way Joins . 83

5.1.4 Cost Analysis . 83

5.2 Implementation Details . 84

5.2.1 Partition Assignment . 85

5.2.2 MapReduce Functions . 88

5.3 Evaluation . 89

5.3.1 Common Attribute Joins . 90

5.3.2 Distinct attribute joins . 91

6 Conclusions and Future Work 99

6.1 Conclusions . 99

6.2 Future Work . 100

6.2.1 Integration with Data Warehouse Systems 100

6.2.2 Join-based Applications . 101

6.2.3 Improving Scalability . 102

v

References 105

Summary (in Korean) 113

vi

List of Figures

1.1 Hadoop ecosystem . 2

1.2 Basic join processing in MapReduce . 3

2.1 Execution overview of MapReduce . 10

2.2 Map-merge join . 13

2.3 Broadcast join . 14

2.4 Repartition join . 15

2.5 Semijoin in MapReduce . 16

2.6 Basic multi-way join processing in MapReduce 17

2.7 Fragment-replicate joins in MapReduce 18

2.8 Bloom filter . 19

3.1 Execution overview . 25

3.2 Map task scheduling . 27

3.3 Shuffle phase in MapReduce . 31

3.4 Experimental results: varying the ratio of joined records (SF=100) 44

3.5 Experimental results: varying the ratio of joined records (SF=200) 45

3.6 Experimental results: varying the ratio of joined records (SF=300) 46

vii

3.7 Task timelines . 47

3.8 Map phase time: varying the ratio of joined records (SF=100) 48

3.9 Experimental results with various filtering techniques (SF=100) 50

3.10 Experimental results with various Bloom filter sizes (SF=100) 51

4.1 Execution overview . 55

4.2 Execution times with various filtering techniques 66

4.3 Intermediate results sizes with various filtering techniques 67

4.4 Execution times with Bloom filters varying FPR thresholds 69

4.5 Execution times with interval filters varying FPR thresholds 70

4.6 Execution times and intermediate result sizes with synchronous and asyn-

chronous scheduling . 72

4.7 Execution times with various HDFS block sizes 74

4.8 Intermediate result sizes with various HDFS block sizes 75

5.1 Common attribute join . 79

5.2 Distinct attribute joins . 81

5.3 Performance of common attribute joins 92

5.4 Performance of distinct attribute joins . 94

5.5 Performance of distinct attribute joins with the filtering pattern 96

6.1 Join-based graph pattern matching . 102

viii

List of Tables

3.1 Filter merging time . 28

3.2 User parameters for MFR-Join . 30

3.3 Cost parameters . 33

4.1 Merge and estimateFPR operations for some example filters 57

4.2 Additional parameters for adaptive joins 61

5.1 Test datasets for common attribute joins 90

5.2 Test datasets for distinct attribute joins . 93

ix

Chapter 1

Introduction

1.1 Research Background and Motivation

We live in remarkable times, which are known as the era of “Big Data” [12]. Big Data is

not clearly defined, but it is commonly characterized by three key properties(3Vs): volume,

velocity, and variety [16]. A massive volume of data in various types and formats can be

accumulated from various sources at an extremely high speed.

The analysis of large-scale data is playing an increasingly important role in business

decision-making activities, because it can identify valuable information that is hidden in

the data. For instance, Facebook collects tens to hundreds of terabytes of user log data

every day, which it analyzes to provide a number of features, such as Facebook Insights for

advertisers and friend recommendations [50]. At an Indian telecom company, billions of

voice call data records are generated. These records are analyzed to enhance their portfolio

of services [21].

In certain circumstances, it is necessary to analyze heterogeneous datasets that are col-

lected from different sources. For example, Samsung Electronics produces a variety of de-

vices, such as smartphones, tablet PCs, and televisions. Each device, or an application in-

1

Hadoop Ecosystem

12

Distributed Processing Framework
MapReduce

Workflow Scheduler
Oozie

Data Analysis and Mining
Hive, Pig, Mahout

Data Loader
Flume, Sqoop

Distributed Data Store
HBase

Distributed File System
HDFS

Coordi-
nation

Zookeeper

Seriali-
zation
Avro

Monitor-
ing

Chukwa

Figure 1.1: Hadoop ecosystem

stalled on it, accumulates different types of log data. These data have to be analyzed to-

gether to obtain business insights. Consequently, processing join operations between large

heterogeneous datasets has become an important issue.

To process huge amounts of raw data, the MapReduce framework was developed by

Google and it was made open to the public in 2004 in a paper titled, “MapReduce: Sim-

plified Data Processing on Large Clusters” [13]. MapReduce facilitates the processing of

tremendous amounts of data in a reasonable amount of time using a large cluster of com-

modity machines. This is achieved via a simple programming interface with map and reduce

functions, so users can implement their jobs easily. For further convenience, MapReduce

supports the automatic parallel and distributed processing of user programs with graceful

failure handling. It is now being used more widely, since the emergence of Hadoop [2],

which is an open-source implementation of the MapReduce framework. The utility of

Hadoop-MapReduce is increasing because it can be used together with other components of

2

Basic Join Processing in MapReduce

3

<a0, b0>
<a2, b2>
<a3, b3>

R

S

<a0, b0>
<a2, b2>
<a4, c4>

Reduce 1

Reduce 0 Output 0

<a1, c1>
<a3, c3>
<a4, c4>
<a5, c5>

<a1, c1>
<a3, b3>
<a3, c3>
<a5, c5>

<a3, b3, c3>

Output 1

hash(a) = 0

hash(a) = 1

Figure 1.2: Basic join processing in MapReduce

the Hadoop ecosystem, which is shown in Figure 1.1. It becomes a de-facto standard for the

Big Data management and business intelligence as its market is forecast to reach billions of

dollars in five years, according to several market research reports [35, 36].

MapReduce is well suited to processing a single homogeneous dataset, but not for the

performance of join operations on multiple heterogeneous datasets [10, 54]. To join multiple

datasets in MapReduce, all of the input records have to be sent from map workers to reduce

workers, regardless of the size of the joined records, as shown in Figure 1.2. This can

produce a large number of redundant intermediate results that incur disk I/O costs for sort

and merge, as well as network I/O costs for communication with other cluster nodes [18].

In the field of databases, many techniques have been developed over the past 30 years

to address this problem [19]. However, auxiliary data structures are not available in MapRe-

duce, such as indexes or filters, as it was initially designed to process a single, large dataset [13].

In this regard, some researchers have criticized MapReduce for ignoring rich technologies

in database management systems, including efficient indexes and careful query execution

planning [42]. It is not trivial to apply filters in MapReduce for the following two reasons.

First, the processing order of input datasets cannot be controlled in the original MapReduce

3

framework, because MapReduce schedules map tasks regardless of the dataset from which

their corresponding input splits were obtained. Second, the filters should be constructed in

a distributed manner because an input dataset is divided into multiple splits and distributed

to all cluster nodes. Thus, it is necessary to design a filtering mechanism for MapReduce.

The problem of join processing in the MapReduce framework is addressed in this dis-

sertation. The fundamental idea is to reduce the number of redundant intermediate results

within a single MapReduce job, by exploiting filtering techniques. This dissertation focuses

on the equi-join, which is used most widely. Details of specific contributions and an outline

of this dissertation are presented in the following sections.

1.2 Contributions

The contributions of this dissertation can be divided roughly into three parts. First, a general

join framework is proposed for applying filtering techniques. Next, the methods used for

applying filters adaptively are presented according to their efficiency, because filters are

not always beneficial for the join performance. Finally, the proposed method, which was

originally developed for two-way joins, is extended to consider multi-way joins.

1.2.1 Join Processing with Filtering Techniques in MapReduce

MFR-Join: A General Join Framework with Filtering Techniques in MapReduce

The primary problem of join processing in MapReduce is that it generates large volumes of

intermediate results, regardless of the number of final join results. To alleviate this prob-

lem, a general join method with filtering techniques called MFR-Join is proposed in this

dissertation, which improves the join performance of the MapReduce framework by reduc-

ing the number of intermediate results. A working MFR-Join prototype was implemented in

4

Hadoop, and two design changes were produced. First, map tasks are assigned based on the

order of the dataset. Second, filters are constructed in a distributed manner in the middle of

the map phase. The proposed method was evaluated against several existing join algorithms

with various sizes of TPC-H dataset using a commodity cluster. The results showed that

the query execution time was improved significantly, especially when a small fraction of an

input dataset is joined.

1.2.2 Adaptive Join Processing with Filtering Techniques in MFR-Join

Applying Filters Based on the False Positive Rates

The performance of join processing with filters is not always better and it can sometimes be

worse than join processing without filters. To handle such cases, an adaptive join method

with filtering techniques is proposed. In the adaptive join mode, MFR-Join estimates the

performance of filters based on the false positive rates, and it disables filters with false pos-

itive rates greater than a user-configured threshold. An evaluation of the proposed method

against the basic join algorithm without filters and the non-adaptive join with filters showed

that the proposed method provided stable performance, which was similar to or better than

that of the repartition join and the non-adaptive join.

Synchronous and Asynchronous Task Scheduling

MFR-Join needs to merge the filters for all tasktrackers because the input dataset is divided

into multiple splits and distributed to all of the cluster nodes. Two map task scheduling

policies are proposed in this dissertation: synchronous and asynchronous scheduling. In

synchronous scheduling, the map tasks for the second input dataset are not assigned during

the merging phase. The tasktrackers should wait for the merged filters, but every second

5

input split can be processed with the filters, so more redundant intermediate results can be

filtered out. In asynchronous scheduling, the map tasks are assigned continuously, although

some tasks can be processed without the merged filters. Thus, the tasktrackers do not need

to wait for the filters, although the size of the intermediate results may increase. There is a

tradeoff between synchronous and asynchronous scheduling, which depends on the waiting

time and the filter performance.

1.2.3 Multi-way Join Processing in MFR-Join

Applying Filters to Multi-way Joins

Joining multiple datasets in MapReduce may amplify the disk and network overheads be-

cause intermediate join results have to be written to the underlying distributed file system,

or the map output records have to be replicated multiple times. A method for applying filters

based on the processing order of input datasets is proposed in this dissertation, which is ap-

propriate for the two types of multi-way joins: common attribute joins and distinct attribute

joins. The number of redundant records filtered depends on the processing order. The input

records do not need to be replicated in common attribute joins, so a set of filters is created,

which are applied in turn. In distinct attribute joins, the input records have to be replicated,

so multiple sets of filters need to be created, which depend on the number of join attributes.

1.3 Dissertation Overview

The remainder of this dissertation is organized as follows. In Chapter 2, the background

and related work are presented. The MapReduce framework is explained first, which is the

basis of this study. The existing join algorithms in MapReduce for two-way and multi-way

joins are reviewed. Next, several filtering techniques are described, which can be applied to

6

join processing.

MFR-Join is described in Chapter 3, which is a general join framework with filter-

ing techniques in MapReduce. Its architecture and differences compared with the original

MapReduce are explained. The processing cost is affected by the processing order of the

two input datasets in MFR-Join. Thus, a cost model that helps to choose the processing

order is also presented.

To overcome the shortcomings of join processing with filters in MapReduce, an adaptive

join processing method that applies the filters according to their performance is presented

in Chapter 4. Filters are applied only when their performance, which is estimated using a

proposed method, is better than the user-configured threshold. The cost of adaptive join and

the effects of the threshold on the cost are also discussed in this chapter.

MFR-Join is extended to multi-way joins in Chapter 5. This chapter explains the pro-

posed methods for applying filters to both multi-way join cases: common attribute joins and

distinct attribute joins. Finally, the conclusions and future research are described in Chap-

ter 6.

7

Chapter 2

Preliminaries and Related Work

In this chapter, the basic concepts and the related work around this study are presented.

MapReduce is described in Section 2.1, which is the basic framework of this study, and

classic parallel and distributed join algorithms in databases are reviewed in Section 2.2.

Then, two-way and multi-way join algorithms in MapReduce are reviewed in Section 2.3

and 2.4. Finally, several filtering techniques that can be used for join processing are men-

tioned in Section 2.5.

2.1 MapReduce

MapReduce [13] is Google’s programming model for large-scale data processing run on a

shared-nothing cluster. As the MapReduce framework provides automatic parallel execu-

tion on a large cluster of commodity machines, users can easily write their programs with-

out the burden of implementing features for parallel and distributed processing.

A MapReduce program consists of two functions: map and reduce. The map function

takes a set of records from input files as simple key/value pairs, and produces a set of inter-

mediate key/value pairs. The values in these intermediate pairs are automatically grouped

9

MapReduce Framework [Dean, OSDI ’04]

36

DFS

Split 0

Input

Split 1
Split 2

…

Map

Map

Map

sort

Reduce

merge

Reduce

DFS

Part 0

Output

Part 1

: remote I/O
: local I/O

Figure 2.1: Execution overview of MapReduce

by key and passed to the reduce function. Sort and merge operations are involved in this

grouping process. The reduce function takes an intermediate key and a set of values corre-

sponding to the key, and then produces final output key/value pairs. An execution overview

of MapReduce is shown in Figure 2.1.

A MapReduce cluster is composed of one master node and a number of worker nodes.

The master periodically communicates with the workers using a heartbeat protocol to check

their status and control their actions. When a MapReduce job is submitted, the master

creates map and reduce tasks, and then assigns each task to idle workers. A map worker

reads the input split and executes the map function specified by the user. A reduce worker

reads the intermediate pairs from all map workers and executes the reduce function. When

all tasks are complete, the MapReduce job is finished.

Hadoop [2] is a popular open-source implementation of the MapReduce framework.

Although Google obtained a patent on MapReduce in early 2010 [14], it has been confirmed

by Google that implementations of Hadoop are officially safe. In Hadoop, the master node

is called the jobtracker and the worker node is called the tasktracker. Tasktrackers run one

or more mapper and reducer processes, which execute map and reduce tasks respectively,

10

according to the configuration. As the proposed methods have implemented into Hadoop,

Hadoop terminology will be used in the remainder of this dissertation.

2.2 Parallel and Distributed Join Algorithms in DBMS

Since the join operation is one of the most important operation in database management

systems, a lot of research has been conducted for efficient join processing over thirty years.

Some closely related work is mentioned here. Consult the survey by Graefe [19] or the

textbook by Silberschatz et al. [48] for more details.

Schneider and DeWitt presented parallel versions [45] of four join algorithms: the sort-

merge join [5], the simple hash join [15], the Grace hash join [27], and the hybrid hash

join [15]. Because the parallel join algorithms assume a shared-nothing environment, they

can be naturally adapted to the MapReduce environment, which is also shared-nothing ar-

chitecture. In effect, it can be said that the join algorithms in MapReduce, which are in-

troduced in Section 2.3, derive from these parallel join algorithms. For example, the map-

merge join [30] and the repartition join [10] in MapReduce are very similar to the parallel

sort-merge join algorithm. In addition, the fragment and replicate join [17] in distributed

databases influences the multi-way join algorithms in MapReduce, which are introduced in

Section 2.4.

In distributed databases, it is important to reduce the network traffic among cluster

nodes. Thus, researchers have attempted to reduce the size of redundant records that are

transferred. Semijoin [9] is a classic distributed join algorithm. Suppose that we evaluate

a join between relations R(a,b) at site S1 and S(a,c) at site S2. It uses a three-step process:

First, it sends unique join attributes from a relation, say R at S1, to S2. Second, it computes

joined records in the other dataset, say S at S2, with the unique join keys from the first step,

11

and sends them back to S1. Third, it produces final join results at S1 by computing the join

between R and the joined records of S from the second step. The semijoin is efficient when

few tuples contribute to the join because it does not send the tuples that are not joined. In

distributed databases where relations are horizontally partitioned, methods for optimizing

the semijoin were presented by Shasha and Wang [47] as well as Segev [46]. The semijoin

has been also adapted to the MapReduce environment by Blanas et al. [10].

Bloomjoin [34] is a distributed join algorithm to filter out tuples that are not matched

by a join using Bloom filters [11]. Consider the same join example as in the semijoin. The

bloomjoin algorithm generates a Bloom filter with the join keys of a relation, say R. Then,

it sends the filter to S2, where S resides. At S2, it scans S and sends only the tuples with the

join keys that are set in the received filter to S1. Finally, it joins R and the filtered S at S1.

This idea has been extended to multi-way joins by Kemper et al. [26]

These studies were conducted in distributed databases, which provide low scalability

compared to large-scale data processing systems. The methods proposed in this dissertation

not only extend the concept of filtering techniques to the large-scale data processing systems

by merging filters globally, but also provide several features such as adaptive joins based on

filter performance and application of various filtering techniques.

2.3 Join Algorithms in MapReduce

Join algorithms in MapReduce are roughly classified into two categories: map-side joins

and reduce-side joins [30]. Map-side joins produce final join results in the map phase, and

do not use the reduce phase. Because they do not need to pass intermediate results from

map workers to reduce workers, map-side joins are more efficient than reduce-side joins;

however, they can only be used in particular circumstances. Reduce-side joins can be used

12

Map-Merge Join [KH Lee et al., SIGMOD Record ’11]

§ Hadoop’s map-side join
§ Requirement

– R and S must be partitioned and sorted in the same way

§ Implemented in one map-only MR job
– Map: read the same partition of both input and execute merge join

14/25

<a0, b0>
<a2, b2>
<a3, b3>

R S
<a1, c1>
<a3, c3>
<a2, c2>

<a4, c4>
<a5, c5>
<a3, c3’>

<a0, b0>
<a2, b2>

R

<a3, b3>

S

<a2, c2>
<a4, c4>

<a1, c1>
<a3, c3>
<a3, c3’>
<a5, c5>

Merge
join

Figure 2.2: Map-merge join

in more general cases, but they are inefficient because large intermediate records are sent

from map workers to reduce workers. This work is an attempt to provide both generality

and performance by improving reduce-side joins.

