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Abstract

Genetic programming (GP) is an effective evolutionary algorithm for many prob-

lems, especially suited to model learning. GP has many parameters, usually defined

by the user according to the problem. The performance of GP is sensitive to their

values. Parameter setting has been a major focus of study in evolutionary computa-

tion. However there is still no general guideline for choosing efficient settings. The

usual method for parameter setting is trial and error.

The method used in this thesis, adaptive operator mechanism, replaces the user’s

action in setting rates of application of genetic operators. adaptive operator mecha-

nism autonomously controls the genetic operators during a run. This thesis extends

adaptive operator mechanism to genetic programming, applying existing adaptive

operator algorithms and developing them for TAG3P, a grammar-guided GP which

supports a wide variety of useful genetic operators. Existing adaptive operator selec-

tion algorithms are successfully applied to TAG3P; their performances are compet-

itive with systems without an adaptive operator mechanism. However they showed

some drawbacks, which we discuss. To overcome them, we suggest three variants on

operator selection, which performed somewhat better.

We have investigated evaluation of operator impact in adaptive operator mecha-

nism, which measures the impact of operator applications on improvement of solu-

tion. Hence the impact guides operator rates, evaluation of operator impact is very

important in adaptive operator mechanism. There are two issues in evaluation of

operator impact: the resource and the method. Basically all history information of

run are able to be used as resources for the operator impact, but fitness value which

is directly related with the improvement of solution, is usually used as a resource. By

using a variety of problems, we used two kinds of resources: accuracy and structure
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in this thesis. On the other hand, although we used same resources, the evaluated

impacts are different by methods. We suggested several methods of the evaluation of

operator impact. Although they require only small change, they have a large effect

on performance.

Finally, we verified adaptive operator mechanism by applying it to a real-world

application; a modeling of algal blooms in the Nakdong River. The objective of this

application is a model that describes and predicts the ecosystem of the Nakdong

River. We verified it with two researches: fitting the parameters of an expert-derived

model for the Nakdong River with a GA, and modeling by extending the expert-

derived model with TAG3P.

Keywords: Adaptive Operator Mechanism,

Adaptive Operator Selection, Genetic Programming,

Evolutionary Algorithms, Parameter Control,

Parameter Setting

Student Number: 2005-23499
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Chapter 1

Introduction

1.1 Background and Motivation

Genetic Programming (GP, Koza (1992, 1994)) and Genetic Algorithm (GA, Holland

(1975); Goldberg (1989)) are popular evolutionary algorithms and they are effective

for many problems; while GA is commonly used for optimization, GP is usually used

for learning. Both systems have many common features. They have a population and

make it be evolved for searching a solution. Comparing to GA, the main feature of

GP is that its representation is a tree-based structure. Thus chromosomes of GP

can be easily extended under one’s extension rules and they can express structurally

complex solutions. Based on the feature, many various types of GP, such as grammar-

guided genetic programming (GGGP), in which formal grammars are used to build

solutions, are exist. In these GP systems, formal grammars can be used to set a

declarative bias on the search process of GP.

In addition to the above, diverse and known as useful genetic operators for GP

and GGGP are investigated, and more operators are being considered. Because GP

systems usually operate on an infinite solution space, it is difficult to analyze the

1
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effects of genetic operators exactly. Thus, controlling the effects of genetic operators

appropriately become an important issue in evolutionary computation, since unsuit-

able settings can waste computational effort, as the number of genetic operators

increase. In the simplest approach, parameter settings may be based on folklore or a

priori knowledge or on preliminary experiments. But prior knowledge may be wrong,

while preliminary experiments are both expensive, and potentially misleading. More

sophisticated methods use the preceding performance of operators as a guide to their

likely future performance. The first important step came with Schwefel’s one-fifth

success rule (Schwefel (1981)) for continuous optimization in evolution strategies

(ES), which adapted mutation step size. However it has limited relevance to opera-

tors with discrete effects as appear in GP or GA. As the solution of this problem, we

introduce adaptive operator mechanism, which is an adaptive mechanism on genetic

operator, for on-line controlling the application of the variation operators.

1.2 Our Approach and Its Contributions

Extension of Adaptive Operator mechanism to GP

While many studies of adaptive operator mechanism have investigated GA and Dif-

ferential Evolution (DE) domain (Qin et al. (2009); Gong et al. (2010)), relatively

little research has been applied to GP (Niehaus and Banzhaf (2001)). By directly

applying several adaptive operator mechanisms to GP systems, we extend domain

area of adaptive operator mechanism to GP systems. Moreover the result suggested

a guideline on new adaptive operator mechanism for GP.
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New Adaptive Operator Mechanism for GP

Most adaptive operator mechanisms were originally developed for general systems,

not for a specific GP such as TAG3P. Thus even though adaptive operator mecha-

nism works well for GP, it has restrictions, in particular when there are many op-

erators. We investigated new adaptive operator mechanisms for GP systems: three

operator selection variants and a number of useful methods of the evaluation of op-

erator impact. The variants, which we suggested, are designed for many operators

in different ways. We compared them to a typical GP and existing adaptive op-

erator mechanisms. We approached the evaluation of operator impact in two ways:

resources and methods. Two resources, accuracy and structure information, are used

to evaluate an operator impact on diverse problems and four methods, which require

only small change, large affected to performance.

Analysis of Genetic Operators

Through the empirical analysis of experiments, which are explained at section 1.2, we

generated a deeper understanding of genetic operators of TAG3P: subtree-crossover,

subtree-mutation, reproduction, insertion, deletion, duplication, truncation, point

replacement and relocation. The analysis showed how these operators worked at

different situations: different problems and the progress of a run. It suggested a

combination of operators, which is appropriate for a given problem.

Real-world Application

We applied adaptive operator mechanisms to EAs working on a real-world prob-

lem: Nakdong River Modeling. This enabled us to verify the value of the usefulness

of adaptive operator mechanism in a real-world application. The objective of the

Nakdong River modeling problem is to build a prediction model for zooplankton in
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the Nakdong River. Details of the problem will be described later. This work consist

of two parts. One is parameter fitting with GA, and the other is modeling with

TAG3P.

1.3 Outline

The remainder of this thesis is organized as follows. Chapter 2 explains background

knowledge related to each chapter, including explanation of tree adjoining grammar

based genetic programming. First, we describe genetic algorithm and genetic pro-

gramming. Then, tree adjoining grammar based genetic programming is explained.

Chapter 3 introduces adaptive operator mechanisms, mainly adaptive operator se-

lection. We summarize adaptive mechanisms and adaptive operator selection, and

introduce three algorithms. Then, we apply the algorithms to tree adjoining grammar

based genetic programming, which has nine diverse genetic operators, in chapter 4.

Chapter 5 proposes three new operator selection algorithms for the GP system. They

are variants of algorithms in chapter 4 and show better performance than previous

ones. In addition, the empirical analysis provides deep understanding of genetic op-

erators and their features. Chapter 6 suggests several methods for the evaluation

of operator impact, which guide operator rates by evaluating the operator impact

based on the whole run history. Chapter 7 verifies the usefulness of adaptive oper-

ator mechanism with a real-world application: Nakdong River modeling. Not only

genetic programming but also genetic algorithm were used for this experiment. We

finish in chapter 8 with a summary of the conclusion and future works.



Chapter 2

Related Works

Evolutionary Algorithms (EAs) are generic population-based metaheuristic opti-

mization algorithms, which mimic biological evolution in nature. To solve a give

problem in EAs, individuals in a population affect to each other and evolve during a

run. This chapter explains two EAs: genetic algorithm (GA) and genetic program-

ming (GP). Both algorithms are used as a base algorithm which adaptive mechanism

is applied to. In particular, We introduce a specific GP, tree adjoining grammar

guided GP (TAG3P). It is a grammar-guided GP which has a tree adjoining gram-

mar (TAG) based representation.

2.1 Evolutionary Algorithms

2.1.1 Genetic Algorithm

From the Genetic Algorithm (GA, Holland (1975); Goldberg (1989)) is proposed, it

is a currently popular evolutionary algorithm which shows its usefulness for solving

diverse real-world problems, in particular optimizations (Mitchell (1996)).

GA uses linear and fixed length of strings as the representation, which is called

5
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Figure 2.1: Representation of Genetic Algorithm

Figure 2.2: Genetic Operators in GA

chromosome (Fig. 2.1). Each element of chromosome, called as gene, has a value

of a variety of types; binary value, integer, real number, character and so on. Each

gene represents the value of some aspect of the solution, so a type of gene value is

dependent on a given problem to solve. There have been diverse GA systems using

different representation such as real coding, gray coding, messy coding, variant length

chromosomes, and so on (Mitchell (1996)).

Genetic operator changes individuals to find a solution. Crossover and mutation

are two main genetic operators. Crossover is the main genetic operator and it resem-

bles genetic recombination of genome in biological evolution. Mutation is the sec-

ondary operator which is used to keep a degree of genetic diversity in the population.

Holland (1975) suggested three operator on binary-coded GA; one-point crossover,



CHAPTER 2. RELATED WORKS 7

Figure 2.3: Scheme of Evolutionary Algorithms

one-point mutation and inversion (Fig. 2.2). One-point crossover exchanges segments

of two chromosomes. One-point mutation flips a random gene. Inversion changes a

segment of chromosome in reverse order. From three operators in the beginning,

there have been a lot of new and bio-inspired genetic operators (Mitchell (1996);

Bäck et al. (2000a,b)). For example two-point crossover, uniform crossover, uniform

mutation and Gaussian mutation are existing. Indeed, it is not difficult to design

operators which make limited changes in GA chromosome.

The basic process of GA is shown in figure 2.3. Figure 2.3 describes the basic

scheme of all EAs, including GA. After GA randomly makes an initial population,

it repeats to apply genetic operators to population until the end criteria is satisfied.
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2.1.2 Genetic Programming

Genetic programming (GP, Koza (1992, 1994)) has been defined as a machine learn-

ing method to evolve computer programs (Banzhaf et al. (1997)). GP is inspired

by GA so GP has many common features with GA. The main difference between

GA and GP is the representation of chromosome. While GA uses a fixed-length

of string-based chromosome, GP uses a tree-based chromosome with variable size

and shape. A tree-based representation makes GP is flexible. Therefore, GA is used

for the task of optimizing parameters for solutions when their structure is known,

while GP is more used to learn and discover both content and structure of solutions

(Banzhaf et al. (1997)).

The main genetic operators in GP are also crossover and mutation. They change

subtree in GP chromosome. For example, subtree crossover exchanges subtrees of two

chromosomes if they can be attached to the opposite tree. Genetic operators in GP

change not only values in tree but also structure of tree, therefore, comparing to GA,

many operators which more diversely affect individuals exist in GP. Many research

on GP operators and their effects have long been investigated. Recent research on

GP operators has focused on effects by restrictions on subtree crossover; by some

restrictions, subtree crossover affects on GP bloat (Angeline (1998); Langdon (2000);

Terrio and Heywood (2002)), or it causes specific changes (McPhee et al. (2008);

Beadle and Johnson (2008); Nguyen et al. (2009)).

Original GP (Koza (1992)) represents solutions as expression trees, and in prin-

ciple searches the space of all expressions that can be built out of a specific set of

function and atom symbols.1 This generality is often useful, but it also can lead to

1We here avoid Koza’s terminology of terminals and nonterminals for these symbols, because it

causes confusion in the context of grammar-based systems. We reserve those terms for their original

– grammatical – meaning.
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problems. We frequently have prior knowledge that can restrict our search to specific

forms. We may know that other forms are meaningless (e.g semantically inconsistent:

Y = TRUE × 3), or almost certain not to be correct solutions (e.g. incompatible

with physical consistency laws: Y = mass× volume + time), or unlikely to be useful

even if they are correct (e.g. requiring information that is unlikely to be available:

Y (t) = X(t+ 1)× Z(t+ 1)).

Grammar guided GP (GGGP) addresses these issues by restricting the search

space to the language defined by a grammar. The underlying assumption is that our

background knowledge can generally be represented by the restrictions implicit in

these grammars. Various kinds of grammars have been used, those from the Chom-

sky’s hierarchy, and particularly context free grammars (CFGs) being the most com-

mon (Wong and Leung (1997); Whigham (1994, 1995); Ryan et al. (1998)) . With

the exception of grammatical evolution (GE), they resemble expression-tree GP in

evolving tree structures, with restricted forms of subtree crossover and mutation

designed to maintain consistency with the grammar.

2.1.3 Tree Adjoining Grammar based Genetic Programming

Tree Adjoining Grammars

Tree adjoining grammars (TAGs) are tree-generating and analysis system for Natural

Language Processing (Joshi et al. (1975); Joshi and Schabes (1997)). The objective of

TAGs is to more directly represent the structure of natural languages than Chomsky

languages. Chomsky hierarchy grammars were originally designed to highlight the re-

usability aspects of natural language – the relationship between “The cat sat on the

mat” and “The cat sat on the dog”, “The cat sat next to the mat” etc. What Joshi

et al. (1975) was the first to recognize is that they don’t do a particularly good job

of explaining the relationship between the first sentence and “The big, black cat sat
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Figure 2.4: Simple Elementary Trees

possessively on the shaggy gray mat which it had commandeered”. Joshi pioneered

the idea of forming a grammar using insertable elements (auxiliary or β trees), which

can always be inserted into certain contexts. Thus a β tree representing an adjective

such as “black” can always be inserted (adjoined) at the start of a noun phrase. In

this view, all sentences can be built up from a basic stock of simple sentences (the

α trees) by the operation of adjunction; Joshi demonstrated that these tree adjunct

grammars subsume CFGs and are mildly context sensitive. They can also be more

succinct than equivalent CFGs. For example, representing the subject/predicate

number agreement of English in a CFG would require complete copies of the rest

of the grammar, one for singular sentences and the other for plural. Tree adjunct

grammars can directly and economically represent this agreement. Figure 2.4 shows

a example of elementary trees: α tree and β tree. While α tree is a general tree in

which terminal or non-terminal symbols are labeled on nodes, β tree has a foot node

on which * is marked. Foot node is used when β tree is inserted (adjoined) to other

tree (Fig. 2.5).

It was subsequently recognized that incorporating the characteristic operation of
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Figure 2.5: Adjunction

CFGs – substitution – into tree adjoining grammars was useful. It does not extend

the set of representable languages, but it substantially reduces the complexity of

representation (Joshi et al. (1975); Joshi and Schabes (1997)). For example, there

are many adverbs in English – ‘very’, ‘darkly’, etc. Without substitution, we would

need a separate β tree for each adverb. With substitution, we can have a single

nonterminal – ‘ADVERB’ – and substitute with adverbs as required. This might

seem a trivial difference (replacing many β trees with a corresponding number of

lexical elements). The true economy is revealed when we consider that adverbs may

be used in different contexts (modifying adjectives, verbs, whole sentences etc.).

Without substitution, we would have to repeat β trees for the whole lexicon for each
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Figure 2.6: Simple example of CFG and TAG

use. With substitution, we only need one β tree (incorporating ‘ADVERB’) for each

use, together with a single set of rules providing for substitution of ’ADVERB’ by its

lexicon. Thus today, the acronym TAG normally means a tree-adjoining grammar

(i.e. one which incorporates both substitution and adjunction as operators).

Tree Adjoining Grammar Guided Genetic Programming

TAGs have been used as the basis for a number of EA systems including GP (Hoai

et al. (2002, 2006); Murphy et al. (2010)). Tree Adjoining Grammar Guided Ge-

netic Programming (TAG3P, Hoai et al. (2002); Hoai (2004); Hoai et al. (2006))

is a grammar guided genetic programming which uses TAGs format as the tree

representation.

TAG3P is based on tree adjoining grammars; specifically on a subset of these

grammars in which substitution is only permitted to introduce terminals. Using

TAG3P is very similar to using a CFG-guided GP system. TAG3P specifies a gram-

mar to define the search space, but unlike with CFGs, it does so by defining sets

of α and β trees. A simple example, with an equivalent CFG grammar is shown in

fig. 2.6.

