

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학박사학위논문

가상머신의 메모리 관리 최적화

Optimizing Memory Management in Virtual Machine

2014 년 2 월

서울대학교 대학원

전기 컴퓨터 공학부

최 형 규

공학박사학위논문

가상머신의 메모리 관리 최적화

Optimizing Memory Management in Virtual Machine

2014 년 2 월

서울대학교 대학원

전기 컴퓨터 공학부

최 형 규

가상머신의 메모리 관리 최적화

Optimizing Memory Management in Virtual Machine

지도교수 문 수 묵

이 논문을 공학박사 학위논문으로 제출함

2013 년 12 월

서울대학교 대학원

전기 컴퓨터 공학부

최 형 규

최형규의 공학박사 학위논문을 인준함

2013 년 12 월

위 원 장 백 윤 흥 (인)

부위원장 문 수 묵 (인)

위 원 이 혁 재 (인)

위 원 이 재 진 (인)

위 원 김 수 현 (인)

Abstract

Optimizing Memory Management in Virtual Machine

Hyung-Kyu Choi

School of Electrical Engineering and Computer Science

The Graduate School

Seoul National University

Memory management is one of key components in virtual machine and also

affects overall performance of virtual machine itself. Modern programming lan-

guages for virtual machine use dynamic memory allocation and objects are

allocated dynamically to heap at a higher rate, such as Java. These allocated

objects are reclaimed later when objects are not used anymore to secure free

room in the heap for future objects allocation. Many virtual machines adopt

garbage collection technique to reclaim dead objects in the heap. The heap

can be also expanded itself to allocate more objects instead. Therefore overall

performance of memory management is determined by object allocation tech-

nique, garbage collection and heap management technique. In this paper, three

optimizing techniques are proposed to improve overall performance of memory

management in virtual machine. First, a lazy-worst-fit object allocator is sug-

gested to allocate small objects with little overhead in virtual machine which

has a garbage collector. Then a biased allocator is proposed to improve the

performance of garbage collector itself by reducing extra overhead of garbage

collector. Finally an ahead-of-time heap expansion technique is suggested to

improve user responsiveness as well as overall performance of memory manage-

ment by suppressing invocation of garbage collection. Proposed optimizations

i

are evaluated in various devices including desktop, embedded and mobile, with

different virtual machines including Java virtual machine for Java runtime and

Dalvik virtual machine for Android platform. A lazy-worst-fit allocator out-

perform other allocators including first-fit and lazy-first-fit allocator and shows

good fragmentation as low as first-fit allocator which is known to have the lowest

fragmentation. A biased allocator reduces 4.1% of pause time caused by garbage

collections in average. Ahead-of-time heap expansion reduces both number of

garbage collections and total pause time of garbage collections. Pause time of

GC reduced up to 31% in default applications of Android platform.

Keywords: optimization, object allocation, garbage collection, heap manage-

ment, virtual machine, memory management

Student Number: 2002-30447

ii

Contents

Abstract i

Contents iii

List of Figures vi

List of Tables viii

Chapter 1 Introduction 1

1.1 The need of optimizing memory management 2

1.2 Outline of the Dissertation . 3

Chapter 2 Backgrounds 4

2.1 Virtual Machine . 4

2.2 Memory management in virtual machine 5

Chapter 3 Lazy Worst Fit Allocator 7

3.1 Introduction . 7

3.2 Allocation with fits . 9

3.3 Lazy fits . 10

3.3.1 Lazy worst fit . 13

iii

3.4 Experimental results . 14

3.4.1 LWF implementation in the LaTTe Java virtual machine 14

3.4.2 Experimental environment 16

3.4.3 Performance of LWF . 17

3.4.4 Fragmentation of LWF . 20

3.5 Summary . 23

Chapter 4 Biased Allocator 24

4.1 Introduction . 24

4.2 Motivation . 27

4.3 Biased allocator . 28

4.3.1 When to choose an allocator 28

4.3.2 How to choose an allocator 30

4.4 Analyses and implementation . 32

4.5 Evaluation . 35

4.5.1 Total pause time of garbage collections 36

4.5.2 Effect of each analysis . 38

4.5.3 Pause time of each garbage collection 38

4.6 Summary . 40

Chapter 5 Ahead-of-time Heap Management 42

5.1 Introduction . 42

5.2 Motivation . 45

5.3 Android . 48

5.3.1 Garbage Collection . 48

5.3.2 Heap expansion heuristic 49

5.4 Ahead-of-time heap expansion . 51

5.4.1 Spatial heap expansion . 53

iv

5.4.2 Temporal heap expansion 55

5.4.3 Launch-time heap expansion 56

5.5 Evaluation . 57

5.5.1 Spatial heap expansion . 58

5.5.2 Comparision of spatial heap expansion 61

5.5.3 Temporal heap expansion 70

5.5.4 Launch-time heap expansion 72

5.6 Summary . 73

Chapter 6 Conculsion 74

Bibliography 75

요약 84

Acknowledgements 86

v

List of Figures

Figure 2.1 Virtual machine, heap and objects 5

Figure 3.1 An example of a lazy address-ordered first fit 12

Figure 4.1 A generational garbage collector with two generations. . 26

Figure 4.2 Candidate selection with three analyses 34

Figure 4.3 Implementation of biased allocator 35

Figure 4.4 Ratio of total pause time 37

Figure 4.5 Ratio of biased objects size compared to total objects . . 37

Figure 4.6 Ratio of total pause time of garbage collections 39

Figure 4.7 Ratio of promotions . 40

Figure 5.1 GC distribution by secured free memory amount 46

Figure 5.2 Number of time intervals depending on the number of

GC in Maps application 47

Figure 5.3 Flow of heap management in Android 4.1.2 50

Figure 5.4 Flow of heap management with AOT heap expansion . . 52

Figure 5.5 GC distribution in Camera 59

Figure 5.6 GC distribution in Gallery 59

vi

Figure 5.7 GC behavior with spatial heuristic 60

Figure 5.8 GC behavior with spatial heuristic 61

Figure 5.9 GC distribution by reclaimed objects 62

Figure 5.10 GC distribution by free space size 63

Figure 5.11 GC distribution by free space ratio 64

Figure 5.12 Total number of garbage collections of Camera with dif-

ferent heuristics . 65

Figure 5.13 GC pause time of Camera with different heuristics 66

Figure 5.14 Size of max heap in Camera with different heuristics . . . 66

Figure 5.15 Heap behavior of Camera with original and proposed

heuristics . 68

Figure 5.16 Heap behavior of Camera with other heuristics 69

Figure 5.17 Number of time intervals in Maps 70

Figure 5.18 Changes of GC behavior in Maps 71

vii

List of Tables

Table 3.1 Benchmarks . 16

Table 3.2 Running Time Analysis 17

Table 3.3 Allocation Time Analysis 18

Table 3.4 Frequency (%) of small memory allocation via fit policy . 19

Table 3.5 Comparision of ’link’ operations 20

Table 3.6 Average fragmentation ratio (%) 21

Table 3.7 Worst-case fragmentation ratio (%) 22

Table 3.8 Garbage collection data and size of small object area . . . 22

Table 5.1 Garbage collection data at launch-time 72

Table 5.2 Pause time of garbage collections 72

viii

Chapter 1

Introduction

In recent decades, virtual machine are becoming more common and widely

adopted in various environment from embedded to server environment and

most of modern computing devices support virtual execution environment. Java

virtual machine [1] is one of popular virtual machines and available for various

computing devices including low-end smartcard, digital TV, computer and high

performance enterprise server. Dalvik is another well known virtual machine re-

cent years. Dalvik virtual machine [2] is a core execution engine of Android [3]

operating system for mobile devices including smartphone and table computers.

By the year 2013, over 900 million Android devices have been activated world-

wide [4] and most of web servers employ Java virtual machine to support Java

language for server programming. And more virtual machines are employed in

consumer appliances, such as digital TV [5], to provide user interactive ser-

vices for individual users and service providers. Therefore virtual machine is

very common nowadays and most of users who use smartcards, smartphones,

computers, televisions or any kind of computing devices are already using some

1

virtual machines directly or indirectly.

Although most of users do not recognize the presence of virtual machine,

user experience on those computing devices is affected by virtual machine, be-

cause overall performance of the device is determined by virtual machine when

virtual machine plays a essential role in running applications. Therefore perfor-

mance of virtual machine is a very important aspect as well as functions that

virtual machine provides.

1.1 The need of optimizing memory management

Memory management module is one of key components in virtual machine and

affects overall performance of virtual machine. Modern programing languages

for virtual machine use dynamic memory allocation and objects are allocated

dynamically to heap at a higher rate, such as Java. These allocated objects are

reclaimed later when objects are not used anymore to secure free room in the

heap for future objects allocation and many virtual machines adopt garbage

collection technique to reclaim dead objects in the heap. Instead the heap can

be expanded itself to allocate more objects and the heap itself is also allocated

from memory. Since all memory management discussed above occur at runtime,

efficiency of memory management affects the performance of virtual machine

directly.

Overall performance of memory management is basically determined by ob-

ject allocation technique, garbage collection and heap management technique.

However each memory management technique is intricately related with each

other and it is very hard to predict combined performance of memory man-

agement. Even worse memory management itself is also affected by other com-

ponents of virtual machine as well as underlying hardware such as memory

2

hierarchy including caches. Behavior of applications also affects performance of

a specific memory management technique and we cannot always avoid worst

case situation unless we can predict future behavior of applications. Therefore

there is always a need for optimizing memory management to improve perfor-

mance of virtual machine as environments change, including hardware, behavior

of applications, virtual machine and etc. This paper will discuss memory man-

agement in widely used environments and will propose optimizations to improve

memory management in real devices.

1.2 Outline of the Dissertation

The rest of this thesis is organized as follows. Virtual machine and memory

management are described in detail and problems with existing memory man-

agement in virtual machine are discussed and defined in chapter 2. Three op-

timizing techniques are introduced to enhance overall performance of memory

management in virtual machine. Chapter 3 addresses a fast and efficient object

allocator and proposes a lazy worst fit allocator with evaluation. After address-

ing the overhead of generational garbage collector, biased allocator is introduced

to relieve the overhead in chapter 4. In chapter 5, ahead-of-time heap expansion

technique is proposed and evaluated to improve overall performance of memory

management through carefully selected but aggressive heap management. Then

I summarizes proposed techniques with conclusions and discusses future works

in chapter 6

3

Chapter 2

Backgrounds

2.1 Virtual Machine

A virtual machine is a software program that implements a machine and is

capable of running software programs. There are known to be two kinds vir-

tual machine including system virtual machine and process virtual machine. [6]

In this paper, I’m going to deal with only process virtual machine and I will

use term virtual machine to refer process virtual machine. This kind of vir-

tual machine provides a platform-independent programming environment by

abstracting underlying hardware. Therefore programs written for the virtual

machine can be ran on any devices where the virtual machine is available.

There are a variety of process virtual machine available but two of virtual

machine are going to be described in this section to provide short backgrounds

for the remaining of this paper. One is famous Java virtual machine (JVM) [1]

and another is Dalvik [2] virtual machine in Android [3] platform. Although two

virtual machine are totally different virtual machine, both virtual machine have

4

Figure 2.1 Virtual machine, heap and objects

some similarities in memory management, because applications are written in

same language, i.e. Java language [7]. In the following section, we are going to

describe memory management in virtual machine.

2.2 Memory management in virtual machine

Java is a class-based object-oriented programming language which allocates ob-

jects frequently. Java also adopts an automatic memory management technique

called garbage collection [8] to reclaim unused objects automatically. Therefore

a program written in Java allocates objects frequently and those objects are

reclaimed automatically when they are not used anymore.

Figure 2.1 depicts abstract view of memory management in virtual machine.

Virtual machine maintains a large pool of memory called the heap. The heap

5

could be a part of whole memory maintained by operating system. A program

run on virtual machine allocates objects from the heap and uses them. Unused

objects remains in the heap until being freed by garbage collector. Those unused

objects, i.e. dead objects, are reclaimed later by a garbage collector which is an

essential part of virtual machine. The size of heap can be increased if there is no

room for new objects requested by the program. Then the heap grows to satisfy

allocation request of the program by allocating more memory from operating

system. In vice versa, the heap can also shrink if there is sufficient unused room.

In short, memory management in virtual machine can be classified into three

operation including object allocation, garbage collection and heap resizing. We

will propose optimizing approaches for each operation in following sections.

6

Chapter 3

Lazy Worst Fit Allocator

3.1 Introduction

Modern programming languages use dynamic memory allocation [9]. As appli-

cations become more complex and use more of an object-oriented programming

style, memory objects are allocated dynamically at a higher rate. This requires

fast dynamic memory allocation.

Memory allocation should also be space efficient. A request for memory

allocation cannot be satisfied when there is no free memory chunk that can

accommodate the requested memory. This may happen even when the total

amount of unused memory is larger than the amount of memory requested, due

to fragmentation. In fact, fragmentation is the single most important reason for

the wastage of memory in an explicitly managed heap or a heap managed by a

non-moving garbage collector.

There are many approaches to implementing memory allocators, which ex-

hibit different degrees of fragmentation and different allocation speeds. A com-

7

mon approach is maintaining a linked list of free memory chunks, called the

free list, and searching the free list for a chunk that can satisfy a memory al-

location request based on the fitting policy, such as first fit (FF), best fit or

worst fit. Memory allocation using FF and best fit tends to have relatively

low fragmentation [9], yet searching the free list has a worst-case linear time

complexity.

In garbage-collected systems there are compacting garbage collection tech-

niques such as copying collection [10] or mark-and-compact collection [11]. In

such systems used and unused memory are not interleaved, so fragmentation

does not exist. Thus, the obvious and fastest way to allocate memory is by

simply incrementing an allocation pointer for each allocation.

There is a memory allocation approach for the free lists, motivated by the

fast memory allocation of compacting collection, such that pointer increment

is used as the primary allocation method, with FF, best fit or even worst fit

as the backup allocation method [12]. This approach was called lazy fit, in the

sense that finding a fitting memory chunk is delayed until really necessary. Pre-

liminary experimental results simulating the traces of memory requests showed

that the approach is promising since most memory allocations can be done via

pointer increments.

This paper attempts to confirm the practical usefulness of lazy fits in the

context of Java. We propose lazy worst fit (LWF) as a memory allocation

method for a Java virtual machine with non-moving garbage collection. We

implement LWF on a working Java virtual machine and evaluate its alloca-

tion speed and fragmentation, compared with lazy first fit (LFF) and FF. This

chapter is organized as follows. Section 3.2 discusses memory allocation using

conventional fits. Section 3.3 reviews memory allocation using lazy fits and pro-

poses the LWF for Java. Section 3.4 presents our experimental results. Finally,

8

the paper is summarized in Section 3.5.

3.2 Allocation with fits

Before discussing memory allocation using lazy fits, we first discuss memory

allocation using conventional fits.

In the simplest implementation of conventional fits, a single free list of free

memory chunks is maintained. When a request for allocating memory is made,

an appropriate free memory chunk is found from the free list after traversing

the list from the head free chunk. The exact manner in which an appropriate

free memory chunk is found depends on the fitting policy.

With first fit, the free list is searched sequentially and the first free memory

chunk found that is able to satisfy the memory allocation request is used. This

can be further divided into several types according to the order in which the

free list is sorted: address-ordered, last-in-first-out (LIFO) and first-in-first-out

(FIFO).

The address-ordered FF is known to have the least fragmentation, with the

LIFO FF being noticeably worse. There is evidence that the FIFO FF has as

little fragmentation as the address-ordered FF [13].

With best fit, the free memory chunk with the smallest size that is able

to satisfy the memory allocation request is used. Along with FF, this policy is

known to have little fragmentation in real programs.

In worst fit, the largest free memory chunk is used to satisfy the memory

allocation request on the contrary to best fit. This policy alone is known to

have much worse fragmentation than FF or best fit, so it is rarely used in actual

memory allocators. However, worst fit can be useful when combined with lazy

fit, which is explained in the next section.

9

The approach of using a single free list to keep track of the free memory

chunks is very slow owing to a worst-case linear time complexity, especially if

best fit or worst fit is done. So in actual implementations of modern memory al-

locators, more scalable implementations, such as segregated free lists, Cartesian

trees and splay trees [9], are used for memory allocation.

Segregated free lists are the most common and simplest approach used in

actual implementations [14, 8]. It divides memory allocation request sizes into

size classes and maintains separate free lists containing free memory chunks in

the size class. This approach, also called segregated fits, still has a worst-case

linear time complexity, yet its allocation cost is known to be not much higher

than that of a copying collector [8]. However, in our experiments unacceptably

long search times for the segregated free lists do occur in practice (see Sec-

tion 3.4), which indicates that the linear time complexity for accessing the free

lists can be a real obstacle to fast allocation with fits.

3.3 Lazy fits

Memory allocation using lazy fit uses pointer increments1 as the primary allo-

cation method and conventional fits as the backup allocation method.

To be precise, an allocation pointer and a bound pointer are maintained

for a current free space area. When a memory allocation request is made, the

allocation pointer is incremented and it is checked against the bound pointer

to see whether the memory allocation request can be satisfied. If it is satisfied,

the memory that was pointed out by the allocation pointer before it was incre-

mented is returned. Otherwise, conventional fit allocation is used to obtain a

free memory chunk to be used as the new free space area, and the remainder of

1Pointer decrements can also be used for implementing lazy fits, but we assume pointer
increments in this paper.

10

the former free space area is returned to the free list. The new free space area

would then be used for allocating objects with pointer increments.

This is rather similar to the typical allocation algorithm used in systems with

compacting garbage collectors, which also use pointer increments to allocate

memory. The latter avoids a backup allocation method because there is no

fragmentation, because compacting garbage collectors leave only one free chunk

after compaction.

The fit method used for the backup allocation does not have to be any

particular one. It could be first fit, best fit or even worst fit. These will be

called lazy first fit (LFF), lazy best fit and lazy worst fit (LWF) respectively.

In fact, it does not matter which approach is used for the backup allocation

method as long as it is able to handle fit allocation. Using first fit or best fit

would probably have the advantage of less fragmentation, while using worst fit

would probably result in larger free space areas, which would result in more

memory allocations using pointer increments for faster speed.

Figure 3.1 shows a simple example of how a lazy address ordered first fit

would work.2 Figure 3.1a shows the initial state when the LFF allocator starts

allocating in a new free space area. The allocation and bound pointers point to

the start and the end of the free space area respectively.

Allocation occurs within the given free space area, as in Figure 3.1b, in-

crementing the allocation pointer appropriately to accommodate each memory

allocation request. This goes on until the free space area is no longer able to

satisfy the memory allocation request, i.e. the space remaining in the free space

area is smaller than that needed by the caller. Then, we put what remains of

the current free space area back into the free list and search the free list for

2However, we used a segregated FF instead of an address-ordered FF in the experiment,
because the address-ordered FF is very slow. The only difference is how to manage the free
list.

11

a new free space area which can be used to allocate memory. The allocation

and bound pointers are set to the start and the end of the new free space area

respectively, and the cycle begins anew.

Figure 3.1c shows the state of the heap after the old free space area, marked

as ’old’, is put back into the free list, and the allocation and bound pointers

point to the boundaries of the new free space area, marked as ’new’, which had

just been extracted from the free list using FF.

To speed up memory allocation using a lazy fit even more, the allocation and

bound pointers could be held in two reserved global registers. This allows one

to allocate memory without touching any other part of the memory, except for

the memory we are allocating, in the common case. This is in contrast to many

other allocation algorithms which usually require at least some manipulation of

the data structure in the memory.

Lazy fit also has the potential to be faster than segregated storage since it

Figure 3.1 An example of a lazy address-ordered first fit (shaded areas denote
used memory). (a) Initial state; (b) allocation using pointer increments; (c) the
state after the new free space area was found by first fit.

12

has no need to decide size classes. Objects allocated closely together in time

would probably be used together, so there could also be a beneficial effect on

cache performance, since lazy fit would tend to group together objects that are

consecutively allocated.

3.3.1 Lazy worst fit

In order to use lazy fit for garbage-collected systems such as Java, we made

two engineering choices. First, we propose using worst fit in order to reduce

the search time for the free lists. So, after each garbage collection we sort the

free memory chunks in the free list in decreasing order of sizes. By using worst

fit, a single comparison suffices to find out whether there is a chunk in the

sorted free list which is able to accommodate the requested object, whereas

alternative methods such as FF or best fit may require many comparisons to

ascertain whether such a chunk exists.

Second, the previous free space area which had been unable to accommodate

the requested object is discarded and not put back into the free list when

using lazy worst fit. One reason is that inserting it into a sorted free list would

introduce O(n) time complexity [15] when we use a simple singly linked list,

while all operations in LWF, including pointer increments and worst fits, can

be done in O(1) time. Giving up the previous free area will keep the O(1)

allocation speed, which would obviate the worst-case linear time complexity

of accessing the free list. Since the free list is constructed from scratch during

garbage collection, there is no problem in discarding the old free space.

LWF is also expected to be faster by having more pointer incrementing

memory allocation, since we can get larger free space areas, yet this would

depend on the pattern of memory requests. On the other hand, LWF may

result in more fragmentation and wastage of the discarded free spaces, which

13

might lead to larger heap sizes and more garbage collection cycles. All of these

will be evaluated through experiments in the following Section 3.4.

3.4 Experimental results

Lazy fits are evaluated by generating traces of memory requests for a set of

C programs and measuring the fragmentation and fit frequencies for both ex-

plicitly managed heaps and garbage collected heaps in previous work [12]. In

this paper, we implemented lazy fits on a working Java virtual machine and

evaluate whole Java system using non-trivial Java programs.

3.4.1 LWF implementation in the LaTTe Java virtual machine

A memory system using LWF was implemented on LaTTe, a freely available

Java virtual machine with a just-in-time (JIT) compiler [16]. This subsection

describes the implementation of lazy fits in LaTTe and outlines the LaTTe

memory management system, which will be helpful in understanding the ex-

perimental results.

LaTTe manages a small object area and a large object area separately,

and LWF is done only on the small object area which contains objects that are

smaller than a kilobyte. One of the reasons for the separation is that sharing the

same heap among large and small objects may result in high fragmentation, as

the experimental results in [12] indicate. Large objects are allocated in separated

area and best fit is used when allocating them.

LaTTe uses a partially mark and sweep garbage collector, in the sense that

the runtime stack is scanned conservatively for pointers while all objects lo-

cated in the heap are handled in a type accurate manner [17]. Pointers should

be handled conservatively, since there is no accurate information for pointers

in stacks. It is also possible to provide accurate type information to garbage

14

collector, but it requires more computation and memory space to maintain in-

formation at runtime and degrades overall performance. The separation of the

small object area and the large object area also helps the garbage collector

identify pointers more easily and efficiently, since we can make use of the fact

that memory is separated when handling pointers.

LaTTe starts with an initial heap pool of 8 MB. Both the small object area

and the large object area are allocated from this heap pool in units of 2 MB. If

there is no memory available in the pool, LaTTe activates the garbage collection

thread to reclaim unused memory.

After each garbage collection, LaTTe may decide to expand the heap de-

pending on its capacity. The idea is that if the heap is too small, the garbage

collection frequency would be unacceptably high. On the other hand, LaTTe

does not expand the heap unnecessarily, since other applications will run out

of memory in a multiprogramming environment.

LaTTe expands the heap only when the size of free memory is less than the

size of live objects, meaning that the heap is less than half empty. Here, the free

memory is estimated by the cumulative size of objects allocated between the

previous garbage collection and the current garbage collection, instead of the

heap size minus the size of live objects, which cannot be considered to be entirely

free owing to fragmentation. So, LaTTe expands the heap only when the size of

live objects exceeds the size of objects allocated, the expanded amount being

the difference between these two quantities (rounded off to 2 MB). This appears

to be a good compromise between the conflicting goals of keeping the size of the

heap small and keeping the garbage collection frequency to a reasonable level.

15

Table 3.1 Benchmarks
Benchmarks Description

202 jess A Java version of NASA’s CLIPS
expert shell system

209 db Data management software which
performs multiple database functions
on memory resident database

213 javac Java compiler from the JDK 1.0.2

227 mtrt Dual-threaded ray tracer that
render the scene in the input file

228 jack A Java parser generator

EulerBench Computational Fluid Dynamics

MonteCarloBench Monte Carlo simulation

RayTracerBench 3D Ray Tracer

SearchBench Alpha-beta pruned search

3.4.2 Experimental environment

We ran the experiments on a Sun Blade 1000 machine with a UltraSPARC-

III microprocessor 750MHz with a 32 KB instruction cache and a 64 KB data

cache. It also has an 8 MB second-level cache and a 1 GB memory.

Our benchmarks are composed of nine selected benchmark applications from

the SPECjvm98 suites and section 3 of the Java Grande benchmark suites

Version 2.0, which are listed in Table 3.1. The first five benchmarks of the table

are selected from SPECjvm98 and remaining four benchmarks are chosen from

Java Grande. We excluded those benchmarks that do not allocate enough small

objects from the suites, such as 200 check, 201 compress and 222 mpegaudio

in SPECjvm98, and MolDynBench in the Java Grande benchmarks. We used

size A inputs for the Java Grande benchmarks during the experiments.

16

Table 3.2 Running Time Analysis
Benchmark Total running time (seconds) Allocation time (seconds)

LWF LFF FF LWF LFF FF

202 jess 12.359 15.352 212.641 1.676 4.520 198.466

209 db 18.235 18.652 35.507 0.629 1.021 18.038

213 javac 19.162 995.678 7855.287 1.779 972.019 7818.269

227 mtrt 11.093 22.844 2846.460 1.326 11.996 2826.267

228 jack 13.889 16.950 354.650 1.305 3.764 338.057

EulerBench 33.347 972.437 22600.980 1.198 937.126 22523.039

MonteCarloBench 107.530 118.061 132.451 0.106 10.404 24.163

RayTracerBench 21.378 21.882 74.493 1.059 1.471 54.213

SearchBench 19.740 20.506 106.550 1.383 2.178 88.089

3.4.3 Performance of LWF

We experimented with three different memory allocation policies: LWF, LFF

and FF. The first fit algorithm used in LFF and FF uses segregated free lists

segregated by a power of two distribution [18], with objects maintained in the

FIFO order. This segregated free list is believed to reduce the allocation time

compared with the traditional FF and may have less fragmentation [9].

LFF works in exactly the same way as LWF except that FF is used when

the pointer-incrementing allocation fails. And the remainder of the previous

free space is discarded as in LWF. Unlike LWF and LFF, FF always returns

the remainder of the free space to the free lists.

By comparing LWF and LFF we can evaluate the impact of LWF’s O(1)

access time for the free lists and how worst fit and first fit affect fragmentation

in the context of lazy fits. By comparing LWF or LFF with FF, we can evaluate

the impact of pointer-incrementing allocation of lazy fits.