2.3.1 Map-side joins

Hadoop’s map-side join [53], called the map-merge join [30], merges input datasets that are

partitioned and sorted on the join keys in the same way, similar to merge join in traditional

DBMS. That is, each input dataset must be divided into the same number of partitions and

must be sorted by the same key. All the records for a particular key must reside in the same

partition. Although this is a little strict requirement, it may be useful to join the outputs

from other MapReduce jobs that had the same number of reducers and the same keys. The

map-merge join can be implemented in one map-only job. Each mapper reads the same

partition of the input datasets and executes the merge join. Hadoop provides API for the

map-merge join and users can specify the paths of input partitions. However, it requires an

additional MapReduce job if the input datasets are not partitioned and sorted in advance, as

shown in Figure 2.2.

The broadcast join [10] distributes the smaller one of the input datasets to all map work-

ers, and performs the join in the map phase. The broadcast join can be implemented in one

13

Broadcast Join [Blanas et. al., SIGMOD ’10]

Input

Map

<a0, b0>
<a2, b2>
<a3, b3>

R

S

Output 0
<a3, b3, c3>
<a2, b2, c2>

0 <a0, b0>
<a2, b2>

1 <a3, b3>

In-memory
hash table

Map

Output 1

<a3, b3, c3’>

0 <a0, b0>
<a2, b2>

1 <a3, b3>

In-memory
hash table

Each map task must read the whole of build input R
è Broadcast join should be used only if |R| << |S|

11/25

<a1, c1>
<a3, c3>
<a2, c2>

<a4, c4>
<a5, c5>
<a3, c3’>

DFS

Figure 2.3: Broadcast join

Map-only job. Consider the example in Figure 2.3. Suppose that an input dataset R is much

smaller than the other input dataset S. First, in the init phase before the map phase, each

map task reads the smaller dataset R and builds an in-memory hash table using the join key.

Then, it reads a split of S and probe the hash table with the join key and produce final join

results, like the hash join in RDBMS. These results are written to distributed file system,

and not sent to reducers. Since the broadcast join is run in a map-only job, it does not pro-

duce intermediate results, and avoids the network overhead in reduce-side joins. However,

it is efficient only if the size of an input dataset is small. Another difference is that the final

results for a particular key may be spread across multiple mappers because these results are

not grouped in reducers.

2.3.2 Reduce-side joins

The repartition join [10] is the most common join algorithm in MapReduce. It works similar

to the parallel sort-merge join in DBMS, and can be implemented in one MapReduce job.

14

Basic Join Processing in MapReduce

2

Input
a0 R : b0
a2 R : b2
a3 R : b3

a2 S : c2
a1 S : c1
a3 S : c3

Map

Map

Reduce

a1 S:c1
a3 R:b3, S:c3,

S:c3’
a5 S:c5

Reduce

<a0, b0>
<a2, b2>
<a3, b3>

R

S
<a1, c1>
<a3, c3>
<a2, c2>

<a4, c4>
<a5, c5>
<a3, c3’>

a0 R:b0
a2 R:b2, S:c2
a4 S:c4

Part 0

<a3, b3, c3>
<a3, b3, c3’>

<a2, b2, c2>

Part 1

a4 S : c4
a3 S : c3’
a5 S : c5

Map

K V
K V

Output

Figure 2.4: Repartition join

Figure 2.4 illustrates an example of the repartition join between the datasets R and S. Each

mapper reads a split of R or S, and outputs the join attribute as the key, and its dataset id and

other attributes as the value. The dataset identifier is tagged to identify where the record

is from. The map outputs then are partitioned, sorted, and merged by the MapReduce

framework. Next, reducers do the join for each grouped records. The reducers buffer these

values into two sets, the records from R and the records from S, by the dataset identifier,

and then produce final join results. The repartition join is most common and general, but

it has a drawback. It is that all of the input records have to be sent to reducers, including

unnecessary records, which are marked with strikethroughs in Figure 2.4. These records are

not joined, so mappers do not have to send these records to reducers. This may lead to a

performance bottleneck.

The semijoin in MapReduce [10] works in a similar manner to the semijoin in tradi-

tional DBMS. It runs each step of the three-step process in the semijoin in an independent

MapReduce job. Figure 2.5 illustrates each job in the MapReduce version of the semijoin.

Join input datasets are the same in the earlier examples. The first job extracts unique join

15

2nd job: compute S UKR (REFS)

Semi Join in Distributed Databases
1st job: extract unique keys (UKR)

UKR

3. R REFS

1/25

<a0, b0>
<a2, b2>
<a3, b3>

R
a0
a2
a3

S

<a1, c1>
<a3, c3>
<a2, c2>

<a4, c4>
<a5, c5>
<a3, c3’>

Broadcast
join

<a2, c2>
<a3, c3>
<a3, c3’>

REFS

3rd job: compute R REFS

<a0, b0>
<a2, b2>
<a3, b3>

R

Broadcast
join

<a2, b2, c2>
<a3, b3, c3>
<a3, b3, c3’>

R S

Figure 2.5: Semijoin in MapReduce

keys from an input dataset. The second job finds joined records in the other dataset with

the unique join keys from the first step. Finally, the third job produces final join results by

performing the join between R and the joined records of S from the second step. The semi-

join in MapReduce may reduce the size of the intermediate results by filtering out the un-

referenced records with unique join keys. Therefore, it is efficient when a small portion of

records participate in joins. However, the semijoin requires three MapReduce jobs, which

means that the results of each job are written and read in the next job. This incurs additional

I/O overheads.

Recent studies have attempted to adapt the bloomjoin to the MapReduce framework.

Reduce-side joins with a Bloom filter were proposed previously [40, 56, 57, 33], but they

create the filter via an independent job. Therefore, they have to process the input datasets

multiple times. Koutris [28] theoretically investigated join methods using Bloom filters

within a single MapReduce job, but did not provide specific technical details. This dis-

sertation proposes a general join framework with various filtering techniques in a single

MapReduce job. Furthermore, while all of the studies apply filters without regard to their

performance, the proposed methods in this dissertation apply filters adaptively for stable

performance according to their false positive rates.

16

Naïve Multi-way Join (Full Replicate Join)

a b
a0 b0
a1 b1

R

b c
b0 c0
b0 c0'
b1 c1

S

Input

c d
c0 d0
c1 d1
c2 d2

T

b0, - R : a0
b1, - R : a1
b0, - R : a0
b1, - R : a1

b0, c0 S : -
b0, c0’ S : -
b1, c1 S : -

Map

Map

Reduce

Reduce

b0, - R : a0
b0, c0 S : -
b0, c0’ S : -
b1, - R : a1
-, c0 T : d0
-, c1 T : d1
-, c2 T : d2

Output 0

<a1, b1, c1, d1>

<a0, b0, c0, d0>

Output 1-, c0 T : d0
-, c1 T : d1
-, c2 T : d2
-, c0 T : d0
-, c1 T : d1
-, c2 T : d2

Map

R(A,B) S(B,C) T(C,D)

b0, - R : a0
b1, - R : a1
b1, c1 S : -
-, c0 T : d0
-, c1 T : d1
-, c2 T : d2

18/25

replicate

replicate

Figure 2.6: Basic multi-way join processing in MapReduce

Map-Reduce-Merge [54] adds a merge phase after the reduce phase to support opera-

tions on multiple heterogeneous datasets conveniently. However, it cannot reduce the size

of the intermediate results.

2.4 Multi-way Joins in MapReduce

To join several datasets, two-way joins, which are explained in Section 2.3, have to be per-

formed multiple times. Otherwise, they can be joined simultaneously in a single MapRe-

duce job by replicating some input datasets. Figure 2.6 shows an example of basic multi-

way join processing in MapReduce. In the example, three input datasets R(a,b), S(b,c),

and T(c,d) are joined with two attributes b and c. To join the three datasets simultaneously,

some datasets are fully replicated to reducers, i.e., R and T in this example. The records

that are joined then are gathered in a certain reducer. Replication may degrade the join per-

formance, so it is important to reduce the number of redundant records, which are marked

with strikethroughs in Figure 2.6.

17

11

0 1 2

0 <0, 0>
0

<0, 1>
3

<0, 2>
6

1 <1, 0>
1

<1, 1>
4

<1, 2>
7

2 <2, 0>
2

<2, 1>
5

<2, 2>
8

h(b)
h(c)

h(R.b)=1

h(T.c)=2

h(S.b)=1
h(S.c)=2

Figure 2.7: Fragment-replicate joins in MapReduce

There have been some attempts to optimize the number of input records replicated in the

multi-way joins [6, 7, 25]. They use similar methods for minimizing the number. Figure 2.7

shows a partial replication of the input records for a join example with three datasets and

nine reducers. A cell in the figure represents a reducer. Unlike the naive multi-way join

that replicates some input datasets fully, the input records of R and T are replicated by only

three reducers, depending on the hash values of the join attributes b and c.

This optimization problem can be formulated as a problem of minimizing the total num-

ber of records that are sent to reducers. For example, the cyclic join

R(a,b)on S(b,c)on T(a,c)

can be formulated as follows:

Minimize rc+ sa+ tb

subject to abc = k

where a, b, and c are the replicate factor for the join attributes a, b, and c, respectively. That

is, input records have to be replicated as the replicate factor if the dataset do not have the

corresponding join attribute.

Afrati and Ullman [6, 7] solved the minimization problem using a method based on

Lagrangean multipliers to find the optimal solution. Jiang et al. used a heuristic approach

18

to find an approximate solution [25]. These studies can be used in combination with the

approach proposed in this dissertation, which uses filtering techniques to facilitate more

efficient multi-way join processing.

This idea can be similarly used for theta-joins. Okcan et al. proposes the 1-Bucket-

Theta algorithm that replicates input records according to join conditions [39]. However,

the detailed discussion for theta-joins is beyond the scope of this dissertation.

2.5 Filtering Techniques for Join Processing

Various filtering techniques for approximate membership matching can be used for equi-

joins. For join processing over large datasets, the following requirements have to be satis-

fied: (1) It must not yield false negatives. (2) It is space-efficient regardless of the number

of inserted elements. Representative examples are described in the following subsections.

A Bloom filter [11] is a probabilistic data structure used to test whether an element is a

member of a set. It consists of an array of m bits and k independent hash functions. All bits

in the array are initially set to zero. When an element is inserted into the array, the element

is hashed k times with k hash functions, and the positions in the array corresponding to

the hash values are set to one. Then, the membership status of an element can be tested

by evaluating this array. If all bits of the element’s k hash positions are one, It can be

0 0 0 0 0 0 0 0 0 0 0 0

Initially set the array to 0

1 1 1 1 1

x1 x2

Hash each element k times
Set each hash location to 1

Bloom Filter [Bloom, CACM ’70]

§ Space-efficient data structure for approximate set membership problem
– An array of m bits
– k independent hash functions

§ Properties
– Bloom filter has the fixed size regardless of the # of the elements
– False positives are possible, but false negatives are not

1 1 1 1 1

y

To check if y is in the set
à check the k hash location
If a 0 appears, y is not in the set

1 1 1 1 1

y?

If only 1s appear, conclude that y is in the set
(This may yield false positive)

22/25

Figure 2.8: Bloom filter

19

concluded that the element is in the set. Figure 2.8 shows an example where m = 12, k = 3.

Two elements x1 and x2 have been inserted using three hash functions. When an element, y,

is looked up, it is also hashed using the three hash functions. Because one of the bits of its

hash positions are zero, it is concluded that y is not in the set.

The Bloom filter has been used for efficient join processing [34, 26], as described in

Section 2.2. This is because it may yield false positives, but it does not produce false neg-

atives. Furthermore, its size is fixed regardless of the number of elements. The probability

of a false positive after inserting n elements can be calculated as follows [11]:

p =

(
1−
(

1− 1
m

)kn
)k

≈
(

1− e
kn
m

)k
(2.1)

There is a tradeoff between m and the false positive probability p.

Many Bloom filter variants exist such as one memory access Bloom filter [43], Bloom

filter with partitioned hashing [22]. They can be also used for join processing as long as

they satisfy both requirements. See the survey by Tarkoma et al. [49] for more details.

The quotient filter [8] is an alternative to the Bloom filter. Although it is designed to

reduce the number of contiguous accesses when it is resident on SSD, it shows comparable

performance to the Bloom filter in RAM. This technique stores a p-bit fingerprint for each

element. A fingerprint f is split into two parts: q = p− r most significant bits (the quotient)

and the remaining r bits (the remainder). The quotient filter consists of an array of 2q

buckets of (r+3) bits. Each bucket stores an r-bit remainder and three metadata bits.

The quotient filter inserts an element in a similar way to open hashing. Its remainder is

stored in the slot corresponding to its quotient if the slot is empty. Otherwise, the remainder

is stored in the next empty slot from the corresponding slot. Some remainders that are

stored may be shifted during an insert operation. For later lookup, three metadata bits are

maintained for each slot. See the paper by Bender et al. [8] for the detailed algorithms of

20

insert and lookup operations. The quotient filter has the probability of a false positive after

inserting n elements as follows:

p =

(
1−
(

1− 1
2(q+r)

)n)
(2.2)

The interval filter [44] uses an array of m bits, and its lower bound lb and upper bound

ub should be set. Without loss of generality, suppose that the elements to be inserted into the

filter are integers. Although the intervals can be dynamically created and merged, assume

that the range [lb, ub] is statically split into m intervals here. Each interval then has a length

itv of (ub− lb)/m. Each bit in the array represents an interval, and the interval bit for an

element with value v is the bit of the position (v− lb)/itv. It inserts an element by setting

the value of its interval bit to one, and checks whether an element is in the filter by checking

its interval bit. The interval filter has the probability of a false positive after inserting n

elements as follows:

p =

(
1−
(

1− 1
m

)n)
(2.3)

21

Chapter 3

MFR-Join: A General Join
Framework with Filtering
Techniques in MapReduce

As mentioned earlier, MapReduce [13] is a very useful framework for large-scale data anal-

ysis because it facilitates the processing of tremendous amounts of data in a reasonable

amount of time using a large cluster of commodity machines. Unfortunately, MapReduce

has some limitations to performing a join operation on multiple datasets, one of the essen-

tial operations for practical data analysis [10, 54]. The primary problem of join processing

in MapReduce is that it emits large intermediate results, regardless of the number of final

join results. This could cause an unnecessary network overhead for sending the intermedi-

ate results to other cluster nodes, and a disk I/O cost for sorting and merging them, even

when only a small fraction of input data participate in the join. To apply these techniques,

the modified MapReduce versions [10, 40, 28, 57] of semijoin [9] and bloomjoin [34] have

been proposed, but they require multiple MapReduce jobs to process the input data multiple

times.

23

To resolve these issues, a general join framework that utilizes various filtering tech-

niques within a single MapReduce job, which is named MFR-Join, is proposed in this chap-

ter. Join operations for two datasets are first considered. Multi-way joins will be described

in Chapter 5. MFR-Join creates filters on one input dataset, and filters out redundant records

in the other dataset by applying the filters in the map phase. In this way, the communication

cost for redundant records can be reduced by processing the input datasets only once.

The MapReduce framework is modified to implement this idea as follows. First, the

map task scheduling is changed so that input datasets are processed sequentially in the map

phase. Second, the execution flow is re-designed to construct filters dynamically within a

single MapReduce job. Locally created filters for an input dataset are sent to, and merged

at, a master node. These features have been implemented on the top of Hadoop [2], an

open-source implementation of the MapReduce framework. In MFR-Join, the processing

cost is affected by the processing order of the two input datasets. Therefore, a cost model

to help choose the processing order is presented.

3.1 MFR-Join Framework

This section describes the overall architecture of MFR-Join framework and the major changes

that have been made.

3.1.1 Execution Overview

Figure 3.1 shows the overall execution flow of a join operation on datasets R and S in our

framework. Suppose that R is chosen to be processed first; that is, the filters are built on R.

The term build input will be used for the input dataset processed first, and probe input for

the other dataset. When a user program is submitted, the following sequence of actions is

24

Execution Overview

4

R

Reduce 1

Reduce 2

Jobtracker
(1) Job
submission

Split 0
Split 1
Split 2

Map

…

S
Split 0
Split 1
Split 2

…

Job client

(2) First
map phase

Part 0

Output

(4) Global filter
merging

Map

Map
(5) Second
map phase

(6) Reduce phase

Part 1

(3) Local filter
construction

Figure 3.1: Execution overview

performed.

1. Job submission. On submission of a MapReduce job, map and reduce tasks are

created. Assume that m1 map tasks for R, m2 map tasks for S, and r reduce tasks are

created. A task includes all the necessary information, such as job configuration and

location of the corresponding input/output files, for it to run on a tasktracker. The

job configuration includes additional filter information such as parameter types and

values for the filter to use.

2. First map phase. The jobtracker assigns the m1 map tasks for R or the reduce tasks

to those tasktrackers that have idle mappers or reducers. A mapper reads the input

split for the task, converts it to key/value pairs, and then executes the map function

for the input pairs.

25

3. Local filter construction. The intermediate pairs produced from mappers are divided

into r partitions, which are sent to reducers. For each partition, a specified type

of filter is created by inserting the keys of its intermediate pairs. These filters are

called local filters, because they are built for only the intermediate results in a single

tasktracker. The tasktracker merges the individual filters from each map task and

maintains only r filters.

4. Global filter merging. When all m1 map tasks for the first input dataset R have been

completed, the jobtracker stops assigning map tasks and requests that all tasktrackers

send it their local filters via heartbeat responses. The jobtracker then merges all the

local filters to construct the global filters for R, which contain all the join keys pro-

cessed in all the tasktrackers.

5. Second map phase. The jobtracker assigns the m2 map tasks for S or the remaining

reduce tasks to the tasktrackers. Mappers run the assigned tasks with the received

global filters, and intermediate pairs with keys that are not contained in the global

filters are filtered out.

6. Reduce phase. This step is the same as the reduce phase in Hadoop. Reducers read

the corresponding intermediate pairs from all mappers using remote procedure calls.