TAG3P uses TAG derivation trees over this grammar as its genotype representa-
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tion. Thus a basic TAG3P implementation merely needs to supply an initialization

mechanism for TAG derivation trees, and crossover and mutation operators. In the

simplest form, it can simply use subtree mutation and crossover as in GGGP, with

a restricted for of subtree mutation (restricted in this case to start with an α tree)

as its initialization algorithm. The most complex part of the implementation lies in

the first half of the genotype-phenotype mapping, in which a TAG derivation tree

is transformed to the corresponding Chomsky-grammar derived tree. But even in

this case, although the coding is complex, the idea is relatively simple – it simply

consists of starting with the α tree, and then starting from the root of the derivation

tree, applying the adjunction (or substitution) specified in a particular node to the

current derived tree at the specified position. Once the derived tree has been gener-

ated, it is a normal Chomsky-style derivation tree as in any Chomsky-based GGGP

system, and may be transformed to the final expression tree and evaluated, just as

in GGGP.

TAG3P has a lot of useful genetic operators (Hoai (2004); Hoai et al. (2006)). In

this thesis, we introduce and use nine different TAG3P operators; subtree crossover,

subtree mutation, reproduction, insertion, deletion, duplication, truncation, reloca-

tion and replacement. Among them, insertion and deletion, and duplication and

truncation are in a dual relation with each other to avoid size biases, they are used

as a dual pair, working together, and being applied at an equal rate. In summary,

then, we used 5 single operators and 2 dual operators. They are briefly summarized

in table 2.1, and explained in more detail below.

Subtree Crossover (X) is the traditionally most-used GP operator, well known

for its effectiveness in exploitation of good solution components. A random point is

selected in the first parent; a compatible location is then chosen in the second parent,

and the subtrees below those points in both parents are exchanged. In expression-
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Table 2.1: Genetic Operators of TAG3P
X Subtree Crossover Exchanges random subtrees of two individuals

M Subtree Mutation Replaces a random subtree with a newly generated one

Rd Reproduction Reproduction retains the individual unchanged

I Insertion Inserts exactly one adjunction instruction on the frontier

D Deletion Deletes exactly one adjunction instruction from the frontier

I/D Insertion/Deletion dual operator

D Duplication Copies a random subtree, adding it to another location in the individual

T Truncation Removes a random subtree from the individual.

D/T Duplication/Truncation dual operator

Rep Point Replacement Replaces a frontier node with another

Rel Relocation Moves a randomly chosen subtree to another location in the individual

tree GP, all locations are compatible, but in GGGP and TAG3P, they are required to

be grammar-compatible (i.e. have the same non-terminal label). Of course, this ex-

change may breach size limits. This may be handled in various ways, but in TAG3P,

the whole operation is repeated a fixed number of times; if none of these tries are

successful, the operation is aborted and a new one chosen.

Subtree Mutation (M) is also a traditional GP operator, particularly favored for

its exploratory capabilities. The subtree at a randomly-chosen location in the parent

is deleted, then replaced with one newly generated using the (random) initialization

algorithm.

Reproduction (Rd) is the final traditional operator from GP: it simply replicates

individuals from one generation to the next (and thus shares some properties with

elitism, in that, in combination with selection, it increases the probability of retaining

fit individuals).
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(Point) Insertion & Deletion (I/D) while insertion adds to the frontier an

instruction to adjoin one β tree to a random open location, deletion removes one.

Thus the expected size change (plus or minus) is one. Thus used in dual mode (i.e.

with equal probability of application), the expected change in average individual

size resulting from these operators is zero. Because they cause the minimum possible

change, they are useful for fine-tuning the size or structure of individuals.

(Subtree) Duplication & Truncation (D/T) are also used as dual operators,

again to avoid size bias. They are useful for coarse adjustment. Duplication (some-

times known as replication) copies a randomly-chosen subtree from the individual,

adding it to a randomly-chosen compatible point in the same individual. Truncation

is similar to deletion, but removes the whole subtree below a randomly chosen point.

Point Replacement (Rep) is a small-scale operator, randomly choosing a fron-

tier node and replacing it with another (it is thus equivalent to a deletion/insertion

sequence, and has no effect on size).

Relocation (Rel) makes larger-scale structural changes in an individual. It dis-

connects a random subtree from an individual, and re-connects it in a randomly-

chosen compatible location in the same individual. It has no effect on size, and may

be viewed as a form of (size-fair) self-crossover.



Chapter 3

Adaptive Mechanism and

Adaptive Operator Selection

This chapter describes adaptive mechanism, in particular, adaptive operator selec-

tion (AOS). It introduces three existing AOS methods, probability matching (PM),

adaptive pursuit (AP) and multi-armed bandits (MABs), which have showed good

performances in genetic algorithm (Goldberg (1990); Thierens (2007); DaCosta et al.

(2008)).

3.1 Adaptive Mechanism

Evolutionary algorithms have many parameters. Hence the issue of parameter setting

of an evolutionary algorithm is critical for good performance, finding the well-suited

setup for an evolutionary algorithm have been a long grand challenge of the field

(Eiben et al. (2007)). Eiben distinguished two major forms of parameter setting:

parameter tuning and parameter control (Fig. 3.1). Parameter tuning is a typical

approach. It finds good parameter values based on preliminary experiments and

16
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Figure 3.1: Parameter Setting in EAs

rules of thumb and sets them before the run (De Jong (2007)). Meanwhile param-

eter control changes parameter values during the run. Parameter control can be

further distinguished deterministic, self-adaptive, and adaptive. Deterministic pre-

define parameter values as functions of time, usually linearly. In most cases however,

trials and errors are still essential in deterministic. In self-adaptive, parameters are in

the individual and they are optimized together. It is acknowledged one of the most

effective approaches, but it often increases the complexity of the problem. Adap-

tive, which is mentioned as adaptive mechanism in this thesis, predefines parameter

values as functions of all history information of the run. During the run, adaptive

receives feedback and modifies the parameter values.



CHAPTER 3. ADAPTIVE MECHANISM AND AOS 18

3.2 Adaptive Operator Selection

The parameters that control evolutionary operators have long been an issue in EAs.

While some parameters such as the population size and maximum number of gener-

ations are relatively easy to be set, the operator application rates are more difficult

to be set. Moreover many operators in GP make it be more difficult. Two kinds of

parameters are involved: parameters that control the rates of application of specific

operators, and parameters that control the scale of the operators. The former were

of particular concern in the genetic algorithms literature, and the latter in Evolution

Strategies. AOS is an approach of adaptive mechanism which controls only param-

eters of genetic operators. The objective of AOS is to define an on-line strategy for

selecting the most appropriate variation operators. Using the preceding performance

of operators as a guide to their likely future performance, AOS modifies parameter

values and suggests well-suited operators during the run.

As shown on Fig. 3.2, AOS interactively works with EAs. For every end of gener-

ations, AOS receives history information from EAs. Based on the information, AOS

updates its internal status and suggests new operator application rates for the next

generation to EAs. This process is repeated until the end of the run. In general,

AOS is consists of two parts; operator selection and evaluation of operator impact,

and it includes an internal status vector of which each element is corresponded to

each genetic operator. The internal status indicates the usefulness of operator based

on accumulated impacts.

3.2.1 Operator Selection

Operator selection is a core part of AOS which aims to suggest the most appropriate

operator based on the internal status. From the internal status, operator selection

proposes a new operator application rates to EAs. After values of internal status are
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Figure 3.2: Scheme of Adaptive Operator Selection

updated by evaluation of operator impact, operator selection start to recommend

the most effective operator. With the corresponding algorithm, operator selection

generally changes the operator application rates as a new one.1 With the suggested

rates for operator, EAs are able to choose the effective genetic operator.

3.2.2 Evaluation of Operator Impact

Impact is a measure of the effect of operators for the current generation, and it

also works as a guideline on change of operator rates. For example, an operator

1MABs suggests only one operator, however we consider that MABs suggests an operator appli-

cation rates in which one operator has 1 but all other have zero.
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which has a good impact value, easily has high rate, then it has more chance to

be used in and affect to a run. In other word, impact is the main criteria of the

operator usage. Therefore, defining the impact of operator is an important factor

on AOS, and what evaluation of operator impact does are to define the impact and

to update the internal status with the impact. As resources for evaluating operator

impact, all running history information can be used. In most cases of GAs, fitness

is widely used, however more information, such as a depth of individuals, can be

used in GPs. Although the same operator selection methods are used, results are

differed by evaluation of operator impact. We will discuss it in more detail at chap 6.

Adaptive operator selection is comprised of a triple (I, Op, Ip), where I is an internal

status, Op is an operator application rates and Ip is a current impact value. All

elements are vectors of which size is same to the number of genetic operators. Ip

is calculated from newly generated population. Then Evaluation of operator impact

updates I with Ip. While Ip is a measure of immediate effect of genetic operators,

I is an accumulated effect of operators. I is updated with Ip and other history

information of a run, such as the number of operator is selected. Finally, based on

I, operator selection makes a new Op vector for the next generation. With this

suggested Op, EAs choose the effective genetic operator.

3.3 Algorithms of Adaptive Operator Selection

As parameter setting has long been issued, many studies for AOS have been pro-

posed. The first important step came with Schwefel’s one-fifth success rule (Schwe-

fel (1981)) for continuous optimization in evolution strategies (ES), which adapted

mutation step size. B.A. Julstrom investigated a mechanism of adapting operator

probabilities in a steady-state GA. A probability of each operator in the mechanism
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is proportional to the corresponding recent contribution (Julstrom (1995)). A. Tuson

and P. Ross proposed performance based operator probabilities which are adjusted

during a run of GA (Tuson and Ross (1996)). CW Ho showed a well-performed GA

system with adaptive probabilities (Ho et al. (1999)). They adapt the mutation and

the crossover rates during a GA run. More recently, Barbosa proposed adaptive op-

erator probabilities in real coded steady-state GA (Barbosa and Sá (2000)). Thierens

suggested a method, called adaptive pursuit, which has rapid converged adaptive op-

erator (Thierens (2005)). DaCosta and Fialho proposed multi-armed bandits which

choose an operator by balancing between exploration and exploitation (DaCosta

et al. (2008); Fialho and Schoenauer (2009)). In this thesis, we introduce the last

three algorithms; probability matching, adaptive pursuit and multi-armed bandits.

3.3.1 Probability Matching

Probability matching (PM, Goldberg (1990); Barbosa and Sá (2000)) is a simple

and eidetic algorithm which chooses one of operators iteratively, for applying it to

the system. With the recent operator impact which is measured from new generated

population, PM updates the internal status. Then PM modifies operator applica-

tion rates for the next operator selection, and this process is repeated until the

end of a run. In whole process, PM aims to match the operator application rates

(probabilities) to their corresponding impact.

Formally, let’s assume that there is a set ofK genetic operators {OP1, OP2, ..., OPK}.

An operator OPi has its corresponding probability (application rate) Pi(t), corre-

sponding impact Ii(t), and corresponding quality (internal status) Qi(t), for time

t. Probability Pi(t) is used for choosing an operator OPi (0 ≤ Pi(t) ≤ 1∀t, i and∑K
i=1 Pi(t) = 1). Evaluation of operator impact works follows. At first, an impact

Ii(t) is returned from the system, when an operator OPi is executed at time t, and it
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is a measure for the usefulness of corresponding operator. A quality Qi(t+ 1) means

how good the operator OPi is, and its value is updated with the former quality Qi(t),

the former impact Ii(t) and the adaptation rate α ( 0 ≤ α ≤ 1 ) (Eq. 3.1).

Q(t+ 1) = Q(t) + α(I(t)−Q(t)) (3.1)

Qi(t + 1) is used to set the value of the next probability Pi(t + 1). Basically,

Pi(t+ 1) is set as the proportion of Qi(t+ 1) to the sum of all qualities
∑K

j=1Qj(t).

However, for no operator gets 0 probability value, it uses the minimum probability

Pmin: 0 ≤ Pmin ≤ 1 (Eq. 3.2). It means, the maximum probability which an operator

can get, is restricted to 1− (K − 1)Pmin.

Pi(t+ 1) = Pmin + (1−K · Pmin)
Qi(t)∑K
j=1Qj(t)

(3.2)

The detail algorithm is given in table 3.1.2

In conclusion, PM sets the operator application rate via the performance of op-

erator directly; The fairness and simpleness are main merits of PM.

3.3.2 Adaptive Pursuit

Adaptive pursuit (AP, Thierens (2005, 2007)) algorithm is based on Pursuit (Thathachar

and Sastry (1985)) which is a rapidly converging algorithms for learning automata.

The main difference between PM and AP, is a method to update operator appli-

cation rates. While PM sets operator rates to the same portion of corresponding

impacts, AP emphasize only the most effective operator.

2As presented in Thierens (2005). This is applied to all details of algorithms.
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Table 3.1: Algorithm for Probability Matching

ProbabilityMatching(P ,Q,I,K,Pmin,α)

for i← 1 to K do

Pinit(i)← 1
K

Qinit(i)← 1.0

end for

while NotTerminated?() do

OperatorSelectionByP (t)

Ii(t)← GetImpact

Qi(t+ 1)← Qi(t) + α(Ii(t)−Qi(t))

for i← 1 to K do

Pi(t+ 1)← Pmin + (1−K.Pmin) Qi(t)∑K
j=1 Qj(t)

end for

end while

The basic process of AP is same to PM. Under the same assumption of a set of

K operators {OP1, OP2, ..., OPK}, operators are selected with corresponding prob-

ability Pi(t). After operators are executed, the impact Ri(t) is returned and quality

Qi(t+ 1) is updated. At this time, evaluation of operator impact is exactly same to

PM. In other words, quality is updated with previous quality value, returned impact

and the adaptation rate α (Eq. 3.1).

However a detail of operator selection is different. To set values of Pi(t+ 1), AP

firstly finds one operator OPi∗ which has the largest value of quality Qi∗(t+1), then

AP divides operators two groups; the most effective operator OPi∗ and others. AP

increases Pi∗(t + 1) with the maximum probability Pmax and learning rate β, but

it decreases others with Pmin and β (Eq. 3.3). In conclusion, AP grows up only the
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most effective operator and reduces others instead.

i∗ = argmax{Qi(t+ 1), i = 1...K}

Pi∗(t+ 1) = Pi∗(t) + β(Pmax − Pi∗(t)) (3.3)

Pi(t+ 1) = Pi(t) + β(Pmin − Pi(t)) for i 6= i∗

The detail algorithm is given in table 3.2

Table 3.2: Algorithm for Adaptive Pursuit

AdaptivePursuit(P ,Q,I,K,Pmin,Pmax,α,β)

Pmax ← 1− (K − 1)Pmin

for i← 1 to K do

P (i)← 1
K

Q(i)← 1.0

end for

while NotTerminated?() do

OperatorSelectionByP (t)

Ii(t)← GetImpact

Qi(t+ 1)← Qi(t) + α(Ii(t)−Qi(t))

i∗ ← argmax(Qis(t+ 1))

Pi∗(t+ 1)← Pi∗(t) + β(Pmax − Pi∗(t))

for i← 1 to K do

if i 6= i∗ then

Pi(t+ 1)← Pi(t) + β(Pmin − Pi(t))

end if

end for

end while

The advantage of AP is quick fluctuation. Once an operator is chosen as the

most effective, AP gives a huge advantage to the operator. The operator is easily
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re-chosen with the advantage. However, for only one operator, AP ignores the rest

operators. In addition difference among the rests doesn’t have any meaning; AP

decreases application rates of the rests with equal proportion. For instance, when

there are three operators; OP1, OP2 and OP3, and their corresponding impacts are

9, 10 and 1 by order. Then, OP2 is chosen as the most effective one and there is no

difference between OP1 and OP3.

3.3.3 Multi-Armed Bandits

Comparing to PM and AP, Multi-armed bandit (MAB, DaCosta et al. (2008); Fialho

and Schoenauer (2009)) has a different style. MAB is based on Upper Confidence

Bound (UCB, Auer et al. (2002)) algorithm. The main feature of MAB is that it

chooses the optimem operator based on a balance between exploration and exploita-

tion (Eq. 3.4).

ˆIi(t) =
1

t

t∑
t′=1

Ii(t
′)

UCBi(t) = ˆIi(t) + C

√
log

∑K
o′=1 no′(t)

ni(t)
(3.4)

i∗ = argmax{UCBi, i = 1...K}

The exploitation term calculates the average impact of operator Îi,t, up to time

t, while the exploration term ni,t measures how often the operator is selected. A

scaling factor C is needed to balance the two terms, because the impact range is

unknown a priori.