For each benchmark, Table 3.2 shows the total running time and alloca-

tion time of each policy. The results indicate that LWF is always better than

LFF, and LFF is always better than FF. In fact, there are several benchmarks

17

Table 3.3 Allocation Time Analysis
Allocation time (seconds)

Benchmark Fit allocation Other
LWF LFF FF LWF LFF FF

202 jess 0.164 2.974 195.117 1.512 1.546 3.349

209 db 0.075 0.462 16.736 0.554 0.559 1.302

213 javac 0.505 970.099 7814.567 1.274 1.920 3.702

227 mtrt 0.153 10.805 2823.008 1.173 1.191 3.259

228 jack 0.089 2.527 335.049 1.216 1.237 3.008

EulerBench 0.461 935.616 22518.786 1.526 1.510 4.253

MonteCarloBench 0.038 10.312 24.020 0.068 0.092 0.143

RayTracerBench 0.036 0.447 51.819 1.023 1.024 2.394

SearchBench 0.048 0.854 85.088 1.335 1.324 3.001

which show excessively high improvement when using LWF. When compared to

LFF, 213 javac and EulerBench show much shorter running time with LWF.

202 jess, 213 javac, 227 mtrt and EulerBench also have been drastically im-

proved when compared to FF.

In order to check whether the allocation policy really affects the running

time, we measured the total memory allocation time for the small object area

separately, which is shown in the second column of Table 3.2. The allocation

time results are consistent with the running time results such that longer allo-

cation time means longer running time.

The allocation time of each policy includes the time spent for fit allocation

using worst fit or FF, which was also measured separately as shown in Table 3.3.

The second column of the table shows time spent of fit allocation to find a new

free chunk. The third column, i.e. other, are remaining time of total allocation

other than fit allocation and it includes pointer incrementing allocation time.

Next, we analyze why LFF and FF have longer fit allocation time than LWF.

There are two major differences between LWF and other LFF/FF, that affect

the fit allocation time. The first is the frequency of fit allocation. Generally,

18

Table 3.4 Frequency (%) of small memory allocation via fit policy
Benchmarks LWF LFF

202 jess 6.731 7.611
209 db 0.691 0.661
213 javac 11.815 22.372
227 mtrt 3.688 2.815
228 jack 2.760 2.665

EulerBench 21.017 9.408
FMonteCarloBench 10.696 27.892
FRayTracerBench 1.048 1.021
SearchBench 1.467 1.450

Geomean 3.867 4.101

LWF is expected to allocate more often via pointer increments than via fits,

since worst fit would allow larger free spaces than LFF for pointer-incrementing

allocation.

Table 3.4 shows the frequencies (%) of the fit allocation for LWF and LFF

respectively. And the fit frequency for FF is obviously 100% which is not shown

in the table. For 213 javac and MonteCarloBench, LFF has a much higher fit

frequency than LWF. On the other hand, LWF has a much higher fit frequency

than LFF in EulerBench. Therefore, contrary to our expectation we cannot see

any definite relationship between the fit frequency and the fit policy.

Another major difference between LWF and LFF/FF is that the search time

of the free lists for the fit allocation is O(1) for LWF and O(n) for LFF/FF.

In order to check whether this difference really affects the fit allocation time,

we measured the total number of ’link’ operations, i.e. the operation to follow

a single link in the free lists, for each policy.

Table 3.5 shows the number of link operations for LWF, LFF and FF re-

spectively. It shows that LFF and FF execute many more link operations than

LWF. Even for 227 mtrt and EulerBench where LFF has lower fit frequencies

19

Table 3.5 Comparision of ’link’ operations
Total number of operation (thousands) Ratio

Benchmarks LWF LFF FF LFF/LWF FF/LWF

202 jess 527.5 84,597.5 3,784,346.7 160.4 7173.5
209 db 2.8 5,473.2 283,373,982.0 1955.4 101241.2
213 javac 682.0 7,223,197.8 45,998,050.8 10590.8 67443.5
227 mtrt 207.2 241,971.1 27,300,486.8 1167.7 131742.6
228 jack 169.1 58,787.2 5,840,161.2 347.7 34545.7

EulerBench 1,361.4 10,469,150.4 194,860,155.4 7689.8 143128.1
MonteCarloBench 30.2 216,744.8 592,767.2 7184.6 19648.9
RayTracerBench 11.5 332.5 474,167.1 28.8 41103.3
SearchBench 10.1 589.8 1,937,796.8 58.2 191274.0

than LWF, LFF has a higher number of link operations than LWF. Since FF

always uses fit allocations, it obviously executes more link operations than LFF.

These results are consistent with the fit allocation time in Table 3.3, especially

for those that have an excessively long fit allocation time. So, it is evident that

the O(n) search time is the dominant reason for the longer running time in LFF

and FF. In fact, it can be seen that the linear time complexity of conventional

fit allocation may cause an unacceptably high overhead, even with segregated

implementations.

3.4.4 Fragmentation of LWF

Another important aspect of a memory allocator is fragmentation. It is gener-

ally believed that higher fragmentation requires larger heaps and causes more

garbage collection, which may affect performance.

It is expected that LWF causes worse fragmentation than LFF and FF since

worst fit is known to be poorer than FF in terms of fragmentation. Also, LWF

and LFF have a disadvantage in fragmentation when compared to FF, since

they discard the remainder of the previous free space area. Contrary to these

expectations, our performance results in Table 3.2 indicate that the overall

20

Table 3.6 Average fragmentation ratio (%)
Benchmarks LWF LFF FF

202 jess 3.694 3.222 1.608
209 db 0.240 0.264 0.252
213 javac 14.203 5.400 5.427
227 mtrt 2.092 2.231 2.713
228 jack 2.454 2.504 1.097

EulerBench 0.395 4.513 8.326
MonteCarloBench 12.482 1.170 0.349
RayTracerBench 0.394 0.398 0.489
SearchBench 0.059 0.068 1.423

Geomean 1.249 1.155 1.332

performance of LWF is still better than LFF and FF, so these results need to

be verified.

Tables 3.6 and 3.7 show the fragmentation ratio for the small object area

for each policy. The fragmentation ratio was measured as follows. Whenever the

memory allocator cannot satisfy a request for the small object area (so either 2

MB is allocated from the heap pool or garbage collection is invoked if the heap

pool is empty), we measure the fragmentation ratio at that point.

Table 3.6 indicates that the average fragmentation ratio of LWF is not

always higher than that of LFF and FF. In fact, we cannot see any definite

correlation. For those benchmarks where the average fragmentation ratio of

LWF is noticeably higher, such as 213 javac or MonteCarloBench, we found

that the sequence of memory requests for the small object area occasionally

includes requests for a relatively large object, e.g. > 100 bytes.

The problem with LWF is that larger free areas are consumed at the begin-

ning of the allocation, such that by the time these large object requests arrive,

their chance of being allocated in the current free space is lower, leading to

the current free space being discarded, although it can still accommodate more

21

Table 3.7 Worst-case fragmentation ratio (%)
Benchmarks LWF LFF FF

202 jess 4.70 4.14 1.87
209 db 0.38 0.38 0.27
213 javac 47.21 7.64 8.27
227 mtrt 21.85 21.49 21.35
228 jack 6.03 5.47 1.92

EulerBench 2.17 6.56 12.18
MonteCarloBench 35.11 1.33 0.38
RayTracerBench 0.42 0.42 0.51
SearchBench 0.06 0.08 1.46

Table 3.8 Garbage collection data and size of small object area
Garbage collection Size of small area

Time (sec) Count (bytes)
Benchmarks LWF LFF FF LWF LFF FF LWF LSFF SFF

202 jess 1.041 1.028 1.122 67 66 65 6,291,456 6,291,456 6,291,456
209 db 0.865 0.855 0.856 8 8 8 20,971,520 20,971,520 20,971,520
213 javac 4.042 3.910 3.901 16 16 17 44,040,192 35,651,584 37,748,736
227 mtrt 1.817 1.800 1.853 18 18 18 18,874,368 18,874,368 18,874,368
228 jack 0.458 0.452 0.468 42 42 42 6,291,456 6,291,456 6,291,456

EulerBench 3.074 2.749 3.176 43 38 41 14,680,064 16,777,216 16,777,216
MonteCarloBench 1.159 1.104 1.079 0 0 0 6,291,456 4,194,304 4,194,304
RayTracerBench 0.092 0.091 0.088 35 35 35 6,291,456 6,291,456 6,291,456
SearchBench 0.415 0.426 0.441 202 202 205 2,097,152 2,097,152 2,097,152

Geomean 0.906 0.884 0.911

small objects.

On the other hand, LFF would have a relatively better chance of allocating

the large object in the current free space. This would make LWF suffer more

from fragmentation than LFF. Such cases may result in very high fragmentation

for LWF as shown in Table 3.7 where the worst-case fragmentation ratio is

measured.

In order to check the impact of fragmentation, we measured the garbage

collection frequency, garbage collection time and the total size of the small

object area, as shown in Table 3.8. The table shows that there is little difference

in garbage collection time and frequency of garbage collection among the three

22

policies, which would explain why fragmentation did not have a major effect on

performance.

As to the size of the small object area, LWF uses larger areas than LFF for

213 javac and MonteCarloBench where LWF suffers more from fragmentation,

whereas LFF uses larger areas than LWF for EulerBench where LFF suffers

more from fragmentation. However, there is no tangible impact on garbage

collection time or frequency depending on allocation methods, as discussed.

3.5 Summary

We propose the use of lazy worst fit for memory allocation in Java, which ex-

ploits pointer-incrementing memory allocation with free lists. LWF avoids the

linear time complexity of managing the free lists that may cause an unaccept-

ably high memory allocation overhead, and it does not suffer much from frag-

mentation. One interesting question is whether these benefits may even allow

a non-moving garbage collector to compete with compacting collectors, while

avoiding their drawbacks. For example, copying collection has some problems

such as half-availability of the heap space, exponential performance degradation

as the object residency3 increases [8] or poor locality [11]. Mark-and-compact

collection is also known to be expensive to implement since compaction requires

more than just copying objects or updating pointers [8]. It is left as a future

work to evaluate non-moving garbage collectors with LWFs, compared with

compacting garbage collectors.

3The ratio of live objects to garbage objects at any given time.

23

Chapter 4

Biased Allocator

4.1 Introduction

Virtual machine adopts automatic memory management to manage the heap.

Automatic memory management reclaims objects which are not used anymore

automatically from the heap, although object allocation is requested explicitly

by a program. Garbage collection is a famous approach to find unnecessary ob-

jects, i.e. dead object, and reclaim them [8]. Allocation strategies and garbage

collection should be considerate each other, since garbage collector is respon-

sible for securing and managing free space which is used by allocator later to

allocate objects. We can consider garbage collector a producer of free space and

then allocator can be a consumer of free space. Therefore some garbage col-

lectors enforce allocation methods considering fragmentation, performance and

throughput. In vice versa, some allocation strategies are more efficient with spe-

cific garbage collectors. Various garbage collectors have been proposed by many

researchers [19, 8, 20, 21, 22]. In detail, there have been different approaches

24

to find dead object and also there are various ways to secure free space. One of

simplest way to find unnecessary objects is traversing pointers recursively from

always live objects, which are called roots, to find reachable objects which are

live and necessary. Another approach maintains counters for incoming refer-

ences to each object at runtime to determine a liveness of object [23]. There are

also several ways to secure free space after identifying dead objects. A simplest

way maintains a list of free space by reclaiming dead objects. Another approach

secures free space by moving live objects to different area, as a result previous

area contains only dead objects and whole previous area can be considered to

be free space. There are so many garbage collectors depending on how they

identify dead objects and how they secure free space. Among them, a genera-

tional garbage collector is famous and widely adopted in virtual machines, e.g.

Java Virtual Machine from Oracle [24].

A generational garbage collector manages the heap by splitting whole heap

into several generations from young to older. With a generational garbage col-

lector, a new object is always allocated from a nursery area which is one of

generations and considered to contain young objects. Then later if a nursery

is overpopulated and there is no room for new objects, a generational garbage

collector secures free space from a nursery by moving live objects to older gen-

erations. We call this object copying a promotion, since an object is promoted

to old generations. Such garbage collection on a nursery is called minor garbage

collection. Later we have to reclaim all dead object in young and old gener-

ations too when old generations are also overpopulated. We call it a major

garbage collection or a full garbage collection. Figure 4.1 depicts how a simple

two generational garbage collector works. Due to various advantages, a gen-

erational GC is adopted in many virtual machines for various environments.

First, a garbage collection can be completed in a short time when minor GC

25

is requested instead of full GC, because minor GC performs only on a nurs-

ery which is relatively smaller than whole heap. Although number of garbage

collections increases relatively, each pause time caused by garbage collection is

reduced and responsiveness of virtual machine is improved when compared to

a garbage collector with only full GC. Furthermore secured free space from a

nursery is continuous and fragmentation free since whole young generation is

empty after all live objects are promoted. There are many variations of genera-

tional garbage collector depending on number of generations, size of young and

old generations and etc. [19, 25, 21] However a generational garbage collection

has unavoidable runtime overhead and it shows undesired behaviors in some

cases.

Figure 4.1 A generational garbage collector with two generations.

A generational garbage collector has to promote live objects to older gen-

erations to clear up a nursery. Each promotion contains not only copying an

object but also updating pointers which refer to the object just moved to a

new location. A generational garbage collector is beneficial when only few ob-

jects are live and most of objects in young generation are dead. However when

many of objects in a nursery are live and is going to be promoted, the overhead

26

of promotion increases to hide advantages of a generational GC. In worst case

when every object in a nursery is live, we have to promote all objects and minor

GC does not reclaim dead object at all with overhead of minor GC and pro-

motions. We suggest that such overhead can be avoided if we place promoted

objects to old generations instead of young generation when those objects are

being allocated at first. We are going to segregate objects in various ways to

reduce number of objects allocated to a nursery. Rest of the paper is composed

as follows. In the next Section 4.2, we address the problem in detail and pro-

pose an approach to exploit biased allocators to improve a generational garbage

collector. Then we propose a way to invoke biased allocator and describe three

analyses to identify objects to be allocated with biased allocators in Section 4.3.

We describe how to combine proposed analyses and how we implemented pro-

posed approaches in real environment in Section 4.4. In Section 4.5, proposed

approaches are evaluated on a real embedded device. Section 4.6 summarizes

the paper and discusses future works.

4.2 Motivation

As we discussed in the previous section, a generational garbage collector itself

suffer from inherent overhead of promotion. As a result pause time of each

garbage collection can be increased to compensate advantages of a generational

GC. There have been many researches to improve a generational GC [8, 21, 22]

, but most of them require modifying a garbage collector itself and a garbage

collector is getting more complicated which is hard to predict the effect modi-

fication in various situation.

We propose an approach to exploit an allocation instead of a generational

GC to overcome the undesired overhead of a generational GC. We already

address that such an undesirable behavior of a generational GC is due to pro-

27

motion of many objects in a nursery. In other words, such objects live long to

the time when minor GC is requested to reclaim dead objects. We are going to

avoid the situation by simply locating such objects in old generations instead of

a nursery when objects are allocated. Simply we can allocate all objects in old

generations, but then it is not a generational GC anymore and may suffer from

long pause time of full GC instead. Therefore we have to choose a set of objects

and allocate them to old generation using biased allocators. In the following

section, we propose a way to make use of biased allocators and describe how to

identify objects to be biased in detail.

4.3 Biased allocator

With biased allocators, an object can be allocated to heap in different ways

depending on various properties to improve the performance of heap manage-

ment with a generational garbage collector. On the other hand, traditional

virtual machine with a generational GC allocates an object to a nursery area of

heap with a single same allocator. We propose that we affect the performance

of heap management in a beneficial way by reducing copying overhead of gen-

erational garbage collection if we allocate an object to other than a nursery

carefully with different object allocators. In this section, we will discuss when

to choose an allocator and propose a way to make a decision with less runtime

overhead. Then we will describe three analyses to select an allocator.

4.3.1 When to choose an allocator

We can choose an allocator every time when an object is being allocated to

the heap. It would be best if we can perform fine-grain analysis for each object

and decide allocation area for each object. However it is not easy to predict

lifetime of each object precisely and there will be extra overhead if we choose

28

an allocator every time an object is being allocated. Usually an object alloca-

tion occurs very frequently and an additional computation could harm overall

performance. Therefore it would beneficial to runtime performance if we can

choose an allocator without extra overhead of an allocation itself.

A new bytecode in Java Virtual Machine always knows a type of an object to

be allocated [1] and the new bytecode allocate objects of same type. Therefore

we are going to exploit the property that each new bytecode always allocates

isomorphic type of objects at runtime.

Also we try to reduce the overhead of decision making by making a decision

once and use the same decision later. To achieve these, we choose an allocator

when bytecode are analyzed and being translated into native machine code to

improve overall performance. In other words, biased allocator can be applied to

any kind of translators including just-in-time compiler (JITC), ahead-of-time

compiler (AOTC) and install-time compiler (ITC). A Just-in-time compiler

which translates bytecode into machine code at runtime is a famous acceleration

technique [26, 16, 27, 28] . Ahead-of-time compiler [29, 30, 31] and install-time

compiler [32] analyze and translate bytecode into native machine code before

it is being executed.

A biased allocator is chosen when a new bytecode is being translated into

machine code depending on the type of object to be allocated. Then the new

bytecode is translated into a machine code which allocates an object with the

selected allocator. In this way, we make a decision once and an allocation is

done without additional overhead other than that the allocator allocates an

object in a different way.

29

4.3.2 How to choose an allocator

Even though that a specific new bytecode accepts an isomorphic type, it is not

easy to exploit the information to select an allocator wisely. We need whole type

analysis on a Java program to make a correct decision and it is not eligible for a

JITC or AOTC, because whole type analysis including class hierarchy analysis

[33, 34] is not a simple problem and it takes much time. Therefore we consider

three information as well as simple type information, i.e. class information which

is known directly from the new bytecode itself.

First we identify a location where local-scoped objects are allocated. Also

an allocation site within a loop is identified and being chosen to use a biased

allocator. Finally we analyze the use of an allocated object which is assigned to

static fields and identify locations where the object is allocated. Since an object

can be allocated from multiple locations depending on control flow, we exploit

traditional iterative data follow analysis. Of course, type information is always

considered together with three properties.

Local-scoped objects

An object is known to be locally scoped if an object is live only within a

specific scope. A scope can be anything such as a basic block, a super block, a

trace, a method or even a program. There have been many researches to identify

locally scoped objects and escape analysis is one of famous technique to identify

locally scoped objects. Escape analysis has been used in Java to make use of

stack allocation [35, 36] to relieve memory pressure on the heap and adopted in

various JVM such as Java Standard Edition 6 [37]. We use an escape analysis

to identify an allocation site where objects being allocated are locally scoped.

We expect that such an allocation site can make use of traditional allocator

or even stack allocator which uses a stack instead of the heap, because locally

30

scope objects are only live within a specific scope and liveness is limited to the

scope which can be considered being relatively shorter than other objects which

escape the scope. As a result, we don’t have to consider such allocation sites

for being a candidate for biased allocation to improve the performance of heap

management with garbage collection.

Objects allocated inside loops

Loops have been a famous target for an optimization, because many programs

spends most of the time in loops and small improvement in a loop can be result

in large runtime improvement of the performance due to its repetition. We also

look into loops, because an allocation in loops will continue allocate same type

of objects until loop stops and quite large amount of objects are allocated inside

of the loops.

We expect that objects allocate inside loops are relatively short lived com-

pared to objects allocated outside of loops, because loops usually perform same

computation repetitively and many objects allocated within loops are for tem-

porary use. We decide objects allocated inside loop to be possibly short-lived

at first. However we find that some objects, which are allocated in a loop but

have relatively small size, are long-lived. Therefore allocation sites within loops

are chosen when smaller objects are allocated. We can easily compute the size

of objects, because the type of object being allocated is identified directly from

new bytecode as we described before. We don’t have to worry about leaving

large objects behind in young area, because promotion overhead is more domi-

nated by number of objects being promoted than size of objects as we discussed

in previous sections.

31

Objects assigned to static fields

There are two types of objects in Java, i.e. an instance object and a class object.

An instance object is an instance of a specific class which are usually allocated

with new keyword of Java language and object we talked before in this paper

are all instance objects. A class object is a unique object of a specific class and

they are usually created implicitly by Java virtual machine when the class is

being resolved. A static field is a field not related to an instance object but

class object itself. Since a static field looks like a global variable, researches

have shown that an object assigned to a static field tend to be immortal, i.e.

never dead till the program ends [38].

We decide to make use of this property and use biased allocators for such

allocation sites where any object allocated can be assigned to static fields. We

make use of traditional analysis of reaching definition to identify allocation

sites on the compilation unit. Candidate allocations sites can be one or more

and even we can’t find a site, because we perform analyses only within the

compilation unit.

Of course, some candidate allocation sites can be duplicated with the pre-

vious analysis, i.e. allocation sites within loop. We will discuss how we arrange

three analyses we discussed here to make a decision for biased allocation in the

following section.

4.4 Analyses and implementation

Each allocation site can have three properties, i.e. local, loop and static. Local

means this allocation site allocates objects which are live only within the scope.

Loop means this allocation site is located within loops and size of allocation is

larger than threshold. Static means this allocation site allocate objects which

32

can be possibly assigned to static fields. Only allocation sites which is neither

local nor loop are selected for biased allocation. Then we find allocation sites

with static property and add them to candidates and we are going to describe

how we make use of three analyses.

At first, we assume that all allocation sites are candidate for biased allo-

cation. We find locally scoped object with escape analysis. After we identify

allocation sites which only allocate locally scoped objects, we remove those

sites from candidates. We do not discard the list of allocation sites that are

local and keep the list for later use.

We continue to identify allocation sites within loop and this analysis can

be done with other traditional loop optimizations as well. However this anal-

ysis should be done after any control flow changes or code motions are made

to loop, because the location of an allocation site can be changed with those

optimizations and even allocation sites can be eliminated after optimizations.

Furthermore we do not analyze and skip allocation sites which are already

identified to allocate only locally scoped objects from previous escape analysis.

Then we reduce candidate allocation sites with results of loop analysis. We find

out that some allocation sites within loop allocate only locally scoped objects

and it is obvious that these objects have relatively shorter lifetime than other

objects which escape the same scope.

Finally we look into every assignment of an object to static fields and try

to identify one or more allocation sites where the object was allocated. This

analysis should be done just before the code generation, because any control

and data flow changes can affect the result of this analysis. After we identify

allocation sites, we add those allocation sites to candidates for biased allocation.

In short, we can formulate above sequences as in Figure 4.2. We should keep the

order of local, loop and static analysis, because there can be an allocation site

33

Figure 4.2 Candidate selection with three analyses

which reside in loop and allocate large objects, but allocates objects which can

be assigned to static fields. Of course there is no allocation site which allocates

locally scoped object and allocates objects assigned to static fields, because an

object is not locally scoped if there is any assignments of an object to static

fields.

We implemented these analyses on Oracle’s phoneME Advanced MR2 ver-

sion. This phoneME advanced MR2 is Java virtual machine for embedded de-

vices and can run Java applications via interpreter and just-in-time compiler

(JITC). Ahead-of-time compiler (AOTC) [29, 30, 31] is also available for trans-

lating Java bytecode to native machine code with optimizations where proposed

approaches had been inserted.1 Our analyses were also done within a method

scope, since a translation unit of the AOTC is a method. Figure 4.3 depicts

a implementation of biased allocator in virtual machine with AOTC. Analyses

are implemented in AOTC and we generate hints at static time as shown in

the figure. A biased allocator itself is available in virtual macine and allocates

objects regarding hints at runtime.

1As we mentioned before, analyses can be implemented in any translator which translates
code, such as JITC, AOTC and ITC.

34

Figure 4.3 Implementation of biased allocator

4.5 Evaluation

We evaluate our proposed analyses on phoneME Advanced MR2 [39] with digi-

tal TV (DTV)[5] set-top box which includes MIPS based core with 128MB main

memory. This software platform in digital TV supports advanced common ap-

plication platform (ACAP) middleware and is running on the Linux with kernel

2.6.12.

We make use of AOTC to perform proposed optimization and observed the

effect of biased allocation without runtime overhead of analyses. Java appli-

cations have been translated by AOTC before running and stored in set-top

box for evaluation. We use six micro benchmarks from specjvm98 [40] to eval-

uate our approaches. We choose a generic generational garbage collector with

two generations in phoneME Advanced MR2 to reclaim objects while running

35

specjvm98. Since total pause time due to garbage collections is relatively small

compared to total running time, we compared total pause time separately in-

stead of total running time and measured the amount of promotions occurred

in generation garbage collections.

4.5.1 Total pause time of garbage collections

We measured total pause time of garbage collections before and after applying

proposed approaches and compared them in Figure 4.4. About up to 12.2% of

total pause time caused by garbage collection has been reduced and about 4.1%

of pause time is removed in average. Figure 4.5 depicts the size of biased ob-

jects compared to total size of objects allocated. We identify lots of objects from

209 db where pause time has been reduced most. However even we biased more

than 10% of objects from 228 jack, total pause time is not reduced much as

we expected compared to other programs and we can’t find direct correlations

between the size of biased objects and total pause time. After careful exami-

nation, we find out that total pause time of generational garbage collector is

affected by various factors and it is very hard to predict. For example, size and

number of objects allocated in nursery area affect pause time. When promotion

occurs, more factors affect pause time of generational garbage collection, be-

cause a promotion includes copying an object and updating pointers to copied

object. Even worse promotions may incur a full major garbage collection when

there is no sufficient space in a mature area.

On the other hand, our approaches may consume a mature area more ag-

gressively due to false detection. Three analyses we proposed are all based on

static analysis without runtime information. Therefore we can’t predict exact

life time of objects and availability of the heap is not concerned at all. As a

result proposed approach may induce side effects in unexpected ways due to

36

Figure 4.4 Ratio of total pause time after applying biased allocation compared
to non-biased allocation

Figure 4.5 Ratio of biased objects size compared to total objects

37

exploiting a mature area much more than a nursery area. However it is not

easy to calculate lifetime of objects exactly and our research is a start point to

exploit different allocation based on analyses. We will discuss these matters in

the last section again with future works.

4.5.2 Effect of each analysis

We also evaluated the effect of each proposed analysis in Figure 4.6. When

we choose objects with an escape analysis, we can’t reduce total pause time

of garbage collections effectively. We found that total pause time has been

reduced much after analyzing loops. Even though we decide to bias objects

which are allocated to static fields towards old generation, Figure 4.6 shows

that there is only a little improvement with this optimization. However it is

expected, because objects assigned to static fields are rarely overwritten and few

allocations are related to static fields. Of course, there are some allocation sites

where few objects are assigned to static fields and other objects are discarded

soon. A proposed analysis may decide those allocation sites to be candidate

for biased allocation but those are not desirable choices, because we want to

allocate objects that live long. Therefore those candidates can be false-positive.

Nevertheless it reduces pause time slightly in average.

