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Abstract

As the size of Resource Description Framework (RDF) graphs has grown rapidly,

SPARQL query processing on the large-scale RDF graph has become a more

challenging problem. For efficient SPARQL query processing, the handling of

the intermediate results is the most crucial element because it generally in-

volves many join operators. In order to address this problem, we propose the

triple filtering method that exploits the graph-structural information of RDF

data. We design the RDF Path index (RP-index) and the RDF Graph index (RG-

index) for the triple filtering. These two indices uses the path information and

the graph information of the RDF graph, respectively. However, these indices

have the size problem due to the exponential number of the indexed patterns.

We address the size problem by indexing only effective the path and graph

patterns for the triple filtering. The triple filtering is performed very efficiently

by a relational operator called the RDF Filter (RFLT) with little overhead com-

pared to the original query processing. Through comprehensive experiments

on large-scale RDF datasets, we demonstrate that our approaches can effec-

tively and efficiently reduce the number of redundant intermediate results and

improve the query performance.

Keywords: RDF, SPARQL, query optimization, triple filtering, intermediate re-

sults

Student Number: 2003-23569
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Chapter 1

Introduction

The Resource Description Framework (RDF) [1] is the core data model for

the Semantic Web, and SPARQL [2] is the standard query language for RDF

data. RDF data is a set of triples(subject, predicate, object) which describe the

relationship between two resources(subject and object). The RDF data forms

a graph called RDF graph which consists of the resources and their relation-

ships. In general, RDF data can be modeled as a graph, and the evaluation

of SPARQL queries can be considered as subgraph pattern matching on the

RDF graph. RDF features flexibility with little schema restriction and expres-

sive power which can represent graph-structured data. By virtue of these fea-

tures, it has been utilized in various areas, such as bioinformatics [3,4], media

data [5], Wikipedia [6], social networks [7], and government [8]. Like this,

RDF is widely used to represent and integrate data from various domains.

As an real-life example of large-scale RDF data, there is the LOD, Linking

Open Data, project [9]. It was initiated and led by W3C, and as its name implies,
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Figure 1.1: Linked Open Data Cloud Diagram by Richard Cyganiak and Anja

Jentzsch. http://lod-cloud.net/

the project’s goals are to publish various open data sets on the Web as RDF, and

to link the data items from different data sources using RDF links. Figure 1.1

is of LOD Cloud diagram. This diagram shows the data sources converted into

RDF in LOD project and there relationships. This diagram can show how RDF

data has grown rapidly. At May, 2007, there existed only 12 data sources in

LOD project. And it kept growing, and at September, 2011, the data sources

had increased up to 295 data sources. And the total number of triples amounts

to 31 billions. As we can see in this diagram, RDF data becomes real-life Big

Graph Data.

The main reasons of the rapid increase of RDF data and its use for inte-

grating data from various data sources are its flexibility and inherent graph

structure. Although these benefits give a strong expressive power and flexibility

to RDF, it also poses significant challenges for the processing of large-scale RDF

data, especially for processing complex SPARQL queries.

In this thesis, we aim to propose an efficient SPARQL query processing tech-
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nique which can evaluate SPARQL queries over large-scale RDF graphs. More

specifically, we propose a novel filtering method called RDF Triple Filtering to

address the problem of redundant intermediate results. The triple filtering can

accelerate query evaluation by reducing these unwanted intermediate results. It

filtering out irrelevant triples retrieved from the scan operators before they are

passed to the join operators using graph-structural information of RDF graphs.

In this section, we explain our research motivation with concrete examples and

provide the comparisons with the privious approaches. Also we present sum-

mary of our contributions and the outline of the thesis.

1.1 Research Motivation

There exist numerous bodies of literature for efficient SPARQL query process-

ing. In order to store large-scale RDF and process SPARQL queries, most state-

of-the-art RDF systems employ the relational model. Examples of this relation-

based RDF stores are Jena [10], Sesame [11], SW-Store [12], Virtuoso [13],

and RDF-3X [14]. Relation-based RDF stores use the relation tables to store RDF

data and translate SPARQL queries into relational algebraic expressions [15].

They decompose the RDF graph into triples, which consist of Subject, Predicate

and Object, and store these triples in a relation table with three columns (Sub-

ject, Predicate ,Object). This table is called the triple table. The SPARQL queries

are evaluated through a sequence of joins on the triple table. Let us consider

the following SPARQL query.

3



SELECT ?n1 ?n2 ?n3 ?n4

WHERE {

?n1 p1 ?n2.

?n2 p2 ?n3.

?n3 p3 ?n4.

}

The above SPARQL query consists of three triple patterns, which form a

graph pattern, and the evaluation of this query is to find all subgraphs in the

RDF graph matching with the query graph pattern. This SPARQL query requires

three scan operations which retrieve the matching triples for each triple pat-

tern from the triple table, and two join operations which combine the retrieved

triples.

The main problem of relation-based RDF stores is that they need too many

join operators to process SPARQL queries. In general, a SPARQL query with N

triple patterns requires N − 1 join operations. There has been a lot of research

on storing and querying of RDF data [10–14]. However they have limitations

that they do not use the graph-structural information of the RDF graph.

Let us consider the previous example SPARQL query. This query is processed

normally as follows (Although the physical structures and detailed implemen-

tations are different for each RDF engine, they share a common framework

for processing RDF data). We assume that the RDF graph is stored in the form

of relations (for example, relational tables in Jena [10] and Sesame [11], or

clustered B+tree indices in RDF-3X [14]). Then, SPARQL queries are processed

using execution plans consisting of (1) operators for retrieving the matching

triples, and (2) operators for combining the retrieved triples (the specific plans

4



Scan1Join1
<?n1, p1, ?n2>

Scan2

<?n2, p2, ?n3>

Scan3

<?n3, p3, ?n4>

Join2

(a)

Scan1

Join1

<?n1, p1, ?n2>
Scan2

<?n2, p2, ?n3>

Scan3

<?n3, p3, ?n4>

Join2

(b)

Figure 1.2: Execution Plan

Table 1.1: Cardinalities of Intermediate Results

Graph Pattern Cardinality

?n1 ?n2 ?n3 ?n4

p1 p2 p3

1,000

?n1 ?n2 ?n3

p1 p2

1,000,000

?n2 ?n3 ?n4

p2 p3

500,000

are different, as for different RDF engines, according to the physical storage

layout and optimization techniques). For example, RDF-3X uses scan operators

to retrieve matching triples and join operators to combine them [14].

Figure 1.2 shows two possible execution plans for the previous SPARQL

query, which have three scan operators (one for each triple pattern) and two

join operators. Each operator in the execution plans makes the partially match-

ing fragments for the query graph pattern. For example, Join1 in Figure 1.2a

produces all the matching fragments for the graph pattern which consists of

the second and the third triple pattern of the SPARQL query. Also, let use as-

5



sume that the numbers in Table 1.1 are the result cardinalities for the subgraph

patterns included in the query graph pattern. Because Join1 in Figure 1.2 (a)

generates all the matching fragments for the graph pattern in the third row

of Table 1.1 and the number of the result rows would be 500,000. However,

the number of the final results(the first row in Table 1.1) is only 1,000. Con-

sequently, at least 499,000 rows of 500,000 rows become the redundant inter-

mediate results. The cost which are consumed for generating and processing

these useless intermediate results is wasted because they do not contribute to

the final query results. And in large-scale RDF dataset, the size of the interme-

diate results intends to increase and the overhead due to them becomes more

serious.

Most RDF engines try to reduce these intermediate results by choosing an

execution plan with the optimal join order when compiling the query. For exam-

ple, Figure 1.2b shows another execution plan whose results are the same with

the Figure 1.2a but whose join order is different from that of the execution plan

inFigure 1.2a. The query optimizer prefers the execution plan in Figure 1.2a to

the execution plan in Figure 1.2b because the latter would generate 500,000

more rows than the former plan. However, as we can see in this example, the

execution plan with the optimal join order could not remove all the useless

intermediate results.

1.2 Our Contributions

RDF Triple Filtering Framework. In this paper, we propose a novel triple fil-

tering framework called R3F (RDF Triple Filtering) [17] to reduce the useless

intermediate results effectively and efficiently using graph-structural informa-

6
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Figure 1.3: Overview of RDF Triple Filtering (R3F)

tion of RDF data. R3F adds several filtering operators to an execution plan.

These operators filter out irrelevant triples using the necessary condition for

becoming the final query results. This information is provide as vertex lists,

which is used for the filter data for the triple filtering. This information can be

provided from any information sources as long as it is a sorted list of vertices.

Therefore, we call our method as a framework. In this these we provide the

filter data from two indices; a path-based index and a graph-based index.

We deal with the entire process for applying the triple filtering for SPARQL

query processing including (1) the building and maintaining indices, (2) query

optimization and (3) query execution operators. Figure 1.3 shows the overview

of the RDF store using the triple filtering. The grey boxes represent the modules

for the triple filtering. The contributions of this paper can be summarized as

7



follows.

RP-index and RG-index. In order to provide the filter data for R3F, we pro-

pose two types of indices, RDF Path index RP-index [16,17] and RDF Graph in-

dex RG-index. RP-index uses the path information and RG-index uses the graph-

structural information. Each index provides the list of the nodes in the RDF

graph which are reached by paths with a specific path pattern or are included

in a specific subgraph pattern. RP-index stores the precomputed incoming pred-

icate path information in order to efficiently provide the filter data required for

triple filtering. It consists of several vertex lists built for a set of predicate paths,

each of which contain all vertices having the specified predicate path as their

incoming path.

For example, in the previous example, we can obtain the list of vertices

which can be reached by paths which are matching for a path pattern {(?n1, p1, ?n2),

(?n2, p2, ?n3)} by using RP-index. This vertex list can be used as filter data to

filter the result triples of Scan2 or Scan3 in Figure 1.2a and then we can prune

the triples which would not be joined in Join2 in advance. As a result, we can

reduce the number of intermediate results using the path pattern information.

Using these node lists, we can reduce the useless intermediate results effectively

for complex SPARQL queries.

RP-index is a sort of path-based index, and appears very similar to previous

path-based indices proposed for semi-structured data, such as DataGuide [18],

1-index [19], A(k)-index [20], D(k)-index [21], and M(k)-index [22]. Although

these indices can be used for the triple filtering, RP-index has different goals,

aiming to provide filter data efficiently rather than obtain query results from

the index. Thus, it is specially designed to achieve this goal, and can also take

8



different approaches to address the size problem, which is an important issue

in several path-based indices. More specifically, we deal with the size problem

of RP-index using the discriminative fragment concept applied in gIndex [23].

We also propose a graph index called RG-index in order to improve the filter-

ing power of RP-index. RG-index indexes the graph patterns in the RDF graph

rather than the path information, and therefore, it can enhance the filtering

effects compared to RP-index. For building RG-index we adapt the gSpan [24]

algorithm, one of the most well known algorithms for mining frequent graph

patterns. Originally, gSpan was developed for treating a transactional graph

database, which comprises many small-size graphs. Thus, in order to apply the

gSpan to the RDF graph, which is a single large graph, the gSpan algorithm has

to be modified. Further, to reduce the duplicate computations that occur during

graph pattern mining, we propose a mechanism for caching the intermediate

results.

In addition, we propose an efficient building and maintaining algorithms

for the and RP-index and RG-index.

RFLT Operator and Query Optimization. We propose a new relational op-

erator called the RDF Filter (RFLT) that conducts triple filtering very efficiently

for its child operators using vertex lists from RP-index or RG-index. It is a very

lightweight operator, designed to minimize the additional overhead to the orig-

inal query processing caused by triple filtering. Execution plans using RFLT op-

erators are generated by a cost-based query optimizer based on their costs and

filtering effects. For this, we also elaborate on the cost measure and estimation

method for the output cardinality of RFLT operator.

We implement R3F on top of RDF-3X [14], the fastest RDF engine accord-
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ing to the published numbers (we discuss RDF-3X in Section ??). Many RDF

stores including RDF-3X store triples as sorted to permit the efficient retrieval

of matching triples and to allow efficient merge join operations [12,14,25]. For

efficient triple filtering, the triple filtering uses the manner in which retrieved

triples are sorted in RDF-3X.

In addition, RDF-3X already has several indices for efficient retrieval of

matching triples. Whereas these indices aim to retrieve matching triples for

a given triple pattern, RP-index and RG-index is designed to supply the filter

data. RP-index and RG-index are a sort of supplementary index for pruning ir-

relevant triples retrieved from the triple indices (or aggregated indices) using

the incoming predicate path information. Hence, RP-index, RG-index and the

indices in RDF-3X are in a complementary relationship. Figure 1.3 shows the

overview of the RDF stores using the triple filtering. We focus on the graph

pattern matching component of SPARQL query processing, especially the basic

graph pattern [2]. However, we also discuss how to apply our approach to other

types of queries.

RDFS [26] and OWL [27] provide semantic information for RDF data, and

this information can create additional triples that are not explicitly stated in

the RDF data. We assume that these inferred triples materialize in the RDF

database in advance using the forward chaining strategy, as in Jena [10] and

Sesame [11].

Our contributions can be summarized as follows.

1. At first, we propose a novel triple filtering method for efficient SPARQL

query processing. We provide the framework for processing the triple fil-

tering.
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2. For efficient and effective triple filtering, we design a path-based index

called RP-index. Additionally, we deal with the size problem of RP-index

using the discriminative and frequent fragment concept from gIndex [23],

and also consider maintenance issues.

3. We also describe the design of RG-index and propose an efficient building

algorithm adapted from the gSpan algorithm.

4. We present RFLT operator, which conducts triple filtering efficiently. In ad-

dition, we develop the cost model and the cardinality estimation method

for RFLT operator. And we integrate this operator into the cost-based

query optimizer.

5. We implement RP-index and RG-index on RDF-3X [14] and present com-

prehensive performance evaluation results using very large-scale real-life

and synthetic RDF datasets, which demonstrate that the performance of

our methods is superior to that of the existing methods.

1.3 Outline

The remainder of the thesis is organized as follows. Chapter 2 reviews the re-

lated work. In this chapter, an overview of the target RDF-3X system is also

presented. Chapter 3 gives some preliminary notations and discusses the data

model related to our work. Chapter 4 describes the overall process of R3F, RDF

triple filtering, framework. In this chapter, we present the concept of the triple

filtering and propose the triple filtering method using RP-index. We presents

the design of RP-index and its building and incremental update method. We

also introduce RFLT operator and discusses the generation of execution plans

11



using this operator. Chapter 5 proposes RG-index which can provide stronger

filtering power than RP-index. In Chapter 6 concludes our work and discusses

the future work.
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Chapter 2

Related Work

In this section, we review previous work on RDF stores, the handling of inter-

mediate results in SPARQL query processing, and path-based and graph indices.

We also introduce frequent graph pattern mining techniques.

2.1 RDF Stores

We can divide RDF stores into two categories, relation-based RDF stores and

graph-based RDF stores, based on their query processing method. Relation-

based RDF stores use the logical relational model to store RDF data and trans-

late SPARQL queries into equivalent relational algebraic expressions [15]. On

the other hand, graph-based RDF stores process SPARQL queries using sub-

graph matching algorithms. They usually use graph indices to reduce the search

space of subgraph matching algorithms.

Early relation-based RDF stores such as Jena [10] and Sesame [11] use
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relational databases as their underlying stores (currently, they also provide na-

tive RDF stores [28]). However, because relational database management sys-

tems (RDBMSs) are not optimized for processing RDF data, they have scala-

bility problems for large-scale RDF data. SW-Store [12] partitions the triple ta-

ble vertically according to the predicate value. By partitioning the triple table,

SW-store can easily retrieve matching triples for triple patterns with predicate

constants. However, SW-Store is not scalable for queries with predicate vari-

ables [29]. Hexastore [25] stores RDF triples in a set of vectors. Triples are

indexed by six possible orderings of three columns so that they can be retrieved

for any type of triple pattern. This method can also extend the possibility of

using merge joins. BitMat [30] stores RDF data as a compressed bit-matrix

structure. The authors present a pruning method using bit-matrices that does

not generate intermediate results. RDF-3X [14] is another relation-based RDF

store, that we discuss in more detail in Section 2.1.2. SWIM (Semantic Web In-

formation Management) [31] proposes the scalable and extensible framework

for RDF data that stores the semantic web data in a relational DBMS. The ap-

proximate query answering problem for RDF data has also been studied and

experiments on relational RDF stores were conducted in [32].

Recently, a few graph-based RDF stores have also been proposed. In the

GRIN index [33], an RDF graph is partitioned into several subgraphs. Those

relevant to a query can then be chosen by the GRIN index. DOGMA [34] is a

disk-based graph index used to retrieve the neighboring vertices of a specific

vertex. The DOGMA index exploits distance information to restrict the search

space. PIG [35] constructs an index that summarizes the structure of an RDF

graph, and processes queries using the structure index. gStore [36] uses an
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approach similar to PIG. gStore reduces the search space by transforming an

RDF graph and query graphs into signature graphs, and then matches the query

signature graphs against the data signature graph.

These graph-based system (GRIN index [33], DOGMA [34], PIG [35], and

gStore [36]) use graph-traversal approaches and graph indexing. They focus on

reducing the search space of the graph traversing algorithms using the graph

indices. While we also use a graph index (RG-index), our approach is differ-

ent from these systems in that we focus on reducing the input size of joins in

relation-based RDF stores.

In summary, relation-based RDF stores mainly use join operations, whereas

graph-based RDF stores use graph exploration for the graph pattern matching.

Using join operations, substructures can be joined in batch, and so relation-

based RDF stores are more suitable for handling large-scale RDF data [37].

However, the graph indices used in graph-based RDF stores can effectively re-

duce the search space of the graph pattern matching algorithms, and can be

used to reduce the number of redundant intermediate results. Our proposed

triple filtering is designed for relation-based RDF stores, and also uses a kind

of graph index, RP-index. Therefore, our approaches can be regarded as an

attempt to hybridize the advantages of relation-based and graph-based ap-

proaches. To the best of our knowledge, there has been little effort to integrate

the two approaches.

Recently, RDF stores based on a clustered environment, such as MapReduce,

have also been proposed, i.e., HadoopRDF [38], SHARD [39], multi-node ex-

tension of RDF-3X [40], and Rya [41]. In these distributed RDF systems, re-

ducing the join inputs can improve the query performance more than do the
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single-node RDF stores, because it can reduce the network overhead for trans-

porting intermediate results. RG-index can be applied in these systems.

2.1.1 Summary of Existing Methods of Relation-based RDF Stores

As we already mentioned, the main problem of SPARQL query processing is that

it involves many join operators. Several approaches have been proposed for re-

solving this problem, which can be summarized as: (1) Reducing the number of

joins; (2) making the join operators themselves efficient; and (3) reducing the

inputs of join operators. Jena [10] and Oracle [42] proposed the property ta-

ble. They reduces the number of joins by clustering several properties accessed

together in a single property table. Because it stores the join results in a single

table, it can reduce the number of joins. However, the property table approach

has several problems in that it requires the users’ clustering decisions and the

previous knowledge about the query workload [12]. In addition, it incurs many

null values or multi-values, which are hard to process, because it is created by

denormalizing the triple table [12].

In order to process the joins efficiently, SW-Store [12] proposed the vertical

partitioning, in which the triple table is partitioned vertically according to the

predicate values. Since it uses a column-oriented store as its underlying store,

triples are stored as sorted by the subject column. Therefore, the subject-subject

joins can be processed efficiently using the fast merge join in SW-Store. How-

ever, the merge joins can be used only for the subject-subject joins in SW-Store.

To extend the possibilities of using merge joins, in Hexastore [25] and RDF-

3X [14], the multiple indexing approach is applied. They index triples by all

six possible orderings of (subject, predicate, object). Triples can be retrieved
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Table 2.1: Summary of Existing Approaches and Our Approaches

Approaches System Pros Cons

Property

Table

Jena,

Sesame,

Oracle

Reduce the joins Need user’s decision

Vertical

Partitioning

SW-Store Fast merge joins Applied only Subject-

Subject join

Multiple

Indexing

RDF-3X Handle any type of

triple patterns

Space overhead

Triple

Filtering

RP-index,

RG-index

Reduce the redundant

intermediate results

Overhead for maintain-

ing the indices

for any orderings, and merge joins can be used for joins other than the subject-

subject join.