The basic MAB, which is called static MAB (S-MAB), computes the average

impact Îi,t over the whole period of evolution. This average impact Îi,t represents

the performance of corresponding operator, as the exploitation term. Otherwise, the

exploration term measures the number which the operators is selected, then S-MAB
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gives more chance to less-selected operator. Because S-MAB uses the average impact

over whole run, it is stable and smoothly changed, however S-MAB is sometimes

weak in dramatically changing situation (DaCosta et al. (2008)).

Another style, dynamic MAB (D-MAB), uses the Page-Hinckley test (PH test, Hink-

ley (1970)), with parameters δ and λ (Eq. 3.5). PH test is used to determine when to

reset the MAB log; the average operator impact, the number of selected and internal

value of PH test are set to 0. The reset function by PH test makes D-MAB be more

suitable to the dynamically changing situation than S-MAB.

ˆIi(t) =
1

t

t∑
t′=1

Ii(t
′)

mt =

t∑
t′=1

(Ii(t
′)− ˆIi(t) + δ) (3.5)

Mt = max{mt′ , t
′ = 1...t}

PHt = Mt −mt

Return (PHt > λ)

However, D-MAB still has a problem in its parameters; a scaling factor C and

parameters for PH test δ and λ. When MAB uses the direct value of the fitness,

scaling factor C has two different role; for the scale of the fitness and for the balance

between exploitation and exploration. Thus, C becomes very sensitive parameter. In

addition δ and λ are also sensitive and dependent on the impact value Fialho et al.

(2010). Two variants; Sum of Ranked-Bandit (SR-B) and AUC-Bandit (AUC-B)

(Fialho et al. (2010)) use the comparison-based impact for overcome the parameter

sensitivity issue. Two algorithms do not use the direct impact value, they use the

rank of impacts. SR-B, as its name says, uses the sum of the ranks of the impacts,

which is normalized by the sum of all ranks (Eq. 3.6).
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SRi,t =

∑
OPr=iD

r(W − r)∑W
r=1D

r(W − r)
(3.6)

On the other hands, AUC-B uses the rank with a different way based on the Area

Under the ROC Curve (AUC, Bradley (1997)) algorithm. The Receiver Operating

Characteristic (ROC) curve, is originally used in signal detection theory, illustrates

the performance of a binary classifier system. This algorithm draws the ROC curve

for each operator, with the rank-based sorted list. Then, it uses the size of area

under the ROC curve, as the operator impact.



Chapter 4

Preliminary Experiment for

Adaptive Operator Mechanism

Probability matching, adaptive pursuit and multi-armed bandits are good AOS

methods in genetic algorithm. In this chapter, as the first step of the research, we

tried to direct-apply these AOSs to GP. We used TAG3P for this experiment, hence

TAG3P has many and various genetic operators which have a variety of effects to

individuals (Hoai et al. (2006)).

4.1 Test Problems

The 14 problems are used for these experiments. They fall into two categories: 10

symbolic regression problems and 4 target-structure problems.

The 10 symbolic regression problems were the regular symbolic regression prob-

lems (Fn : n ∈ {4, . . . , 9}), Quintic (Q) and Sextic (S) problem, Trigonometric (T )

problem and Two Boxes (2B) problem defined in table 4.1. They are all from well-

known problem families proposed by Koza (Koza (1992, 1994)). Following Koza, we

28
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Table 4.1: Problem Definitions – Symbolic Regression Problems

Problem Fn : n = 4, ..., 9 Quintic Sextic

Objective Minimize MAE of cases

Cases 20 Random Points 50 Random Points

from[-1,+1] from[-1,+1]

Target Fn = Σn
i=1x

i x5 − 2x3 + x x6 − 2x4 + x

Fitness Sum of absolute errors of fitness cases

Atoms X

Success Predicate Error < ε on all fitness cases

Error Bound (ε) 0.1

Functions +, -, ×, ÷, sin, cos, exp, log

Problem Trigonometirc 2-Box

Objective Minimize MAE of cases

Cases 20 Random Points 10 Random Integer Points

from[0,2π] from[1, 10]6

Target cos 2x WHL− whl

Fitness Sum of absolute errors of fitness cases

Atoms X, 1 W,H,L,w, h, l

Success Predicate Error < ε on all fitness cases

Error Bound (ε) 0.1

Functions +, -, ×, ÷, sin +, -, ×, ÷

use the mean absolute error (MAE) as the fitness function. A solution is declared a

success when its absolute error is less than ε for all fitness cases.

Target-structure problems differ from symbolic regression problems in that the

fitness function, and the required solution is defined more directly in terms of prop-

erties of the solution expression tree. We used the Majority and Order (Table 4.2,
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Table 4.2: Problem Definitions – Target-Structure Problems

Problem Majority Order

Objective |Pi| > |Ni| for all i ≤ n Some Pi is earlier than any Ni

in preorder traversal, for all i ≤ n

Targets n = 25, 30

Fitness Number of i which satisfy the Objective

Atoms P1, P2, ..., Pn;N1, ..., Nn

Functions -

Success Predicate n fitness number

Goldberg and O’Reilly (1998); O’Reilly and Goldberg (1998)).1

The target property of the Majority Problem of size n (Mn) is that for each

i ≤ n, the number of nodes containing Pi is larger than the number containing Ni.

For Order of size n (On), in a preorder traversal, for each i ≤ n, at least one node

Pi is encountered before any node Ni. In this paper, we use problems M25, M30, O25

and O30.

4.2 Experimental Design

In this experiment, we used GP systems. With comparing to GA, GP has more

complex chromosome structure and GP has more various genetic operators than

GA. Thus it seems that AOS is more useful on GP system. Actually, previous AOS

researches on GA treated only many variants of crossover and mutation. For ex-

ample, five genetic operators; four crossovers and one mutation are used in Fialho

1These problems are more usually expressed in terms of an operator ‘JOIN’; for economy of

expression, we have re-named this operator ‘-’.
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et al. (2009). By the way, the main genetic operators of GP are also crossover and

mutation. Thus it is not much useful to apply Adaptive Mechanism to the standard

GP. For this reason, we paid attention to TAG3P, which has many and various ge-

netic operators. To apply Adaptive Mechanism to GP, we used two kinds of TAG3P

systems. One is Linear-TAG3P (LTAG3P) which is a simple version of TAG3P, and

the other is normal TAG3P.

The former use a linear form of elementary trees of which All nodes couldn’t

have more than one child node. Instead of LTAG3P do not permit to have multiple

children node, LTAG3P has an encapsulated node which implies information for the

fitness evaluation, and it makes LTAG3P can describe the same solution space to

TAG3P’s. However, cause of it has to interpret encapsulated nodes, it takes more

time for the fitness evaluation. Moreover, even it is able to cover the same solution

space, it has a huge bias when it is extent to the larger tree. For this limitation of

LTAG3P, LTAG3P used not all test problems, it ran only for F6, F9, Q and S for

this experiment. And we applied PM and AP to LTAG3P for comparing a normal

LTAG3P. Moreover, LTAG3P lose a tree characteristic, so it can’t use all TAG3P

operators. In this experiment, LTAG3P used only 3 genetic operators; crossover,

mutation and reproduction.

On the other hands, the latter is a standard TAG3P which has many and various

genetic operators, as described in 2.1.3. While LTAG3P was restricted at genetic

operators and test problems, TAG3P ran with all 7 operators for 14 problems.

4.2.1 Search Space

Figure 4.1 shows the elementary trees that we used for Fn, Q and S problems. The

upper is for LTAG3P and the lower is for TAG3P. For the T and 2B problems, trees

β9-β12 were omitted, and the symbol ‘X’ was replaced by a lexicon – for T consisting
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Figure 4.1: Elementary Trees for LTAG3P and TAG3P

of {1, X}, and for 2B of {W,D,L,w, d, l}. For the target-structure problems, the

only β trees used were β2 and β6; for the Mn and On problems, the symbol ‘X’ was

replaced by the lexicon {P1, . . . , Pn, N1, . . . , Nn}. In all cases, these are equivalent to

CFGs, and we used the corresponding CFG grammars for GGGP. Again, in all cases

these are equivalent to the full expression set over the functions and atoms of the

specific language. Thus all systems were exploring essentially the same search spaces

(‘essentially’ because the effects of depth/size limits may differ slightly depending

on the system).

Other figures for the grammar (elementary tree) for each problem are in appendix.

4.2.2 General Parameter Settings

The evolutionary settings are as in table 4.3.

Of course, we need to additionally specify parameters for AOS, as in table 4.4.
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Table 4.3: Setting for General Evolutionary Parameters (Preliminary Experiment)

Parameter Value Parameter Value

Runs 100 Elite None

Population 500 Tournament Size 3

Generation 50

Individual Size Range

Symbolic Regression 2 . . . 40 Target-Structure 2 . . . 1000

Table 4.4: Setting for Adaptive Mechanism Parameters

(K denotes the number of operators)

Parameter Value

PM Initial Rate Pinit 1/K

& Min. Rate Pmin 1/4K

AP α 0.8

AP Max. Rate Pmax 1− (K − 1) · Pmin

β 0.8

δ 0.15

MAB λ 0.5

Scalar Factor C 0.5

Finally, we used ratio between fitness values of child and corresponding parent as

the impact of each operator. For focusing the elite individuals and avoiding extremely

large fitness value, we used 30% elite individuals.
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Table 4.5: Success Proportion for Symbolic Regression Problems

on Preliminary Experiment (LTAG3P/TAG3P)

LTAG3P TAG3P

w/o AOS PM AP w/o AOS PM AP MAB

F4 -% -% -% 96% 95% 94% 99%

F5 -% -% -% 83% 92% 91% 82%

F6 37% 45% 49% 52% 50% 57% 47%

F7 -% -% -% 48% 41% 40% 33%

F8 -% -% -% 16% 19% 18% 18%

F9 13% 13% 19% 17% 17% 19% 10%

Q 45% 62% 63% 71% 72% 81% 64%

S 30% 29% 62% 95% 94% 96% 96%

T -% -% -% 76% 79% 66% 67%

2B -% -% -% 28% 29% 28% 21%

4.3 Results and Discussion

Table 4.5 shows the proportion of success on 4 and 10 symbolic regression problems

for LTAG3P and TAG3P systems. In most cases, we can see AOS mechanisms worked

well in both GP systems, except MAB. As the reason why MAB didn’t work well,

we could consider the sensitiveness of MAB parameters. This sensitiveness is already

mentioned at 3.3.3. For this sensitiveness, it is not easy to find good parameter values

in MAB algorithm. Otherwise, other two algorithms showed better performance than

Normals, in particular, in LTAG3P. In LTAG3P, AOS algorithms are better than

LTAG3P without AOS mechanism for all run-problems. Specially, AP performed

quite better for S problem. For F5 and Q, AP performed about 10% more than
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Figure 4.2: Change in Operator Application Rates for F9, LTAG3P.

Left: PM, Right: AP

TAG3P without AOS. PM was also good. Comparing to AP, however, the detail

performance of PM is similar or little worse than. By the way, in TAG3P, even

AOS mechanism better performed over most problems, TAG3P without AOS is

sometimes better. For example, for F4 and F7, no AOS algorithm couldn’t show

better performance than TAG3P without AOS.

Table 4.6: Success Proportion for Target-Structure Problems

on Preliminary Experiment (TAG3P)

TAG3P

Normal PM AP MAB

M25 19% 19% 35% 10%

M30 5% 3% 17% 3%

O25 67% 76% 77% 59%

O30 47% 51% 58% 30%

Following the same overall layout, table 4.6 shows the success rate on the target-

structure problems. As MAB still didn’t performed well, AP showed definitely better
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performance than others, and PM and Normal followed AP by order.

In addition to observing the performance of the adaptation algorithms, it is im-

portant to see their overall effect; what operator rates do they actually select? Fig-

ure 4.2 shows the evolution of these rates of LTAG3P for the F18 problem. Space

precludes showing such plots for all problems, but inspection of them shows that all

problems and treatments may be divided into three regions: up to generation 5, in

which the crossover rate either rises or stays steady and the mutation rate either

stays steady or falls; generations 5 to 20, during which the crossover rate may re-

main steady for some time or drop (sometimes precipitously) and the mutation rate

generally stays fairly steady; and generations 20 to 50, during which the crossover

rate either stabilizes or continues to fall, and the mutation rate generally stays fairly

steady. Thus we may characterize the behavior by observing the ratios at generations

5, 20 and 50, which we show for all problems.

Figure 4.4 shows the evolution of these rates of TAG3P for the a problem. We

could check the change of operator rates, too. Crossover still shows overwhelming

portion for all problems, the second and belows are different for problems. Mutation

and duplication rates have large portions in symbolic regression problems, mutation

and insertion are good for majority problems, and duplication/truncation is good

for order problems. Relocation didn’t show any effect for majority, as it can’t affect

to the fitness evaluation for Majority problem.

More figures for the rates change are in appendix.
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Figure 4.3: Mean of Best FitnessTop: Quintic, Bottom: Trigonometric
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Figure 4.4: Change in Operator Application Rates for Trigonometric

Top: PM, Middle: AP, Bottom: MAB



Chapter 5

Operator Selection

The operator selection is one of the main parts of AOS mechanism. With given im-

pacts of operators and the corresponding internal status, it suggests new operator

rates. In chapter 4, we successfully applied adaptive operator selection to genetic

programming, however it showed some restrictions for multiple and highly diverse

operators. Chapter 5 introduces three operator selection methods; powered probabil-

ity matching, adaptive probability matching and recursive adaptive pursuit. They

are variants of probability matching and adaptive pursuit, which are designed to

make operators to be more distinguished. They have the same form of evaluation of

operator impact but use a different method of operator selection.

5.1 Operator Selection Algorithms for GP

5.1.1 Powered Probability Matching

Powered Probability Matching (PPM, Kim et al. (2012a)) is a variant of PM which

more widely spreads operator probabilities. When PM sets operator probabilities,

PM uses the quality rates. It mights help to directly reflect the trend of operators,

39
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however, PM may not work well when operator impacts are very similar, as often

occurs when there are many operators. For avoiding this problem, PPM amplifies

the differences through exponentiation (Eq. 5.1).

Pi(t+ 1) = Pmin + (1−K · Pmin)
Qi(t)

K∑K
j=1Qj(t)

K
(5.1)

The basic process of PPM is exactly same to PM; how the operators are selected

and how the quality values are updated through the impacts. The only difference

is in operator selection part; how the algorithm sets the operator probabilities. As

equation 5.1, PPM uses the quality rates, with applying K exponentiation to the

value, for extending the difference without loss of trend of operators. Moreover, by

using K as exponent number, the difference will be increased as the number of

operators is increased. Table 5.1 is the detail algorithm of PPM.

Table 5.1: Algorithm for Powered Probability Matching

ProbabilityMatching(P ,Q,I,K,Pmin,α)

for i← 1 to K do

Pinit(i)← 1
K

Qinit(i)← 1.0

end for

while NotTerminated?() do

OperatorSelectionByP (t)

Ii(t)← GetImpact

Qi(t+ 1)← Qi(t) + α(Ii(t)−Qi(t))

for i← 1 to K do

Pi(t+ 1)← Pmin + (1−K.Pmin) Qi(t)
K∑K

j=1 Qj(t)K

end for

end while
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5.1.2 Adaptive Probability Matching

Adaptive Probability Matching (APM, Kim et al. (2012a)) is a algorithm which

combines two algorithms; AP and PM. AP divides operators into two groups. One

is the most effective operator, and the other is a group of rest operators. AP increases

the former’s rate, but it decreases all the others’ rates equally. In the other words,

AP concentrates the only one, and ignores the relative impacts of the other opera-

tors. However, we found the result that the performance is changed by the second

influential operator even the first influential operator is same to Hoai (2004). APM

is made to distinguish the other operators, with applying PM algorithm partially.

APM follows AP in increasing the rate of the most effective operator as in AP.

However, it then divides the remaining operator rate amongst the other operators

according to their relative quality value, as in PM (Eq. 5.2).

i∗ = argmax{Qi, i = 1...K}

Pi∗(t+ 1) = Pi∗(t) + β(Pmax − Pi∗(t)) (5.2)

Pi(t+ 1) = Pmin + (1− Pa∗(t+ 1)− (K − 1) · Pmin)
Qi(t)∑K

j=1,j 6=aQj(t)

for i 6= i∗

Table 5.2 is the detail algorithm of APM.