4.5.3 Pause time of each garbage collection

We also examine each garbage collection to evaluate biased allocation. Since

behavior of garbage collections is changed after applying proposed optimiza-

tions, it is not reasonable to compare each garbage collections one-to-one. For

example, garbage collections are invoked at different phase of a program and

each garbage collection may reclaim different objects after applying optimiza-

tions. Therefore we choose the first five garbage collections of 209 db where

38

Figure 4.6 Ratio of total pause time of garbage collections compared to all
analyses enabled. Therefore All is always one.

promotion occurs and compared number of promotions to original garbage col-

lections as in Figure 4.7. We choose these five garbage collections, because they

behaves different but not totally different. Even though it is not fair to compare

them one-to-one, it is easily noticed that total number of promotion occurred in

the first five garbage collections have been reduced about 25%. All five garbage

collections have less number of promotions than original garbage collections.

This is expected results, since biased allocator try to allocate objects in a ma-

ture area other than in a nursery where some objects should be promoted later.

The first garbage collection has been invoked more lately than before, because

a nursery is less populated after applying biased allocation.

39

Figure 4.7 Ratio of promotions occurred for the first five garbage collections
with biased allocator compared to original in 209 db.

4.6 Summary

We proposed a way that different allocators can cooperate with garbage col-

lectors which have a critical role in memory management of virtual machine.

For a generational garbage collector, we proposed approaches which make use

of existing analysis techniques to relieve the side effect of generational garbage

collector. Allocation sites have been chosen and biased with three analyses and

each biased allocation site uses new biased allocators instead of original allo-

cator. We implement a proposed approach in real embedded Java device and

evaluate the effectiveness. Total pause time of garbage collections has been re-

duced and promotion overhead of generational garbage collection has been also

reduced in overall.

However we can’t guarantee correctness of biased allocation with analyses

discussed in this paper. Furthermore analyses discussed in this paper are done

at static-time and does not make use of any runtime information. We expect

that analyses can be more accurate if runtime information is provided. Each

40

allocation site use same allocator after decision had made. We expect allocators

can be chosen adaptively or allocator itself can evolve for further improvement.

Also we use only single biased allocator to bias objects but more allocators can

be used for various garbage collectors. We are also expecting that there are

opportunities for biased allocation to improve other garbage collectors as well

as generational garbage collector.

41

Chapter 5

Ahead-of-time Heap Management

5.1 Introduction

Automatic memory management improves productivity of programming and

secures the stability of a program, since it frees the programmer from various

memory management concerns including memory leakage problem. A variety

of virtual machines adopts automatic memory management techniques such as

garbage collection. For example Java virtual machine [1], JavaScriptCore in

webkit [41, 42] and Dalvik virtual machine in Android [2] make use of garbage

collector to reclaim dead objects automatically.

Garbage collection (GC) which automatically finds and reclaims dead ob-

jects, i.e. objects which are not used anymore, is a famous automatic memory

management technique. [8, 23, 21, 22, 20] With garbage collection, program-

mers don’t have to concern tedious implementation of memory management

when writing programs. Numerous techniques about garbage collection have

been proposed regarding diverse software environments and purposes. Reclaim-

42

ing dead objects at runtime incurs inevitable runtime overhead and many ap-

proaches have been proposed to reduce the overhead, because finding dead

object requires a certain amount of computation to make a decision.

We can totally avoid those runtime overhead if infinite memory resources

are available and no object is needed to be reclaimed. However in real world,

memory resource is limited by hardware and multiple programs share the mem-

ory. Even worse, programs are competing for the memory in multitasking en-

vironments. A program allocates objects on a heap which is also allocated on

total memory for private use of the program. When certain conditions are met,

garbage collection starts to reclaim dead objects and secures free space in the

heap for future object allocations. Usually garbage collection reclaims dead

object when there is no sufficient space in the heap to satisfy a new object

allocation request. However, garbage collection is not always successful to se-

cure free space due to various reasons. In such cases, virtual machine tries to

complete an object allocation by expanding the heap itself to make a room for

new objects, i.e. allocating more heap space on the memory.

As we discussed before, it is obvious that we can avoid garbage collection

overhead, if virtual machine chooses to expand the heap instead of performing

garbage collection. But it may result in the very large heap and it is only fea-

sible with infinite memory as discussed before. Therefore most virtual machine

tries to secure free space in the heap by reclaiming dead object with garbage

collection before expanding the heap when there is no sufficient free space in

the heap for a new object allocation request.

While it is reasonable to choose garbage collection before expanding the

heap to avoid excessive memory use, it is also true that expanding the heap can

hide garbage collection overhead. Consequently virtual machine should make

a choice carefully between garbage collection and heap expansion considering

43

overall performance and heap use. A choice of garbage collection and heap ex-

pansion does not guarantee the same results and the result is greatly affected

by memory behavior of an application. For example, if an application allocate

objects which are always live, garbage collection is almost useless because it

cannot reclaim objects at all. In such case, expanding heap is better choice

than garbage collection considering the performance and heap use, because the

heap use is always same regardless of the choice but the performance differs

with the choice. A variety of approaches has been introduced to compromise

the performance and heap use by speculating the memory behavior of appli-

cations. [43, 44, 45, 46, 47] Previous researches shows that it is very hard to

predict behavior of applications exactly and there are some ways to speculate

the behavior indirectly and we are also inspired by those approaches.

We propose a heuristic for choosing heap expansion carefully to improve

overall performance and to provide better user experience with runtime infor-

mation observed from real applications. Runtime temporal information is taken

into consideration as well as runtime spatial information when making decision

between garbage collection and heap expansion. Then we try to expand heap

ahead-of-time to fully avoid garbage collection overhead with temporal and

spatial information.

In the following Section 5.2, we describe our motivation based on observa-

tions of real applications. We explain a existing heuristic for garbage collection

and heap expansion in Android system in Section 5.3. Then we propose our

heuristics based on spatial and temporal information in Section 5.4. We evalu-

ate proposed heuristic in real device in Section 5.5 and summarize this chapter

in Section 5.6.

44

5.2 Motivation

Android employs mark-and-sweep based garbage collector with a concurrent

GC approach which is invoked periodically when certain conditions are met to

secure sufficient free memory space in time. However it seems that many GC

invocations failed to secure sufficient memory and even worse too many GC

invocations are requested in a short time interval. Such behaviors of GC result

in bad user experiences.

Figure 5.1 depicts GC distribution based on the secured free memory amount

in Android. We look into six applications running on Galaxy Nexus to observe

garbage collection behavior. Black indicates allocation GC which is invoked

due to allocation failure and grey indicates concurrent GC which is invoked

periodically.

We observed that more than 50% of GC invocations secure only small

amount of free memory, i.e. less than 10 kilobytes, in a Gallery application

and most of those GC are requested due to allocation failure, i.e. black. For

Camera and Maps, more than 20% of GC invocations reclaim less than 10KB

dead objects. Allocation GC tends to secure less amount of free memory than

concurrent GC in many applications. Therefore we can infer that allocation GC

is not successful to collect lots of dead objects and secure large free memory.

In the such situation, Android is forced to expand the heap after garbage col-

lection to secure additional free space when garbage collection secure relatively

small amount of free space by reclaiming dead objects.

We also observed that in some applications many GC are requested in a

short time. Figure 5.2 shows distribution of time interval depending on the

number of GC invocation in the interval where each time interval is one second.

Among 30 time intervals, 14 time intervals do not suffer GC overhead at all,

45

Figure 5.1 GC distribution by secured free memory amount

46

Figure 5.2 Number of time intervals depending on the number of GC in Maps

application

whereas there is a interval where more than 10 garbage collection are requested

in a second. Even with concurrent GC which is invoked periodically to secure

free space before allocation GC is invoked, we can conclude from the observation

that garbage collection is invoked excessively in a relatively short time interval.

From the first observation, we found that many garbage collections failed

to secure sufficient free space in some applications where the heap is forced

to be expanded as a consequence. From the latter observation, we observed

that distribution of garbage collection is biased and there is a situation where

excessively many garbage collections are invoked in a short time interval, re-

sulting in bad user experiences. We are going to propose heuristics to make a

choice between heap expansion and garbage collection to avoid such undesirable

situation.

47

5.3 Android

Android adopts Dalvik virtual machine as core execution engine and Dalvik

allocates memory from operating system as a heap and manages this heap.

As we describe in previous sections, objects are allocated on the heap when

an application requests new objects to be allocated. Dalvik employs garbage

collection to reclaim dead objects automatically at runtime and secures free

spaces for future object allocations. Consequently application programmers can

rely on garbage collection and don’t have to worry about memory management.

Dalvik may expand the heap by allocating a new memory space from operating

system when there is no sufficient free space after reclaiming dead objects. In

the following subsections, we are going to describe heuristics used in Dalvik to

reclaim dead object, i.e. garbage collection heuristic, and to expand the heap

after the garbage collection, i.e. heap expansion heuristic.

5.3.1 Garbage Collection

Garbage collection in Dalvik adopts a mark-and-sweep strategy to find and

reclaim dead objects. Mark-and-sweep garbage collection has two phases in-

cluding a mark phase and a sweep phase. The first mark phase traverses all

reachable objects recursively from objects in root set which is a predefined by

the virtual machine, Dalvik itself in this case. All reachable objects are marked

in the mark phase and we can consider all unmarked objects dead because those

objects cannot be used from anywhere. We reclaim all unmarked objects and

secure new free space by sweeping all unmarked objects in the sweep phase. [8]

Dalvik invokes the garbage collection in two ways. First, there is a dedicated

thread for the garbage collection and this thread wakes periodically to reclaim

dead objects when certain conditions are met, i.e. concurrent garbage collec-

tion. Secondly, a garbage collection starts when there is no sufficient free space

48

to satisfy the new object allocation request, i.e. allocation garbage collection. In

the concurrent GC, a mark-phase of GC and application threads runs concur-

rently for a time being. Then a GC thread waits all application threads to be

stopped and continues to complete remaining mark phases and the whole sweep

phase. In the allocation GC, the garbage collection waits all other threads to

be stopped and then continues to mark-phase and sweep-phase, often known as

a stop-the-world approach.

5.3.2 Heap expansion heuristic

Dalvik decides to expand the heap in two conditions after the garbage collection.

If android fails to secure free space which is less than preferred ratio of the

total heap size, android chooses to expand the heap. Dalvik also expands the

heap when an object allocation request failed to find room for allocation after

the garbage collection which is invoked by the allocation request, because the

garbage collection already reclaimed all known dead objects but still there is

no free space suitable for a new object.

Even when garbage collection is successful to reclaim sufficient dead objects

and secures free space larger than the size of allocation request, allocation re-

quest may not be satisfied due to fragmentation problem. Fragmentation prob-

lem occurs when there is sufficient free space in total but no continuous free

space is available to satisfies the allocation request, because free space is frag-

mented in small pieces. [18] The fragmentation problem can be avoided with

more complicated garbage collection, such as mark-and-compact GC and gen-

erational GC [8], but it is unavoidable with mark-and-sweep garbage collector

used in Android. Those complicated garbage collection requires more computa-

tion than mark-and-sweep and may incur other performance problems. There

have been approaches that various garbage collection is adaptively chosen [44]

49

Figure 5.3 Flow of heap management in Android 4.1.2

but the topic is beyond the scope here. In this chapter, we will discuss how to

make a choice between garbage collection and heap expansion when garbage

collection technique is fixed.

Figure 5.3 depicts the flow of heap management in Android 4.1.2. Allocation

trial, garbage collection and heap expansion caused by an allocation request is

shown in the figure. We found that Android chooses to expand heap after three

allocation trials and two garbage collections in the worst cases. We expect that

by expanding heap wisely beforehand we can satisfy the allocation request with

50

less allocation trials and less garbage collection, i.e. avoiding the worst case

scenario. We can also avoid future garbage collections, if we expand the heap

more aggressively when expanding the heap in advance. In following sections,

we are going to propose an ahead-of-time heap expansion heuristic to achieve

less runtime overhead with less garbage collections by exploiting heap expansion

aggressively in advance.

5.4 Ahead-of-time heap expansion

We have to consider several issues when expanding the heap. We can avoid

every garbage collections except concurrent garbage collection, if we always ex-

pand the heap without limitation to satisfy object allocation requests. However

size of the heap will grow too large for memory resource available in a device

where multiple applications and services run altogether. As a result memory

utilization will not be effective in such multi-programming environment, if one

application solely consumes large amount of memory. Furthermore we can’t

avoid concurrent garbage collection in Android and it may incur unaffordable

runtime overhead, because garbage collection, especially mark-and-sweep based

one, has to traverse all objects to sweep unmarked objects in the whole heap

which might be very large. As a result runtime overhead of each garbage col-

lection will be increased as the heap grows, although total number of garbage

collection is reduced by always expanding the heap. In other words, user experi-

ences will be getting worse with such heavy runtime overhead of each concurrent

garbage collection.

On the contrary we can also suppress the size of heap being increased, if we

choose to expand the heap only when garbage collection cannot secure sufficient

free space to satisfy an allocation request. Each garbage collection can be com-

pleted in a shorter time, because the size of heap is maintained as small as it

51

Figure 5.4 Flow of heap management with ahead-of-time heap expansion

can be, while garbage collection is invoked more frequently. Consequently total

number of garbage collection will be increased and overall runtime overhead of

garbage collections will be also increased, resulting in bad performance of whole

Android system.

As we discussed, we have to choose heap expansion heuristic carefully, be-

cause heap expansion affects not only total heap size but also performance of

whole system. In this chapter, we take into account the runtime spatial infor-

mation which has been also exploited in other previous researches [44, 45, 47]

52

and propose a new heuristic to improve the existing heuristic in Android. Then

we are going to exploit runtime temporal information to propose heuristics for

better user experiences. With these spatial and temporal information, we try

to expand heap in advance when there is no need to expand heap right away,

i.e. ahead-of-time heap expansion.

Figure 5.4 shows how ahead-of-time heap expansion works in Android when

an allocation request made. Unlike original flow in Figure 5.3, there is an ad-

ditional computation to make a decision between garbage collection and heap

expansion. Compared to original flow of Figure 5.3, we can avoid a garbage

collection with heap expansion if certain conditions are met. In the following

subsections, we will discuss what kind of information is used to make a decision.

5.4.1 Spatial heap expansion

We are going to exploit spatial information to expand the heap in ahead-of-

time. There is a lot of spatial information available at runtime regarding ob-

ject allocation, garbage collection and the heap. For example, size of allocated

objects after the last garbage collection, size of reclaimed objects from cur-

rent garbage collection and size of used heap have been exploited in other

researches. [47, 17, 45, 44] Furthermore crafted information with such spatial

information, such as ratio, has been also used in various ways.

Among spatial information, we choose information directly related to garbage

collection to determine whether the GC is successful or not. The total size of

reclaimed objects can be calculated right after the garbage collection. In Sec-

tion 5.2, we measured the size of reclaimed objects and found out that garbage

collection often secures relatively small free space.

We suspected that those garbage collections try to reclaim dead object re-

peatedly even when there are only few dead objects available. The problem is

53

that amount of dead objects cannot be determined before the garbage collec-

tion. We decide to expand heap when current garbage collection secures rela-

tively small free space. By expanding the heap now, we can reduce the chance

of invoking future garbage collections with few dead objects due to allocation

failure. If it works, we can reduce the number of garbage collection which se-

cures small free space and total number of garbage collection will be reduced as

well. With mark-and-sweep garbage collection, we can reduce overall overhead

of garbage collection by reducing the number of garbage collection. As a result,

heap management with less GC overhead provide better user experiences and

better overall performance.

Spatial information other than size of reclaimed objects can be used as

well. We also make use of other information in ahead-of-time heap expansion

framework. First, size of total free space available after the current GC is used

to make a decision regarding heap expansion, because size of available free space

reflects how much amount of new objects can be allocated on the heap before

next allocation failure. However the size of free space is not reliable information,

since it is useless if the ratio of fragmentation is getting high. Furthermore the

size of free space is not flexible and sufficient information, because the size of

required memory and the size of working set differ from an application to an

application.

To consider different memory requirement of applications, we tried to exploit

ratio of free space compared to the heap. We can adaptively consider working

set of applications with the ratio instead of the size of free space. However this

information is turned out to be unreliable in heap management with mark-

and-sweep garbage collection. We will discuss these other spatial information

in Section 5.5.

54

5.4.2 Temporal heap expansion

Although spatial information is very useful and provides valuable insights, it

is very hard to figure out correlation between spatial information and perfor-

mance, especially user experiences. [20, 48] Therefore we try to exploit temporal

information in addition to spatial information, because we think that temporal

information reflects performance and user experiences directly.

Like spatial information, there are a variety of temporal information with

memory management such as object allocation, garbage collection, page fault

and etc. Among them, we try to exploit temporal information regarding garbage

collection to reduce garbage collection overhead, because garbage collection in

Android adopts a stop-the-world approach which stops the whole program exe-

cution when garbage collection is running. This strategy affects user experience

directly in a bad way when the pause time is getting longer.

The simple and intuitive temporal information related to the garbage col-

lection is garbage collection pause time. However the pause time alone is not

enough to determine heap expansion, because pause time of mark-and-sweep

collection depends on the number of objects and the number of objects in

the heap is totally determined by applications. Therefore using pause time to

determine heap expansion can mislead us and cannot be applied to various ap-

plications with different set of working objects in general. If we want to reduce

the pause time for an application with large working set of objects, we have to

change garbage collection itself and this problem is beyond the scope of this

paper as we mentioned before.

In fact, as well as garbage collection with long pause time, garbage collection

with short pause time can also cause a bad user experience if such short garbage

collection is invoked frequently in a short period of time. In Section 5.2, we

55

observed that many garbage collections were requested in a short time. Based

on the observation, we are going to propose a way to expand the heap in advance

when garbage collection is called multiple times in a short time interval. The

simplest temporal information is an interval between garbage collections and it

can be measured directly. However this information only reflects the last two

garbage collection and it is not enough to determine whether many garbage

collections have been invoked frequently in a short time interval.

Instead we count up the number of consecutive garbage collections only

when an interval between last two garbage collections is shorter than threshold

and reset the counter if the interval is longer than threshold. When the counter

meets predefined number of garbage collections, we ascertain that the last con-

secutive garbage collections have been invoked in a limited of time. Based on

the information, we predict that there will be a upcoming garbage collection in

a short time again. So we decide to expand heap in advance and we anticipate

no more invocation of garbage collection in a short time.

5.4.3 Launch-time heap expansion

A user does not care about user responsiveness when an application is just being

launched and there is no way to interact with the application. Instead what a

user expected is a fast launching of the application. Therefore we can apply a

completely different heuristic for garbage collection and heap expansion when

an application is being started.

First, we don’t have to rely on concurrent garbage collection, because few

user input is required and responsiveness doesn’t matter. Unlike the previous

approaches, we exploit temporal information to suppress concurrent GC instead

of allocation GC. When a signal wakes up a thread for a concurrent garbage

collection, we compute the time since the last garbage collection including both

56

allocation and concurrent garbage collection. If the time interval is shorter than

a threshold, we skip a concurrent garbage collection and the thread is being slept

again.

We can also expand the heap more aggressively without concerning over

expanding the heap, since the heap should grow to a certain size to satisfy

a minimum memory requirement of the application when the application is

being started. We exploit a spatial information and temporal information to

make a decision on an aggressive heap expansion. We calculate the size of free

space secured by the collection after an allocation garbage collection. If the size

is less than a threshold and the time since the last collection, including both

concurrent and allocation, is short, we decide to grow the heap to meet a certain

utilization ratio before an allocation trial.

Unlike the ahead-of-time heap expansion in previous sections, we suppress

a concurrent garbage collection and we do not avoid an allocation garbage col-

lection but expand the heap more aggressively after the garbage collection.

Without considering the responsiveness, we expect less concurrent garbage col-

lections as well as less allocation GC in overall. Since we don’t skip an allocation

garbage collection, we assert that we can reclaim dead objects in time when

relcaiming is really necessary, and therefore we can ease the side effect of an

aggressive heap expansion.

5.5 Evaluation

We evaluated proposed heuristics on Galaxy Nexus with Android 4.1.2 Jelly

Bean. Galaxy Nexus is a Android smartphone with touchscreen co-developed

by Google and Samsung Electronics. It contains 1GB RAM and TI OMAP

4460 which have dual-core 1.2GHz Cortex-A9 supporting ARMv7 instruction

set. Android 4.1.2 supports trace-based just-in-time compiler (JITC) to acceler-

57

ate application execution and manages the heap with mark-and-sweep garbage

collector.

Default applications of Android have been used to observe the effect of

heuristics. We choose three applications to evaluate proposed approaches while

running with user inputs from those default applications, e.g. Camera, Gallery

and Maps. Camera and Gallery invoke many garbage collections but reclaims

few dead objects as shown in Section 5.2. On the other hand, Maps provided

bad user experiences, because garbage collections are invoked a lot in a short

time when a user interacts with the maps application. We are going to evaluate

the effect of spatial heap expansion and temporal heap expansion with these

applications.

To evaluate heuristic for application launching, we use 11 applications in-

cluding above three applications. These applications include very simple ap-

plications as well as complex ones, i.e. Gallery, Calculator, MMS, Settings,

Deskclock, email, Browser, Maps, Calendar, Contacts and youtube.

5.5.1 Spatial heap expansion

We choose threshold to be 10 kilobytes for spatial heap expansion heuristic

considering size of reclaimed objects to compare behavior of garbage collection

with original one shown in Section 5.2.

Figure 5.5 and Figure 5.6 depict garbage collections distribution depend-

ing on the size of reclaimed objects in Camera and Gallery. About one fourth

of garbage collection in camera and about half of collection in gallery secured

free space less than 10 kilobytes with original Android heuristic. After apply-

ing ahead-of-time heap expansion with spatial information, garbage collection

distribution is changed. Ratio of garbage collections which reclaimed less than

10KB of objects has been reduced in both applications. Most of the reduction

58

Figure 5.5 GC distribution by the size of reclaimed objects in Camera

Figure 5.6 GC distribution by the size of reclaimed objects in Gallery

59

Figure 5.7 Changes of GC behavior in Camera after applying spatial heuristic

is due to reduction of allocation GC, while ratio of concurrent GC has been

increased. This is expected consequences, because proposed heuristic avoids al-

location GC and concurrent GC has more opportunities to be invoke due to

less invocation of allocation GC.

We also observed changes of garbage collection behavior as shown in Fig-

ure 5.7 and 5.8. Total number of garbage collections is also reduced after apply-

ing spatial heap expansion in both applications. Especially allocation GC which

is requested when an object allocation failure occurs has been invoked less than

original. As discussed before this was expected, because spatial heap expansion

has been proposed to avoid allocation garbage collection by expanding heap ag-

gressively. Total pause time of garbage collection has been also reduced as the

total number of garbage collection is reduced, although concurrent GC spends

more time than before. We shorten the pause time 21.2% in camera and 31%

in gallery.

While we reduced the pause time, max size of heap has been increased

60

Figure 5.8 Changes of GC behavior in Gallery after applying spatial heuristic

somewhat as side effect due to aggressive heap expansion. With ahead-of-time

heap expansion, camera requires 18.8% more heap, i.e. from 25.6MB to 30.4MB,

and gallery allocates 3.5% more heap , i.e. from 37.6MB to 38.9MB.

5.5.2 Comparision of spatial heap expansion

We evaluate spatial heuristics with size of reclaimed objects in previous sec-

tion. We also implemented and evaluated ahead-of-time heap expansion with

other spatial information, such as size of free space and ratio of free space. Fig-

ure 5.9, 5.10 and 5.11 compares all four spatial heuristics, including original,

size of reclaimed objects, size of free space and ratio of free space. Cameara

application is used for the comparison.

Figure 5.9 describes the GC distribution after applying each heuristic. We

found out that two spatial heuristic, i.e. size of reclaimed objects and size of

free space, are effective in reducing the number of garbage collection with small

size of reclaimed objects. Therefore it is reasonable to use those two spatial

61

Figure 5.9 GC distribution depending on size of reclaimed objects in Camera

62

Figure 5.10 GC distribution depending on size of free space in Camera

information to predict future behavior of garbage collections.

When we examine the GC distribution by the size of free space as in Fig-

ure 5.10, we didn’t find meaningful changes except slight changes in distribution.

Even with the spatial heuristic with size of free space, there are still allocation

63

Figure 5.11 GC distribution depending on ratio of free space in Camera

GCs which produces less than 500KB free space. From the result, we suspect

that size of total free space after the current garbage collection does not guar-

antee future behaviors of garbage collections.

Finally we look into the ratio of free space after applying four spatial heuris-

tics as shown in Figure 5.11. Two spatial heuristics have changed the distribu-

64

Figure 5.12 Total number of garbage collections of Camera with different heuris-
tics

tion of GC. Heuristics with size of reclaimed objects and ratio of free space

secures relatively more free space than before. It was expected that number

of garbage collections which secures relatively less free space has been reduced

with a heuristic with ratio of free space. However we are not convinced whether

this changes is beneficial or not, because securing more free space does not

promise better performance.

To evaluate the performance of each spatial heuristic, we measured the

number and total pause time of GC in Figure 5.12 and 5.13. All three spatial

heuristic reduce the number of allocation GC while number of concurrent GC

increased. A heuristic with ratio of free space results in more number of GC

when considering both allocation GC and concurrent GC. A proposed spatial

heuristic with reclaimed object shows the least number of GC overall. Same

65

Figure 5.13 GC pause time of Camera with different heuristics

Figure 5.14 Size of max heap in Camera with different heuristics

66

result can be found with pause time of GC as in Figure 5.13, since number of

GC and pause time of GC are strongly correlated when mark-and-sweep GC is

used.

Size of max heap is also measured in Figure 5.14 to check the side effect

of aggressive heap expansion. Original heuristic without ahead-of-time heap

expansion shows the smallest size of max heap and it is expected as well, because

it always invokes GC before expanding heap. The heuristic with size of reclaimed

objects shows the best performance but requires more heap as discussed before.

We decide to track overall behavior of heap to analyze the effect of each heap

expansion approach in more detail. During the execution of an application, we

traced the size of heap and live objects when each garbage collection completed.

The size of live objects is computed during mark phase of garbage collection and

the size of heap is measured after heap expansion occurred. We also calculate

the ratio of free space compared to total heap. Figure 5.15 and 5.16 show these

values regarding each spatial heap expansion heuristic.

All four heuristics show that heap grows as time goes and the size of heap

converges to the size of max heap. With ahead-of-time heap expansion, heap

grows more rapidly than original in early time. Size of live objects also increases

and converges at some point, and this should be same regardless of heuristics

because size of live objects is solely depends on the behavior of the application.

Therefore we can easily infer that size of free space may increase at first and

converges to some point, since size of free space can be directly computed by

subtracting size of live objects from size of total heap. Therefore a heuristic with

size of free space may not work correctly after some point and threshold should

be adaptively changed to cope with such application behavior. Finally ratio of

free space is also increasing as time goes and we find out this was mainly due

to fragmentation problem in mark-and-sweep garbage collector. Therefore we

67

Figure 5.15 Heap behavior of Camera with original and proposed heuristics.
X-axis denotes each garbage collection and left y-axis depicts the total heap
size and the size of live objects in kilobytes, while right y-axis shows ratio of
free space in percentage.