U-SIP (Ubiquitous Sideways Information Passing) [43] is proposed for re-

ducing the inputs of join operators. U-SIP dynamically builds filters to provide

information about the subject IDs or object IDs to be read next (we call this the

next information). RDF-3X uses this next information to skip reading unneces-

sary disk blocks. While scanning the leaf blocks sequentially, if it determines

that the next block can be skipped, it performs the B+tree index look-up to

skip unnecessary blocks. In these ways, U-SIP can prune the triples that are

irrelevant for the given query and reduce the input size of joins.

In short, most relation-based RDF stores mainly use join operations, and
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they proposed several techniques for processing the join operations efficiently.

However, these previous approach do not use graph-structural information of

the RDF graph. Table 2.1 shows the summary of the existing approaches and

our approaches.

2.1.2 Overview of RDF-3X

RDF-3X [14] is an open source RDF engine and it is known as the fastest RDF

engine according to the published numbers. In RDF-3X, Uniform Resource Iden-

tifiers (URIs) and literals are replaced by integer IDs using a mapping dictio-

nary, and triples are stored using these IDs. Therefore, URIs and literals are

treated in the same way in RDF-3X. RDF triples are stored in six clustered

B+tree indices, built for each of the six permutations of subject (S), predi-

cate (P), and object (O): SPO, SOP, PSO, POS, OSP, and OPS. Each index stores

triples in the leaf blocks as sorted by its ordering. Additionally, there also exist

nine aggregated indices (SP, PS, SO, OS, PO, OP, S, P, O) that index partial

triples and their occurrence counts.

By storing triples in six indices, RDF-3X can retrieve matching triples for any

triple pattern in any ordering using range scans. For example, if a scan operator

reads triples from the PSO index, the retrieved triples are ordered by (P, S, O).

Furthermore, if the triple pattern assigned to a scan operator has a predicate

constant, the retrieved triples are totally ordered by the S column.

RDF-3X uses two types of join operators: hash join and merge join. If both

inputs of a join operator are ordered by columns corresponding to the join vari-

able, RDF-3X uses the merge join; otherwise, the hash join is used. Let us con-

sider the example in Figure 5.1b. Scan1 and Scan2 use the POS index, and the

18



retrieved triples are totally ordered by the O column. The vertex corresponding

to the O column is ?v3, which is also the join variable of Join1. Therefore, Join1

uses the merge join. However, the results of Join1 are ordered by v3 and the

join variable of Join2 is ?v2. Thus, Join2 uses the hash join. Join3 also uses the

hash join because the results of Join2 are not ordered.

RDF-3X alleviates the space overhead caused by redundancy (six triple in-

dices and nine aggregated indices) by compressing the triples in the leaf blocks

using a delta-based byte-level compression scheme. This compression scheme

exploits the fact that it usually takes fewer bytes to encode the delta between

triples than to store the triples directly. The delta between two triples is en-

coded with a header byte, which contains the size of three delta values, and

three deltas between values in the triples (subject, predicate, and object). The

delta between two values consumes between 0 bytes (unchanged) and 4 bytes

(the ID of a URI or literal consumes four bytes), and therefore there are 125

size combinations for the delta between two triples. This delta size combination

is stored in the header byte, with its most significant bit set to 1. If only the last

value of the triple changes and the delta is less than 128, it is directly stored in

the header byte (with its most significant bit set to 0), and so it can be encoded

with only one byte. For a more detailed description, readers can refer to [14].

In addition, to reduce the overhead of index scans and the number of inter-

mediate results, RDF-3X uses a kind of sideways information passing (SIP) tech-

nique called U-SIP. SIP refers to techniques that reduce the inputs of a join op-

erator using information passed from another operator outside the normal exe-

cution flow (this is why they are called sideways information passing) [44–46].

The passed information usually contains domain information about the join
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variable so that inputs that will not be joined can be pruned in advance. U-SIP

builds filters that provide information about the next triples to be read (called

next information). The next information is the subject or object ID to be read

next. RDF-3X uses this next information to skip the reading of unnecessary disk

blocks. While scanning the leaf blocks sequentially, if the next block is consid-

ered to be unnecessary based on the next information, rather than continuing

the sequential scan, it looks up the B+tree index from the root node and di-

rectly accesses the leaf blocks containing the next triples to be read. In this

way, U-SIP can avoid reading unnecessary leaf blocks and reduce the number

of redundant intermediate results.

2.2 Handling the Intermediate Results

In a traditional RDBMS, the redundant intermediate result problem is dealt

with by finding the optimal join orderings for the queries [47]. Following this

approach, several selectivity estimation techniques for SPARQL query process-

ing have also been proposed [48,49]. In RDF-3X, several specialized histograms

for RDF are used [14,43,50]. They provide cardinality information for specific

triple patterns and selectivities for specific patterns of joins.

The SIP techniques discussed in the previous section, including U-SIP, can

also be considered as techniques for handling the intermediate results. How-

ever, SIP techniques are dynamic, runtime methods [44–46], whereas the join

ordering technique is a static method determined in the query compile time.

These two previous approaches for handling the intermediate results have

the limitation that they do not consider any graph structures in RDF data. Our

triple filtering method exploits the graph-structural information, and can there-
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fore be more effective for graph-structured RDF data than these approaches.

2.3 Path-based and Graph Indices

There exist numerous bodies of work in the literature proposing path-based in-

dices for semi-structured data, e.g., DataGuide [18], 1-index [19], A(k)-index

[20], D(k)-index [21], and M(k)-index [22] (cf. [51,52] for detailed surveys).

These indices summarize path information in graph-structured data, and pro-

vide a concise summary of the original graph that can be used for query process-

ing in place of the original graph. Therefore, these indices focus on reducing

the index size for efficient query processing, and avoid storing vertices several

times in the index.

Although RP-index can be considered reminiscent of these path-based in-

dices, it aims to provide the filter data efficiently, not to obtain query results

from the index. Hence, it incorporates a different structure than previous path-

based indices: vertices can be stored several times, and they are stored as sorted

and compressed to minimize the space and processing overheads of triple fil-

tering. To prevent the indices from growing larger than the original graph, the

path-based indices except DataGuide map a vertex to exactly one index node.

Therefore, when using these indices, union operations are required to obtain

vertices which are reached by a given path. In contrast, RP-index allows over-

laps between vertex lists to be able to get filter data directly. To address the size

problem of DataGuide, 1-index partitions vertices based on their B-bisimilarity.

Intuitively, it stores vertices which have a same set of incoming paths into a

index node. And to reduce the size of index further, A(k)-index indexes paths

whose length are no longer than k using k-bisimilarity. D(k)-index and M(k)-
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index propose methods to apply k values adaptively. However, RP-index applies

a different approach to address the size problem. Because it provides filter data,

it does not need to index all existing paths, and can index only effective paths

for triple filtering selectively. Using this fact, we store only vertex lists having

enough filtering power, based on the discriminative and frequent fragment con-

cept used in gIndex [23]. Thus, RP-index has a different structure from previous

path-based indices and takes a different approach to handling the size problem.

Many graph indices have also been proposed for graph data. There are

two problem formulations for graph indexing: the graph-transaction setting

(many small graphs in a database) and the single-graph setting (a large single

graph) [53]. The single-graph setting is more general because several graphs

can be combined into a single graph, and the algorithms developed for the

graph-transaction setting cannot be used for the single-graph setting [53]. Most

graph indices have been proposed for the graph-transaction setting, and focus

on reducing the number of tests conducted on the graph isomorphism, which

is a very costly operation (e.g., GraphGrep [54], gIndex [23]). Hence, it is not

trivial to apply these indices to an RDF graph, which is a single large graph. Re-

cently, graph indices for large graphs were also proposed, such as SAGA [55],

GraphQL [56], GADDI [57], and SPath [58]. Although these indices can be used

in graph-based RDF stores, it is not trivial to apply these indices in relational-

based RDF stores because they were designed in the context of graph-traversing

algorithms. For example, SPath index provides vertex list which are adjacent to

the currently traversing vertex and at the same time have specified features. So

it is specialized to the graph traversing algorithm. Also, to our best knowledge,

it is first attempt to index the graph pattern directly and provide the vertex lists
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for all vertices in the graph pattern.

2.4 Frequent Graph Pattern Mining

There exist numerous bodies of literature focused on frequent graph pattern

mining (cf. [59] for detailed surveys). There are also two problem formulations

for graph mining [53] like the graph indexing, which is described in the pre-

vious section: the graph-transaction setting and the single-graph setting. The

graph-transaction setting has drawn more attention than the single-graph set-

ting.

A frequent graph pattern mining algorithm first generates the candidate

graph patterns, and then checks that its support is larger than the minimum

support. If this condition is satisfied, the pattern is included in the results. The

main focuses of the designers of frequent graph pattern mining algorithms are

how to generate candidate graph patterns without generating duplicate pat-

terns and how to prune infrequent patterns efficiently. To achieve these goals,

they exploit the a-priori principle [24, 53, 59], and canonical labeling mecha-

nisms for representing the graph patterns are proposed.

We adapt the gSpan [24] algorithm to build RG-index. It uses the DFS

codes [24] as the canonical representation of the candidate graph patterns and

the depth-first manner of pattern generation. We discuss gSpan in more de-

tail in Section 5.4.1. Figure 2.1 shows the overall process of the graph mining

algorithm.
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Figure 2.1: Frequent Pattern Mining
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Chapter 3

Preliminaries

In this chapter, we formally define the RDF and SPARQL model, and present

some notations.

3.1 RDF and SPARQL

In this section, we present the core fragments of RDF and SPARQL that are rele-

vant to our approach. We omit some features of RDF and SPARQL for simplicity.

For example, we do not consider some features of RDF, such as blank nodes and

the literal data type. For SPARQL, we focus on the basic graph patterns [2]. A

basic graph pattern is a set of conjunctive triple patterns, which means its re-

sults should be matched to all triple patterns [2]. It should be noted that in our

model the joins that have predicate variables are not considered, because this

join type is rarely used. In addition, various features of the RDF and SPARQL

are omitted for simplicity. For example, some features of the RDF, such as blank
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nodes and data types, are not considered. We focus on SPARQL queries with

basic graph patterns. A basic graph pattern is a set of triple patterns [2]. Op-

tional graph patterns and union graph patterns are not considered. However,

our approaches can be applied to queries having these features with minor

modifications. (we will discuss this issue in Section 4.3).

We assume the existence of three pairwise disjoint sets: a set of URIs U , a

set of literals L, and a set of variables VAR. A variable symbol starts with ? to

distinguish it from a URI. A triple t(s, p, o) ∈ U×U×(U∪L) (without variables)

is called an RDF triple, and a triple tp(s, p, o) ∈ (U ∪ VAR)×U × (U ∪L ∪ VAR)

(triple with variables) is called a triple pattern. We treat literals in the same

way as URIs, as in RDF-3X. That is, all URIs and literals are mapped to integer

IDs using a dictionary mapping, and URIs and literals are treated in the same

way.

The RDF database D is a set of RDF triples, and SPARQL query Q is a set

of triple patterns. We denote the set of URIs that are used as predicates of

triples in D as PD. Formally, PD = {p | p ∈ U ∧ ∃t(s, p, o) ∈ D}. Additionally,

we denote as D(pi) the set of triples in D whose predicates are pi. Namely,

D(pi) = {t(s, p, o) | t ∈ D ∧ p = pi}.

We map RDF database D into a graph GD = (VD, ED, LD), where VD is

a set of vertices corresponding to the subjects and objects of all triples in D,

ED ⊆ VD × VD is a set of directed edges that connect the subject and object

vertices for triples in D, and LD : ED → PD is an edge-label mapping such

that, for all t(s, p, o) ∈ D, LD(s, o) = p. SPARQL query Q is also mapped into

graph GQ = (VQ, EQ, LQ), where VQ is a vertex set containing the subjects

and objects of triple patterns in Q, EQ is a set of directed edges that connect
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vertices corresponding to the subjects and objects of triple patterns in Q, and

LQ is an edge-label mapping such that, for all tp(s, p, o) ∈ Q, LQ(s, o) = p. Both

GD and GQ are edge-labeled directed graphs. Figure 5.1a and Figure 3.1 show

a SPARQL query graph and an RDF graph, respectively. In these figures, we

represent URIs and literals using simple notation such as vn, pn for readability.

An RDF graph is defined as follows.

Definition 3.1.1 [RDF Graph] We define an RDF graph for the RDF database

D as GD = (VD, ED, LD), where VD is a set of vertices corresponding to the

subjects and objects of all triples in D (VD ⊆ (U ∪ L)), ED is a set of directed

edges corresponding to all triples that are from the subjects to the objects,

and LD is an edge-label mapping, LD : ED → PD, such that t(s, p, o) ∈ D,

LD(s, o) = p.

The vertices in an RDF graph correspond to URIs or literals. It should be

noted that URIs or literals are not considered vertex labels; rather, they are

unique identifiers for vertices. As in the RDF graph, the vertices in the query

graph are identified by the variable names, URIs or literals. Therefore, both GD

and GQ are edge-labeled directed graphs. We define a query graph as follows.

Definition 3.1.2 [Query Graph] A query graph for a SPARQL query Q is de-

fined as GQ = (VQ, EQ, LQ), where VQ is a set of vertices corresponding to the

subjects and objects of all triple patterns in Q (VQ ⊆ (U ∪ L ∪ VAR)), EQ is

a set of directed edges corresponding to all triples that are from the subjects

to the objects, and LQ is an edge-label mapping, LQ : EQ → PD, such that

tp(s, p, o) ∈ Q, LQ(s, o) = p.
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Figure 3.1: RDF Graph

For SPARQL query Q, the substitution θ is a mapping VQ ∩VAR→ U . θ(GQ)

is a graph whose variables are substituted according to θ. The answer set for a

SPARQL query is defined as follows.

Definition 3.1.3 [SPARQL Query Answer] The answer set for SPARQL query

Q w.r.t RDF database D is Ans(Q) = {θ | θ(GQ), which is isomorphic to a

subgraph to GD}. For v ∈ VQ, Ans(Q, v) denotes the projection of Ans(Q) over

v, Ans(Q, v) = {θ(v) | θ ∈ Ans(Q)}, where θ(v) is the projection of mapping θ

over v.

Example 3.1.4 [SPARQL Query Answer] For the RDF graph in Figure 3.1, the

answer set of the SPARQL query in Figure 5.1a is Ans(Q) = {(?v1 → v1, ?v2 →

v2, ?v3 → v6, ?v4 → v7, ?v5 → v8), (?v1 → v8, ?v2 → v9, ?v3 → v12, ?v4 →

v7, ?v5 → v8), (?v1 → v10, ?v2 → v11, ?v3 → v15, ?v4 → v13, ?v5 → v14), (?v1 →

v11, ?v2 → v14, ?v3 → v15, ?v4 → v13, ?v5 → v14)}. Furthermore, the projection

over ?v3 of Ans(Q) is Ans(Q, ?v3) = {v6, v12, v15}.
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3.2 Path and Graph Pattern

In this section, we present two kinds of patterns: incoming predicate path and

k- neightborhood subgraph. These two types of patterns form a base patterns

of RP-index and RG-index, and are used the necessary condition for the triple

filtering.

3.2.1 Incoming Predicate Path

We define an RDF-specific path, called a predicate path, as follows.

Definition 3.2.1 [Predicate Path] A predicate path is a sequence of predicates.

Given a predicate path ppath, the length of ppath, denoted as |ppath|, is the

number of predicates in ppath.

We also define a set of incoming predicate paths for a vertex as follows.

Definition 3.2.2 [Incoming Predicate Path] Given a graph G = (V,E, L), for

v ∈ V , an incoming predicate path for v is a predicate path consisting of the

predicates of the incoming path of v inG. We denote a set of incoming predicate

paths of v as InPPath(v). When the maximal path length maxL is given, a variant

of the notation, InPPath(v,maxL), is used to denote a subset of InPPath(v), such

that InPPath(v,maxL) = {ppath | ppath ∈ InPPath(v) ∧ |ppath| ≤ maxL}.

Note that the definition of the incoming predicate path can be applied to

both RDF and query graphs.

Example 3.2.3 [Incoming Predicate Path] For the RDF graph in Figure 3.1,

the incoming path set of v12 with maximum length 3 is InPPath(v12, 3) = {〈p2〉,
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Figure 3.2: RDF Graph and k-Neighborhood Subgraph

〈p3〉, 〈p1, p2〉, 〈p3, p2〉, 〈p1, p3〉, 〈p2, p3, p2〉, 〈p3, p1, p2〉}. For the SPARQL query

graph in Figure 5.1a, InPPath(?v3, 3) = {〈p1, p2〉, 〈p3, p2〉}.

3.2.2 k-neighborhood Subgraph

We define the k-neighborhood subgraph as follows.

Definition 3.2.4 [k-Neighborhood Subgraph] Given a vertex v in a graph G,

the k-neighborhood subgraph, denoted by N(v, k), is a set of subgraphs that

contain v and whose size is no more than k.

The k-neighborhood subgraph is applied to both the RDF graph and the

query graphs. Let us consider a query graph in Figure 3.2a. Then, the graphs in
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Figure 3.2b are N(?v3, 3).

3.3 Candidate Vertex Set

Irrelevant triples are filtered using the candidate vertex set concept. The candi-

date vertex set for a query vertex is a subset of the data vertices that could be

included in the final results. The triple filtering is intended to remove irrelevant

triples that are not included in the candidate vertex set, which can be defined

as the neighborhood structural information of the query graph. We can define

the candidate vertex set in various ways provided that it can be guaranteed that

it is included in the final results. In other words, the candidate vertex set can

be defined in various ways, as long as it is a superset of the answer set. In this

paper, we define the candidate vertex set using the incoming predicate path

and the neighbor subgraph information.

For v ∈ VQ, the candidate vertex set for query vertex v is the set of vertices

that could be results for v. Essentially, the candidate vertex set for v is a superset

of the answer set Ans(Q, v). At first, we define the candidate vertex set using

the incoming predicate path as follows.

Definition 3.3.1 [Candidate Vertex Set using Incoming Predicate Paths] Given

the RDF database D, SPARQL query Q, and maximum length of the incoming

predicate path maxL, the candidate vertex set for v ∈ VQ is CInPPath(v,maxL) =

{vg | vg ∈ VD ∧ InPPath(v,maxL) ⊆ InPPath(vg,maxL)}.

The following lemma ensures that the definition of CInPPath satisfies the pre-

vious condition of the candidate vertex set (i.e., it should be a superset of the

answer set).
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Lemma 3.3.2 Given the RDF database D and SPARQL query Q, ∀v ∈ VQ,

Ans(Q, v) ⊆ CInPPath(v,maxL).

Proof: We prove that if vertex vD ∈ GD is in Ans(Q, v), vD must have all in-

coming predicate paths of v. That is, ∀vD ∈ Ans(Q, v), InPPath(v,maxL) ⊆

InPPath(vD,maxL). If vD ∈ Ans(Q, v), there exists a substitution θ ∈ Ans(Q)

that ensures graph θ(GQ) is isomorphic to a subgraph to GD and θ(v) = vD.

From the definition of a subgraph isomorphism, if there exists an incoming path

of v, 〈e1, . . . , en〉 (n ≤ maxL) in GQ, there must exist a matching incoming path

of vD 〈e′1, . . . , e′n〉 in θ(GQ), such that ∀i, 0 ≤ i ≤ n, l(ei) = l(e′i), where ei is an

edge and l(ei) is the label of ei. Therefore, ∀vD ∈ Ans(Q, v), InPPath(v,maxL) ⊆

InPPath(vD,maxL); that is, all vD ∈ Ans(Q, v) contain all incoming predicate

paths of v, and Ans(Q, v) ⊆ CInPPath(v,maxL).

Example 3.3.3 [Candidate Vertex Set using Incoming Predicate Path] The can-

didate vertex for ?v3 in Figure 5.1a should have two incoming predicate paths,

〈p1, p2〉 and 〈p3, p2〉. For the RDF graph in Figure 3.1, there are three vertices

that have these incoming predicate paths, so CInPPath(?v3, 2) = {v6, v12, v15}.

We can see that Ans(Q, ?v3) = {v6, v12, v15} ⊂ CInPPath(?v3, 2) (i.e., satisfying

the condition for the candidate vertex set).

We can also define the candidate vertex set using the subgraph patterns as

follows.

Definition 3.3.4 [Candidate Vertex Set using k-neighborhood] Given a vertex v

in a query graphGQ and maxL, the candidate vertex set using the subgraph pat-

terns, denoted by CV (v,maxL), is a set of data vertices whose k-neighborhood
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subgraphs are the same as N(v,maxL).

