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Abstract

String matching is a fundamental problem in computer science and has been

extensively studied. Sometimes a string consists of numeric values instead of

alphabet characters, and we are interested in some trends in the text rather

than specific patterns. We introduce a new string matching problem called

order-preserving matching on numeric strings, where a pattern matches a text

substring of the same length if the relative orders in the substring coincide with

those of the pattern. Order-preserving matching is applicable to many scenarios

such as stock price analysis and musical melody matching.

In this thesis, we define order-preserving matching in numeric strings, and

present various representations of order relations and efficient algorithms of

order-preserving matching with those representations. For single pattern match-

ing, we give an O(n logm) time algorithm with the prefix representation based

on the KMP algorithm, and optimize it further to obtain O(n+m logm) time

with the nearest neighbor representation, where n and m are the lengths of the

text and the pattern, respectively. For multiple pattern matching, we present

an O((n+m) logm) time algorithm with the prefix representation based on the

Aho-Corasick algorithm, where n is the text length and m is the sum of the

lengths of the patterns. Our algorithms are presented in binary order relations

first, and then extended to ternary order relations. With our extensions, the

time complexities in binary order relations can be achieved in ternary order

relations as well.

Keywords: order-preserving matching, order relation, pattern matching, nu-

meric string, KMP algorithm, Aho-Corasick algorithm

Student Number: 2007-30219

i



Contents

Abstract i

Contents ii

List of Figures iv

List of Tables v

Chapter 1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2 Order-Preserving Pattern Matching 6

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Definitions of Order Relations . . . . . . . . . . . . . . . . 6

2.1.2 Number of Representations . . . . . . . . . . . . . . . . . 8

2.1.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . 8

2.2 O(n logm) Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Prefix Representation . . . . . . . . . . . . . . . . . . . . 10

2.2.2 KMP Failure Function . . . . . . . . . . . . . . . . . . . . 11

ii



2.2.3 Text Search . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.4 Construction of KMP Failure Function . . . . . . . . . . . 15

2.2.5 Correctness and Time Complexity . . . . . . . . . . . . . 17

2.3 O(n+m logm) Algorithm . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Nearest Neighbor Representation . . . . . . . . . . . . . . 17

2.3.2 Text Search . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.3 Construction of KMP Failure Function . . . . . . . . . . . 21

2.3.4 Correctness and Time Complexity . . . . . . . . . . . . . 22

2.3.5 Generalized Order-Preserving Matching . . . . . . . . . . 23

2.3.6 Remark on Alphabet Size . . . . . . . . . . . . . . . . . . 23

Chapter 3 Order-Preserving Multiple Pattern Matching 25

3.1 O((n+m) logm) Algorithm . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Aho-Corasick Automaton . . . . . . . . . . . . . . . . . . 26

3.1.2 Aho-Corasick Failure Function . . . . . . . . . . . . . . . 27

3.1.3 Text Search . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.4 Construction of Aho-Corasick Failure Function . . . . . . 29

3.1.5 Correctness and Time Complexity . . . . . . . . . . . . . 32

Chapter 4 Extensions to Ternary Order Relations 33

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Extension of Prefix Representation . . . . . . . . . . . . . . . . . 34

4.3 Extension of Nearest Neighbor Representation . . . . . . . . . . . 38

4.4 Generalized Order-Preserving KMP Algorithm . . . . . . . . . . 42

Chapter 5 Conclusion 45

Bibliography 47

iii



List of Figures

Figure 1.1 Example of a pattern and a text . . . . . . . . . . . . . . 3

Figure 2.1 Example of text search with the prefix representation . . 12

Figure 2.2 Example of computing the failure function π . . . . . . . 16

Figure 2.3 Example of text search with the nearest neighbor repre-

sentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 3.1 Example of an Aho-Corasick automaton . . . . . . . . . 27

Figure 4.1 Symbols in Lemma 4.2.1 . . . . . . . . . . . . . . . . . . 36

iv



List of Tables

Table 2.1 List of functions in the order-statistic tree T . . . . . . . 11

Table 2.2 Example of the nearest neighbor representation . . . . . . 18

Table 4.1 Example of Lemma 4.2.1 and Lemma 4.3.1 . . . . . . . . 37

v



Chapter 1

Introduction

1.1 Background

String matching is a fundamental problem in computer science and has been

extensively studied. Sometimes a string consists of numeric values instead of

characters in an alphabet, and we are interested in some trends in the text

rather than specific patterns. For example, in a stock market, analysts may

wonder whether there is a period when the share price of a company dropped

consecutively for 10 days and then went up for the next 5 days. In such cases,

the changing patterns of share prices are more meaningful than the absolute

prices themselves. Another example is melody matching between two musical

scores. A musician may be interested in whether her new song has a melody

similar to well-known songs. As many variations are possible in a melody where

the relative heights of pitches are preserved but the absolute pitches can be

changed, it would be reasonable to match relative pitches instead of absolute

pitches to find similar musical phrases.

An order-preserving matching can be helpful in both examples, because a

pattern matches a text substring if the relative orders of the substring coincide

1



with those of the pattern. For example, in Fig. 1.1, pattern P = (33, 42, 73,

57, 63, 87, 95, 79) matches the text substring (21, 24, 50, 29, 36, 73, 85, 63)

since it has the same relative orders as those of the pattern. In both strings,

the first characters 33 and 21 are the smallest, the second characters 42 and 24

are the second smallest, the third characters 73 and 50 are the 5-th smallest,

and so on. If we regard prices of shares, or absolute pitches of musical notes,

as numeric characters of the strings, both examples above can be modeled as

order-preserving matching.

Solving order-preserving matching is closely related to representations of

order relations of a numeric string. If we replace each character in a numeric

string by its rank in the string, then we can obtain a (natural) representation of

order relations. But this natural representation is not amenable to developing

efficient algorithms because the rank of a character depends on the substring in

which the rank is computed. Hence, we define the prefix representation of or-

der relations, which leads to an O(n logm) time algorithm for order-preserving

matching, where n and m are the lengths of the text and the pattern, re-

spectively. Surprisingly, however, there is an even better representation, called

the nearest neighbor representation, with which we were able to develop an

O(n+m logm) time algorithm.

An order relation between two characters is a ternary relation (>, <, =)

rather than a binary relation (>, <). The number of possible order relations

(weak orderings) on a sequence of n elements is known as Ordered Bell Number,

which is approximated as n!
2(log 2)n+1 ≈ (1.443)n+1·n!

2 [26, 11]. It is exponentially

larger than n!, the number of possible order relations in a binary relation on n

distinct numbers. We extend the representations of order relations to ternary

order relations, and prove the equivalence of those representations. With our

extensions, the time complexities of order-preserving matching in binary order

relations can be achieved in ternary order relations as well.
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(a) Example of a pattern
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(b) Example of a text

Figure 1.1: Example of a pattern and a text

1.2 Contribution

In this thesis, we define a new class of string matching problem, called order-

preserving matching, and present efficient algorithms for single and multiple

pattern matching.
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1. We present order-preserving matching algorithms in binary order rela-

tions assuming that all the characters are distinct. For single pattern case,

we propose an O(n logm) algorithm based on the Knuth-Morris-Pratt

(KMP) algorithm [20, 23], and optimize it further to obtainO(n+m logm)

time. For multiple pattern case, we present an O((n+m) logm) algorithm

based on the Aho-Corasick algorithm [1].

2. We extend the representations of order relations to ternary order rela-

tions. We prove the equivalence of those representations, and generalize

the KMP-based algorithm to adopt any representation of order relations.

With the extended prefix representation, order-preserving matching can be

done in O(n logm) time, and the representation of order relations takes

(logm+ 1) bits per character. With the nearest neighbor representation,

the matching can be done in O(n+m logm), but the representation takes

(2 logm) bits per character.

1.3 Related Work

The study of order-preserving matching was introduced by Kubica et al. [32]

and Kim et al. [28] where Kubica et al. [32] defined order relations by order

isomorphism of two strings, while Kim et al. [28] defined them explicitly by

the sequence of rank values (which they called the natural representation). In

both papers, an O(n + m logm) time algorithm is proposed for single pattern

matching where n is the text length and m is the pattern length.

Recently, some new results of order-preserving matching are of interest.

Crochemore et al. [21] defined an order-preserving suffix tree and presented the

construction algorithm in O( n logn
log logn) time. Cho et al. [16] proposed an order-

preserving matching using the bad character heuristics on q-grams, which is

practically faster than the KMP-based one. Gawrychowski et al. [25] consid-

ered an approximate order-preserving matching problem with k-mismatches
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and presented an O(n(log log n+ k log log k)) time algorithm.

Norm matching and (δ, γ)-matching have been studied to search for similar

patterns of numeric strings. In norm matching [9, 35, 3, 39], each text substring

and the pattern is matched if the Lp distance is less than the predefined value

for some given p. In (δ, γ)-matching [13, 22, 18, 17, 33, 34, 37], two parameters

δ and γ are given, and two numeric strings of the same length are matched if

the maximum difference of the corresponding characters is at most δ and the

total sum of differences is at most γ. Several variants were studied to allow for

don’t care symbols [19], transposition-invariant [33] and gaps [14, 15, 24].

On the other hand, some generalized matching problems such as parameter-

ized matching [12, 8], less than matching [7], swapped matching [4, 38], overlap

matching [6], and function matching [5, 10] are studied extensively wherematch-

ing relations are defined differently so that some properties of two strings are

matched instead of exact matching of characters. However, none of those work

addresses the order relations, which we focus on in this paper.

1.4 Organization

The rest of the thesis is organized as follows. In Chapter 2, we define order-

preserving matching and present efficient algorithms for single pattern matching

in binary order relations. In Chapter 3, we consider multiple pattern matching

and present an efficient algorithm. In Chapter 4, we extend the representa-

tions of order relations to ternary relations and prove the equivalence of those

representations. Finally, we conclude in Chapter 5
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Chapter 2

Order-Preserving Pattern
Matching

In this chapter, we define the prefix representation and the nearest neighbor

representation of order relations, and present an O(n logm) algorithm and an

O(n+m logm) algorithm from those representations.