68

Figure 5.16 Heap behavior of Camera with other spatial heuristics. X-axis de-
notes each garbage collection and left y-axis depicts the total heap size and the
size of live objects in kilobytes, while right y-axis shows ratio of free space in
percentage.

69

Figure 5.17 Number of time intervals depending on the number of GC in a time
interval after applying temporal heap expansion in Maps

can conclude that fixed size of free space or ratio of free space are not reliable

information to determine ahead-of-time heap expansion with mark-and-sweep

garbage collection here, while size of reclaimed object is reliable information to

predict future behavior of garbage collection.

5.5.3 Temporal heap expansion

We also evaluate ahead-of-time heap expansion with temporal information. Fig-

ure 5.2 in the section 5.2 shows time interval distribution depending on the

number of garbage collections invoked within a time interval, where each time

interval is one second. We count up the number of garbage collection if time

interval between two garbage collection is less than 300ms. Then we expand

heap ahead-of-time when counter exceed the threshold. A histogram of time

interval after applying ahead-of-time temporal heap expansion is shown in Fig-

ure 5.17. Compared to Figure 5.2, we can easily observe that we completely

removed time intervals where garbage collection is invoked more than 10 times

70

Figure 5.18 Changes of GC behavior in Maps after applying temporal heuristic

in a second. We also observed that much less lags were observed when a user

interacts with the Maps application but it cannot be measured quantitatively.

We figure out the improvement qualitatively by recording the behavior of maps

application in video and comparing them.

Temporal heap expansion also reduces total number of garbage collections

by avoiding garbage collection with timely heap expansion, especially alloca-

tion garbage collection. In consequences, number of GC and pause time of GC

are reduced in meaningful amount as shown in Figure 5.18. Like spatial heap

expansion, allocation GC is avoided with temporal heap expansion, because we

expands heap when allocation failure occurred and garbage collection has been

invoked too much in a short time.

Although we expand heap based on temporal information other than spa-

tial information, max size of heap has been increased with temporal heuristic.

Because we expand the heap even when garbage collection can secure sufficient

free space, heap expansion occurred more frequently than before. In Maps appli-

71

Table 5.1 Number of garbage collection and heap expansion. Only heap expan-
sion due to allocation failure after the GC has been counted

Benchmarks Before After

Allocation GC 109 111

Concurrent GC 135 112

Heap Expansion 26 16

Total 270 239

Table 5.2 Pause time of garbage collections
Pause time(msec) Before After

Allocation GC 5144 5065

Concurrent GC 1353 1077

Total 6497 6142

cation, we require 10.9% more heap than before, e.g. from 27.4MB to 30.4MB.

5.5.4 Launch-time heap expansion

We evaluated a launch-time heuristic with spatial and temporal information

when applications start to run. Total 11 applications are launched and applica-

tions have been launched explicitly in serial manner five times.

We measured number of garbage collections and number of heap expansion

due to allocation failure as in Table 5.1. Concurrent GC has been invoked much

less than before, because we avoid the concurrent GC with the heuristic as well

as allocation GC. When the last garbage collection, regardless of concurrent

or allocation, has already reclaimed objects shortly before, we skip concurrent

GC. The number of heap expansion due to allocation failure has been reduced,

since we expand heap aggressively to secure sufficient free space after allocation

garbage collection when temporal and spatial thresholds are met.

We also measured pause time caused by garbage collections in Table 5.2.

Overall pause time has been reduced 5.5% and most of the improvement has

been from the concurrent garbage collection as we already expected, because

72

the number of concurrent garbage collection have been reduced.

5.6 Summary

In this chapter, we propose ahead-of-time heap expansion heuristics to avoid

bad garbage collection behavior in Android with temporal and spatial heuristic.

We proposed an ahead-of-time heap expansion framework to enhance ex-

isting Android heap management heuristic. Then size of reclaimed objects is

considered to determine ahead-of-time heap expansion in addition to existing

utilization information. Two more kinds of spatial information are exploited

and evaluated with size of reclaimed object. We also exploited temporal infor-

mation to detect bad garbage collection behavior when many GCs are invoked

in a short time and to apply ahead-of-time heap expansion. In such case, we skip

next GC invocation by expanding heap ahead-of-time instead of GC. Finally

we also propose a heuristic when an application is being launched where the

responsiveness doesn’t matter. We evaluated proposed heuristics with default

key applications in Android. Results show that we can relieve the situation

where GCs are invoked many times but reclaim relatively few objects and too

many GCs are invoked in a short time. Also we reduce total pause time caused

by garbage collections when an application is launched by a user.

We exploit three spatial information and one temporal information in this

paper. We can refine these information more carefully and there can be more

kinds of information which might be useful for ahead-of-time heap expansion.

We use a totally different heuristic when an application starts, but we ex-

pect that more improvement can be achieved if we can apply different heuris-

tics of ahead-of-time heap expansion adaptively as an application behavior

changes.[47]

73

Chapter 6

Conculsion

In this paper, I propose three optimizing approaches for memory management

in virtual machine. Proposed approaches address memory management issues

including object allocation, garbage collection and heap management. Memory

management issues of a variety of virtual machine including Dalvik virtual ma-

chine in Android platform which is widely spread recently as well as famous Java

virtual machine are considered. Also wide range of virtual machine environment

is considered including embedded, mobile and server environment.

First, I’ve proposed a lazy worst fit allocator which is a fast object allocator

with low fragmentation. Proposed allocation has been implemented in Java

virtual machine and has been evaluated on desktop and server environment. A

lazy worst fit allocator outperforms other allocators including segregated first

fit and lazy first fit and shows good fragmentation as low as first fit allocator

which is known to have the lowest fragmentation.

Secondly, a biased allocator is suggested to address extra overhead of genera-

tional garbage collector. A proposed approach has been implemented in embed-

74

ded Java virtual machine and evaluated on embedded device including digital

TV. With three analyses, a biased allocator reduces 4.1% of pause time caused

by generational garbage collections in average.

Finally, ahead-of-time heap expansion framework is introduced to avoid

worst-case behavior of garbage collection. The proposed approach has been

implemented in Dalvik virtual machine of Android platform and evaluated on

mobile device, i.e. smartphone, with real applications. Ahead-of-time heap ex-

pansion reduces both number of garbage collections and total pause time of

garbage collections. Pause time of GC reduced up to 31% in default applica-

tions of Android platform.

Memory management deals with a variety of issues and new problems are

raised as new devices and software environment are being introduced. These

problems are complicated, because several issues are interconnected each other,

including object allocation, garbage collection and heap management. I’ve ad-

dressed problems of object allocation, garbage collection and heap management

separately, but also tried to address garbage collection overhead by introducing

new allocator and new heap management technique. I hope such approaches is

useful to deal with future problems in memory management.

75

Bibliography

[1] T. Lindholm and F. Yellin, Java Virtual Machine Specification, 2nd ed.

Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1999.

[2] D. Ehringer, “The dalvik virtual machine architecture,” Techn. re-

port (March 2010), 2010, http://davidehringer.com/software/android/

The Dalvik Virtual Machine.pdf.

[3] “Android official website.” [Online]. Available: http://www.android.com

[4] “900 million Android activations!” May 2013, Google I/O

2013. [Online]. Available: https://developers.google.com/events/io/2013/,

http://www.youtube.com/watch?v=1CVbQttKUIk

[5] “Interactive tv web,” http://www.interactivetvweb.org.

[6] J. Smith and R. Nair, Virtual Machines: Versatile Platforms for Systems

and Processes (The Morgan Kaufmann Series in Computer Architecture

and Design). San Francisco, CA, USA: Morgan Kaufmann Publishers

Inc., 2005.

[7] J. Gosling, B. Joy, and G. Steele, The Java Language Specification.

Addison-Wesley, 1996.

76

[8] R. Jones and R. Lins, Garbage Collection: Algorithms for Automatic Dy-

namic Memory Management, 1st ed. New York, NY, USA: John Wiley

and Sons, Inc., 1996.

[9] P. Wilson, M. Johnstone, M. Neely, and D. Boles, “Dynamic storage

allocation: A survey and critical review,” in Memory Management,

ser. Lecture Notes in Computer Science, H. Baler, Ed. Springer

Berlin Heidelberg, 1995, vol. 986, pp. 1–116. [Online]. Available:

http://dx.doi.org/10.1007/3-540-60368-9 19

[10] C. J. Cheney, “A nonrecursive list compacting algorithm,” Commun.

ACM, vol. 13, no. 11, pp. 677–678, Nov. 1970. [Online]. Available:

http://doi.acm.org/10.1145/362790.362798

[11] P. Wilson, “Uniprocessor garbage collection techniques,” in Memory

Management, ser. Lecture Notes in Computer Science, Y. Bekkers and

J. Cohen, Eds. Springer Berlin Heidelberg, 1992, vol. 637, pp. 1–42.

[Online]. Available: http://dx.doi.org/10.1007/BFb0017182

[12] Y. Chung and S.-M. Moon, “Memory allocation with lazy fits,” in

Proceedings of the 2Nd International Symposium on Memory Management,

ser. ISMM ’00. New York, NY, USA: ACM, 2000, pp. 65–70. [Online].

Available: http://doi.acm.org/10.1145/362422.362457

[13] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles, “Memory alloca-

tion policies reconsidered,” Technical report, University of Texas at Austin

Department of Computer Sciences, Tech. Rep., 1995.

[14] W. T. Comfort, “Multiword list items,” Commun. ACM,

vol. 7, no. 6, pp. 357–362, Jun. 1964. [Online]. Available:

http://doi.acm.org/10.1145/512274.512288

77

[15] D. E. Knuth, The art of computer programming, Volumn 1: Fundamental

algorithms, 3rd ed. Boston, MA, USA: Addison-Wesley Professional, 1997.

[16] B.-S. Yang, S.-M. Moon, S. Park, J. Lee, S. Lee, J. Park, Y. C.

Chung, S. Kim, K. Ebcioglu, and E. Altman, “Latte: A Java

VM just-in-time compiler with fast and efficient register allocation,”

in Proceedings of the 1999 International Conference on Parallel

Architectures and Compilation Techniques, ser. PACT ’99. Washington,

DC, USA: IEEE Computer Society, 1999, pp. 128–. [Online]. Available:

http://dl.acm.org/citation.cfm?id=520793.825720

[17] Y. C. Chung, S.-M. Moon, K. Ebcioğlu, and D. Sahlin, “Reducing

sweep time for a nearly empty heap,” in Proceedings of the 27th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

ser. POPL ’00. New York, NY, USA: ACM, 2000, pp. 378–389. [Online].

Available: http://doi.acm.org/10.1145/325694.325744

[18] M. S. Johnstone and P. R. Wilson, “The memory fragmentation problem:

Solved?” in Proceedings of the 1st International Symposium on Memory

Management, ser. ISMM ’98. New York, NY, USA: ACM, 1998, pp.

26–36. [Online]. Available: http://doi.acm.org/10.1145/286860.286864

[19] A. W. Appel, “Simple generational garbage collection and fast allocation,”

Software: Practice and Experience, vol. 19, no. 2, pp. 171–183, 1989.

[Online]. Available: http://dx.doi.org/10.1002/spe.4380190206

[20] M. Hertz, Y. Feng, and E. D. Berger, “Garbage collection without

paging,” in Proceedings of the 2005 ACM SIGPLAN Conference on

Programming Language Design and Implementation, ser. PLDI ’05.

78

New York, NY, USA: ACM, 2005, pp. 143–153. [Online]. Available:

http://doi.acm.org/10.1145/1065010.1065028

[21] F. Xian, W. Srisa-an, C. Jia, and H. Jiang, “AS-GC: An efficient

generational garbage collector for Java application servers,” in Proceedings

of the 21st European Conference on Object-Oriented Programming, ser.

ECOOP’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 126–150.

[Online]. Available: http://dl.acm.org/citation.cfm?id=2394758.2394768

[22] P. Reames and G. Necula, “Towards hinted collection: Annotations

for decreasing garbage collector pause times,” in Proceedings of the

2013 International Symposium on Memory Management, ser. ISMM

’13. New York, NY, USA: ACM, 2013, pp. 3–14. [Online]. Available:

http://doi.acm.org/10.1145/2464157.2464158

[23] Y. Levanoni and E. Petrank, “An on-the-fly reference counting garbage

collector for Java,” in Proceedings of the 16th ACM SIGPLAN Conference

on Object-oriented Programming, Systems, Languages, and Applications,

ser. OOPSLA ’01. New York, NY, USA: ACM, 2001, pp. 367–380.

[Online]. Available: http://doi.acm.org/10.1145/504282.504309

[24] “Memory management in the Java HotSpot virtual machine,”

Apr. 2006, http://www.oracle.com/technetwork/java/javase/tech/

memorymanagement-whitepaper-1-150020.pdf.

[25] D. Doligez and X. Leroy, “A concurrent, generational garbage collector for

a multithreaded implementation of ml,” in Proceedings of the 20th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

ser. POPL ’93. New York, NY, USA: ACM, 1993, pp. 113–123. [Online].

Available: http://doi.acm.org/10.1145/158511.158611

79

[26] A. Krall, “Efficient JavaVM just-in-time compilation,” in Proceed-

ings of the 1998 International Conference on Parallel Architectures

and Compilation Techniques, ser. PACT ’98. Washington, DC,

USA: IEEE Computer Society, 1998, pp. 205–. [Online]. Available:

http://dl.acm.org/citation.cfm?id=522344.825703

[27] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney, “Adaptive

optimization in the Jalapeno JVM,” in Proceedings of the 15th ACM SIG-

PLAN Conference on Object-oriented Programming, Systems, Languages,

and Applications, ser. OOPSLA ’00. New York, NY, USA: ACM, 2000,

pp. 47–65. [Online]. Available: http://doi.acm.org/10.1145/353171.353175

[28] J. Aycock, “A brief history of just-in-time,” ACM Comput.

Surv., vol. 35, no. 2, pp. 97–113, Jun. 2003. [Online]. Available:

http://doi.acm.org/10.1145/857076.857077

[29] T. A. Proebsting, G. Townsend, P. Bridges, J. H. Hartman, T. Newsham,

and S. A. Watterson, “Toba: Java for applications a way ahead of

time (wat) compiler,” in Proceedings of the 3rd Conference on USENIX

Conference on Object-Oriented Technologies (COOTS) - Volume 3, ser.

COOTS’97. Berkeley, CA, USA: USENIX Association, 1997, pp. 3–3.

[Online]. Available: http://dl.acm.org/citation.cfm?id=1268028.1268031

[30] A. Varma and S. S. Bhattacharyya, “Java-through-C compilation:

An enabling technology for Java in embedded systems,” in Pro-

ceedings of the Conference on Design, Automation and Test in

Europe - Volume 3, ser. DATE ’04. Washington, DC, USA:

IEEE Computer Society, 2004, pp. 30 161–. [Online]. Available:

http://dl.acm.org/citation.cfm?id=968880.969233

80

[31] A. Nilsson and S. Robertz, “On real-time performance of ahead-of-time

compiled Java,” in Object-Oriented Real-Time Distributed Computing,

2005. ISORC 2005. Eighth IEEE International Symposium on. Wash-

ington, DC, USA: IEEE Computer Society, 2005, pp. 372–381.

[32] H.-K. Choi, D.-H. Jung, and S.-M. Moon, “Install-time compiler for embed-

ded mobile devices,” in Proceedings of Workshop on Interaction between

Compilers and Computer Architectures, ser. INTERACT-12, 2008.

[33] J. Dean, D. Grove, and C. Chambers, “Optimization of object-oriented

programs using static class hierarchy analysis,” in Proceedings of the 9th

European Conference on Object-Oriented Programming, ser. ECOOP ’95.

London, UK, UK: Springer-Verlag, 1995, pp. 77–101. [Online]. Available:

http://dl.acm.org/citation.cfm?id=646153.679523

[34] G. Snelting and F. Tip, “Understanding class hierarchies using concept

analysis,” ACM Trans. Program. Lang. Syst., vol. 22, no. 3, pp. 540–582,

May 2000. [Online]. Available: http://doi.acm.org/10.1145/353926.353940

[35] J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, and S. Midkiff,

“Escape analysis for Java,” in Proceedings of the 14th ACM SIGPLAN

Conference on Object-oriented Programming, Systems, Languages, and

Applications, ser. OOPSLA ’99. New York, NY, USA: ACM, 1999, pp.

1–19. [Online]. Available: http://doi.acm.org/10.1145/320384.320386

[36] D. Gay and B. Steensgaard, “Stack allocating objects in Java,” Microsoft

Research, Tech. Rep., 1999.

[37] “Java HotSpotTM virtual machine performance enhancements,” 2013,

http://docs.oracle.com/javase/7/docs/technotes/guides/vm/performance-

enhancements-7.html.

81

[38] M. Hirzel, J. Henkel, A. Diwan, and M. Hind, “Understanding

the connectivity of heap objects,” in Proceedings of the 3rd In-

ternational Symposium on Memory Management, ser. ISMM ’02.

New York, NY, USA: ACM, 2002, pp. 36–49. [Online]. Available:

http://doi.acm.org/10.1145/512429.512435

[39] “Phoneme project,” https://java.net/projects/phoneme.

[40] “SPECjvm98 documentation,” 1999, http://www.spec.org/osg/jvm98/

jvm98/doc/index.html.

[41] “JavaScriptCore,” http://trac.webkit.org/wiki/JavaScriptCore.

[42] “JS Core Garbage Collector,” http://trac.webkit.org/wiki/JS%20Core%20

Garbage%20Collector.

[43] E. Andreasson, F. Hoffmann, and O. Lindholm, “To collect or not to col-

lect? machine learning for memory management.” in Proceedings of the 2nd

Java Virtual Machine Research and Technology Symposium, S. P. Midkiff,

Ed. Berkeley, CA, USA: USENIX Association, 2002, pp. 27–39.

[44] S. Soman, C. Krintz, and D. F. Bacon, “Dynamic selection of

application-specific garbage collectors,” in Proceedings of the 4th

International Symposium on Memory Management, ser. ISMM ’04.

New York, NY, USA: ACM, 2004, pp. 49–60. [Online]. Available:

http://doi.acm.org/10.1145/1029873.1029880

[45] T. Yang, M. Hertz, E. D. Berger, S. F. Kaplan, and J. E. B. Moss,

“Automatic heap sizing: Taking real memory into account,” in Proceedings

of the 4th International Symposium on Memory Management, ser. ISMM

82

’04. New York, NY, USA: ACM, 2004, pp. 61–72. [Online]. Available:

http://doi.acm.org/10.1145/1029873.1029881

[46] D. Buytaert, K. Venstermans, L. Eeckhout, and K. De Bosschere,

“Garbage collection hints,” in Proceedings of the First International

Conference on High Performance Embedded Architectures and Compilers,

ser. HiPEAC’05. Berlin, Heidelberg: Springer-Verlag, 2005, pp. 233–248.

[Online]. Available: http://dx.doi.org/10.1007/11587514 16

[47] C. Zhang, K. Kelsey, X. Shen, C. Ding, M. Hertz, and M. Ogihara,

“Program-level adaptive memory management,” in Proceedings of the

5th International Symposium on Memory Management, ser. ISMM ’06.

New York, NY, USA: ACM, 2006, pp. 174–183. [Online]. Available:

http://doi.acm.org/10.1145/1133956.1133979

[48] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou, and

S. Kumar, “Dynamic tracking of page miss ratio curve for memory

management,” in Proceedings of the 11th International Conference on

Architectural Support for Programming Languages and Operating Systems,

ser. ASPLOS XI. New York, NY, USA: ACM, 2004, pp. 177–188.

[Online]. Available: http://doi.acm.org/10.1145/1024393.1024415

83

요약

메모리 관리는 가상머신의 핵심 기능 중 하나이며 가상머신의 성능에 큰 영

향을 준다. 자바와 같은 가상머신을 위한 최신의 프로그래밍 언어들은 동적

메모리 할당 기법을 사용하며 객체를 heap에서 자주 할당한다. 이렇게 할당

된 객체들은 추후 더 이상 사용되지 않게 되면 추후 할당할 객체들을 위한 빈

공간을 확보하기 위해 회수된다. 많은 가상 머신들이 쓰레기 수집기라 불리

는 기법을 채택하여 heap에서 사용하지 않는 죽은 객체들을 회수한다. 반면에

heap 자체의 크기를 늘려서 더 많은 객체를 할당하도록 할 수도 있다. 이처럼

메모리관리의성능은객체할당기법,쓰레기수집기그리고 heap관리기법에

의해서 결정된다.

본 논문에서는 가상머신에서 메모리 관리 성능을 향상시키기 위한 세가지

기법을 제안하려고 한다. 우선 lazy worst fit이라는 객체 할당기법을 제안하여

쓰레기 수집기가 있는 가상머신에서 작은 객체들을 빠르게 할당할 수 있도록

하였다. 다음으로 biased allocator를 제안하여 쓰레기 수집기의 추가적인 시간

소모를 줄여 쓰레기 수집기의 수행 시간을 줄일 수 있도록 하였다. 마지막으로

ahead-of-time heap expansion기법을제안하여쓰레기수집기의호출을억제하

여 사용자 반응성과 메모리 관리 성능을 개선시키도록 하였다.

이렇게 제안된 기법들은 데스크톱, 내장형 그리고 모바일 기기 등과 같은

다양한 환경에서 구현되어 평가되었으며, Java 수행환경을 위한 자바 가상 머

신과 Android 환경을 위한 Dalvik 가상머신에 적용되었다. Lazy worst fit 객체

할당기는 다른 할당 기법들과 비교해서 압도적인 성능을 보였으며, 가장 좋

은 단편화 현상을 보이는 first fit과 비슷한 수준의 단편화 현상을 보여주었다.

Biased allocator는 쓰레기 수집기의 수행시간을 평균적으로 4.1%의 개선하였

다. Ahead-of-time heap expansion기법은쓰레기수집기의수행횟수와시간을

84

모두 줄일 수 있었다. Android 환경의 기본 응용 프로그램들을 이용하여 평가

하였을 떼, 쓰레기 수집기의 수행 시간은 최대 31% 줄일 수 있었다.

주요어: 최적화, 가상머신, 메모리 관리, 객체 할당, 쓰레기 수집기, 힙 관리

학번: 2002-30447

85

Acknowledgements

대학원을시작하면서알게된가상머신이최근에는일반인들에게도널리쓰이

고있어시간이많이흘렀음을느끼게되며지금까지옆에서기다리면서언제나

응원을 해 준 가족들 특히 아내 윤경이에게 고마운 마음을 전합니다. 또한 언

제나 밝은 모습으로 삶의 활력을 불어 넣어준 종원이와 지민에게도 고맙다는

말을 하고 싶습니다. 또한 마음 고생 많이 시켜드렸는데도 묵묵히 응원해 주신

부모님에게도 감사 드리고 동생에게도 고맙다는 말을 전하고 싶습니다.

다양한 연구 경험을 제공해 주시고 필요한 조언을 해주시며 지도해 주신

지도교수님께 감사 드립니다. 또한 바쁘신 중에도 박사 논문 지도를 위해 시간

을내어주신백윤흥교수님,이재진교수님,이혁재교수님에게감사드립니다.

그리고마지막으로박사심사에위원으로참여하여시간을쪼개어여러조언을

아끼지 않은 김수현 선배님에게 감사하다는 말을 전하고 싶습니다.

언제 봐도 반가운 친구들, 성엽, 동희, 준석, 성수, 철오 등에게도 덕분에

어려운 일이나 좋은 일이 있을 때 힘을 얻을 수 있었다고 말을 전하고 싶고

앞으로도 계속 변치 않기를 바라며 대학에서 엔지니어로서의 고민 그리고 이

제는 삶에 대한 고민까지 나눌 수 있는 친구들인 영균, 용하, 재목, 정환, 성국,

용식, 기린, 영규, 재영, 효진 등에게도 같은 말을 전하고 싶다.

그리고 연구실에서 매일 얼굴을 보면서 시간을 보냈던 여러 분들에게도 인

사의 말을 전하고 싶습니다. 우선 연구실에서 오랜 시간을 같이 보내며 연구실

86

생활에 활력을 준 이제형 선배님, 홍성현, 정동헌, 오형석에게도 고마웠다고

말을 전하고 싶습니다. 또한 연구실에 처음 들어와서 많은 것을 가르쳐 주셨던

박진표선배님을비롯하여여러선배님들에게많은도움을받았던기억이납니

다. 또한 벤처창업이라는 경험과 추억을 같이 쌓았던 양병선, 이준표, 이승일,

이흥복 선배님들 그리고 동기 하영에게도 덕분에 좋은 경험을 할 수 있었다는

말을 하고 싶습니다. 그 외에도 연구실에서 수학하며 서로를 알게 된 정홍집,

이상규, 문민수, 김정래, 유준민, 최선일, 배성환, 박종국, 김진철, 김성무 등도

기억에 남습니다. 마지막으로 최근 알게 된 성원, 원기, 진석, 혁우, 지환, 진

우 등 후배들에게도 덕분에 연구실 생활이 즐거웠다고 전하고 싶습니다. 모두

하나하나 언급하지 못하지만 덕분에 좋은 추억을 가지고 졸업한다고 전하고

싶습니다.

87

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학박사학위논문

가상머신의 메모리 관리 최적화

Optimizing Memory Management in Virtual Machine

2014 년 2 월

서울대학교 대학원

전기 컴퓨터 공학부

최 형 규

공학박사학위논문

가상머신의 메모리 관리 최적화

Optimizing Memory Management in Virtual Machine

2014 년 2 월

서울대학교 대학원

전기 컴퓨터 공학부

최 형 규

가상머신의 메모리 관리 최적화

Optimizing Memory Management in Virtual Machine

지도교수 문 수 묵

이 논문을 공학박사 학위논문으로 제출함

2013 년 12 월

서울대학교 대학원

전기 컴퓨터 공학부

최 형 규

최형규의 공학박사 학위논문을 인준함

2013 년 12 월

위 원 장 백 윤 흥 (인)

부위원장 문 수 묵 (인)

위 원 이 혁 재 (인)

위 원 이 재 진 (인)

위 원 김 수 현 (인)

Abstract

Optimizing Memory Management in Virtual Machine

Hyung-Kyu Choi

School of Electrical Engineering and Computer Science

The Graduate School

Seoul National University

Memory management is one of key components in virtual machine and also

affects overall performance of virtual machine itself. Modern programming lan-

guages for virtual machine use dynamic memory allocation and objects are

allocated dynamically to heap at a higher rate, such as Java. These allocated

objects are reclaimed later when objects are not used anymore to secure free

room in the heap for future objects allocation. Many virtual machines adopt

garbage collection technique to reclaim dead objects in the heap. The heap

can be also expanded itself to allocate more objects instead. Therefore overall

performance of memory management is determined by object allocation tech-

nique, garbage collection and heap management technique. In this paper, three

optimizing techniques are proposed to improve overall performance of memory

management in virtual machine. First, a lazy-worst-fit object allocator is sug-

gested to allocate small objects with little overhead in virtual machine which

has a garbage collector. Then a biased allocator is proposed to improve the

performance of garbage collector itself by reducing extra overhead of garbage

collector. Finally an ahead-of-time heap expansion technique is suggested to

improve user responsiveness as well as overall performance of memory manage-

ment by suppressing invocation of garbage collection. Proposed optimizations

i

are evaluated in various devices including desktop, embedded and mobile, with

different virtual machines including Java virtual machine for Java runtime and

Dalvik virtual machine for Android platform. A lazy-worst-fit allocator out-

perform other allocators including first-fit and lazy-first-fit allocator and shows

good fragmentation as low as first-fit allocator which is known to have the lowest

fragmentation. A biased allocator reduces 4.1% of pause time caused by garbage

collections in average. Ahead-of-time heap expansion reduces both number of

garbage collections and total pause time of garbage collections. Pause time of

GC reduced up to 31% in default applications of Android platform.