We can also prove that CV (v, maxL) satisfies the condition for the candi-

date vertex set, i.e Ans(Q, v) ⊆ CV (v, maxL). However, for simplicity, we omit

the proof. RP-index and RG-index filter out irrelevant triples using CInPPath and

CV (v, maxL), respectively.
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Chapter 4

R3F: RDF Triple Filtering Framework
using RP-index

In this section, we present an overview of the triple filtering framework, R3F,

and discuss the design of RP-index. We present a logical description of RP-index

in Section 4.3, and discuss its physical implementation in Section 4.3.1.

4.1 Motivating Example

Let us consider another example of a SPARQL query and its execution plan in

RDF-3X, as shown in Figure 4.1 (in this figure, each join operator is annotated

with its join variable). Join1 joins triples retrieved from Scan1 and Scan2 for

variable ?v3, and outputs matched subgraphs for the subgraph pattern consist-

ing of the two triple patterns 〈?v2, p2, ?v3〉 and 〈?v5, p2, ?v3〉.

However, this execution plan has a problem that it can generate redundant

intermediate results. That is, the operators in this execution plan can generate
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Figure 4.1: SPARQL Query Graph and Execution Plan

useless subgraphs which are not included in the final results. In this example,

not all subgraphs generated from Join1 contribute to the final results, because

some of them are removed by subsequent join operators, i.e., Join2 or Join3.

These redundant intermediate results waste processing resources without con-

tributing to the query results. Moreover, for large-scale RDF data, it is possible

that the overhead due to the redundant intermediate results dominates the

overall query processing time. The main cause of this problem is that each

operator simply generates all subgraphs matching its assigned subgraph pat-

tern without considering any graph-structural information available in the RDF

data.

In this chapter, we propose the triple filtering method called RDF Triple Fil-

tering framework (R3F). R3F can use any pattern information for the triple

filetering. In this chapter, we propose the triple filtering using the path infor-

mation. We check the relevance of triples for a particular query using incoming

predicate path information. Consider, for example, vertex ?v3 in Figure 5.1a,
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which has two path patterns: 〈p1, p2〉 and 〈p3, p2〉. These are called incoming

predicate paths because they are composed of and represented by a sequence

of predicates. In this example, the result vertices matching ?v3 must have these

two incoming predicate paths. Using this necessary condition, we can filter out

irrelevant triples, and consequently reduce redundant intermediate results.

4.2 Overall Process of R3F

Our goal is to filter out triples that are irrelevant to the query from among

those retrieved from the scan operators. To decide the relevance of a triple

for a given query, we use the definition of the candidate vertex set, CInPPath.

Suppose that ?vS and ?vO are the subject and the object, respectively, of a triple

pattern in the query. The triples retrieved for this triple pattern are checked to

see if their subjects or objects exist in CInPPath(?vS ,maxL) or CInPPath(?vO,maxL),

respectively. If either condition is not true, this triple is irrelevant, and so it can

be filtered out safely.

To implement this type of triple filtering, we design RP-index and RFLT op-

erator. RP-index is designed to provide CInPPath efficiently, and is presented in

Section 4.3. RFLT operators conduct triple filtering for their child scan opera-

tors. In order to apply triple filtering, the query optimizer analyzes the query

graph and adds appropriate RFLT operators to the execution plan based on

the filtering effects, costs, and output cardinalities of RFLT operators. We will

discuss the RFLT operator and the query optimization method in Section 4.4.
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4.3 RP-index Definition

RP-index is an index structure used to obtain CInPPath(v,maxL) efficiently. It

consists of a set of vertex lists for predicate paths existing in the RDF database

D. The vertex list of predicate path ppath is defined as follows.

Definition 4.3.1 [Vertex List] Given the RDF database D, the vertex list for

the predicate path ppath is a set of vertices that have ppath as their incoming

predicate paths, i.e., Vlist(ppath) = {v ∈ VD | ppath ∈ InPPath(v)}.

RP-index for D is defined as follows.

Definition 4.3.2 [RP-index] Given the RDF database D, RP-index of D with

maximum length maxL, denoted by RP-index(D,maxL), is a set of pairs 〈ppath,

Vlist(ppath)〉, where ppath is a predicate path in D whose length is less than or

equal to maxL.

Example 4.3.3 [RP-index] Figure 4.2 shows the Vlists in RP-index(D, 3) for D

in Figure 3.1 with maxL = 3. There are 15 Vlists in RP-index(D, 3).

We introduce maxL to limit the size of RP-index. As maxL increases, the

number of predicate paths in RP-index increases and, as a result, the quality

of the triple filtering can be improved. However, the space overhead of RP-

index also increases. In other words, there is a tradeoff between the quality

of the triple filtering and the space overhead of RP-index. This tradeoff can be

adjusted by maxL (we also use another method to address the size problem of

RP-index, discussed in Section 5.3.1).
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<p1>                  v2, v5, v9, v11, v14, v16, v17

<p2>                  v3, v6, v7, v12, v15, v18

<p3>                  v4, v6, v8, v12, v14

<p1, p1, p2>        v15, v18

<p2, p3, p1>        v9

<p2, p3, p2>        v6, v12

<p3, p1, p2>        v12

<p3, p1, p3>        v6

<p3, p2, p3>        v8

Predicate Path VlistLength
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2

3

<p1, p1>             v14, v17

<p1, p2>             v3, v6, v12, v15, v18

<p1, p3>             v6, v12

<p2, p3>             v8

<p3, p1>             v5, v9  

<p3, p2>             v6, v7, v12, v15

Figure 4.2: Vlists in RP-index(D, 3)

A Vlist can be used to obtain candidate vertex sets. Given RP-index(D,maxL)

and query Q, we can obtain CInPPath(v,maxL) for v ∈ VQ by computing the

intersection of Vlist(ppath) for all ppath ∈ InPPath(v,maxL).

4.3.1 Physical Structure of RP-index

The vertices in a Vlist are represented by their integer IDs (4 bytes), which are

produced by the dictionary mapping used in RDF-3X (Section 2.1.2). Vlists are

sorted and stored on disk by vertex IDs, enabling the Vlist to be read from disk

in its sorted form. The reason to store Vlists as sorted is to obtain CInPPath by

simply merging the relevant Vlists (recall that CInPPath can be obtained by the

intersection of the Vlists). Another benefit of sorting is that sorted Vlists can be
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compressed by the delta-based byte-level compression scheme, similar to the

compressed triples in RDF-3X [14] (see Section 2.1.2). The delta between two

vertex IDs is encoded with 1 header byte and the minimum number of bytes

for the delta (1–4 bytes). If the delta is smaller than 128, it is directly stored

in the header byte, consuming only one byte. Otherwise, the header byte stores

the byte length of the delta with its most significant bit set to 1 to indicate the

delta is not small. This compression scheme alleviates the overall size overhead

of Vlists and reduces the disk I/O overhead in reading the Vlists.

We organize the predicate paths of RP-index in a trie (or prefix tree) data

structure. Each node in level l in the trie has a pointer to the Vlist for its asso-

ciated length-l predicate path. Figure 4.3 shows the trie for RP-index(D, 3) in

Figure 4.2. The trie provides compact storage for the predicate paths, because

duplicated parts of predicate paths can be shared. In addition, it provides an

efficient way to access the Vlist for a given predicate path. We can find the disk

location of the Vlist for a predicate path by traversing the trie using the predi-

cate path. The number of nodes in the trie is equal to the number of predicate

paths in RP-index. For real-life data sets and a small maxL value, the trie is of

relatively small size and can reside in the main memory.

4.3.2 Discriminative and Frequent Predicate Paths

Due to their exponential number, it would be infeasible to generate Vlists for

all predicate paths in an RDF database, even if we restricted their maximum

length. Hence, we should choose a subset of Vlists to be stored in RP-index. To

establish criteria for choosing Vlists, we define the discriminative and frequent

predicate path, which is adapted from the discriminative and frequent fragment
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Figure 4.3: A Trie for Predicate Paths

concept in gIndex [23].

The first criterion is to store only Vlists with enough filtering power. If

Vlisti ⊃ Vlistj , we can use Vlisti in place of Vlistj , because Vlisti has all of the

vertices in Vlistj . Therefore, we can store only Vlisti and remove Vlistj from RP-

index. However, this replacement can degrade the filtering power, because the

replacement filter is prone to produce more false positives than the replaced fil-

ter. Therefore, it is important to choose predicate paths that do not significantly

degrade the filtering power. A discriminative predicate path is one whose Vlist

cannot be replaced by another Vlist without degenerating the filtering power to

an unacceptable degree. We define the discriminative predicate path as follows.

Definition 4.3.4[Discriminative Predicate Path] Given a discriminative ratio γ

(0 < γ ≤ 1), predicate path ppath is discriminative iff, ∀ppathsuf that are proper

suffixes of ppath, |Vlist(ppath)| < γ × |Vlist(ppathsuf)|.

In other words, predicate path ppath is discriminative if Vlist(ppath) is smaller

(according to γ) than the Vlist for the longest proper suffix predicate path of
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ppath. Note that if |ppath| = 1, ppath is discriminative because it does not have

any proper suffix predicate path.

Example 4.3.5[Discriminative Predicate Path] For RP-index in Figure 4.2, sup-

pose that the discriminative ratio is γ = 0.7. Then, 〈p1, p2〉 is not discriminative

because |Vlist(〈p1, p2〉)| = 5, |Vlist(〈p2〉)| = 6, and |Vlist(〈p1, p2〉)|/ |Vlist(〈p2〉)| >

0.7.

The second criterion is to store only frequent predicate paths. A predicate

path is frequent iff its Vlist has more vertices than the minimum threshold de-

fined by the user. Infrequent predicate paths are not likely to be useful, because

they are rare in RDF graphs and would not be queried frequently. Therefore,

removing them does not degrade the overall performance for most queries.

Additionally, because there are a large number of infrequent predicate paths,

removing them can reduce the size of RP-index significantly. Since the number

of paths increases with path length, we use a size-increasing function to provide

the threshold value for identifying frequent predicate paths. In this way, we can

reduce the overall index size. We define a frequent predicate path as follows.

Definition 4.3.6 [Frequent Predicate Path] Given a size-increasing function

ψ(l), predicate path ppath is frequent if and only if |Vlist(ppath)| ≥ ψ(|ppath|).

4.3.3 Reverse Predicate

Because the triple filtering utilizes the incoming predicate path information,

triple filtering cannot be applied to a vertex having no incoming predicate path.

For example, vertex ?v3 in Figure 5.6 has no incoming predicate path, and so
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Figure 4.4: Extended SPARQL Query

triple filtering cannot be applied to ?v3, even though it has four edges (ignoring

the dashed edges). In order to increase the capability of triple filtering, we

extend an RDF database and SPARQL query as follows to consider the reverse

predicates.

Definition 4.3.7 [Extended RDF Database and Query] For RDF database D,

∀t(s, p, o) ∈ D, we assume the existence of a virtual triple t′(o, pR, s). For

SPARQL query Q, ∀t(s, p, o) ∈ Q∧ p ∈ PD, we assume the existence of a virtual

triple t′(o, pR, s). We call pR the reverse predicate of p.

In order to use reverse predicates, we build RP-index on the extended RDF

database and generate the incoming predicate paths using the extended SPARQL

query. Note that the virtual triples do not need to exist in the RDF store. Instead,

we only suppose that they exist in the RDF store by reversing the subject and

the object of a triple when building RP-index.

Although the introduction of reverse predicates can increase the applica-

bility of triple filtering, it can also result in many redundant predicate paths.

We call a predicate path redundant if its Vlist is always the same as some
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Vlists of its suffix predicate paths. For example, Vlist(〈p1, p2, p3〉) is always the

same as Vlist(〈pR1 , p1, p2, p3〉). This is because they have a suffix relationship

(Vlist(〈pR1 , p1, p2, p3〉) ⊂ Vlist(〈p1, p2, p3〉)), and vertices that have 〈p1, p2, p3〉 as

their incoming predicate paths must also have 〈pR1 , p1, p2, p3〉 as their incom-

ing predicate paths (i.e., Vlist(〈pR1 , p1, p2, p3〉) ⊃ Vlist(〈p1, p2, p3〉)). In general,

Vlist(ppath) is the same as the Vlists for predicate paths having ppath as their

suffix, and their remaining parts are cyclic paths using the reverse predicates,

as in the previous example (we omit a formal definition and proof for simplic-

ity). These redundant predicate paths are due to the cycles caused by reverse

predicates

Besides the redundant predicate paths, reverse predicates also cause too

many non-redundant incoming predicate paths. For example, ?v8 in Figure 5.6

has incoming predicate path 〈p3, p2〉. Also, 〈p3, p2, pR2 , p2〉 and 〈p3, p2, pR2 , p2, · · ·

, pR2 , p2〉 are incoming predicate paths of ?v8 (note that these predicate paths

are not redundant, because they do not have 〈p3, p2〉 as their suffix). Although

they are not redundant and may be helpful, these incoming predicate paths

are not likely to be used in normal queries. As a result, in order to prevent

the formation of redundant predicate paths and the generation of too many

incoming predicate paths, we do not generate predicate paths containing the

pattern pi, pRi .

In Figure 5.6 the dashed edges denote those with reverse predicates. Con-

sidering the reverse predicates, InPPath(?v3) = {〈pR2 〉, 〈pR1 , pR2 〉, 〈pR1 〉, 〈pR3 〉, 〈pR2 , pR3 〉}.
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Figure 4.5: A SPARQL Query with a Predicate Variable

4.3.4 Handling Other Types of Queries

We have considered queries consisting of only the basic graph patterns without

predicate variables (see Section 3). As already mentioned, the triple filtering

can also be applied to other types of queries with minor modifications. Queries

with predicate variables can be handled as follows. The first and easiest way

is to simply exclude edges with predicate variables from considerations when

making the incoming predicate paths for the triple filtering. That is, we do not

generate the incoming predicate paths with predicate variables. Let us consider

the SPARQL query in Figure 4.5. This query has one edge with a predicate

variable ?p. If we exclude this edge when generating the incoming predicate

paths, then InPPath(?v3) = {〈p3, p2〉, 〈p2〉}. Note that because we exclude the

predicate variable, we have fewer incoming predicate paths. As we can see

from this example, the first approach is simple, but it can also limit the capa-

bility of triple filtering. The second way is to consider the variable predicate

as a special predicate, say pv, whose triples are the entire set of triples in the

database. Hence, when building RP-index, the predicate paths containing this

variable predicate also need to be indexed. When generating incoming predi-
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cate paths for the query graph, the triple patterns with predicate variables are

considered as edges with the label pv. For example, if we use the edge with the

predicate variable, then InPPath(?v3) = {〈p1, pv〉, 〈pv〉, 〈p3, p2〉, 〈p2〉}. The set

Vlist(〈p1, pv〉) is a set of vertices that have 2-length incoming predicate paths

and where the predicate of the first edge of the path is p1.

Queries with optional or union patterns can also be handled in a similar

way. We can apply the triple filtering to these queries by generating incoming

predicate paths for the fragments of query graphs that consist of only the basic

graph patterns. We can then apply triple filtering to these queries.

4.3.5 Determining RP-index Parameters

Until now, we have only discussed the design of RP-index. In this section, we

discuss its tuning issues. RP-index has three tuning parameters: the maximum

path length maxL, the discriminative ratio γ, and the minimum frequency func-

tion ψ(l). These parameters affect the size and performance of RP-index. It is

important to make RP-index as small as possible while maintaining its filtering

power. The size of RP-index is highly dependent on maxL, as the number of path

patterns grows exponentially with the pattern length. However, for most cases,

a small maxL is sufficient because long paths are not common in real-world

SPARQL queries. We study the effects of maxL empirically in Section 5.6. From

our experience, maxL = 3 is sufficient in most cases.

Although we use small maxL, it is still possible for RP-index to grow pro-

hibitively large. This is particularly likely to occur when there are a large num-

ber of predicates as in the case of the DBSPB dataset used in the experiments

in Section 5.6. In this case, the number of possible predicate paths becomes
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abundant even for small maxL, because of the large number of predicates. In

addition, there might be some cases in which queries with long paths are used

and we need to index long path patterns by using large maxL. However, the

size problem of RP-index with large maxL can be controlled by adjusting γ and

ψ(l). The effects of these two parameters have already been discussed, in Sec-

tion 5.3.1. They can reduce the size of RP-index; however, they can also degrade

its performance by removing some necessary predicate paths. Hence, these pa-

rameters should be tuned carefully by considering the size and performance of

RP-index.

When RP-index does not have some necessary predicate paths that users

can identify, it is possible to add such paths to RP-index based on user decisions.

That is, rather than adjusting the parameters, users can indicate some necessary

predicate paths to be indexed. However, this requires previous knowledge of the

query workload. In most cases, using γ and ψ(l), the size of RP-index can be

effectively controlled while retaining its filtering power. We see the effects of

the parameters in the experimental results (Section 4.7.2).

4.4 Processing Triple Filtering

In this section, we describe how the triple filtering is processed. First, we intro-

duce RFLT operator, and then explain how to generate an execution plan using

RFLT operators.

4.4.1 RFLT Operator

RFLT operator is a relational operator that conducts triple filtering for its child

scan operators. It exploits the sorted property of the retrieved triples to effi-
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ciently process the triple filtering. Recall that the output triples of a scan oper-

ator in RDF-3X are sorted by the S or O column, depending on which index the

scan operator reads. We define the sortkey for an operator as follows.

Definition 4.4.1 [Sortkey] The sortkey column of an operator is defined as the

column by which the results of the operator are sorted. We use the term sortkey

vertex to indicate the vertex in a query graph corresponding to the sortkey

column. We also use OP.sortkey interchangeably to denote the sortkey column

or the sortkey vertex of operator OP, depending on the context.

Example 4.4.2 [Sortkey] Scan1 in Figure 5.1b uses the POS index and its triple

pattern has the predicate constant p2. Therefore, the result of Scan1 is totally

ordered by the O column. The sortkey column and the sortkey vertex of Scan1

is the O column and ?v3, respectively. In the same way, Scan2.sortkey =?v3,

Scan3.sortkey =?v2, and Scan4.sortkey =?v5.

Basically, RFLT operator conducts triple filtering for its child scan operator

using their sortkey vertices. The query optimizer indicates to RFLT operator

which predicate paths it should use for triple filtering as follows. RFLT operator

for Scani is assigned only predicate paths in InPPath(Scani.sortkey, maxL), i.e.,

the incoming predicate paths of the sortkey vertex of Scani. RFLT operator will

compute the intersection of Vlists for all assigned predicate paths (this will be

a superset of CInPPath(Scani.sortkey, maxL)) to obtain the filter data for triple

filtering. The input triples are then checked to determine whether the values of

the sortkey column are included in the intersection (i.e., the filter data). This
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Figure 4.6: Execution Plan using RFLT

triple filtering can be processed by simply merging the assigned Vlists and the

input triples, because they are all sorted by the sortkey column.

An RFLT operator can perform triple filtering for multiple scan operators as

long as their sortkey vertices are the same. Note that the filter data for scan

operators with the same sortkey vertex is also the same, because they will be

assigned the same set of Vlists. Thus, if we make several RFLT operators for

these scan operators, which conduct triple filtering separately using the same

filter data, this causes redundant processing of triple filtering. To avoid this,

we design RFLT operator to process several child scan operators. Additionally,

because the child scan operators share the sortkey vertex, their output triples

should be joined for their sortkey columns, which can be also processed by

the merge join because the input triples are all sorted. Hence, we design RFLT

operator to process merge join operations and triple filtering at the same time.

Figure 4.6 shows part of the execution plan using RFLT operators for the

query in Figure 5.1a. The predicate path set (PPS) in RFLT operator is assigned

by the query optimizer. In the plan on the left, there are two RFLT operators

with the same PPS and one merge join operator. The sortkey vertices of Scan1

49



Vlist(<p1,p2>)
S P O

v2 p2 v3

v2 p2 v6

v8 p2 v6

Sorted 
by O
(?v3)

v3

Output of Scan2

v6

v4 p2 v7

ID

Vlist(<p3,p2>)

v6

v7

ID

Merge

Sorted 
by ID

Sorted 
by ID

v12

v15

v18

v12

v15
v8 p2 v12

v9 p2 v12

v11 p2 v15

v14 p2 v15

v17 p2 v18

CInPPath(?v3)

S P O

v2 p2 v3

v2 p2 v6

v8 p2 v6

Sorted 
by O
(?v3)

Output of Scan1

v4 p2 v7

v8 p2 v12

v9 p2 v12

v11 p2 v15

v14 p2 v15

v17 p2 v18

Figure 4.7: RFLT Operator

and Scan2, and the join variable of the merge join operator, are all ?v3. There-

fore, these three operators can be combined into one RFLT operator, as in the

plan on the right.