2.1 Preliminaries

Let Σ denote the set of numbers such that a comparison of two numbers can

be done in constant time, and let Σ∗ denote the set of strings over the alphabet

Σ. For a string x ∈ Σ∗, let |x| denote the length of x. A string x is described

by a sequence of characters (x[1], x[2], ..., x[|x|]). Let a substring x[i..j] be

(x[i], x[i + 1], ..., x[j]) and a prefix xi be x[1..i]. For a character c ∈ Σ, let

rankx(c) = 1 + |{i : x[i] < c for 1 ≤ i ≤ |x|}|.

2.1.1 Definitions of Order Relations

Given two numeric strings, the notion of order-preserving matching can be

defined by either the order isomorphism [32], or the natural representation [28].
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Definition 2.1.1 (Order Isomorphism [32]) For two strings x and y of length

n, x and y are order-isomorphic if ∀i, j ∈ [1..n], x[i] ≤ x[j]⇔ y[i] ≤ y[j].

Order isomorphism implicitly deals with ternary order relations because

each of ternary order relations (>, <, =) can be checked by variants of the

proposition in Definition 2.1.1 (changing i and j, taking the contrapositive, or

both). For example, if x[i] > x[j], then y[i] > y[j] by the contrapositive of x[i] ≤

x[j] ⇐ y[i] ≤ y[j]. If x[i] = x[j], then y[i] = y[j] by x[i] ≤ x[j] ⇒ y[i] ≤ y[j]

and x[j] ≤ x[i]⇒ y[j] ≤ y[i].

The definition of order isomorphism looks simple, but it is not easy to

understand and somewhat complicated to handle in practice. The number of the

order relations involved in checking order isomorphism of two strings of length

n is O(n2), hence it has an inherent quadratic term if the definition is used

directly for order-preserving matching. Moreover, the ternary order relations

are not explicitly stated but implied by the proposition in Definition 2.1.1. In

fact, there was an incorrect proof of order isomorphism in [32] due to a missing

case, which was fixed later in [16].

Alternatively, the natural representation can be used for comparing order

relations of two strings [28].

Definition 2.1.2 (Natural Representation [28]) For a string x of length

n, the natural representation of the order relations is defined as Nat(x) =

(rankx(x[1]), rankx(x[2]), ..., rankx(x[n])).

For example, for x = (30, 10, 50, 20, 30, 20, 20), and y = (35, 15, 55, 25,

35, 25, 35), the natural representations are Nat(x) = (5, 1, 7, 2, 5, 2, 2) and

Nat(y) = (4, 1, 7, 2, 4, 2, 4), respectively.

In the natural representation, ternary order relations are explicitly stated

in terms of ranks. For example, x[i] > x[j] if and only if Nat(x)[i] > Nat(x)[j],

and x[i] = x[j] if and only if Nat(x)[i] = Nat(x)[j]. That is, the order relations

7



of two strings coincide if and only if Nat(x) = Nat(y). The comparison of two

natural representations takes O(n) time if the natural representations are given.

These two definitions are equivalent because the natural representations of

two strings are identical if and only if they are order-isomorphic. We adopt the

natural representation throughout this paper because the definition itself and

subsequent analysis are more intuitive.

2.1.2 Number of Representations

The number of the natural representations on n characters coincides with that

of weak orderings on a sequence of n elements which is known as the ordered Bell

number [29, 26, 27]. The ordered Bell number is the solution of the recurrence

f(n) = 1+
∑n−1

j=1

(
n
j

)
f(n−j) [27], and it is approximated by f(n) ≈ n!

2(log 2)n+1 ≈
(1.443)n+1·n!

2 [11] for sufficiently large n.

The recurrence of the ordered Bell number has a simple interpretation: For

a sequence of length n allowing ties, let j ∈ [1..n] be the number of occurrences

of the largest character in the sequence. All of such sequences can be generated

by generating a sequence of n − j characters less than the largest character

first, and then inserting j occurrences of the largest character between the

n− j characters. The number of such insertions is the number of combinations

choosing j positions from n−j+1 positions with repetitions [31], which is equal

to
(
n
j

)
. The recurrence is derived by summing

(
n
j

)
f(n−j) cases for j ∈ [1..n−1]

and adding the extra case for j = n when all characters are the same.

2.1.3 Problem Formulation

Order-preserving matching can be defined in terms of natural representations.

Definition 2.1.3 (Order-Preserving Matching [28]) Given a text T [1..n] ∈

Σ∗ and a pattern P [1..m] ∈ Σ∗, P matches T at position i if Nat(P ) =

Nat(T [i − m + 1..i]). Order-preserving matching is the problem of finding all

positions of T matched with P .
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For example, let us consider the two strings P = (33, 42, 73, 57, 63, 87, 95, 79)

and T = (11, 15, 33, 21, 24, 50, 29, 36, 73, 85, 63, 69, 78, 88, 44, 62) shown in Fig

1.1. The natural representation of P is σ(P ) = (1, 2, 5, 3, 4, 7, 8, 6), which matches

T [4..11] = (21, 24, 50, 29, 36, 73, 85, 63) at position 11 but is not matched at the

other positions of T .

As the rank of a character depends on the substring in which the rank is

computed, the string matching algorithms with O(n+m) time complexity such

as KMP, Boyer-Moore [20, 23] cannot be applied directly. For example, the rank

of T [4] is 3 in T [1..8] but is changed to 1 in T [4..11].

The naive pattern matching algorithm is applicable to order-preserving

matching if both the pattern and the text are converted to natural repre-

sentations. If we use the order-statistic tree based on the red-black tree [20],

computing the rank of a character in the string x takes O(log |x|), which makes

the computation time of the natural representation σ(x) be O(|x| log |x|). The

naive order-preserving matching algorithm computes σ(P ) in O(m logm) time

and σ(T [i..i+m−1]) for each position i ∈ [1..n−m+1] of text T in O(m logm)

time, and compares them in O(m) time. As n−m+ 1 positions are considered,

the total time complexity becomes O((n−m+ 1) · (m logm)) = O(nm logm).

As this time complexity is much worse than O(n + m) which we can obtain

from the exact pattern matching, sophisticated matching techniques need to be

considered for order-preserving matching as discussed in later sections.

2.2 O(n logm) Algorithm

In this section, we define the prefix representation, and present an O(n logm)

algorithm for single pattern matching based on the KMP algorithm [30, 20].

We consider binary order relations between two characters assuming that all

the characters in a string are distinct. The extensions to ternary order relations

are covered in Section 4.3.
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2.2.1 Prefix Representation

The prefix representation [28] can be defined as a sequence of rank values of

characters in prefixes by Definition 2.2.1.

Definition 2.2.1 (Prefix Representation [28]) For a string x, the prefix

representation of the order relations is defined as Pre(x) = (rankx1(x[1]),

rankx2(x[2]), ..., rankx|x|(x[|x|])).

For example, the prefix representation of P in Fig 1.1 is Pre(x) = (1, 2, 3,

3, 4, 6, 7, 6).

An advantage of the prefix representation is that Pre(x)[i] can be computed

without looking at characters in x[i + 1..|x|] ahead of position i. By using the

order-statistic tree T for dynamic order statistics [20] containing characters of

x[1..i − 1], Pre(x)[i] can be computed in O(log |x|) time. Moreover, the prefix

representation can be updated incrementally by inserting the next character to

T or deleting the previous character from T . Specifically, when T contains the

characters in x[1..i], Pre(x[1..i+1])[i+1] can be computed if x[i+1] is inserted

to T , and Pre(x[2..i])[i− 1] can be computed if x[1] is deleted from T .

Note that there is a one-to-one mapping between the natural representation

and the prefix representation in binary order relations. The number of all the

distinct natural representations for a string of length n is n! which corresponds

to the number of permutations, and the number of all the distinct prefix rep-

resentations is n! too, since there are i possible values for the i-th character of

a prefix representation, which results in 1 · 2 · ...n = n! cases. For any natu-

ral representation of a string, there is a conversion function which returns the

corresponding prefix representation and vice versa.

The prefix representation of P is easily computed by inserting each character

P [k] to T consecutively as in Compute-Prefix-Rep. The functions of the

order-statistic tree are listed in Fig 2.1. We assume that the index i of x is

stored with x[i] in OS-Insert(T , x, i) to support OS-Find-Prev-Index(T , c)
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and OS-Find-Next-Index(T , c) where the index i of the largest (smallest)

character less than (greater than) c is retrieved.

Function Description

OS-Insert(T , x, i) Insert (x[i], i) to T

OS-Delete(T , x) Delete all the characters of string x from T

OS-Rank(T , c) Compute rank r of character c in T

OS-Find-Prev-Index(T , c) Find the index i of the largest character

less than c

OS-Find-Next-Index(T , c) Find the index i of the smallest character

greater than c

Table 2.1: List of functions in the order-statistic tree T

Compute-Prefix-Rep(P )

1 m ← |P |

2 T ← φ

3 OS-Insert(T , P, 1)

4 Pre(P )[1] ← 1

5 for k ← 2 to m

6 OS-Insert(T , P, k)

7 Pre(P )[k] ← OS-Rank(T , P [k])

8 return Pre(P )

The time complexity of Compute-Prefix-Rep is O(m logm) as each of

OS-Insert and OS-Rank takes O(logm) time and there are O(m) such oper-

ations.