5.1.3 Recursive Adaptive Pursuit

Recursive Adaptive Pursuit (r-AP, Kim et al. (2012c)) is another style of AP vari-

ants for giving differences among non-best effective operators. While APM partially

applies PM algorithm, r-AP uses AP iteratively to distinguish the rests. r-AP also

follows the AP process format. So its process is same until the update of quality vec-

tor. AP finds just one the most effective operator however r-AP otherwise sorts all
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Table 5.2: Algorithm for Adaptive Probability Matching

AdaptivePursuit(P ,Q,I,K,Pmin,Pmax,α,β)

Pmax ← 1− (K − 1)Pmin

for i← 1 to K do

P (i)← 1
K

Q(i)← 1.0

end for

while NotTerminated?() do

OperatorSelectionByP (t)

Ii(t)← GetImapct

Qi(t+ 1)← Qi(t) + α(Ii(t)−Qi(t))

i∗ ← argmax(Qi(t+ 1))

Pi∗(t+ 1)← Pi∗(t) + β(Pmax − Pi∗(t))

for i← 1 to K do

if i 6= i∗ then

Pi(t+ 1)← Pmin + (1− pa∗(t+ 1)− (K − 1).Pmin) Qi(t)
K∑K

j=1 Qj(t)K

end if

end for

end while

operators with the order of the effectiveness. Then, r-AP applies pursuit algorithm

in order, with considering the minimum probability Pmin. Table 5.3 is the detail

algorithm of r-AP.
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Table 5.3: Algorithm for Recursive Adaptive Pursuit

AdaptivePursuit(P ,Q,I,K,Pmin,Pmax,α,β)

Pmax ← 1− (K − 1)Pmin

for i← 1 to K do

P (i)← 1
K

Q(i)← 1.0

end for

while NotTerminated?() do

OperatorSelectionByP (t)

Ii(t)← GetImpact

Qi(t+ 1)← Qi(t) + α(Ii(t)−Qi(t))

for n← 1 to K do

if n == K then

Pin(t+ 1)← (1−
∑n−1

x=1 Pix)

else

in ← argmax(Qi(t+ 1)) for i 6= i1, ..., in−1

Pin(t+ 1)← (1−
∑n−1

x=1 Pix)(Pin(t) + β(Pmax − Pin(t)))

end if

end for

end while

5.2 Experiments and Results

5.2.1 Test Problems

To investigate adaptive operator mechanism in GP system, we used the 16 problems

(Kim et al. (submitted)). 14 problems come from 4.1, and we added two target-

structure problems. The 16 problems are used for these experiments fall into two
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categories: 10 symbolic regression problems and 6 target-structure problems.

The outline of 10 symbolic regression problems and 4 target-structure problems

are same to 4.1. Thus we describe only two additional target-structure problems.

Table 5.4: Problem Definitions – Target-Structure Problems (Daida’s)

Problem Daida (Narrow) Daida (Wide)

Objective Tree has target depth

and number of atoms

Targets Dt = 20, Tt = 20 Dt = 10, Tt = 320

Fitness wd × (1− |d−Dt|
Dt

) + wt × (1− |t−Tt|
Tt

)

Atoms X

Functions -

Success Predicate 100 Fitness Value

Two additional target-structure problems are Daida problems (table 5.4, Daida

et al. (2003)). The character of the Daida problem is rather different. There is only

one kind of atom, X. The objective is to find a tree with the specified depth and

number of atoms. In Daida et al. (2003), Daida demonstrated that the difficulty of

the problem (for GP) varied in different regions of these values, being hardest for

narrow or wide values, and easier for intermediate values. We chose two difficult (i.e.

region III) settings: narrow (DN ) and wide (DW ).

5.2.2 Experimental Design

Five systems were used for comparison; three baseline and three AOS algorithms.

Three baselines (called TAG3PC09 and TAG3PEQ) are used. TAG3PC09 uses only

two most popular genetic operators; crossover and mutation. They reflect a tradi-

tional scenario for GP manner; high crossover rate and low mutation rate. We set

two rates as 0.9 and 0.1. TAG3PEQ consists of TAG3P with all operators from
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Figure 5.1: Elementary Trees

section 2.1.3, and all having the same operator rates (i.e. 14.29%). It assumes zero-

knowledge status for TAG3P with multiple operators to a problem. Conversely, three

AOS algorithms use PPM, APM and r-AP for contrast to non-adaptive treatments.

The initial operator rates of all three algorithms are set the same as in TAG3PEQ,

i.e. to 14.29%.

Search Space

Figure 5.1 shows the elementary trees (TAG grammar) that we used for Dn and

Dw. Actually two nodes are tied with an operator JOIN, but we omitted the symbol

’JOIN’ for easy calculation of size and depth.

General Parameters

The basic setting is same to 4.2, but the setting for Daida problem is different. The

evolutionary settings are as in table 5.5.

PPM, APM and r-AP are variants of PM or AP, so we set their parameter settings

as same to 4.2. And we used same impact evaluation to 4.2.
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Table 5.5: Setting for General Evolutionary Parameters

Parameter Value Parameter Value

Runs 100 Elite None

Population 500 Tournament Size 3

Generations

Except Dx 50 Dx 1000

Individual Size Range

Symbolic Regression 2 . . . 40 Target-Structure 2 . . . 1000

5.2.3 Results and Discussion

There is some debate in the GP literature about what is the best performance metric

for distinguishing between different GP systems. However real-world GP applications

may have different purposes (e.g. finding a good fit to data vs recovering an exact

model when it is known that the data must be generated by a simple process, and

that there is little noise). Thus different performance metrics are only to be expected.

Rather than address this issue here, we provide a number of performance metrics

(within the available space) to illuminate performance issues as well as we can.

Symbolic Regression Problems

Table 5.6 shows the proportion of success on ten symbolic regression problems, while

figure 5.2 shows the mean best fitness and cumulative frequency of success curves

for F7 and 2B problems.

Even the ‘zero knowledge’ approach of just using all operators performed reason-

ably well, comparably to the performance of simply using subtree mutation through-

out. This baseline performance gives some encouragement that operator rate adap-
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Figure 5.2: Mean of Best Fitness and Cumulative Frequencies

for Symbolic Regression, Top:F7, Bottom:2B
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Table 5.6: Success Proportion for Symbolic Regression Problems:

(2 w/o AOSs and 3 AOSs)

TAG3PC09 TAG3PEQ PPM APM r-AP

F4 94% 96% 95% 95% 94%

F5 93% 83% 90% 96% 89%

F6 54% 52% 56% 57% 60%

F7 47% 48% 41% 54% 45%

F8 19% 16% 18% 24% 25%

F9 18% 17% 17% 16% 19%

Q 88% 71% 73% 84% 77%

S 96% 95% 97% 98% 99%

T 70% 76% 74% 72% 73%

2B 20% 28% 23% 28% 24%

tation might be able to improve performance – and in fact, this is what we see. The

adaptive performance, particularly with APM, comes close to that of simply choos-

ing the optimal mutation operator. Foreshadowing some of our results from Kim

et al. (2012a), the benefit of choosing the optimal operator is, as we might expect,

greatest in the cases where the choice of operator is clear, as with the Q problem;

where the choice is less clear, as with the 2B problem, the benefits are correspond-

ingly equivocal.

Target-Structure Problems

Following the same overall layout, table 5.7 shows the success rate on the target-

structure problems, and figure 5.3 the mean best fitness cumulative success frequency

curves for DW problem. Overall, the value of adaptive mechanisms is clearer in these
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Figure 5.3: Mean of Best Fitness and Cumulative Frequencies

for Target Structure Problems, Top:O25, Bottom:DW
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Table 5.7: Success Proportion for Target-Structure Problems:

(2 w/o AOSs and 3 AOSs)

TAG3PC09 TAG3PEQ PPM APM r-AP

M25 33% 19% 15% 32% 33%

M30 12% 5% 6% 15% 14%

O25 77% 67% 83% 80% 83%

O30 59% 47% 51% 59% 55%

DN 24% 88% 100% 98% 97%

DW 2% 0% 96% 89% 86%

cases, with AP now performing better than APM. As a matter of fact, AP gives near-

comparable performance to that of the best mutation operator – and in the case of

the DW problem, substantially better, suggesting that in this case, synergy between

operators may be a key issue.

Interestingly, increasing the rate of I/D in the DW problem (and correspondingly

decreasing the crossover rate) appeared to have substantial benefits. This could

be either because D/T are especially beneficial in this problem, so that increasing

their rate of application is desirable – or because subtree crossover is particularly

destructive in this problem, so that decreasing its rate is beneficial. The analysis of

operator rates casts further light on this situation.

Overall, we see that combining multiple operators, with different suitability for

different problems, with an operator rate adaptation mechanism can be an effective

strategy for solving problems where it is unknown exactly which operator is most

suitable. By examining the actual rates that adaptive mechanism chose at different

stages of evolution, we can hope to gain further insight into the reasons for this

performance.
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Figure 5.4: Change in Operator Application Rates

Left:F7, Right:2-Box

Top:PPM, Middle:APM, Bottom:r-AP

Operator Adaptation: Overall Operator Rates

Figure 5.4 and 5.5 shows the changes in operator rates for some typical combina-

tions of adaptive mechanism and problem instance. Leaving aside for one moment

the highly anomalous case of Daida’s problem, much of the overall behavior is what
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Figure 5.5: Change in Operator Application Rates

Left:O25, Right:DW

Top:PPM, Middle:APM, Bottom:r-AP

most GP practitioners would predict based on experience. Notably, in almost all

experiments, subtree crossover is highly productive earlier in a run, so its rate rises,

but peaks somewhere around 10 generations (the precise point depending on prob-

lem and adaptation mechanism), and falls away thereafter. This subsequent drop

is consistent with typical discussion of the destructive effects of crossover. What is
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perhaps more interesting is the behavior of the other operators, particularly after

the crossover peak. Once crossover falls away, there is room for the other operators

to expand. But which one depends heavily on the problem. What one can say in

general is that reproduction is rarely competitive (implying that the other operators

are at least somewhat productive throughout the runs). The results confirm that on

some problems, one or other mutation operator dominates – duplication/truncation

on the quintic problem, subtree mutation on the O30 problem, and to a lesser extent

on M30 – but on others, such as the 2B problem, no one mutation operator domi-

nates, and the important thing seems to be to keep the crossover rate relatively low,

and the reproduction rate very low.

The DW problem is completely different. In the early stages of the run, in-

sertion/deletion is effective (an unsurprising result, given previous publications on

this problem, Hoai et al. (2006)), but so is subtree mutation. On the other hand,

crossover performs very poorly early on. It is not completely surprising that the

insertion/deletion takes over from subtree mutation subsequently, given that finer

scale tuning is likely to be required. Nor is it surprising, with the difficulty of this

problem, that eventually the best thing to do is nothing (most changes damage the

current solutions) so that reproduction comes to dominate. Perhaps a little more

surprising is the gradual increase in crossover and duplication/truncation later in

the run.

Operator Adaptation: Operator Rates in a Single Run

While figure 5.4 and 5.5 are operator rates over 100 runs, figure 5.6 and 5.7 shows the

changes in operator rates over a single run. Figure 5.6 is a change of operator rates

in F07 problem and figure 5.7 is in M30 problem. Overall, a change of tendencies of

operator rates in both figures is matched to a change of fitness. For example, a sharp
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Figure 5.6: Change in Operator Application Rates in a Single Run for F7 on APM

decrease of fitness value and increase of X are simultaneously happened at genera-

tion 5 in figure 5.6. From generation 20, when fitness curve starts to converged, M ,

I/D and Rep often have a large portion. Figure 5.7 also shows an similar interaction

between fitness and operator rates. Before the fitness convergence (approx. gener-

ation 15), X has the largest rates, but others, in particular M , has more portion

after the fitness convergence. Whenever fitness curves causes any change from the

current status, we could usually find corresponding changes in operator application

rates.
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Figure 5.7: Change in Operator Application Rates in a Single Run

for M30 on APM

Through the empirical analysis of the change in operator rates over whole run,

we could generate a proper set of genetic operators for a given problem, whereas

the analysis of single runs shows how genetic operators work in diverse situations of

problems or the progress of a run. Even though runs of the same problem, the changes

in operator rates in a single run showed different tendencies. However we could see

the interaction between fitness and operator rates from an empirical analysis of single

runs in adaptive operator mechanisms.



Chapter 6

Evaluation of Operator Impact

The evaluation of operator impact is also one of the main parts of AOS. The evalua-

tion of operator impact defines the operator impact and updates the internal status

with the impact, so that it provides base resources for the operator selection. Be-

cause the impact defined by the evaluation of operator impact becomes a measure

of how much an operator affect a run, the evaluation of operator impact is a key

issue for AOS.

For the evaluation of operator impact, several different methods have been pro-

posed. The main issues on the evaluation of operator impact are summarized two

things; resources for the impact of operator and methods for the impact be assigned

to. As resources and methods, the most common method is the fitness improve-

ment, which is brought by the newly generated child individual, when compared to

the best individual (Davis (1989)), to the current median (Julstrom (1995)), or its

parent (Thierens (2005); Fialho et al. (2009); Kim et al. (2012a)) in the popula-

tion. Meanwhile, a relative fitness improvement is used in Gong et al. (2010), taking

into account the difference of the fitness of the offspring with that of its parent,

and normalizing it by the ratio between its fitness and the best one in the current

56
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population. Davis (1989) and Julstrom (1995) have proposed to assign impact to

the strategies that were used to generate the ancestors of the current individual, by

means of a bucket brigade scheme. Two more recent approaches, targeted toward

highly multi-modal problems, considered both fitness improvement and the variation

of some diversity measure to design the impact of operators: aggregating them in

a mechanism termed Compass (Maturana et al. (2009)), or treating the issue as a

2-objective problem, and using as an impact the Pareto Dominance score (Maturana

et al. (2010)).

We tried to use two impact resources by using a variety of problems at chapter 5.

In this chapter, we introduce several methods for the evaluation of operator impact.

6.1 Rates for the Amount of Individual Usage

6.1.1 Definition of Rates for the Amount of Individual Usage

We used 30% of elite individuals at the previous chapter 4 and 5. The reason why

we used restricted amount of individuals is for avoiding the extremely large or small

fitness value which may cause an overflow. Moreover, as EAs aim to find the optimal

solution, to focus the elite individuals is useful to measure the impact of an operator

for the optimal solution. We chose 30% from empirical experiments, but proper rate

value may be different for problems. Meanwhile, as the progress of run goes to the

end, more individuals in population are converged. Even the same rate is applied,

variances of the elite individuals are different by the progress. For that reason we

also considered a linearly changing percentage for choosing the elite individuals.

Table 6.1 describes five methods of rates for the amount of individual usage.

Three methods use fixed rates and two methods have changing rates. We tried two

change methods; LC1 and LC2. LC1 changes the rate from 10% to 50%, via the
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Table 6.1: Definition of Five Rate Policies for the Amount of Individual Usage

Policy Detail

Percentage 10 (P10) Fitness ratio over 10% elite individuals

Percentage 30 (P30) Fitness ratio over 30% elite individuals

Percentage 50 (P50) Fitness ratio over 50% elite individuals

Linear Change #1 (LC1) Linearly changed, from 10% to 50%

Linear Change #2 (LC2) Linearly changed, from 50% to 10%

time (generation), and LC2 does reversely. P10, P30 and P50 are the base methods,

and they used the fixed percentage values. We compared these five methods with

the same problem sets to 4.1. And we also used the same settings to 4.2.

6.1.2 Results and Discussion

This experiment compares the range of elite individuals.

Table 6.2 is success proportion for all problems. There is no best strategy for all

problems, however P10 and LC1 generally have not good performances and P30

and LC2 relatively show good performance.

Considering the feature of individual set of each method, P10 has the largest

impact value and P50 has the smallest. However, the number of individual pairs,

which P10 has, is the smallest, and P50 has the most pairs. In fact, bigger method

includes smaller ones; P50 use individuals over 0 to 50%, and P10 use over 0 to 10%.

Meanwhile, the value of individual pairs is decreased during a run. At the beginning

of a run, it has many chances to improve much, so it is easy to have a big value.