Keywords: optimization, object allocation, garbage collection, heap manage-

ment, virtual machine, memory management

Student Number: 2002-30447

ii

Contents

Abstract i

Contents iii

List of Figures vi

List of Tables viii

Chapter 1 Introduction 1

1.1 The need of optimizing memory management 2

1.2 Outline of the Dissertation . 3

Chapter 2 Backgrounds 4

2.1 Virtual Machine . 4

2.2 Memory management in virtual machine 5

Chapter 3 Lazy Worst Fit Allocator 7

3.1 Introduction . 7

3.2 Allocation with fits . 9

3.3 Lazy fits . 10

3.3.1 Lazy worst fit . 13

iii

3.4 Experimental results . 14

3.4.1 LWF implementation in the LaTTe Java virtual machine 14

3.4.2 Experimental environment 16

3.4.3 Performance of LWF . 17

3.4.4 Fragmentation of LWF . 20

3.5 Summary . 23

Chapter 4 Biased Allocator 24

4.1 Introduction . 24

4.2 Motivation . 27

4.3 Biased allocator . 28

4.3.1 When to choose an allocator 28

4.3.2 How to choose an allocator 30

4.4 Analyses and implementation . 32

4.5 Evaluation . 35

4.5.1 Total pause time of garbage collections 36

4.5.2 Effect of each analysis . 38

4.5.3 Pause time of each garbage collection 38

4.6 Summary . 40

Chapter 5 Ahead-of-time Heap Management 42

5.1 Introduction . 42

5.2 Motivation . 45

5.3 Android . 48

5.3.1 Garbage Collection . 48

5.3.2 Heap expansion heuristic 49

5.4 Ahead-of-time heap expansion . 51

5.4.1 Spatial heap expansion . 53

iv

5.4.2 Temporal heap expansion 55

5.4.3 Launch-time heap expansion 56

5.5 Evaluation . 57

5.5.1 Spatial heap expansion . 58

5.5.2 Comparision of spatial heap expansion 61

5.5.3 Temporal heap expansion 70

5.5.4 Launch-time heap expansion 72

5.6 Summary . 73

Chapter 6 Conculsion 74

Bibliography 75

요약 84

Acknowledgements 86

v

List of Figures

Figure 2.1 Virtual machine, heap and objects 5

Figure 3.1 An example of a lazy address-ordered first fit 12

Figure 4.1 A generational garbage collector with two generations. . 26

Figure 4.2 Candidate selection with three analyses 34

Figure 4.3 Implementation of biased allocator 35

Figure 4.4 Ratio of total pause time 37

Figure 4.5 Ratio of biased objects size compared to total objects . . 37

Figure 4.6 Ratio of total pause time of garbage collections 39

Figure 4.7 Ratio of promotions . 40

Figure 5.1 GC distribution by secured free memory amount 46

Figure 5.2 Number of time intervals depending on the number of

GC in Maps application 47

Figure 5.3 Flow of heap management in Android 4.1.2 50

Figure 5.4 Flow of heap management with AOT heap expansion . . 52

Figure 5.5 GC distribution in Camera 59

Figure 5.6 GC distribution in Gallery 59

vi

Figure 5.7 GC behavior with spatial heuristic 60

Figure 5.8 GC behavior with spatial heuristic 61

Figure 5.9 GC distribution by reclaimed objects 62

Figure 5.10 GC distribution by free space size 63

Figure 5.11 GC distribution by free space ratio 64

Figure 5.12 Total number of garbage collections of Camera with dif-

ferent heuristics . 65

Figure 5.13 GC pause time of Camera with different heuristics 66

Figure 5.14 Size of max heap in Camera with different heuristics . . . 66

Figure 5.15 Heap behavior of Camera with original and proposed

heuristics . 68

Figure 5.16 Heap behavior of Camera with other heuristics 69

Figure 5.17 Number of time intervals in Maps 70

Figure 5.18 Changes of GC behavior in Maps 71

vii

List of Tables

Table 3.1 Benchmarks . 16

Table 3.2 Running Time Analysis 17

Table 3.3 Allocation Time Analysis 18

Table 3.4 Frequency (%) of small memory allocation via fit policy . 19

Table 3.5 Comparision of ’link’ operations 20

Table 3.6 Average fragmentation ratio (%) 21

Table 3.7 Worst-case fragmentation ratio (%) 22

Table 3.8 Garbage collection data and size of small object area . . . 22

Table 5.1 Garbage collection data at launch-time 72

Table 5.2 Pause time of garbage collections 72

viii

Chapter 1

Introduction

In recent decades, virtual machine are becoming more common and widely

adopted in various environment from embedded to server environment and

most of modern computing devices support virtual execution environment. Java

virtual machine [1] is one of popular virtual machines and available for various

computing devices including low-end smartcard, digital TV, computer and high

performance enterprise server. Dalvik is another well known virtual machine re-

cent years. Dalvik virtual machine [2] is a core execution engine of Android [3]

operating system for mobile devices including smartphone and table computers.

By the year 2013, over 900 million Android devices have been activated world-

wide [4] and most of web servers employ Java virtual machine to support Java

language for server programming. And more virtual machines are employed in

consumer appliances, such as digital TV [5], to provide user interactive ser-

vices for individual users and service providers. Therefore virtual machine is

very common nowadays and most of users who use smartcards, smartphones,

computers, televisions or any kind of computing devices are already using some

1

virtual machines directly or indirectly.

Although most of users do not recognize the presence of virtual machine,

user experience on those computing devices is affected by virtual machine, be-

cause overall performance of the device is determined by virtual machine when

virtual machine plays a essential role in running applications. Therefore perfor-

mance of virtual machine is a very important aspect as well as functions that

virtual machine provides.

1.1 The need of optimizing memory management

Memory management module is one of key components in virtual machine and

affects overall performance of virtual machine. Modern programing languages

for virtual machine use dynamic memory allocation and objects are allocated

dynamically to heap at a higher rate, such as Java. These allocated objects are

reclaimed later when objects are not used anymore to secure free room in the

heap for future objects allocation and many virtual machines adopt garbage

collection technique to reclaim dead objects in the heap. Instead the heap can

be expanded itself to allocate more objects and the heap itself is also allocated

from memory. Since all memory management discussed above occur at runtime,

efficiency of memory management affects the performance of virtual machine

directly.

Overall performance of memory management is basically determined by ob-

ject allocation technique, garbage collection and heap management technique.

However each memory management technique is intricately related with each

other and it is very hard to predict combined performance of memory man-

agement. Even worse memory management itself is also affected by other com-

ponents of virtual machine as well as underlying hardware such as memory

2

hierarchy including caches. Behavior of applications also affects performance of

a specific memory management technique and we cannot always avoid worst

case situation unless we can predict future behavior of applications. Therefore

there is always a need for optimizing memory management to improve perfor-

mance of virtual machine as environments change, including hardware, behavior

of applications, virtual machine and etc. This paper will discuss memory man-

agement in widely used environments and will propose optimizations to improve

memory management in real devices.

1.2 Outline of the Dissertation

The rest of this thesis is organized as follows. Virtual machine and memory

management are described in detail and problems with existing memory man-

agement in virtual machine are discussed and defined in chapter 2. Three op-

timizing techniques are introduced to enhance overall performance of memory

management in virtual machine. Chapter 3 addresses a fast and efficient object

allocator and proposes a lazy worst fit allocator with evaluation. After address-

ing the overhead of generational garbage collector, biased allocator is introduced

to relieve the overhead in chapter 4. In chapter 5, ahead-of-time heap expansion

technique is proposed and evaluated to improve overall performance of memory

management through carefully selected but aggressive heap management. Then

I summarizes proposed techniques with conclusions and discusses future works

in chapter 6

3

Chapter 2

Backgrounds

2.1 Virtual Machine

A virtual machine is a software program that implements a machine and is

capable of running software programs. There are known to be two kinds vir-

tual machine including system virtual machine and process virtual machine. [6]

In this paper, I’m going to deal with only process virtual machine and I will

use term virtual machine to refer process virtual machine. This kind of vir-

tual machine provides a platform-independent programming environment by

abstracting underlying hardware. Therefore programs written for the virtual

machine can be ran on any devices where the virtual machine is available.

There are a variety of process virtual machine available but two of virtual

machine are going to be described in this section to provide short backgrounds

for the remaining of this paper. One is famous Java virtual machine (JVM) [1]

and another is Dalvik [2] virtual machine in Android [3] platform. Although two

virtual machine are totally different virtual machine, both virtual machine have

4

Figure 2.1 Virtual machine, heap and objects

some similarities in memory management, because applications are written in

same language, i.e. Java language [7]. In the following section, we are going to

describe memory management in virtual machine.

2.2 Memory management in virtual machine

Java is a class-based object-oriented programming language which allocates ob-

jects frequently. Java also adopts an automatic memory management technique

called garbage collection [8] to reclaim unused objects automatically. Therefore

a program written in Java allocates objects frequently and those objects are

reclaimed automatically when they are not used anymore.

Figure 2.1 depicts abstract view of memory management in virtual machine.

Virtual machine maintains a large pool of memory called the heap. The heap

5

could be a part of whole memory maintained by operating system. A program

run on virtual machine allocates objects from the heap and uses them. Unused

objects remains in the heap until being freed by garbage collector. Those unused

objects, i.e. dead objects, are reclaimed later by a garbage collector which is an

essential part of virtual machine. The size of heap can be increased if there is no

room for new objects requested by the program. Then the heap grows to satisfy

allocation request of the program by allocating more memory from operating

system. In vice versa, the heap can also shrink if there is sufficient unused room.

In short, memory management in virtual machine can be classified into three

operation including object allocation, garbage collection and heap resizing. We

will propose optimizing approaches for each operation in following sections.

6

Chapter 3

Lazy Worst Fit Allocator

3.1 Introduction

Modern programming languages use dynamic memory allocation [9]. As appli-

cations become more complex and use more of an object-oriented programming

style, memory objects are allocated dynamically at a higher rate. This requires

fast dynamic memory allocation.

Memory allocation should also be space efficient. A request for memory

allocation cannot be satisfied when there is no free memory chunk that can

accommodate the requested memory. This may happen even when the total

amount of unused memory is larger than the amount of memory requested, due

to fragmentation. In fact, fragmentation is the single most important reason for

the wastage of memory in an explicitly managed heap or a heap managed by a

non-moving garbage collector.

There are many approaches to implementing memory allocators, which ex-

hibit different degrees of fragmentation and different allocation speeds. A com-

7

mon approach is maintaining a linked list of free memory chunks, called the

free list, and searching the free list for a chunk that can satisfy a memory al-

location request based on the fitting policy, such as first fit (FF), best fit or

worst fit. Memory allocation using FF and best fit tends to have relatively

low fragmentation [9], yet searching the free list has a worst-case linear time

complexity.

In garbage-collected systems there are compacting garbage collection tech-

niques such as copying collection [10] or mark-and-compact collection [11]. In

such systems used and unused memory are not interleaved, so fragmentation

does not exist. Thus, the obvious and fastest way to allocate memory is by

simply incrementing an allocation pointer for each allocation.

There is a memory allocation approach for the free lists, motivated by the

fast memory allocation of compacting collection, such that pointer increment

is used as the primary allocation method, with FF, best fit or even worst fit

as the backup allocation method [12]. This approach was called lazy fit, in the

sense that finding a fitting memory chunk is delayed until really necessary. Pre-

liminary experimental results simulating the traces of memory requests showed

that the approach is promising since most memory allocations can be done via

pointer increments.

This paper attempts to confirm the practical usefulness of lazy fits in the

context of Java. We propose lazy worst fit (LWF) as a memory allocation

method for a Java virtual machine with non-moving garbage collection. We

implement LWF on a working Java virtual machine and evaluate its alloca-

tion speed and fragmentation, compared with lazy first fit (LFF) and FF. This

chapter is organized as follows. Section 3.2 discusses memory allocation using

conventional fits. Section 3.3 reviews memory allocation using lazy fits and pro-

poses the LWF for Java. Section 3.4 presents our experimental results. Finally,

8

the paper is summarized in Section 3.5.

3.2 Allocation with fits

Before discussing memory allocation using lazy fits, we first discuss memory

allocation using conventional fits.

In the simplest implementation of conventional fits, a single free list of free

memory chunks is maintained. When a request for allocating memory is made,

an appropriate free memory chunk is found from the free list after traversing

the list from the head free chunk. The exact manner in which an appropriate

free memory chunk is found depends on the fitting policy.

With first fit, the free list is searched sequentially and the first free memory

chunk found that is able to satisfy the memory allocation request is used. This

can be further divided into several types according to the order in which the

free list is sorted: address-ordered, last-in-first-out (LIFO) and first-in-first-out

(FIFO).

The address-ordered FF is known to have the least fragmentation, with the

LIFO FF being noticeably worse. There is evidence that the FIFO FF has as

little fragmentation as the address-ordered FF [13].

With best fit, the free memory chunk with the smallest size that is able

to satisfy the memory allocation request is used. Along with FF, this policy is

known to have little fragmentation in real programs.

In worst fit, the largest free memory chunk is used to satisfy the memory

allocation request on the contrary to best fit. This policy alone is known to

have much worse fragmentation than FF or best fit, so it is rarely used in actual

memory allocators. However, worst fit can be useful when combined with lazy

fit, which is explained in the next section.

9

The approach of using a single free list to keep track of the free memory

chunks is very slow owing to a worst-case linear time complexity, especially if

best fit or worst fit is done. So in actual implementations of modern memory al-

locators, more scalable implementations, such as segregated free lists, Cartesian

trees and splay trees [9], are used for memory allocation.

Segregated free lists are the most common and simplest approach used in

actual implementations [14, 8]. It divides memory allocation request sizes into

size classes and maintains separate free lists containing free memory chunks in

the size class. This approach, also called segregated fits, still has a worst-case

linear time complexity, yet its allocation cost is known to be not much higher

than that of a copying collector [8]. However, in our experiments unacceptably

long search times for the segregated free lists do occur in practice (see Sec-

tion 3.4), which indicates that the linear time complexity for accessing the free

lists can be a real obstacle to fast allocation with fits.

3.3 Lazy fits

Memory allocation using lazy fit uses pointer increments1 as the primary allo-

cation method and conventional fits as the backup allocation method.

To be precise, an allocation pointer and a bound pointer are maintained

for a current free space area. When a memory allocation request is made, the

allocation pointer is incremented and it is checked against the bound pointer

to see whether the memory allocation request can be satisfied. If it is satisfied,

the memory that was pointed out by the allocation pointer before it was incre-

mented is returned. Otherwise, conventional fit allocation is used to obtain a

free memory chunk to be used as the new free space area, and the remainder of

1Pointer decrements can also be used for implementing lazy fits, but we assume pointer
increments in this paper.

10

the former free space area is returned to the free list. The new free space area

would then be used for allocating objects with pointer increments.

This is rather similar to the typical allocation algorithm used in systems with

compacting garbage collectors, which also use pointer increments to allocate

memory. The latter avoids a backup allocation method because there is no

fragmentation, because compacting garbage collectors leave only one free chunk

after compaction.

The fit method used for the backup allocation does not have to be any

particular one. It could be first fit, best fit or even worst fit. These will be

called lazy first fit (LFF), lazy best fit and lazy worst fit (LWF) respectively.

In fact, it does not matter which approach is used for the backup allocation

method as long as it is able to handle fit allocation. Using first fit or best fit

would probably have the advantage of less fragmentation, while using worst fit

would probably result in larger free space areas, which would result in more

memory allocations using pointer increments for faster speed.

Figure 3.1 shows a simple example of how a lazy address ordered first fit

would work.2 Figure 3.1a shows the initial state when the LFF allocator starts

allocating in a new free space area. The allocation and bound pointers point to

the start and the end of the free space area respectively.

Allocation occurs within the given free space area, as in Figure 3.1b, in-

crementing the allocation pointer appropriately to accommodate each memory

allocation request. This goes on until the free space area is no longer able to

satisfy the memory allocation request, i.e. the space remaining in the free space

area is smaller than that needed by the caller. Then, we put what remains of

the current free space area back into the free list and search the free list for

2However, we used a segregated FF instead of an address-ordered FF in the experiment,
because the address-ordered FF is very slow. The only difference is how to manage the free
list.

11

a new free space area which can be used to allocate memory. The allocation

and bound pointers are set to the start and the end of the new free space area

respectively, and the cycle begins anew.

Figure 3.1c shows the state of the heap after the old free space area, marked

as ’old’, is put back into the free list, and the allocation and bound pointers

point to the boundaries of the new free space area, marked as ’new’, which had

just been extracted from the free list using FF.

To speed up memory allocation using a lazy fit even more, the allocation and

bound pointers could be held in two reserved global registers. This allows one

to allocate memory without touching any other part of the memory, except for

the memory we are allocating, in the common case. This is in contrast to many

other allocation algorithms which usually require at least some manipulation of

the data structure in the memory.

Lazy fit also has the potential to be faster than segregated storage since it

Figure 3.1 An example of a lazy address-ordered first fit (shaded areas denote
used memory). (a) Initial state; (b) allocation using pointer increments; (c) the
state after the new free space area was found by first fit.

12

has no need to decide size classes. Objects allocated closely together in time

would probably be used together, so there could also be a beneficial effect on

cache performance, since lazy fit would tend to group together objects that are

consecutively allocated.

3.3.1 Lazy worst fit

In order to use lazy fit for garbage-collected systems such as Java, we made

two engineering choices. First, we propose using worst fit in order to reduce

the search time for the free lists. So, after each garbage collection we sort the

free memory chunks in the free list in decreasing order of sizes. By using worst

fit, a single comparison suffices to find out whether there is a chunk in the

sorted free list which is able to accommodate the requested object, whereas

alternative methods such as FF or best fit may require many comparisons to

ascertain whether such a chunk exists.

Second, the previous free space area which had been unable to accommodate

the requested object is discarded and not put back into the free list when

using lazy worst fit. One reason is that inserting it into a sorted free list would

introduce O(n) time complexity [15] when we use a simple singly linked list,

while all operations in LWF, including pointer increments and worst fits, can

be done in O(1) time. Giving up the previous free area will keep the O(1)

allocation speed, which would obviate the worst-case linear time complexity

of accessing the free list. Since the free list is constructed from scratch during

garbage collection, there is no problem in discarding the old free space.

LWF is also expected to be faster by having more pointer incrementing

memory allocation, since we can get larger free space areas, yet this would

depend on the pattern of memory requests. On the other hand, LWF may

result in more fragmentation and wastage of the discarded free spaces, which

13

might lead to larger heap sizes and more garbage collection cycles. All of these

will be evaluated through experiments in the following Section 3.4.

3.4 Experimental results

Lazy fits are evaluated by generating traces of memory requests for a set of

C programs and measuring the fragmentation and fit frequencies for both ex-

plicitly managed heaps and garbage collected heaps in previous work [12]. In

this paper, we implemented lazy fits on a working Java virtual machine and

evaluate whole Java system using non-trivial Java programs.

3.4.1 LWF implementation in the LaTTe Java virtual machine

A memory system using LWF was implemented on LaTTe, a freely available

Java virtual machine with a just-in-time (JIT) compiler [16]. This subsection

describes the implementation of lazy fits in LaTTe and outlines the LaTTe

memory management system, which will be helpful in understanding the ex-

perimental results.

LaTTe manages a small object area and a large object area separately,

and LWF is done only on the small object area which contains objects that are

smaller than a kilobyte. One of the reasons for the separation is that sharing the

same heap among large and small objects may result in high fragmentation, as

the experimental results in [12] indicate. Large objects are allocated in separated

area and best fit is used when allocating them.

LaTTe uses a partially mark and sweep garbage collector, in the sense that

the runtime stack is scanned conservatively for pointers while all objects lo-

cated in the heap are handled in a type accurate manner [17]. Pointers should

be handled conservatively, since there is no accurate information for pointers

in stacks. It is also possible to provide accurate type information to garbage

14

collector, but it requires more computation and memory space to maintain in-

formation at runtime and degrades overall performance. The separation of the

small object area and the large object area also helps the garbage collector

identify pointers more easily and efficiently, since we can make use of the fact

that memory is separated when handling pointers.

LaTTe starts with an initial heap pool of 8 MB. Both the small object area

and the large object area are allocated from this heap pool in units of 2 MB. If

there is no memory available in the pool, LaTTe activates the garbage collection

thread to reclaim unused memory.

After each garbage collection, LaTTe may decide to expand the heap de-

pending on its capacity. The idea is that if the heap is too small, the garbage

collection frequency would be unacceptably high. On the other hand, LaTTe

does not expand the heap unnecessarily, since other applications will run out

of memory in a multiprogramming environment.

LaTTe expands the heap only when the size of free memory is less than the

size of live objects, meaning that the heap is less than half empty. Here, the free

memory is estimated by the cumulative size of objects allocated between the

previous garbage collection and the current garbage collection, instead of the

heap size minus the size of live objects, which cannot be considered to be entirely

free owing to fragmentation. So, LaTTe expands the heap only when the size of

live objects exceeds the size of objects allocated, the expanded amount being

the difference between these two quantities (rounded off to 2 MB). This appears

to be a good compromise between the conflicting goals of keeping the size of the

heap small and keeping the garbage collection frequency to a reasonable level.

15

Table 3.1 Benchmarks
Benchmarks Description

202 jess A Java version of NASA’s CLIPS
expert shell system

209 db Data management software which
performs multiple database functions
on memory resident database

213 javac Java compiler from the JDK 1.0.2

227 mtrt Dual-threaded ray tracer that
render the scene in the input file

228 jack A Java parser generator

EulerBench Computational Fluid Dynamics

MonteCarloBench Monte Carlo simulation

RayTracerBench 3D Ray Tracer

SearchBench Alpha-beta pruned search

3.4.2 Experimental environment

We ran the experiments on a Sun Blade 1000 machine with a UltraSPARC-

III microprocessor 750MHz with a 32 KB instruction cache and a 64 KB data

cache. It also has an 8 MB second-level cache and a 1 GB memory.

Our benchmarks are composed of nine selected benchmark applications from

the SPECjvm98 suites and section 3 of the Java Grande benchmark suites

Version 2.0, which are listed in Table 3.1. The first five benchmarks of the table

are selected from SPECjvm98 and remaining four benchmarks are chosen from

Java Grande. We excluded those benchmarks that do not allocate enough small

objects from the suites, such as 200 check, 201 compress and 222 mpegaudio

in SPECjvm98, and MolDynBench in the Java Grande benchmarks. We used

size A inputs for the Java Grande benchmarks during the experiments.

16

Table 3.2 Running Time Analysis
Benchmark Total running time (seconds) Allocation time (seconds)

LWF LFF FF LWF LFF FF

202 jess 12.359 15.352 212.641 1.676 4.520 198.466

209 db 18.235 18.652 35.507 0.629 1.021 18.038

213 javac 19.162 995.678 7855.287 1.779 972.019 7818.269

227 mtrt 11.093 22.844 2846.460 1.326 11.996 2826.267

228 jack 13.889 16.950 354.650 1.305 3.764 338.057

EulerBench 33.347 972.437 22600.980 1.198 937.126 22523.039

MonteCarloBench 107.530 118.061 132.451 0.106 10.404 24.163

RayTracerBench 21.378 21.882 74.493 1.059 1.471 54.213

SearchBench 19.740 20.506 106.550 1.383 2.178 88.089

3.4.3 Performance of LWF

We experimented with three different memory allocation policies: LWF, LFF

and FF. The first fit algorithm used in LFF and FF uses segregated free lists

segregated by a power of two distribution [18], with objects maintained in the

FIFO order. This segregated free list is believed to reduce the allocation time

compared with the traditional FF and may have less fragmentation [9].

LFF works in exactly the same way as LWF except that FF is used when

the pointer-incrementing allocation fails. And the remainder of the previous

free space is discarded as in LWF. Unlike LWF and LFF, FF always returns

the remainder of the free space to the free lists.

By comparing LWF and LFF we can evaluate the impact of LWF’s O(1)

access time for the free lists and how worst fit and first fit affect fragmentation

in the context of lazy fits. By comparing LWF or LFF with FF, we can evaluate

the impact of pointer-incrementing allocation of lazy fits.

For each benchmark, Table 3.2 shows the total running time and alloca-

tion time of each policy. The results indicate that LWF is always better than

LFF, and LFF is always better than FF. In fact, there are several benchmarks

17

Table 3.3 Allocation Time Analysis
Allocation time (seconds)

Benchmark Fit allocation Other
LWF LFF FF LWF LFF FF

202 jess 0.164 2.974 195.117 1.512 1.546 3.349

209 db 0.075 0.462 16.736 0.554 0.559 1.302

213 javac 0.505 970.099 7814.567 1.274 1.920 3.702

227 mtrt 0.153 10.805 2823.008 1.173 1.191 3.259

228 jack 0.089 2.527 335.049 1.216 1.237 3.008

EulerBench 0.461 935.616 22518.786 1.526 1.510 4.253

MonteCarloBench 0.038 10.312 24.020 0.068 0.092 0.143

RayTracerBench 0.036 0.447 51.819 1.023 1.024 2.394

SearchBench 0.048 0.854 85.088 1.335 1.324 3.001

which show excessively high improvement when using LWF. When compared to

LFF, 213 javac and EulerBench show much shorter running time with LWF.

202 jess, 213 javac, 227 mtrt and EulerBench also have been drastically im-

proved when compared to FF.

In order to check whether the allocation policy really affects the running

time, we measured the total memory allocation time for the small object area

separately, which is shown in the second column of Table 3.2. The allocation

time results are consistent with the running time results such that longer allo-

cation time means longer running time.

The allocation time of each policy includes the time spent for fit allocation

using worst fit or FF, which was also measured separately as shown in Table 3.3.

The second column of the table shows time spent of fit allocation to find a new

free chunk. The third column, i.e. other, are remaining time of total allocation

other than fit allocation and it includes pointer incrementing allocation time.

Next, we analyze why LFF and FF have longer fit allocation time than LWF.