2.2.2 KMP Failure Function

The KMP failure function π of order-preserving matching is well-defined under

our prefix representation:
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Text Search (Example)

11 15 33 21 24 50 29 36 73 85 63 69 79 88 44 62

1 2 3 3 4 6 5

1 2 3 3 4 6 7 6

1 2 3 4 1 2

𝑇𝑇

𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇[1. . 8]

1 2 3 3 4 6 7 6

33 42 73 57 63 87 95 79𝑃𝑃

1 2 3 4 5 6 7 8𝑖𝑖 9 10 11 12 13 14 15 16

𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃

𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇[4. . 11]

𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇[11. . 16]

𝜋𝜋 6 = 3

shift: 6 − 𝜋𝜋 6

shift: 8 − 𝜋𝜋 8

𝜋𝜋 8 = 1

1

Figure 2.1: Example of text search with the prefix representation

π[q] =

 max{k : Pre(P [1..k]) = Pre(P [q − k + 1..q]) for 1 ≤ k < q} if q > 1

0 if q = 1

Intuitively, π means that the longest proper prefix Pre(P [1..k]) of P matches

Pre(P [q − k + 1..q]) which is the prefix representation of the suffix of P [1..q]

with length k. For example, the failure function of P in Fig 1.1 is π[1..m] = (0,

1, 2, 1, 2, 3, 3, 1). As shown in Fig 2.1, π[6] = 3 implies that the longest

prefix of Pre(P [1..8]) that matches the prefix representation of any suffix of

P [1..6] = (33, 42, 63, 57, 63, 87) is Pre(P [1..π[6]]) = (1, 2, 3).

The construction algorithm of π will be given in Section 2.2.4.

2.2.3 Text Search

The failure function π can accelerate order-preserving matching by filtering

mismatched positions as in the KMP algorithm. Let us assume that Pre(P )[1..q]

matches Pre(T [i−q..i−1])[1..q] but a mismatch is found between Pre(P )[q+1]

12



and Pre(T [i− q..i])[q + 1]. π[q] means that Pre(P )[1..π[q]] is already matched

with Pre(T [i−π[q]..i−1])[1..π[q]] and matching can be continued at P [π[q]+1]

comparing Pre(P )[π[q] + 1] with Pre(T [i−π[q]..i])[π[q] + 1]. Since P [1..π[q]] is

the longest prefix whose order matches the suffix of T [i− q..i−1], the positions

from i − q to i − π[q] − 1 can be skipped without any comparisons as in the

KMP algorithm.

An example of text search in Fig 2.1 shows that how π can filter mismatched

positions. When Pre(P )[1..6] matches Pre(T [1..6]) but Pre(P )[7] is different

from Pre(T [1..7])[7], we can skip the positions from 1 to 3 of P and continue

by comparing Pre(P )[4] with Pre(T [4..7])[4]. At this time, Pre(P ) matches

Pre(T [4..11]) at position 11, and the matched position is shifted again by 8−π[8]

looking for the next matched position.

KMP-Order-Matcher describes the order-preserving matching algorithm

assuming that Pre(P ) and π are efficiently computed. In KMP-Order-Matcher,

for each index i of T , q is maintained as the length of the longest prefix of P

where Pre(P )[1..q] matches Pre(T )[i−q..i−1]. At that time, the order-statistic

tree T contains all the characters of T [i − q..i − 1]. If the rank of T [i] in T is

not matched with that of P [q+ 1], q is reduced to π[q] by deleting all the char-

acters T [i − q..i − π[q] − 1] from T . If P [q + 1] and T [i] have the same rank,

i.e., Pre(P )[1..q + 1] = Pre(T )[i− q..i], the length of the matched pattern q is

increased by 1. When q reaches m, the relative order of T [i−m− 1..i] matches

the one of P .

13



KMP-Order-Matcher(T, P )

1 n ← |T |, m ← |P |

2 Pre(P ) ← Compute-Prefix-Rep(P )

3 π ← KMP-Compute-Failure-Function(P, Pre(P ))

4 T ← φ

5 q ← 0

6 for i ← 1 to n

7 OS-Insert(T , T, i)

8 r ← OS-Rank(T , T [i])

9 while q > 0 and r 6= Pre(P )[q + 1]

10 OS-Delete(T , T [i− q..i− π[q]− 1])

11 q ← π[q]

12 r ← OS-Rank(T , T [i])

13 q ← q + 1

14 if q = m

15 print “pattern occurs at position" i

16 OS-Delete(T , T [i− q..i− π[q]− 1])

17 q ← π[q]

KMP-Order-Matcher is different from the original KMP algorithm used

for exact pattern matching in that it matches order relations instead of charac-

ters. For each position i of T , the prefix representation Pre(T [i− q..i])[q+ 1] of

T [i] is computed using the order-statistic tree T . If Pre(T [i− q..i])[q + 1] does

not match Pre(P )[q + 1], q is reduced to π[q] so that P implicitly shifts right

by q − π[q].

Another subtle difference is that we do not check whether r = Pre(P )[q+1]

before increasing q by 1 in line 7 (cf. [20, 23]) because it should be satisfied

automatically. From the condition of the while loop in line 5, q = 0 or r =

Pre(P )[q + 1] in line 7, and if q = 0, Pre(P )[1] = 1 for any pattern and it

matches any text of length 1.

14



The time required in KMP-Order-Matcher, except for the computation

of the prefix representation of P and the construction of the failure function π,

can be analyzed as follows. Each OS-Insert, OS-Rank is done in O(logm)

time while OS-Delete takes O(logm) time per character deletion. The number

of calls to OS-Insert is n, and the number of deletions is at most n, which

makes the total time of deletions O(n logm). In the same way, the number of

calls to OS-Rank is bounded by 2n, n for new characters, and the other n for

the computation of rank after reducing q, and thus the total cost of OS-Rank

calls is also O(n logm). To sum up, the time for KMP-Order-Matcher can

be bounded by O(n logm) except for the external functions.

2.2.4 Construction of KMP Failure Function

The construction of failure function π can be done similarly to the text matching

phase of the KMP algorithm, where each element π[q] is computed by using the

previous values π[1..q − 1].

KMP-Compute-Failure-Function describes the construction algorithm

of π. It first tries to compute π[q] starting from the match of Pre(P [1..π[q−1]])

and Pre(P [q−π[q−1]..q−1]). If Pre(P [1..π[q−1]+1])[π[q−1]+1] = Pre(P [q−

π[q − 1]..q])[π[q − 1] + 1], set π[q] = π[q − 1] + 1. Otherwise, it tries another

match for π[π[1..q − 1]], and repeats until π[q] is computed.

Fig 2.2 shows an example of computing the failure function of P in Fig. 1.1 in

which π[7] is being computed. Starting from q = π[6] = 3, KMP-Order-Matcher

tries to match Pre(P [4..8])[4] with Pre(P )[4] but it fails. Then, q is decreased

to q = π[3] = 2 and it tries to match Pre(P [5..8])[3] with Pre(P )[3] and it

succeeds. π[7] is assigned to π[3] + 1, and the next iteration is started with

q = π[7].

The time complexity of KMP-Compute-Failure-Function can be ana-

lyzed in a similar way to KMP-Order-Matcher, by replacing the length of

T with the length of P , which results in O(m logm) time.
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Computation of Failure Function

1 2 3 3 4 6 7 6

shift: 3 − 𝜋𝜋 3

𝜋𝜋

1 2 3 4

1 2 3

33 42 73 57 63 87 95 79

1 2 3 4 5 6 7 8

𝑃𝑃

𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃[4. . 7]

𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃)

𝑖𝑖

𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃[5. . 7]

0 1 2 1 2 3 ?

𝜋𝜋 3 = 2

𝜋𝜋 7 ← 3

1

Figure 2.2: Example of computing the failure function π

KMP-Compute-Failure-Function(P, Pre(P ))

1 m ← |P |

2 T ← φ

3 OS-Insert(T , P, 1)

4 k ← 0

5 π[1] ← 0

6 for q ← 2 to m

7 OS-Insert(T , P, q)

8 r ← OS-Rank(T , P [q])

9 while k > 0 and r 6= Pre(P )[k + 1]

10 OS-Delete(T , P [q − k..q − π[k]− 1])

11 k ← π[k]

12 r ← OS-Rank(T , P [q])

13 k ← k + 1

14 π[q] ← k

15 return π
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2.2.5 Correctness and Time Complexity

The correctness of our matching algorithm is due to the failure function being

defined the same way as the original KMP algorithm. From the analysis of Sec-

tions 2.2.3 and 2.2.4, it is clear that our algorithm does not miss any matching

position.

The total time complexity is O(n logm), with O(m logm) to compute the

prefix representation and failure function and O(n logm) for text search. Com-

pared with O(n) time of the exact pattern matching, our algorithm has the

overhead of O(logm) factor, which is optimized in Section 2.3.

2.3 O(n+m logm) Algorithm

In this section, we define the nearest neighbor representation, and present an

O(n+m logm) algorithm for single pattern matching based on the KMP algo-

rithm [30]. We consider binary order relations as in Section 2.2. The extensions

to ternary order relations are covered in Section 4.3.

2.3.1 Nearest Neighbor Representation

The text search of the previous algorithm can be optimized further to remove

the O(logm) overhead of computing rank functions. In the text search phase

of the O(n logm) algorithm, the rank of each character T [i] in T [i − q − 1..i]

is computed to check whether it matches Pre(P )[q + 1] when we know that

Pre(P )[1..q] matches Pre(T [i − q + 1..i]). If we can do it directly without

computing Pre(P )[q+ 1], the overhead of the operations on T can be removed.