However, after some generations, only few individual pair gets a value more than 1.

In other words, as run is processed, the impact value is decreased and the number



CHAPTER 6. EVALUATION OF OPERATOR IMPACT 59

Table 6.2: Success Proportion: Individual Usage Rates
AP P10 AP P30 AP P50 AP LC1 AP LC2

F4 98% 94% 93% 96% 97%

F5 87% 91% 90% 85% 89%

F6 51% 57% 64% 54% 58%

F7 39% 40% 49% 43% 53%

F8 14% 18% 19% 11% 20%

F9 13% 19% 15% 18% 13%

Q 74% 81% 76% 80% 83%

S 96% 96% 93% 96% 96%

T 72% 66% 76% 72% 67%

2B 28% 28% 26% 23% 22%

M25 28% 35% 31% 35% 30%

M30 11% 17% 14% 11% 17%

O25 74% 77% 83% 78% 80%

O30 46% 58% 69% 56% 69%

APM P10 APM P30 APM P50 APM LC1 APM LC2

F4 98% 94% 97% 94% 97%

F5 93% 95% 87% 88% 90%

F6 52% 52% 59% 54% 60%

F7 42% 56% 44% 33% 51%

F8 18% 23% 16% 16% 20%

F9 11% 13% 18% 15% 12%

Q 85% 78% 72% 78% 80%

S 96% 96% 91% 95% 97%

T 75% 77% 74% 74% 85%

2B 28% 22% 23% 25% 27%

M25 20% 34% 33% 26% 31%

M30 13% 13% 14% 14% 9%

O25 76% 82% 76% 80% 85%

O30 45% 68% 71% 59% 67%
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Figure 6.1: Change in Operator Application Rates

Left: Trigonometric on AP, Right: O30 on APM

from Top: P10, P30 and P50

of individual pairs which have more than 1 value, is also decreased.

These features are shown at figure 6.1, 6.2, 6.3 and 6.4. Figure 6.1 and 6.2 show

the operator rate and figure 6.3 and 6.4 are its corresponding internal status. In these

figures, P10, P30, P50, LC1 and LC2 show different features. From P10 to P50,

we could find a sequential change of rates of some operators and values of internal

status. LC1 and LC2 show features as mixtures; the beginning parts of LC1 and
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Figure 6.2: Change in Operator Application Rates

Left: Trigonometric on AP, Right: O30 on APM

from Top: LC1 and LC2

LC2 are similar to P10 and P50, but the last parts of both methods are similar to

with reverse order.

In the figure 6.1 and 6.2, the notable point is the proportion of mutation (M)

operator. The proportion of M is big in P10, but its scale is small in P50. Otherwise,

the proportion of insertion/deletion (I/D) grows over P10 to P50. That is, only

few individuals are improved and fitness values of the rest get worse by mutation.

Meanwhile, insertion/deletion makes many individuals get better fitness values, but

they improve individuals only slightly. Therefore, the proportion of I/D is small in

P10 method. Crossover (X) has high rate value for all methods. In particular, it is

better in P30 and P50 than P10. By this, we can guess X make many individuals

be quite-better.
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Figure 6.3: Change in Internal Status

Left: Trigonometric on AP, Right: O30 on APM

from Top: P10, P30 and P50

The tendency of figure 6.3 and 6.4 is same to our guess. P10 has the highest value

and P50 has the lowest. Over whole run, all values in P10 are more than one. But

some values in P50 are less than one and its proportion is grown over the run. So

that reason, it is hard to get a good impact value for I/D in P10, and it is difficult

to M in P50.
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Figure 6.4: Change in Internal Status

Left: Trigonometric on AP, Right: O30 on APM

from Top: LC1 and LC2

6.2 Ratio for the Improvement of Fitness

Fitness improvement is a usual way to evaluate an operator impact. The basic con-

cept of fitness improvement is to compare a newly generated child individual to the

present population (e.g. corresponding parent individuals or the best individual).

This section describes some methods of fitness improvement which is based on ra-

tio of fitness of child and its corresponding parent individuals. A basic definition of

fitness ratio is in equation 6.1.

Ratio =
F̄p
Fc

(6.1)
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where Fc is fitness of child individual and F̄p is mean fitness of its corresponding

parents. The number of parents is usually one, but we used a mean value of parents

in case of child have more than two parents.1 If there is no improvement from parents

to child, ratio value become 1. When an improvement occurs, ratio value is bigger

than 1, otherwise it is less than 1 in a environment of less fitness is better.

6.2.1 Pairs and Group

When the evaluation of operator impact evaluates an impact value, it usually uses

more than one individuals like as section 6.1. That is, some child and its correspond

parent pairs are used together for evaluating of operator impact. We suggest two

methods which uses these pairs (Table 6.3).

Table 6.3: Definition of Two Fitness Improvement Methods

Method Detail

Individual Pairs (I.Pairs) Mean of
F̄p

Fc
for each operator

Individual Groups (I.Groups) (Mean of F̄p)/(Mean of Fc) for each operator

The unit of I.Pairs is a pair of child and its corresponding parents, however

I.Groups divides them into two groups: children group and its corresponding parents

group. While I.Pairs measure the mean of ratio values of pairs, I.Groups calculate

the ratio of two mean values from parents group and children group. In other words,

I.Pairs checks average improvement over individuals, but I.Groups estimates the

improvement from the overall parents to the overall children.

1Crossover uses two parents
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6.2.2 Ratio and Children Fitness

For avoiding an overflow and focusing the optimal solution, we used partial elite

individuals at section 6.1. For every end of generations, we sorted individuals and

chose elite individuals for evaluation. A key issue at this point is a sort key which

is a criterion of the sort. Hence the fitness ratio is used for the evaluation, fitness

ratio itself is a general sort key. However, only fitness of child individual is also a

reasonable choice as a sort key, because the ultimate objective is to find the optimal

solution which has a good fitness value. Although a fitness improvement is very

large, bad child fitness valued individual is not necessary as the optimal. A newly

suggested method is, to sort with child fitness order and to evaluate the impact with

the fitness ratio (Table 6.4).

Table 6.4: Definition of Fitness Improvement with Two Sort Key

Method Detail

Ratio Sort (R.Sort) Mean of
F̄p

Fc
in

F̄p

Fc
order

Child Sort (C.Sort) Mean of
F̄p

Fc
in Fc order

6.2.3 Experimental Design

Two comparison experiments are set for the ratio for improvement of fitness: I.Pairs

vs. I.Groups and R.Sort vs. C.Sort. Two operator selections, AP and APM, are used

on both experiments. By adding initial character of the evaluation of operator impact

to the method of the operator selection, we denote each combined method. For

example, AP/G means AP with I.Groups and APM/PC means APM with I.Pairs

in C.Sort order. For experiments, we used the same problem sets and parameter

setting to section 4.1.
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6.2.4 Result and Discussion

Table 6.5: Success Proportion: I.Pairs and I.Groups

AP/P AP/G APM/P APM/G

F4 94% 94% 98% 94%

F5 92% 91% 89% 95%

F6 51% 57% 56% 52%

F7 46% 40% 47% 56%

F8 18% 18% 20% 23%

F9 14% 19% 21% 13%

Q 84% 81% 76% 78%

S 96% 96% 95% 96%

T 67% 66% 72% 77%

2B 28% 28% 26% 22%

M25 37% 35% 32% 34%

M30 15% 17% 17% 13%

O25 81% 77% 82% 82%

O30 61% 58% 71% 68%

Table 6.5 is success proportions for all problems. It seems that there is no big

difference between I.Pairs and I.Groups in the performance. Much I.Pairs is better

in AP, and much I.Groups is better in APM even I.Pairs seems to be slightly better

at more complex problems in APM. However, nothing is clearly superior to the other.

The difference between two methods can be caught when we look the change

during a run. Figure 6.5 and 6.7 show average changes of operators during a run.

Briefly said, these figures look similar. In particular, the rate value of each operator

and its variation in figure 6.5 and 6.7 resemble. The main difference of theses pairs,

is that I.Groups looks slightly more wild, while I.Pairs is more smooth. On a closer
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Figure 6.5: Change in Operator Application Rates on AP

Left: I.Pairs, Right: I.Groups

Top: F7, Bottom: O25

view, more peaks are observed in I.Groups figures. That is, I.Groups looks it is more

changed in shorter time.

Figure 6.6 and 6.8 are their corresponding mean Quality Vector, and they can

provide an explanation for rates figures. Figure 6.6 and 6.8 also look similar, however

I.Groups has smaller values than I.Pairs. Some values in I.Groups are dropped

under the one which means it didn’t improve on average. At the last, I.Groups

shows more peaks like as in rates figures.

Comparing two methods, I.Pairs has larger variance than I.Groups. For exam-

ple, let’s assume there are 3 parent-child pairs, and their fitness are (5, 2), (7, 6) and

(6, 7). Then, the value of I.Pairs is 1.508 and 1.2 by I.Groups. Meanwhile, in case

of (2, 5), (7, 6) and (6, 7) pairs, I.Pairs has value 0.808 and I.Groups has value
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Figure 6.6: Change in Internal Status on AP

Left: I.Pairs, Right: I.Groups

Top: F7, Bottom: O25

0.833. Like these simple examples, I.Pairs is more sensitive than I.Groups. If there

is one big or one small pair in the individual set for an operator, I.Pairs cause a

bigger change than I.Groups. On the other hand, it also means that quality values

of operator in I.Groups are more dense than I.Pairs. So the largest quality valued

operator can be more easily changed in I.Groups and it causes more peaks in rates

figures.

At last, this experiment investigated two different definitions about the good

individual. While R.Sort sees the ratio value, C.Sort focuses the fitness of child
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Figure 6.7: Change in Operator Application Rates on APM

Left: I.Pairs, Right: I.Groups

Top: Trigonometric, Bottom: O30

individual only. Let’s assume there are two parent-child pairs R.Sort and q, and

their fitness are I.Pairs:(5, 3) and q:(1, 2), each. R.Sort chooses R.Sort as the good

individual, but C.Sort chooses q, even q didn’t improve. With these criteria, two

methods sort individuals and calculate the operator impact value.

Table 6.6 is success proportions for all problems. Comparing two methods, they

are not big different to each other and there is also no superior one. However, it

seems I.Pairs is good in APM method. At more problems, R.Sort shows better

performances.

In figure 6.9, rate figures of two methods are similar, but it seems that more

peaks are in I.Pairs. The proportion of I/D is bigger at C.Sort, but Rel’s one is

bigger at R.Sort.
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Figure 6.8: Change in Internal Status on APM

Left: I.Pairs, Right: I.Groups

Top: Trigonometric, Bottom: O30

Figure 6.10 is its corresponding quality vector. What C.Sort choose as the good

individuals are the individual has a good child fitness value. Therefore, it doesn’t

guarantee a good ratio value, then its impact value is less than R.Sort’s. However,

the difference between R.Sort and C.Sort is differ to the difference of I.Pairs and

I.Groups. On the case of I.Pairs and I.Groups, the smaller value’s one has more

peaks. But C.Sort has smaller quality values, but it shows less peaks.

it is easy to guess that C.Sort has smaller impact value than R.Sort, cause of

what C.Sort takes is not a good ratio valued one. In place of C.Sort investigates
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Table 6.6: Success Proportion: R.Sort and C.Sort

AP/PR AP/PC APM/PR APM/PC

F4 94% 95% 94% 93%

F5 91% 91% 95% 90%

F6 57% 54% 52% 65%

F7 40% 52% 56% 45%

F8 18% 19% 23% 20%

F9 19% 13% 13% 13%

Q 81% 79% 78% 76%

S 96% 96% 96% 98%

T 66% 77% 77% 71%

2B 28% 23% 22% 29%

M25 35% 29% 34% 36%

M30 17% 14% 13% 15%

O25 77% 80% 82% 75%

O30 58% 63% 68% 56%

the amount of improvement itself, it focuses the improvement of good results. So,

if the result is not good, even an operator occur a big improvement, it is useless in

C.Sort. In other words, good fitness value is the necessary condition before C.Sort

consider the operator impact. Contrastively, R.Sort only check improvement. Even

the fitness value of an individual is good, it can be useless unless it is caused with

a big improvement. But, the fitness values that R.Sort chooses, are not so bad.

Basically, all individuals are selected by the selection mechanism before operators is

applied to. Therefore, R.Sort chooses the good improvement ones on the baseline

by the selection mechanism.
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Figure 6.9: Change in Operator Application Rates

Left: R.Sort, Right: C.Sort

Top: O30 at AP, Bottom: Q at APM

From these features of R.Sort and C.Sort, I/D operator are used with different

ways. I/D small-changes an individual, so it is good for the fine tuning. So, the scale

of the fitness-improvement by I/D is restricted. By this reason, I/D can’t receive

any attention in R.Sort, before other operators’ result get worse. However, C.Sort

can focus I/D which is slow but be better steadily. In particular, it may be useful

after middle of the learning. Meanwhile, Rel has more proportion in R.Sort, but it

seems the reaction by the change of I/D.
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Figure 6.10: Change in Internal Status

Left: R.Sort, Right: C.Sort

Top: O30 at AP, Bottom: Q at APM

6.3 Ranking Point

6.3.1 Definition of Ranking Point

Section 6.2 used raw fitness value, however raw fitness value has not only merits

but also demerits. In most EAs, fitness values of the initial population are very

poor. Thus the biggest improvement of fitness is usually happened after the first

generation. In addition, a scale of fitness improvement is decreasing as EAs run,

because only small changes are occurred after some generations in EAs. Therefore,
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a huge raw fitness value is able to more affect to the next generations than later

values. For avoiding this problem, several methods can be used such as normalization.

Ranking point, we introduce at this section, is also one of those methods.

Pointi =
RH −RL + 1−Ri

(RH +RL)RH−RL+1
2

(6.2)

Ranking point uses fitness based ranking information for evaluating the operator

impact. At the end of every generation, all individuals in population are sorted in

fitness order. Then each individual gets a point from a rank which an individual

received. Equation 6.2 shows the relation between a point and a rank, where Ri is a

rank of an individual i, RL is the lowest (best) rank and RH is the highest (worst)

rank. Hence all individuals are not used for the evaluation, we set RL and RH .

6.3.2 Experimental Design

Three operator selection methods, PPM, APM and r-AP, are used for the comparison

between raw fitness and ranking point. Both evaluation methods, we used 30% of

elite individuals for the operator impact. We used same problem sets to section 5.2.1

and same parameter setting to section 5.2.2.

6.3.3 Result and Discussion

Table 6.7 is the success proportion for all problems. The performances of two eval-

uation methods show no big difference, but there is an interesting thing between

PPM and APs (APM and r-AP). PPM with ranking point more-performed than

raw fitness, on the contrary APs with ranking point less-performed. In particular,

result from DW shows a big advancement. And except On, PPM with ranking point

shows better performance than improvement ratio. However, in almost problems, the

performances of APs with ranking point are worse than with improvement ratio.
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Table 6.7: Success Proportion: Ranking Point

Raw Fitness Ranking Point

PPM APM r-AP PPM APM r-AP

F4 95% 95% 94% 97% 92% 93%

F5 90% 96% 89% 93% 85% 85%

F6 56% 57% 60% 60% 54% 44%

F7 41% 54% 45% 45% 37% 37%

F8 18% 24% 25% 17% 22% 22%

F9 17% 16% 19% 15% 18% 17%

Q 73% 84% 77% 77% 88% 81%

S 97% 98% 99% 94% 91% 87%

T 74% 72% 73% 85% 67% 70%

2B 23% 28% 24% 31% 23% 17%

M25 15% 32% 33% 20% 28% 34%

M30 6% 15% 14% 3% 7% 7%

O25 83% 80% 83% 76% 78% 72%

O30 51% 59% 55% 44% 39% 48%

DN 100% 98% 97% 100% 8% 9%

DW 51% 96% 89% 95% 1% 0%

As the weak point, PMs (PM and PPM) pointed out that they couldn’t well

distinguish operators which has similar impacts. As 4.1 and 5.2.3, all operator rates

of PMs were similar to each other. That is, PMs’ probability distribution methods

are not suitable for GP. Even PPM is made to overcome this weak point, it failed to

completely overcome the weak point. However, hence ranking point gives point by

the rank, definite differences are exist between ranks, even their differences are very

small. So, the ranking point could amplify the difference, and it makes PM’s work
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better.