Each reducer then sorts the intermediate pairs and runs the reduce function. Final

output results are then written to the given output path.

Two major modifications have been made to the design of Hadoop. First, map tasks

are scheduled according to the order of the dataset. Second, filters are constructed on the

build input in a distributed manner to filter out the probe input. The following subsections

describe more details on these points.

26

Map Task Scheduling

§ Hadoop
– Scheduling in the order of input split size

è Processing order of the input datasets
cannot be controlled

§ Our approach
– Keeps the order of the input datasets

– Pros: DB techniques such as filtering and join ordering can be applied

– Cons: All Mappers must wait during the global filter construction

S R S R S R S S R S

SR SR SR S SR S

10/25

(a) Hadoop

Map Task Scheduling

§ Hadoop
– Scheduling in the order of input split size

è Processing order of the input datasets
cannot be controlled

§ Our approach
– Keeps the order of the input datasets

– Pros: DB techniques such as filtering and join ordering can be applied

– Cons: All Mappers must wait during the global filter construction

S R S R S R S S R S

SR SR SR S SR S

10/25

(b) MFR-Join

Figure 3.2: Map task scheduling

3.1.2 Map Task Scheduling

Hadoop basically assigns map tasks based on the order of the input split size, considering

the locality of the input split, as shown in Figure 3.2(a). Consequently, map tasks on dif-

ferent input datasets are intermingled by the task scheduler. MFR-Join assigns map tasks

according to a certain order of the input datasets, as shown in Figure 3.2(b). This gives us

the opportunity to apply database techniques such as tuple filtering and join ordering. The

order can be determined based on the estimated cost, as described in Section 3.2. Within a

single input dataset, map tasks are assigned as in the original Hadoop.

In order to schedule map tasks by dataset, each map task needs to know the dataset

identifier of the corresponding input split. Accordingly, new input format and input split

classes (DataSetInputFormat and DataSetSplit) have been implemented to contain

this information. They are extended versions of the respective Hadoop FileInputFormat

and FileSplit classes. In addition, JobQueueTaskScheduler, which is the default task

scheduler of Hadoop, have been modified to schedule map tasks using the dataset identifier.

27

3.1.3 Filter Construction

While a tasktracker runs a map task for the build input, MFR-Join creates filters on the

intermediate records produced from the task. The filter is created for each map output

partition, which is assigned for each reduce task. Therefore, the total number of the filters

is the number of reduce tasks. When multiple map tasks are run, each tasktracker merges

its filters, so that only one set of filters is maintained. This set is called the local filters.

When all map tasks for the build input are complete, the jobtracker must gather all local

filters to construct the global filters. In Hadoop, the jobtracker controls the tasktrackers

by putting some instructions, called TaskTrackerAction, in heartbeat messages. For the

merging process, two TaskTrackerAction classes, called SendLocalFilterAction and

ReceiveGlobalFilterAction, have been added. The jobtracker sends the SendLocalFi

lterAction as the heartbeat response to all tasktrackers, and they send the jobtracker their

local filters. The jobtracker merges all the local filters to build the global filters using bitwise

OR operations, and sends the ReceiveGlobalFilterAction with the global filters in the

heartbeat response to all tasktrackers.

Table 3.1: Filter merging time
Number of tasktrackers 3 5 7 10

Elapsed time 22.137 26.735 25.012 28.887

If the number of reduce tasks or tasktrackers is large, the global filter construction is

expected to take a long time. Table 3.1 shows the time elapsed for filter merging in the ex-

perimental environment described in Section 3.3.1, varying the number of tasktrackers. The

time for merging filters tends to increase as the number of nodes becomes larger, although

it depends on the difference between the time that the first node finishes its assigned map

28

tasks for the build input and the time that the last node finishes its corresponding map tasks.

This overhead could be distributed by merging local filters hierarchically, although this has

not yet been implemented—this issue is left for future work.

3.1.4 Filtering Techniques Applicable to MFR-Join

Efficient filtering techniques for joins depend on the distribution of the join keys and the

number of records joined. For this reason, MFR-Join has been designed to apply various

types of filters. Any filtering techniques can be plugged into MFR-Join as long as they

support the following operations:

• insert(key): insertion of the specified key into the filter.

• contains(key): returning whether it contains the specified key or not.

• merge(filter): merge with another filter of the same type.

The insert and contains operations are the basic operations for testing (approximate)

membership. MFR-Join additionally require the merge operation for the filters.

Some filtering techniques, such as Bloom filter [11] and its variants [49], the interval

filter [44], and the quotient filter [8], support the operation. The Bloom filter and the interval

filter can be merged by a bitwise OR operation, and the quotient filter can be merged in

a similar way to merge sort in DBMS. The details of the example filters is described in

Section 2.5.

3.1.5 API and Parameters

Hadoop provides a library class called MultipleInputs to support MapReduce jobs that

have multiple input paths with a different InputFormat and Mapper for each path. This

29

Table 3.2: User parameters for MFR-Join

Parameter Description Type Default value

whether to use filters
mapred.filter.use for join processing boolean true

org.apache.hadoop.mapred.
mapred.filter.class class name of the filter String lib.MapBloomFilter

parameter types
mapred.filter.param.types for the filter class String int,int

parameter values
mapred.filter.param.values for the filter class String 4194304,2

class is convenient, as it allows users to specify which jobs should perform the join opera-

tion. MFR-Join provides a similar library class called JoinInputs. Users can specify jobs

to be joined with filters using the following API.

JoinInputs.addInputPath(conf, path, dsid, inputformat, mapper)

Compared to MultipleInputs, it requires dsid to specify the dataset identifier, and takes

a subclass of DataSetInputFormat as the inputformat argument, described in 3.1.2.

Several parameters have been added to configure MFR-Join, as shown in Table 3.2.

Users can define these in Hadoop configuration files, or specify them as runtime parameters.

3.2 Cost Analysis

This section presents the cost model for MFR-Join by adjusting Herodotou’s Hadoop perfor-

mance model [23], which describes in detail the execution of a MapReduce job on Hadoop,

including both I/O and CPU costs. Becauuse it does not include features for filtering, a slight

adjustment is needed. Using this cost model, the query optimizer can choose the strategy

30

Shuffle Phase in MapReduce

4

input
split

Map
memory
buffer

partitions

read map collect spill

apply filter,
serialize,
and partition

sort, and
spill to disk

merge
on disk

sort

Map task

Other maps Other reduces

Reduce

output
part

fetch merge reduce write

merge
on disk

Reduce task
JobTracker

send local filters, and
receive global filters

DFS DFS

Figure 3.3: Shuffle phase in MapReduce

that minimizes the total cost, including the processing order of input datasets, whether to

use filters.

3.2.1 Cost Model

Since the changes that have made in MFR-Join affect the cost of dealing with intermediate

records, we need to know more about the shuffle phase, in which Hadoop sorts and transfers

the intermediate records. Note that the term shuffle phase is used for the whole process,

from the point where map tasks produce intermediate records to the point where reduce

tasks consume them, as in White’s book [53].

Figure 3.3 shows the process of execution of a map and reduce task in MFR-Join, and

illustrates the shuffle phase in detail. This process is virtually the same as that in the orig-

inal Hadoop, except for the following two points: (1) Filter application operations are also

carried out in the collect stage in map tasks. (2) Filters are merged locally or globally after

the map task for the first input dataset is complete. This division cannot include the filter

31

merge processes because it is from the point of view of a single map task. However, it is

included when the execution of all the map tasks is considered.

Let Tjob be the total cost of a MapReduce job, Tmap be the cost of all map tasks for

the job, Tf ilter be the cost of merging filters locally and globally, and Treduce be the cost of

all reduce tasks for the job. Consequently, the total cost of a MapReduce job Tjob can be

expressed as Tmap + Tf ilter + Treduce. When execution costs in MFR-Join and the original

Hadoop are different from each other, The superscripts f and h is used to denote join pro-

cessing with filters and without filters in the original Hadoop, respectively. Accordingly,

the total cost of a MapReduce job in both of them can be expressed as follows:

T f
job = T f

map +Tf ilter +T f
reduce

T h
job = T h

map +T h
reduce

(3.1)

Each of the costs will be examined in the following subsections. Table 3.3 shows the

parameters used in the cost analysis. Consider a MapReduce job for a join on datasets R and

S, assuming the information in Table 3.3 is given. For simplicity, this dissertation assumes

that the combiner and compression features are not used. Since Herodotou’s cost model [23]

considers the features, the proposed cost model can be extended as in the original.

Map Task

The execution of a map task can be divided into five stages, as shown in Figure 3.3. The

total cost of all map tasks Tmap can be computed as the sum of the costs during the five

stages.

Tmap =Cread +Cmap +Ccollect +Cspill +Csort (3.2)

Read and Map stages. Each map task reads the corresponding input split and converts

each record to a key/value pair. It then executes the map function and produces intermediate

32

Table 3.3: Cost parameters

Parameter Definition

br, bs Size of input datasets r and s, respectively, in bytes

lr, ls Length of a record in input datasets r and s, respectively

nr, ns Number of records in input datasets r and s, respectively

(i.e., nr = br/lr, ns = bs/ls)

b f Size of a filter in bytes

cr d f s I/O cost of reading from distributed file system per byte

cw d f s I/O cost of writing to distributed file system per byte

cr loc I/O cost of reading from local disk per byte

cw loc I/O cost of writing to local disk per byte

ctr Network cost of transferring data per byte

cc map CPU cost of executing map function per record

cc red CPU cost of executing reduce function per record

cc part CPU cost of partitioning and (de)serializing per record

cc sort CPU cost of sorting per record

cc merge CPU cost of merging sorted data per record

cc f ltr CPU cost of inserting an element into filters

or checking that an element is in the filters per record

cc union CPU cost of merging a filter

#nodes Number of tasktracker nodes

#mapr Number of map tasks for input dataset r

#maps Number of map tasks for input dataset s

#map Number of map tasks for a job

(i.e., #map = #mapr +#maps)

#reduce Number of reduce tasks for a job

#map/node Maximum number of map tasks that can be

simultaneously run by a tasktracker

33

map output records.

The costs during read and map stages are the same in both join processing with and

without filters, and can be computed as follows:

Cread = (br +bs) · cr d f s

Cmap = (nr +ns) · cc map

(3.3)

The generated records may include redundant intermediate records that did not participate

in the join.

Collect stage. All the records are partitioned and processed with an insert or contains

operation for filtering. In MFR-Join, the map output records from the first input dataset, say

R, are inserted into local filters; or, those from the second input dataset, say S, are checked

to determine whether they are in the global filters. The map output records that are not

filtered out are partitioned and collected into a memory buffer.

The costs of the collect stage in join processing with and without filters are

C f
collect = (nr +ns) · (cc part + cc f ltr)

Ch
collect = (nr +ns) · cc part

(3.4)

It is clear that the additional CPU cost of executing filter operations results from applying

the filters.

The number of intermediate map output records ninter can be computed as follows:

n f
inter = nr +ns ·σs r +ns · (1−σs r) · p

nh
inter = nr +ns

(3.5)

where σs r is the ratio of the joined records of S with R, and p is the false positive rate of the

global filters. nr signifies the number of first input dataset records that are not filtered out

34

and used to create filters. ns ·σs r signifies the number of second input dataset records that

are joined, and ns · (1−σs r)· signifies the number of second input dataset records that are

not joined but passed to reducers as false positives. Without filters, ninter is equal to nr +ns

because input records are not filtered out at all.

Spill stage. When the data size in the buffer reaches a given threshold, the data partitions

are sorted and written to local disk. The cost of the spill stage depends on the number

of spills, and is determined according to the size of the spill buffer. The buffer size is

configured via Hadoop parameters such as io.sort.mb, io.sort.spill.percent, and

io.sort.record.percent. Let bbu f be the buffer size in bytes. Further, let the length of

an intermediate record linter be (lr + ls), assuming both the records from R and S are joined

without projection. Accordingly, the number of records that can be included in buffer nbu f

can be expressed as bbu f /linter. Thus, the number of spills that are performed in all map

tasks #spill can be estimated as follows:

#spill =

⌈
ninter · linter

bbu f

⌉
=

⌈
ninter

nbu f

⌉
(3.6)

In practice, the number of spills will be slightly larger than the estimated value because map

tasks may spill any partition whose size is smaller than the unit size.

With the estimate, the cost of the spill stage is computed as follows:

Cspill = #spill · (nbu f · log2 (
nbu f

#reduce
) · cc sort +bbu f · cw loc) (3.7)

Although Equation 3.7 can be used to compute the costs of the spill stage in both join

processing with and without filters, the costs may vary because the numbers of intermediate

records ninter in them may be different.

35

Sort stage. In the sort stage, the spilled partitions are merged into a single file. This stage

performs an external merge sort similar to the merge stage in a reduce task. The merging

process may be performed in multiple merge passes according to the number of spills. The

total number of merge passes depends on the number of spills and the number of spills to

merge at once, which is configured by io.sort.factor and denoted as n f . The number

of spills in all map tasks #spill is computed in the spill stage, but each map task only merges

its own spills here. Assuming that each map task merges the same number of spills, the

number of spills that are merged in each map task can be calculated using #spill/#map, and

the number of merge passes #merge can be expressed as
⌈
logn f (#spill/#map)

⌉
. Let us suppose

that Hadoop reads all the spills and writes their intermediate merge output in each merge

pass, although Hadoop does not always need to merge all spills. Then, the cost of the sort

stage can be computed as follows:

Csort = #merge ·#map · (
#spill

#map
·bbu f · (cr loc + cw loc)+

#spill

#map
·nbu f · cc merge)

= #merge ·#spill · (bbu f · (cr loc + cw loc)+nbu f · cc merge)

(3.8)

As in the spill stage, the cost of the sort stage in join processing with and without filters

may vary according to the number of intermediate records in each.

Filter Merging

A filter merging process, which incurs an additional cost, is needed to apply filters. When

tasktrackers process a map task for the first input dataset, one filter is created per partition,

that is, per reducer. The number of filters that are created in each map task is equal to the

number of reducers #reduce. Each tasktracker locally merges the filters from its own map

tasks, so it maintains only #reduce filters. The filters are merged globally after all map tasks

for the first input dataset have been completed. During this process, tasktrackers wait for

36

the merged filters and do not run other map tasks. This loss must also be taken into account.

Consequently, the total cost for merging filters Tf ilter can be divided into three parts:

the cost of merging locally in each tasktracker C f ilter local , the cost of merging globally in

the jobtracker C f ilter global , and the cost of waiting for the global filters without tasktrackers

running other map tasks C f ilter wait . It can be computed as follows:

Tf ilter =C f ilter local +C f ilter global +C f ilter wait (3.9)

where

C f ilter local = #map ·#reduce · cc union

C f ilter global = #nodes ·#reduce · (2 · ctr + cc union)

C f ilter wait = #nodes ·#map/node ·
Tmap

#map

(3.10)

#reduce signifies the number of filters, and C f ilter local signifies the CPU cost for merging fil-

ters for all map tasks. 2 ·ctr signifies the network cost of communicating the filters between

a tasktracker and the jobtracker. C f ilter global include the network and CPU cost incurred by

the jobtracker merging filters from all the tasktrackers. The waiting cost during the global

filter merging C f ilter wait cannot be measured consistently, because it is affected by straggler

nodes, input data skew, node capability, and so on. It is approximated as the cost for run-

ning the maximum number of map tasks simultaneously on all tasktrackers, assuming the

difference between the finish time of the first node and that of the last node that finishes

map tasks is smaller than the time to run a map task.

Reduce Task

The execution of a reduce task can be divided into the four stages shown in Figure 3.3. Note

that the first stage of the reduce tasks is renamed to Fetch, whose original name was Shuffle

in Herodotou’s paper [23], because the term shuffle phase is used in the broad sense of the

37

meaning. The total cost of reduce tasks Treduce can be computed as the sum of the costs

during the four stages of the reduce task.

Treduce =C f etch +Cmerge +Creduce +Cwrite (3.11)

Fetch stage. In the fetch stage, the intermediate records produced from map tasks are

copied from mappers to reducers. Suppose that no merging process occurs in this stage.

Then, the total cost of the fetch stage is

C f etch = ninter · linter · ctr (3.12)

Merge stage. This stage merges the sorted partitions that are fetched from mappers. It

works similar to the sort stage in map task but the number of merge passes #merge is switched

to
⌈
log f (#map)

⌉
, because each reduce task merges #map partitions that came from mappers.

Suppose that all the partitions reside on disk. Then, the total cost of the merge phase can be

computed as follows:

Cmerge = #merge ·ninter · (linter · (cr loc + cw loc)+ cc merge) (3.13)

Reduce stage. The merged data is processed with a given reduce function. The total cost

of the reduce stage is:

Creduce = ninter · (linter · cr loc + cc red) (3.14)

It is clear that the costs of the above three stages depend on the number of intermediate

records. Therefore, the costs during each stage in join processing with and without filters

may be different.

38

Write stage. The final results of the job are written to the distributed file system. Let bout

be the size (in bytes) of the final results. Then, the costs of the reduce and write stages can

be computed as follows:

Cwrite = bout · cw d f s (3.15)

Although the size of the final results may be unknown in advance, because it is determined

by the join selectivity, the cost of the write stage is the same without regard to join tech-

niques, as long as they produce correct join results. Therefore, the cost of the write stage

can be omitted from cost estimation.

3.2.2 Effects of the Filters

The execution cost of a MapReduce job has been defined step by step in Section 3.2.1. The

cost depends on how many intermediate records are filtered out. Define the equilibrium

false positive rate feq as the false positive rate when the costs of join processing with and

without filters are the same. If the real false positive rate is smaller than feq, it may not

benefit from the filters. feq can be obtained by finding the false positive rate to make the

difference of the total cost in the both cases D job to zero. D job can be defined as the sum of

the cost differences in each stage.