The main idea is to check whether the order of each character in the text

matches that of the corresponding character in the pattern by comparing the

characters themselves without computing rank values explicitly. When we need

to check if a character x[i] of string x has a specific rank value r in prefix xi,

we can do it by checking x[j] < x[i] < x[k] where x[j] and x[k] are characters
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having rank values nearest to r.

i 1 2 3 4 5 6 7 8

P 33 42 73 57 63 87 95 79

Nat(P ) 1 2 5 3 4 7 8 6

Pre(P ) 1 2 3 3 4 6 7 6

NN(P )

−∞
∞

  1

∞

  2

∞

 2

3

 4

3

  3

∞

  6

∞

 3

6


π 0 1 2 1 2 3 3 1

Table 2.2: Example of the nearest neighbor representation

The nearest neighbor representation of the order relations can be defined

as follows. For a string x, let LMaxx[i] be the index of the largest character

of xi−1 less than x[i], and LMinx[i] be the index of the smallest character of

xi−1 greater than x[i]. NN(x)[1..|x|] be the nearest neighbor representations of

x where NN(x)[i] =

LMaxx[i]

LMinx[i]

. Let LMaxx[i] = −∞ if there is no character

less than x[i] in xi−1 and let LMinx[i] =∞ if there is no character greater than

x[i] in xi−1. Let x[−∞] = −∞ and x[∞] =∞.

The advantage of the nearest neighbor representation is that we can check

whether each text character matches the corresponding pattern character in

constant time without computing its rank. Fig 2.2 shows the nearest neighbor

representation of the order relations of P in Fig 1.1. Suppose that Pre(P )[1..i−

1] = Pre(T [1..i − 1]) for 1 ≤ i ≤ m. If T [LMaxP [i]] < T [i] < T [LMinP [i]],

then Pre(P [1..i]) = Pre(T [1..i]). For example, Pre(T [1])[1] must be matched

with Pre(P )[1] since T [LMaxP [1]] < c < T [LMinP [1]] for any character c,

which coincides with the fact that the rank in the text of size 1 is always

1. For the second character, Pre(P )[2] = 2 and T [2] should be larger than

T [1] to have Pre(T [1..2])[2] = 2, which is represented by LMaxP [1] = 1 and

LMinP [1] = ∞. In this way, for each character, we can decide whether the
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order of T [i] in Pre(T [1..i]) matches that of P [i] in Pre(P [1..i]) by checking

T [LMaxP [i]] < T [i] < T [LMinP [i]].

Compute-Nearest-Neighbor-Rep describes the construction of the near-

est neighbor representation of the string P , where T contains the characters

of Pk−1 in each step of the loop. We assume that OS-Find-Prev-Index(T , c)

(and OS-Find-Next-Index(T , c)) returns the index i of the largest (smallest)

character less than (greater than) c, and returns −∞ (∞) if there is no such

character.

Compute-Nearest-Neighbor-Rep(P )

1 m ← |P |

2 T ← φ

3 OS-Insert(T , P, 1)

4 (LMaxP [1], LMinP [1]) ← (−∞,∞)

5 for k ← 2 to m

6 OS-Insert(T , P, k)

7 LMaxP [k] ← OS-Find-Prev-Index(T , P [k])

8 LMinP [k] ← OS-Find-Next-Index(T , P [k])

9 return (LMaxP , LMinP )

The time complexity of Compute-Nearest-Neighbor-Rep is O(m logm)

since it has m iterations of the loop and there are 3 function calls on the order-

statistic tree T taking O(logm) time in each iteration.

2.3.2 Text Search

With the nearest neighbor representation of pattern P and the failure function

π, we can simplify the text search so that it does not involve T at all. For each

character T [i], we can check Pre(P )[q+1] = Pre(T [i−q..i])[q+1] by comparing

T [i] with the characters in T [i−q..i] whose indexes correspond to LMaxP [q+1]

and LMinP [q + 1] in P . Specifically, if T [i − q + LMaxP [q + 1] − 1] < T [i] <
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T [i− q +LMinP [q + 1]− 1], then Pre(P )[q + 1] = Pre(T [i− q..i])[q + 1] must

be satisfied since the relative order of T [i] in T [i − q..i] is the same as that of

P [q + 1] in P [1..q + 1].

To illustrate this, let us return to the text matching example in Fig 2.1.

When Pre(P )[1..6] matches Pre(T [1..6]), we can check if Pre(T [1..7])[7] matches

Pre(P )[7] by checking if T [7−6+LMaxP [7]−1] < T [7] < T [7−6+LMinP [7]−

1], which can be done in constant time. As T [6] = 50, T [∞] =∞ but T [7] = 29,

T [7] should have a rank lower than Pre(P )[7], thus Pre(T [1..7]) cannot be

matched with Pre(P )[1..7].

An example in Fig 2.3 shows that how the nearest neighbor representation

is used in the text search. Suppose that pattern P and text T are given as

before, and the order relations of P [1..6] and T [1..6] are matched. For position

7, P [7] is 95, and the largest character less than 95 is 87 whose index is 6. So

LMaxP [7] is 6. As there is no character greater than 95 in P [1..6], LMinP [7]

is ∞. To match the order of T [7], it is sufficient that it is more than T [6], but

29 is less than 50. The pattern is shifted by 6 − π[6], and the next match is

tried between P [4] and T [7]. At this time P [4] is 57, and the nearest neighbors

of 57 are 42 and 73, thus the nearest neighbor representation of P [4] is 2 and

3. For the text, the matched substring is T [4..6] and T [7] is the 4th character

in the substring. 29 is between 24 and 50, which are the second and the third

positions of the matched substring, and thus the order of T [7] is matched.

KMP-Order-Matcher2 describes the text search algorithm using the

nearest neighbor representation. The algorithm is essentially equivalent to the

previous one but simpler since no rank function has to be calculated explicitly.
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KMP-Order-Matcher2(T, P )

1 n ← |T |, m ← |P |

2 (LMaxP , LMinP ) ← Compute-Nearest-Neighbor-Rep(P )

3 π ← KMP-Compute-Failure-Function2(P,LMaxP , LMinP )

4 q ← 0

5 for i ← 1 to n

6 (j1, j2) ← (LMaxP [q + 1], LMinP [q + 1])

7 while q > 0 and (T [i] < T [i− q + j1 − 1] or T [i] > T [i− q + j2 − 1])

8 q ← π[q]

9 (j1, j2) ← (LMaxP [q + 1], LMinP [q + 1])

10 q ← q + 1

11 if q = m

12 print “pattern occurs at position" i

13 q ← π[q]

The time complexity of KMP-Order-Matcher2 except for the precom-

putation of the prefix representation and the failure function is O(n) because

only one scan of the text is required in the for loop as in the KMP algorithm.

2.3.3 Construction of KMP Failure Function

The construction of π is an extension of KMP-Compute-Failure-Function

in Section 2.2.4 where the rank function on T is replaced by a comparison of

characters using LMaxP and LMinP as in KMP-Order-Matcher2.

KMP-Compute-Failure-Function2 describes the construction of the KMP

failure function from the nearest neighbor representation of pattern P .
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KMP-Compute-Failure-Function2(P,LMaxP , LMinP )

1 m ← |P |

2 k ← 0

3 π[1] ← 0

4 for q ← 2 to m

5 (j1, j2) ← (LMaxP [k + 1], LMinP [k + 1])

6 while k > 0 and (P [q] < P [i− k + j1 − 1] or P [q] > P [i− k + j2 − 1])

7 k ← π[k]

8 (j1, j2) ← (LMaxP [k + 1], LMinP [k + 1])

9 k ← k + 1

10 π[q] ← k

11 return π

The time complexity of KMP-Compute-Failure-Function2 is O(m)

from the linear scan of the pattern, similarly to KMP-Order-Matcher2.

2.3.4 Correctness and Time Complexity

The correctness of our optimized algorithm is derived from that of the previous

O(n logm) algorithm since the difference of the text search is only on rank

comparison logic and each comparison result is the same as the previous one.

The same failure function π is applied and the order-statistic tree T is only

used to compute the nearest neighbor representation of P .

The time complexity of the overall algorithm is O(n+m logm): O(m logm)

time for the computation of the nearest neighbor representation of the pattern,

O(m) time for the construction of π function, and O(n) time for text search.

O(n+m logm) is almost linear to the text length n when n is much larger than

m, which is a typical case in pattern matching problems. The only non-linear

factor logm comes from computing the representation of order relations.
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2.3.5 Generalized Order-Preserving Matching

A generalization of order-preserving matching is possible with some practical

applications if we consider only the orders of the last k characters for a given

k ≤ m. For example, in the stock market scenario of finding a period when a

share price of a company dropped consecutively for 10 days and then went up for

the next 5 days, it is sufficient to compare each share price with the share price

of the day before, which corresponds to k = 1. Our solution is easily applicable

to this generalized problem if the order-statistic tree T is maintained to keep

only the last k inserted characters. The time complexity of the O(n logm)

algorithm that uses prefix representation becomes O(n log k), and that of the

O(n + m logm) algorithm that uses nearest neighbor representation becomes

O(n+m log k), since the number of characters in T is bounded to k. Both time

complexities are reduced to O(n) if k is a constant number.

2.3.6 Remark on Alphabet Size

We have no restrictions on the numbers in Σ, insofar as a comparison of two

numbers can be done in constant time. In the case of Σ = {1, 2, . . . , U}, however,

the order-statistic tree in Compute-Nearest-Neighbor-Rep can be replaced

by a van Emde Boas tree [41] or y-fast trie [42] which takes O(U) space and

requires O(log logU) time per operation.
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Text Search

11 15 33 21 24 50 29 36 73 85 63 69 78 88 44 62

-∞ 1 2 2 4 3 6 3
∞ ∞ ∞ 3 3 ∞ ∞ 6

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃

33 42 73 57 63 87 95 79

1 2 3 4 5 6 7 8i 𝑇𝑇 6 < 𝑇𝑇 7 < ∞ ?