Conversely, ranking point shows less performance at APs. In particular, APs

with ranking point quite less performed on the target-structure problems. In the

same context to previous, the ranking point might provide a distinguishable impact.

But APs have already amplified the difference by focusing only the most effective

one. With the proportion result, we can assume ranking point and APs have any

confliction.

6.4 Pre-Search Structure

6.4.1 Definition of Pre-Search Structure

AOS provides effective operators based on their previous performances. However

even though AOS uses the most recent operator impact, it is evaluated on the

past environment. Formally, the operator rate at generation t, Pt, is described as a

function F (I1, ..., It−1) where In is an operator impact at generation n. Although

the operator impact is evaluated by the most recent population, it sometimes occurs

a wrong guidence, in particular at dynamically changing situation. In addition, the

operator impact has a bias because all operators have different rates. The impact

of the operator which has high rate value is evaluated from many individuals which

the operator is applied to, however only few individuals are resources for the impact

of operator of low rate. The basic concept of Pre-Search structure are more direct

and fair impact by sampling process.

Figure 6.11 is the scheme of pre-search structure. Before the main process of

evolutionary algorithm, a sampling process is inserted. Sampling process makes some

samples which are made by equal portion of genetic operators. That is, each genetic

operator has the equal number of samples that the corresponding operator is applied
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Figure 6.11: Scheme of Pre-Search Structure

to. These samples are a partial population for the next generation. AOS evaluates

the operator impact and it suggests a new operator application rates for making the

rest population for the next generation. We made the amount of samples is defend

to the minimum probability Pmin (Eq. 6.3)

#ofSamples = Pmin × |Population| (6.3)

As PPM, APM and r-AP have Pmin, Pre-search structure makes samples as much

as Pmin is applied for each genetic operator. But when operator selection is applied

at pre-search structure, it uses operator selection methods with zero Pmin cause the

expected amount of individuals by Pmin are already applied as samples.
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6.4.2 Preliminary Experiment for Sampling

One of big issues of pre-search structure is summarized this question, is it possible

that finite number of samples provide enough information for operator impact? Kim

et al. (2012b) answers the question, yes. The finite number of sampling can catch

the feature of genetic operators.

This work aims to characterize the effect on fitness, size or depth of the various

evolutionary operators. The change depends on the state of the system, hence we

wanted to see how that change itself varied over the course of an evolutionary run.

We did this by conducting typical GP runs. At each generation, in addition to

the normally-created children which were actually used in the evolutionary run, we

generated extra children simply to evaluate the effects of the different operators, but

not otherwise used in the run.

In each generation, we took 200 additional samples for each operator (in addition

to those used for evolution) – of the same order as the number of real trials of each

operator in a generation. We selected the parents for these trials using the selection

mechanism. Thus we were examining the children actually reachable after selection.

We conducted detailed analyses on all experiments, but can only show F9 and

O30 due to space. F9 is intermediate in difficulty and typical of both extremes, while

O and M problems behaved similarly to each other. F9 and O30 are sufficient to sum-

marize the general trends, though we will mention some more detailed observations

when appropriate. For brevity, we denote a plot for function Xm calculated from the

fittest n% of children as Xn%
m , with n ∈ {10, 30, 50, 70, 90} and X ∈ {F,M,O}. The

figures show how the genetic operators change the properties of individuals in each

learning stage. The horizontal bars indicate means over 100 runs, while the vertical

lines show their standard deviations.

All plots show how each operator changes the specific property for individuals
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Figure 6.12: Fitness Change for Selected Parents.

Top: 30% Elite; Bottom: 70% Elite;

Left: F9; Right: O30

(the difference between child and parent values – for fitness, negative values indicate

improvement). Replication is omitted because it deterministically has no effect.

Fitness Analysis

The results in Fig. 6.12 overall reflect our understanding of evolutionary behavior:

the operators have a larger range of effect in early search (they are more exploratory),

whereas later on, elite children resemble their parents much more.

The most notable differential effect in Fig. 6.12 is the much larger range of effect

of the traditional M and X operators: the new TAG3P operators have a much
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Figure 6.13: Size Change, Left: F 50%
9 ; Right: O50%

30

smaller overall range of effect, suggesting that they are much less exploratory. In the

early stages, X is on average much more beneficial than mutation – for F9, most of

the 30% elite children are an improvement on their parents, while much fewer M

children are; any benefit from M comes from rarer positive mutations. While M is

overall constructive for problem O30, it is still substantially less so than X. However

the effect of X rapidly diminishes, especially for O30; M remains effective longer.

I/D are generally beneficial in early stages (the 30% elite see some worthwhile

improvement on their parents. I/D retains small but very slightly beneficial effect

until the end stages, befitting its proposed role as a fine-tuning operator.

D/T behave similarly to I/D on F9, though any beneficial effect disappears by

the end stages. Their effect on O30 is rather different, being slightly damaging in the

early stages of search, very slightly beneficial in the mid stages, and losing all effect

at the end.

R throughout has a relatively small effect, disappearing almost entirely by the

end stages (deterministically, it had no effect in the majority problem, since it cannot

change the fitness).
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Figure 6.14: Depth Change, Left: F 50%
9 ; Right: O50%

30

Size Analysis

While we saw different trends between 30% and 70% elite children in the fitness

plots, there was no such difference for size – size effects were independent of child

fitness; we display the results for the 50% elite. R and X do not change size at all,

so we omit them from discussion.

D/T generally causes a size change over the run (Fig. 6.13), with the scale increas-

ing gradually. However the effect is reversed between the problems: D/T decreases

size for F9 but increases it for O30 (similar, but less pronounced, effects were seen

with other operators). The difference may be because most individuals were near the

size bound in F9, so that many larger duplications would fail, while most truncations

would succeed, introducing a bias.

M began by slightly increasing the size of individuals, but the scale decreased to

zero for O30, and M eventually became reducing for F9. I/D (by design) made only

very small size changes throughout.
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Depth Analysis

We omit analysis of X because, as with size, most operator applications result in no

change in depth, so there is little to see.

The general trends are similar to size (Fig. 6.14), but on a reduced scale (because

of the logarithmic relationship between depth and size). The shapes of the plots are

generally very similar. The only exception is with operator R, which shows a slight

bias toward depth reduction, increasing in scale over time.

We investigated the roles genetic operators play and what they are useful for. We

confirmed that crossover is an effective operator in the early stages of GP, but it

is not effective throughout a run. Subtree mutation, another well known operator,

causes large changes in fitness, even in the middle of a run, but the changes are gen-

erally negative. Insertion/deletion may be a useful alternative, leading to smoother

fitness search – It is effective for fine-tuning, but at the risk of getting stuck in lo-

cal optima. Duplication/truncation and relocation may be useful when structural

change is needed, but can also have negative effects on poorly-matched problems.

More generally, we may conclude that there is value in having a diverse range of

operators: they really do perform different tasks, either in different problems, or at

different times in the evolution of solutions for the same problem. Since we will not,

in general, have a priori knowledge of which operator is most suitable a any specific

time, this motivates and justifies research into operator adaptation in evolutionary

algorithms in general, and in GP in particular.

6.4.3 Experimental Design

Problem sets and parameter setting are same to section 5.2. PPM, APM and r-AP

are used for this experiment. And two pre-search structures are used. The first one

use only one best sample (One Elite), and the second use 30% elite individuals from
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samples (30%).

6.4.4 Result and Discussion

Table 6.8: Success Proportion: Pre-Search Structure

One Elite 30%

PPM APM r-AP PPM APM r-AP

F4 64% 76% 62% 93% 95% 95%

F5 57% 65% 56% 90% 85% 87%

F6 35% 31% 24% 53% 49% 54%

F7 17% 26% 25% 44% 41% 43%

F8 9% 15% 9% 16% 17% 18%

F9 8% 10% 7% 21% 10% 19%

Q 59% 85% 80% 63% 78% 69%

S 26% 56% 52% 98% 91% 94%

T 33% 59% 55% 73% 70% 66%

2B 15% 0% 0% 15% 17% 18%

M25 7% 0% 0% 10% 27% 28%

M30 0% 0% 0% 6% 13% 10%

O25 19% 0% 0% 81% 78% 83%

O30 0% 0% 0% 48% 58% 55%

DN 100% 100% 100% 100% 98% 97%

DW 0% 0% 0% 51% 96% 89%

Table 6.8 shows the success proportion of AOS with pre-search structures. Except

a few cases, pre-search structure with one elite didn’t show good performances. How-

ever pre-search structure with fitness ratio over 30% elite individuals shows as same

performance as the normal structured AOS. As the reason why pre-search structure

with one elite sample couldn’t work as well as we expected, we guess a lack of infor-
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mation makes the performance be worse. Fialho et al. (2008) showed that AOS in GA

environment could well-perform with only one extreme fitness individual. However,

it is not sure that it is same in GP environment. With the same view, one sample

seems to be a main reason of bad performance, but it is not certain. Meanwhile, 30%

well-performed for all problems; its performances are similar to table 5.6 and 4.6.

From the result, we can conclude that pre-search structure can work as much as the

performance of a normal structured AOS. However, it is still uncertain whether it

can over-perform a normal structured AOS mechanism. We guess the key point of

pre-search structure is on the number of samples. To more investigate its usefulness,

more varied numbers of samples are needed to be researched.



Chapter 7

Application: Nakdong River

Modeling

The Nakdong, which has more than 500 km of length, is the longest river in South

Korea. Approximately 10 million people live in and use water from the Nakdong

River basin and it causes conflicting requirements of water usage. Therefore, the

management system for Nakdong river is essential. In this chapter, we introduce a

prediction model of algal bloom for water quality of Nakdong river and we apply

AOS mechanism to the model.

7.1 Problem Description

7.1.1 Outline

The Nakdong River system is one of the major regulated river systems of North

East Asia. As Korea has been developed, upstream dams and an estuarine barrage

are built in the river, so Nakdong river regularly shows, by turns, characteristics of a

reservoir and a river. Regional climatic conditions govern the hydrological regime: the

85
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annual rainfall is nearly 1,200 mm per year, over 60% concentrated in the Summer

period (from June to September) (Jeong et al. (2007)). Hence approximately 10

million people live in and use water from the Nakdong River basin, high demand and

intensive use of water resources lead to conflicting requirements, a key issue being

the occurrence of algal blooms, fueled by the nutrients injected upstream, which

periodically blight the river in the vicinity of Busan (≈ 5 million people) in the

lower part of the river. The lower Nakdong River experiences recurrent algal blooms

of Summer cyanobacteria and Winter diatoms (Ha et al. (1999, 2003)). Mitigating

these algal blooms is a key economic and social issue. Widely various limnological

research in terms of water quality (Kim et al. (1998, 2007)) and plankton dynamics

(Ha et al. (1999); Kim and Joo (2000)) have been conducted. So the important is

the management of the river that the Korean government invested in the vicinity

of USD 19 billion (for four major rivers, of which this is the largest) in a scheme to

improve its water management, and an intensive monitoring programme known as

the National Long-Term Ecological Research (LTER) has been carried out over the

past decade (Kim and Kim (2011)).

7.1.2 Data Description

In building the models presented in this thesis, we used geographical, hydrological,

meteorological, physicochemical and biological datasets. We have data from nine

measuring stations throughout the catchment (Fig. 7.1). They were originally se-

lected based on the availability of data and geographical importance. Six stations

(S1, S2, ..., S6) are located in the main channel of the river, and the other three sta-

tions (T1, ..., T3) are situated in major tributaries. Of those stations, algal concen-

tration in the lowest (S1, Mulgeum) is the most important hence the high population

(≈ 5 million people) of Busan draws its water nearby. Data (e.g. water temperature,
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Figure 7.1: Nakdong River Basin

solar radiation, precipitation, flow rates, nutrient concentrations, and chlorophyll

a) are collected during thirteen years (1996 - 2008), and most were daily-collected.

Hydrological (e.g. flow rate) and meteorological (e.g. irradiance and precipitation)

data were provided by the Korean Water Management Information System (Korean

Ministry of Land, Infrastructure and Transport (WAMIS)) and the Korea Meteoro-

logical Administration (Korea Meteorological Administration (KMA)). Others were

provided by Limnology Laboratory of Pusan National University.
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7.1.3 Model Description

The process model for Nakdong river in this thesis is based on the model which

was introduced in Kim et al. (2010). it is consist of two contemporaneous processes

describing the hydrological (flow of bodies of water) and biological (dynamics of

plankton) mechanisms. The big differences from the previous model are two things;

the nutrient and temperature equations and zooplankton. The nutrient and tem-

perature equations in this thesis more reflect the commonly-used forms (Cole and

Buchak (1995); Arhonditsis and Brett (2005)) by incorporating maximum and min-

imum values of parameters. And new variables of zooplankton, which effects the

growth of phytoplankton, are added (Kim and Joo (2000)).

Hydrological Process

The flow model maintains a mass balance of water in river, from upstream to down-

stream. The flow rates are based on the data from WAMIS, who uses a model of the

form given in equation 7.1.

Flow = α× (H + β)γ (7.1)

where H is the water level (height) of the river, and α, β and γ are site- and time-

specific parameters varying with the riverbed contour. α, β and γ are recalibrated

at infrequent intervals through direct height and flow measurements. However, these

three parameters are only changed prospectively on recalibration, not retrospectively

for the forward prediction for the flood mitigation, so that they are optimized to

give the most accurate flow rates at high flows. However, we need the most accurate

estimates in low flow period cause algal blooms occur primarily in low flow regimes.

In addition, these parameters are affected by the change of riverbed contour. The
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change of riverbed contour is generally gradual over time, but punctuated at irregular

intervals by the silt carried in the extreme flows from episodic events and more

rarely by dredging. The parameter re-estimation by WAMIS does not coincide with

the events affecting the river contour. Therefore, fitting parameters were sometimes

used for extended periods in the data as supplied by WAMIS.

To overcome these problems, we have re-estimated the historical α, β and γ pa-

rameters, using the known occurrences of extreme flows from meteorological events

and inferring occurrences of dredging from sudden changes in mass balance, to seg-

ment the data over time. Then we used the actual calibrations by WAMIS to infer

these values both prospectively and retrospectively, and focusing on minimizing the

flow error in low flow regimes. With the new parameter values, we re-estimated the

river flow over the study period to better fit our purpose.

The flow model uses a simple flow mass balance between stations, and it provides

flow-at-time information to the biological process model. Equation 7.2 shows the

basic flow model, which has three parts; inflow from upstream A, flow retention

downstream B, and run-off R by precipitation.

FlowB,t+d = (1− rA) · FA,t + rB · FB,t +RB,t+d (7.2)

where FlowX,t denotes the flow at station X at time t, d is the time it takes water

to flow from station A to station B, and rX is the fraction of the water that is

retained at station X. Thus, (1− rA) · FA,t is the outflow from station A, rB · FB,t

is the proportion of flow retained at station B due to non-laminar flow, and RB,t+d

indicates the inflow arising from run-off of precipitation occurring in the catchment

of station B at time t+ d. A simple additive model is used for the confluence of two

streams.
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Biological Process

The biological process bidirectionally interacts with the hydrological process, and

it decides the temporal dynamics of the phytoplankton biomass (BP ), a proxy for

the trophic state of water body. The biological process model mediates the change

of phytoplankton in a flowing water body over time-specifically, the transit time

between stations. The transit time is determined by the distance and corresponding

velocity of water between two neighbor stations. The velocity data were provided by

the Nakdong River Environment Research Center of the National Institute of Envi-

ronmental Research. We downscaled the velocities based on site-specific regression

using the corresponding flow rates. All the coefficients of determination (r2) were

greater than 0.99.

dBP

dt
= BP · (GrowthA −BreathA)−BZ ·Grazing (7.3)

GrowthA = ( 24
√

1 + CUA − 1) · f(Vlgt) · g(Vn, Vp, Vsi) · h(Vtmp)

BreathA = (1− 24
√

1− CBRA) · eQ10a(Vtmp−20)

Grazing = (1− 24
√

1− CMFR) · BP − CFmin
KFS + ChlA − CFmin

· e−CZT (Vtmp−20)2

f(Vlgt) =
Vlgt
Cbl
· e1−

Vlgt
Cbl

g(Vn, Vp, Vsi) = MIN(
Vn

Kn + Vn
,

Vp
Kp + Vp

,
Vsi

Ksi + Vsi
)

h(Vtmp) = MAX(e−CPT (Vtmp−Cbtp1)2 , e−CPT (Vtmp−Cbtp2)2)
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dBZ

dt
= BZ · (GrowthZ −BreathZ −DeathZ) (7.4)

GrowthZ = ( 24
√

1 + CUZ − 1) · BP − CFmin
KFS + ChlA − CFmin

· e−CZT (Vtmp−20)2

BreathZ = (1− 24
√

1− CBRZ) · eQ10b(Vtmp−20) + CBMT ·Grazing

DeathZ = (1− 24
√

1− CDZ) · 0.9(Vtmp−20)

Table 7.1: Model Variables

Variable Description Unit

Vwd wind day−1

Vph pH N/A

Vcd electric conductivity µS cm−1

Vdo dissolved oxygen mg L−1

Vtmp water temperature ◦C

Vtb turbidity NTU

Vfp fish predation N/A

Vsd Secchi depth cm

Vbc bacteria density N/A

Vlgt light intensity MJ m−2 d−1

Vn nitrogen mg L−1

Vp phosphorus µg L−1

Vsi silicon mg L−1

The main equations for algal biomass were a simplified form incorporating pho-

tosynthetic production (GrowthA), metabolic degradation (BreathA) and herbiv-

orous zooplankton grazing activity (Grazing) (Eq. 7.3). Algal growth was subject

to multiplicative influences from solar radiation (Vlgt), water temperature (Vtmp)

and nutrient concentrations (nitrate Vn, phosphate Vp and silica Vsi) (Table 7.1).