D job = T f
job−T h

job = (T f
map−T h

map)+Tf ilter +(T f
reduce−T h

reduce)

= (Dcollect +Dspill +Dsort)+Tf ilter +(D f etch +Dmerge +Dreduce)

(3.16)

The cost difference in the collect stage Dcollect can be simply computed with the given

parameters as follows:

Dcollect =C f
collect −Ch

collect = (nr +ns) · cc f ltr (3.17)

39

The difference of the intermediate records dinter after the collect phase is given as follows:

dinter = n f
inter−nh

inter

= (nr +ns ·σs r +ns · (1−σs r) · p)− (nr +ns)

=−ns(1−σs r)(1− p)

(3.18)

Since 0 ≤ σs r ≤ 1 and 0 ≤ p ≤ 1, unless σs r is equal to one, the number of intermediate

records ninter may be reduced according to the false positive rate p, at the cost of applying

filter operations. Accordingly, the difference in the number of spills d#spill in the spill and

sort stage is

d#spill = # f
spill−#h

spill =

⌈
n f

inter
nbu f

⌉
−
⌈

nh
inter

nbu f

⌉
=

⌈
(nr +ns ·σs r +ns · (1−σs r) · p)

nbu f

⌉
−
⌈

nr +ns

nbu f

⌉

=

−
⌈

ns(1−σs r)(1−p)
nbu f

⌉
, if ns(1−σs r)(1− p) mod nbu f

> (nr +ns) mod nbu f

−
⌊

ns(1−σs r)(1−p)
nbu f

⌋
, otherwise

(3.19)

Consequently, the cost differences of the spill and sort stage between them can be expressed

as follows, assuming that the numbers of merge passes for both join processing with and

without filters are the same for simplicity.

Dspill = d#spill · (nbu f · log2 (
nbu f

#reduce
) · cc sort +bbu f · cw loc)

Dsort = d#spill ·#merge · (bbu f · (cr loc + cw loc)+nbu f · cc merge)

(3.20)

The cost depends on the number of intermediate records in both stages. Therefore, it is

eventually affected by the ratio of the joined records and the false positive rates of the

filters. Even if the numbers of merge passes differ, the cost still depends on those factors.

40

The cost differences of the fetch, merge, and reduce stage in the reduce tasks are

D f etch = Dinter · linter · ctr

Dmerge = Dinter ·#merge · (linter · (cr loc + cw loc)+ cc merge)

Dreduce = Dinter · (linter · cr loc + cc red)

(3.21)

These costs also depend on the number of intermediate records.

Note that all of the cost factors depend on the number of intermediate results. In other

words, the total cost is determined by two factors: the ratio of the joined records and the

false positive rate of the filters. The other parameters can be regarded as constants.

The equilibrium false positive rate feq can be pre-computed if the ratio of the joined

records is known. It may be maintained in some systems. In Hive [3], for example, some

research has been conducted that aims to optimize queries using table and column statis-

tics [51, 20]. Otherwise, this information can be determined from certain parameters. The

proposed cost model can help an optimizer to choose the processing order of the input

datasets and whether to use filters.

3.3 Evaluation

This section presents the experimental results that were conducted for evaluation. First,

the execution times and intermediate result sizes for the test query are compared against

existing join methods. Next, those for the query are evaluated according to the types and

sizes of filters.

3.3.1 Experimental Setup

All experiments were run on a cluster of 11 machines consisting of 1 jobtracker and 10 task-

trackers. Each machine had a 3.1 GHz quad-core CPU, 4 GB memory, and 2 TB hard disk.

41

The operating system was 32-bit Ubuntu 10.10, and the Java version used was 1.6.0 26.

Hadoop was configured based on the real-world cluster configuration parameters in the

Hadoop official documentation [1]. The HDFS block size was set to 128 MB and the repli-

cation factor was set to three. Each tasktracker could simultaneously run three map tasks

and three reduce tasks. The I/O buffer was set to 128 KB, and the memory for sorting data

was set to 200 MB.

TPC-H benchmark [4] datasets were used for the experiments, varying the scale factor

(SF) between 100, 200, and 300. The scale factor describes the entire database size of the

dataset in gigabytes. The test query was a join between the two largest tables in the database,

lineitem and orders. The orderkey column of the lineitem table is a foreign key to

the orderkey column of the orders table. Thus, some selection predicates were added to

control the join selectivities. The test query can be expressed in SQL-like syntax as follows:

SELECT substr(l.*, 0, llineitem), substr(o.*, 0, lorders)

FROM lineitem l, orders o

WHERE l.orderkey = o.orderkey

AND o.custkey < ‘?’

The query was run, changing the ‘?’ in the predicate to set the ratio of joined records

of orders with lineitem (σL) to between 0.001 and 0.5. In addition, the query results

was set as substrings of the joined records in each table. llineitem and lorders are the lengths

of the substrings, so the length of an intermediate record is llineitem + lorders. As the length

increased, the benefits from filtering grow. The lengths for both tables was set to 10, assum-

ing the case of a projection query. The Hadoop program for the test query was hand-coded.

orders was chosen as the first input, and lineitem was the second input.

42

3.3.2 Experimental Results

The performance of MFR-Join was compared to that of the existing repartition join [10],

semijoin [10], and the reduce-side join with Bloom filters, which are created in an inde-

pendent MapReduce job, referred to as RSJ-f [40]. Bloom filters were used for MFR-Join

when its performance is compared to other join techniques so that the performance of the

filters do not differ from RSJ-f. MurmurHash implemented in Hadoop was used as the hash

function, and set the number of hash function k = 2 and the size of a filter to 4 Mb. This

configuration was also used for RSJ-f.

Figure 3.4, 3.5, and 3.6 show the execution times and intermediate result sizes of the

test queries using each join technique on various sizes of TPC-H datasets. Figure 3.4(a),

3.5(a), and 3.6(a) show similar patterns. The techniques using filters (MFR-Join and RSJ-f)

show better performance than the repartition join when σL is small. Among these, MFR-

Join outperforms RSJ-f, which processes the build input twice and has additional costs to

initialize and cleanup an extra MapReduce job. If more records participate in the join, the

performance becomes worse because the number of redundant records that can be filtered

out is reduced. Semijoin did not finish when σL was greater than or equal to 0.1, because it

ran out of memory.

Figure 3.4(b), 3.5(b), and 3.6(b) show the intermediate result sizes in each test case.

Those of the semijoin were excluded because it uses a map-side join for the second and

third jobs. In each case, MFR-Join and RSJ-f have the same size intermediate results.

Instead, RSJ-f runs an extra MapReduce job to create the Bloom filters. The repartition join

has the largest size, because it emits all probe input records as intermediate results. The

intermediate result sizes increase as σL increases, and this leads to an increase in execution

times. As the size of the filters is fixed, the probability of false positives increases with

43

 300

 350

 400

 450

 500

 550

 600

 650

0.001 0.01 0.1 0.3 0.5

e
la

p
s
e
d
 t
im

e
 (

s
)

σL

MFR-Join
RSJ-f

Semi join
Repartition join

(a) Execution times

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

0.001 0.01 0.1 0.3 0.5

in
te

rm
e
d
ia

te
 r

e
s
u
lt
 s

iz
e
 (

M
B

)

σL

MFR-Join
RSJ-f

Repartition join
Reduce output

(b) Intermediate result sizes

Figure 3.4: Experimental results: varying the ratio of joined records (SF=100)

44

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

0.001 0.01 0.1 0.3 0.5

e
la

p
s
e

d
 t

im
e

 (
s
)

σL

MFR-Join
RSJ-f

Semi join
Repartition join

(a) Execution times

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

0.001 0.01 0.1 0.3 0.5

in
te

rm
e
d
ia

te
 r

e
s
u
lt
 s

iz
e
 (

M
B

)

σL

MFR-Join
RSJ-f

Repartition join
Reduce output

(b) Intermediate result sizes

Figure 3.5: Experimental results: varying the ratio of joined records (SF=200)

45

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

0.001 0.01 0.1 0.3 0.5

e
la

p
s
e
d
 t

im
e
 (

s
)

σL

MFR-Join
RSJ-f

Semi join
Repartition join

(a) Execution times

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

0.001 0.01 0.1 0.3 0.5

in
te

rm
e

d
ia

te
 r

e
s
u

lt
 s

iz
e

 (
M

B
)

σL

MFR-Join
RSJ-f

Repartition join
Reduce output

(b) Intermediate result sizes

Figure 3.6: Experimental results: varying the ratio of joined records (SF=300)

46

10

(a) MFR-Join

9

(b) Hadoop

Figure 3.7: Task timelines

the number of join keys that are inserted into the filters. Consequently, the number of

false positives, the gap between the intermediate results sizes and reduce output sizes, also

increases. This is more obvious in the case of a large scale factor.

Figure 3.7(a) and 3.7(b) show the task timelines of Hadoop and MFR-Join with Bloom

filters during the execution of the test query with the scale factor 100 and the ratio of joined

47

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

RJ MFR RJ MFR RJ MFR RJ MFR RJ MFR RJ MFR RJ MFR

e
la

p
s
e
d
 t
im

e
 (

s
)

σL

map
the rest

10.70.50.30.10.010.001

Figure 3.8: Map phase time: varying the ratio of joined records (SF=100)

records 0.1. A key observation is that the number of running map tasks is sharply decreased

for a while in Figure 3.7(b). It means that tasktrackers do not run the map tasks for the

second input dataset during the global filter construction phase. In spite of the overhead of

this period, the execution time of all map tasks and reduce tasks is considerably reduced.

Map phase is finished early because the intermediate results are reduced by the filters, and

the local I/O and sorting cost are also reduced as a result. Reduce phase is also finished

early because the number of intermediate records to be copied from remote map processes

is reduced, so the number of input records to process in reduce function is decreased.

The reason why the execution time of MFR-Join increases as the ratio of joined records

increases can be found in Figure 3.8. It can be observed that the map phase time grows

more quickly in MFR-Join (MFR) compared to the results of the repartition join (RJ), as

48

the ratio of joined records increases. This is because more time is needed for creating and

probing filters as the number of intermediate results increases. MFR-Join is efficient when

small portions of input datasets are joined, but otherwise it may be rather inefficient. To

avoid such inefficiency, an adaptive join method will be proposed in Chapter 4.

Next, the performance of MFR-Join were measured with three types of filters, the

Bloom filter (BF), the interval filter (ITV), and the quotient filter (QF). The parameters

for each filter were adjusted to set the size of a filter to 4 Mb. Figure 3.9 shows the execu-

tion times and intermediate result sizes of the test query. As shown in Figure 3.9(a), The

performance tends to decrease as more records participate in the join, because the number

of redundant records that can be filtered out is reduced, regardless of the filtering technique

used. When σL is 0.5, the repartition join (N/A) rather shows better performance than the

others. In Figure 3.9(b), the repartition join is largest in size because it emits all input

records as intermediate results. As σL increases, the gap of the intermediate result sizes be-

tween the repartition join and non-adaptive joins with filters decreases. When σL is small,

a large number of redundant records are filtered out; whereas, when σL is large, the sizes

of the intermediate result increase, which leads to the increases in the execution times in

Figure 3.9(a). It results from the large false positive rates corresponding to the increased

number of join keys that are inserted into the filters. Adaptive join methods, which will be

explained in Chapter 4, can save the performance loss in MFR-Join.

Finally, the test query was run with various sizes of the Bloom filter, which is generally

used, from 512 Kb to 8 Mb. Figure 3.10(a) and 3.10(b) show the execution times and

intermediate result sizes, respectively. It can be observed that the 512 Kb Bloom filter is

sufficient when σL is 0.001. The intermediate result sizes is barely reduced as the size of

the Bloom filter increased. Rather, a large-sized filter increases the execution time. If the

49

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

0.001 0.01 0.1 0.3 0.5

e
la

p
s
e
d
 t

im
e
 (

s
)

σL

BF
ITV
QF

N/A

(a) Execution times

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

0.001 0.01 0.1 0.3 0.5

in
te

rm
e
d
ia

te
 r

e
s
u
lt
 s

iz
e
 (

M
B

)

σL

BF
ITV
QF
N/A

(b) Intermediate result sizes

Figure 3.9: Experimental results with various filtering techniques (SF=100)

50

 250

 300

 350

 400

 450

 500

 550

 600

 650

0.001 0.1 0.5

e
la

p
s
e

d
 t

im
e

 (
s
)

σL

BF-512Kb
BF-2Mb
BF-4Mb
BF-6Mb
BF-8Mb

(a) Execution times

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

0.001 0.1 0.5

in
te

rm
e
d
ia

te
 r

e
s
u
lt
 s

iz
e
 (

M
B

)

σL

BF-512Kb
BF-2Mb
BF-4Mb
BF-6Mb
BF-8Mb

(b) Intermediate result sizes

Figure 3.10: Experimental results with various Bloom filter sizes (SF=100)

51

filter size is too large, the overhead for constructing and communicating the filters offsets

the benefits of filtering. On the other hand, it can be observed that the 512 Kb Bloom filter is

too small when σL is 0.5. Only a small number of redundant records is filtered out. This also

increases the execution time. If the size of the Bloom filters is too small, redundant records

cannot be filtered out. Therefore, it is important to determine the most appropriate size for

the filter. This can be determined from statistical information about the input datasets, and

this will be addressed in future work.

52

Chapter 4

Adaptive Join Processing with
Filtering Techniques in MFR-Join

In addition to MFR-Join described in Chapter 3, a few researchers have recently attempted

to reduce the size of the redundant intermediate results using Bloom filters [11] for join

processing in MapReduce [40, 28, 57]. Though these approaches apply Bloom filters in

slightly different ways, they involve filtering out the intermediate results that are not joined,

so they are efficient when a small portion in an input dataset is joined. However, the perfor-

mance of these approaches is worse than join processing without filters when large portions

of records are joined or the number of distinct keys is large. Further, if statistical informa-

tion for input datasets is not available or inaccurate, they may be inefficient because filter

parameters like the number of bits and the number of hash functions cannot be optimally

adjusted. In such cases, applying the filters incurs additional overhead due to the computing

of hash values for each record and the merging of the filters. This is because they all apply

the filters without regard to their performance.

To handle such cases, an adaptive join processing method with filtering techniques is

53

proposed in this chapter. MFR-Join is enhanced to monitor the performance of filters by

means of false positive rates, and to disable filters whose false positive rates are greater

than a user-configured threshold. The false positive rates can simply be computed when it

merges the filters that are created in all nodes. Because it is advantageous to detect poor

filter performance early, it estimates the false positive rates of merged filters with those of

individual filters before they are merged. Further, two map task scheduling policies, syn-

chronous and asynchronous scheduling, are defined. In synchronous scheduling, map tasks

for the second input dataset are not assigned during the merging phase. In contrast, under

asynchronous scheduling, the map tasks are continuously assigned, though some tasks can

be processed without the merged filters. Under our scheduling policies, the processing cost

is affected by the processing order of the two input datasets. Therefore, a method to choose

the processing order based on the estimated cost is presented.

The remainder of this chapter is organized as follows: Section 4.1 explains the design

and implementation details. Section 4.2 discusses the effect of FPR threshold value on join

costs. Finally, Section 4.3 discusses the experimental results.

4.1 Adaptive join processing in MFR-Join

This section explains an adaptive join processing method with various filtering techniques

in MFR-Join. Because this is an extension of MFR-Join that applies filters non-adaptively,

which is explained in Section 3.1.1, modified parts for adaptive joins are described in detail,

and the other common parts will be briefly described.

54

Execution Overview

3

R

Reduce 1

Reduce 2

Jobtracker
(1) Job
submission

Split 0
Split 1
Split 2

Map

…

S
Split 0
Split 1
Split 2

…

Job client

(2) First
map phase

Part 0

Output

(4) Global filter
merging

Map

Map
(6) Second
map phase

(7) Reduce phase

Part 1

(3) Local filter
construction

(5) Filter performance
estimation

FPR ≤ threshold τ

Figure 4.1: Execution overview

4.1.1 Execution Overview

Figure 4.1 depicts an example of an adaptive join between two datasets, R and S, in MFR-

Join. As in Section 3.1.1, suppose that R is chosen to be processed first; that is, filters are

built on R. When a user runs a MapReduce program, the following sequence of actions is

performed.

1-3. Job submission, first map phase, local filter construction. These steps are the same

as in non-adaptive joins. m1 map tasks for R, m2 map tasks for S, and r reduce tasks

are created. The jobtracker assigns the m1 map tasks for R or the reduce tasks to

tasktrackers. Mappers execute the map function and produce intermediate pairs. The

pairs are divided into r partitions, which are sent to reducers. For each partition, local

filters are created.

55

4. Global filter merging. When all m1 map tasks for the first input dataset R have

been completed, the jobtracker signals all tasktrackers to send it their local filters

via heartbeat responses. Then, the jobtracker merges all local filters to construct the

global filters for R. The difference is that the jobtracker may continue to assign map

tasks according to the map task scheduling policy. While the merging is in progress,

the filter performance is estimated.

5. Filter performance estimation. The jobtracker estimates the performance of the

merged global filters by estimating their false positive rates. The method used to

estimate the false positive rates is set according to the applied filter; this issue is

described in Section 4.1.2. Assuming that the false positive rates can be estimated,

those filters whose false positive rates exceed the given threshold are disabled. The

jobtracker then sends the global filters to all the tasktrackers.

6. Second map phase. The jobtracker assigns the m2 map tasks for S or the remaining

reduce tasks to the tasktrackers. According to the map task scheduling policy, task-

trackers may be assigned the map tasks before they receive the global filters. Conse-

quently, some map tasks may be processed without the filters. After the tasktrackers

receive the global filters, they run the assigned tasks with the filters.

7. Reduce phase. This step is the same as in non-adaptive joins. Each reducer runs the

reduce function and produces final output results.

The filter performance estimation and two map task scheduling policies have been

added. The following subsections explain the details on the features.