1 2 3 4 5 6 7 8i

𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑃𝑃

1 2 3 4 5 6 7 8i 9 10 11 12 13 14 15 16

𝑇𝑇

𝑃𝑃

1

(a) Step 1
Text Search

11 15 33 21 24 50 29 36 73 85 63 69 78 88 44 62

-∞ 1 2 2 4 3 6 3
∞ ∞ ∞ 3 3 ∞ ∞ 6

33 42 73 57 63 87 95 79

1 2 3 4 5 6 7 8i

1 2 3 4 5 6 7 8

-∞ 1 2 2 4 3 6 3
∞ ∞ ∞ 3 3 ∞ ∞ 6

1 2 3 4 5 6 7 8

𝑇𝑇 5 < 𝑇𝑇 7 < 𝑇𝑇 6 ?
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃

𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑃𝑃

1 2 3 4 5 6 7 8i 9 10 11 12 13 14 15 16

𝑃𝑃

𝑇𝑇

shift: 6 − 𝜋𝜋 6

i

2

(b) Step 2
Text Search

11 15 33 21 24 50 29 36 73 85 63 69 78 88 44 62

-∞ 1 2 2 4 3 6 3
∞ ∞ ∞ 3 3 ∞ ∞ 6

33 42 73 57 63 87 95 79

1 2 3 4 5 6 7 8i

1 2 3 4 5 6 7 8

-∞ 1 2 2 4 3 6 3
∞ ∞ ∞ 3 3 ∞ ∞ 6

1 2 3 4 5 6 7 8

𝑇𝑇 7 < 𝑇𝑇 8 < 𝑇𝑇 6 ?
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃

𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑃𝑃

1 2 3 4 5 6 7 8i 9 10 11 12 13 14 15 16

shift: 6 − 𝜋𝜋 6

𝑃𝑃

𝑇𝑇

i

3

(c) Step 3

Figure 2.3: Example of text search with the nearest neighbor representation
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Chapter 3

Order-Preserving Multiple
Pattern Matching

In this chapter, we present an O((n+m) logm) algorithm for multiple pattern

matching based on the Aho-Corasick algorithm [2] in binary order relations.

The extensions to ternary order relations are covered in Section 4.2.

Order-preserving matching is well-defined for multiple patterns as follows.

Definition 3.0.1 (Order-Preserving Matching for Multiple Patterns)

Given a text T [1..n] ∈ Σ∗ and a set of patterns P = {P1, P2, ..., Pw} where

Pi ∈ Σ∗ for all 1 ≤ i ≤ w, order-preserving matching for multiple patterns is

the problem of finding all positions of T matched with any pattern in P.

3.1 O((n+m) logm) Algorithm

We propose a variant of the Aho-Corasick algorithm [1] for multiple pattern

case whose time complexity is O((n + m) logm) where m is the sum of the

lengths of the patterns.
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3.1.1 Aho-Corasick Automaton

From the prefix representation of the given patterns, an Aho-Corasick automa-

ton can be defined to match order relations. The Aho-Corasick automaton con-

sists of the following components.

1. Q: a finite set of states where q0 ∈ Q is the initial state.

2. g : Q × Nm → Q ∪ {fail}: a forward transition function. Nm is the set of

integers in [1..m].

3. π : Q→ Q: a failure function.

4. d : Q→ Z: the length of the prefix represented by each state q.

5. P : Q→ P: a representative pattern of each state q which has the prefix

represented by q. If there are more than one such patterns, we use the

pattern with the smallest index.

6. out : Q→ P∪{φ}: the output pattern of each state q. If q does not match

any pattern, out[q] = φ, otherwise out[q] = Pi for the longest pattern Pi

such that the prefix representation of Pi matches that of any suffix of

P [q][1..d[q]].

Given the set of patterns, an Aho-Corasick automaton of the prefix rep-

resentations is constructed from a trie in which each node represents a prefix

of the prefix representation of some pattern. The nodes of the trie are the

states of the automaton and the root is the initial state q0, representing the

empty prefix. Each node q is an accepting state if out[q] 6= φ, which means that

q corresponds to the prefix representation of the pattern out[q]. The forward

transition function g is defined so that g[qi, α] = qj when qi corresponds to

Pre(Pk)[1..d[qi]] and qj corresponds to Pre(Pk)[1..d[qi] + 1] for some pattern

Pk where α = Pre(Pk)[d[qi]]. The trie can be constructed in O(m) time once

the prefix representations of the patterns are given.
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q0 q1 q2

q3

q4

q5

q6

q7

q8 q91 2

1

4

3

4

4

5

6

P1

P2

P3

𝑃𝑃1 = (23, 35,15,53,47) 𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃1) = (1,2,1,4,4)

𝑃𝑃2 = (66, 71,57,79,84,94)

𝑃𝑃3 = (43, 51,62,73)

𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃2) = 1,2,1,4,5,6

𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃3) = 1,2,3,4

Figure 3.1: Example of an Aho-Corasick automaton

Fig. 3.1 shows an example of an Aho-Corasick automaton with three pat-

terns P1 = (23, 35, 15, 53, 47), P2 = (66, 71, 57, 79, 84, 93), P3 = (43, 51, 62, 73).

The automaton is constructed from the prefix representations Pre(P1) = (1,

2, 1, 4, 4), Pre(P2) = (1, 2, 1, 4, 5, 6) and Pre(P3) = (1, 2, 3, 4) regardless

of the pattern characters. For example, q5 represents the prefix (1, 2, 1, 4),

which matches with Pre(P1) and Pre(P2) even though P1[1..4] and P2[1..4]

have different characters.

Compared to the original Aho-Corasick algorithm, we have two additional

values d[q] and P [q] for each state q. Both of them are recorded to maintain the

order-statistic tree per pattern during the construction of the failure function

π. The details are described in the following sections.

3.1.2 Aho-Corasick Failure Function

The failure function π can be defined so that π[qi] = qj if and only if the prefix

represented by qj (i.e. Pre(P [qj ])[1..d[qj ]]) is the prefix representation of the

longest proper suffix of P [qi] (i.e. Pre(P [qi][k..d[qi]]) for some k). For example,
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for q8 in Fig. 3.1 with the prefix (1, 2, 1, 4, 5) of Pre(P2), π[q8] = q4 because

P2[3..5] is the longest proper suffix of P2 whose prefix representation (1, 2, 3)

is the prefix of some pattern. Here, P [q4] = P3 and Pre(P [q4])[1..3] = (1, 2, 3)

which matches Pre(P2[3..5]).

3.1.3 Text Search

A variant of the Aho-Corasick algorithm can be designed for multiple pattern

matching of order relations as in AC-Order-Matcher-Multiple. Assuming

that the prefix representations of all the patterns and the failure function are

available, it scans the text and follows the Aho-Corasick automaton until there

is no matched forward transition. Then, it follows the failure function until

a successful forward transition is found. In the initial state q0, it never fails

to follow the forward transition because any character can be matched at the

first character. Whenever it reaches one of the accepting states, it outputs the

position of the text and the matched pattern.

The order-statistic tree T is maintained to compute each rank value adap-

tively. For every forward transition, T [i] is inserted to T , and for every back-

ward transition π[qi] = qj , the oldest d[qi]−d[qj ] characters are deleted from T .

The rank of T [i] should be calculated again for each backward transition after

T is properly updated. For example, when AC-Order-Matcher-Multiple

reaches state q3 of Fig. 3.1 after reading the first three characters from the text

(20, 30, 10, 15), T contains {20, 30, 10}, which is the prefix of the text repre-

sented by q3. As there is no forward transition from q3 that matches the rank

2 of the next character 15, the state is changed to q1 by following the failure

transition. The oldest d[q3] − d[q1] = 2 characters are deleted from T so that

it contains {10} at the next step. The state is then changed to q2 by following

the forward transition 2 and inserting 15 to T (which is rank 2 in {10, 15}).
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AC-Order-Matcher-Multiple(T,P)

1 n ← |T |, w ← |P|

2 for i ← 1 to w

3 Pre(Pi) ← Compute-Prefix-Rep(Pi)

4 (π, out) ← Compute-AC-Failure-Function(P)

5 T ← φ

6 q ← q0

7 for i ← 1 to n

8 OS-Insert(T , T, i)

9 r ← OS-Rank(T , T [i])

10 while g[q, r] = fail

11 OS-Delete(T , T [i− d[q]..i− d[π[q]]− 1])

12 q ← π[q]

13 r ← OS-Rank(T , T [i])

14 q ← g[q, r]

15 if out[q] 6= φ

16 print “pattern” out[q] “occurs at position” i

The time complexity of AC-Order-Matcher-Multiple isO((n+m) logm)

(except for the preprocessing of the patterns) because it does n insertions in T

and thus at most n deletions can take place. Checking g[q, r] in line 10 takes

O(logm) time as well. As each operation takes O(logm) time and there are

O(n) operations, the total time is O((n+m) logm).

3.1.4 Construction of Aho-Corasick Failure Function

Compute-AC-Failure-Function shows the construction algorithm of the

Aho-Corasick failure function. As in the original Aho-Corasick algorithm, it

computes the failure function in the breadth first order of the automaton.

The main difference from the original Aho-Corasick algorithm is that we

maintain multiple order-statistic trees simultaneously (one per pattern) because
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the rank value of a character depends on the pattern in which the rank is

calculated. Let T (Pi) denote the order-statistic tree for the pattern Pi, and

assume that a representative pattern P [q] is recorded for each node q such that

q is reachable by some prefix of the prefix representation of P [q].

We maintain each order-statistic tree T (P [q]) of P [q] so that it contains

the characters of the longest proper suffix of P [q][1..d[q]] whose prefix repre-

sentation is a prefix of the prefix representation of some pattern. Consider a

forward transition g[qi, α] = qj such that π[qi] is available but π[qj ] is to be

computed. If P [qi] = P [qj ], T (P [qi]) = T (P [qj ]) and T (P [qj ]) already contains

the characters of P [qj ]. It can be updated by inserting P [qj ][d[qj ]] and deleting

some characters from T (P [qj ]). However, if P [qi] 6= P [qj ], we should initialize

T (P [qj ]) by inserting characters of the suffix of P [qj ][1..d[qj ]− 1] so that it has

the same number of characters as T (P [qi]). T (P [qj ]) can then be updated as in

the other case. In both cases, the rank of P [qj ][d[qj ]] in T (P [qj ]) is computed

again to find the correct forward transition starting from π[qi].