These limiting functions were partially adapted from the studies of Cho and Shin
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Table 7.2: Model Parameters and their Exploration Bounds
Parameter Description Unit Reference Value Bounds

CUA maximum growth rate of phytoplankton day−1 1.89 0.1∼4.0

CUZ maximum growth rate of zooplankton day−1 0.15 0.0∼0.3

CBRA breath rate of phytoplankton day−1 0.021 0.0∼0.17

CBRZ breath rate of zooplankto day−1 0.05 0.0∼0.20

Q10A Q10 coefficient (for BA) ◦C−1 0.069 0.01∼0.13

Q10Z Q10 coefficient (for BZ) ◦C−1 0.05 0.01∼0.09

CR choosing coefficient for feeding N/A 0.88 0.2∼1.0

KFS half-saturation constant of food µg L−1 5.0 4.0∼6.0

CFmin minimum food concentration µg L−1 1.0 0.1∼1.9

Cbtp1 blue-green optimal temperature 1 ◦C 27.0 20.0∼34.0

Cbtp2 diatom optimal temperature 2 ◦C 5.0 1.0∼20.0

CMFR maximum feeding rate day−1 0.19 0.01∼0.8

Cbl best light for phytoplankton MJ m−2 d−1 26.78 24.0∼30.0

Kn half-saturation constant of nitrogen mg L−1 0.0351 0.02∼0.05

Kp half-saturation constant of phosphorus mg L−1 0.00167 0.001∼0.020

Ksi half-saturation constant of silica mg L−1 0.00467 0.001∼0.2

CDZ death rate of zooplankton day−1 0.04 0.01∼0.10

CBMT breath multiplier on grazing N/A 0.04 0.01∼0.07

CPT temp coefficient for phytoplankton growth ◦C−2 0.005 0.003∼0.2

CZT temp coefficient for zooplankton growth ◦C−2 0.005 0.003∼0.2

(1998), Hongping and Jianyi (2002), and Arhonditsis and Brett (2005). We mod-

ified them to use two optimal temperatures for phytoplankton growth, since this

river has been dominated by Summer cyanobacteria (Ha et al. (1999)) and Winter

diatom (Ha et al. (2003)) blooms. The optimal values were determined based on

Cho and Shin’s experiment (Cho and Shin (1998); Reynolds (2006)). Zooplankton

abundance (BZ) plays a key role in limiting phytoplankton biomass due to grazing

pressure (Equation 7.4). The governing equations of zooplankton metabolism and

grazing activity stemmed from Hongping and Jianyi (2002). Specifically we added
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a temperature-dependent factor for phyto- and zoo-plankton respiration rates, and

both grazing and mortality of zooplankton.

For the process models, we explored the ranges of model parameters from the

previous related studies (Cho and Shin (1998); Everbecq et al. (2001); Hongping

and Jianyi (2002); Arhonditsis and Brett (2005); Reynolds (2006)). We used our best

estimates of these parameter values (Table 7.2) from the studies as a baseline for

comparison. We also estimated boundary values from these studies. These boundary

values are intended to represent ecological knowledge in the sense that we have high

certainty that the parameter values lie within these regions. Presented with a well-

fitting model whose parameter values lay outside the region, we would reject the

model in preference to accepting the parameter values. This is important because

there is little point in any parameter estimation method searching outside this region.

The objective of this study is to investigate the quality of models that may be

generated within these constraints for the Nakdong River ecosystem.

The system consists of two top-level models. The river flow model manages the

interaction between stations, while the algal growth model calculates the change of

status at each station. All measured data from the four highest stations, tributary

stations T1, T2, T3 and main channel station S6, were used as sources. The model

uses their data to compute values for downstream stations, which may be compared

with the measured values. At a confluence where tributaries join the main channel,

flow rates and water column parameters are combined, then propagated to the next

reach.

7.1.4 Methods

We applied AOS to two experiments. One is a parameter optimization with GA

(Kim et al. (in revision)), and the other is a modeling with TAG3P.
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Table 7.3: Genetic Operators for Parameter Optimization by GA

Genetic Operator Description

1X 1-point Values beyond a randomly

Crossover chosen gene are exchanged

2X 2-point Values between two randomly

Crossover chosen genes are exchanged

UniformX Uniform For each gene, the value is chosen

Crossover from either parent with probability 0.5

ArithX Arithmetic For each gene, uses the mean

Crossover of the two parent values

RandX Random For each gene, uses a random value

Crossover between the two parent values

ReproM Reproduction Values between two randomly chosen

Mutation genes are re-initialised

UniformM Uniform For each gene, the value is

Mutation re-initialised with probability 0.5

RangeM Range For each gene, value is randomly

Mutation changed within 5% of range

Parameter Optimization

Parameter Optimization with GA aims to optimize the model parameters using

a canonical GA. We used 20 real-valued genes as the chromosome of GA. They

are corresponded to the 20 model parameters in the model (Table 7.2). We used

8 various genetic operators; 5-crossover and 3-mutation (Table 7.3). All operators

have different features and they affect to individuals in a variety of ways. For this

experiment, three different systems are used; w/o AOS, w AOS and Opt. w/o AOS is
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a GA system without AOS mechanism, and its role in this experiment is the baseline

for comparison. w AOS has the same GA system but AOS mechanism is applied to

the system. At last, Opt is a GA system with two specific operator pairs; 1-point

crossover and reproduction mutation. They are selected by analyzing the result of

w AOS. We used 13 years ecological data described at 7.1.2, from 1996 to 2008.

The data was divided into two parts; data from 1996 to 2005 was used for training

and that from 2006 to 2008 was used for testing. Table 7.4 shows the evolutionary

parameter setting in detail.

Table 7.4: Problem Definitions and Evolutionary Parameters

for Parameter Optimization with GA
GA Type real coded Number of Operators K 8

Fitness RMSE at station S1 Initial Operator Rate Pinit 0.125

Runs 500 Minimum Rate Pmin
1

10K

Maximum Generations 100 Maximum Rate Pmax 1− (K − 1) · Pmin

Population Size 100 Adaptation Rate α 0.8

Elite Size 1 Learning Rate β 0.8

Tournament Size 4 AOS APM / Fitness Ratio

Modeling

Modeling with TAG3P is an extension of GA works at the previous section. The

objective of this research is to generate more exact prediction models of the water

quality of the river, by adding extensions to the biological process. Therefore, this

research works not only to optimize 20 parameter values but also to find more correct

river equation. Table 7.5 describes operators, variables and position of extensions.

We used TAG3P with 7 genetic operator sets (Table 2.1 in section 2.1.3) and 185

elementary trees (1 α tree for biological process and 184 β trees for extensions) for

this experiment. For this experiment, two systems, w/o AOS and w AOS, are used.
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Table 7.5: Definition of Extensions

Ext Operator Variable Position

Ext1 +,−,×,÷, log, exp Vph, Vcd
dBP
dt

Ext2 +,−,×,÷, log, exp Vsd
dBZ
dt

Ext3 +,−,×,÷, log, exp Valk GrowthA

Ext4 +,−,×,÷, log, exp Vtb f(Vlgt)

Ext5 +,−,×,÷, log, exp Vdo, Vph BreathA

Ext6 +,−,×,÷, log, exp Vtmp Grazing

Ext7 +,−,×,÷, log, exp Vtmp, Valk GrowthZ

Ext8 +,−,×,÷, log, exp Vtmp, Vdo, Vph BreathZ

Table 7.6: Problem Definitions and Evolutionary Parameters

for Modeling with TAG3P
GA Type real coded Number of Operators K 7

Fitness RMSE at station S1 Initial Operator Rate Pinit 0.143

Runs 50 Minimum Rate Pmin
1

10K

Maximum Generations 50 Maximum Rate Pmax 1− (K − 1) · Pmin

Population Size 100 Adaptation Rate α 0.8

Elite Size 1 Learning Rate β 0.8

Tournament Size 4 AOS APM / Fitness Ratio

Data usage and most settings are same to the parameter optimization with GA.

Table 7.6 shows the evolutionary parameter setting in detail.
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Table 7.7: Performance for Parameter Optimization with GA
Training Test

RMSE avg. med. stdev. best. avg. med. stdev. best.

w/o AOS 24.8972 24.8741 0.09612 24.6853 22.558 22.5382 0.09938 22.3837

AOS 24.7489 24.7185 0.11386 24.6179 22.4725 22.446 0.12095 22.3009

Opt 24.7256 24.7106 0.09143 24.6306 22.3984 22.3896 0.05304 22.3073

7.2 Results

7.2.1 Parameter Optimization

Table 7.7 shows the average, median, standard deviation and best value of RMSE for

the training and test. We omitted the performance of the basis model, however, Kim

et al. (2010) already showed, by applying GA model to the basis model, it is possible

to get the more correct river model. It seems there is no difference between two river

modeling methods. GA parameter optimization with AOS mechanism shows little

better performance, but not a big. However, this is a meaningful result. When we

tried to compare with Mann-Whitney test, the performance with AOS was better

than that at the 1% significance level. Parameter optimization with AOS mechanism

better performed for all comparing measures; average, median and the best. However,

the difference between two methods is small in the best, while average and median’s

differences are similar.

Figure 7.2 is two comparisons of actual value vs. predicted value from GA opti-

mization system w/o and with AOS mechanism. As the absolute difference between

two systems are small as shown at table 7.7, two figures show very similar trend.

We could check both methods were able to well predict the actual data.

Figure 7.3 shows the change of operator rates over 500 runs. With considering
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Figure 7.2: Chlorophyll a, Actual vs Predicted (with GA Parameter Fitting)

Top: without AOS, Bottom: AOS (r-AP)

fitness change, the time of fitness convergence and one-point crossover’s grow up

are matched. From 20 to 30 generation, it makes sense that the tendency of a run

is changed; almost individuals are converged and small changes become to be more

useful. 1-point crossover, reproduction mutation and range mutation, they shows

more portions at figure 7.3, are operators which can cause more change even in late

generations. From these facts, we can conclude AOS well-works in this problem and

it helps to more-perform.

In addition, we set an additional experiment Opt from figure 7.3. We chose two

operators, 1-point crossover and reproduction mutation for a run of Opt. As the
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Figure 7.3: Change in Operator Application Rates

and Mean of Best Fitness for Parameter Optimization with GA

result, its overall performance is better than others (Table 7.7) in both training and

test, at the 1% significance level of Mann-Whitney. However, AOS shows slightly

better the best value.

Figure 7.4 shows the probability distribution of each parameter obtained from

the 500 evolved process models (i.e. candidate solutions). It may be able to guide
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Figure 7.4: Probabilistic Distributions for Parameter Values from Best Evolved Pro-

cess Model
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Figure 7.5: Change in Operator Application Ratesfor Modeling with TAG3P

management decisions for the river system.

7.2.2 Modeling

Table 7.8: Performance for Modeling with TAG3P

Training

RMSE avg. med. stdev. best.

w/o AOS 1.98E+16 1.20E+07 4.84E+16 25.5368

AOS 1099152 25.52535 2035420 24.9577

Table 7.8 shows the average, median, standard deviation and best value of RMSE

for the training data1. Comparing to the result of parameter optimization, this

work overally had quite large RMSE values. In addition, while RMSEs of paramter

optimization are well regulated, it had pretty large standard deviation. Nevertheless

AOS overally better-perform than w/o AOS, for all items. In particular, median

value shows that more than half runs could find solutions with AOS but only less
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Figure 7.6: Change in the Operator Impactfor Modeling with TAG3P

than half of w/o AOS succeed.

Figure 7.5 shows the average change of operator rates. Comparing to previous

experiments on TAG3P at chapter 4, 5 and 6, it rarely changed. Except the first few

generations, there are little changes over whole generations. We could find a reason

from figure 7.6.

Figure 7.6 describes the operator impacts which are evaluated for each generation.

All operators received extremely large impact at the first generation. In parameter

optimization, all parameter values to be optimized are in specific ranges, so individ-

uals of an initial population of GA exist in a range. However, an initial population of

GP has more freedom to be built; many elementary trees (extensions) can be added

at extension points freely, so there is practically no boundary of fitness value. As a

result, initial individuals had poor and wide-ranged fitenss values, and an extremely

huge improvement on fitness, which affects to whole generations, is occurred at the

first generation. Therefore, operators which received an extremely large impact at

1Because AOS is not compeltely applied to this work, we skipped RMSE for the test data
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the first generation keep their rates highly over whole run. To overcome this problem,

other approaches, such as ranking point or a normalized fitness, are required.

7.3 Summary

Section 7.2.1 and 7.2.2 shows that adaptive operator mechanism successfully is ap-

plied to real-world application. In both problems, methods with AOS statistically

better-performed than methods without AOS. In addition, we could find a good

operator combination from the result of AOS. However, AOS mechanism in GP in-

cludes a problem of extremely huge first impact which causes a wrong guideline to

operators. For solving this problem, other approaches are required.



Chapter 8

Conclusion

8.1 Summary

This thesis has presented a number of issues about adaptive operator mechanism

for genetic programming. Genetic programming has been already shown to well

perform in many diverse problem domains. It has many parameters which affect to

its performance. They enable the user to adapt the algorithm to the problem at

hand. However, although they provide flexibility, it is difficult and complex to use

them simultaneously, the necessity of AOS comes to the fore.

As the first step of this research, we successfully applied the AOS mechanism

to GP systems in chapter 4. We used existing AOS algorithms; probability match-

ing, adaptive pursuit and multi-armed bandit, in two kinds of GP systems: Linear

tree adjoining grammar-guided genetic programming and the standard tree adjoin-

ing grammar-guided genetic programming. Compared to the standard GP system,

these two systems have some good points. In particular, they have more useful ge-

netic operators, while the standard GP is limited to subtree crossover and mutation

as genetic operator. The TAG3P operators we used were subtree crossover, subtree

104
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mutation, reproduction, insertion/deletion, duplication/truncation, point replace-

ment and relocation. All operators had already shown their usefulness. However,

it is difficult to determine suitable application rates for the operators without any

prior knowledge when we have many operators. That is one reason we applied the

AOS mechanism to TAG3P, rather than the standard GP. However, each AOS al-

gorithms show some limitations. PM didn’t distinguish genetic operators, because

the operator impacts are too similar to each other. AP ignored the difference among

operators, except the most effective one, so it is not suitable for many operators.

MAB failed to apply for its sensitive parameter. Moreover, it chooses only one most

effective operator at one time, so it is easily biased.

We suggested three new operator selection approaches in chapter 5; Powered

Probability Matching, Adaptive Probability Matching, and recursive Adaptive Pur-

suit. All are variants of PM and AP, are designed to overcome previously mentioned

drawbacks. PPM amplified the difference of impact between operators through ex-

ponentiation. It succeeded in increasing the difference, however the performance of

PPM was similar to PM. On the other hand, APM and r-AP worked successfully.