56

Table 4.1: Merge and estimateFPR operations for some example filters

merge estimateFPR

Bloom filter Bitwise OR
(

1−
(

1− 1
m

)kn
)k

Interval filter Bitwise OR

(
1−
(

1− 1
m

)n)

Quotient filter
Similar to merge sort

in DBMS

(
1−
(

1− 1
2(q+r)

)n)

4.1.2 Additional Filter Operations for Adaptive Joins

To support adaptive joins, in addition to the merge operation, the estimateFPR operation

is required for the filters.

• estimateFPR(): computation of its false positive rate.

The filters that do not support estimateFPR operation can be applied to MFR-Join, but

they cannot be used for adaptive joins.

The example filtering techniques mentioned in Section 3.1.4, which are Bloom fil-

ter [11], the interval filter [44], and the quotient filter [8], support the operation. Table 4.1

shows the additional operations for the example filters.

To compute the false positive rates of the example filters, the number of inserted ele-

ments n in the merged filters have to be known. However, keeping track of all the distinct

values inserted into each local filter in order to compute n is impractical. The number of

true bits in the merged filters is available, but not that of inserted elements. Therefore, the

number of inserted elements is estimated with the expected number of true bits in the filters

57

after n elements are inserted [41]. Let p0 be the probability of a bit being false after n ele-

ments are inserted for a filtering technique. For example, p0 is (1− 1
m)

n for the Interval filter

and (1− 1
m)

kn for the Bloom filter because it uses k hash functions. Thus, the probability of

a bit being true is (1− p0). Therefore, the expected number of true bits can be computed

by multiplying it by the total number of bits for a filter.

4.1.3 Early Detection of FPR Threshold Being Exceeded

The execution flow described in Section 4.1.1 estimates the false positive rate after the

merging of all local filters into global filters. Before the estimation, all mappers insert the

join keys of the first input dataset into the filters, which incurs CPU overhead. Further,

during the global filter merging, network I/O cost associated with communicating the filters

between the jobtracker and tasktrackers is incurred. If it finds that the FPRs of global filters

is greater than the given threshold in advance, the costs resulting from the creation and

merging of the filters can be reduced. Further, the earlier the situation is detected, the more

costs can be reduced.

Before the merge, only the FPRs of the individual local filters in each tasktracker can

be computed. However, if the FPRs of the global filters can be estimated along with them,

then the situation could be detected much earlier. Consequently, an optional operation,

estimateUnionFPR, was added to the filtering techniques. If this operation is supported,

the jobtracker can estimate the FPRs of the global filters as follows: In the first map phase,

each tasktracker sends the jobtracker only the FPR values of its local filters, not the whole

local filters themselves, via heartbeat messages when a map task is complete and its FPRs

are changed. The jobtracker then estimates the FPRs of the global filters using the operation.

The FPRs of the global filters can be estimated with those of the individual local filters

58

using methods similar to those used by Michael et al. [37]. Let the FPRs of two local filters

be P(A) and P(B). The FPR of the merged filter P(A∪B) can be computed as P(A)+P(B)−

P(A∩B). Assuming that the distribution of data is independent, P(A∩B) = P(A) ·P(B),

P(A∩B) can be estimated with individual FPRs P(A) and P(B).

The signature of the operation was designed as estimateUnionFPR(FPRsglobal,

FPRslocal prev,FPRslocal cur). Note that both the previous and current FPRs of the local fil-

ters are required. The jobtracker should repeatedly merge the local filters from a tasktracker,

with their changed FPRs. However, estimating the FPRs of the merged filters may not be

idempotent. If it merges the same local filters multiple times, its FPRs will be changed.

In this case, the estimateUnionFPR operation must first compute the FPRs of the global

filters, with the exception of the previous FPRs of the local filters, and then estimate the new

FPRs of the global filters by merging the current FPRs of the local filters. This is possible

if the operation is commutative. In our operations, the order in which the filters are merged

does not affect the estimation results.

4.1.4 Map Task Scheduling Policies

Int his section, two scheduling policies of synchronous and asynchronous scheduling are

defined. These are similar in that they assign map tasks in the order of the input datasets,

but their behavior is different during the global filter merging phase.

Synchronous Scheduling

Under the synchronous scheduling policy, our task scheduler does not assign the map tasks

for the probe input during the global filter merging phase. Instead, the assignment is de-

ferred until the global filters are constructed and sent to the tasktrackers. Then, every probe

input split can be processed with the filters, so more redundant intermediate results can be

59

filtered out.

However, under this policy, all tasktrackers cannot run the map tasks for the probe input,

and should wait until the global filter construction is finished. (Of course, they can run the

copy operations of reduce tasks or the tasks of other MapReduce jobs.) The waiting time

could be long, especially if straggler nodes exist. Then, the gain from the filtering is offset

by the loss from such waiting. Hadoop has a feature known as speculative execution, in

which multiple copies of the same task are run on different tasktrackers when the job is

close to completion. The waiting time can be reduced using speculative execution during

the global filter merging phase.

Asynchronous Scheduling

Even if the waiting time during the global filter merging phase is not long, the loss from

the waiting may be large depending on the size of the records that are filtered out. Under

asynchronous scheduling, the task scheduler continues to assign the map tasks for the probe

input without such waiting. Tasktrackers can run these tasks without filtering until they

receive the global filters.

In this policy, tasktrackers do not need to wait during the global filter merging phase.

Instead, the size of the intermediate results may be increased. There is a tradeoff between

synchronous and asynchronous scheduling, and it depends on the waiting time and the filter

performance.

4.1.5 Additional Parameters for Adaptive Joins

Several parameters were added to configure MFR-Join for adaptive joins, as shown in Ta-

ble 4.2. Users can define these in Hadoop configuration files, or specify them as runtime

parameters.

60

Table 4.2: Additional parameters for adaptive joins

Parameter Description Type Default value

whether to use filters
mapred.filter.adaptive adaptively boolean false

whether to use
mapred.filter.adaptive.in-progress early detection boolean false

mapred.filter.fpr.threshold FPR threshold float 0.5

asynchronous/synchronous
mapred.filter.async map task scheduling policy boolean false

4.2 Join Cost and FPR Threshold Analysis

The aim of the proposed adaptive join method is to guarantee join performance that is close

to or better than join processing with and without filters by disabling those filters whose

estimated FPRs are greater than the user-configured threshold. Thus, it is important for

users to appropriately set the threshold value. This section outlines how to choose the FPR

threshold value. Based on the cost model described in Section 3.2, the cost of adaptive join

and the effects of the FPR threshold on the cost will be discussed.

4.2.1 Cost of Adaptive Join

MFR-Join disables filters whose estimated FPRs exceed the FPR threshold value τ , which

is set to a value between zero and one as a parameter. The execution cost of adaptive

join depends on how many filters and when the filters are disabled. Although each filter is

created per partition and can be individually disabled, suppose that all filters have the same

FPR with a uniform distribution of join keys, for simplicity. Let nm be the number of map

tasks that are run before the filters are disabled, and p be the actual FPR value of the filters

61

for the join. Then, the total cost of adaptive join T a
job can be expressed as follows:

T a
job =

T f
map +Tf ilter +T f

reduce , if p≤ τ

#mapr
#map
·T f

map +
#maps
#map
·T h

map +Tf ilter +T h
reduce , if p > τ is detected

in global filter merging

nm
#map
·T f

map +
#map−nm

#map
·T h

map +T h
reduce , if p > τ is detected

before global filter merging

(4.1)

Since the total cost is affected by the FPR threshold value τ , it is important for users to

set the threshold value appropriately. If τ is too small, it may not benefit from the filtering

of redundant intermediate records. On the other hand, if τ is too large, it may incur unnec-

essary filtering costs.

4.2.2 Effects of FPR Threshold

In Section 3.2.2, the equilibrium false positive rate feq has been defined as the false positive

rate when the costs of join processing with and without filters are the same. If the threshold

value τ is larger than feq, it may result in the filters being used in cases where intermediate

records are not filtered out enough to improve the execution time. Conversely, if τ is smaller

than feq, it may result in the filters not being used in cases where the intermediate records

are filtered out enough.

Unfortunately, if the ratio of the joined records is not known in advance, feq cannot be

computed before the join execution. Under such situation, performance degradation have to

be reduced. Instead of feq, the FPR threshold can be configured as the FPR value computed

with the maximum ratio of the joined records, which is chosen by users or estimated by a

query optimizer module. As the maximum ratio decreases, the corresponding FPR threshold

62

increases because the number of intermediate records that are not joined and can be filtered

out increases, while the number of intermediate records that cause D job to zero with the join

ratio is fixed. Thus, the opportunity to apply filters increases, but it may be rather inefficient.

It is suggested to defensively choose the maximum ratio of the joined records as a

large enough value, in case the filters are not beneficial. The FPR threshold value, which

corresponds to the ratio, would then be small enough. If the FPR threshold is small, the

opportunity to improve performance with filters is reduced. For example, filters may not be

applied if the join ratio is much smaller than the maximum ratio and the actual FPRs are

slightly larger than the threshold value. Despite this, it should be safely used as an option

to ensure stable join performance.

4.2.3 Effects of Map Task Scheduling Policy

The map task scheduling policies, which is described in 4.1.4, affect the number of the

intermediate map output records n f
inter in Equation 3.5. Let σs r be the ratio of the joined

records of S with R. Assuming that R is the build input, n f
inter can be estimated using the

false positive rate p for each scheduling policy as follows:

n f
inter =

 nr +ns ·σs r +ns · (1−σs r) · p , under synchronous scheduling

nr +ns a +ns f ·σs r +ns f · (1−σs r) · p , under asynchronous scheduling
(4.2)

where ns a = min(b ·nm, |R|), ns f = ns−ns a.

In asynchronous scheduling, ns a gives the size of the probe input splits that are pro-

cessed without global filters, and ns f gives the size of the probe input splits that are pro-

cessed with the filters. As some probe input splits are processed without the filters, the

number of the intermediate results in asynchronous scheduling may be larger than that un-

der synchronous scheduling. Instead, the asynchronous scheduling eliminates the waiting

63

cost C f ilter wait in Equation 3.10, because tasktrackers do not need to wait global filters.

While synchronous scheduling produces the smaller number of the intermediate results, it

suffers from the waiting time during the global filter merging phase.

4.3 Evaluation

This section presents the experimental results that were conducted for evaluation. First,

the execution times and intermediate result sizes of adaptive joins are compared against

those of non-adaptive joins. Next, the execution times are evaluated according to various

FPR threshold values. Finally, the execution times and intermediate result sizes under the

synchronous and asynchronous scheduling policy are evaluated.

4.3.1 Experimental Setup

The experimental environment is the same as in Section 3.3.1. All the experiments were run

on a cluster of 11 machines consisting of one jobtracker and 10 tasktrackers. Each machine

comprised a 3.1 GHz quad-core CPU, 4 GB RAM, and a 2 TB hard disk. Hadoop was

configured based on the real-world cluster configuration parameters in the Hadoop official

documentation [1]. The HDFS block size was set to 128 MB and the replication factor was

set to three. Each tasktracker could simultaneously run three map tasks and three reduce

tasks. The I/O buffer was set to 128 KB, and the memory for sorting data was set to 200

MB.

TPC-H benchmark [4] datasets were used with scale factor 100. The scale factor is the

entire database size of the dataset in gigabytes. The test query was a join between the two

largest tables in the database, lineitem and orders, and can be expressed in SQL-like

syntax as follows:

64

SELECT substr(l.*, 0, llineitem), substr(o.*, 0, lorders)

FROM lineitem l, orders o

WHERE l.orderkey = o.orderkey

AND o.custkey < ‘?’

The query was run, changing the ‘?’ in the predicate to set the ratio of joined records

of orders with lineitem (σL) to between 0.001 and 0.8. In addition, the query results

was set as substrings of the joined records in each table. llineitem and lorders are the lengths

of the substrings, so the length of an intermediate record is llineitem + lorders. As the length

increased, the benefits from filtering grow. The lengths for both tables was set to 10, assum-

ing the case of a projection query. The Hadoop program for the test query was hand-coded.

orders was chosen as the first input, and lineitem was the second input.

4.3.2 Experimental Results

The performance of our adaptive join method was compared to that of the existing reparti-

tion join [10] and non-adaptive join with filters. Three types of filters, the Bloom filter (BF),

the interval filter (ITV), and the quotient filter (QF), were applied, and the parameters for

each filter were adjusted to set the size of a filter to 4 Mb.

First, the test query was run, varying the ratio of the joined records. The FPR threshold

for adaptive joins was set to 0.5. Figure 4.2 shows the execution times of the test query using

each join technique. As shown in Figure 4.2(a), The performance of non-adaptive joins

decreases as more records participate in the join, because the number of redundant records

that can be filtered out is reduced. On the other hand, in Figure 4.2(b), our adaptive joins

exhibits performance close to that of the repartition join (N/A) when σL is large, regardless

of the filtering technique used. Note that joins with Quotient filters did not finish when σL

was greater than or equal to 0.01, because it cannot contain more than its size of elements

65

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

0.001 0.01 0.1 0.3 0.5 0.8

e
la

p
s
e

d
 t

im
e

 (
s
)

σL

BF
ITV
QF
N/A

(a) Non-adaptive join

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

0.001 0.01 0.1 0.3 0.5 0.8

e
la

p
s
e
d
 t
im

e
 (

s
)

σL

BF-0.5
ITV-0.5
QF-0.5

N/A

(b) Adaptive join (τ = 0.5)

Figure 4.2: Execution times with various filtering techniques

66

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

0.001 0.01 0.1 0.3 0.5 0.8

in
te

rm
e
d
ia

te
 r

e
s
u
lt
 s

iz
e
 (

M
B

)

σL

BF
ITV
QF
N/A

(a) Non-adaptive join

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

0.001 0.01 0.1 0.3 0.5 0.8

in
te

rm
e

d
ia

te
 r

e
s
u

lt
 s

iz
e

 (
M

B
)

σL

BF-0.5
ITV-0.5
QF-0.5

N/A

(b) Adaptive join (τ = 0.5)

Figure 4.3: Intermediate results sizes with various filtering techniques

67

and its merge operations have a time complexity on the order of the number of inserted

elements.

Figure 4.3 shows the intermediate result sizes in each case. In Figure 4.3(a), The repar-

tition join is largest in size because it emits all input records as intermediate results. As

σL increases, the gap of the intermediate result sizes between the repartition join and non-

adaptive joins with filters decreases. When σL is small, a large number of redundant records

are filtered out; whereas, when σL is large, the sizes of the intermediate result increase,

which leads to the increases in the execution times in Figure 4.2(a). It results from the large

FPRs corresponding to the increased number of join keys that are inserted into the filters.

In our adaptive joins, as shown in Figure 4.3(b), the intermediate result size rather increases

when σL is greater than or equal to 0.5. As σL is larger than the given FPR threshold, the

filters are disabled and the join is executed like the repartition join. Although the size of

the intermediate results increases, the adaptive joins exhibit better performance than non-

adaptive join with filters because the costs of creating, merging, and checking the filters are

saved.

Figure 4.4 and 4.5 show the execution times with the Bloom filters and the interval filters

respectively, obtained while varying the FPR threshold. It can be seen that join processing

with filters performs better when σL is 0.3, but the repartition join performs better when σL is

0.5 or 0.8. As shown in Figure 4.4(a) and 4.5(a), if the FPR threshold is too small, the filters

may be disabled despite the fact that they are efficient. Conversely, if the FPR threshold is

too large, the filters may not be disabled despite the fact that they are inefficient, as shown

in Figure 4.4(c) and 4.5(c). The optimal threshold value varies according to the query and

data. Therefore, it is important to set the appropriate FPR threshold for each query, as stated

in Section 4.2.2, so that it exhibits performance that is close to that exhibited by the better

68

 490

 495

 500

 505

 510

 515

 520

 525

 530

0.2 0.5 0.7 0.9

e
la

p
s
e

d
 t

im
e

 (
s
)

FPR threshold

BF
BF-fpr

N/A

(a) σL=0.3

 520

 540

 560

 580

 600

 620

 640

 660

0.2 0.5 0.7 0.9

e
la

p
s
e

d
 t

im
e

 (
s
)

FPR threshold

BF
BF-fpr

N/A

(b) σL=0.5

 620

 640

 660

 680

 700

 720

 740

 760

0.2 0.5 0.7 0.9

e
la

p
s
e

d
 t
im

e
 (

s
)

FPR threshold

BF
BF-fpr

N/A

(c) σL=0.8

Figure 4.4: Execution times with Bloom filters varying FPR thresholds

69

 480

 490

 500

 510

 520

 530

 540

0.2 0.5 0.7 0.9

e
la

p
s
e

d
 t

im
e

 (
s
)

FPR threshold

ITV
ITV-fpr

N/A

(a) σL=0.3

 530

 540

 550

 560

 570

 580

 590

 600

 610

0.2 0.5 0.7 0.9

e
la

p
s
e
d
 t
im

e
 (

s
)

FPR threshold

ITV
ITV-fpr

N/A

(b) σL=0.5

 620

 630

 640

 650

 660

 670

 680

 690

 700

 710

0.2 0.5 0.7 0.9

e
la

p
s
e
d

 t
im

e
 (

s
)

FPR threshold

ITV
ITV-fpr

N/A

(c) σL=0.8

Figure 4.5: Execution times with interval filters varying FPR thresholds

70

of the repartition join and non-adaptive join with filtering techniques.

Next, the test query was run with synchronous and asynchronous scheduling. These

will be referred to as “Sync” and “Async”, respectively. Figure 4.6(a) shows the execution

times of the test queries. Bloom filters were applied and the scale factor was 100. The

techniques using filters show better performance than the repartition join when σL is small.

If more records participate in the join, the performance becomes worse because the number

of redundant records that can be filtered out is reduced.