Figure 4.7 illustrates the filtering process of RFLT operator. The intersection

of two Vlists forms CInPPath(?v3,maxL), and this is used as the filter data. The

outputs of Scan1 and Scan2 are filtered using these Vlists, and the filtered triples

are also joined by the operator.

RFLT only performs the merge process for its inputs (Vlists and input triples).

Therefore, its cost is linear with respect to its input size, as follows.

I/O cost: O

∑
p∈PPS

‖Vlist(p)‖

 (4.1)

CPU cost: O

 ∑
scan∈ChildOP

|scan|+
∑
p∈PPS

|Vlist(p)|

 (4.2)
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where ‖vlist‖ is the number of blocks of vlist, PPS is a set of predicate paths

assigned for RFLT operator, ChildOP is a set of child scan operators, and |scan| is

the cardinality of the scan operator. The Vlists are usually much smaller than the

input triples. Therefore, the triple filtering process incurs little overhead, and

RFLT operator is very efficient and lightweight. In Section 4.7.2, we compare

the size of Vlist and the input triples.

Implementation of RFLT Operator

We have implemented our RFLT operator in RDF-3X. RDF-3X adapts the iter-

ator model of the query execution [60], and the operators in RDF-3X have a

common interface with the first and next functions. first initializes the operator

and returns the first tuple, and next returns the next tuples. RFLT operator also

has been implemented as an iterator like other operators in RDF-3X so that it

can be integrated with its query plans. When the first function of RFLT opera-

tor is called, it performs some initializations for the triple filtering and returns

the first tuple which passes the triple filtering. And then it returns the resulting

tuples when its next function is called.

The results of RFLT operator are the joined results of child input operators

that pass the triple filtering. In order to conduct triple filtering, RFLT operator

reads Vlists from disk and gets the input triples from child operators by calling

their next function. It generates results by performing the N-way merge joins

for the assigned Vlists and input triples of the child operators, as discussed

in the previous section. Note that RFLT operator could generate the results and

conduct the triple filtering simultaneously by performing only the N-way merge

joins.
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RFLT Operator and U-SIP

RDF-3X exploits a type of SIP technique called U-SIP (see Section 2.1.2). In U-

SIP, a scan operator can skip the reading of irrelevant blocks by utilizing the

next information provided by other scan operators. With the triple filtering, the

filter data CInPPath can be used as another source for the U-SIP next information.

Let us look at the example in Figure 4.8. This figure illustrates the POS

index for Scan1 to read, and the filter data of RFLT operator CInPPath(?v3,maxL).

The POS index is a clustered B+tree index in which triples are stored in its

leaf blocks as sorted by the POS ordering. In this figure, the boxes represent

leaf blocks of the index, and we represent the interval of the object values of

the triples stored in each block. In this example, from CInPPath(?v3,maxL), the

scan operator scanning the POS index can determine that there is no need to

read blocks whose objects are between v7 and v11, because the triples whose

objects are in the interval would be filtered out in RFLT operator. Therefore, it

can skip two blocks whose objects are less than v12 by performing the look-up

operation for the index. In this manner, the triple filtering can provide the next

information for scan operators. Consequently, the triple filtering and U-SIP can

utilize synergy effects.

4.5 Generating an Execution Plan with RFLT Operators

Many RDF stores, including RDF-3X, use a cost-based query optimizer to find

optimal (or near-optimal) plans for SPARQL queries [14]. In order to make a

query optimizer that considers triple filtering, we need to provide the query

optimizer with (1) the cost function of RFLT operator, which was given in the
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Figure 4.8: RFLT Operator and U-SIP

previous section, and (2) the estimated cardinalities of RFLT operators. In this

section, we extend the query compiler of RDF-3X to consider RFLT operators.

We first discuss the estimation method for the output cardinalities of RFLT op-

erators, and then consider how to extend the query compiler to generate a plan

using RFLT operators.

To begin, we assume that the following statistics are available: (1) the

cardinalities of scan operators (the number of triples matching to triple pat-

terns), (2) the number of distinct values of the sortkey column, and (3) the

number of vertices in a Vlist. These statistics are already available from in-

dices in RDF-3X and RP-index. In addition, we form another statistic similar

to the characteristics set [50]. We define the characteristics set for v ∈ GD,

SC(v), as the set of incoming predicates of v, including reverse predicates. For-

mally, SC(v) = {p | ∃s : t(s, p, v) ∈ D}. For example, for v14 in Figure 3.1,

SC(v14) = {p1, p3, pR2 }. The number of vertices which have the characteristics

set S is called the occurrence count [50] and is denoted as count(S). We store
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the occurrence counts of all characteristics sets in D. The size of this informa-

tion is minuscule compared to the database size [50].

4.5.1 Filtering Effect of Vlists

We define the filtering effect of Vlist V for Scani, E(Scani, V ), as the fraction

of the remaining values of the sortkey column after filtering. Let us denote the

sortkey column of Scani and the set of its distinct values as K, interchangeably.

Then, E(Scani, V ) can be represented as follows:

E(Scani, V ) = |V ∩K|/|K|. (4.3)

We can estimate this value using the statistics of Vlists. First, we can obtain |K|

as follows. Let us assume that the predicate of the triple pattern of Scani is p.

If the sortkey of Scani is the O column, |K| = Vlist(〈p〉), and if the sortkey of

Scani is the S column, |K| = Vlist(〈pR〉). To simplify the notation, we use pscan,

which is defined depending on the sortkey column S as follows: if K is the O

column, pscan = p; if K is the S column, pscan = pR. Then, we can represent

|K| = |Vlist(〈pscan〉)|.

The numerator of Eq. (4.3) can also be estimated using Vlists. Figure 4.9

shows the relationship between V and K. We denote the last predicate of the

predicate path of V as pv. If pv = pscan, |V ∩K| can be easily computed as |V |

because 〈pscan〉 is the suffix of the predicate path of V , and therefore V ⊆ K.

Otherwise (pv 6= pscan), we should estimate the intersection in other ways

because V 6⊆ K. The filtering effect of V against Vlist(〈pv〉) can be computed

as |V |/|Vlist(〈pv〉)| (i.e. V would filter the values in Vlist(〈pv〉) as the ratio of

|V |/|Vlist(〈pv〉)|). We can also assume that V filters the values in Vlist(〈pv〉) ∩
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Figure 4.9: Filtering Effect

Vlist(〈pscan〉) with the same filtering effect, because it is contained in Vlist(〈pv〉).

Then, we can estimate that |V ∩K| = |V |/|Vlist(〈pv〉)|×|Vlist(〈pv〉)∩Vlist(〈pscan〉)|.

|Vlist(〈pv〉)∩Vlist(〈pscan〉)| is the number of vertices which have both pv and pscan

as their incoming predicates, and it can be obtained from the characteristics set,

count({pv, pscan}).

4.5.2 Cardinality of RFLT Operator

If an RFLT operator has one child operator, it conducts only triple filtering. Let

us denote the intersection of all assigned Vlists for an RFLT operator as C =⋂
ppath∈PPS Vlist(ppath). In this case, if we assume that the values of the sortkey

column of the child scan operator are distributed uniformly, the cardinality of

RFLT operator can be estimated as follows.

|RFLT| = |Scani| × |C ∩K|/|K| (4.4)

where K is the set of values of the sortkey column of Scani. To compute this

value, we should be able to estimate the set of intersections, C ∩K. Although

there are a few techniques [61] for estimating this set, they require some ad-

ditional operations, such as sampling. In this case, we take a rather simple ap-
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proach by using the upper bound of |RFLT| as the estimated value. This means

that we conservatively underestimate the effect of triple filtering. The upper

bound can be estimated as |C ∩K| ≤ min
(
minpath∈PPS |Vlist(ppath)|, |K|

)
, and

we use this value for the estimated output cardinality of an RFLT operator.

If an RFLT operator has multiple child operators, we should be able to es-

timate the join size for the filtered triples. If we can estimate the number of

joined values of the filtered triples, and assume that the values are distributed

uniformly, the output cardinality can be estimated as follows:

|RFLT| = |J | ×
∏

Scani∈ChildOP

|Scani|/|Ki| (4.5)

where J is the set of joined values, and Ki is the set of sortkey column values

of Scani.

J can be represented as J =
(⋂

p∈Ps
Vlist(〈p〉)

)⋂(⋂
ppath∈PPS Vlist(ppath)

)
,

where Ps is a set of predicates of the child scan operators. Here, we again

take the upper bound of |J |. We can easily obtain |
⋂

p∈Ps
Vlist(〈p〉)| from the

characteristics set U1 = count(Ps). Also, we define U2 = minppath∈PPS |Vlist(p)|.

Then, |J | ≤ min(U1, U2).

In brief, we estimate the output cardinality of an RFLT operator using (1)

the assumption of a uniform distribution for the values of the sortkey column

and (2) the estimation of the sortkey column values remaining after triple fil-

tering (the intersection size of the values of the sortkey column and Vlists). We

find the accuracy of our estimation in Section 4.7.2.

Our method is very similar to the Characteristic Set [50], which was pro-

posed to estimate the cardinalities of star-join queries. However, our method

does not aim to replace the Characteristic Set, but to reflect the filtering effect
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Algorithm 1 Dynamic-Programming based Query Optimization
procedure DPsize (Q = {tp0, . . . , tpn−1})

1: for each tpi ∈ Q do
2: dpTable[{tpi}]=buildScan(tpi);
3: end for
4: for 1 ≤ i ≤ n do
5: for 1 ≤ j < i do
6: for each S1 ⊂ Q : |S1| = i− j, S2 ⊂ Q : |S2| = j do
7: if S1 ∩ S2 6= ∅ or

S1 and S2 cannot be joined then
8: continue;
9: end if

10: for each p1 ∈ dpTable[S1] do
11: for each p2 ∈ dpTable[S2] do
12: P ← buildJoin(p1, p2);
13: addPlan(dpTable[S1 ∪ S2], P );
14: end for
15: end for
16: end for
17: end for
18: end for
19: return dpTable[Q]

in the cardinality estimation. We expect that exploiting the Characteristic Set

with our estimation method would improve the estimation accuracy. Therefore,

our method and the Characteristic Set have a complementary relationship.

4.5.3 Generating an Execution Plan

The query optimization of RDF-3X is based on the bottom-up dynamic-

programming (DP) framework [14]. There are two ways to make plans using

RFLT operators. The first is to add RFLT operators to plans generated from nor-

mal query optimization. This method is simple, but has the limitation that the

plan cannot reflect the changed cardinalities due to triple filtering. Hence, we
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integrate RFLT operators into DP operator placement.

Before we discuss the addition method of RFLT operators, we briefly present

the DP query optimization framework, shown in Algorithm 1. The input of the

algorithm is a SPARQL query Q having n triple patterns (tp0 · · · tpn−1), and it

returns the cheapest plan for Q (line 19). The query compiler maintains the DP

table (denoted as dpTable in Algorithm 1), in which the optimal plans for the

subproblems of the query are stored. At first, the optimizer seeds its DP table

with scan operators for the triple patterns as solutions of the 1-size subprob-

lems (lines 1–3). The buildScan function makes scan operators for the input

triple patterns. Larger plans are then created by joining two plans from smaller

problems (lines 10–15), and these are added to the entries in dpTable. The

buildJoin function makes join operators for two input plans. The added plans

are maintained as follows. Each entry in dpTable keeps only the cheapest plans

for its subproblem. However, there can be multiple plans in an entry of the

DP table if there are several plans with different interesting orders (the order

of output tuples). Basically, a plan in an entry is dominated and replaced by

cheaper plans. However, more expensive plans with different interesting orders

can be used to make final plans with lower overall costs. Hence, plans with dif-

ferent interesting orders do not dominate each other and are kept in dpTable.

The addPlan function (line 13) maintains the plans in an entry of dpTable.

We modify buildScan and buildJoin, and add a buildRFLT function, which is

presented in Algorithm 2, to add RFLT operators. First, for each scan operator

created in the seeding phase, an RFLT operator is added as its parent operator

(line 3). When adding an RFLT operator in buildRFLT, the query optimizer finds

the incoming predicate paths for the sortkey vertex of the scan operator by
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traversing the query graph and choosing only Vlists that are more effective than

the user-defined threshold in getEffectivePPath function. We refer to Vlists that

are expected to filter inputs more than a user-defined ratio as effective Vlists.

The effect of Vlists is estimated from Eq. (4.3). By only using effective Vlists, we

can avoid the overhead incurred by Vlists with an insignificant pruning effect.

From our experience, a threshold value of about 0.7 is adequate.

Next, after making the join operator for two smaller problems, if the join

is a merge join, the operator is converted into an RFLT operator and the child

operators of the join operator become the child operator of one RFLT operator

(line 10) (recall the merge process in Figure 4.6). Furthermore, the intersection

of the PPSs of the merged RFLT operators becomes the PPS of the new RFLT

operator (line 11). We take the intersection in order to use only Vlists that are

effective for all scan operators.

This extension of the query optimizer to incoporate RFLT operators does

not incur much additional computation. It requires the traversing of the query

graph, which is small-sized (in getEffectivePPath function), and accessing the

statistical information for estimating the output cardinalities which is resident

in memory (in getCost function).

4.6 RP-index Building

In this section, we present the method of building RP-index.

Building RP-index creates Vlists for predicate paths whose length is up to

maxL in the RDF database. A Vlist for a predicate path can be built using the

path-pattern query corresponding to the predicate path. That is, we can build

Vlist(〈p1, p2〉) by a query joining D(p1) and D(p2) (D(p) is a relation containing
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Algorithm 2 Operator Build Functions
procedure buildScan (tp)

1: P ← a set of all possible scan operators for tp
2: for ∀p ∈ P do
3: p← buildRFLT(p)
4: end for
5: return P

procedure buildJoin (p1, p2)
1: P ← a set of all possible join plans for p1 and p2
2: for ∀p ∈ P do
3: p← buildRFLT(p)
4: end for
5: return P

procedure buildRFLT (p)
1: op← the root operator of p
2: if op is scan operator then
3: v ← the sortkey vertex of op;
4: rootOp.ChildOP← {op};
5: rootOp.PPS← getEffectivePPath(InPPath(v,maxL), scan.predicate);
6: rootOp.Cost← getCost(rootOp);
7: return rootOp
8: else if op is merge join operator then
9: v ← the sortkey vertex of op;

10: rootOp.ChildOP←
⋃

c∈p.ChildOP c.ChildOP;
11: rootOp.PPS←

⋂
c∈p.ChildOP c.PPS;

12: rootOp.Cost← getCost(rootOp);
13: return rootOp
14: end if

triples in the RDF database D whose predicates are p). However, if we build

each Vlist separately using its corresponding query, many computations would

be performed in duplicate. For example, to build Vlist(〈p1, p2, p3〉), we have

to join D(p1) and D(p2) again, which was computed during the building of

Vlist(〈p1, p2〉). To reduce these duplicate computations, we build a Vlist for an

i-length predicate path (i > 1) using the Vlist for the (i − 1)-length predicate
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path (its longest proper prefix) as follows:

Vlist(ppath) = ρID

(
ΠO

(
Vlist(ppathpre) oID=S D(p)

))
(4.6)

where ppathpre is the longest proper prefix of ppath and p is the last predicate

of ppath. In this equation, we view a Vlist as a relation with an ID column and

D(p) as a relation with S, P, and O columns. We build Vlists in a breadth-first

fashion (that is, from 1-length Vlists to maxL-length Vlists) and reuse Vlists

built in the previous step. In this way, we can reduce the number of duplicate

computations.

There are some implementation issues related to the discriminative and fre-

quent predicate paths. As discussed in Section 5.3.1, we only store Vlists for

discriminative and frequent predicate paths in an attempt to address the size

problem of RP-index. Due to this, there are some cases where it is impossible

to build Vlists using Eq. (4.6). For example, if Vlist(〈p1, p2〉) is infrequent, then

we cannot use Eq. (4.6) to build Vlist(〈p1, p2, p3〉) because Vlist(〈p1, p2〉) is not

stored in RP-index. In this case, we build Vlist(〈p1, p2, p3〉) from scratch.

We can skip the building of some infrequent Vlists using their suffix predi-

cate paths. The sizes of Vlists have the following relationship:

|Vlist(ppath)| ≤ |Vlist(ppathsuf)| (4.7)

where ppathsuf is the proper suffix of ppath. That is, |Vlist(ppathsuf)| is the upper

bound of |Vlist(ppath)|. Therefore, if |Vlist(ppathsuf)| is less than the frequency

threshold ψ(|ppath|), we do not need to create Vlist(ppath).

Algorithm 3 outlines the process of building RP-index. BuildRPindex gener-

ates the predicate paths in the BFS manner using a queue structure PQ (line

9–11,23–25). A size-l predicate path is generated by appending a predicate to
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Algorithm 3 RP-index Build
procedure BuildRPindex (isUpdate, D, maxL)

1: /* We share the building algorithm for updating */
2: /* When building, isUpdate is false*/
3: /* D: RDF database */
4: /* maxL: the maximum length of the predicate path */
5: /* PD: the set of all predicate in D */
6: /* PQ: a queue of predicate paths */
7: enqueue(〈〉, PQ) /* enqueue an empty predicate path in PQ */
8: while PQ 6= ∅ do
9: ppathpre ← dequeue(PQ)

10: for each p ∈ PD do
11: ppath← append p to ppathpre
12: if Vlist(ppath) can be skipped (Eq. (4.7)) then
13: continue;
14: end if
15: if isUpdate then
16: vlist← UpdateVlist(ppath); /* Incremental update (Table 4.1) */
17: else
18: vlist← CreateVlist(ppath); /* Build using Eq. (4.6) */
19: end if
20: if vlist is not empty then
21: if ppath is discriminative and frequent then
22: RP-index.insert(ppath, vlist);
23: end if
24: if |ppath| < maxL then
25: enqueue(ppath, PQ);
26: end if
27: end if
28: end for
29: end while

a size-(l − 1) predicate path in PQ. For each generated predicate path ppath,

the pruning condition (Eq. (4.7)) is checked (line 12) and, if satisfied, ppath

is skipped. Otherwise, Vlist(ppath) is created by calling CreateVlist(ppath) (line

18) (for building, isUpdate is false). CreateVlist(ppath) builds a Vlist for ppath

using the Vlist of the longest proper prefix of ppath as described in Eq. (4.6). If
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Vlist(ppath) is not empty, the algorithm checks whether ppath is discriminative

and frequent, and if this condition is satisfied, it is stored in RP-index (lines

20–28).

4.6.1 Complexity of building RP-index

At first, Vlists for 1-length predicate paths are created by reading the whole

database. The number of all triples are represented by |D|. And then, Vlists for

n-length predicate paths are built using Vlists n − 1-length predicate paths by

joining them with the triples with all predicates, which amortized to all triples

in the database. The maximum size of the Vlists is |R|, which is the number

of the resources in D. So we can represent the complexity of the building n-

length predicate paths by |P |n×|R|× |D|, where |P | is the number of the pred-

icates. Hence, the complexity of the building RP-index can be represented by

O
(
|D|+

∑maxL−1
n=1 |P |n × |R| × |D|

)
. This is a worst case complexity for build-

ing RP-index. In practice, the cost can be reduced by using several parameters

and using the parallel building method described in the next section.

4.6.2 Parallel Building Methods

Previously, we presented algorithms for building RP-index. However, these al-

gorithms can be very time-consuming because there can be a large number of

pattern in the RDF graph. Even though we limit MaxL and the other parame-

ters, it can take too long time especially for large-scale RDF graphs. Therefore,

in this section we present the parallel algorithm for building RP-index.

The basic idea of parallelization is to decompose a job into a number of

small pieces of the job which can be performed independently and simultane-
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Figure 4.10: Parallel Building of RP-index

ously. Let us look at the example in Figure 4.10, which illustrate the parallel

building of RP-index. In this example, the set of predicates is {p1, p2, p3}. And it

shows two iterations for building 1-length predicate paths and 2-length predi-

cate paths. Note that the root node in RP-index does not have a predicate path

and a Vlist. As we already mentioned, the building process is performed in a

breadth-first fashion. The idea is that in a iteration, building each Vlists is inde-

pendent for each other; that is, building Vlist(〈p1, p1〉) has nothing to do with

building Vlist(〈p1, p2〉) as long as there is already Vlist(〈p1). Hence, we can build

Vlist(〈p1, p1〉) and Vlist(〈p1, p2〉) simultaneously by using two threads (actually,

we use pthread APIs to implement builder of RP-index). There is no contentions

between these building threads and they read Vlist(〈p1) at the same time. In this

way, we can parallelize the building process of RP-index.