APM could distinguish not only the most effective operator but also rest operators.

It suggested the most effective operator and several second effective operators. It

showed good performance for many problems.r-AP uses the method of AP itera-

tively. So it easily emphasizes effective operators, but conversely it pressures the

least effective operators to have minimum probability, Pmin. So r-AP is effective in a

smoothly changing environment, but its response is too slow for a rapidly changing

environment. On the other hand, through empirical analysis of this experiment, we

generated a deeper understanding of genetic operators. All operators have different

effects, however we couldn’t understand all effects through only theoretical analysis.

Moreover it is difficult to understand the effects because GP usually operate on an
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infinite solution space. The analysis showed the interaction between operators and

individuals, and it showed the operator effects on diverse situation.

The evaluation of operator impact measures the impact of operators which is used

to determine the operator rate. Many researchers have long addressed this issue and

many different approaches have been developed. In chapter 6, we investigated four

methods: changing rate for the amount of individual usage, ratio for the improvement

of fitness, ranking point and pre-search structure. They require only small change,

they have a large effect on performance. Different individual usage rates are preferred

by different problems; higher rate tends to be better at more complex problem.

However changing rate suggested a good solution for problems of both sides. The

second one introduced various evaluation methods for fitness improvement. Fitness

improvement is a usual measurement for evaluation of operator impact. We suggested

three methods which use ratio value between two fitness values of child and the

corresponding parents in various ways. Pairs-based ratio value usually has larger

variance of the operator impact than groups-based ratio value, and latter showed

small difference between the operator impacts. Therefore an operator which AOS on-

line suggested, was easily changed over generation when we used groups-based ratio

value. When we used child individual’s fitness as a sort key, fine-tuning operators

such as insertion/deletion, got a better impact value. On the other hand, ranking

point is a refined fitness which is designed for avoiding an overflow which is caused

by extremely large/small raw fitness value. The basic concept of ranking point is to

change raw fitness values to rank-based points; we linearly changed in this thesis.

Consequently ranking point improved the performance of PPM, however it made

APM and r-AP be worse. Finally, we presented pre-search structure. The evaluation

of operator impact gets the operator impact from the newly generated population,

however because the population is generated by genetic operators with different
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rates, there is a bias. Moreover the operator impact is evaluated by the preceding

performance on the past generations, so it sometimes makes errors at dynamically

changing environment. Pre-search structure is designed to overcome these problems

by sampling, and it showed performance as good as a typical AOS.

Chapter 7 is applies the AOS mechanisms to a real-world application: the Nakdong

River modeling. This work enabled us to verify the value of the usefulness of AOS

mechanism in a real-world problem. It is consist of two experiments: parameter op-

timization with GA and modeling with TAG3P. Parameter optimization is a simple

GA application, which finds the model parameters using GA. Each gene in chro-

mosome is correspond to a parameter of the basic equation of the Nakdong River

Model. On the other hand modeling is an extension work of parameter optimization.

Including parameter optimization, it builds a good prediction model of algal bloom.

In the result, methods which the AOS mechanism is applied, shows statistically bet-

ter performance in both experiments. Moreover, a combination of genetic operators,

which AOS empirically suggested, showed a good performance. However, while AOS

was well applied to parameter optimization, modeling with GP showed a drawback.

Individuals of the modeling work could have mostly no boundary fitness value, so

extremely large improvement was occurred at the first generation and the operator

impact at the first generation affected to whole generations. At most a half of runs

failed to apply AOS mechanism in result, and other approaches, such as ranking

point, are required for the more successful application of the AOS mechanisms.



CHAPTER 8. CONCLUSION 108

8.2 Future Works

Pre-Search Structure and the Number of Samples

In chapter 6, we proposed pre-search structure and showed its usefulness. We tried

using only one sample and 30% elite individuals in samples. The former was defi-

nitely bad, but the latter showed performance as good as normal AOS. However we

expected pre-search structure has better performance than normal AOS, because the

operator impact is evaluated on current population in pre-search structure. There-

fore, even though pre-search structure is as good as normal AOS, it is little different

in our purpose. However there still exists various ways to extend pre-search struc-

ture. The number of samples is one example of the ways. We expect an investigation

into the relationship between the impact of operators and the number of samples

improves performance of pre-search structure. Furthermore this research may be

helpful in understanding the relationship between the impact of operators and pop-

ulation size.

Synergy Effect of Genetic Operators

Adaptive operator mechanisms in this thesis applied one genetic operator to gen-

erate one individual. Moreover, operator impact is evaluated for only one operator,

however, multiple operators are usually applied to one individual at the same gener-

ation in a typical GP; both crossover and mutation are applied to one individual in

one generation. When multiple operators are applied together to one individual, a

synergy effect may be observed (Spears (1995); Hong et al. (1995); Yoon and Moon

(2002)). Although one operator on its own may not have a good impact, it is possi-

ble to observe a synergy effect. Moreover, a similar synergy effect can sometimes be

observed between generations. A simple and brutal approach for synergy effect is to

consider all combinations of all genetic operators, however it requires an expensive
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cost. More sophisticated method is to use restricted combinations: combinations

with one primary operator or combinations of two categorized operators . In our

future work, we hope to investigate synergy effects between genetic operators.

Multiple Resources for the Evaluation of Operator Impact and Multi-

Objective Optimization

We used two kinds of resource for the evaluation: accuracy and structure information.

They were both based on the fitness, so the objective of problem and resources

were matched. However many GP problems incorporate preferences unrelated to

fitness, such as size or depth of solution; smaller sized solution is better if it has the

same fitness. We expect that a method of the evaluation of operator impact which

considers fitness and preferences together, may be useful to find more sophisticated

optimal solutions. For this research, we will use multi-objective optimization (MOO,

Coello Coello (2006)). For example, accuracy-based fitness and complexity-based

preference could be set as the objective function of MOO, which is a key part of the

evaluation of operator impact.

Adaptive Mechanism for Whole Parameters in GP

We investigated adaptive mechanism for GP, in particular adaptive operator se-

lection, however GP has many other parameters which are not related to genetic

operator. Population size, a maximum number of generations and selection pres-

sure are those parameters and they also have a large effect on performance. In our

future work, we hope to extend this research to the parameters. The research of pre-

search structure and the number of samples may be helpful to investigate adaptive

population size.



Appendix A

More Information on Grammars

A.1 Trigonometric Problem

Table A.1: Context Free Grammar for the Trigonometric Problem

EXP → EXP OP EXP | PREOP EXP | VAR

OP → + | - | × | ÷

PREOP → sin

VAR → X | 1

Table A.1 and figure A.1 depict the productions of the context free grammar,

and the corresponding elementary trees for the tree adjoining grammar, for the

trigonometric problem (in the figure, T denotes a lexicon that can be substituted

by a member of the set {X, 1}).

A.2 2-Box Problem

Table A.2 and figure A.2 depict the productions of the context free grammar, and

the corresponding elementary trees for the tree adjoining grammar, for the 2-Box

110
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Figure A.1: Elementary Trees for the Trigonometric Problem

Table A.2: Context Free Grammar for the 2-Box Problem
EXP → EXP OP EXP | VAR

OP → + | - | × | ÷

VAR → W | H | L | w | h | l

Figure A.2: Elementary Trees for the 2-Box Problem
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Figure A.3: Elementary Trees for the the Majority and Order Problems

problem (in the figure, T denotes a lexicon that can be substituted by a member of

the set {W,H,L,w, h, l}).

A.3 Majority and Order Problems

Table A.3: Context Free Grammar for the Majority and Order Problems

EXP → EXP OP EXP | VAR

OP → JOIN

VAR → P1 | P2 | . . . | Pn | N1 | . . . | Nn

Table A.3 and figure A.3 depict the productions of the context free grammar, and

the corresponding elementary trees for the tree adjoining grammar, for the majority

and order problems (in the figure, T denotes a lexicon that can be substituted by a

member of the set {P1, P2, ..., Pn, N1, ..., Nn}).
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Table A.4: Context Free Grammar for the Daida Problem
EXP → EXP OP EXP | VAR

OP → JOIN

VAR → X

Figure A.4: Elementary Trees for the DAIDA Problem

A.4 DAIDA problem

Table A.4 and figure A.4 depict the productions of the context free grammar, and

the corresponding elementary trees for the tree adjoining grammar, for the Daida

problem.
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Supplementary Figures
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B.1 Change in Operator Application Rates on Prelim-

inary Experiment (LTAG3P)

Figure B.1: Change in Operator Application Rates on PM (LTAG3P)

From Top Left, F6 and F9, Quintic and Sextic
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Figure B.2: Change in Operator Application Rates on AP (LTAG3P)

From Top Left, F6 and F9, Quintic and Sextic
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B.2 Mean of Best Fitness on Preliminary Experiment

(LTAG3P)

Figure B.3: Mean of Best Fitness (LTAG3P)

From Top-Left, F6 and F9, Quintic and Sextic
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B.3 Change in Operator Application Rates on Prelim-

inary Experiment (TAG3P)

Figure B.4: Change in Operator Application Rates on PM #1

From Top-Left, F4 and F5, F6 and F7, F8 and F9
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Figure B.5: Change in Operator Application Rates on PM #2

From Top-Left, Quintic and Sextic, Trigonometric and 2-Box,

M25 and M30, O25 and O30
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Figure B.6: Change in Operator Application Rates on AP #1

From Top-Left, F4 and F5, F6 and F7, F8 and F9
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Figure B.7: Change in Operator Application Rates on AP #2

From Top-Left, Quintic and Sextic, Trigonometric and 2-Box,

M25 and M30, O25 and O30
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Figure B.8: Change in Operator Application Rates on MAB #1

From Top-Left, F4 and F5, F6 and F7, F8 and F9
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Figure B.9: Change in Operator Application Rates on MAB #2

From Top-Left, Quintic and Sextic, Trigonometric and 2-Box,

M25 and M30, O25 and O30
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B.4 Mean of Best Fitness on Preliminary Experiment

(TAG3P)

Figure B.10: Mean of Best Fitness (TAG3P) #1

From Top-Left, F4 and F5, F6 and F7, F8 and F9
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Figure B.11: Mean of Best Fitness (TAG3P) #2

From Top-Left, Quintic and Sextic, Trigonometric and 2-Box



APPENDIX B. SUPPLEMENTARY FIGURES 126

Figure B.12: Mean of Best Fitness (TAG3P) #3

From Top-Left, M25 and M30, O25 and O30
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B.5 Change in Operator Application Rates on Operator

Selection

Figure B.13: Change in Operator Application Rates on PPM #1

From Top-Left, F4 and F5, F6 and F7, F8 and F9, Quintic and Sextic
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Figure B.14: Change in Operator Application Rates on PPM #2

From Top-Left, Trigonometric and 2-Box, M25 and M30, O25 and O30, DN and DW
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Figure B.15: Change in Operator Application Rates on APM #1

From Top-Left, F4 and F5, F6 and F7, F8 and F9, Quintic and Sextic



APPENDIX B. SUPPLEMENTARY FIGURES 130

Figure B.16: Change in Operator Application Rates on APM #2

From Top-Left, Trigonometric and 2-Box, M25 and M30, O25 and O30, DN and DW
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Figure B.17: Change in Operator Application Rates on rAP #1

From Top-Left, F4 and F5, F6 and F7, F8 and F9, Quintic and Sextic
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Figure B.18: Change in Operator Application Rates on rAP #2

From Top-Left, Trigonometric and 2-Box, M25 and M30, O25 and O30, DN and DW
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B.6 Mean of Best Fitness on Operator Selection

Figure B.19: Mean of Best Fitness #1

From Top-Left, F4 and F5, F6 and F7, F8 and F9
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Figure B.20: Mean of Best Fitness #2

From Top-Left, Quintic and Sextic, Trigonometric and 2-Box
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Figure B.21: Mean of Best Fitness #3

From Top-Left, M25 and M30, O25 and O30, DN and DW
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Á. Fialho, M. Schoenauer, and M. Sebag. Toward comparison-based adaptive op-

erator selection. In Proceedings of the 12th Annual Conference on Genetic and

Evolutionary Computation (GECCO 2010), pages 767–774. ACM, 2010.



BIBLIOGRAPHY 139

D.E. Goldberg. Genetic algorithms in search, optimization, and machine learning.

Addison-wesley, 1989.

D.E. Goldberg. Probability matching, the magnitude of reinforcement, and classifier

system bidding. Machine Learning, 5(4):407–425, 1990.

D.E. Goldberg and U.M. O’Reilly. Where does the good stuff go, and why? how

contextual semantics influences program structure in simple genetic programming.

Genetic Programming, pages 16–36, 1998.
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초록

유전 프로그래밍은 모델 학습에 효과적인 진화 연산 알고리즘이다. 유전 프로

그래밍은 다양한 파라미터를 가지고 있는데, 이들 파라미터의 값은 대체로 주어진

문제에 맞춰 사용자가 직접 조정한다. 유전 프로그래밍의 성능은 파라미터의 값

에 따라 크게 좌우되기 때문에 파라미터 설정에 대한 연구는 진화 연산에서 많은

주목을 받고 있다. 하지만 아직까지 효과적으로 파라미터를 설정하는 방법에 대한

보편적인 지침이 없으며, 많은 실험을 통한 시행착오를 거치면서 적절한 파라미터

값을 찾는 방법이 일반적으로 쓰이고 있다.

본 논문에서 제시하는 적응 연산자 메커니즘은 여러 파라미터 중 유전 연산자의

적용률을 설정해 주는 방법으로, 학습 중간중간의 상황에 맞춰 연산자 적용률을

자동적으로조정한다.본논문에서는,기존의적응연산자방법을다양한유전연산

자를 가진 문법 기반의 유전 프로그래밍인 TAG3P에 적용하고 새로운 적응 연산자

방법을 개발함으로써, 적응 연산자 메커니즘의 적용 범위를 유전 프로그래밍 영

역까지 확장하였다. 기존의 적응 연산자 알고리즘을 TAG3P에 적용시키는 연구는

성공적으로 이루어졌으나 몇 가지 문제점을 드러내었다. 이 문제점은 본문에서 후

술한다. 이 문제점을 해결하기 위해 유전자 선택에 대한 새로운 변형 알고리즘을

제시하였고, 이는 기존 알고리즘과 비교하여 더 좋은 성능을 보여주었다.

한편으로 유전 연산자가 해의 향상에 미치는 영향을 측정하는 연산자 영향력

평가에 대한 연구도 진행하였다. 적응 연산자 메커니즘에서는 측정된 영향력을 바

탕으로연산자의적용률을변화시키기때문에영향력평가는적응연산자메커니즘

에서매우중요하다.이연구에서는어떤정보를이용하여영향력을측정할것인지,

그리고 어떤 방법을 이용하여 영향력을 측정할 것인지의 두 가지 주요 쟁점을 다

룬다. 연산자 영향력 평가에는 학습 과정의 모든 정보가 사용될 수 있으며, 대체로

해의 향상과 직접적인 관련이 있는 적합도를 이용한다. 본 논문에서는 다양한 문

제를 이용하여 정확도와 구조에 관련된 두 지표를 영향력 평가에 이용해보았다.
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한편으로 같은 정보를 이용하더라도 그것을 활용하는 방법에 따라 측정되는 영향

력이달라지는데,본논문에서는작은변화를통해서도큰성능변화를야기시킬수

있는 영향력 평가 방법을 몇가지 소개한다.

마지막으로적응연산자메커니즘을실제문제에적용함으로써유용성을확인하

였다.이를위해사용된실제문제는낙동강의녹조현상에대한예측으로,낙동강의

생태시스템을묘사하고예측하는모델을개발하는것을목적으로한다. 2가지연구

를통해유용성을확인하였다.우선전문가에의해만들어진기본모델을바탕으로,

유전 알고리즘을 이용하여 모델의 파라미터를 최적화 하였고, 그리고 TAG3P를 이

용하여 기본 모델의 확장하고 이를 통해 새로운 모델을 만들어 보았다.

Keywords: 적응 연산자 메카니즘, 적응 연산자 선택, 유전 프로그래밍,

진화 알고리즘, 파라미터 조절, 파라미터 세팅

학번: 2005-23499
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