Figure 4.6(b) shows the intermediate result sizes in each test case. Those of asyn-

chronous scheduling vary each time, so the average size was presented in the results. In

each case, Async has a slightly larger size than Sync because some map tasks are processed

without filtering in the global filter merging phase. Instead, Sync has the additional cost of

waiting during the merging phase. The repartition join has the largest size, because it emits

all probe input records as intermediate results. The intermediate result sizes increase as σL

increases, and this leads to an increase in execution times. As the size of the Bloom filters

is fixed, the probability of false positives increases with the number of join keys that are

inserted into the filters. This is more obvious in the case of a large scale factor.

With the configurations in Figure 4.6(a) and 4.6(b), the asynchronous scheduling shows

better performance than the synchronous scheduling, although this is dependent on the size

of the intermediate results that are produced in the global filter merging phase. Figure 4.7

shows the execution times with various HDFS block sizes. Likewise, Bloom filters were

applied and the scale factor was 100. As the block size is the maximum size of an input

split in the map phase, the asynchronous scheduling processes more input records without

filtering as the block size increases. In addition, the lengths of the substrings for both tables

were set to 30, to clarify the impact of the increase in intermediate result size. In this case,

71

 300

 350

 400

 450

 500

 550

 600

 650

0.001 0.01 0.1 0.3 0.5

e
la

p
s
e
d
 t
im

e
 (

s
)

σL

Sync
Async

Repartition join

(a) Execution times

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

0.001 0.01 0.1 0.3 0.5

in
te

rm
e

d
ia

te
 r

e
s
u

lt
 s

iz
e

 (
M

B
)

σL

Sync
Async

Repartition join

(b) Intermediate result sizes

Figure 4.6: Execution times and intermediate result sizes with synchronous and asyn-

chronous scheduling

72

the synchronous scheduling is better than the asynchronous scheduling when σL is small.

Figure 4.8(a), 4.8(b), and 4.8(c) show the intermediate result sizes corresponding to the

cases in Figure 4.7(a), 4.7(b), and 4.7(c). It can be observed that the difference between

the intermediate result sizes of both scheduling policies is generally large when σL is small,

and the gap gets larger as the block size gets larger. Therefore, it can be confirmed that the

performance of synchronous and asynchronous scheduling is affected by the intermediate

result size, and is dependent on several factors such as the performance of the filters, the

input split size, and the maximum number of map tasks, as described in Section 3.2 and 4.2.

73

 200

 300

 400

 500

 600

 700

 800

0.001 0.01 0.05 0.1 0.3 0.5

e
la

p
s
e

d
 t

im
e

 (
s
)

σL

Sync
Async

(a) 256MB

 200

 300

 400

 500

 600

 700

 800

0.001 0.01 0.05 0.1 0.3 0.5

e
la

p
s
e

d
 t

im
e

 (
s
)

σL

Sync
Async

(b) 384MB

 200

 300

 400

 500

 600

 700

 800

0.001 0.01 0.05 0.1 0.3 0.5

e
la

p
s
e

d
 t

im
e

 (
s
)

σL

Sync
Async

(c) 512MB

Figure 4.7: Execution times with various HDFS block sizes

74

 0

 5000

 10000

 15000

 20000

 25000

0.001 0.01 0.05 0.1 0.3 0.5

in
te

rm
e

d
ia

te
 r

e
s
u

lt
 s

iz
e

 (
M

B
)

σL

Sync
Async

(a) 256MB

 0

 5000

 10000

 15000

 20000

 25000

0.001 0.01 0.05 0.1 0.3 0.5

in
te

rm
e

d
ia

te
 r

e
s
u

lt
 s

iz
e

 (
M

B
)

σL

Sync
Async

(b) 384MB

 0

 5000

 10000

 15000

 20000

 25000

0.001 0.01 0.05 0.1 0.3 0.5

in
te

rm
e

d
ia

te
 r

e
s
u

lt
 s

iz
e

 (
M

B
)

σL

Sync
Async

(c) 512MB

Figure 4.8: Intermediate result sizes with various HDFS block sizes

75

Chapter 5

Multi-way Join Processing in
MFR-Join

Joining multiple datasets in MapReduce has been a challenging problem because it may

amplify disk and network overhead. Multiple datasets can be joined in the following two

ways: (1) using a cascade of two-way (or smaller multi-way) joins, and (2) with a single

multi-way join. However, both methods have some drawbacks. A cascade of two-way

joins has to write the intermediate join results to the underlying distributed file system,

which generally replicates multiple records to ensure high availability and fault tolerance.

To process multi-way joins in a single MapReduce job, the map output records have to be

replicated multiple times, instead of writing only the final join results to the distributed file

system.

As mentioned in Section 2.3.2, previous studies have attempted to improve join per-

formance using filtering techniques [40, 28, 57, 33], including our previous study [31, 32].

These studies focused on reducing the number of map output records that are not joined.

This may be more beneficial with multi-way joins. The map output records are replicated

77

multiple times, so filtering out redundant records removes multiple copies of the record in

multi-way joins.

An example of basic multi-way join processing in MapReduce has been shown in Fig-

ure 2.6, Section 2.4. In this example, three input datasets, i.e., R(a,b), S(b,c), and T(c,d)

, are joined with two attributes b and c. To join the three datasets simultaneously, some

datasets need to be replicated, i.e., R and T in this example. Replication may degrade the

join performance, so it is important to reduce the number of redundant records, which are

marked with strikethroughs in Figure 2.6. Recent studies have attempted to minimize the

number of input records replicated in multi-way joins [6, 25]. They reduce the number by

optimizing the replication factor for each join attribute in input datasets. Nevertheless, it

still produces a lot of redundant map output records that are replicated.

Multi-way joins can be classified into two types: common attribute joins and distinct

attribute joins [29]. A common attribute join combines datasets based on one or more

shared attributes, whereas some relations do not have join attributes in a distinct attribute

join. The example shown in Figure 2.6 illustrates a distinct attribute join, because R does

not have the attribute c and T does not have the attribute b. In this chapter, the concept of

filtering techniques is extended to multi-way joins.

5.1 Applying filters to multi-way joins

This section presents the basic methods used to create and apply filters to common and dis-

tinct multi-way joins. To simplify the discussion, joins between three datasets are consid-

ered in the following subsections. We then consider the processing of general joins between

multiple datasets.

78

Common Attribute Join

a b
a0 b0
a1 b1
a2 b2

R

a c
a2 c2
a3 c3
a4 c4

S

a d
a0 d0
a1 d1
a2 d2

T

a0
a1
a2

FltR.b

a0 b0
a1 b1
a2 b2

Map output records

filtering

a2

FltS.c

a2 c2
a3 c3
a4 c4

a0 d0
a1 d1
a2 d2

filtering

5/25

Figure 5.1: Common attribute join

5.1.1 Common Attribute Joins

In common attribute joins, all of the input datasets share join attributes. In these cases, the

input records do not need to be replicated and they can be processed in a similar manner to

two-way joins. A set of filters is created and probed in turn, depending on the processing

order of the input datasets.

Figure 5.1 shows an example of a common attribute join between three input datasets,

i.e., R(a,b), S(a,c), and T(a,d), based on the attribute a. Similar to two-way joins, the input

records of the first dataset, i.e., R in the figure, are not filtered out and they are used to

create a set of filters for the next dataset. The input records of the second dataset, i.e., S in

the figure, are processed using the filters and some redundant records can be filtered out. In

addition, another set of filters is created using the map output records from S for the next

dataset. The map output records are contained in the first set of filters, which means that

the second set of filters is automatically the same as the intersection of the filters that are

created independently using the first and second dataset. Finally, the third input dataset, i.e.,

79

T in the figure, is processed with the second set of filters. Another set of filters does not

need to be created because this is the final input dataset for the join attribute.

The input datasets are processed in the order of R, S, and T in this example, but any

order can be processed in the same way. The join cost depends on the number of input

records, the ratio of the joined records, and the false positive rate of the filters, as described

in Section 3.2.

5.1.2 Distinct Attribute Joins

In distinct attribute joins, the input datasets may not have some join attributes. Thus, some

of the datasets with missing attributes need to be replicated because their records may be

joined to the input records of other datasets with any values of the missing attributes. Let

us consider the join example shown in the Figure 2.6, which is a join between three input

datasets, i.e., R(a,b), S(b,c), and T(c,d), based on two attributes, i.e., b and c. Assume that

R and T are replicated by two reducers in this example. The example join can be processed

in 3! = 6 different orders of the input datasets. Depending on the processing order, the filters

can be applied in three patterns: chain, star-fact, and star-dim.

Chain

The chain pattern creates and probes filters in turn, in a similar manner to common attribute

joins, except that each set of filters is created for a different join attribute. This is analogous

to the indirect partitioning method proposed by Kemper et al. [26] Two processing orders

correspond to this pattern, i.e., R-S-T and T-S-R. Figure 5.2(a) illustrates an example of a

distinct attribute join with the chain pattern. The first dataset R is replicated by reducers and

a set of filters is created with the values of the join attribute, b in R. The second dataset S

is processed using the filters and some redundant records may be filtered out. Meanwhile,

80

Distinct Attribute Join (1): Chain

a b
a0 b0
a1 b1
a2 b2

R

b c
b2 c2
b3 c3
b4 c4

S

c d
c0 d0
c1 d1
c2 d2

T

b0
b1
b2

FltR.b

replication a0 b0
a1 b1
a2 b2

a0 b0
a1 b1
a2 b2

Map output records

filtering

c2

FltS.c

b2 c2
b3 c3
b4 c4

c0 d0
c1 d1
c2 d2

c0 d0
c1 d1
c2 d2

filteringreplication

6/25

(a) Chain patternDistinct Attribute Join (2): Star-fact

b c
b2 c2
b3 c3
b4 c4

S

c d
c0 d0
c1 d1
c2 d2

T

b2
b3
b4

FltS.b

replication

Map output records

filtering

c2
c3
c4

FltS.c

b2 c2
b3 c3
b4 c4

c0 d0
c1 d1
c2 d2

c0 d0
c1 d1
c2 d2

filteringreplication

7/25

a b
a0 b0
a1 b1
a2 b2

R
a0 b0
a1 b1
a2 b2

a0 b0
a1 b1
a2 b2

(b) Star-fact pattern
Distinct Attribute Join (3): Star-dim

a b
a0 b0
a1 b1
a2 b2

R

c d
c0 d0
c1 d1
c2 d2

T

b0
b1
b2

FltR.b

replication a0 b0
a1 b1
a2 b2

a0 b0
a1 b1
a2 b2

Map output records

c0
c1
c2

FltT.c

c0 d0
c1 d1
c2 d2

c0 d0
c1 d1
c2 d2

filtering

replication

8/25

S b c
b2 c2
b3 c3
b4 c4

b2 c2
b3 c3
b4 c4

(c) Star-dim pattern

Figure 5.2: Distinct attribute joins

81

another set of filters is created using the map output records from S based on the other join

attribute c. Next, the third dataset in the figure, T, is replicated and processed with the

second set of filters.

Star-fact

The star-fact pattern creates filters using the dataset with both join attributes and uses the

filters to process the other datasets. In database terms, a fact table in a star join is used to

create the filters. Two processing orders correspond to this pattern, i.e., S-R-T and S-T-R.

Figure 5.2(b) shows an example of a distinct attribute join with the star-fact pattern. The

first dataset S, which has both join attributes, is processed and two sets of filters for each

join attribute, i.e., b and c, are created. Next, the other datasets, i.e., R and T, are replicated

and processed using the set of filters that correspond to the join attribute.

Star-dim

The star-dim pattern creates filters using the datasets with missing join attributes and uses

the filters to process the other dataset. In database terms, the dimension tables in a star join

are used to create the filters. The remaining two cases, i.e., R-T-S and T-R-S, correspond

to this pattern. Figure 5.2(c) shows an example of a distinct attribute join with the star-dim

pattern. The first and second datasets, i.e., R and T, are replicated and processed without

filters. Each set of filters for the join attributes is created using their join attribute values.

Next, the third dataset S is processed using both filters and some redundant records are

filtered out. The star-dim pattern appears to be inefficient in this example, but it is efficient

if the number of records in the third dataset is much larger than those in the other datasets.

82

5.1.3 General Multi-way Joins

The basic filtering patterns are presented in Section 5.1.1 and 5.1.2. Multi-way joins of

more than three datasets can be processed by combining these patterns. In general, multiple

datasets can be joined in any processing order for input datasets using the following rules.

For each join attribute,

• Create a set of filters if the dataset is not the last one with the attribute.

• Probe the existing set of filters if the dataset is not the first one with the attribute.

All combinations of these patterns can be summarized using these rules. The filters can be

applied in any processing order, but the processing order must be selected carefully because

it affects the join cost.

5.1.4 Cost Analysis

The number of intermediate map output records is the most important factor that influences

the overall cost. For multi-way joins, the number is affected by the replication factors for

each join attribute. Let ni be the number of records in the i-th input dataset and fi be the

replication factor for the i-th join key. Next, let σi j be the ratio of joined records in the

i-th dataset relative to a previously processed j-th dataset, and let pi j be the false positive

probability of the previously created filters for the j-th join attributes when the i-th dataset

is processed. In addition, let c(i, j) be a binary value function that returns whether the i-th

dataset contains the j-th join attribute as follows:

c(i, j) =

 1 , if i-th dataset contains the j-th join attribute

0 , otherwise
(5.1)

83

Assuming that the attribute values of the input datasets are independent, the number of

intermediate map output records n f
inter in a multi-way join between n datasets based on k

join attributes can be expressed as follows:

n f
inter =

k

∑
i=1

(fi ·ni ·Si + fi ·ni · (1−Si) ·
k

∏
j=1

(pi j · c(i, j))) (5.2)

where

Si =

 1 , if i = 1

∏
i−1
j=1 σi j , otherwise

and
k

∏
i=1

fi = (# of reducers)

We need to find the replication factors and processing order for input datasets that min-

imizes the number of intermediate map output records. Note that the factors fi, Si, and pi j

depend on the processing order of the input datasets. These equations can be used to select

the processing order and to estimate the join cost, but there may be a large search space if

the numbers of reducers and the input datasets are large. In these cases, the factors have to

be selected using heuristics. For example, the replication factors can be computed using the

method proposed by Afrati and Ullman [6], which does not consider filters, or they can be

pre-defined by users, or determined by optimizer modules. The brute force approach was

used in the experiments conducted with ten reducers in the present study.

5.2 Implementation Details

The two major issues when processing multi-way joins simultaneously in MFR-Join are

replicating the records for the corresponding reducers and processing multiple join attributes

for filtering. The following subsections describe the specific implementation details that

address these issues.

84

5.2.1 Partition Assignment

For each input dataset, its corresponding reducers for replication are determined as shown

in Figure 2.7. The replication of input records for their corresponding reducers can be

implemented in a similar manner to the data partitioning method described by Zhang et

al. [55]. Algorithm 1 demonstrates how to find the target reducers that correspond to an

input record. Depending on the number of join attributes n, we may assume that there is an

n-dimensional space with integer coordinates, where each dimension represents each join

attribute and a position represents a reducer. Note that n is the number of join attributes,

rather than the number of input datasets, which was the case in a previous study [55] that

aimed to process theta joins. Then, the corresponding positions of an input record can

be obtained by partitioning the join attribute values of the record in a range from zero to

(the corresponding replication factor - 1). A coordinate for a missing join attribute can be

expressed using a special character, i.e., ‘*’. This indicates that the record corresponds to

the reducers with all possible values for the coordinate. Next, the positions are converted

into integer identifiers of the reducer by adding up the values of each position, which are

multiplied by the replication factors for the preceding dimensions. Algorithm 2 and 3 show

the pseudo-codes for the conversion process.

Now, we consider an example of three-way joins between R(a,b), S(b,c), and T(c,d)

using the two join attributes shown in Figure 2.7. Assume that the number of reducers is nine

and that there are three replication factors for both R and T. The positions that correspond

to each record of R, S, and T in the figure are <1,*>, <1,2>, and <*,2>, respectively.

<1,*>represents the positions <1,0>, <1,1>, and <1,2>. If each reducer is assigned

with an integer identifier from zero to eight incrementally, starting from the top-left cell in

a vertical direction, the identifiers of the reducers that correspond to the records for R are

85

Algorithm 1 Finding target reducers
. n: the number of join attributes

. joinAttr: an array of join attribute values (some values may be missing)

. repl: an array of replication factors for each join attribute

1: procedure FINDTARGETREDUCERS(joinAttr[1..n],repl[1..n])

2: reducerList← /0

3: coord← /0

4: for i = 1 to n do
5: if joinAttr[i] is not null then

. GetPartition(): returns a number in the range [0 and (repl[i]-1)]

6: coord[i]← GetPartition(joinAttr[i],repl[i])

7: else
8: coord[i]← 0

9: end if
10: end for
11: while true do
12: rid←CoordToReducer(coord,repl)

13: reducerList← reducerList ∪ rid

14: if IncrCoord(coord, joinAttr,repl) = f alse then
15: break
16: end if
17: end while
18: return reducerList

19: end procedure

86

Algorithm 2 Converting a coordinate to a reducer id
1: procedure COORDTOREDUCER(coord[1..n],repl[1..n])

2: reducer← 0

3: base← 1

4: for i = 1 to n do
5: reducer← reducer+base∗ coord[i]

6: base← base∗ repl[i]

7: end for
8: return reducer

9: end procedure

Algorithm 3 Increasing a coordinate
1: procedure INCRCOORD(coord[1..n], joinAttr[1..n],repl[1..n])

2: for i = 1 to n do
3: if joinAttr[i] is not null then
4: continue
5: end if
6: coord[i]← coord[i]+1

7: if coord[i]< repl[i] then
8: return true

9: end if
10: coord[i]← 0

11: end for
12: return f alse

13: end procedure

87

1, 4, and 7. Similarly, because <*,2>represents the positions <0,2>, <1,2>, and <2,2>,

the identifiers of the reducers that correspond to the records of T are 4, 5, 6, and 7. the

identifiers of the reducers that correspond to the records of T are 6, 7, and 8. The position

of the record of S is <1,2>, so the identifier of its corresponding reducers is 7. Thus, these

records are gathered and joined by the reducer with the identifier 7.