We can further optimize the building algorithm. If we make Vlist(〈p1, p2〉),

Vlist(〈p2, p2〉) and Vlist(〈p3, p2〉) separately, the triples whose predicate p2 should

be read three times. It wastes disk I/O because the same contents are read sev-

eral times. This could be more serious when there exist more predicate paths.

In order to avoid these wasteful reading of triples, we build several Vlists which
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have the same last predicate at same time. For example, we can read the triples

of the predicate p2 only one time, while we build three Vlists at the same time;

Vlist(〈p1, p2〉), Vlist(〈p2, p2〉) and Vlist(〈p3, p2〉). The colored box in Figure 4.10

shows this idea. Each node represents one Vlist for the specified predicate path.

And the dashed boxes represent the threads which build the Vlists and the color

of boxes shows the Vlist which a thread builds at the same time. For example

Vlist(〈p1, p2〉), Vlist(〈p2, p2〉) and Vlist(〈p3, p2〉) is colored as red and assigned to

’Thread 2’. Of course, the building process does not handle several iteration.

The parallelization is performed at the level of each iteration. In this way, we

can reduce disk I/O and accelerate the building process by using parallelization.

4.6.3 Incremental Maintenance

In order to ensure the correctness of query results, RP-index should be consis-

tent with the RDF database and updated concurrently. The easiest way to ob-

tain the newest version of RP-index is to rebuild it using the updated RDF store.

However, it would be very inefficient to rebuild the entire RP-index for every

update. In this section, we discuss the incremental maintenance of RP-index.

We assume that RDF applications have read-mostly workloads in which the

updates for RDF stores are usually batched [14]. A batch update is modeled as

a set of updated triples U , whose triples are flagged as ‘inserted’ or ‘deleted.’

U is divided into two subsets, a set of inserted triples U+ and a set of deleted

triples U−.

Basically, given a set of updated triples U , all Vlists for the predicate paths

containing p ∈ PU (the set of predicates in U) should be updated. As we can see

from Eq. (4.6), Vlist(ppath) is built from both Vlist(ppathpre) and D(p), where
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p is the last predicate of ppath and ppathpre is the longest proper prefix of

ppath. Therefore, if neither of these components is changed during the update,

Vlist(ppath) does not need to be updated. For example, assume that p1 ∈ PU

and that there exist two predicate paths, 〈p1, p2, p3〉 and 〈p1, p2, p3, p4〉, in the

RDF graph. If Vlist(〈p1, p2, p3〉) is not changed by the updates, and p4 6∈ PU , then

Vlist(〈p1, p2, p3, p4〉) is not affected by update U , even though 〈p1, p2, p3, p4〉 in-

cludes p1.

Table 4.1 summarizes the update methods of Vlist(ppath) for |ppath| > 1.

∆+ and ∆− are the sets of inserted and deleted vertices of Vlist(ppathpre), re-

spectively. In Table 4.1, ‘rebuild’ means that the Vlist should be rebuilt using

the createVlist function. Note that if p ∈ PU− or ∆− 6= ∅, Vlist(ppath) should be

rebuilt. Additionally, note that there are four cases that do not require rebuild-

ing. For three of them, the Vlist can be updated by adding some vertices; for

one case, there is no need to update.

We share the procedure with the building process (using isUpdate = true).

For each predicate path, the UpdateVlist(ppath) function checks the delta of

the prefix Vlist and the existence of the last predicates in PU+ and PU− , and

updates the Vlists according to Table 4.1. Besides updating the existing Vlists,

some Vlists should be created by the update. The Vlists for the newly created

predicate paths should be created. It is also possible that a non-discriminative

or infrequent predicate path in the old version becomes discriminative and fre-

quent in the updated RP-index, and vice versa. UpdateVlist(ppath) creates these

Vlists, as well as updating existing Vlists.

There are several ways to reduce the updating overhead of RP-index. For

example, RP-index can be updated in the background, while accepting user-
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Table 4.1: Incremental Update Method of Vlist(ppath)

p ∈ PU+ p 6∈ PU+

p ∈ PU−

p 6∈ PU− p 6∈ PU−

∆+ 6= ∅ Add ∆+ oD(p) and
Add ∆+ oD(p) rebuild

∆− = ∅ Vlist(ppathpre) o U+(p)

∆+ = ∅
Add Vlist(ppathpre) oU+(p) none rebuild

∆− = ∅

∆− 6= ∅ rebuild rebuild rebuild

∆+(∆−): the set of inserted (deleted) vertices of Vlist(ppathpre)

queries. When committing the updates of the RDF-store, all Vlists to be up-

dated are marked as ‘stale.’ Then, a background process starts to update the

stale Vlists, and updated Vlists become ‘normal.’ The query compiler should

check the status of the Vlists to be used. If the considered Vlist is stale, the

query compiler does not use it. Using this method, we can reduce the down-

time incurred by updating RP-index. Additionally, note that updating caused by

deletion can be deferred. This is because the vertices to be deleted in Vlists do

not cause false negatives and do not affect the query results.

Recently, x-RDF-3X [62] proposed the update method for high speed up-

dates. It uses differential indices in main memory which process online update

fast, and when the storage for them is full, it is merged to the triple indices

resident in disks. We can use this architecture in order to support the update of
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RP-index. We can defer the update of RP-index and do not apply the triple fil-

tering for scan operators for the differential indices. In this way, we can support

the OLTP workload.

4.7 Experimental Results

We have implemented the triple filtering on top of the open-source RDF-3X

system (version 0.3.6)1. The triple filtering was written in C++ and compiled

with g++ with the -O3 flag for the experiments. Implementation includes RFLT

operator, extension of the query optimizer, and RP-index builder.

All experiments were conducted on a hardware platform with eight 3.0 GHz

Intel Xeon processors, 16 GB of memory, and running the 64-bit 2.6.31-23

Linux Kernel. We ran the experiments using five datasets: DBpedia SPARQL

Benchmark (DBSPB) [63], Lehigh University Benchmark (LUBM) [64], So-

cial Network Intelligence Benchmark2 (SNIB), Yet Another Great Ontology 2

(YAGO2) [6], and SPARQL Performance Benchmark (SP2B) [65]. DBSPB is a

synthetic dataset, but it simulates the data distribution of DBpedia [66] and has

the characteristics of a real-world dataset [63]. LUBM is a benchmark dataset

whose domain is the university, and SNIB is another synthetic dataset whose

domain is a social network site. YAGO2 is a knowledge-base derived from

Wikipedia3, WordNet [67], and GeoNames4, and SP2B is a benchmark that

simulates the DBLP scenario5.

1http://code.google.com/p/rdf3x/
2http://www.w3.org/wiki/Social_Network_Intelligence_BenchMark
3http://www.wikipedia.org
4http://www.geonames.org
5http://www.informatik.uni-trier.de/~ley/db/
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Table 4.2: Statistics about Datasets

Predicates URIs Literals Triples RDF-3X Size

DBSPB 39,675 38,402,797 46,195,618 278,913,738 25 GB

LUBM 18 217,007,404 111,618,881 1,334,681,192 77 GB

SNIB 44 35,199,091 12,508,290 387,606,173 17 GB

YAGO2 93 6,872,931 22,452,390 195,048,649 9 GB

SP2B 77 177,272,798 348,388,613 931,696,802 123 GB

The benchmark datasets (DBSPB, LUBM, SNIB, and SP2B) have their own

scale factors. We used the database size parameter of 200% for DBSPB, gen-

erated 10,000 universities for LUBM, 30,000 users for SNIB, and 144 GB-size

triples for SP2B. These datasets have different characteristics, as shown in Ta-

ble 5.2. DBSPB has a large number of predicates, while the others have a rela-

tively small number of predicates. This is because DBSPB is a collection of data

from various domains. In contrast, LUBM, SNIB, and SP2B are single-domain

datasets, and YAGO2 is made from three data sources. Using DBSPB, we can

evaluate our approach with a more realistic and heterogeneous dataset.

Table 4.3 show the graph density for each datasets. Because literals are ter-

minal vertices and it does not have multiple parents, we are interested in the

graphs with resources. So, we calculated the density with all resources and lit-

erals, and the densities with all resources, respectively. The densities calculated

as |E|/|V | × |V − 1|, where E is the set of all edges and V is the set of all ver-

tices. The densities show that the graphs are very sparse and the densities with

resources are more denser.
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Table 4.3: Graph Densities of Datasets

Graph Density Graph Density (without Literals)

DBSPB 3.89× e− 08 9.64× e− 08

LUBM 1.23× e− 08 1.89× e− 08

SNIB 1.70× e− 07 1.64× e− 07

YAGO2 2.26× e− 07 1.76× e− 06

SP2B 3.37× e− 09 1.46× e− 08

Table 4.4: RP-index Parameter Settings

Setting maxL γ ψ(l)
Reverse

Predicate

1 3 1 0 not included

2 3 1 0 included

3 3 0.7 (l − 1/maxL)2 × n included

4.7.1 RP-index Size

We built three RP-indices (maxL = 3) for each dataset by varying the fol-

lowing parameters: γ, ψ(l), and reverse predicates. Table 4.4 shows the three

different settings for the RP-indices. We use the frequent threshold function

ψ(l) = ((l − 1)/maxL)2 × n, where n is chosen appropriately for each dataset

(we use 1000 for DBSPB, SNIB and SP2B, and 10000 for LUBM and YAGO2).

We call RP-indices under Setting 3 reduced RP-indices, because they are built for

the discriminative and frequent predicate paths.
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Table 4.5: Number of Vlists in RP-indices

Setting DBSPB LUBM SNIB YAGO2 SP2B

1 34,205,462 122 1,193 8,479 4,875

2 N/A 1,718 10,070 167,114 389,070

3 120,424 63 253 10,023 86,050

Table 4.5 and Table 4.6 show the number of Vlists and the size of RP-indices

built for each dataset. Note that the number of Vlists in LUBM under Setting 1

is only 122, which is much smaller than the number of possible predicate paths

(183). This is because LUBM has a relatively structured scheme, almost simi-

lar to the relational table. Next, as this table shows, the inclusion of reverse

predicates increases the number of Vlists and the size of RP-index significantly

(comparing Setting 1 with Setting 2). For DBSPB, we could not even build an

RP-index under Setting 2, as it was too large to complete the construction (more

than 200 GB). This is because the addition of the reverse predicates causes an

increase in the possible predicate paths to be indexed. Nonetheless, we could

reduce the size of RP-index effectively by storing only Vlists for the discrimina-

tive and frequent predicate paths (Setting 3).

RP-index with the Predicate Variable

We propose some methods for handling queries with predicate variables in Sec-

tion 4.3.4, one of which is to index the predicate variables when building RP-

index. In this section, we discuss the effects of indexing the predicate variable
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Table 4.6: Total Size of RP-indices (GB)

Setting DBSPB LUBM SNIB YAGO2 SP2B

1 2.85 0.307 1.46 0.08 2.05

2 N/A 19.12 8.83 2.20 87.99

3 6.52 1.39 0.47 0.79 21.97

Table 4.7: RP-index with the Predicate Variables (Setting 3)

LUBM YAGO2

Size (GB) 11 6.3

# of Vlists with Predicate Vars. 314 12,562

on the size of RP-index. We built RP-index with the predicate variables for the

LUBM and YAGO2 datasets, using Setting 3 for the building parameters.

Table 4.7 shows the size of RP-index with the predicate variables and the

number of Vlists with the predicate variables. We can see that including pred-

icate variables significantly increases the size of RP-index and the number of

Vlists. However, if we adjust the parameters of RP-index appropriately, we ex-

pect to be able to reduce the size overhead due to the inclusion of the predicate

variables. We leave the tuning and optimization techniques of indexing predi-

cate variables for future work.
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4.7.2 Query Evaluation Performance

In this section, we present the query performance of the triple filtering using

the three RP-indices built in the previous section. For the experiments, we made

four test queries for each dataset (included in the Appendix). Our test queries

have many joins (4–5) and relatively long paths. Each query was executed a

total of 10 times, and the average execution time is presented.

Figure 4.11 shows the execution times (for DBSPB, Setting 2 is not included

because it grows too large that it could not be built). In this figure, we can see

that the triple filtering reduces the execution time of most queries. In particular,

there are some queries for which the triple filtering reduces the execution times

significantly, by a factor of more than 5 (for instance, Q1 of LUBM, Q2 of SNIB,

Q1 of YAGO2, and Q2 of SP2B). These queries have selective path patterns,

which the triple filtering can use to effectively filter redundant triples. However,

there also exist queries (e.g., Q1 of DBSPB, Q3 of LUBM, and Q4 of SP2B) for

which the triple filtering is not very effective. These queries do not have the

selective path patterns that the triple filtering uses for triple filtering.

In most cases, the RP-indices under Settings 2 and 3 (with the reverse pred-

icates) are more effective than those under Setting 1 (for Q2 of DBSPB, Q4

in LUBM, and Q1 and Q3 of SNIB, Q3 and Q4 of YAGO2, and Q2 and Q3 of

SP2B). This is because RP-indices with reverse predicates index more predicate

paths for use in triple filtering. Additionally, we can observe that, although the

reduced RP-indices under Setting 3 are much smaller than the RP-indices under

Setting 2, their filtering power is not significantly degraded. This is because the

criteria proposed in Section 5.3.1 do not harm the filtering power of RP-index

much. However, for some queries (for example, Q4 of DBSPB), the execution
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time of Setting 3 is longer than that of Setting 1. This is because the reduced

RP-index removes Vlists that are effective for the queries. Nonetheless, the per-

formance of Setting 3 is still good compared to RDF-3X.

Also note that there are some cases which the performance of Setting 3 is

slightly better than that of Setting 2 (e.g. Q3 and Q4 of LUBM, Q1 and Q2

of SNIB, Q2 of YAGO2, Q2 of SP2B). This is because Setting 3 removes some

Vlists, the queries are applied less Vlists. For example, Q4 of LUBM uses Vlists

whose size is total 142 MB in Setting 2 and 16 MB in Setting 3. If the filtering

power does not degrades, the reduced size of Vlists can improve the overall

query performance.

Figure 4.12 shows the intermediate results generated during query evalua-

tion for each query. The intermediate results counted in these experiments are

the outputs of scan operators and join operators. We can see that the results

have some correlation with the execution times, and that the number of redun-

dant intermediate results is reduced considerably for queries where the triple

filtering is effective.

Filter Usage

Table 4.8 shows the usage information of Vlists for SNIB queries: the number

of Vlists for each length of predicate path and for predicate paths with reverse

predicates, the size of Vlists and the triples read in scan operators. From this

table, we can see that the size of the Vlists is generally small compared to the

size of the triple data, and therefore the triple filtering incurs little overhead

above the original query processing. By comparing Setting 1 and Setting 2,

we can see that the number of Vlists to be applied is increased by the reverse

74



Table 4.8: Filter Usage (SNIB)

Setting Query
Path Length

Reverse Vlist Size (MB) Data Size (MB)
1 2 3

1

1 0 0 4 0 4.98 62.92
2 0 0 1 0 1.03 204.43
3 0 0 4 0 3.14 97.78
4 0 0 4 0 0.09 11.32

2

1 0 0 11 7 6.15 40.48
2 0 0 7 6 16.75 180.23
3 0 0 5 3 8.08 78.60
4 0 0 18 12 0.55 11.32

3

1 2 1 1 2 0.75 40.48
2 0 2 2 2 16.36 186.18
3 0 3 1 2 8.47 78.60
4 4 0 0 2 0.05 11.32

predicates. Also, note that only 3-length predicate paths are used in Setting 1

and Setting 2, whereas in Setting 3, 1-length and 2-length predicate paths are

used. This is because 3-length predicate paths are removed, as they are not

discriminative or frequent, and replaced by shorter predicate paths in Setting 3.

Path Query

In order to evaluate the triple filtering for more general cases, we generated

random path-pattern queries with lengths of 4, 6, 8, and 10 (an n-length path-

pattern query has n triple patterns connected as a path) for the YAGO2 dataset.

For each length, we generated 100 queries by varying the predicates (including

reverse predicates). We also evaluated the effects of user-defined parameters of
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RP-index (maxL, γ, and ψ(l)) using these queries.

Figure 4.13 shows the average execution time for each path length. We

can see that path queries are processed more efficiently using the triple filter-

ing. The results are similar to those in the previous experiments using the test

queries. RP-index under Setting 2 is most effective, and RP-index under Set-

ting 3 is next. However, we can see that the evaluation times do not improve

as much as in the previous experiments. This is because that we generated 100

path queries, and the averaged times are presented. In the query sets, there

exist queries without selective path patterns, for which the triple filtering is not

effective. And some of queries have no results. These queries tend to be pro-

cessed quicker than queries with results, and RDF-3X process these queries very

fast. As a result, the averaged improvement is not as impressive as the previous

experiments. Also, we can observe that the execution times do not increase lin-

early with the path length (the execution times for 8-length queries are longer

than those of 10-length queries). This is because, as the path queries increase,

the possibility that they have no results also increases.

Figures. 4.14, 4.15, and 4.16 show the effect of the three RP-index parame-

ters on its performance and size. In Figure 4.14, we decrease the discriminative

ratio γ with fixed maxL = 3 and ψ(l) = 0. From Figure 4.14a, we can see

that the execution times increase as γ decreases. However, the degradation is

slight compared to the decreased size of the RP-index (Figure 4.14b). In Fig-

ure 4.15, we increase n in the frequency function ψ(l) = (l − 1/maxL)2 × n

with fixed maxL = 3 and γ = 1. From this figure, we can see that the execution

times increase as n increases. Again, the degradation is tolerable considering

the decreased size of RP-index. Figure 4.16 shows the effects of maxL. Contrary

76



to the previous two parameters, an increase in maxL does not give a notable

increase in performance, although the size of RP-index increases exponentially.

Therefore, as we discussed in Section 4.3.5, we do not need a large maxL value.

Accuracy of Cardinality Estimation

In this section, we study the accuracy of the cardinality estimation technique

discussed in Section 4.5. We calculate the q-error max(c/ĉ, ĉ/c) [68], where c is

the real cardinality and ĉ is the estimated cardinality. This is the method used

in [50] to evaluate estimation techniques. In Section 4.5, we need to estimate

the intersection of Vlists and the input sortkey columns, and for this, we use

the upper bound of the intersection. Table 4.9 and Table 4.10 show the q-errors

for the experimental queries. The q-errors in Table 4.9 are calculated using the

upper bound, as in Section 4.5, and those in Table 4.10 are a result of using

the exact intersections. From these tables, we can observe that the estimations

are more accurate when using the exact intersections, except for YAGO2. The

exception of YAGO2 is because the uniform distribution assumption does not

hold. We can also note, from Table 4.10, the estimations are more accurate

for the benchmark datasets (LUBM, SNIB and SP2B) than for the real-world

datasets (DBSPB and YAGO2). This is because the assumption of the uniform

distribution of sortkey values is more adequate for the benchmark datasets.

Except for query 2 in YAGO2, we can see that the estimations are generally

accurate.

From these results, we can deduce that we need a more accurate estimation

of the intersection size and a method to handle cases in which the uniform

distribution assumption does not hold.
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Table 4.9: Cardinality Estimation Errors (using upper bound)

Query DBSPB LUBM SNIB YAGO2 SP2B

1 1.81 2.13 2.07 146.04 24.84

2 10.77 1.14 3.56 3593.3 1.28

3 13.00 2.63 12.3 1.92 6.22

4 11.31 13.57 1.09 2.14 186.6

Table 4.10: Cardinality Estimation Errors (using exact intersection)

Query DBSPB LUBM SNIB YAGO2 SP2B

1 1.74 1.03 1.13 134.84 1.52

2 10.76 1.14 1.34 5212.7 1.01

3 12.30 2.07 1.09 2.38 1.07

4 11.31 1.25 1.09 6.83 16.90

4.7.3 Incremental Maintenance of RP-index

In this section, we present experimental results for the incremental update of

RP-index. We measured the incremental update times of RP-index and com-

pared them to the total rebuilding times.