There are two major differences between LWF and other LFF/FF, that affect

the fit allocation time. The first is the frequency of fit allocation. Generally,

18

Table 3.4 Frequency (%) of small memory allocation via fit policy
Benchmarks LWF LFF

202 jess 6.731 7.611
209 db 0.691 0.661
213 javac 11.815 22.372
227 mtrt 3.688 2.815
228 jack 2.760 2.665

EulerBench 21.017 9.408
FMonteCarloBench 10.696 27.892
FRayTracerBench 1.048 1.021
SearchBench 1.467 1.450

Geomean 3.867 4.101

LWF is expected to allocate more often via pointer increments than via fits,

since worst fit would allow larger free spaces than LFF for pointer-incrementing

allocation.

Table 3.4 shows the frequencies (%) of the fit allocation for LWF and LFF

respectively. And the fit frequency for FF is obviously 100% which is not shown

in the table. For 213 javac and MonteCarloBench, LFF has a much higher fit

frequency than LWF. On the other hand, LWF has a much higher fit frequency

than LFF in EulerBench. Therefore, contrary to our expectation we cannot see

any definite relationship between the fit frequency and the fit policy.

Another major difference between LWF and LFF/FF is that the search time

of the free lists for the fit allocation is O(1) for LWF and O(n) for LFF/FF.

In order to check whether this difference really affects the fit allocation time,

we measured the total number of ’link’ operations, i.e. the operation to follow

a single link in the free lists, for each policy.

Table 3.5 shows the number of link operations for LWF, LFF and FF re-

spectively. It shows that LFF and FF execute many more link operations than

LWF. Even for 227 mtrt and EulerBench where LFF has lower fit frequencies

19

Table 3.5 Comparision of ’link’ operations
Total number of operation (thousands) Ratio

Benchmarks LWF LFF FF LFF/LWF FF/LWF

202 jess 527.5 84,597.5 3,784,346.7 160.4 7173.5
209 db 2.8 5,473.2 283,373,982.0 1955.4 101241.2
213 javac 682.0 7,223,197.8 45,998,050.8 10590.8 67443.5
227 mtrt 207.2 241,971.1 27,300,486.8 1167.7 131742.6
228 jack 169.1 58,787.2 5,840,161.2 347.7 34545.7

EulerBench 1,361.4 10,469,150.4 194,860,155.4 7689.8 143128.1
MonteCarloBench 30.2 216,744.8 592,767.2 7184.6 19648.9
RayTracerBench 11.5 332.5 474,167.1 28.8 41103.3
SearchBench 10.1 589.8 1,937,796.8 58.2 191274.0

than LWF, LFF has a higher number of link operations than LWF. Since FF

always uses fit allocations, it obviously executes more link operations than LFF.

These results are consistent with the fit allocation time in Table 3.3, especially

for those that have an excessively long fit allocation time. So, it is evident that

the O(n) search time is the dominant reason for the longer running time in LFF

and FF. In fact, it can be seen that the linear time complexity of conventional

fit allocation may cause an unacceptably high overhead, even with segregated

implementations.

3.4.4 Fragmentation of LWF

Another important aspect of a memory allocator is fragmentation. It is gener-

ally believed that higher fragmentation requires larger heaps and causes more

garbage collection, which may affect performance.

It is expected that LWF causes worse fragmentation than LFF and FF since

worst fit is known to be poorer than FF in terms of fragmentation. Also, LWF

and LFF have a disadvantage in fragmentation when compared to FF, since

they discard the remainder of the previous free space area. Contrary to these

expectations, our performance results in Table 3.2 indicate that the overall

20

Table 3.6 Average fragmentation ratio (%)
Benchmarks LWF LFF FF

202 jess 3.694 3.222 1.608
209 db 0.240 0.264 0.252
213 javac 14.203 5.400 5.427
227 mtrt 2.092 2.231 2.713
228 jack 2.454 2.504 1.097

EulerBench 0.395 4.513 8.326
MonteCarloBench 12.482 1.170 0.349
RayTracerBench 0.394 0.398 0.489
SearchBench 0.059 0.068 1.423

Geomean 1.249 1.155 1.332

performance of LWF is still better than LFF and FF, so these results need to

be verified.

Tables 3.6 and 3.7 show the fragmentation ratio for the small object area

for each policy. The fragmentation ratio was measured as follows. Whenever the

memory allocator cannot satisfy a request for the small object area (so either 2

MB is allocated from the heap pool or garbage collection is invoked if the heap

pool is empty), we measure the fragmentation ratio at that point.

Table 3.6 indicates that the average fragmentation ratio of LWF is not

always higher than that of LFF and FF. In fact, we cannot see any definite

correlation. For those benchmarks where the average fragmentation ratio of

LWF is noticeably higher, such as 213 javac or MonteCarloBench, we found

that the sequence of memory requests for the small object area occasionally

includes requests for a relatively large object, e.g. > 100 bytes.

The problem with LWF is that larger free areas are consumed at the begin-

ning of the allocation, such that by the time these large object requests arrive,

their chance of being allocated in the current free space is lower, leading to

the current free space being discarded, although it can still accommodate more

21

Table 3.7 Worst-case fragmentation ratio (%)
Benchmarks LWF LFF FF

202 jess 4.70 4.14 1.87
209 db 0.38 0.38 0.27
213 javac 47.21 7.64 8.27
227 mtrt 21.85 21.49 21.35
228 jack 6.03 5.47 1.92

EulerBench 2.17 6.56 12.18
MonteCarloBench 35.11 1.33 0.38
RayTracerBench 0.42 0.42 0.51
SearchBench 0.06 0.08 1.46

Table 3.8 Garbage collection data and size of small object area
Garbage collection Size of small area

Time (sec) Count (bytes)
Benchmarks LWF LFF FF LWF LFF FF LWF LSFF SFF

202 jess 1.041 1.028 1.122 67 66 65 6,291,456 6,291,456 6,291,456
209 db 0.865 0.855 0.856 8 8 8 20,971,520 20,971,520 20,971,520
213 javac 4.042 3.910 3.901 16 16 17 44,040,192 35,651,584 37,748,736
227 mtrt 1.817 1.800 1.853 18 18 18 18,874,368 18,874,368 18,874,368
228 jack 0.458 0.452 0.468 42 42 42 6,291,456 6,291,456 6,291,456

EulerBench 3.074 2.749 3.176 43 38 41 14,680,064 16,777,216 16,777,216
MonteCarloBench 1.159 1.104 1.079 0 0 0 6,291,456 4,194,304 4,194,304
RayTracerBench 0.092 0.091 0.088 35 35 35 6,291,456 6,291,456 6,291,456
SearchBench 0.415 0.426 0.441 202 202 205 2,097,152 2,097,152 2,097,152

Geomean 0.906 0.884 0.911

small objects.

On the other hand, LFF would have a relatively better chance of allocating

the large object in the current free space. This would make LWF suffer more

from fragmentation than LFF. Such cases may result in very high fragmentation

for LWF as shown in Table 3.7 where the worst-case fragmentation ratio is

measured.

In order to check the impact of fragmentation, we measured the garbage

collection frequency, garbage collection time and the total size of the small

object area, as shown in Table 3.8. The table shows that there is little difference

in garbage collection time and frequency of garbage collection among the three

22

policies, which would explain why fragmentation did not have a major effect on

performance.

As to the size of the small object area, LWF uses larger areas than LFF for

213 javac and MonteCarloBench where LWF suffers more from fragmentation,

whereas LFF uses larger areas than LWF for EulerBench where LFF suffers

more from fragmentation. However, there is no tangible impact on garbage

collection time or frequency depending on allocation methods, as discussed.

3.5 Summary

We propose the use of lazy worst fit for memory allocation in Java, which ex-

ploits pointer-incrementing memory allocation with free lists. LWF avoids the

linear time complexity of managing the free lists that may cause an unaccept-

ably high memory allocation overhead, and it does not suffer much from frag-

mentation. One interesting question is whether these benefits may even allow

a non-moving garbage collector to compete with compacting collectors, while

avoiding their drawbacks. For example, copying collection has some problems

such as half-availability of the heap space, exponential performance degradation

as the object residency3 increases [8] or poor locality [11]. Mark-and-compact

collection is also known to be expensive to implement since compaction requires

more than just copying objects or updating pointers [8]. It is left as a future

work to evaluate non-moving garbage collectors with LWFs, compared with

compacting garbage collectors.

3The ratio of live objects to garbage objects at any given time.

23

Chapter 4

Biased Allocator

4.1 Introduction

Virtual machine adopts automatic memory management to manage the heap.

Automatic memory management reclaims objects which are not used anymore

automatically from the heap, although object allocation is requested explicitly

by a program. Garbage collection is a famous approach to find unnecessary ob-

jects, i.e. dead object, and reclaim them [8]. Allocation strategies and garbage

collection should be considerate each other, since garbage collector is respon-

sible for securing and managing free space which is used by allocator later to

allocate objects. We can consider garbage collector a producer of free space and

then allocator can be a consumer of free space. Therefore some garbage col-

lectors enforce allocation methods considering fragmentation, performance and

throughput. In vice versa, some allocation strategies are more efficient with spe-

cific garbage collectors. Various garbage collectors have been proposed by many

researchers [19, 8, 20, 21, 22]. In detail, there have been different approaches

24

to find dead object and also there are various ways to secure free space. One of

simplest way to find unnecessary objects is traversing pointers recursively from

always live objects, which are called roots, to find reachable objects which are

live and necessary. Another approach maintains counters for incoming refer-

ences to each object at runtime to determine a liveness of object [23]. There are

also several ways to secure free space after identifying dead objects. A simplest

way maintains a list of free space by reclaiming dead objects. Another approach

secures free space by moving live objects to different area, as a result previous

area contains only dead objects and whole previous area can be considered to

be free space. There are so many garbage collectors depending on how they

identify dead objects and how they secure free space. Among them, a genera-

tional garbage collector is famous and widely adopted in virtual machines, e.g.

Java Virtual Machine from Oracle [24].

A generational garbage collector manages the heap by splitting whole heap

into several generations from young to older. With a generational garbage col-

lector, a new object is always allocated from a nursery area which is one of

generations and considered to contain young objects. Then later if a nursery

is overpopulated and there is no room for new objects, a generational garbage

collector secures free space from a nursery by moving live objects to older gen-

erations. We call this object copying a promotion, since an object is promoted

to old generations. Such garbage collection on a nursery is called minor garbage

collection. Later we have to reclaim all dead object in young and old gener-

ations too when old generations are also overpopulated. We call it a major

garbage collection or a full garbage collection. Figure 4.1 depicts how a simple

two generational garbage collector works. Due to various advantages, a gen-

erational GC is adopted in many virtual machines for various environments.

First, a garbage collection can be completed in a short time when minor GC

25

is requested instead of full GC, because minor GC performs only on a nurs-

ery which is relatively smaller than whole heap. Although number of garbage

collections increases relatively, each pause time caused by garbage collection is

reduced and responsiveness of virtual machine is improved when compared to

a garbage collector with only full GC. Furthermore secured free space from a

nursery is continuous and fragmentation free since whole young generation is

empty after all live objects are promoted. There are many variations of genera-

tional garbage collector depending on number of generations, size of young and

old generations and etc. [19, 25, 21] However a generational garbage collection

has unavoidable runtime overhead and it shows undesired behaviors in some

cases.

Figure 4.1 A generational garbage collector with two generations.

A generational garbage collector has to promote live objects to older gen-

erations to clear up a nursery. Each promotion contains not only copying an

object but also updating pointers which refer to the object just moved to a

new location. A generational garbage collector is beneficial when only few ob-

jects are live and most of objects in young generation are dead. However when

many of objects in a nursery are live and is going to be promoted, the overhead

26

of promotion increases to hide advantages of a generational GC. In worst case

when every object in a nursery is live, we have to promote all objects and minor

GC does not reclaim dead object at all with overhead of minor GC and pro-

motions. We suggest that such overhead can be avoided if we place promoted

objects to old generations instead of young generation when those objects are

being allocated at first. We are going to segregate objects in various ways to

reduce number of objects allocated to a nursery. Rest of the paper is composed

as follows. In the next Section 4.2, we address the problem in detail and pro-

pose an approach to exploit biased allocators to improve a generational garbage

collector. Then we propose a way to invoke biased allocator and describe three

analyses to identify objects to be allocated with biased allocators in Section 4.3.

We describe how to combine proposed analyses and how we implemented pro-

posed approaches in real environment in Section 4.4. In Section 4.5, proposed

approaches are evaluated on a real embedded device. Section 4.6 summarizes

the paper and discusses future works.

4.2 Motivation

As we discussed in the previous section, a generational garbage collector itself

suffer from inherent overhead of promotion. As a result pause time of each

garbage collection can be increased to compensate advantages of a generational

GC. There have been many researches to improve a generational GC [8, 21, 22]

, but most of them require modifying a garbage collector itself and a garbage

collector is getting more complicated which is hard to predict the effect modi-

fication in various situation.

We propose an approach to exploit an allocation instead of a generational

GC to overcome the undesired overhead of a generational GC. We already

address that such an undesirable behavior of a generational GC is due to pro-

27

motion of many objects in a nursery. In other words, such objects live long to

the time when minor GC is requested to reclaim dead objects. We are going to

avoid the situation by simply locating such objects in old generations instead of

a nursery when objects are allocated. Simply we can allocate all objects in old

generations, but then it is not a generational GC anymore and may suffer from

long pause time of full GC instead. Therefore we have to choose a set of objects

and allocate them to old generation using biased allocators. In the following

section, we propose a way to make use of biased allocators and describe how to

identify objects to be biased in detail.

4.3 Biased allocator

With biased allocators, an object can be allocated to heap in different ways

depending on various properties to improve the performance of heap manage-

ment with a generational garbage collector. On the other hand, traditional

virtual machine with a generational GC allocates an object to a nursery area of

heap with a single same allocator. We propose that we affect the performance

of heap management in a beneficial way by reducing copying overhead of gen-

erational garbage collection if we allocate an object to other than a nursery

carefully with different object allocators. In this section, we will discuss when

to choose an allocator and propose a way to make a decision with less runtime

overhead. Then we will describe three analyses to select an allocator.

4.3.1 When to choose an allocator

We can choose an allocator every time when an object is being allocated to

the heap. It would be best if we can perform fine-grain analysis for each object

and decide allocation area for each object. However it is not easy to predict

lifetime of each object precisely and there will be extra overhead if we choose

28

an allocator every time an object is being allocated. Usually an object alloca-

tion occurs very frequently and an additional computation could harm overall

performance. Therefore it would beneficial to runtime performance if we can

choose an allocator without extra overhead of an allocation itself.

A new bytecode in Java Virtual Machine always knows a type of an object to

be allocated [1] and the new bytecode allocate objects of same type. Therefore

we are going to exploit the property that each new bytecode always allocates

isomorphic type of objects at runtime.

Also we try to reduce the overhead of decision making by making a decision

once and use the same decision later. To achieve these, we choose an allocator

when bytecode are analyzed and being translated into native machine code to

improve overall performance. In other words, biased allocator can be applied to

any kind of translators including just-in-time compiler (JITC), ahead-of-time

compiler (AOTC) and install-time compiler (ITC). A Just-in-time compiler

which translates bytecode into machine code at runtime is a famous acceleration

technique [26, 16, 27, 28] . Ahead-of-time compiler [29, 30, 31] and install-time

compiler [32] analyze and translate bytecode into native machine code before

it is being executed.

A biased allocator is chosen when a new bytecode is being translated into

machine code depending on the type of object to be allocated. Then the new

bytecode is translated into a machine code which allocates an object with the

selected allocator. In this way, we make a decision once and an allocation is

done without additional overhead other than that the allocator allocates an

object in a different way.

29

4.3.2 How to choose an allocator

Even though that a specific new bytecode accepts an isomorphic type, it is not

easy to exploit the information to select an allocator wisely. We need whole type

analysis on a Java program to make a correct decision and it is not eligible for a

JITC or AOTC, because whole type analysis including class hierarchy analysis

[33, 34] is not a simple problem and it takes much time. Therefore we consider

three information as well as simple type information, i.e. class information which

is known directly from the new bytecode itself.

First we identify a location where local-scoped objects are allocated. Also

an allocation site within a loop is identified and being chosen to use a biased

allocator. Finally we analyze the use of an allocated object which is assigned to

static fields and identify locations where the object is allocated. Since an object

can be allocated from multiple locations depending on control flow, we exploit

traditional iterative data follow analysis. Of course, type information is always

considered together with three properties.

Local-scoped objects

An object is known to be locally scoped if an object is live only within a

specific scope. A scope can be anything such as a basic block, a super block, a

trace, a method or even a program. There have been many researches to identify

locally scoped objects and escape analysis is one of famous technique to identify

locally scoped objects. Escape analysis has been used in Java to make use of

stack allocation [35, 36] to relieve memory pressure on the heap and adopted in

various JVM such as Java Standard Edition 6 [37]. We use an escape analysis

to identify an allocation site where objects being allocated are locally scoped.

We expect that such an allocation site can make use of traditional allocator

or even stack allocator which uses a stack instead of the heap, because locally

30

scope objects are only live within a specific scope and liveness is limited to the

scope which can be considered being relatively shorter than other objects which

escape the scope. As a result, we don’t have to consider such allocation sites

for being a candidate for biased allocation to improve the performance of heap

management with garbage collection.

Objects allocated inside loops

Loops have been a famous target for an optimization, because many programs

spends most of the time in loops and small improvement in a loop can be result

in large runtime improvement of the performance due to its repetition. We also

look into loops, because an allocation in loops will continue allocate same type

of objects until loop stops and quite large amount of objects are allocated inside

of the loops.

We expect that objects allocate inside loops are relatively short lived com-

pared to objects allocated outside of loops, because loops usually perform same

computation repetitively and many objects allocated within loops are for tem-

porary use. We decide objects allocated inside loop to be possibly short-lived

at first. However we find that some objects, which are allocated in a loop but

have relatively small size, are long-lived. Therefore allocation sites within loops

are chosen when smaller objects are allocated. We can easily compute the size

of objects, because the type of object being allocated is identified directly from

new bytecode as we described before. We don’t have to worry about leaving

large objects behind in young area, because promotion overhead is more domi-

nated by number of objects being promoted than size of objects as we discussed

in previous sections.

31

Objects assigned to static fields

There are two types of objects in Java, i.e. an instance object and a class object.

An instance object is an instance of a specific class which are usually allocated

with new keyword of Java language and object we talked before in this paper

are all instance objects. A class object is a unique object of a specific class and

they are usually created implicitly by Java virtual machine when the class is

being resolved. A static field is a field not related to an instance object but

class object itself. Since a static field looks like a global variable, researches

have shown that an object assigned to a static field tend to be immortal, i.e.

never dead till the program ends [38].

We decide to make use of this property and use biased allocators for such

allocation sites where any object allocated can be assigned to static fields. We

make use of traditional analysis of reaching definition to identify allocation

sites on the compilation unit. Candidate allocations sites can be one or more

and even we can’t find a site, because we perform analyses only within the

compilation unit.

Of course, some candidate allocation sites can be duplicated with the pre-

vious analysis, i.e. allocation sites within loop. We will discuss how we arrange

three analyses we discussed here to make a decision for biased allocation in the

following section.

4.4 Analyses and implementation

Each allocation site can have three properties, i.e. local, loop and static. Local

means this allocation site allocates objects which are live only within the scope.

Loop means this allocation site is located within loops and size of allocation is

larger than threshold. Static means this allocation site allocate objects which

32

can be possibly assigned to static fields. Only allocation sites which is neither

local nor loop are selected for biased allocation. Then we find allocation sites

with static property and add them to candidates and we are going to describe

how we make use of three analyses.

At first, we assume that all allocation sites are candidate for biased allo-

cation. We find locally scoped object with escape analysis. After we identify

allocation sites which only allocate locally scoped objects, we remove those

sites from candidates. We do not discard the list of allocation sites that are

local and keep the list for later use.

We continue to identify allocation sites within loop and this analysis can

be done with other traditional loop optimizations as well. However this anal-

ysis should be done after any control flow changes or code motions are made

to loop, because the location of an allocation site can be changed with those

optimizations and even allocation sites can be eliminated after optimizations.

Furthermore we do not analyze and skip allocation sites which are already

identified to allocate only locally scoped objects from previous escape analysis.

Then we reduce candidate allocation sites with results of loop analysis. We find

out that some allocation sites within loop allocate only locally scoped objects

and it is obvious that these objects have relatively shorter lifetime than other

objects which escape the same scope.

Finally we look into every assignment of an object to static fields and try

to identify one or more allocation sites where the object was allocated. This

analysis should be done just before the code generation, because any control

and data flow changes can affect the result of this analysis. After we identify

allocation sites, we add those allocation sites to candidates for biased allocation.

In short, we can formulate above sequences as in Figure 4.2. We should keep the

order of local, loop and static analysis, because there can be an allocation site

33

Figure 4.2 Candidate selection with three analyses

which reside in loop and allocate large objects, but allocates objects which can

be assigned to static fields. Of course there is no allocation site which allocates

locally scoped object and allocates objects assigned to static fields, because an

object is not locally scoped if there is any assignments of an object to static

fields.

We implemented these analyses on Oracle’s phoneME Advanced MR2 ver-

sion. This phoneME advanced MR2 is Java virtual machine for embedded de-

vices and can run Java applications via interpreter and just-in-time compiler

(JITC). Ahead-of-time compiler (AOTC) [29, 30, 31] is also available for trans-

lating Java bytecode to native machine code with optimizations where proposed

approaches had been inserted.1 Our analyses were also done within a method

scope, since a translation unit of the AOTC is a method. Figure 4.3 depicts

a implementation of biased allocator in virtual machine with AOTC. Analyses

are implemented in AOTC and we generate hints at static time as shown in

the figure. A biased allocator itself is available in virtual macine and allocates

objects regarding hints at runtime.

1As we mentioned before, analyses can be implemented in any translator which translates
code, such as JITC, AOTC and ITC.

34

Figure 4.3 Implementation of biased allocator

4.5 Evaluation

We evaluate our proposed analyses on phoneME Advanced MR2 [39] with digi-

tal TV (DTV)[5] set-top box which includes MIPS based core with 128MB main

memory. This software platform in digital TV supports advanced common ap-

plication platform (ACAP) middleware and is running on the Linux with kernel

2.6.12.

We make use of AOTC to perform proposed optimization and observed the

effect of biased allocation without runtime overhead of analyses. Java appli-

cations have been translated by AOTC before running and stored in set-top

box for evaluation. We use six micro benchmarks from specjvm98 [40] to eval-

uate our approaches. We choose a generic generational garbage collector with

two generations in phoneME Advanced MR2 to reclaim objects while running

35

specjvm98. Since total pause time due to garbage collections is relatively small

compared to total running time, we compared total pause time separately in-

stead of total running time and measured the amount of promotions occurred

in generation garbage collections.

4.5.1 Total pause time of garbage collections

We measured total pause time of garbage collections before and after applying

proposed approaches and compared them in Figure 4.4. About up to 12.2% of

total pause time caused by garbage collection has been reduced and about 4.1%

of pause time is removed in average. Figure 4.5 depicts the size of biased ob-

jects compared to total size of objects allocated. We identify lots of objects from

209 db where pause time has been reduced most. However even we biased more

than 10% of objects from 228 jack, total pause time is not reduced much as

we expected compared to other programs and we can’t find direct correlations

between the size of biased objects and total pause time. After careful exami-

nation, we find out that total pause time of generational garbage collector is

affected by various factors and it is very hard to predict. For example, size and

number of objects allocated in nursery area affect pause time. When promotion

occurs, more factors affect pause time of generational garbage collection, be-

cause a promotion includes copying an object and updating pointers to copied

object. Even worse promotions may incur a full major garbage collection when

there is no sufficient space in a mature area.

On the other hand, our approaches may consume a mature area more ag-

gressively due to false detection. Three analyses we proposed are all based on

static analysis without runtime information. Therefore we can’t predict exact

life time of objects and availability of the heap is not concerned at all. As a

result proposed approach may induce side effects in unexpected ways due to

36

Figure 4.4 Ratio of total pause time after applying biased allocation compared
to non-biased allocation

Figure 4.5 Ratio of biased objects size compared to total objects

37

exploiting a mature area much more than a nursery area. However it is not

easy to calculate lifetime of objects exactly and our research is a start point to

exploit different allocation based on analyses. We will discuss these matters in

the last section again with future works.

4.5.2 Effect of each analysis

We also evaluated the effect of each proposed analysis in Figure 4.6. When

we choose objects with an escape analysis, we can’t reduce total pause time

of garbage collections effectively. We found that total pause time has been

reduced much after analyzing loops. Even though we decide to bias objects

which are allocated to static fields towards old generation, Figure 4.6 shows

that there is only a little improvement with this optimization. However it is

expected, because objects assigned to static fields are rarely overwritten and few

allocations are related to static fields. Of course, there are some allocation sites

where few objects are assigned to static fields and other objects are discarded

soon. A proposed analysis may decide those allocation sites to be candidate

for biased allocation but those are not desirable choices, because we want to

allocate objects that live long. Therefore those candidates can be false-positive.

Nevertheless it reduces pause time slightly in average.

4.5.3 Pause time of each garbage collection

We also examine each garbage collection to evaluate biased allocation. Since

behavior of garbage collections is changed after applying proposed optimiza-

tions, it is not reasonable to compare each garbage collections one-to-one. For

example, garbage collections are invoked at different phase of a program and

each garbage collection may reclaim different objects after applying optimiza-

tions. Therefore we choose the first five garbage collections of 209 db where

38

Figure 4.6 Ratio of total pause time of garbage collections compared to all
analyses enabled. Therefore All is always one.

promotion occurs and compared number of promotions to original garbage col-

lections as in Figure 4.7. We choose these five garbage collections, because they

behaves different but not totally different. Even though it is not fair to compare

them one-to-one, it is easily noticed that total number of promotion occurred in

the first five garbage collections have been reduced about 25%. All five garbage

collections have less number of promotions than original garbage collections.

This is expected results, since biased allocator try to allocate objects in a ma-

ture area other than in a nursery where some objects should be promoted later.

The first garbage collection has been invoked more lately than before, because

a nursery is less populated after applying biased allocation.

39

Figure 4.7 Ratio of promotions occurred for the first five garbage collections
with biased allocator compared to original in 209 db.

4.6 Summary

We proposed a way that different allocators can cooperate with garbage col-

lectors which have a critical role in memory management of virtual machine.

For a generational garbage collector, we proposed approaches which make use

of existing analysis techniques to relieve the side effect of generational garbage

collector. Allocation sites have been chosen and biased with three analyses and

each biased allocation site uses new biased allocators instead of original allo-

cator. We implement a proposed approach in real embedded Java device and

evaluate the effectiveness. Total pause time of garbage collections has been re-

duced and promotion overhead of generational garbage collection has been also

reduced in overall.

However we can’t guarantee correctness of biased allocation with analyses

discussed in this paper. Furthermore analyses discussed in this paper are done

at static-time and does not make use of any runtime information. We expect

that analyses can be more accurate if runtime information is provided. Each

40

allocation site use same allocator after decision had made. We expect allocators

can be chosen adaptively or allocator itself can evolve for further improvement.