5.2.2 MapReduce Functions

A prototype MFR-Join framework has been implemented to create and probe filters using

the keys of map output records. To process distinct attribute multi-way joins with multiple

join attributes, the keys need to be separated with a delimiter, which is configured using the

additional parameter mapred.filter.key.delimiter. The target reducers for a record

can be found using Algorithm 1, which is described in Section 5.2.1. Algorithm 4 is the

pseudo-code for the map function used in multi-way joins.

Algorithm 4 Map function
. value: an input record from the i-th dataset

. repl: replication factors that are pre-computed or pre-defined in the init phase

1: procedure MAP(key,value)

2: extract the join attribute values joinAttr[1..n] by parsing the input record value

. ‖: concatenation, #: delimiter

3: joinAttrKey← joinAttr[1] ‖ # ‖ .. ‖ # ‖ joinAttr[n]

4: reducerList← FindTargetReducers(joinAttr,repl)

5: for each reducer in reducerList do
. tag: the dataset id of the record

6: Emit((joinAttrKey,reducer),(value, tag))

7: end for
8: end procedure

The records generated by the map function are then processed by the MFR-Join frame-

88

work, as explained in Section 5.1. Some redundant records will be filtered out, depending

on the processing order of the input datasets. The map output records that passed the filters

have been gathered in the corresponding reducers by their reducer identifiers. Using the re-

duce function, the records are classified based on the tag representing their original dataset

and they are joined with traditional join algorithms. Algorithm 5 is the pseudo-code for the

reduce function in multi-way joins.

Algorithm 5 Reduce function
. values: intermediate records (record,datasetId) with the same reducer id

1: procedure REDUCE(key,values)

. recordList: lists for buffering the intermediate records based on their dataset id

2: recordList← /0

3: for each value in values do
4: dsid← value.tag

5: recordList[dsid]← recordList[dsid] ∪ value.record

6: end for
. Join(recordList): returns the join results between the records in each record list

7: Emit(Join(recordList))

8: end procedure

5.3 Evaluation

This section presents the experimental results for common and distinct attribute joins. The

experimental environment is almost same as in Section 3.3.1 and 4.3.1, except the number

of reduce tasks that are run simulateneously in tasktrackers. All of the experiments were

run on a cluster of 11 machines, which comprised one jobtracker and 10 tasktrackers. Each

machine had a 3.1 GHz quad-core CPU, 4 GB RAM, and a 2 TB hard disk. The operating

system was 32-bit Ubuntu 10.10 and the Java version used was 1.6.0 26. The Hadoop

89

distributed file system (HDFS) was set to use 128 MB blocks and to replicate them three

times. Each tasktracker could run three map tasks and one reduce task simultaneously. The

I/O buffer was set to 128 KB and the memory used to sort the data was set to 200 MB.

5.3.1 Common Attribute Joins

For common attribute joins, TPC-H benchmark [4] datasets was used with a scale factor of

100. The scale factor was the size of the entire database in gigabytes. A join was performed

between three tables in the database, i.e., part, partsupp, and lineitem, which had a

common attribute, i.e., partkey. The sizes of the datasets are shown in Table 5.1.

Table 5.1: Test datasets for common attribute joins

Table # of records Size # of records satisfying selection predicate

part 20 M 2.3 GB 1.08 M

partsupp 80 M 12 GB 80 M * σps

lineitem 600 M 75 GB 600 M (no predicate)

The test query was extracted from TPC-H Q9 and it could be expressed in SQL-like

syntax as follows:

SELECT l.orderkey, l.partkey,

l.suppkey, ps.suppkey,

l.extendedprice * (1 - l.discount)

- ps.supplycost * l.quantity as profit

FROM part p, partsupp ps, lineitem l

WHERE p.partkey = l.partkey

AND ps.partkey = l.partkey

AND p.name like ‘%green%’

AND ps.supplycost < cps

90

To control the amount of joined records, the selection predicate ps.supplycost < cps

was added to the query. The attribute ps.supplycost had a decimal value in the range

of 1.0 to 1000.0. The predicate value cps in the predicate with increments of one hundred.

Thus, the ratio of records that satisfied the predicate in partsupp σps was changed by

about 10 %. The performance of the proposed method was compared with a repartition join

without filters, because common attribute joins can be processed without replication in a

single MapReduce job. In MFR-Join, simple hash filters with a size of 8 Mb were used and

the input datasets were processed in the order: part, partsupp, and lineitem.

Figure 5.3 shows the execution times and the sizes of the intermediate results for the

test queries. The results showed that the proposed method significantly outperformed the

repartition join for all of the test cases in Figure 5.3(a). This is because large numbers

of redundant intermediate results from the lineitem dataset are filtered out, as shown in

Figure 5.3(b). The lineitem dataset has no selection predicate, so the repartition join has

to generate the entire dataset as intermediate results.

5.3.2 Distinct attribute joins

For distinct attribute joins, the TPC-H benchmark [4] datasets were also used, but with

a scale factor of 300. The following join query, which was extracted from TPC-H Q2,

was performed between the following five tables: nation, region, supplier, part, and

partsupp, where the sizes are shown in Table 5.2. The two tables, nation and region,

contained just a few records, so the joins of the tables were treated as in-memory hashing.

91

 350

 400

 450

 500

 550

 600

 650

 700

 750

 800

 850

100 200 300 400 500 600 700 800 900 1000

e
la

p
s
e
d
 t
im

e
 (

s
)

cps

Repartition join
MFR-Join

(a) Execution time

 0

 5000

 10000

 15000

 20000

 25000

 30000

100 200 300 400 500 600 700 800 900 1000

in
te

rm
e
d
ia

te
 r

e
s
u
lt
 s

iz
e
 (

M
B

)

cps

Repartition join
MFR-Join

(b) Intermediate result sizes

Figure 5.3: Performance of common attribute joins

92

Table 5.2: Test datasets for distinct attribute joins

Table # of records Size # of records satisfying selection predicate

supplier 3 M 0.4 GB 0.6 M

part 60 M 6.9 GB 60 M * 0.2 * σp

partsupp 240 M 35 GB 240 M (no predicate)

SELECT s.acctbal, s.name, n.name,

p.partkey, ps.supplycost, p.mfgr,

s.address, s.phone, s.comment

FROM nation n, region r, supplier s,

part p, partsupp ps

WHERE n.regionkey = r.regionkey

AND r.name = ‘EUROPE’

AND s.nationkey = n.nationkey

AND s.suppkey = ps.suppkey

AND p.partkey = ps.partkey

AND p.type like ‘%BRASS’

AND p.size <= cp

Similar to the test query for common attribute joins, A selection predicate, p.size <=

cp, was added to control the amount of joined records. The attribute p.size had an integer

value in the range of 1 to 50 and the predicate value cp was changed with increments of five.

Thus, the ratio of records that satisfied the predicate in part σp was changed by about 10

%. Distinct attribute joins required the replication of some input datasets, so the best from

the results using all possible combinations of the replication factors was selected.

The performance of the proposed multi-way join method (denoted as 3-way MFR-Join)

was compared with that of the basic multi-way join (denoted as 3-way replicate join), and

with that of the cascade of two-way joins with and without filters (denoted as Cascade 2-way

93

 150

 200

 250

 300

 350

 400

 450

 500

5 10 15 20 25 30 35 40 45 50

e
la

p
s
e

d
 t

im
e

 (
s
)

cp

3-way replicate join
3-way MFR-Join

Cascade 2-way join
Cascade 2-way MFR-Join

(a) Execution time

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

5 10 15 20 25 30 35 40 45 50

in
te

rm
e
d
ia

te
 r

e
s
u
lt
 s

iz
e
 (

M
B

)

cp

3-way replicate join
3-way MFR-Join

Cascade 2-way join
Cascade 2-way MFR-Join

(b) Intermediate result sizes

Figure 5.4: Performance of distinct attribute joins

94

MFR-Join and Cascade 2-way join, respectively). Simple hash filters with a size of 8 Mb

were also used for the multi-way join and the cascade of two-way MFR-Join. In the two-way

joins, supplier and partsupp were joined first, before the intermediate join results and

part were joined. Figure 5.4 shows the execution times and intermediate result sizes for

the test queries. The results of the three-way MFR-Join with the star-dim filtering pattern

had the best performance with the queries. The multi-way joins outperformed two-way

joins for the test queries shown in Figure 5.4(a). The cascade of two-way joins processes

the join queries in two MapReduce jobs, which means that they must write the intermediate

results of the first join to HDFS, before reading them from HDFS. Furthermore, there are

additional costs of initializing and cleaning up a job. In two-way and multi-way joins, the

MFR-Join methods with filters delivered better performance than the basic join methods

without filters. This was because large numbers of redundant intermediate results from the

partsupp dataset, which had no selection predicate, were filtered out by the MFR-Join, as

shown in Figure 5.4(b).

Figure 5.5 shows the experimental results obtained with the three-way MFR-Join using

the filtering pattern. In Figure 5.5(a), the star-dim pattern delivered the best performance

compared with the others using the test queries. This was because the fact table, partsupp,

was much larger than the dimension tables, supplier and part, in the test datasets. As

shown in Figure 5.5(b), the number of intermediate results decreased most with the star-dim

pattern. In particular, it should be noted that the star-fact pattern did not decrease the number

of intermediate results at all. The join attributes in the queries were the foreign keys in the

databases. Furthermore, no selection predicate was specified for the partsupp dataset in

the test queries, so the records in partsupp did not play a role in filtering. The increase

in the amount with a cp value of 15 was caused by the difference in the replication factors

95

 200

 250

 300

 350

 400

 450

 500

5 10 15 20 25 30 35 40 45 50

e
la

p
s
e

d
 t

im
e

 (
s
)

cp

N/A
Chain

Star-fact
Star-dim

(a) Execution time

 0

 2000

 4000

 6000

 8000

 10000

 12000

5 10 15 20 25 30 35 40 45 50

in
te

rm
e
d
ia

te
 r

e
s
u
lt
 s

iz
e
 (

M
B

)

cp

N/A
Chain

Star-fact
Star-dim

(b) Intermediate result sizes

Figure 5.5: Performance of distinct attribute joins with the filtering pattern

96

with the best execution time. Thus, the execution times were increased slightly by creating,

merging, and probing the filters needlessly. It is considered that each filtering pattern may

be effective in different cases, depending on the sizes of the input datasets and the ratios

of joined records. Therefore, it is important to apply the filters using an advantageous

pattern. If the proposed methods are combined with upper-layer data warehouse systems,

such as Hive [51], this could be determined using its optimizer module based on statistical

information related to the stored tables. This task will be addressed in future work.

97

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Issues on join processing in the MapReduce framework were covered in this dissertation.

The proposed approach focused on reducing the number of redundant intermediate results

using filtering techniques. In particular, the concept of filtering techniques was adapted

within a single MapReduce job to improve the performance of equi-join queries.

MFR-Join was described in Chapter 3, which is a general join framework with filtering

techniques in MapReduce. MFR-Join improves the join performance by filtering out redun-

dant intermediate results using various filtering techniques, which can be plugged in MFR-

Join so long as they support specific operations. MFR-Join produced two design changes

compared to the original Hadoop. First, map tasks are assigned based on the order of the

dataset. Second, filters are constructed in a distributed manner. In addition, a cost model

for estimation of the total join cost was described. In the experiments that are performed

with various sizes of TPC-H dataset on an 11-node cluster, it was shown that MFR-Join

significantly improved the query execution time, when small portions of input datasets are

joined.

99

An adaptive join processing method with filtering techniques was presented in Chap-

ter 4. It estimates the performance of filters in terms of the false positive rates, and disables

filters with false positive rates greater than a user-configured threshold. To restrain the neg-

ative influence from the waiting time during the filter merging phase, two scheduling poli-

cies were also presented: synchronous and asynchronous scheduling. Experimental results

showed that the proposed methods provided stable performance, which was similar to or

better than that of the repartition join and the non-adaptive join.

A method for applying filters to multi-way joins was proposed in Chapter 5. A set of

filters is created and applied in turn to achieve common attribute joins and multiple sets of

filters are used in various patterns, which depend on the processing order of input datasets,

thereby producing distinct attribute joins. Specific details for assigning reducers and writing

map/reduce functions were also described. Experimental results showed that the proposed

approach significantly improved the execution time by reducing the amounts of intermediate

results, compared to basic multi-way joins and the cascade of two-way joins.

6.2 Future Work

There remains a range of issues to be addressed by future research. Here, a few potential

issues are briefly pointed out.

6.2.1 Integration with Data Warehouse Systems

There were some limitations to apply filters effectively in the distributed processing frame-

work layer, which simply processes raw data, because the statistical information available is

insufficient. To complement this defect, adaptive join methods were proposed in Chapter 4.

However, filtering techniques can be applied in more effective ways if it is used to process

100

accumulated data in data warehouse systems based on additional statistics available. For

instance, in version 0.9.0 of Hive, table and partition statistics are maintained, such as the

number of rows, the number of files, and the size in bytes. The size of intermediate join

results is determined using those statistics in the query plan generation. Moreover, further

research is being carried out to exploit column level statistics, such as the number of dis-

tinct values and histograms. Cost models for estimation were presented in each chapter, so

optimizer modules for the data warehouse systems can be developed to determine several

parameters for filtering based on estimated cost, such as whether to use filters, the type and

size of filters, and the processing order of input datasets. Adaptive joins will then play a

role as an insurance in case of incorrect estimation.

6.2.2 Join-based Applications

Since the join operation is an essential operation for data analysis, MFR-Join can be used in

various application systems. For example, graph pattern matching queries can be processed

based on joins [38, 24]. Figure 6.1 shows an MapReduce execution plan to process the

following graph query, which is expressed in SPARQL.

SELECT ?X ?Y

WHERE {
?X :type Professor .

?X :worksFor CS .

?Y :advisor ?X .

}

To find subgraphs that match a given query pattern from very large graph data, intermediate

results for each edge in the query need to be joined. It is expected that MFR-Join will im-

prove the performance for some types of graph query patterns, depending on the distribution

101

MapReduce 그래프패턴질의처리과정

Execution Plan

Result

SELECT ?X ?Y WHERE{
?X :type Professor .
?X :worksFor CS .
?Y :advisor ?X . }

SELECT ?X ?Y WHERE{
?X :type Professor .
?X :worksFor CS .
?Y :advisor ?X . }

Join(?X)Join(?X)

<?X :worksFor CS>

Join(?X)Join(?X) <?Y :advisor ?X>

<?X :type Professor>

MR Job 1MR Job 1 MR Job 2MR Job 2
DFS DFS DFS

예) RDF 그래프데이터에대한 SPARQL 질의

Query

Data

Ryan Ullman

Student CS DB system Professor

Dept. 2008

advisor

type worksFor authorOf type

type year

Figure 6.1: Join-based graph pattern matching

of nodes and edges in the graph data.

Another example is Semantic Web reasoning. Joins can be used to infer new knowledge

by finding propositions that satisfy specific inference rules [52]. Besides, it is believed that

various applications can be improved by MFR-Join. It would be desirable to ascertain if

MFR-Join is useful for many other applications.

6.2.3 Improving Scalability

On the experimental side, this study was conducted on a cluster with 11 nodes, which are

regarded as a small number of nodes. It is necessary to improve the proposed approach to

run on a cluster with hundreds or thousands nodes. A large number of filters will be used on

very large clusters, but the overhead of merging the filters tends to increase as the number of

nodes increases, as described in Section 3.1.3. Therefore, the filters have to be merged in an

efficient way such as hierarchical merging. The merging time can be increased if straggler

nodes do not finish their map tasks on a build input. It will be useful to launch backup tasks

for each input dataset in its map phase. In addition, the memory size that is occupied by the

filters have to be controlled because all of the filters cannot be loaded due to out of memory

error.

102

It is to be hoped that this study will help identify current issues and encourage additional

research on analysis of large-scale heterogeneous data.

103

References

[1] Cluster setup. http://hadoop.apache.org/docs/stable/cluster_setup.

html.

[2] Hadoop. http://hadoop.apache.org/.

[3] Hive. http://hive.apache.org/.

[4] TPC-H benchmark. http://www.tpc.org/tpch/.

[5] Teradata: Dbc/1012 data base computer concepts & facilities. Teradata Corp. Docu-

ment No. C02-0001-00, 1983.

[6] F. N. Afrati and J. D. Ullman. Optimizing joins in a map-reduce environment. In

Proceedings of the 13th International Conference on Extending Database Technology,

EDBT’10, pages 99–110, 2010.

[7] F. N. Afrati and J. D. Ullman. Optimizing multiway joins in a map-reduce environ-

ment. volume 23, pages 1282–1298, 2011.

[8] M. A. Bender, M. Farach-Colton, R. Johnson, R. Kraner, B. C. Kuszmaul, D. Medje-

dovic, P. Montes, P. Shetty, R. P. Spillane, and E. Zadok. Don’t thrash: How to cache

your hash on flash. Proceedings of the VLDB Endowment, 5(11):1627–1637, 2012.

105

http://hadoop.apache.org/docs/stable/cluster_setup.html
http://hadoop.apache.org/docs/stable/cluster_setup.html
http://hadoop.apache.org/
http://hive.apache.org/
http://www.tpc.org/tpch/

[9] P. A. Bernstein and D.-M. W. Chiu. Using semi-joins to solve relational queries.

Journal of the ACM, 28(1):25–40, 1981.

[10] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and Y. Tian. A comparison

of join algorithms for log processing in mapreduce. In Proceedings of the 2010 ACM

SIGMOD International Conference on Management of Data, SIGMOD’10, pages

975–986, 2010.

[11] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communi-

cations of the ACM, 13(7):422–426, 1970.