First, we measured the update time, varying the number of predicates in

the updates (we refer to a set of updated triples as an update). We use a subset

of the DBSPB dataset as D. This has 3,000,000 triples and 1,000 predicates

(|D| = 3, 000, 000, |PD| = 1, 000). We generated five insert updates, each of
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which has 100,000 triples (|U+| = 100, 000, |U−| = 0), increasing the number

of predicates in the updates. Additionally, we generated another five delete

updates, each of which has only 100,000 deleted triples (|U+| = 0, |U−| =

100, 000).

Figure 4.17 shows the update times. As we can see, the update times are

proportional to the number of predicates in the updates. This is because the

number of Vlists to update increases with the number of predicates. However,

the total rebuilding times are almost equal, as the number of predicates in D

is not different. Furthermore, note that the update times for insert updates are

less than those for delete updates. This is because a Vlist can be updated using

the delta of the Vlist for the prefix predicate path, whereas, for delete updates,

Vlists are updated using rebuilding.

Next, we measured the effect of the update size on the update time. In this

experiment, we generated three types of update: insert-only updates, delete-

only updates, and updates with both inserts and deletes, increasing the number

of updated triples. Additionally, for each type, updates with 300 predicates and

600 predicates were generated. Figure 4.18 shows the update times. For insert

updates, both the incremental update times and the rebuild times increase as

the sizes of the updates increase. In contrast to insert updates, for delete up-

dates and updates with inserts and deletes, the incremental update times are

similar to the rebuild times. For updates with inserts and deletes, because of

the deleted triples, the results are similar to the delete updates. To alleviate the

overhead of the deleted triples, we can use the workarounds in Section 4.6.3.
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Figure 4.11: Query Execution Time
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Figure 4.12: Intermediate Results
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Figure 4.13: Path Query (YAGO2)
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Figure 4.14: Effects of Discriminative Ratio (YAGO2)
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Figure 4.15: Effects of Frequency Function (YAGO2)
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Figure 4.16: Effects of maxL (YAGO2)
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Chapter 5

RG-index: RDF Triple Filtering using
the Graph Index

RP-index proposed in the previous chapter is to improve the query evaluation

by reducing redundant intermediate results. It exploits the incoming path in-

formation in order to determine the irrelevance of a triple, and uses additional

filtering operators in the execution plan to filter out irrelevant triples among

the input triples. However, its filtering power is limited, because it uses only

the incoming path information and cannot use the graph-structural informa-

tion of the RDF graph. In this section, we present RG-index which uses the

graph-structural information of the RDF graph.

5.1 Motivating Example

Let us consider the example in Figure 5.1. It shows a SPARQL query graph, its

execution plan, and four fragments of an RDF graph: R1, R2, R3, and R4. In
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Figure 5.1: RDF Graph and SPARQL Query Graph

the execution plan, Join1 produces the intermediate results matching the sub-

graph q1 in the query graph: g1, g2, and g3 in the RDF graph. However, because

only R1 is matched to the query graph, it is the final result for the query, and

g2 and g3 become redundant intermediate results. RP-index can reduce these

intermediate results using the necessary condition for the final results that the

matching vertices for ?v3 should have two incoming predicate paths: 〈p3, p2〉

and 〈p4, p2〉. Using this necessary condition, RP-index can avoid producing g3

in Join1, because v14 does not have the incoming predicate path 〈p4, p2〉. How-
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ever, it should be noted that g2 is still produced because v6 has both incoming

predicate paths and satisfies the necessary condition. In order to remove these

intermediate results, we should be able to consider the graph-structural infor-

mation.

In this chapter, we propose a graph index called RG-index (RDF Graph In-

dex). RG-index indexes the graph patterns in the RDF graph rather than the

path information, and therefore, it can enhance the filtering effects. The main

problem arising from indexing the graph patterns is that the index size can

grow prohibitively large. This is because there exists a large number of graph

patterns, and the number of graph patterns grows exponentially with its size.

We solve this size problem of RG-index by indexing a fraction of the graph

patterns rather than all possible graph patterns. This approach is applicable be-

cause the objective of RG-index is to provide the filter data, and therefore, it is

enough to index graph patterns that are effective for the triple filtering. Then,

the problem becomes how to select the graph patterns that are effective for

the triple filtering. To address this problem, we propose several techniques to

reduce the size of RG-index while retaining its filtering power.

In addition, we propose an efficient building algorithm for RG-index. In or-

der to build RG-index efficiently, we adapt the gSpan [24] algorithm, one of

the most well known algorithms for mining frequent graph patterns. Originally,

gSpan was developed for treating a transactional graph database, which com-

prises many small-size graphs. Thus, in order to apply the gSpan to the RDF

graph, which is a single large graph, the gSpan algorithm has to be modified.

Further, to reduce the duplicate computations that occur during graph pattern

mining, we propose a mechanism for caching the intermediate results.
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5.2 Design of RG-index

RG-index is designed to provide the direct access to the filter data for the triple

filtering. It maintains a set of vertex lists for subgraph patterns in the RDF

database. A vertex list is built for every vertex of a graph pattern, and contains

vertex IDs matching its query vertex. A vertex list is formally defined as follows.

RG-index indexes graph patterns in the RDF database. Only graph patterns

whose vertices are all variables and the edge labels are all bounded, that is, not

variable, are considered. We define the graph patterns as follows.

Definition 5.2.1 [Graph Pattern] A graph pattern is a connected graph whose

vertices are all variables and the labels of edges are all URIs. A set of triple

patterns gp is called a graph pattern iff its mapping graph is a connected graph

and ∀tp(s, p, o) ∈ gp, s ∈ VAR ∧ o ∈ VAR ∧ p ∈ PD.

It should be noted that a graph pattern can be viewed as a SPARQL query

gp whose triple patterns satisfy the conditions: ∀tp(s, p, o) ∈ gp, s ∈ VAR ∧ o ∈

VAR ∧ p ∈ PD. The vertex lists for a graph pattern are formally defined as

follows.

Definition 5.2.2 [Vertex List] Given a graph pattern G(V,E, L) and a vertex

v ∈ V , a vertex list Vlist(G, v) is Ans(G, v), the projection over v for the answer

set of G. A set of all vertex lists for G is denoted by VS(G) = {Vlist(v,G) | ∀v ∈

V }

In this definition, we treat a graph pattern as a query graph and use Ans(G, v)

to define the vertex list. RG-index is defined as follows.
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Figure 5.2: RG-index (maxL = 3)

Definition 5.2.3[RG-index] RG-index for RDF database D with the maximum

length maxL is a set of pairs 〈G,VS(G)〉, where G is a graph pattern in D whose

size is less than or equal to maxL.

Example 5.2.4 [RG-index] Figure 5.2 shows an example of RG-index for the

RDF graph in Figure 5.1c. This RG-index indexes five graph patterns for the

RDF graph and has fourteen Vlists.
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Using RG-index, the candidate vertex sets for each vertex of the query graph

can be obtained. The candidate vertex sets are obtained by intersecting relevant

Vlists.

Lemma 5.2.5 [Candidate Vertex Set] Given a vertex v in a query graph GQ

and maxL, we can obtain a superset of CV (v,maxL) by intersecting Vlists for k-

neighborhood subgraphs of v.

⋂
gp∈N(v,maxL)

Vlist(gp, v) ⊆ CV (v,maxL) (5.1)

Proof: By the definition of the k-neighborhood subgraph and its Vlists, for

all v in gp, Vlist(gp, v) ⊆ CV (v,maxL). Therefore,
⋂

gp∈N(v,maxL) Vlist(gp, v) ⊆

CV (v,maxL).

We generate graph patterns up to size maxL. Because the number of graph

patterns grows exponentially for the its size, we have to limit the size of graph

patterns to be indexed. There exists a tradeoff between the filtering power and

the space overhead of RG-index. As maxL increases, more graph patterns are

indexed in RG-index and therefore, its filtering effects for queries can be im-

proved. However, the space overhead of RG-index also increases. This tradeoff

can be adjusted by maxL.

5.2.1 Physical Structure of RG-index

In this section, we discuss the physical structure of RG-index. First, we describe

how the graph patterns are represented in RG-index. Then, we explain the

storage of RG-index.
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DFS Code Representation

We use the minimal DFS code proposed for gSpan [24] as the canonical rep-

resentation of graph patterns. The minimal DFS code for a graph pattern gp is

defined as follows. First, all nodes in gp are given DFS subscripts while they are

traversed by a depth-first search. If two nodes are subscripted as vi and vj , and

i < j, then vi is traversed before vj . It should be noted that, for a graph pattern

gp, many different subscripts can be made, because there can exist several DFS

trees for gp.

By using this subscription, each edge in gp is represented by a DFS edge.

Originally, gSpan was designed to treat undirected graphs [24], and DFS edge

representation for undirected graphs was proposed. However, we are treating

directed edge-labeled graphs. Therefore, the edge representation 〈i, j, l(i,j), d(i,j)〉,

where i and j are DFS subscripts, l(i,j) is the edge label, and d(i,j) is the edge

direction, is used. If the edge is from vi to vj , d(i,j) =→; otherwise, d(i,j) =←.

A DFS edge with i < j is called a forward edge, and a DFS edge with i > j

is called a backward edge. Forward edges are edges that are visited during the

DFS search, and edges that are not visited become backward edges.

Using this DFS subscription and the DFS edge representation, a graph pat-

tern can be mapped into a DFS code, which is a sequence of DFS edges. In the

DFS code, DFS edges for edges of the graph patterns are sequenced as follows.

Forward edges are ordered as they are discovered. Given a vertex v, all of its

backward edges should appear after the forward edge pointing to v.Among the

backward edges from the same vertex, say (vi, vj), (vi, vk), if j < k, then (vi, vj)

should appear before (vi, vk).

gSpan defines a lexicographic order among DFS codes [24]. For two given
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Table 5.1: DFS Codes of the Graph Pattern

Edge (b) (c) (d)

1 〈0, 1, p3,→〉 〈0, 1, p1,←〉 〈0, 1, p1,→〉

2 〈1, 2, p2,→〉 〈1, 2, p2,←〉 〈0, 2, p2,←〉

3 〈1, 4, p4,←〉 〈1, 4, p5,→〉 〈0, 4, p5,→〉

4 〈2, 3, p1,→〉 〈2, 3, p3,←〉 〈2, 3, p3,←〉

5 〈2, 4, p5,→〉 〈2, 4, p4,←〉 〈2, 4, p4,←〉

DFS edges, the order is determined first by their two subscripts, then by edge

labels, and finally by directions. We define the order between directions such

that → is smaller that ←. gSpan defines the canonical label of gp as its lexico-

graphically minimum DFS code.

Example 5.2.6 [DFS Code] Figure 5.3 shows a graph pattern (Figure 5.3 (a))

and its three DFS subscriptions (Figure 5.3 (b)–(d)). Each vertex is annotated
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by its subscription. Forward edges are represented by thick edges, while back-

ward edges are represented by thin edges. Table 5.1 shows the DFS codes for

three subscriptions. The order among the DFS codes is (d) < (c) < (d); (d) is

the minimum DFS code for the graph pattern.

Storage of RG-index

Each vertex in the RDF database is assigned a four-byte integer ID. Physically,

Vlists are stored as the sorted lists of these vertex IDs. Vlists are stored in a disk

as sorted by vertex IDs so that the Vlist can be read from the disk as sorted.

The reason for storing Vlists as sorted is to allow the filter data to be obtained

by simply merging the relevant Vlists. Another benefit of sorting is that sorted

Vlists can be compressed by the delta-based byte-level compression scheme sim-

ilarly to compressed triples in RDF-3X [14]. The delta between two vertex IDs

is encoded with one header byte and the minimum number of bytes for the

delta (1 bytes ∼ 4 bytes). If the delta is smaller than 128, it is stored directly

in the header byte, consuming only one byte. Otherwise, the header byte stores

the byte length of the delta with its most significant bit set as 1 to indicate the

delta is not small. This compression scheme alleviates the overall size overhead

of Vlists and reduces disk I/O overhead for reading the Vlists.

The DFS codes of the graph patterns in RG-index are organized in a trie (or

prefix tree) data structure. Each node in level l in the trie has a pointer to the

Vlist for its associated length-l DFS code. The trie provides compact storage for

the DFS codes, because the duplicated parts of the DFS codes can be shared.

In addition, it provides an efficient way to access the Vlist for a given predicate

path. The location in the disk of the Vlist for a graph pattern can be found by

95



traversing the trie using the DFS code. The number of the nodes in the trie is

equal to the number of the DFS codes in RG-index. For real-life datasets and a

small maxL value, the trie is relatively small and can be resident in the main

memory.

5.3 Handling the Size Problem of RG-index

Even if the graph patterns are limited to size maxL, it is still infeasible to index

all possible subgraph patterns in the RDF database D, due to the exponential

number of the possible graph patterns. Because RG-index is designed to pro-

vide the filter data for the triple filtering, it does not have to index all possible

graph patterns in D. Instead, by choosing and indexing only graph patterns

with effective filtering power, its size can be reduced while its filtering power is

retained. We discuss how to choose the graph patterns in Section 5.3.1.

In addition, there exist some graph patterns that need not be indexed, and

redundant Vlists. We also discuss the handling of these redundant graph pat-

terns and Vlists in this section.

5.3.1 Discriminative Patterns

The first criterion is to store only Vlists with enough filtering power as compared

to other replaceable Vlists. If Vlisti ⊃ Vlistj , Vlisti can be used in place of Vlistj ,

because Vlisti has all vertices in Vlistj . Therefore, it is possible to store only

Vlisti and remove Vlistj from RP-index. However, this replacement can degrade

the filtering power because the replacing filter is prone to produce more false

positives than the replaced filter. Therefore, it is important to choose predicate

paths that do not degrade the filtering power significantly. A discriminative
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predicate path is one whose Vlist cannot be replaced by another Vlist without

significantly degrading the filtering power. We define the discriminative Vlist as

follows.

Definition 5.3.1[Discriminative Vlist] Given discriminative ratio γ (0 < γ ≤ 1)

and a set of Vlists V , vlist is discriminative w.r.t V iff ∀vlists ∈ V ∧ vlists ∈ vlist,

|vlist| < γ × |vlists|.

5.3.2 Frequent Patterns

The second criterion is to store only frequent graph paths. A graph path is fre-

quent iff its support is larger than the minimum threshold defined by the user.

Infrequent graph paths are unlikely to be useful, because they are rare in RDF

graphs and would not be queried frequently. Therefore, their removal from RG-

index does not degrade the overall performance for most queries. Additionally,

because infrequent predicate paths tend to be abundant, their removal can re-

duce the size of RG-index significantly. Since the number of patterns increases

with their size, a size-increasing function is used to provide the threshold value

for identifying frequent graph patterns. Thus, the overall index size can be re-

duced. We define a frequent graph pattern as follows.

Definition 5.3.2[Frequent Graph Pattern] Given size-increasing function ψ(l),

a graph pattern G is frequent if and only if sup(G) ≥ ψ(|G|).
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5.4 Building RG-index

We build RG-index using the subgraph mining algorithm, gSpan, which was

originally proposed for use in the transactional setting. In this section, we

briefly review gSpan, and discuss how to adapt it in order to build RG-index

for the single large RDF graph.

5.4.1 Overview of gSpan

gSpan [24] generates graph patterns in a depth-first fashion. That is, it starts

from a 1-edge pattern and grows the pattern into larger patterns by adding one

edge to the pattern. The most important issue in gSpan is minimizing the gen-

eration of the same graph patterns. Because a graph pattern can be generated

in several ways, for efficient mining it is essential not to generate the patterns

in duplicate. To achieve this, the pattern generation of gSpan is limited to the

minimum DFS codes; otherwise, it is possible that the same patterns can be

generated several times. If gSpan can ensure that all minimum DFS codes are

generated, the generations of the non-minimum DFS codes are redundant be-

cause any graph pattern can be represented by the minimum DFS code. There-

fore, for each generated DFS code, gSpan checks whether it is the minimum

DFS code for the generated pattern, and if not, the DFS code is pruned and not

extended further.

In addition, to reduce the generation of non-minimum DFS codes, gSpan

uses the rightmost extension when adding an edge to a graph pattern. The

rightmost extension restricts the pattern growth as follows. For a DFS code,

the first and the last vertices of the DFS traversal are called the root and the
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rightmost vertex, respectively. The path from the root to the rightmost vertex is

called the rightmost path. The patterns can be grown such that a forward edge

can be added to vertices in the rightmost path, and a backward edge can be

added only to the rightmost vertex. If g is extended by adding e according to

the rightmost extension, the extended pattern is denoted by g �r e.

The reason why gSpan uses the rightmost extension is that patterns that are

generated not by the rightmost extension are non-minimum DFS codes. Further,

the rightmost extension guarantees that all minimum DFS codes are generated.

Thus, gSpan guarantees the completeness of the mining results while reducing

the duplicate pattern generation.

5.4.2 RDF Graph Pattern Mining using gSpan

We adapt the gSpan algorithm to mine frequent graph patterns in the RDF

graph in order to build RG-index. The modifications are (1) the support defi-

nition, (2) the restriction for the pattern generation, and (3) caching the inter-

mediate results.

Support for the RDF graph

First, in order to apply the frequent pattern mining algorithm for the RDF graph,

we need to measure the support of the generated patterns. gSpan was pro-

posed for use in the context of the transactional setting, and the support for the

transactional setting is easily defined as the number of graphs in the database

matched for a graph pattern. This definition has the anti-monotonicity property,

which is essential for efficient mining. However, it is not easy to define the sup-

port that satisfies this property in the single large graph setting [53]. Several
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support definitions for the single large graph setting have been proposed. We

use the definition of graph pattern frequency in [69].

Definition 5.4.1[Support of Graph Pattern] Given a graph pattern G(V, E, L),

the support of G is sup(G) = minv∈V (|V list(G, v)|).

This definition uses the minimum number of vertices of the graph pattern as

the support, and is computationally efficient as compared to other support def-

initions for the single graph [70]. In addition, it ensures the anti-monotonicity

of the support. Using this support, only the size of Vlists for the graph pattern

is required.

Avoiding Redundant Patterns

We restrict the pattern generation of gSpan such that it does not generate all

possible patterns in the RDF graph. There exist graph patterns that become

redundant due to the semantics of SPARQL. In fact, evaluating the basic graph

patterns of SPARQL queries is not exactly the same as subgraph isomorphism.

This is because pattern mapping is not bijective; that is, the different vertices

in a query graph can be matched to a same vertex in the RDF graph. Let us

take a look at the example in Figure 5.4. In this figure, there are an RDF graph

and three graph patterns: G1, G2, and G3. These three graph patterns are all

matched to the RDF graph, although G2 and G3 have more edges than the RDF

graph. v2 in the RDF graph is matched to several vertices in these patterns; i.e.,

?v2 and ?v3 in G2 are matched to v2. Therefore, the Vlists for these vertices

are identical; Vlist(G1, ?v2) = Vlist(G2, ?v2) = Vlist(G2, ?v3) = Vlist(G3, ?v2) =
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Figure 5.4: Redundant Graph Pattern

Vlist(G3, ?v3) = Vlist(G3, ?v4) = {v2}. G2 and G3 are redundant because they

have the same filtering power as G1.

Formally, graph patterns having non-trivial automorphisms are redundant.

Lemma 5.4.2 If a graph pattern G has a non-trivial automorphism θ, then ∀v ∈

G ∧ θ(v) 6= v, s.t.Vlist(G, v) = Vlist(G, θ(v)), where θ(v) is the matching vertex

by θ.

Proof: By the definition of the non-trivial automorphism, if G is a non-trivial

automorphism θ and v′ = θ(v), then N(v,maxL) = N(v′,maxL). Therefore, we

can conclude that Vlist(G, v) = Vlist(G, θ(v)).

In this case, G has the same Vlists as the maximum subgraph of G, which

does not have a non-trivial automorphism. Therefore, it is not necessary to

generate graph patterns having non-trivial automorphisms.

In order not to generate graph patterns having automorphisms, automor-

phism checking should be performed for each generated graph pattern that is

known to be NP-complete. Since this is too costly, we take an approximate ap-

proach instead. Patterns whose vertices have edges of the same type, i.e., edges

with the same label and the same direction, are not generated. However, this

method can remove graph patterns that are not redundant. For example, the
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graph pattern in Figure 5.4 is removed because v1 has two edges of the same

type. However, it does not have non-trivial automorphism. Although the exclu-

sion of these types of patterns can degrade the filtering power of RG-index, in

order to achieve efficient construction, these patterns are not considered.