Also we use only single biased allocator to bias objects but more allocators can

be used for various garbage collectors. We are also expecting that there are

opportunities for biased allocation to improve other garbage collectors as well

as generational garbage collector.

41

Chapter 5

Ahead-of-time Heap Management

5.1 Introduction

Automatic memory management improves productivity of programming and

secures the stability of a program, since it frees the programmer from various

memory management concerns including memory leakage problem. A variety

of virtual machines adopts automatic memory management techniques such as

garbage collection. For example Java virtual machine [1], JavaScriptCore in

webkit [41, 42] and Dalvik virtual machine in Android [2] make use of garbage

collector to reclaim dead objects automatically.

Garbage collection (GC) which automatically finds and reclaims dead ob-

jects, i.e. objects which are not used anymore, is a famous automatic memory

management technique. [8, 23, 21, 22, 20] With garbage collection, program-

mers don’t have to concern tedious implementation of memory management

when writing programs. Numerous techniques about garbage collection have

been proposed regarding diverse software environments and purposes. Reclaim-

42

ing dead objects at runtime incurs inevitable runtime overhead and many ap-

proaches have been proposed to reduce the overhead, because finding dead

object requires a certain amount of computation to make a decision.

We can totally avoid those runtime overhead if infinite memory resources

are available and no object is needed to be reclaimed. However in real world,

memory resource is limited by hardware and multiple programs share the mem-

ory. Even worse, programs are competing for the memory in multitasking en-

vironments. A program allocates objects on a heap which is also allocated on

total memory for private use of the program. When certain conditions are met,

garbage collection starts to reclaim dead objects and secures free space in the

heap for future object allocations. Usually garbage collection reclaims dead

object when there is no sufficient space in the heap to satisfy a new object

allocation request. However, garbage collection is not always successful to se-

cure free space due to various reasons. In such cases, virtual machine tries to

complete an object allocation by expanding the heap itself to make a room for

new objects, i.e. allocating more heap space on the memory.

As we discussed before, it is obvious that we can avoid garbage collection

overhead, if virtual machine chooses to expand the heap instead of performing

garbage collection. But it may result in the very large heap and it is only fea-

sible with infinite memory as discussed before. Therefore most virtual machine

tries to secure free space in the heap by reclaiming dead object with garbage

collection before expanding the heap when there is no sufficient free space in

the heap for a new object allocation request.

While it is reasonable to choose garbage collection before expanding the

heap to avoid excessive memory use, it is also true that expanding the heap can

hide garbage collection overhead. Consequently virtual machine should make

a choice carefully between garbage collection and heap expansion considering

43

overall performance and heap use. A choice of garbage collection and heap ex-

pansion does not guarantee the same results and the result is greatly affected

by memory behavior of an application. For example, if an application allocate

objects which are always live, garbage collection is almost useless because it

cannot reclaim objects at all. In such case, expanding heap is better choice

than garbage collection considering the performance and heap use, because the

heap use is always same regardless of the choice but the performance differs

with the choice. A variety of approaches has been introduced to compromise

the performance and heap use by speculating the memory behavior of appli-

cations. [43, 44, 45, 46, 47] Previous researches shows that it is very hard to

predict behavior of applications exactly and there are some ways to speculate

the behavior indirectly and we are also inspired by those approaches.

We propose a heuristic for choosing heap expansion carefully to improve

overall performance and to provide better user experience with runtime infor-

mation observed from real applications. Runtime temporal information is taken

into consideration as well as runtime spatial information when making decision

between garbage collection and heap expansion. Then we try to expand heap

ahead-of-time to fully avoid garbage collection overhead with temporal and

spatial information.

In the following Section 5.2, we describe our motivation based on observa-

tions of real applications. We explain a existing heuristic for garbage collection

and heap expansion in Android system in Section 5.3. Then we propose our

heuristics based on spatial and temporal information in Section 5.4. We evalu-

ate proposed heuristic in real device in Section 5.5 and summarize this chapter

in Section 5.6.

44

5.2 Motivation

Android employs mark-and-sweep based garbage collector with a concurrent

GC approach which is invoked periodically when certain conditions are met to

secure sufficient free memory space in time. However it seems that many GC

invocations failed to secure sufficient memory and even worse too many GC

invocations are requested in a short time interval. Such behaviors of GC result

in bad user experiences.

Figure 5.1 depicts GC distribution based on the secured free memory amount

in Android. We look into six applications running on Galaxy Nexus to observe

garbage collection behavior. Black indicates allocation GC which is invoked

due to allocation failure and grey indicates concurrent GC which is invoked

periodically.

We observed that more than 50% of GC invocations secure only small

amount of free memory, i.e. less than 10 kilobytes, in a Gallery application

and most of those GC are requested due to allocation failure, i.e. black. For

Camera and Maps, more than 20% of GC invocations reclaim less than 10KB

dead objects. Allocation GC tends to secure less amount of free memory than

concurrent GC in many applications. Therefore we can infer that allocation GC

is not successful to collect lots of dead objects and secure large free memory.

In the such situation, Android is forced to expand the heap after garbage col-

lection to secure additional free space when garbage collection secure relatively

small amount of free space by reclaiming dead objects.

We also observed that in some applications many GC are requested in a

short time. Figure 5.2 shows distribution of time interval depending on the

number of GC invocation in the interval where each time interval is one second.

Among 30 time intervals, 14 time intervals do not suffer GC overhead at all,

45

Figure 5.1 GC distribution by secured free memory amount

46

Figure 5.2 Number of time intervals depending on the number of GC in Maps

application

whereas there is a interval where more than 10 garbage collection are requested

in a second. Even with concurrent GC which is invoked periodically to secure

free space before allocation GC is invoked, we can conclude from the observation

that garbage collection is invoked excessively in a relatively short time interval.

From the first observation, we found that many garbage collections failed

to secure sufficient free space in some applications where the heap is forced

to be expanded as a consequence. From the latter observation, we observed

that distribution of garbage collection is biased and there is a situation where

excessively many garbage collections are invoked in a short time interval, re-

sulting in bad user experiences. We are going to propose heuristics to make a

choice between heap expansion and garbage collection to avoid such undesirable

situation.

47

5.3 Android

Android adopts Dalvik virtual machine as core execution engine and Dalvik

allocates memory from operating system as a heap and manages this heap.

As we describe in previous sections, objects are allocated on the heap when

an application requests new objects to be allocated. Dalvik employs garbage

collection to reclaim dead objects automatically at runtime and secures free

spaces for future object allocations. Consequently application programmers can

rely on garbage collection and don’t have to worry about memory management.

Dalvik may expand the heap by allocating a new memory space from operating

system when there is no sufficient free space after reclaiming dead objects. In

the following subsections, we are going to describe heuristics used in Dalvik to

reclaim dead object, i.e. garbage collection heuristic, and to expand the heap

after the garbage collection, i.e. heap expansion heuristic.

5.3.1 Garbage Collection

Garbage collection in Dalvik adopts a mark-and-sweep strategy to find and

reclaim dead objects. Mark-and-sweep garbage collection has two phases in-

cluding a mark phase and a sweep phase. The first mark phase traverses all

reachable objects recursively from objects in root set which is a predefined by

the virtual machine, Dalvik itself in this case. All reachable objects are marked

in the mark phase and we can consider all unmarked objects dead because those

objects cannot be used from anywhere. We reclaim all unmarked objects and

secure new free space by sweeping all unmarked objects in the sweep phase. [8]

Dalvik invokes the garbage collection in two ways. First, there is a dedicated

thread for the garbage collection and this thread wakes periodically to reclaim

dead objects when certain conditions are met, i.e. concurrent garbage collec-

tion. Secondly, a garbage collection starts when there is no sufficient free space

48

to satisfy the new object allocation request, i.e. allocation garbage collection. In

the concurrent GC, a mark-phase of GC and application threads runs concur-

rently for a time being. Then a GC thread waits all application threads to be

stopped and continues to complete remaining mark phases and the whole sweep

phase. In the allocation GC, the garbage collection waits all other threads to

be stopped and then continues to mark-phase and sweep-phase, often known as

a stop-the-world approach.

5.3.2 Heap expansion heuristic

Dalvik decides to expand the heap in two conditions after the garbage collection.

If android fails to secure free space which is less than preferred ratio of the

total heap size, android chooses to expand the heap. Dalvik also expands the

heap when an object allocation request failed to find room for allocation after

the garbage collection which is invoked by the allocation request, because the

garbage collection already reclaimed all known dead objects but still there is

no free space suitable for a new object.

Even when garbage collection is successful to reclaim sufficient dead objects

and secures free space larger than the size of allocation request, allocation re-

quest may not be satisfied due to fragmentation problem. Fragmentation prob-

lem occurs when there is sufficient free space in total but no continuous free

space is available to satisfies the allocation request, because free space is frag-

mented in small pieces. [18] The fragmentation problem can be avoided with

more complicated garbage collection, such as mark-and-compact GC and gen-

erational GC [8], but it is unavoidable with mark-and-sweep garbage collector

used in Android. Those complicated garbage collection requires more computa-

tion than mark-and-sweep and may incur other performance problems. There

have been approaches that various garbage collection is adaptively chosen [44]

49

Figure 5.3 Flow of heap management in Android 4.1.2

but the topic is beyond the scope here. In this chapter, we will discuss how to

make a choice between garbage collection and heap expansion when garbage

collection technique is fixed.

Figure 5.3 depicts the flow of heap management in Android 4.1.2. Allocation

trial, garbage collection and heap expansion caused by an allocation request is

shown in the figure. We found that Android chooses to expand heap after three

allocation trials and two garbage collections in the worst cases. We expect that

by expanding heap wisely beforehand we can satisfy the allocation request with

50

less allocation trials and less garbage collection, i.e. avoiding the worst case

scenario. We can also avoid future garbage collections, if we expand the heap

more aggressively when expanding the heap in advance. In following sections,

we are going to propose an ahead-of-time heap expansion heuristic to achieve

less runtime overhead with less garbage collections by exploiting heap expansion

aggressively in advance.

5.4 Ahead-of-time heap expansion

We have to consider several issues when expanding the heap. We can avoid

every garbage collections except concurrent garbage collection, if we always ex-

pand the heap without limitation to satisfy object allocation requests. However

size of the heap will grow too large for memory resource available in a device

where multiple applications and services run altogether. As a result memory

utilization will not be effective in such multi-programming environment, if one

application solely consumes large amount of memory. Furthermore we can’t

avoid concurrent garbage collection in Android and it may incur unaffordable

runtime overhead, because garbage collection, especially mark-and-sweep based

one, has to traverse all objects to sweep unmarked objects in the whole heap

which might be very large. As a result runtime overhead of each garbage col-

lection will be increased as the heap grows, although total number of garbage

collection is reduced by always expanding the heap. In other words, user experi-

ences will be getting worse with such heavy runtime overhead of each concurrent

garbage collection.

On the contrary we can also suppress the size of heap being increased, if we

choose to expand the heap only when garbage collection cannot secure sufficient

free space to satisfy an allocation request. Each garbage collection can be com-

pleted in a shorter time, because the size of heap is maintained as small as it

51

Figure 5.4 Flow of heap management with ahead-of-time heap expansion

can be, while garbage collection is invoked more frequently. Consequently total

number of garbage collection will be increased and overall runtime overhead of

garbage collections will be also increased, resulting in bad performance of whole

Android system.

As we discussed, we have to choose heap expansion heuristic carefully, be-

cause heap expansion affects not only total heap size but also performance of

whole system. In this chapter, we take into account the runtime spatial infor-

mation which has been also exploited in other previous researches [44, 45, 47]

52

and propose a new heuristic to improve the existing heuristic in Android. Then

we are going to exploit runtime temporal information to propose heuristics for

better user experiences. With these spatial and temporal information, we try

to expand heap in advance when there is no need to expand heap right away,

i.e. ahead-of-time heap expansion.

Figure 5.4 shows how ahead-of-time heap expansion works in Android when

an allocation request made. Unlike original flow in Figure 5.3, there is an ad-

ditional computation to make a decision between garbage collection and heap

expansion. Compared to original flow of Figure 5.3, we can avoid a garbage

collection with heap expansion if certain conditions are met. In the following

subsections, we will discuss what kind of information is used to make a decision.

5.4.1 Spatial heap expansion

We are going to exploit spatial information to expand the heap in ahead-of-

time. There is a lot of spatial information available at runtime regarding ob-

ject allocation, garbage collection and the heap. For example, size of allocated

objects after the last garbage collection, size of reclaimed objects from cur-

rent garbage collection and size of used heap have been exploited in other

researches. [47, 17, 45, 44] Furthermore crafted information with such spatial

information, such as ratio, has been also used in various ways.

Among spatial information, we choose information directly related to garbage

collection to determine whether the GC is successful or not. The total size of

reclaimed objects can be calculated right after the garbage collection. In Sec-

tion 5.2, we measured the size of reclaimed objects and found out that garbage

collection often secures relatively small free space.

We suspected that those garbage collections try to reclaim dead object re-

peatedly even when there are only few dead objects available. The problem is

53

that amount of dead objects cannot be determined before the garbage collec-

tion. We decide to expand heap when current garbage collection secures rela-

tively small free space. By expanding the heap now, we can reduce the chance

of invoking future garbage collections with few dead objects due to allocation

failure. If it works, we can reduce the number of garbage collection which se-

cures small free space and total number of garbage collection will be reduced as

well. With mark-and-sweep garbage collection, we can reduce overall overhead

of garbage collection by reducing the number of garbage collection. As a result,

heap management with less GC overhead provide better user experiences and

better overall performance.

Spatial information other than size of reclaimed objects can be used as

well. We also make use of other information in ahead-of-time heap expansion

framework. First, size of total free space available after the current GC is used

to make a decision regarding heap expansion, because size of available free space

reflects how much amount of new objects can be allocated on the heap before

next allocation failure. However the size of free space is not reliable information,

since it is useless if the ratio of fragmentation is getting high. Furthermore the

size of free space is not flexible and sufficient information, because the size of

required memory and the size of working set differ from an application to an

application.

To consider different memory requirement of applications, we tried to exploit

ratio of free space compared to the heap. We can adaptively consider working

set of applications with the ratio instead of the size of free space. However this

information is turned out to be unreliable in heap management with mark-

and-sweep garbage collection. We will discuss these other spatial information

in Section 5.5.

54

5.4.2 Temporal heap expansion

Although spatial information is very useful and provides valuable insights, it

is very hard to figure out correlation between spatial information and perfor-

mance, especially user experiences. [20, 48] Therefore we try to exploit temporal

information in addition to spatial information, because we think that temporal

information reflects performance and user experiences directly.

Like spatial information, there are a variety of temporal information with

memory management such as object allocation, garbage collection, page fault

and etc. Among them, we try to exploit temporal information regarding garbage

collection to reduce garbage collection overhead, because garbage collection in

Android adopts a stop-the-world approach which stops the whole program exe-

cution when garbage collection is running. This strategy affects user experience

directly in a bad way when the pause time is getting longer.

The simple and intuitive temporal information related to the garbage col-

lection is garbage collection pause time. However the pause time alone is not

enough to determine heap expansion, because pause time of mark-and-sweep

collection depends on the number of objects and the number of objects in

the heap is totally determined by applications. Therefore using pause time to

determine heap expansion can mislead us and cannot be applied to various ap-

plications with different set of working objects in general. If we want to reduce

the pause time for an application with large working set of objects, we have to

change garbage collection itself and this problem is beyond the scope of this

paper as we mentioned before.

In fact, as well as garbage collection with long pause time, garbage collection

with short pause time can also cause a bad user experience if such short garbage

collection is invoked frequently in a short period of time. In Section 5.2, we

55

observed that many garbage collections were requested in a short time. Based

on the observation, we are going to propose a way to expand the heap in advance

when garbage collection is called multiple times in a short time interval. The

simplest temporal information is an interval between garbage collections and it

can be measured directly. However this information only reflects the last two

garbage collection and it is not enough to determine whether many garbage

collections have been invoked frequently in a short time interval.

Instead we count up the number of consecutive garbage collections only

when an interval between last two garbage collections is shorter than threshold

and reset the counter if the interval is longer than threshold. When the counter

meets predefined number of garbage collections, we ascertain that the last con-

secutive garbage collections have been invoked in a limited of time. Based on

the information, we predict that there will be a upcoming garbage collection in

a short time again. So we decide to expand heap in advance and we anticipate

no more invocation of garbage collection in a short time.

5.4.3 Launch-time heap expansion

A user does not care about user responsiveness when an application is just being

launched and there is no way to interact with the application. Instead what a

user expected is a fast launching of the application. Therefore we can apply a

completely different heuristic for garbage collection and heap expansion when

an application is being started.

First, we don’t have to rely on concurrent garbage collection, because few

user input is required and responsiveness doesn’t matter. Unlike the previous

approaches, we exploit temporal information to suppress concurrent GC instead

of allocation GC. When a signal wakes up a thread for a concurrent garbage

collection, we compute the time since the last garbage collection including both

56

allocation and concurrent garbage collection. If the time interval is shorter than

a threshold, we skip a concurrent garbage collection and the thread is being slept

again.

We can also expand the heap more aggressively without concerning over

expanding the heap, since the heap should grow to a certain size to satisfy

a minimum memory requirement of the application when the application is

being started. We exploit a spatial information and temporal information to

make a decision on an aggressive heap expansion. We calculate the size of free

space secured by the collection after an allocation garbage collection. If the size

is less than a threshold and the time since the last collection, including both

concurrent and allocation, is short, we decide to grow the heap to meet a certain

utilization ratio before an allocation trial.

Unlike the ahead-of-time heap expansion in previous sections, we suppress

a concurrent garbage collection and we do not avoid an allocation garbage col-

lection but expand the heap more aggressively after the garbage collection.

Without considering the responsiveness, we expect less concurrent garbage col-

lections as well as less allocation GC in overall. Since we don’t skip an allocation

garbage collection, we assert that we can reclaim dead objects in time when

relcaiming is really necessary, and therefore we can ease the side effect of an

aggressive heap expansion.

5.5 Evaluation

We evaluated proposed heuristics on Galaxy Nexus with Android 4.1.2 Jelly

Bean. Galaxy Nexus is a Android smartphone with touchscreen co-developed

by Google and Samsung Electronics. It contains 1GB RAM and TI OMAP

4460 which have dual-core 1.2GHz Cortex-A9 supporting ARMv7 instruction

set. Android 4.1.2 supports trace-based just-in-time compiler (JITC) to acceler-

57

ate application execution and manages the heap with mark-and-sweep garbage

collector.

Default applications of Android have been used to observe the effect of

heuristics. We choose three applications to evaluate proposed approaches while

running with user inputs from those default applications, e.g. Camera, Gallery

and Maps. Camera and Gallery invoke many garbage collections but reclaims

few dead objects as shown in Section 5.2. On the other hand, Maps provided

bad user experiences, because garbage collections are invoked a lot in a short

time when a user interacts with the maps application. We are going to evaluate

the effect of spatial heap expansion and temporal heap expansion with these

applications.

To evaluate heuristic for application launching, we use 11 applications in-

cluding above three applications. These applications include very simple ap-

plications as well as complex ones, i.e. Gallery, Calculator, MMS, Settings,

Deskclock, email, Browser, Maps, Calendar, Contacts and youtube.

5.5.1 Spatial heap expansion

We choose threshold to be 10 kilobytes for spatial heap expansion heuristic

considering size of reclaimed objects to compare behavior of garbage collection

with original one shown in Section 5.2.

Figure 5.5 and Figure 5.6 depict garbage collections distribution depend-

ing on the size of reclaimed objects in Camera and Gallery. About one fourth

of garbage collection in camera and about half of collection in gallery secured

free space less than 10 kilobytes with original Android heuristic. After apply-

ing ahead-of-time heap expansion with spatial information, garbage collection

distribution is changed. Ratio of garbage collections which reclaimed less than

10KB of objects has been reduced in both applications. Most of the reduction

58

Figure 5.5 GC distribution by the size of reclaimed objects in Camera

Figure 5.6 GC distribution by the size of reclaimed objects in Gallery

59

Figure 5.7 Changes of GC behavior in Camera after applying spatial heuristic

is due to reduction of allocation GC, while ratio of concurrent GC has been

increased. This is expected consequences, because proposed heuristic avoids al-

location GC and concurrent GC has more opportunities to be invoke due to

less invocation of allocation GC.

We also observed changes of garbage collection behavior as shown in Fig-

ure 5.7 and 5.8. Total number of garbage collections is also reduced after apply-

ing spatial heap expansion in both applications. Especially allocation GC which

is requested when an object allocation failure occurs has been invoked less than

original. As discussed before this was expected, because spatial heap expansion

has been proposed to avoid allocation garbage collection by expanding heap ag-

gressively. Total pause time of garbage collection has been also reduced as the

total number of garbage collection is reduced, although concurrent GC spends

more time than before. We shorten the pause time 21.2% in camera and 31%

in gallery.

While we reduced the pause time, max size of heap has been increased

60

Figure 5.8 Changes of GC behavior in Gallery after applying spatial heuristic

somewhat as side effect due to aggressive heap expansion. With ahead-of-time

heap expansion, camera requires 18.8% more heap, i.e. from 25.6MB to 30.4MB,

and gallery allocates 3.5% more heap , i.e. from 37.6MB to 38.9MB.

5.5.2 Comparision of spatial heap expansion

We evaluate spatial heuristics with size of reclaimed objects in previous sec-

tion. We also implemented and evaluated ahead-of-time heap expansion with

other spatial information, such as size of free space and ratio of free space. Fig-

ure 5.9, 5.10 and 5.11 compares all four spatial heuristics, including original,

size of reclaimed objects, size of free space and ratio of free space. Cameara

application is used for the comparison.

Figure 5.9 describes the GC distribution after applying each heuristic. We

found out that two spatial heuristic, i.e. size of reclaimed objects and size of

free space, are effective in reducing the number of garbage collection with small

size of reclaimed objects. Therefore it is reasonable to use those two spatial

61

Figure 5.9 GC distribution depending on size of reclaimed objects in Camera

62

Figure 5.10 GC distribution depending on size of free space in Camera

information to predict future behavior of garbage collections.

When we examine the GC distribution by the size of free space as in Fig-

ure 5.10, we didn’t find meaningful changes except slight changes in distribution.

Even with the spatial heuristic with size of free space, there are still allocation

63

Figure 5.11 GC distribution depending on ratio of free space in Camera

GCs which produces less than 500KB free space. From the result, we suspect

that size of total free space after the current garbage collection does not guar-

antee future behaviors of garbage collections.

Finally we look into the ratio of free space after applying four spatial heuris-

tics as shown in Figure 5.11. Two spatial heuristics have changed the distribu-

64

Figure 5.12 Total number of garbage collections of Camera with different heuris-
tics

tion of GC. Heuristics with size of reclaimed objects and ratio of free space

secures relatively more free space than before. It was expected that number

of garbage collections which secures relatively less free space has been reduced

with a heuristic with ratio of free space. However we are not convinced whether

this changes is beneficial or not, because securing more free space does not

promise better performance.

To evaluate the performance of each spatial heuristic, we measured the

number and total pause time of GC in Figure 5.12 and 5.13. All three spatial

heuristic reduce the number of allocation GC while number of concurrent GC

increased. A heuristic with ratio of free space results in more number of GC

when considering both allocation GC and concurrent GC. A proposed spatial

heuristic with reclaimed object shows the least number of GC overall. Same

65

Figure 5.13 GC pause time of Camera with different heuristics

Figure 5.14 Size of max heap in Camera with different heuristics

66

result can be found with pause time of GC as in Figure 5.13, since number of

GC and pause time of GC are strongly correlated when mark-and-sweep GC is

used.

Size of max heap is also measured in Figure 5.14 to check the side effect

of aggressive heap expansion. Original heuristic without ahead-of-time heap

expansion shows the smallest size of max heap and it is expected as well, because

it always invokes GC before expanding heap. The heuristic with size of reclaimed

objects shows the best performance but requires more heap as discussed before.

We decide to track overall behavior of heap to analyze the effect of each heap

expansion approach in more detail. During the execution of an application, we

traced the size of heap and live objects when each garbage collection completed.

The size of live objects is computed during mark phase of garbage collection and

the size of heap is measured after heap expansion occurred. We also calculate

the ratio of free space compared to total heap. Figure 5.15 and 5.16 show these

values regarding each spatial heap expansion heuristic.

All four heuristics show that heap grows as time goes and the size of heap

converges to the size of max heap. With ahead-of-time heap expansion, heap

grows more rapidly than original in early time. Size of live objects also increases

and converges at some point, and this should be same regardless of heuristics

because size of live objects is solely depends on the behavior of the application.

Therefore we can easily infer that size of free space may increase at first and

converges to some point, since size of free space can be directly computed by

subtracting size of live objects from size of total heap. Therefore a heuristic with

size of free space may not work correctly after some point and threshold should

be adaptively changed to cope with such application behavior. Finally ratio of

free space is also increasing as time goes and we find out this was mainly due

to fragmentation problem in mark-and-sweep garbage collector. Therefore we

67

Figure 5.15 Heap behavior of Camera with original and proposed heuristics.
X-axis denotes each garbage collection and left y-axis depicts the total heap
size and the size of live objects in kilobytes, while right y-axis shows ratio of
free space in percentage.

68

Figure 5.16 Heap behavior of Camera with other spatial heuristics. X-axis de-
notes each garbage collection and left y-axis depicts the total heap size and the
size of live objects in kilobytes, while right y-axis shows ratio of free space in
percentage.

69

Figure 5.17 Number of time intervals depending on the number of GC in a time
interval after applying temporal heap expansion in Maps

can conclude that fixed size of free space or ratio of free space are not reliable

information to determine ahead-of-time heap expansion with mark-and-sweep

garbage collection here, while size of reclaimed object is reliable information to

predict future behavior of garbage collection.

5.5.3 Temporal heap expansion

We also evaluate ahead-of-time heap expansion with temporal information. Fig-

ure 5.2 in the section 5.2 shows time interval distribution depending on the

number of garbage collections invoked within a time interval, where each time

interval is one second. We count up the number of garbage collection if time

interval between two garbage collection is less than 300ms. Then we expand

heap ahead-of-time when counter exceed the threshold. A histogram of time

interval after applying ahead-of-time temporal heap expansion is shown in Fig-

ure 5.17. Compared to Figure 5.2, we can easily observe that we completely

removed time intervals where garbage collection is invoked more than 10 times

70

Figure 5.18 Changes of GC behavior in Maps after applying temporal heuristic

in a second. We also observed that much less lags were observed when a user

interacts with the Maps application but it cannot be measured quantitatively.

We figure out the improvement qualitatively by recording the behavior of maps

application in video and comparing them.