For instance, let us consider node q5 in Fig. 3.1. P [q5] = P1 and T (P1) has

{15, 53} since d[π[q5]] = 2. When π[q7] is computed, it inserts 47 to T (P1),

which has rank 2 in {15, 53, 47}, and tries to follow the rank 2 from π[q5] = q2.

As there is no forward transition of q2 with label 2, it follows the failure function

π[q2] = q1 and deletes 15 from T (P1). Similarly, there is no forward transition of

the rank 1 of 47 in {53, 47} from q1, it reaches q0. Finally, it follows the forward

transition of q1 by the rank 1 of 47 in {47} and π[q7] = q1. On the other

hand, when π[q8] is computed, P [q8] = P2 and P [q8] 6= P [q7]. The last d[π[q5]]

characters of P2[1..d[q5]] are inserted to T (P2), and T (P2) becomes {57, 79}.

Then, the next character 84 of P [q8] is inserted to T (P2), which is rank 3 of

{57, 79, 84}, and it follows the rank 3 from q2, which results in π[q8] = q4.
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Compute-AC-Failure-Function(T,P)

1 π[q0] ← q0

2 for each Pi ∈ P

3 T (Pi) ← φ

4 out[qi] ← Pi for the last state qi of Pi

5 for each qi ∈ Q (BFS order)

6 for each α such that g[qi, α] 6= fail

7 qj ← g[qi, α], c ← P [qj ][d[qj ]]

8 if P [qi] 6= P [qj ]

9 for k ← 1 to d[π[qi]]

10 OS-Insert(T (P [qj ]), P [qj ], d[qi]− d[π[qi]] + k)

11 OS-Insert(T (P [qj ]), P [qj ], d[qj ])

12 r ← OS-Rank(T (P [qj ]), c)

13 qp ← qi, qh ← π[qi]

14 while g[qh, r] = fail

15 OS-Delete(T (P [qj ]), P [qj ][i− d[qp] + 1..i− d[qh]])

16 r ← OS-Rank(T (P [qj ]), c)

17 qp ← qh, qh ← π[qh]

18 π[qj ] ← g[qh, r]

19 if out[qj ] = φ

20 out[qj ] ← out[π[qj ]]

21 return (π, out)

The time complexity of Compute-AC-Failure-Function can be ana-

lyzed as follows. The number of all forward transitions is at most m and there

are at most m insert operations on T because each character of a pattern can

be inserted either in line 10 or in line 11, but not in both. The number of

deleted characters cannot exceed the number of inserted characters and the

number of rank computations is also bounded by m. As the number of opera-

tions is bounded by O(m) and each takes O(logm), the total time complexity
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is O(m logm).

3.1.5 Correctness and Time Complexity

The correctness of our algorithm can be easily derived from the correctness of

the original Aho-Corasick algorithm and our version for single pattern matching.

The total time complexity is O((n+m) logm): O(m logm) to compute the

prefix representation and failure function, and O((n+m) logm) for text search.

Compared with O(n log |Σ|) time of the exact pattern matching where Σ is the

alphabet, our algorithm has a comparable time complexity since |Σ| for numeric

strings can be as large as m.

Note that we cannot remove logm factor from the above time complexity

as in single pattern matching since O(logm) time has to be spent at each

state to find the forward transition to follow even with the nearest neighbor

representation.
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Chapter 4

Extensions to Ternary Order
Relations

In this chapter, we extend the representations of order relations by Kim et

al. [28] to ternary order relations, and prove the equivalence of those repre-

sentations. With the extended prefix representation, order-preserving matching

can be done in O(n logm) time, and the representation of order relations takes

(logm + 1) bits per character. With the nearest neighbor representation, the

matching can be done in O(n+m logm), but the representation takes (2 logm)

bits per character. The nearest neighbor representation is suitable for single

pattern matching while the extended prefix representation is space-efficient and

can be useful for some order-preserving applications such as multiple pattern

matching [28, 2] and the construction of suffix trees [21, 36, 40].

4.1 Preliminaries

We can consider any representation R(·) of order relations for order-preserving

matching if R(·) is equivalent to Nat(·) by Definition 4.1.1.

Definition 4.1.1 (Equivalent Representation) For any two representations
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of order relations R1(·) and R2(·), R1 is equivalent to R2 if R1(x) = R1(y) ⇔

R2(x) = R2(y) for any two strings x, y.

In KMP-based algorithms in Section 2.2 and 2.3, the length of matches is

incrementally increased when the next character of the text matches that of

the pattern. Such a match operation is formalized by the match condition as

follows.

Definition 4.1.2 (Match Condition) A match condition of a representa-

tion R(·) is a boolean function Match(x, y,R(x), t+ 1) such that Nat(xt+1) =

Nat(yt+1) holds if and only if Nat(xt) = Nat(yt) and Match(x, y,R(x), t+ 1)

where x, y are any strings of the same length, and t ∈ [1..|x| − 1].

4.2 Extension of Prefix Representation

The prefix representation in Definition 2.2.1 has an ambiguity between different

strings in ternary order relations. For example, when x = (10, 30, 20), and

y = (10, 20, 20), the prefix representations of both x and y are (1, 2, 2).

In this section, we define the extended prefix representation in ternary order

relations, and prove that it is equivalent to the natural representation. The

ambiguity is resolved in the extended prefix representation by adding a boolean

value to mark whether each character appeared in the proper prefix or not.

A match condition of the extended prefix representation is also presented to

produce an O(n logm) algorithm as in binary order relations [28].

For a character c ∈ Σ, let existx(c) be 1 if c exists in x, and 0 otherwise.

Let ex-rankx(c) = (rankx(c), existx(c)). For any boolean condition cond, let

δ(cond) be 1 if cond is true, 0 otherwise.

Definition 4.2.1 (Extended Prefix Representation) For a string x, the

extended prefix representation of order relations is defined as follows.

Ex-pre(x) = (ex-rankx1(x[1]), ex-rank(x2[2]), ..., ex-rank(x|x|[|x|]))
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For example, the extended prefix representations of x, y in the previous

example are as follows.

Ex-pre(x) =

(1

0

,
1

0

,
3

0

,
2

0

,
3

1

,
2

1

,
2

1


)

Ex-pre(y) =

(1

0

,
1

0

,
3

0

,
2

0

,
3

1

,
2

1

,
4

1


)

The relationship ofNat(·) and Ex-Pre(·) is given in Lemma 4.2.1 whereNat(xt+1)

can be computed from Nat(xt) and Ex-pre(xt+1) for any t ∈ [1..|x| − 1].

Lemma 4.2.1 (Representation Conversion) Given Nat(xt) and Ex-pre(xt+1),

Nat(xt+1)[i] =

 a+ δ((a > c) ∨ (a = c ∧ d = 0)) for 1 ≤ i ≤ t

c for i = t+ 1

where a = Nat(xt)[i] and

c
d

 = Ex-pre(xt+1)[t+ 1].

Proof: When i = t+ 1, it is obvious that Nat(xt+1)[i] = c by definition.

Consider when i ∈ [1..t]. Let b = Nat(xt+1)[i]. Then, equation (4.1) holds

because a = rankxt(x[i]) and b = rankxt+1(x[i]) = rankxt(x[i]) + δ(x[i] >

x[t+ 1]) (see Fig. 4.1).

b = a+ δ(x[i] > x[t+ 1]) (4.1)

We have the following cases.

Case 1: a > c. Since b ≥ a from equation (4.1), we have b > c, which implies

Nat(xt+1)[i] > Nat(xt+1)[t+ 1]. Therefore, x[i] > x[t+ 1].

Case 2: a < c. Since b ≤ a + 1 from equation (4.1), and a + 1 ≤ c from the

case assumption, we have b ≤ c, which implies x[i] ≤ x[t+1]. If x[i] = x[t+1],

then a = b = c, which contradicts a < c. Therefore, x[i] < x[t+ 1].

Case 3: a = c. Since b ≥ a from equation (4.1), we have b ≥ c. Thus,

x[i] ≥ x[t+ 1].

Case 3.1: d = 0. We have x[i] 6= x[t+ 1], and thus x[i] > x[t+ 1].
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Representation Conversion
1

𝑥

𝑁𝑎𝑡(𝑥𝑡)

𝑁𝑎𝑡(𝑥𝑡+1)

𝐸𝑥−𝑝𝑟𝑒(𝑥𝑡+1)

𝑖𝑛𝑑𝑒𝑥 𝑖1 2 ⋯ 𝑡⋯ 𝑡 + 1

𝑎

𝑏

𝑐

𝑑

Figure 4.1: Symbols in Lemma 4.2.1

Case 3.2: d = 1. We have x[j] = x[t+1] for some j ∈ [1..t]. If x[i] > x[t+1],

then a ≥ c+ 1 is derived as follows.

a = rankxt(x[i])

= rankxt+1(x[i])− 1

≥ rankxt+1(x[t+ 1]) + 1 (because at least x[t+ 1] and x[j] are excluded)

= c+ 1

It contradicts a = c, which implies x[i] = x[t+ 1].

From the above cases, x[i] > x[t+ 1] if and only if (a > c) or (a = c∧ d = 0). �

An example of Lemma 4.2.1 is shown in Figure 4.1 for x = (30, 10, 50, 20,

30, 20, 25, 20). Let us consider when t+ 1 = 7. For i = 1, we have Nat(x6)[1] =

a = 4 and Ex-pre(x7)[7] =

c
d

 =

4

0

. From equation (4.1) of Lemma 4.2.1,

Nat(x7)[1] = b = a + δ(x[1] > x[7]). Since a = c and d = 0, it belongs to

Case 3.1, and thus x[1] > x[7], which implies Nat(x7)[1] = a + 1 = 5. For

i = 2, we have Nat(x6)[2] = a = 1 and

c
d

 =

4

0

. Since a < c, it belongs

to Case 2, and x[2] < x[7], which implies Nat(x7)[2] = a = 1. For i = 3, we

have Nat(x6)[3] = a = 6 and

c
d

 =

4

0

. Since a > c, it belongs to Case

1, and x[3] > x[7], which implies Nat(x7)[3] = a + 1 = 7. For i = 7, we get

Nat(x7)[7] = c = 4 since i = t+ 1.