Caching the Intermediate Results

The support of each generated pattern should be calculated and Vlists built for

it. However, this process is very time-consuming because it requires finding all

occurrences of the pattern in the RDF graph. The easiest way to perform this

is to make and execute a SPARQL query for the generated pattern. However,

this incurs many duplicate computations. Let us take a look at the example in

Figure 5.6. This figure illustrates a forward extension in whichG1 is extended to

G2. If the occurrences of these two patterns are calculated separately using two

SPARQL queries generated for them, the subgraph of G2, which corresponds to

G1, is calculated twice. This is because G2 contains G1.

In order to reduce these redundant computations, we propose caching the

occurrences of a graph pattern and reusing them for its child graph patterns.
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Figure 5.6: Rightmost Extension

Figure 5.6 shows the entire process. The occurrences of the graph pattern are

stored as a table whose columns correspond to each vertex in the graph pat-

tern. Then, the occurrences of the child patterns can be obtained by a join

operation for the table. In this example, the table G1, which contains the oc-

currence results of G1, is joined with the triple whose predicate is p4, and the

results become the occurrences of G2.

In general, for a forward extension, the results can be obtained as

G2 =

 G1 ./vi=S D(p) if add〈vi, vj , p,←〉

G1 ./vi=O D(p) if add〈vi, vj , p,→〉
(5.2)

For a backward extension, the results are calculated as

G2 =

 σvj=O (G1 ./vi=S D(p)) if add〈vi, vj , p,←〉

σvj=O (G1 ./vi=O D(p)) if add〈vi, vj , p,→〉
(5.3)
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For a backward extension, a selection operation is needed in addition to

the join operation. The results of a backward extension can be obtained from

the selection operation for the results of a forward extension. Figure 5.7 shows

an example of the rightmost extension for the rightmost vertex, ?v3. First, the

results of the forward extension are calculated. Then, if the extension is for

the rightmost vertex, it can be used for the backward extension (the backward

extension is possible only for the rightmost vertex). If the backward extension

is to add 〈3, 1, p4〉, then the results can be obtained by performing the selection

operation with the condition ?v4 =?v1 for the results of the forward extension.

This is efficient, because only the selection operation is required, and the results

of the forward extension are reused.

It should be noted that the depth-first fashion of gSpan makes this approach

more attractive, because it exploits the parent’s results for its children. The

results can be stored in table-form in the main-memory. If their size is too great

to store in the main-memory, they can be saved on disk. The number of results

set to be kept is bounded as maxL.

Algorithm 4 shows the overall process of building RG-index. The function
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Algorithm 4 gSpanRDF (s, D, minSup, RGindex)
Input: an RDF database D and minSup

1: n← |V |;
2: /* rightmost extension */
3: for each v ∈ the rightmost path of s do
4: for each p ∈ P and d ∈ {←,→} do
5: /* forward extension */
6: e← 〈v, vn+1, p, d〉
7: if s �r e is not minimal then
8: continue;
9: end if

10: G′ ←getOccurrenceForward(G, p, e);
11: if s �r e is frequent and discriminative then
12: Insert into RGindex
13: end if
14: if v is the rightmost vertex then
15: /* backward extension */
16: for each vj ∈ V ∧ vj 6= v do
17: eb ← 〈v, vj , p, d〉
18: if s �r eb is not minimal then
19: continue;
20: end if
21: Gb ← getOccurrenceBackward(G′, p, e);
22: if s �r e is frequent and discriminative then
23: Insert into RGindex
24: end if
25: end for
26: end if
27: end for
28: end for
29: return

gSpanRDF is called recursively to generate graph patterns from 1-size to maxL-

size. It adds an edge to the input DFS code. First, it performs the forward ex-

tension for every vertex in the rightmost path. It adds edges, varying the label

with the predicates in the RDF database and its direction. Then, it checks that
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the generated DFS code is the minimal DFS code of its corresponding graph

pattern. If not, the DFS code is pruned. Then, it calculates the occurrences of

the graph patterns using Eq. 5.2. If the graph pattern is frequent and discrimi-

native, the pattern and Vlists are inserted into RG-index. Then, if the extension

is for the rightmost vertex, it performs the backward extension. The edge for

the backward extension is from the rightmost vertex and to the other vertex

in the graph pattern. The DFS code should be also checked as to whether it is

minimal. Then, the occurrences of the DFS code are calculated by performing

the selection operation for the results of the forward extension, as previously

explained.

5.4.3 Complexity of building RG-index

First of all, Vlists for 1-size graph patterns are created. This costs reading the

whole database, which can represented by |D| (the number of all triples). Then,

for each occurrence of n − 1-size subgraphs, n-size subgraphs are built. We

can represent the maximum number of occurrences of n-size subgraph pat-

tern by |D|n. So we can represent the complexity of the building RG-index by

O
(
|D|+

∑maxL−1
n=1 |D|n−1 × |D|

)
. Note that this is a worst case complexity, and

the cost in practice are much lower and we can adjust it by using several pa-

rameters.

5.5 Triple Filtering using RG-index

In this section, we describe how the triple filtering is processed. The triple filter-

ing using RG-index is similar to the case using RP-index. We use RFLT operator,

which is described in Section 4.4. In this section, we focus on the difference
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between using RG-index and using RP-index.

5.5.1 Generating an Execution Plan with RFLT Operators

Cost Function of RFLT operator

First, we define the cost function of RFLT operator using RG-index. It is very

similar to the previous cost function. However, we need to redefine it consider-

ing the graph patterns.

I/O cost: O

∑
g∈GS

‖Vlist(g, v)‖

 (5.4)

CPU cost: O

 ∑
scan∈ChildOP

|scan|+
∑
g∈GS

|Vlist(g, v)|

 (5.5)

where ‖vlist‖ is the number of blocks of vlist, GS is the set of assigned graph

patterns, ChildOP is the set of child scan operators, and |scan| is the cardinality

of the scan operator.

Output Cardinality Estimation of RFLT Operator

The output cardinality of an RFLT operator is estimated as follows.

First, it is assumed that the following statistics are available: (1) The cardi-

nalities of scan operators, i.e., the number of triples matching triple patterns;

(2) the number of distinct values of the sortkey column; and (3) the number of

vertices in a Vlist. These statistics are already available from indices in RDF-3X

and RP-index.

We first consider RFLT operator having one scan operator. The set of dis-

tinct values for the sortkey column of the scan operator is denoted by S. The
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intersection of S and Vlists of RFLT is denoted by C = ∩g∈GSVlist(g,v). Then,

the output cardinality of RFLT operator can be estimated as

|RFLT| = |Scan| × C

S
(5.6)

If RFLT has several child scan operators, it performs not only the triple fil-

tering but also the join operation for all child operators. Let us denote the

intersection of the sortkey columns for child operators and Vlists of RFLT by

J =
⋂

child∈RFLT.childs |child| ∩ C. Then, the output cardinality of RFLT operator

can be estimated as

|RFLT| = |J | ×
∏

scan∈Childs

|scan|
S

(5.7)

Briefly, the output cardinality of an RFLT operator is estimated using (1) the

assumption of a uniform distribution for the values of the sortkey column, and

(2) the estimation of the sortkey column values remaining after triple filtering,

that is, the intersection size of the values of the sortkey column and Vlists.

Our method is very similar to the Characteristic Set [50], which was pro-

posed for estimating the cardinalities of star-join queries. However, our method

does not aim to replace the Characteristic Set, but rather to reflect the filtering

effect in the cardinality estimation. We expect that exploiting the Characteristic

Set in our estimation method will improve the estimation accuracy. Therefore,

our method and the Characteristic Set have a complementary relationship.

Adding RFLT Operators

We use the query optimization of RDF-3X, which is based on the bottom-up

dynamic-programming (DP) framework [14]. The query compiler maintains
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the DP table, in which the optimal plans for the subproblems of the query are

stored. First, the optimizer seeds its DP table with scan operators for the triple

patterns as solutions of the 1-size subproblems. For each scan operator created

in the seeding phase, an RFLT operator is added as its parent operator. The

query optimizer should assign to RFLT operators the Vlists for the triple filter-

ing. It assigns to an RFLT operator the Vlists for the graph patterns, which are

k-neighborhood subgraphs of the query graph for the sortkey of the child scan

operators. However, it is not necessary to assign all k-neighborhood subgraphs.

If there are two subgraphs, s.t. gi ⊂ gj , Vlists(gi, v) does not need to be as-

signed because Vlists(gj , v) ⊂ Vlists(gi, v). For an RFLT operator, RFLT.Vlist =

{Vlist(g, v) | g ∈ N(v,maxL) ∧ 6 ∃g′ ∈ N(v,maxL) s.t. g ⊂ g′}.

Larger plans are then created by joining two plans from smaller problems.

After making the join operator for two smaller problems, if the join is a merge

join, the operator is converted into an RFLT operator and the child operators of

the join operator become the child operator of one RFLT operator.

5.6 Experimental Results

We implemented the triple filtering on top of the open-source RDF-3X system

(version 0.3.6)1. the triple filtering was written in C++ and compiled with

g++ with the -O3 flag for the experiments. Our implementation included RFLT

operator, extension of the query optimizer, and RP-index builder.

All the experiments were conducted on a hardware platform with eight 3.0

GHz Intel Xeon processors, 16 GB of memory, and running the 64-bit 2.6.31-23

Linux Kernel. We conducted the experiments using three datasets: Lehigh Uni-

1http://code.google.com/p/rdf3x/
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Table 5.2: Statistics about Datasets

Predicates URIs Literals Triples RDF-3X Size

LUBM 18 217,007,404 111,618,881 1,334,681,192 77 GB

YAGO2 93 6,872,931 22,452,390 195,048,649 9 GB

SP2B 77 177,272,798 348,388,613 931,696,802 123 GB

Table 5.3: Graph Densities of Datasets

Graph Density Graph Density (without Literals)

LUBM 1.23× e− 08 1.89× e− 08

YAGO2 2.26× e− 07 1.76× e− 06

SP2B 3.37× e− 09 1.46× e− 08

versity Benchmark (LUBM) [64], Yet Another Great Ontology 2 (YAGO2) [6],

and SPARQL Performance Benchmark (SP2B) [65]. LUBM is a benchmark dataset

whose domain is the university, YAGO2 is a knowledge-base derived from Wikipedia2,

WordNet [67], and GeoNames3, and SP2B is a benchmark that simulates the

DBLP scenario4.

The benchmark datasets (LUBM and SP2B) have their own scale factors.

We generated 10,000 universities for LUBM, and 96 GB triples for SP2B. These

datasets have different characteristics, as shown in Table 5.2.

2http://www.wikipedia.org
3http://www.geonames.org
4http://www.informatik.uni-trier.de/~ley/db/
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Figure 5.8: RG-index Size (YAGO2)

5.6.1 RG-index Size

In this section, we present the experimental results for the size of RG-index. We

built several RG-indices for SP2B varying maxL, γ (the discriminative ratio),

and ψ (the frequency function). We used ψ(l) = ((l − 1)/maxL)2 × n, which is

the size-increasing function (l is the size of the graph pattern), and changed the

value n. We excluded some predicates for which there existed a large number

of triples in order to reduce the overhead of building RG-index.
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Figure 5.9 shows the effects of three parameters: maxL, γ, and ψ (actually

n in the function). As can be seen in this figure, the size of RG-index grows

exponentially for the size of the graph patterns. However, by varying the two

parameters, γ and ψ, we can adjust the size adequately for our purpose. In addi-

tion, the size of RG-index using γ and ψ is small as compared to that of the RDF

database. We describe the effects of the parameters for the query performance

in the next section.

5.6.2 Query Evaluation Performance

In this section, we present the effects of RG-index for the query evaluation

performance. First, we compared the query evaluation performance of RDF-3X,

RP-index, and RG-index. We built the RG-indices and the RP-indices for the

three datasets. RP-indices index all incoming path patterns whose length is up

to 7 (i.e., maxL = 7). We also build RP-indices including reverse predicates

and we denote these as RP-index (R). We build RG-indices and use the same

maxL for RG-index. However, the RG-indices index a subset of graph patterns

by using γ = 0.7 and ψ(l) = ((l − 1)/maxL)2 × n, where n is different for each

dataset due to its size problem. Table 5.4 shows the statistics of the RG-indices

and the RP-indexs.

Because we remove some graph patterns by using the discriminative ra-

tio and the frequency, the RG-indices index fewer patterns than the RP-index.

However, the number of Vlists in RG-index is larger than the number of graph

patterns because a single graph pattern can have several Vlists.

In order to measure the query performance, we extracted graph patterns

from each dataset and used them as the test queries. Table 5.6 shows the aver-
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Table 5.4: Index Statistics

(a) YAGO2

Size Number of Patterns Number of Vlists

RP-index 341 MB 486,508 486,508

RP-index (R) 2.3 G 852,676 852,676

RG-index 880 MB 82,534 416,497

(b) LUBM

Size Number of Patterns Number of Vlists

RP-index 1.4 G 77 77

RP-index (R) 1.7 G 102 102

RG-index 1.1 G 103 535

(c) SP2B

Size Number of Patterns Number of Vlists

RP-index 1.3 G 68,277 68,277

RP-index (R) 3.1 G 122,117 122,117

RG-index 1.3 G 32,436 149,812

aged query execution time. In this table, the queries are divided according to

their execution times. YAGO2 has many queries with short execution times be-

cause it is small and has many predicates. However, LUBM has a small number

of predicates and a large number of triples. Therefore, its queries take a long

time to evaluate. SP2B has intermediate characteristics between YAGO2 and
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Table 5.5: Query Statistics

Group A B C D

Execution Time (ms) 0 ∼ 10 10 ∼ 100 100 ∼ 1000 1000 ∼ Total

Count (YAGO2) 824 143 41 19 1027

Count (LUBM) 0 7 14 45 67

Count (SP2B) 178 203 189 7 577

LUBM.

Table 5.6 shows the averaged execution times. Both the RP-index and RG-

index improve the query performance by more than about 30%. In addition, it

can be seen that RG-index is more effective than the RP-index for YAGO2 and

SP2B. In LUBM, the RP-index and RG-index show similar effects. This is be-

cause LUBM has a relatively structured data model, and therefore, there exists

a small amount graph pattern that is effective for triple filtering. In addition,

it should be noted that RG-index is more effective for queries with longer exe-

cution times. This is because the queries with long execution times have more

intermediate results, which RG-index can reduce effectively.

Next, we measured the query performance varying RG-index parameters.

We used RG-index, which was presented in Section 5.6.1, in order to present the

effect of the parameters on the size of RG-index. Figure 5.9 shows the results.

We can improve the query performance by increasing the maxL value. However,

the improvement decreases as the maxL value increases. Therefore, we should

choose an adequate maxL value for the query workload. The discriminative

ratio rarely affects the query performance. This is because the effective graph
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Table 5.6: Query Execution Time (ms)

(a) YAGO2

Group A B C D Total

RDF-3X 3.53 34.18 240.43 16671.26l 325.62

RP-index 2.75 (22%) 11.83 (65%) 94.73 (60%) 9194.21 (44%) 177.73 (45%)

RP-index (R) 3.00 (15%) 17.82 (47%) 79.78 (66%) 4747.26 (71%) 95.90 (70%)

RG-index 2.32 (34%) 8.65 (74%) 27.60 (88%) 581.36 (96%) 14.92 (95%)

(b) LUBM

Group A B C D Total

RDF-3X N/A 53 540.8 134,490 114,385

RP-index N/A 50 (5%) 479.6 (11%) 90,290 (32%) 76,808 (32%)

RP-index (R) N/A 50 (5%) 479.6 (11%) 90,290 (32%) 76,808 (32%)

RG-index N/A 50 (5%) 477.2 (11%) 89,587 (33%) 76,209 (33%)

(c) SP2B

Group A B C D Total

RDF-3X 2.76 29.02 244.62 1383.42 108.65

RP-index 2.38 (13%) 25.2 (13%) 182.72 (25%) 555.42 (59%) 76.08 (30%)

RP-index (R) 2.39 (13%) 25.2 (13%) 153.92 (43%) 127 (91%) 61.06 (44%)

RG-index 2.33 (15%) 16.39 (43%) 122.8 (49%) 106.85 (92%) 44.34 (59%)

patterns remain for the small discriminative ratio. The frequency affects the

query performance. Therefore, we should adapt the frequency considering the

trade-off between the size and the query performance.
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Figure 5.9: Query Execution Time (YAGO2)

5.6.3 Index Building Time

In this section, we measure the index building time of RP-index and RG-index

and compare these times to the data loading time of RDF-3X. For this experi-

ments, we use YAGO2 dataset. The data loading time includes the parsing and

loading of triples, and building triple indices and computing statistics. We mea-

sure the index building time of RP-index and RG-index varying the frequency

threshold using n in the frequency function, ψ(l) = ((l − 1)/maxL)2×n. Also, in
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Table 5.7: Database Loading Time of RDF-3X

RDF-3X

Loading Time (secs) 4,264

Query Time (msecs) 409.4

Table 5.8: Index Building Time (ms)

(a) RP-index

Without Reverse Predicate n = 1000 n = 2000 n = 4000

Building Time (secs) 93.33 449.33 299.79 164.88

Query Time (msecs) 368.19 254.0 254.01 258.3

(b) RG-index

n = 1000 n = 2000 n = 4000

Building Time (secs) 5776.25 3290.53 1381.61

Query Time (msec) 171.25 169.46 187.34

order to give the impact to the query performance, we measure the query per-

formance for each case with the entire query set which we used in the previous

section.

Table ?? shows the data loading time of RDF-3X and the averaged query

time. And table ?? shows the index building time and the query performance

of RP-index and RG-index. First of all, we can see that the index building time

of RP-index is affordable compared to the data loading time. The building time

of RG-index is longer than the data loading time. However, we can see that
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it decreases below the data loading time as the frequency threshold increases.

Also, we can observe that RP-index takes shorter time to build than RG-index,

the query performance of RG-index is superior to those of RP-index.
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Chapter 6

Conclusion and Future Work

In this thesis, we proposed a novel triple filtering framework in order to reduce

the number of redundant intermediate results in SPARQL query processing. The

triple filtering filters out redundant triples using a necessary condition for re-

sults based on the graph-structural information of the RDF graph. To organize

the filter data for the triple filtering, we designed RP-index and RG-index. RP-

index uses the path information and has limited filtering power. In order to

increase the filtering power, we also proposed RG-index which uses the graph-

structural information. RG-index indexes the graph patterns in the RDF graph,

and therefore, it can improve the query performance more than a triple filter-

ing method that uses a path-based index. However, the size of RG-index grows

exponentially for the pattern size. In order to address the size problem of RG-

index, we proposed indexing only the discriminative and frequent patterns. In

addition, we proposed an efficient algorithm for building RG-index, which is

an adaptation of the frequent graph pattern mining algorithm, gSpan. And we
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also considered the size problem and maintenance issues of each index. In ad-

dition, we presented RFLT operator, which conducts the triple filtering, and

proposed a cost function to integrate it with the cost-based query optimizer.

Through comprehensive experiments using various large-scale RDF datasets,

we demonstrated that the triple filtering is very effective in reducing the num-

ber of redundant intermediate results, and improved query performance for

complex SPARQL queries.

6.1 Future Work

Indexing Patterns Considering Query Workload

We propose path-based index and sub-graph index for the triple filtering. These

indices extract the existing patterns in the RDF graphs. However, as mentioned

before, due to the size problem we could not index all existing patterns in the

RDF-graphs. We should limit the maximum size of indexed patterns or adapt

several parameters in order to make the indices have affordable size. However,

this could limit the performance of the triple filtering. For example, for the cases

that the large size queries are general, both RP-index and RG-index with small

maxL would not filter effectively.

In addition, because we do not include infrequent patterns in the indices in

the hypotheses that infrequent patterns are not liable to be queried, some effec-

tive infrequent patterns can be removed. Let us take the example in Figure 6.1.

In this RDF graph, there is a infrequent pattern. If the pattern is frequently

used in the query workload, it will be better to decide to include this infrequent

pattern in the index.

120



Frequent Subgraph

Infrequent SubgraphI

Figure 6.1: Infrequent Pattern

Therefore, we need a method which can make RP-index and RG-index ap-

propriate for the current query workload. It would be an interesting research

topic to analyze the SPARQL query load and generate patterns to be indexed

regarding the workload.

More Accurate Estimation of Cardinality

The estimation of the output cardinality for each operator in an execution plan

is very crucial for generating of an optimal execution plan. Actually, we have

observed some cases that the query optimizer of RDF-3X generates non-optimal

plans and the query performance degrades seriously. Therefore it is essential to

estimate the output cardinalities to generate an optimal plan.