[12] B. Brown, M. Chui, and J. Manyika. Are you ready for the era of ‘big data’? MacK-

insey Quarterly, 2011.

[13] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.

In Proceedings of the 6th USENIX Symposium on Opearting Systems Design & Imple-

mentation, OSDI’04, pages 137–150, 2004.

[14] J. Dean and S. Ghemawat. System and method for efficient large-scale data processing.

Patent, US 7650331, 2010.

[15] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stonebraker, and D. A.

Wood. Implementation techniques for main memory database systems. In Proceed-

ings of the 1984 ACM SIGMOD International Conference on Management of Data,

SIGMOD’84, pages 1–8, 1984.

[16] C. Eaton, D. Deroos, T. Deutsch, G. Lapis, and P. Zikopoulos. Understanding Big

Data: Analytics for Enterprise Class Hadoop and Streaming Data. The McGraw-Hill

Companies, 2012.

106

[17] R. Epstein, M. Stonebraker, and E. Wong. Distributed query processing in a relational

data base system. In Proceedings of the 1978 ACM SIGMOD International Conference

on Management of Data, SIGMOD’78, pages 169–180, 1978.

[18] A. Espinosa, P. Hernandez, J. C. Moure, J. Protasio, and A. Ripoll. Analysis and im-

provement of map-reduce data distribution in read mapping applications. The Journal

of Supercomputing, 62(3):1305–1317, 2012.

[19] G. Graefe. Query evaluation techniques for large databases. ACM Computing Surveys,

25(2):73–169, 1993.

[20] A. Gruenheid, E. Omiecinski, and L. Mark. Query optimization using column statistics

in hive. In Proceedings of the 15th Symposium on International Database Engineering

& Applications, IDEAS’11, pages 97–105, 2011.

[21] R. Gupta, H. Gupta, U. Nambiar, and M. Mohania. Efficiently querying archived

data using hadoop. In Proceedings of the 19th ACM International Conference on

Information and Knowledge Management, CIKM’10, pages 1301–1304, 2010.

[22] F. Hao, M. Kodialam, and T. V.Lakshman. Building high accuracy bloom filters using

partitioned hashing. In Proceedings of the 2007 ACM SIGMETRICS international

conference on Measurement and modeling of computer systems, SIGMETRICS ’07,

pages 277–288, 2007.

[23] H. Herodotou. Hadoop performance models. Technical Report CS-2011-05, Duke

University. http://www.cs.duke.edu/starfish/files/hadoop-models.pdf,

2011.

107

http://www.cs.duke.edu/starfish/files/hadoop-models.pdf

[24] M. F. Husain, J. P. McGlothlin, M. M. Masud, L. R. Khan, and B. M. Thuraisingham.

Heuristics-based query processing for large rdf graphs using cloud computing. IEEE

Transactions on Knowledge and Data Engineering, 23(9):1312–1327, 2011.

[25] D. Jiang, A. K. H. Tung, and G. Chen. Map-join-reduce: Toward scalable and efficient

data analysis on large clusters. IEEE Transactions on Knowledge and Data Engineer-

ing, 23(9):1299–1311, 2011.

[26] A. Kemper, D. Kossmann, and C. Wiesner. Generalized hash teams for join and group-

by. In Proceedings of the 25th International Conference on Very Large Data Bases,

VLDB’99, pages 30–41, 1999.

[27] M. Kitsuregawa, H. Tanaka, and T. Moto-Oka. Application of hash to data base ma-

chine and its architecture. New Generation Computing, 1(1):63–74, 1983.

[28] P. Koutris. Bloom filters in distributed query execution. University of Wash-

ington. http://www.cs.washington.edu/education/courses/cse544/11wi/

projects/koutris.pdf, 2011.

[29] R. Lawrence. Using slice join for efficient evaluation of multi-way joins. Data &

Knowledge Engineering, 67(1):118–139, 2008.

[30] K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and B. Moon. Parallel data processing

with mapreduce: A survey. ACM SIGMOD Record, 40(4):11–20, 2011.

[31] T. Lee, K. Kim, and H.-J. Kim. Join processing using bloom filter in mapreduce.

In Proceedings of the 2012 ACM Research in Applied Computation Symposium,

RACS’12, pages 100–105, 2012.

108

http://www.cs.washington.edu/education/courses/cse544/11wi/projects/koutris.pdf
http://www.cs.washington.edu/education/courses/cse544/11wi/projects/koutris.pdf

[32] T. Lee, K. Kim, and H.-J. Kim. Exploiting bloom filters for efficient joins in mapre-

duce. Information ― An International Interdisciplinary Journal, 16(8(A)):5869–

5885, 2013.

[33] W. Li, K. Huang, D. Zhang, and Z. Qin. Accurate counting bloom filters for large-scale

data processing. Mathematical Problems in Engineering, 2013(Article ID 516298):11,

2013.

[34] L. F. Mackert and G. M. Lohman. R* optimizer validation and performance evaluation

for distributed queries. In Proceedings of the 12th International Conference on Very

Large Data Bases, VLDB’86, pages 149–159, 1986.

[35] Market Analysis. Hadoop-mapreduce market forecast 2013-2018. http://www.

marketanalysis.com/?p=279, 2012.

[36] Markets and Markets. Big data market by types (hardware; software; services;

bdaas - haas; analytics; visualization as service); by software (hadoop, big data an-

alytics and databases, system software (imdb, imc): Worldwide forecasts & anal-

ysis (2013 - 2018). http://www.marketsandmarkets.com/Market-Reports/

big-data-market-1068.html, 2013.

[37] L. Michael, W. Nejdl, O. Papapetrou, and W. Siberski. Improving distributed join

efficiency with extended bloom filter operations. In Proceedings of the 21st Interna-

tional Conference on Advanced Networking and Applications, AINA’07, pages 187–

194, 2007.

109

http://www.marketanalysis.com/?p=279
http://www.marketanalysis.com/?p=279
http://www.marketsandmarkets.com/Market-Reports/big-data-market-1068.html
http://www.marketsandmarkets.com/Market-Reports/big-data-market-1068.html

[38] J. Myung, J. Yeon, and S. goo Lee. Sparql basic graph pattern processing with iterative

mapreduce. In Proceedings of the 2010 Workshop on Massive Data Analytics on the

Cloud, MDAC ’10, pages 6:1–6:6, 2010.

[39] A. Okcan and M. Riedewald. Processing theta-joins using mapreduce. In Proceedings

of the 2011 ACM SIGMOD International Conference on Management of Data, SIG-

MOD’11, pages 949–960, 2011.

[40] K. Palla. A comparative analysis of join algorithms using the hadoop map/reduce

framework. Master’s thesis, University of Edinburgh, 2009.

[41] O. Papapetrou, W. Siberski, and W. Nejdl. Cardinality estimation and dynamic length

adaptation for bloom filters. Distributed and Parallel Databases, 28(2-3):119–156,

2010.

[42] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. Dewitt, S. Madden, and M. Stone-

braker. A comparison of approaches to large-scale data analysis. In Proceedings

of the 2009 ACM SIGMOD International Conference on Management of Data, SIG-

MOD’09, pages 165–178, 2009.

[43] Y. Qiao, T. Li, and S. Chen. One memory access bloom filters and their generalization.

In Proceedings of the 2011 IEEE INFOCOM, pages 1745–1753, 2011.

[44] R. Quislant, E. Gutierrez, O. Plata, and E. L. Zapata. Interval filter: A locality-aware

alternative to bloom filters for hardware membership queries by interval classification.

In Proceedings of the 11th International Conference on Intelligent Data Engineering

and Automated Learning, IDEAL’10, pages 162–169, 2010.

110

[45] D. A. Schneider and D. J. DeWitt. A performance evaluation of four parallel join al-

gorithms in a shared-nothing multiprocessor environment. In Proceedings of the 1989

ACM SIGMOD International Conference on Management of Data, SIGMOD’89,

pages 110–121, 1989.

[46] A. Segev. Optimization of join operations in horizontally partitioned database systems.

ACM Transactions on Database Systems, 11(1):48–80, 1986.

[47] D. Shasha and T.-L. Wang. Optimizing equijoin queries in distributed databases where

relations are hash partitioned. ACM Transactions on Database Systems, 16(2):279–

308, 1991.

[48] A. Silberschatz, H. F. Korth, and S. Sudarshan. Database System Concepts. McGraw-

Hill, sixth edition, 2010.

[49] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz. Theory and practice of bloom filters

for distributed systems. IEEE Communications Surveys and Tutorials, 14(1):131–155,

2012.

[50] A. Thusoo, S. Antony, N. Jain, R. Murthy, Z. Shao, D. Borthakur, J. S. Sarma, and

H. Liu. Data warehousing and analytics infrastructure at facebook. In Proceedings

of the 2010 ACM SIGMOD International Conference on Management of Data, SIG-

MOD’10, pages 1013–1020, 2010.

[51] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Antony, H. Liu, and

R. Murthy. Hive - a petabyte scale data warehouse using hadoop. In Proceedings of

the 26th IEEE International Conference on Data Engineering, ICDE’10, pages 996–

1005, 2010.

111

[52] J. Urbani, S. Kotoulas, E. Oren, and F. van Harmelen. Scalable distributed reasoning

using mapreduce. In Proceedings of the 8th International Semantic Web Conference,

ISWC ’09, pages 634–649, 2009.

[53] T. White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., second edition, 2011.

[54] H.-C. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker. Map-reduce-merge: Simplified

relational data processing on large clusters. In Proceedings of the 2007 ACM SIGMOD

International Conference on Management of Data, SIGMOD’07, pages 1029–1040,

2007.

[55] C. Zhang, J. Li, L. Wu, M. Lin, and W. Liu. Sej: An even approach to multiway

theta-joins using mapreduce. In 2012 Second International Conference on Cloud and

Green Computing (CGC), pages 73–80, 2012.

[56] C. Zhang, L. Wu, and J. Li. Optimizing distributed joins with bloom filters using

mapreduce. In Computer Applications for Graphics, Grid Computing, and Industrial

Environment, pages 88–95, 2012.

[57] C. Zhang, L. Wu, and J. Li. Efficient processing distributed joins with bloomfilter

using mapreduce. International Journal of Grid and Distributed Computing, 6(3):43–

58, 2013.

112

초록

조인 연산은 데이터 분석을 위한 필수 연산 중 하나이다. 각기 다른 곳에서 수집된

이질적인 데이터를 분석하려면 큰 데이터셋을 조인해야 하기 때문이다. 맵리듀스

(MapReduce)는 대규모 데이터 분석에 매우 유용한 프레임워크이지만, 여러 데이터

셋을조인하는데에는적합하지않다. 조인되는레코드의크기에상관없이많은수

의 불필요한 중간 결과를 생산하는 탓이다. 조인 성능을 향상하기 위해 기존의 몇

몇방법을이용해왔으나특정상황에서만사용가능하거나여러맵리듀스잡(job)을

요한다. 이러한문제를경감하기위해본학위논문에서는맵리듀스에서필터링기

법을 사용하여 동등 조인(equi-join)을 처리하는 일반적인 조인 프레임워크인 MFR-

Join을 제안한다. MFR-Join은 단일 맵리듀스 잡에서 맵 단계에서 필터를 적용하여

불필요한중간결과를걸러낸다. 이를이루기위해맵리듀스프레임워크를두가지

수정한다. 첫째, 맵 태스크를 입력 데이터셋의 처리 순서에 따라 스케쥴한다. 둘째,

필터를 동적으로 데이터셋들의 조인 키를 가지고 분산 방식으로 생성한다. 필요한

특정 연산을 지원하는 다양한 필터링 기법을 MFR-Join에 플러그인 하여 사용할 수

있다. 필터를사용할때의조인처리성능이사용하지않을때보다더나빠질경우를

대비하여적응적조인처리방법도제안한다. 양성오류율의측면에서필터의성능

을 예측하여 그에 따라 필터를 적용한다. 이와 더불어 동기 및 비동기 스케쥴링의

두가지맵태스크스케쥴링방식을제시한다. 필터링기법을이용하는착상을다중

조인(multi-way join)까지확장하여공통속성조인(common attribute join)과차별속성

조인(distinct attribute join)의두가지형태의다중조인에대한필터적용방법을제안

113

한다. 실험결과를통해제안한방법이입력데이터셋에서일부만조인될때기존의

조인알고리즘들보다나은성능을보이고중간결과의크기를줄인다는점을밝힌다.

주요어: 조인처리,적응적조인,조인필터,맵리듀스,하둡

학번: 2004-21603

114

	1 Introduction
	1.1 Research Background and Motivation
	1.2 Contributions
	1.2.1 Join Processing with Filtering Techniques in MapReduce
	1.2.2 Adaptive Join Processing with Filtering Techniques in MFR-Join
	1.2.3 Multi-way Join Processing in MFR-Join

	1.3 Dissertation Overview

	2 Preliminaries and Related Work
	2.1 MapReduce
	2.2 Parallel and Distributed Join Algorithms in DBMS
	2.3 Join Algorithms in MapReduce
	2.3.1 Map-side joins
	2.3.2 Reduce-side joins

	2.4 Multi-way Joins in MapReduce
	2.5 Filtering Techniques for Join Processing

	3 MFR-Join: A General Join Framework with Filtering Techniques in MapReduce
	3.1 MFR-Join Framework
	3.1.1 Execution Overview
	3.1.2 Map Task Scheduling
	3.1.3 Filter Construction
	3.1.4 Filtering Techniques Applicable to MFR-Join
	3.1.5 API and Parameters

	3.2 Cost Analysis
	3.2.1 Cost Model
	3.2.2 Effects of the Filters

	3.3 Evaluation
	3.3.1 Experimental Setup
	3.3.2 Experimental Results

	4 Adaptive Join Processing with Filtering Techniques in MFR-Join
	4.1 Adaptive join processing in MFR-Join
	4.1.1 Execution Overview
	4.1.2 Additional Filter Operations for Adaptive Joins
	4.1.3 Early Detection of FPR Threshold Being Exceeded
	4.1.4 Map Task Scheduling Policies
	4.1.5 Additional Parameters for Adaptive Joins

	4.2 Join Cost and FPR Threshold Analysis
	4.2.1 Cost of Adaptive Join
	4.2.2 Effects of FPR Threshold
	4.2.3 Effects of Map Task Scheduling Policy

	4.3 Evaluation
	4.3.1 Experimental Setup
	4.3.2 Experimental Results

	5 Multi-way Join Processing in MFR-Join
	5.1 Applying filters to multi-way joins
	5.1.1 Common Attribute Joins
	5.1.2 Distinct Attribute Joins
	5.1.3 General Multi-way Joins
	5.1.4 Cost Analysis

	5.2 Implementation Details
	5.2.1 Partition Assignment
	5.2.2 MapReduce Functions

	5.3 Evaluation
	5.3.1 Common Attribute Joins
	5.3.2 Distinct attribute joins

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work
	6.2.1 Integration with Data Warehouse Systems
	6.2.2 Join-based Applications
	6.2.3 Improving Scalability

<startpage>18
1 Introduction 1
 1.1 Research Background and Motivation 1
 1.2 Contributions 4
 1.2.1 Join Processing with Filtering Techniques in MapReduce 4
 1.2.2 Adaptive Join Processing with Filtering Techniques in MFR-Join 5
 1.2.3 Multi-way Join Processing in MFR-Join 6
 1.3 Dissertation Overview 6
2 Preliminaries and Related Work 9
 2.1 MapReduce 9
 2.2 Parallel and Distributed Join Algorithms in DBMS 11
 2.3 Join Algorithms in MapReduce 12
 2.3.1 Map-side joins 13
 2.3.2 Reduce-side joins 14
 2.4 Multi-way Joins in MapReduce 17
 2.5 Filtering Techniques for Join Processing 19
3 MFR-Join: A General Join Framework with Filtering Techniques in MapReduce 23
 3.1 MFR-Join Framework 24
 3.1.1 Execution Overview 24
 3.1.2 Map Task Scheduling 27
 3.1.3 Filter Construction 28
 3.1.4 Filtering Techniques Applicable to MFR-Join 29
 3.1.5 API and Parameters 29
 3.2 Cost Analysis 30
 3.2.1 Cost Model 31
 3.2.2 Effects of the Filters 39
 3.3 Evaluation 41
 3.3.1 Experimental Setup 41
 3.3.2 Experimental Results 43
4 Adaptive Join Processing with Filtering Techniques in MFR-Join 53
 4.1 Adaptive join processing in MFR-Join 54
 4.1.1 Execution Overview 55
 4.1.2 Additional Filter Operations for Adaptive Joins 57
 4.1.3 Early Detection of FPR Threshold Being Exceeded 58
 4.1.4 Map Task Scheduling Policies 59
 4.1.5 Additional Parameters for Adaptive Joins 60
 4.2 Join Cost and FPR Threshold Analysis 61
 4.2.1 Cost of Adaptive Join 61
 4.2.2 Effects of FPR Threshold 62
 4.2.3 Effects of Map Task Scheduling Policy 63
 4.3 Evaluation 64
 4.3.1 Experimental Setup 64
 4.3.2 Experimental Results 65
5 Multi-way Join Processing in MFR-Join 77
 5.1 Applying filters to multi-way joins 78
 5.1.1 Common Attribute Joins 79
 5.1.2 Distinct Attribute Joins 80
 5.1.3 General Multi-way Joins 83
 5.1.4 Cost Analysis 83
 5.2 Implementation Details 84
 5.2.1 Partition Assignment 85
 5.2.2 MapReduce Functions 88
 5.3 Evaluation 89
 5.3.1 Common Attribute Joins 90
 5.3.2 Distinct attribute joins 91
6 Conclusions and Future Work 99
 6.1 Conclusions 99
 6.2 Future Work 100
 6.2.1 Integration with Data Warehouse Systems 100
 6.2.2 Join-based Applications 101
 6.2.3 Improving Scalability 102
</body>