36



i 1 2 3 4 5 6 7 8

x 30 10 50 20 30 20 25 20

Nat(x6) 4 1 6 2 4 2

Ex-pre(x7)

1

0

 1

0

 3

0

 2

0

 3

1

 2

1

 4

0


NN(x7)

−∞
∞

 −∞
1

 2

1

 2

1

 1

1

 4

4

 6

5


Nat(x7) 5 1 7 2 5 2 4

Ex-pre(x8)

1

0

 1

0

 3

0

 2

0

 3

1

 2

1

 4

0

 2

1


NN(x8)

−∞
∞

 −∞
1

 2

1

 2

1

 1

1

 4

4

 6

5

 6

6


Nat(x8) 6 1 8 2 6 2 5 2

Table 4.1: Example of Lemma 4.2.1 and Lemma 4.3.1

Consider the next step when t+1 = 8. For i = 4, we haveNat(x7)[4] = a = 2

and

c
d

 =

2

1

. As a = c and d = 1, it belongs to Case 3.2, and we get

x[4] = x[8], which implies Nat(x8)[4] = a = 2.

Theorem 1 Ex-pre(·) is equivalent to Nat(·).

Proof: (⇒) Given Ex-pre(x), we can compute Nat(x) by applying Lemma 4.2.1

repetitively to the prefixes of x. Therefore, Nat(x) = Nat(y) if Ex-pre(x) =

Ex-pre(y).

(⇐) Given Nat(x), we can compute Ex-pre(x) directly by comparing the rank

values ofNat(x), which implies that Ex-pre(x) = Ex-pre(y) ifNat(x) = Nat(y).

�

Theorem 2 (Match Condition of Extended Prefix Representation) Given

x, y and t, the condition Ex-pre(xt+1)[t + 1] = Ex-pre(yt+1)[t + 1] is a match

condition of Ex-pre(·).
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Proof: We need to prove the following two directions by Definition 4.1.2.

(⇒) Suppose that Nat(xt+1) = Nat(yt+1). Both Nat(xt) = Nat(yt) and

Ex-pre(xt+1) = Ex-pre(yt+1) are derived from Nat(xt+1) = Nat(yt+1), and

the condition holds.

(⇐) Suppose that Nat(xt) = Nat(yt) and the condition holds. Ex-pre(xt) =

Ex-pre(yt) by Theorem 1, and we get Ex-pre(xt+1) = Ex-pre(yt+1) by the con-

dition. Applying Theorem 1 to both Ex-pre(xt+1) and Ex-pre(yt+1), we get

Nat(xt+1) = Nat(yt+1). �

4.3 Extension of Nearest Neighbor Representation

In this section, we define the nearest neighbor representation [28, 32, 16], and

prove that it is equivalent to the natural representation.

We define LMaxx[i] and LMinx[i] as follows.

LMaxx[i] =

 j if x[j] = max{x[k] : x[k] ≤ x[i] for 1 ≤ k ≤ i− 1}

−∞ if no such j

LMinx[i] =

 j if x[j] = min{x[k] : x[k] ≥ x[i] for 1 ≤ k ≤ i− 1}

∞ if no such j

If there are multiple j’s for LMaxx[i] or LMinx[i], we choose the right-

most one. In Figure 4.1, LMaxx[8] = 6 since x[6] is the rightmost one among

the maximum values which are less than or equal to x[8] in x[1..7]. Similarly,

LMinx[8] = 6.

Definition 4.3.1 (Nearest Neighbor Representation [28, 32, 16]) For a

string x, the nearest neighbor representation of order relations can be defined

as NN(x) =

LMaxx[1]

LMinx[1]

 LMaxx[2]

LMinx[2]

 · · ·
LMaxx[|x|]

LMinx[|x|]

.
For example, for x = (30, 10, 50, 20, 30, 20, 20) and y = (35, 15, 55, 25, 35,
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25, 35), the nearest neighbor representations are as follows.

NN(x) =

(−∞
∞

,
−∞

1

,
 1

∞

,
2

1

,
1

1

,
4

4

,
6

6


)

NN(y) =

(−∞
∞

,
−∞

1

,
 1

∞

,
2

1

,
1

1

,
4

4

,
5

5


)

For convenience, let x[−∞] = −∞, x[∞] = ∞, Nat(x)[−∞] = 0 and

Nat(x)[∞] = |x| + 1 for any string x. Then, Nat(x)[LMaxx[i]] ≤ Nat(x)[i] ≤

Nat(x)[LMinx[i]] holds for any i ∈ [1..|x|] even when LMaxx[i] = −∞ or

LMinx[i] =∞.

The relationship between Nat(·) and NN(·) is given in Lemma 4.3.1.

Lemma 4.3.1 (Representation Conversion) Given Nat(xt) and NN(xt+1),

Nat(xt+1)[i] =

 a+ δ((a > f) ∨ (a = f ∧ e 6= f)) for 1 ≤ i ≤ t

f for i = t+ 1

where a = Nat(xt)[i],

c
d

 = NN(xt+1)[t + 1], e = Nat(xt)[c] and f =

Nat(xt)[d].

Proof: When i = t + 1, we have x[c] ≤ x[t + 1] ≤ x[d] and rankxt+1(x[t +

1]) = rankxt(x[d]) by definition of NN(·), which implies Nat(xt+1)[t + 1] =

Nat(xt)[d] = f .

Consider when i ∈ [1..t]. Let b = Nat(xt+1)[i]. We have equation (4.2) as in

Lemma 4.2.1.

b = a+ δ(x[i] > x[t+ 1]) (4.2)

Case 1: a > f . Nat(xt+1)[t + 1] ≤ Nat(xt+1)[d] by definition of NN(·),

and Nat(xt+1)[d] ≤ f + 1 because rankxt+1(x[d]) ≤ rankxt(x[d]) + 1. We

have f + 1 ≤ a from the case assumption, and a ≤ b by equation (4.2). By

transitivity, Nat(xt+1)[t + 1] ≤ b is derived, which implies x[i] ≥ x[t + 1]. If

x[t+ 1] = x[i], then a = f , which contradicts a > f . Thus, x[i] > x[t+ 1].
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Case 2: a < e. Nat(xt+1)[t + 1] ≥ Nat(xt+1)[c] by definition of NN(·), and

Nat(xt+1)[c] ≥ e because rankxt+1(x[c]) ≥ rankxt(x[c]). We have e ≥ a + 1

from the case assumption, and a + 1 ≥ b by equation (4.2). By transitivity,

we get Nat(xt+1)[t + 1] ≥ b, and thus x[i] ≤ x[t + 1]. If x[t + 1] = x[i], then

a = e, which contradicts a < e. Thus, x[i] < x[t+ 1].

Case 3: a = e = f . We have x[i] = x[c] = x[d] andNat(xt+1)[c] = Nat(xt+1)[d].

Since Nat(xt+1)[c] ≤ Nat(xt+1)[t+1] ≤ Nat(xt+1)[d], we have x[t+1] = x[c].

Hence, x[i] = x[t+ 1].

Case 4: e ≤ a ≤ f and e 6= f . Since e 6= f , x[t+ 1] doesn’t occur in xt.

Case 4.1: a = f . We haveNat(xt+1)[t+1] ≤ Nat(xt+1)[d]−1 since x[t+1] 6=

x[d], and Nat(xt+1)[d]−1 ≤ f since rankxt+1(x[d]) ≤ rankxt(x[d])+1. We

have f = a from the case assumption, and a ≤ b by equation (4.2). By

transitivity, Nat(xt+1)[t + 1] ≤ b, which implies x[i] ≥ x[t + 1]. Since

x[i] 6= x[t+ 1], x[i] > x[t+ 1] holds.

Case 4.2: a = e. We have Nat(xt+1)[t+1] ≥ Nat(xt+1)[c]+1 since x[t+1] 6=

x[c], and Nat(xt+1)[c] ≥ e since rankxt+1(x[c]) ≥ rankxt(x[c]). We have

e = a from the case assumption, and a + 1 ≥ b by equation (4.2). By

transitivity, Nat(xt+1)[t + 1] ≥ b, which implies x[i] ≤ x[t + 1]. Since

x[i] 6= x[t+ 1], x[i] < x[t+ 1] holds.

Case 4.3: e < a < f . We have x[c] < x[i] < x[d], which contradicts the

definition of NN(·) since x[i] is closer than x[c] or x[d] to x[t+1]. Therefore,

there is no such case.

From the above cases, x[i] > x[t+ 1] if and only if (a > f)∨ (a = f ∧ e 6= f). �

An example of Lemma 4.3.1 is shown in Figure 4.1 for x = (30, 10, 50, 20,

30, 20, 25, 20). Let us consider when t+ 1 = 7. For i = 1, we have Nat(x6)[1] =

a = 4, NN(x7)[7] =

c
d

 =

6

5

, e = 2 and f = 4. Since a = f and e 6= f ,

it belongs to Case 4.1, and we get Nat(x7)[1] = a + 1 = 5. For i = 2,

c
d

, e
and f are the same as for i = 1, and we have a = 1. Since a < e, it belongs
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to Case 2, which implies Nat(x7)[2] = a = 1. For i = 3, we have a = 6 and

a > f , and thus it belongs to Case 1. Therefore, Nat(x7)[3] = a + 1 = 7. For

i = 4, we have a = 2. Since a = e and e 6= f , it belongs to Case 4.2, and we get

Nat(x7)[4] = a = 2. For i = 7, we get Nat(x7)[7] = f = 4 since i = t+ 1.