In addition, The RFLT operator which conducts the triple filtering changes

the output cardinalities of the target scan operators. Although we propose a car-

dinality estimation method for RFLT operator, it has a limitation that it assumes

the uniform distribution. We also observed some cases that the assumption does
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Figure 6.2: Object Value Distribution of predicate ’isCitizenOf’ (YAGO2)

not hold, and therefore the estimation results are very poor. Figure 6.2 shows

the object value distribution of the predicate ’isCitizenOf’ of YAGO2 dataset.

We can see that the uniform distribution assumption does not hold for this

predicate.

In our estimation method, we use the set intersection calculation. In this

thesis, although we use the upper bound for estimating the set intersection,

there are other set intersection estimation methods. We plan to applying other

set intersection methods in order to make the cardinality estimation more ac-

curate.
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Applying Distributed Environment

Recently, as the big data emerges, the parallel distribution framework like MapRe-

duce is used extensively for data processing. There exist already several meth-

ods for processing RDF data in these environments. In this distributed systems,

the network transfer cost is very important factor for the performance. And in

the MapReduce framework, the intermediate results should be materialized in

the dist storage for provide query fail-over, handling the intermediate results

is more serious problem. We expect that our triple filtering method could be

very effective and its effect is more apparent in this environment. However, it

requires how to store the indices and access the index data in the distributed

index. We plan to extend our triple filtering method for the distributed environ-

ments.
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Appendix A

Related Open Source Projects

We use two open source project, RDF-3X and gSpan. In the following sections,

we describe how we used these projects in our research.

A.1 RDF-3X

We use RDF-3X for implementing our triple filtering method and conduct our

experiments by comparing RDF-3X. RDF-3X provides the basic RDF store func-

tionalities like storage and indices for RDF data, the cost-based query optimizer

and the query executor. RDF-3X stores the RDF graphs in the six triple indices,

which are implemented as the clustered B+ tree index. RDF-3X is managed as

an open source project and available for non-commercial usage. We can down-

load RDF-3X from https://code.google.com/p/rdf3x/.

RDF-3X has several relational operators like RDBMS; i.e example Scan, Join,

Aggregation, et. al. Each operator extends Operator class. This class is the base
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class of all operator and provides the iterator model interface, which consists of

first(), next() method. The following is the skeleton of Operator class. We omit

some irrelevant methods or fields.

/// Base class for all operators of the runtime system

class Operator

{

public:

/// Constructor

explicit Operator(double expectedOutputCardinality);

/// Destructor

virtual ~Operator();

/// Produce the first tuple

virtual unsigned first() = 0;

/// Produce the next tuple

virtual unsigned next() = 0;

};

We also implement two operator classes for the triple filtering by extending

this Operator class; RFLT operator and RFLTM operator. These class are similar

to the Operator class except that they have fields for the triple filtering. RFLT

operator conducts the triple filtering for a single scan operator, and RFLTM op-

erator conducts the triple filtering for several scan operators and also conducts

merge-join the all child operators. Because RFLTM performs the join, it has

more fields and methods than RFLT operator.

class RFLT : public Operator

{

std::vector<RGindex::Node*>* fltInfos;

Operator* input;

Register* inputValue;

RPathFilter *rpathFLT;

Register* fltValue;
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unsigned count;

public:

RFLT(Operator* input,

std::vector<RGindex::Node*>* fltInfos,

std::vector<unsigned> nodeIds,

std::vector<GSPAN::DFSCode> &dfscodes)

~RFLT();

/// Produce the first tuple

unsigned first();

/// Produce the next tuple

unsigned next();

};

class RFLTM : public Operator

{

/// The input

std::vector<Operator*> childOp;

/// The join attributes

std::vector<Register*> childValue;

/// The non-join attributes

std::vector<std::vector<Register*>*> childTail;

std::vector<unsigned> childTailSize;

/// Buffers for cartesian product

unsigned **buf_mat;

unsigned *buf_tail_offset;

unsigned *buf_next_offset;

unsigned *buf_max_size;

unsigned buf_width;

unsigned *buf_size;

unsigned *buf_offset;

/// Buffers for next values

unsigned **shadowValue;

unsigned *cnts;

unsigned resultCnt;

unsigned *currentCnts;
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unsigned numOfChildren;

int *childStatus;

/// Filter info

std::vector<RPathTreeIndex::Node*>* fltInfos;

Register* inputValue;

RPathFilter *rpathFLT;

unsigned* fltValue;

unsigned joinedValue;

bool hasPrimaryChild;

unsigned primaryChild;

unsigned primaryChildrowCnt;

public:

RFLT_M(std::vector<RGindex::Node*>* fltInfos,

std::vector<unsigned> &nodeIds,

std::vector<GSPAN::DFSCode> &dfscodes_i,

double expectedOutputCardinality);

~RFLT_M();

/// Produce the first tuple

unsigned first();

/// Produce the next tuple

unsigned next();

void addChild(Operator *child, Register *value,

std::vector<Register*> *tail);

unsigned getNextMergedValue(unsigned fltNextVal,

unsigned &joinedNextVal);

};

The filter information is provided for RFLT and RFLTM operators using

RPathFilter class. It reads the segment for the specified Vlists and provides the

vertex IDs. It has an interface similar to the iterator model.

class RPathFilter

{

std::vector<RPathSegment *> rpathSgmts;

std::vector<GSPAN::DFSCode> dfscodes;
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std::vector<double> cards;

std::vector<unsigned> sizes;

std::vector<unsigned> nodeIDs;

unsigned *values;//, curVal;

unsigned size;

RPathSegment::Scan *sgmtScans;

bool GetNextValue(unsigned value);

public:

RPathFilter(std::vector<RGindex::Node*>* fltInfo,

std::vector<unsigned> &nodeIds,

std::vector<GSPAN::DFSCode> &dfscodes);

~RPathFilter();

bool CheckFilter(unsigned value);

bool first();

bool next(unsigned value);

Register fltValue;

};

A.2 gSpan

The authors of gSpan provide the gSpan binary code at http://www.cs.ucsb.

edu/~xyan/software/gSpan.htm. And the C++ source code of gSpan can

be downloaded at http://www.nowozin.net/sebastian/gboost/. The code

is included in the gBoost which is the software package for classification of

graphs. It includes following functionalities (from its web site).

1. Discriminative Subgraph Mining

2. Frequent Subgraph Mining (gSpan)

3. Subgraph-Graph isomorphism test (through VFlib)

4. nu-LPBoost 2-class classifier
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5. nu-LPBoost 1.5-class classifier

6. simple wrappers to easily train a classifier for graphs

The gSpan code is written by Taku Kudo. The software is dual-licensed under

both the GNU General Public License, version 2 and the Mozilla Public License,

version 1.1.

We do not use the entire gSpan code. Rather, we use the DFS code class

and the generation code of the minimum DFS sequence of a graph pattern. We

adapt the codes to be able to handle the directed labeled graph. Following is

the classes of the DFS code and the Graph.

class DFS {

public:

int src;

int dest;

int elabel;

edge_type_t type;

friend bool operator < (const DFS &d1, const DFS &d2) {

if (d1.src<d2.src ||

(d1.src==d2.src && d1.dest<d2.dest) ||

(d1.src==d2.src && d1.dest==d2.dest &&

d1.elabel<d2.elabel) ||

(d1.src==d2.src && d1.dest==d2.dest &&

d1.elabel==d2.elabel && d1.type<d2.type))

return true;

return false;

}

};

struct DFSCode: public std::vector<DFS> {

public:

bool is_min(void);

/* Convert current DFS code into a graph. */
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void toGraph(Graph &g);

void push(int src, int dest, int elabel, edge_type_t type) {

resize(size() + 1);

DFS &d = (*this)[size()-1];

d.src = src;

d.dest = dest;

d.elabel = elabel;

d.type = type;

}

bool hasSameDFS(int src, int elabel, edge_type_t type) {

for(std::vector<DFS>::iterator iter=begin(), limit=end();

iter!=limit; iter++) {

DFS dfs=(*iter);

if(dfs.src==src && dfs.elabel==elabel &&

dfs.type==type)

return true;

if(dfs.dest==src && dfs.elabel==elabel &&

dfs.type!=type)

return true;

}

return false;

}

};

class Vertex {

public:

std::vector<Edge> edge;

void push(int from, int to, int elabel, edge_type_t type) {

edge.resize(edge.size()+1);

edge[edge.size()-1].from = from;

edge[edge.size()-1].to = to;

edge[edge.size()-1].elabel = elabel;

edge[edge.size()-1].type = type;

return;

}

void push(int from, int to, int elabel,
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edge_type_t type, unsigned int id) {

edge.resize(edge.size()+1);

edge[edge.size()-1].from = from;

edge[edge.size()-1].to = to;

edge[edge.size()-1].elabel = elabel;

edge[edge.size()-1].type = type;

edge[edge.size()-1].id = id;

return;

}

};
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Appendix B

Data Structure of RP-index and
RG-index

In this section, we describe the data structure of RP-index and RG-index.

B.1 RP-index

RP-index is a data structure which has a trie structure. The predicate path is

implemented as PPath class, which has a list of predicates. RPathTreeIndex class

is a tree data structure whose node is implemented as the Node structure. It has

methods for inserting nodes and searching nodes by predicate paths.

class PPath {

public:

PPath() {};

PPath(PPath& pp, unsigned predicate);

void Add(unsigned predicate);

std::vector<unsigned> path;

};
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class RPathTreeIndex {

public:

struct Node {

unsigned predicate;

unsigned startPage;

unsigned startIndexPage;

unsigned cardinality;

RPathSegment *rpathSgm;

std::map<unsigned, Node *> *children;

};

RPathTreeIndex(char *dataset, char *path,

unsigned maxL);

Node* SearchNode(PPath& ppath);

Node* InsertIntoIdx(unsigned startPage,

unsigned startIdxPage,

unsigned cardinality, unsigned byte,

const char *ppathStr);

};

B.2 RG-index

RG-index also has a structure similar to RG-index. All DFS codes for mined

subgraph patterns are also organized in a trie. RG-index class is the base class

for RG-index, and it also has methods for inserting and searching nodes. In

addition, it has a method for building RG-index, which actually conduct the

subgraph mining algorithm.

class RGindex {

public:

struct Node {

vector<unsigned> offsets;

vector<unsigned> blks;

vector<unsigned> cardinalities;

vector<RPathSegment *> segments;

std::map<GSPAN::DFS, Node *> children;

};
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private:

unsigned minSup, maxL;

Database *db;

DictionarySegment *dictionary;

map<unsigned, unsigned> suppMap;

void subgraphMining(unsigned maxL, GSPAN::DFSCode dfscode,

InterResultTuple &results);

void InsertIntoTree(Node* root, GSPAN::DFSCode dfscode,

unsigned level, Node* newNode);

void expansion(set<unsigned> &preds, GSPAN::DFSCode &dfscode,

unsigned source, unsigned newVertexID,

GSPAN::edge_type_t edgetype,

InterResultTuple *old_results,

hash_tbl_t &hash_tbl,

bool storeResults, unsigned maxL,

bool rightmost, unsigned curMinSup);

public:

PredMap predMap_new, predMap_old;

Node root;

MemoryMappedFile file;

RGindex(char *dataset, char *path);

/* insert the graph corresponding to the dfscode

into RG-index and materialize the Vlists */

void insert(GSPAN::DFSCode &dfscode,

InterResultTuple &results);

void build(Database &db, unsigned maxL, unsigned minSup);

RGindex::Node* SearchNode(Node& root,

GSPAN::DFSCode& dfscode,

unsigned level);

};
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Appendix C

Query Sets

We include the queries used in our experiments. For the queries, we use the

following prefixes.

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX lubm:<http://www.lehigh.edu#>

PREFIX dbpowl:<http://dbpedia.org/ontology/>

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>

PREFIX dbpprop:<http://dbpedia.org/property/>

PREFIX foaf:<http://xmlns.com/foaf/0.1/>

PREFIX sioc:<http://rdfs.org/sioc/ns#>

PREFIX sib:<http://www.ins.cwi.nl/sib/>

PREFIX sibv:<http://www.ins.cwi.nl/sib/vocabulary/>

PREFIX geo:<http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX yago2:<http://www.mpii.de/yago/resource/>

PREFIX dc:<http://purl.org/dc/elements/1.1/>

PREFIX dcterms:<http://purl.org/dc/terms/>

PREFIX bench:<http://localhost/vocabulary/bench/>

PREFIX swrc:<http://swrc.ontoware.org/ontology#>

DBSPB
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Q1 ?a dbpprop:ground ?b. ?a foaf:homepage ?c. ?b rdf:type ?v8.

?d rdfs:label ?e. ?d dbpowl:postalCode ?f. ?d geo:lat ?g.

?d geo:long ?h. ?b dbpowl:location ?d. ?b foaf:homepage ?i.

?j dbpprop:clubs ?a.

Q2 ?a rdf:type dbpowl:Person. ?a dbpprop:name ?c. ?e rdfs:label ?f.

?a dbpprop:placeOfBirth ?d. ?e dbpprop:isbn ?g.

?e dbpprop:author ?a. ?j dbpprop:author ?k. ?k rdfs:label ?b.

?e dbpprop:precededBy ?j. ?k dbpprop:name ?c.

?k dbpprop:placeOfBirth ?d.

Q3 ?a dbpprop:nationality ?b. ?a rdfs:label ?c. ?a rdf:type ?e .

?b rdfs:label ?d. ?b rdf:type ?e. ?b dbpprop:name ?f.

Q4 ?a foaf:name ?b. ?a rdfs:comment ?c. ?a rdf:type ?d.

?a dbpprop:series ?e. ?e dbpowl:starring ?f. ?f rdf:type ?i.

?g dbpowl:starring ?f. ?h dbpowl:previousWork ?g.

LUBM

Q1 ?a rdf:type lubm:GraduateStudent. ?b rdf:type lubm:University.

?c rdf:type lubm:Department. ?c lubm:subOrganizationOf ?b.

?a lubm:memberOf ?c. ?a lubm:undergraduateDegreeFrom ?b.

Q2 ?a rdf:type lubm:FullProfessor.

?a lubm:headOf ?b. ?e lubm:undergraduateDegreeFrom ?c.

?a lubm:teacherOf ?d. ?e rdf:type lubm:GraduateStudent.

?b lubm:subOrganizationOf ?c. ?e lubm:teachingAssistantOf ?d.

Q3 ?a rdf:type lubm:GraduateStudent. ?b lubm:headOf ?c.

?b rdf:type lubm:FullProfessor. ?a lubm:advisor ?b.

?d lubm:publicationAuthor ?a. ?d lubm:publicationAuthor ?b.

Q4 ?a rdf:type lubm:UndergraduateStudent. ?b lubm:headOf ?d.

?b rdf:type lubm:FullProfessor. ?a lubm:advisor ?b.

?c rdf:type lubm:Course. ?a lubm:takesCourse ?c.

?b lubm:teacherOf ?c.
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SNIB

Q1 ?a foaf:knows ?b. ?a sibv:Engaged_with ?c.

?c sioc:moderator_of ?d. ?b foaf:knows ?c.

?d sioc:container_of ?e. ?e sib:like ?a.

Q2 ?a sib:initiator ?b. ?a sib:memb ?b. ?a sib:memb ?c.

?b foaf:knows ?e. ?g sib:tag ?b. ?g a sib:Photo.

?a sib:declined ?d. ?e sibv:Married_with ?c.

?c sioc:creator_of ?f. ?f sioc:container_of ?g.

?f a sioct:ImageGallery.

Q3 ?a sib:tag ?b. ?b foaf:knows ?c.

?c sibv:Married_with ?d. ?e sioc:container_of ?a.

?d sioc:creator_of ?e.

Q4 ?a foaf:knows ?b. ?b foaf:knows ?c. ?c foaf:knows ?d.

?d foaf:knows ?a. ?b sibv:Married_with ?d.

YAGO2

Q1 ?a yago2:isCitizenOf ?b. ?a yago2:hasPreferredName ?c.

?a yago2:hasAcademicAdvisor ?d. ?b yago2:isLocatedIn ?e.

?d yago2:isCitizenOf ?f. ?d yago2:hasPreferredName ?g.

?f yago2:isLocatedIn ?e.

Q2 ?a yago2:wasBornIn ?b. ?a yago2:isCalled ?c.

?a yago2:isMarriedTo ?b. ?b yago2:isLocatedIn ?d.

?a yago2:isCalled ?e. ?a yago2:livesIn ?f.

?f yago2:isLocatedIn ?d.

Q3 ?a yago2:hasFamilyName ?b. ?a yago2:directed ?c.

?d yago2:hasFamilyName ?e. ?d yago2:actedIn ?c.

?d yago2:isMarriedTo ?a. ?c yago2:isCalled ?e.

?c yago2:hasPreferredName ?f. ?c rdf:type ?g.

Q4 ?a yago2:isKnownFor ?b. ?a yago2:directed ?c.

?a yago2:wasBornIn ?d. ?c yago2:wasCreatedOnDate ?e.

?c yago2:isCalled ?f. ?c rdf:type ?g.

?b rdf:type ?h. ?d yago2:isLocatedIn ?i.
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SP2B

Q1

?a dcterms:references ?b. ?a a bench:Inproceedings.

?b rdf:_1 ?c. ?b rdf:_2 ?d.

?c dcterms:references ?e.

?e rdf:_1 ?f. ?e rdf:_2 ?g.

?d dcterms:references ?h.

?h rdf:_1 ?i. ?h rdf:_2 ?j.

Q2 ?a swrc:editor ?b. ?c dc:creator ?b.

?c dcterms:partOf ?a.

Q3 ?a dc:creator ?b. ?b foaf:name ?c.

?a dc:title ?d. ?a bench:abstract ?e.

?a dcterms:references ?f. ?f rdf:_50 ?g.

Q4 ?a swrc:editor ?b. ?c swrc:editor ?b.

?b foaf:name ?d. ?a dc:creator ?b.

?a dc:title ?e. ?a dcterms:references ?f.

?f rdf:_10 ?g.
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요약

최근 RDF 그래프 데이터가 증가하며 대용량 RDF 그래프 데이터에 대한 질의

처리방법이큰관심을받고있다.관계형 RDF저장소는 RDF그래프를관계형

테이블에저장하고조인연산을통해 RDF그래프질의를처리한다.하지만이런

질의처리방법은여러조인연산이포함되기때문에,조인연산간에발생하는

중간결과를효과적으로처리하는방법이필수적이다.

이런 문제를 해결하기 위해 본 학위 논문에서는 관계형 RDF 저장소에서

그래프 구조 정보를 활용해 효과적으로 불필요한 중간 결과를 제거할 수 있는

트리플 필터링 기법을 제안하였다. 기존의 방법과는 달리 본 논문에서 제안한

기법은관계형 RDF저장소에그래프인덱스기법을효율적으로적용할수있는

방안을제안했다.

RDF 그래프의 구조 정보를 효율적으로 인덱싱하고 저장할 수 있는 자료

구조로 RDF경로인덱스(RP-index)와 RDF그래프인덱스(RG-index)를제안했

다.이두인덱스는각각경로정보와그래프정보를활용해효율적으로필터링

데이터를 제공하며, 이를 이용해 질의 처리 과정에서 최종 결과에 포함되지 않

을트리플을미리제거할수있다.또한,각각의인덱스를만드는과정에서불필

요한 중간 계산을 줄이는 방안과 점진적으로 인덱스를 갱신할 수 있는 기법도

제안했다. 특히 RG-index에 대해서는 서브그래프 패턴 마이닝 기법을 응용해

효율적으로인덱스를생성하는방법을제공했다.

하지만 RDF 그래프에 존재하는 경로 패턴과 그래프 패턴의 개수가 지수

적으로 증가하기 때문에 이런 인덱스를 만들고 유지하는데 있어서는 인덱스

크기를 효과적으로 제어하는 방법이 필요하다. 본 논문에서는 필터링 효과를
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유지하며인덱스의크기를줄일수있는방법을제안하였다.또한,트리플필터

링을 효율적으로 수행하기 위한 RDF 필터 연산자도 제안하였다. 이 연산자는

머지 프로세스를 통해 필터링에 수반되는 오버헤드를 크게 줄여 기존 질의 성

능에영향을최소화한다.

마지막으로 여러 가지 벤치마크 데이터와 실제 데이터를 활용한 다양한 실

험을통해제안된방법이질의처리성능을크게향상시킬수있음을보였다.

주요어: RDF, SPARQL, Query Optimization, RDF Store, Triple Filtering, Inter-

mediate Results

학번: 2003-23569
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