Temporal heap expansion also reduces total number of garbage collections

by avoiding garbage collection with timely heap expansion, especially alloca-

tion garbage collection. In consequences, number of GC and pause time of GC

are reduced in meaningful amount as shown in Figure 5.18. Like spatial heap

expansion, allocation GC is avoided with temporal heap expansion, because we

expands heap when allocation failure occurred and garbage collection has been

invoked too much in a short time.

Although we expand heap based on temporal information other than spa-

tial information, max size of heap has been increased with temporal heuristic.

Because we expand the heap even when garbage collection can secure sufficient

free space, heap expansion occurred more frequently than before. In Maps appli-

71

Table 5.1 Number of garbage collection and heap expansion. Only heap expan-
sion due to allocation failure after the GC has been counted

Benchmarks Before After

Allocation GC 109 111

Concurrent GC 135 112

Heap Expansion 26 16

Total 270 239

Table 5.2 Pause time of garbage collections
Pause time(msec) Before After

Allocation GC 5144 5065

Concurrent GC 1353 1077

Total 6497 6142

cation, we require 10.9% more heap than before, e.g. from 27.4MB to 30.4MB.

5.5.4 Launch-time heap expansion

We evaluated a launch-time heuristic with spatial and temporal information

when applications start to run. Total 11 applications are launched and applica-

tions have been launched explicitly in serial manner five times.

We measured number of garbage collections and number of heap expansion

due to allocation failure as in Table 5.1. Concurrent GC has been invoked much

less than before, because we avoid the concurrent GC with the heuristic as well

as allocation GC. When the last garbage collection, regardless of concurrent

or allocation, has already reclaimed objects shortly before, we skip concurrent

GC. The number of heap expansion due to allocation failure has been reduced,

since we expand heap aggressively to secure sufficient free space after allocation

garbage collection when temporal and spatial thresholds are met.

We also measured pause time caused by garbage collections in Table 5.2.

Overall pause time has been reduced 5.5% and most of the improvement has

been from the concurrent garbage collection as we already expected, because

72

the number of concurrent garbage collection have been reduced.

5.6 Summary

In this chapter, we propose ahead-of-time heap expansion heuristics to avoid

bad garbage collection behavior in Android with temporal and spatial heuristic.

We proposed an ahead-of-time heap expansion framework to enhance ex-

isting Android heap management heuristic. Then size of reclaimed objects is

considered to determine ahead-of-time heap expansion in addition to existing

utilization information. Two more kinds of spatial information are exploited

and evaluated with size of reclaimed object. We also exploited temporal infor-

mation to detect bad garbage collection behavior when many GCs are invoked

in a short time and to apply ahead-of-time heap expansion. In such case, we skip

next GC invocation by expanding heap ahead-of-time instead of GC. Finally

we also propose a heuristic when an application is being launched where the

responsiveness doesn’t matter. We evaluated proposed heuristics with default

key applications in Android. Results show that we can relieve the situation

where GCs are invoked many times but reclaim relatively few objects and too

many GCs are invoked in a short time. Also we reduce total pause time caused

by garbage collections when an application is launched by a user.

We exploit three spatial information and one temporal information in this

paper. We can refine these information more carefully and there can be more

kinds of information which might be useful for ahead-of-time heap expansion.

We use a totally different heuristic when an application starts, but we ex-

pect that more improvement can be achieved if we can apply different heuris-

tics of ahead-of-time heap expansion adaptively as an application behavior

changes.[47]

73

Chapter 6

Conculsion

In this paper, I propose three optimizing approaches for memory management

in virtual machine. Proposed approaches address memory management issues

including object allocation, garbage collection and heap management. Memory

management issues of a variety of virtual machine including Dalvik virtual ma-

chine in Android platform which is widely spread recently as well as famous Java

virtual machine are considered. Also wide range of virtual machine environment

is considered including embedded, mobile and server environment.

First, I’ve proposed a lazy worst fit allocator which is a fast object allocator

with low fragmentation. Proposed allocation has been implemented in Java

virtual machine and has been evaluated on desktop and server environment. A

lazy worst fit allocator outperforms other allocators including segregated first

fit and lazy first fit and shows good fragmentation as low as first fit allocator

which is known to have the lowest fragmentation.

Secondly, a biased allocator is suggested to address extra overhead of genera-

tional garbage collector. A proposed approach has been implemented in embed-

74

ded Java virtual machine and evaluated on embedded device including digital

TV. With three analyses, a biased allocator reduces 4.1% of pause time caused

by generational garbage collections in average.

Finally, ahead-of-time heap expansion framework is introduced to avoid

worst-case behavior of garbage collection. The proposed approach has been

implemented in Dalvik virtual machine of Android platform and evaluated on

mobile device, i.e. smartphone, with real applications. Ahead-of-time heap ex-

pansion reduces both number of garbage collections and total pause time of

garbage collections. Pause time of GC reduced up to 31% in default applica-

tions of Android platform.

Memory management deals with a variety of issues and new problems are

raised as new devices and software environment are being introduced. These

problems are complicated, because several issues are interconnected each other,

including object allocation, garbage collection and heap management. I’ve ad-

dressed problems of object allocation, garbage collection and heap management

separately, but also tried to address garbage collection overhead by introducing

new allocator and new heap management technique. I hope such approaches is

useful to deal with future problems in memory management.

75

Bibliography

[1] T. Lindholm and F. Yellin, Java Virtual Machine Specification, 2nd ed.

Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1999.

[2] D. Ehringer, “The dalvik virtual machine architecture,” Techn. re-

port (March 2010), 2010, http://davidehringer.com/software/android/

The Dalvik Virtual Machine.pdf.

[3] “Android official website.” [Online]. Available: http://www.android.com

[4] “900 million Android activations!” May 2013, Google I/O

2013. [Online]. Available: https://developers.google.com/events/io/2013/,

http://www.youtube.com/watch?v=1CVbQttKUIk

[5] “Interactive tv web,” http://www.interactivetvweb.org.

[6] J. Smith and R. Nair, Virtual Machines: Versatile Platforms for Systems

and Processes (The Morgan Kaufmann Series in Computer Architecture

and Design). San Francisco, CA, USA: Morgan Kaufmann Publishers

Inc., 2005.

[7] J. Gosling, B. Joy, and G. Steele, The Java Language Specification.

Addison-Wesley, 1996.

76

[8] R. Jones and R. Lins, Garbage Collection: Algorithms for Automatic Dy-

namic Memory Management, 1st ed. New York, NY, USA: John Wiley

and Sons, Inc., 1996.

[9] P. Wilson, M. Johnstone, M. Neely, and D. Boles, “Dynamic storage

allocation: A survey and critical review,” in Memory Management,

ser. Lecture Notes in Computer Science, H. Baler, Ed. Springer

Berlin Heidelberg, 1995, vol. 986, pp. 1–116. [Online]. Available:

http://dx.doi.org/10.1007/3-540-60368-9 19

[10] C. J. Cheney, “A nonrecursive list compacting algorithm,” Commun.

ACM, vol. 13, no. 11, pp. 677–678, Nov. 1970. [Online]. Available:

http://doi.acm.org/10.1145/362790.362798

[11] P. Wilson, “Uniprocessor garbage collection techniques,” in Memory

Management, ser. Lecture Notes in Computer Science, Y. Bekkers and

J. Cohen, Eds. Springer Berlin Heidelberg, 1992, vol. 637, pp. 1–42.

[Online]. Available: http://dx.doi.org/10.1007/BFb0017182

[12] Y. Chung and S.-M. Moon, “Memory allocation with lazy fits,” in

Proceedings of the 2Nd International Symposium on Memory Management,

ser. ISMM ’00. New York, NY, USA: ACM, 2000, pp. 65–70. [Online].

Available: http://doi.acm.org/10.1145/362422.362457

[13] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles, “Memory alloca-

tion policies reconsidered,” Technical report, University of Texas at Austin

Department of Computer Sciences, Tech. Rep., 1995.

[14] W. T. Comfort, “Multiword list items,” Commun. ACM,

vol. 7, no. 6, pp. 357–362, Jun. 1964. [Online]. Available:

http://doi.acm.org/10.1145/512274.512288

77

[15] D. E. Knuth, The art of computer programming, Volumn 1: Fundamental

algorithms, 3rd ed. Boston, MA, USA: Addison-Wesley Professional, 1997.

[16] B.-S. Yang, S.-M. Moon, S. Park, J. Lee, S. Lee, J. Park, Y. C.

Chung, S. Kim, K. Ebcioglu, and E. Altman, “Latte: A Java

VM just-in-time compiler with fast and efficient register allocation,”

in Proceedings of the 1999 International Conference on Parallel

Architectures and Compilation Techniques, ser. PACT ’99. Washington,

DC, USA: IEEE Computer Society, 1999, pp. 128–. [Online]. Available:

http://dl.acm.org/citation.cfm?id=520793.825720

[17] Y. C. Chung, S.-M. Moon, K. Ebcioğlu, and D. Sahlin, “Reducing

sweep time for a nearly empty heap,” in Proceedings of the 27th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

ser. POPL ’00. New York, NY, USA: ACM, 2000, pp. 378–389. [Online].

Available: http://doi.acm.org/10.1145/325694.325744

[18] M. S. Johnstone and P. R. Wilson, “The memory fragmentation problem:

Solved?” in Proceedings of the 1st International Symposium on Memory

Management, ser. ISMM ’98. New York, NY, USA: ACM, 1998, pp.

26–36. [Online]. Available: http://doi.acm.org/10.1145/286860.286864

[19] A. W. Appel, “Simple generational garbage collection and fast allocation,”

Software: Practice and Experience, vol. 19, no. 2, pp. 171–183, 1989.

[Online]. Available: http://dx.doi.org/10.1002/spe.4380190206

[20] M. Hertz, Y. Feng, and E. D. Berger, “Garbage collection without

paging,” in Proceedings of the 2005 ACM SIGPLAN Conference on

Programming Language Design and Implementation, ser. PLDI ’05.

78

New York, NY, USA: ACM, 2005, pp. 143–153. [Online]. Available:

http://doi.acm.org/10.1145/1065010.1065028

[21] F. Xian, W. Srisa-an, C. Jia, and H. Jiang, “AS-GC: An efficient

generational garbage collector for Java application servers,” in Proceedings

of the 21st European Conference on Object-Oriented Programming, ser.

ECOOP’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 126–150.

[Online]. Available: http://dl.acm.org/citation.cfm?id=2394758.2394768

[22] P. Reames and G. Necula, “Towards hinted collection: Annotations

for decreasing garbage collector pause times,” in Proceedings of the

2013 International Symposium on Memory Management, ser. ISMM

’13. New York, NY, USA: ACM, 2013, pp. 3–14. [Online]. Available:

http://doi.acm.org/10.1145/2464157.2464158

[23] Y. Levanoni and E. Petrank, “An on-the-fly reference counting garbage

collector for Java,” in Proceedings of the 16th ACM SIGPLAN Conference

on Object-oriented Programming, Systems, Languages, and Applications,

ser. OOPSLA ’01. New York, NY, USA: ACM, 2001, pp. 367–380.

[Online]. Available: http://doi.acm.org/10.1145/504282.504309

[24] “Memory management in the Java HotSpot virtual machine,”

Apr. 2006, http://www.oracle.com/technetwork/java/javase/tech/

memorymanagement-whitepaper-1-150020.pdf.

[25] D. Doligez and X. Leroy, “A concurrent, generational garbage collector for

a multithreaded implementation of ml,” in Proceedings of the 20th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

ser. POPL ’93. New York, NY, USA: ACM, 1993, pp. 113–123. [Online].

Available: http://doi.acm.org/10.1145/158511.158611

79

[26] A. Krall, “Efficient JavaVM just-in-time compilation,” in Proceed-

ings of the 1998 International Conference on Parallel Architectures

and Compilation Techniques, ser. PACT ’98. Washington, DC,

USA: IEEE Computer Society, 1998, pp. 205–. [Online]. Available:

http://dl.acm.org/citation.cfm?id=522344.825703

[27] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney, “Adaptive

optimization in the Jalapeno JVM,” in Proceedings of the 15th ACM SIG-

PLAN Conference on Object-oriented Programming, Systems, Languages,

and Applications, ser. OOPSLA ’00. New York, NY, USA: ACM, 2000,

pp. 47–65. [Online]. Available: http://doi.acm.org/10.1145/353171.353175

[28] J. Aycock, “A brief history of just-in-time,” ACM Comput.

Surv., vol. 35, no. 2, pp. 97–113, Jun. 2003. [Online]. Available:

http://doi.acm.org/10.1145/857076.857077

[29] T. A. Proebsting, G. Townsend, P. Bridges, J. H. Hartman, T. Newsham,

and S. A. Watterson, “Toba: Java for applications a way ahead of

time (wat) compiler,” in Proceedings of the 3rd Conference on USENIX

Conference on Object-Oriented Technologies (COOTS) - Volume 3, ser.

COOTS’97. Berkeley, CA, USA: USENIX Association, 1997, pp. 3–3.

[Online]. Available: http://dl.acm.org/citation.cfm?id=1268028.1268031

[30] A. Varma and S. S. Bhattacharyya, “Java-through-C compilation:

An enabling technology for Java in embedded systems,” in Pro-

ceedings of the Conference on Design, Automation and Test in

Europe - Volume 3, ser. DATE ’04. Washington, DC, USA:

IEEE Computer Society, 2004, pp. 30 161–. [Online]. Available:

http://dl.acm.org/citation.cfm?id=968880.969233

80

[31] A. Nilsson and S. Robertz, “On real-time performance of ahead-of-time

compiled Java,” in Object-Oriented Real-Time Distributed Computing,

2005. ISORC 2005. Eighth IEEE International Symposium on. Wash-

ington, DC, USA: IEEE Computer Society, 2005, pp. 372–381.

[32] H.-K. Choi, D.-H. Jung, and S.-M. Moon, “Install-time compiler for embed-

ded mobile devices,” in Proceedings of Workshop on Interaction between

Compilers and Computer Architectures, ser. INTERACT-12, 2008.

[33] J. Dean, D. Grove, and C. Chambers, “Optimization of object-oriented

programs using static class hierarchy analysis,” in Proceedings of the 9th

European Conference on Object-Oriented Programming, ser. ECOOP ’95.

London, UK, UK: Springer-Verlag, 1995, pp. 77–101. [Online]. Available:

http://dl.acm.org/citation.cfm?id=646153.679523

[34] G. Snelting and F. Tip, “Understanding class hierarchies using concept

analysis,” ACM Trans. Program. Lang. Syst., vol. 22, no. 3, pp. 540–582,

May 2000. [Online]. Available: http://doi.acm.org/10.1145/353926.353940

[35] J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, and S. Midkiff,

“Escape analysis for Java,” in Proceedings of the 14th ACM SIGPLAN

Conference on Object-oriented Programming, Systems, Languages, and

Applications, ser. OOPSLA ’99. New York, NY, USA: ACM, 1999, pp.

1–19. [Online]. Available: http://doi.acm.org/10.1145/320384.320386

[36] D. Gay and B. Steensgaard, “Stack allocating objects in Java,” Microsoft

Research, Tech. Rep., 1999.

[37] “Java HotSpotTM virtual machine performance enhancements,” 2013,

http://docs.oracle.com/javase/7/docs/technotes/guides/vm/performance-

enhancements-7.html.

81

[38] M. Hirzel, J. Henkel, A. Diwan, and M. Hind, “Understanding

the connectivity of heap objects,” in Proceedings of the 3rd In-

ternational Symposium on Memory Management, ser. ISMM ’02.

New York, NY, USA: ACM, 2002, pp. 36–49. [Online]. Available:

http://doi.acm.org/10.1145/512429.512435

[39] “Phoneme project,” https://java.net/projects/phoneme.

[40] “SPECjvm98 documentation,” 1999, http://www.spec.org/osg/jvm98/

jvm98/doc/index.html.

[41] “JavaScriptCore,” http://trac.webkit.org/wiki/JavaScriptCore.

[42] “JS Core Garbage Collector,” http://trac.webkit.org/wiki/JS%20Core%20

Garbage%20Collector.

[43] E. Andreasson, F. Hoffmann, and O. Lindholm, “To collect or not to col-

lect? machine learning for memory management.” in Proceedings of the 2nd

Java Virtual Machine Research and Technology Symposium, S. P. Midkiff,

Ed. Berkeley, CA, USA: USENIX Association, 2002, pp. 27–39.

[44] S. Soman, C. Krintz, and D. F. Bacon, “Dynamic selection of

application-specific garbage collectors,” in Proceedings of the 4th

International Symposium on Memory Management, ser. ISMM ’04.

New York, NY, USA: ACM, 2004, pp. 49–60. [Online]. Available:

http://doi.acm.org/10.1145/1029873.1029880

[45] T. Yang, M. Hertz, E. D. Berger, S. F. Kaplan, and J. E. B. Moss,

“Automatic heap sizing: Taking real memory into account,” in Proceedings

of the 4th International Symposium on Memory Management, ser. ISMM

82

’04. New York, NY, USA: ACM, 2004, pp. 61–72. [Online]. Available:

http://doi.acm.org/10.1145/1029873.1029881

[46] D. Buytaert, K. Venstermans, L. Eeckhout, and K. De Bosschere,

“Garbage collection hints,” in Proceedings of the First International

Conference on High Performance Embedded Architectures and Compilers,

ser. HiPEAC’05. Berlin, Heidelberg: Springer-Verlag, 2005, pp. 233–248.

[Online]. Available: http://dx.doi.org/10.1007/11587514 16

[47] C. Zhang, K. Kelsey, X. Shen, C. Ding, M. Hertz, and M. Ogihara,

“Program-level adaptive memory management,” in Proceedings of the

5th International Symposium on Memory Management, ser. ISMM ’06.

New York, NY, USA: ACM, 2006, pp. 174–183. [Online]. Available:

http://doi.acm.org/10.1145/1133956.1133979

[48] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou, and

S. Kumar, “Dynamic tracking of page miss ratio curve for memory

management,” in Proceedings of the 11th International Conference on

Architectural Support for Programming Languages and Operating Systems,

ser. ASPLOS XI. New York, NY, USA: ACM, 2004, pp. 177–188.

[Online]. Available: http://doi.acm.org/10.1145/1024393.1024415

83

요약

메모리 관리는 가상머신의 핵심 기능 중 하나이며 가상머신의 성능에 큰 영

향을 준다. 자바와 같은 가상머신을 위한 최신의 프로그래밍 언어들은 동적

메모리 할당 기법을 사용하며 객체를 heap에서 자주 할당한다. 이렇게 할당

된 객체들은 추후 더 이상 사용되지 않게 되면 추후 할당할 객체들을 위한 빈

공간을 확보하기 위해 회수된다. 많은 가상 머신들이 쓰레기 수집기라 불리

는 기법을 채택하여 heap에서 사용하지 않는 죽은 객체들을 회수한다. 반면에

heap 자체의 크기를 늘려서 더 많은 객체를 할당하도록 할 수도 있다. 이처럼

메모리관리의성능은객체할당기법,쓰레기수집기그리고 heap관리기법에

의해서 결정된다.

본 논문에서는 가상머신에서 메모리 관리 성능을 향상시키기 위한 세가지

기법을 제안하려고 한다. 우선 lazy worst fit이라는 객체 할당기법을 제안하여

쓰레기 수집기가 있는 가상머신에서 작은 객체들을 빠르게 할당할 수 있도록

하였다. 다음으로 biased allocator를 제안하여 쓰레기 수집기의 추가적인 시간

소모를 줄여 쓰레기 수집기의 수행 시간을 줄일 수 있도록 하였다. 마지막으로

ahead-of-time heap expansion기법을제안하여쓰레기수집기의호출을억제하

여 사용자 반응성과 메모리 관리 성능을 개선시키도록 하였다.

이렇게 제안된 기법들은 데스크톱, 내장형 그리고 모바일 기기 등과 같은

다양한 환경에서 구현되어 평가되었으며, Java 수행환경을 위한 자바 가상 머

신과 Android 환경을 위한 Dalvik 가상머신에 적용되었다. Lazy worst fit 객체

할당기는 다른 할당 기법들과 비교해서 압도적인 성능을 보였으며, 가장 좋

은 단편화 현상을 보이는 first fit과 비슷한 수준의 단편화 현상을 보여주었다.

Biased allocator는 쓰레기 수집기의 수행시간을 평균적으로 4.1%의 개선하였

다. Ahead-of-time heap expansion기법은쓰레기수집기의수행횟수와시간을

84

모두 줄일 수 있었다. Android 환경의 기본 응용 프로그램들을 이용하여 평가

하였을 떼, 쓰레기 수집기의 수행 시간은 최대 31% 줄일 수 있었다.

주요어: 최적화, 가상머신, 메모리 관리, 객체 할당, 쓰레기 수집기, 힙 관리

학번: 2002-30447

85

Acknowledgements

대학원을시작하면서알게된가상머신이최근에는일반인들에게도널리쓰이

고있어시간이많이흘렀음을느끼게되며지금까지옆에서기다리면서언제나

응원을 해 준 가족들 특히 아내 윤경이에게 고마운 마음을 전합니다. 또한 언

제나 밝은 모습으로 삶의 활력을 불어 넣어준 종원이와 지민에게도 고맙다는

말을 하고 싶습니다. 또한 마음 고생 많이 시켜드렸는데도 묵묵히 응원해 주신

부모님에게도 감사 드리고 동생에게도 고맙다는 말을 전하고 싶습니다.

다양한 연구 경험을 제공해 주시고 필요한 조언을 해주시며 지도해 주신

지도교수님께 감사 드립니다. 또한 바쁘신 중에도 박사 논문 지도를 위해 시간

을내어주신백윤흥교수님,이재진교수님,이혁재교수님에게감사드립니다.

그리고마지막으로박사심사에위원으로참여하여시간을쪼개어여러조언을

아끼지 않은 김수현 선배님에게 감사하다는 말을 전하고 싶습니다.

언제 봐도 반가운 친구들, 성엽, 동희, 준석, 성수, 철오 등에게도 덕분에

어려운 일이나 좋은 일이 있을 때 힘을 얻을 수 있었다고 말을 전하고 싶고

앞으로도 계속 변치 않기를 바라며 대학에서 엔지니어로서의 고민 그리고 이

제는 삶에 대한 고민까지 나눌 수 있는 친구들인 영균, 용하, 재목, 정환, 성국,

용식, 기린, 영규, 재영, 효진 등에게도 같은 말을 전하고 싶다.

그리고 연구실에서 매일 얼굴을 보면서 시간을 보냈던 여러 분들에게도 인

사의 말을 전하고 싶습니다. 우선 연구실에서 오랜 시간을 같이 보내며 연구실

86

생활에 활력을 준 이제형 선배님, 홍성현, 정동헌, 오형석에게도 고마웠다고

말을 전하고 싶습니다. 또한 연구실에 처음 들어와서 많은 것을 가르쳐 주셨던

박진표선배님을비롯하여여러선배님들에게많은도움을받았던기억이납니

다. 또한 벤처창업이라는 경험과 추억을 같이 쌓았던 양병선, 이준표, 이승일,

이흥복 선배님들 그리고 동기 하영에게도 덕분에 좋은 경험을 할 수 있었다는

말을 하고 싶습니다. 그 외에도 연구실에서 수학하며 서로를 알게 된 정홍집,

이상규, 문민수, 김정래, 유준민, 최선일, 배성환, 박종국, 김진철, 김성무 등도

기억에 남습니다. 마지막으로 최근 알게 된 성원, 원기, 진석, 혁우, 지환, 진

우 등 후배들에게도 덕분에 연구실 생활이 즐거웠다고 전하고 싶습니다. 모두

하나하나 언급하지 못하지만 덕분에 좋은 추억을 가지고 졸업한다고 전하고

싶습니다.

87

	1. Introduction
	1.1 The need of optimizing memory management
	1.2 Outline of the Dissertation

	2. Backgrounds
	2.1 Virtual Machine
	2.2 Memory management in virtual machine

	3. Lazy Worst Fit Allocator
	3.1 Introduction
	3.2 Allocation with fits
	3.3 Lazy fits
	3.3.1 Lazy worst

	3.4 Experimental results
	3.4.1 LWF implementation in the LaTTe Java virtual machine
	3.4.2 Experimental environment
	3.4.3 Performance of LWF
	3.4.4 Fragmentation of LWF

	3.5 Summary

	4. Biased Allocator
	4.1 Introduction
	4.2 Motivation
	4.3 Biased allocator
	4.3.1 When to choose an allocator
	4.3.2 How to choose an allocator

	4.4 Analyses and implementation
	4.5 Evaluation
	4.5.1 Total pause time of garbage collections
	4.5.2 E�ect of each analysis
	4.5.3 Pause time of each garbage collection

	4.6 Summary

	5. Ahead-of-time Heap Management
	5.1 Introduction
	5.2 Motivation
	5.3 Android
	5.3.1 Garbage Collection
	5.3.2 Heap expansion heuristic

	5.4 Ahead-of-time heap expansion
	5.4.1 Spatial heap expansion
	5.4.2 Temporal heap expansion
	5.4.3 Launch-time heap expansion

	5.5 Evaluation
	5.5.1 Spatial heap expansion
	5.5.2 Comparision of spatial heap expansion
	5.5.3 Temporal heap expansion
	5.5.4 Launch-time heap expansion

	5.6 Summary

	6. Conculsion

<startpage>13
1. Introduction 1
 1.1 The need of optimizing memory management 2
 1.2 Outline of the Dissertation 3
2. Backgrounds 4
 2.1 Virtual Machine 4
 2.2 Memory management in virtual machine 5
3. Lazy Worst Fit Allocator 7
 3.1 Introduction 7
 3.2 Allocation with fits 9
 3.3 Lazy fits 10
 3.3.1 Lazy worst 13
 3.4 Experimental results 14
 3.4.1 LWF implementation in the LaTTe Java virtual machine 14
 3.4.2 Experimental environment 16
 3.4.3 Performance of LWF 17
 3.4.4 Fragmentation of LWF 20
 3.5 Summary 23
4. Biased Allocator 24
 4.1 Introduction 24
 4.2 Motivation 27
 4.3 Biased allocator 28
 4.3.1 When to choose an allocator 28
 4.3.2 How to choose an allocator 30
 4.4 Analyses and implementation 32
 4.5 Evaluation 35
 4.5.1 Total pause time of garbage collections 36
 4.5.2 E�ect of each analysis 38
 4.5.3 Pause time of each garbage collection 38
 4.6 Summary 40
5. Ahead-of-time Heap Management 42
 5.1 Introduction 42
 5.2 Motivation 45
 5.3 Android 48
 5.3.1 Garbage Collection 48
 5.3.2 Heap expansion heuristic 49
 5.4 Ahead-of-time heap expansion 51
 5.4.1 Spatial heap expansion 53
 5.4.2 Temporal heap expansion 55
 5.4.3 Launch-time heap expansion 56
 5.5 Evaluation 57
 5.5.1 Spatial heap expansion 58
 5.5.2 Comparision of spatial heap expansion 61
 5.5.3 Temporal heap expansion 70
 5.5.4 Launch-time heap expansion 72
 5.6 Summary 73
6. Conculsion 74
</body>