Consider the next step when t + 1 = 8. For i = 4, we have a = 2,

NN(x8)[8] =

c
d

 =

2

1

, e = 2 and f = 2. Since a = e = f , it belongs

to Case 3, which implies Nat(x8)[4] = a = 2.

Theorem 3 NN(·) is equivalent to Nat(·).

Proof: The proof is identical to that of Theorem 1 if we use Lemma 4.3.1

instead of Lemma 4.2.1. �

A naive match condition of the nearest neighbor representation isNN(xt+1)[t+

1] = NN(yt+1)[t + 1] as that of the extended prefix representation in Theo-

rem 2, which requires computing the nearest neighbor representations of both

x and y. Kubica et al. [32] proposed an efficient match condition for ternary

order relations which can be checked in constant time when the nearest neigh-

bor representation of x is given, but it was faulty. Cho et al. [16] presented

a modified match condition in ternary order relations, which can produce an

O(n+m logm) algorithm as in binary order relations. Since the match condi-

tion by Cho et al. [16] was proved in terms of order-isomorphism, we provide

an alternative proof based on the natural representation in Theorem 4.

Theorem 4 (Match Condition of Nearest Neighbor Representation [16])

Given x, y and t, the condition (y[c] < y[t+ 1] < y[d])∨ (y[t+ 1] = y[c] = y[d])

is a match condition of NN(·) where

c
d

 = NN(xt+1)[t+ 1].

Proof:

We need to prove the following two directions by Definition 4.1.2.

(⇒) Suppose thatNat(xt+1) = Nat(yt+1). Then,Nat(xt) = Nat(yt) is obvious.

41



Case 1: x[t+1] does not exist in xt. We haveNat(xt+1)[c] < Nat(xt+1)[t+1] <

Nat(xt+1)[d], which implies Nat(yt+1)[c] < Nat(yt+1)[t+ 1] < Nat(yt+1)[d].

Therefore, y[c] < y[t+ 1] < y[d].

Case 2: x[t + 1] exists in xt. Let i be the rightmost position in xt such that

x[i] = x[t + 1]. Then, NN(xt+1)[t + 1] = NN(yt+1)[t + 1] =

i
i

 =

c
d

.
Therefore, y[t+ 1] = y[c] = y[d].

Combining the two cases, the condition holds.

(⇐) Suppose that Nat(xt) = Nat(yt) and the condition holds. First of all,

we will show that c is the rightmost position of the characters y[c] in yt. For

any i ∈ [1..t], if y[i] = y[c], then x[i] = x[c] from Nat(xt) = Nat(yt). As c is

the rightmost position of the characters x[c] in xt, we have i ≤ c for such i.

Similarly, d is the rightmost position of the characters y[d] in yt.

Case 1: y[c] < y[t + 1] < y[d]. For any i ∈ [1..t], x[i] ≤ x[c] or x[i] ≥

x[d]. If x[i] ≤ x[c], then y[i] ≤ y[c] because Nat(xt) = Nat(yt). Similarly,

if x[i] ≥ x[d], then y[i] ≥ y[d]. In both cases, y[i] ≤ y[c] < y[t + 1] or

y[i] ≥ y[d] > y[t+ 1], and thus NN(yt+1)[t+ 1] =

c
d

.
Case 2: y[t + 1] = y[c] = y[d]. As c and d are the rightmost position of the

characters y[c] = y[d] in yt, we have c = d and NN(yt+1)[t+ 1] =

c
d

.
In both cases, NN(xt+1)[t + 1] = NN(yt+1)[t + 1], and thus NN(xt+1) =

NN(yt+1) since Nat(xt) = Nat(yt). By Theorem 3, we get Nat(xt+1) =

Nat(yt+1). �

4.4 Generalized Order-Preserving KMP Algorithm

The KMP failure function π is defined in terms of the natural representa-

tion [28]:

π[q] =

 max{k : Nat(Pk) = Nat(P [q − k + 1..q]) for 1 ≤ k < q} if q > 1

0 if q = 1
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From the definition above, if Nat(Pq) = Nat(T [i − q..i − 1]), the longest

prefix of P whose natural representation coincides with that of a proper suffix

of T [i − q..i − 1] is Pπ[q]. For any representation R(·) of order relations, the

generalized KMP algorithm can be written as follows.

Generalized-KMP-Order-Matcher(T, P )

1 R(P ) ← Compute-Rep(P )

2 π ← KMP-Compute-Failure-Function(P,R(P ))

3 q ← 0

4 for i ← 1 to |T |

5 while q > 0 and not Match(T [i− q..i], P,R(P ), q + 1)

6 q ← π[q]

7 q ← q + 1

8 if q = |P |

9 print “pattern occurs at position" i

10 q ← π[q]

In Generalized-KMP-Order-Matcher, we assume that Compute-Rep(P )

computesR(P ) for any string P , KMP-Compute-Failure-Function(P,R(P ))

computes the failure function π, and Match(x, y,R(x), t + 1) is a match con-

dition of R(·).

The correctness comes from the loop invariant Nat(Pq) = Nat(T [i−q..i−1])

at line 5. If the match condition is true, then the matched length is increased

by one. Otherwise, it is reduced to π[q] without missing any matched positions.

The time complexity can be represented by O(C+F+M ·n) where C is time

for computing R(P ), F for computing π, and M for checking the match condi-

tion. If we use the extended prefix representation (i.e., R = Ex-pre), then C =

O(m logm), F = O(m logm) and M = O(logm), which produces O(n logm)

time. If we use the nearest neighbor representation (i.e., R = NN), then

C = O(m logm), F = O(m) and M = O(1), which produces O(m logm + n)
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time, which is consistent with the results in [28, 32].

The generalized KMP algorithm above is based on the abstraction of the

match conditions of the representations of order relations. Similarly, if we gener-

alize the Aho-Corasick algorithm in Section 3.1 for multiple pattern matching,

we can obtain an O((n + m) logm) algorithm in ternary order relations using

the extended prefix representation.
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Chapter 5

Conclusion

In this thesis, we have introduced order-preserving matching and defined various

representations of order relations of a numeric string. We have presented efficient

algorithms for single and multiple pattern matching.

First, we have presented efficient algorithms for order-preserving single pat-

tern matching in binary order relations. The order relations of a string are de-

fined as a sequence of rank values which we call the natural representation, and

order-preserving matching problem is defined in terms of the natural represen-

tation. The naive algorithm using the natural representation takes O(nm logm)

time, which can be reduced to O(n logm) using the prefix representation, which

is defined as the sequence of rank values in the prefixes. The KMP algorithm can

be applied with the prefix representation with an additional logm term from

the order-statistic tree. The time complexity is optimized to O(n + m logm)

with the nearest neighbor representation, which is defined as the sequence of

the two indices of the nearest values in the matched text substring. The ad-

vantage of the nearest neighbor representation is that the order relation of each

text character can be checked in constant time.

Second, we have presented an efficient algorithm for order-preserving mul-
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tiple pattern matching in binary order relations. We developed an O((n +

m) logm) algorithm using the prefix representation based on the Aho-Corasick

algorithm where m is the sum of lengths of all the patterns. In contrast to

single pattern matching, the time complexity is not reduced further even with

the nearest neighbor representation.

Third, we have extended our results to ternary order relations allowing mul-

tiple occurrences of equal characters. We have extended the prefix representation

and the nearest neighbor representation, and presented the match conditions of

both representations. The time complexities in binary order relations can be

achieved in ternary order relations as well.

Order-preserving matching is a new class of string matching problems, and

there are many variations of practical importance and theoretical interest [21,

25, 16]. We believe that there are still great opportunities for further research

on order-preserving matching and its variations.
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초 록

문자열 매칭은 컴퓨터 과학에서 수십 년간 연구되어온 중요한 문제이다. 때때로

문자열은 알파벳이 아니라 숫자로 구성되고 여기서 특정 패턴이 아니라 경향성이

중요한 의미를 가지는 경우가 있다. 이를 찾기 위해 본 논문에서는 수치 문자열

에 대하여 순서를 보존하는 매칭 문제(order-preserving matching)를 소개한다.

순서를 보존하는 매칭에서 패턴은 같은 길이를 가지는 텍스트의 부분문자열과

상대적인 크기 순서가 일치할 때 매칭된다. 순서를 보존하는 매칭은 주식 가격

분석이나 유사 멜로디 매칭과 같은 경우에 적용 가능하다.

본 논문에서는 수치문자열에 대해 순서를 보존하는 매칭 문제를 정의하고 다

양한 순서 관계 표현들과 이를 이용한 효율적인 알고리즘들을 제안한다. 패턴

이 하나인 경우, 패턴의 길이가 m, 텍스트의 길이가 n일 때, 우리는 접두사 표

현 방법(prefix representation)을 이용하여 KMP 알고리즘에 기반한 수행시간이

O(n logm)인 알고리즘을 제안하고, 이를 최적화하여 근접 이웃 표현 방법(near-

est neighbor representation)을 이용한 수행시간이 O(n+m logm)인 알고리즘을

얻는다. 패턴이 여러 개인 경우, 모든 패턴의 길이의 합이 m, 텍스트의 길이가 n

일때,접두사표현방법을이용하여 Aho-Corasick알고리즘에기반한수행시간이

O((n+m) logm)인 알고리즘을 제안한다. 본 논문에서는 먼저 2항 순서 관계(bi-

nary order relation)를 가정한 알고리즘들을 제안하고 이 결과를 3항 순서 관계

(ternary order relation)로 확장한다. 본 논문의 확장을 이용하면 2항 순서 관계에

서 얻은 시간복잡도들을 3항 순서 관계에서도 얻을 수 있다.

주요어: 순서를 보존하는 매칭, 순서 관계, 패턴 매칭, 수치 문자열, KMP 알고리

즘, Aho-Corasick 알고리즘

학번: 2007-30219
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