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Abstract

Traffic Offloading by User-to-User
Opportunistic Sharing in Mobile

Social Networks

Xiaofei Wang

Department of Computer Science & Engineering

The Graduate School

Seoul National University

The fast increasing traffic demand becomes a serious concern of mobile

network operators. To solve this traffic explosion problem, there have been

efforts to offload the traffic from cellular links to local short-range commu-

nications among mobile users that are moving around and forming mobile

social networks. In my thesis, I mainly focus on the user-to-user opportunis-

tic sharing and try to elaborate its effectiveness and efficiency for to offload

mobile traffic.

In the first work, I propose the Traffic Offloading assisted by Social

network services via opportunistic Sharing in mobile social networks, TOSS.

In TOSS, initially a subset of mobile users are selected as initial seeds

depending on their content spreading impact in online social network ser-

vices (SNSs) and their mobility patterns in offline mobile social networks
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(MSNs). Then users share the content via opportunistic local connectivity

(e.g., Bluetooth, Wi-Fi Direct) with each other. Due to the distinct access

patterns of individual SNS users, TOSS further exploits the user-dependent

access delay between the content generation time and each user’s access

time for the purpose of traffic offloading. I model and analyze process of the

traffic offloading and content spreading by taking into account various op-

tions in linking SNS and MSN data sets. The trace-driven evaluation shows

that TOSS can reduce up to 86.5% of the cellular traffic while satisfying the

access delay requirements of all users.

In the second work, I focus on the analytical research on Push-Share

framework for content disseminating in mobile networks. One content is

firstly pushed the to a subset of subscribers via cellular links, and mobile

users spread the content via opportunistic local connectivity. I theoretically

model and analyze how the content can be disseminated, where handovers

are modeled based on the multi-compartment model. I also formulate the

mathematical optimization framework, by which the trade-off between the

dissemination delay and the energy cost is explored.

Based on the measurement study, trace-driven analysis, theoretical mod-

eling and system optimization in above papers, the traffic offloading by

user-to-user opportunistic sharing in mobile social networks is proved to

be effective and efficient. Additionally, further discussions on the practical

deployment, future vision, and open issues are discussed as well.

Keywords : Traffic Offloading, Opportunistic Sharing, Device-to-Device
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(D2D), User-to-User (U2U), Mobile Social Networks, Online Social Net-

works
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Chapter 1

Introduction

Due to the fast development of mobile communication technologies, more

and more users tend to download content on mobile devices, for example

reading articles and watching videos on phones and tablets. The ever in-

creasing traffic load becomes a serious concern of mobile network operators

(MNOs) [1], but studies [1] [2] [3] [4] point out that much of the traffic load

is due to the duplicated download of the same popular files. For instance,

top 10% of videos in YouTube account for nearly 80% of all the views [4].

Therefore, how to effectively reduce the duplicated download via cellular

link by offloading the traffic via other networking connectivities becomes a

hot research topic.

Recently, by adopting the concept of “peer-to-peer communication”

from the BitTorrent in wired Internet into mobile environment [5], there

have been many studies to exploit the people-to-people (user-to-user) op-

portunistic sharing during intermittent meetings of mobile users for traf-

fic offloading in mobile social networks (MSNs), which is a special form

of the Delay Tolerant Network (DTN) with more consideration of the so-

cial relationship of network users [6] [7] [8] [9] [10] [11] [12] [13]. Also

a MSN/DTN can be considered based on the opportunistic network [14]

[15]. In MSNs, users are able to discover the adjacent neighbors [16] and

set up temporary local connectivities, e.g., Bluetooth, Wi-Fi Direct, Near-
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Field-Communication (NFC) [17], and Device-to-Device (D2D) [18] [19],

for sharing delay-tolerant content with each other. Especially the D2D is

now under very hot discussion, since it is under detailed design in 3GPP as

an underlay to LTE-Advanced networks [19], by which users can use oper-

ator authorized spectrum for direct communication without the support of

infrastructure.

For such kind of user-to-user sharing, some users need to carry the con-

tent at the beginning. It is advocated that by selecting an appropriate initial

set of seeds the peak traffic load can be reduced by 20% to 50% [11]. The

study in [12] also proves that content dissemination with a small number of

initial seeds can guarantee the delay requirements of all users while reduc-

ing a substantial amount of cellular traffic. However there are still several

important issues in related research which are not fully elaborated, such as:

• How to know, or how to predict the dissemination delay of each user

for each content? Recent studies [12] [13] [20] [21], assume the same

dissemination deadline of the same content for all users; however

users indeed have various delay requirements [22].

• How to design the seeding strategy to minimize the cellular traffic

while satisfying the delay requirements of all users? Strategies of se-

lecting initial seeds are discussed in prior work [10] [11] [23], but

most of them focus on user mobility while ignoring the practical so-

cial relationships among users.

• How to make mobile users share content efficiently with others? Stud-

ies in [10] [12] [13] assume people will always exchange content gra-

2



tuitously. But in reality, people mostly share information by “word-

of-mouth” propagation [24] [25], and it is able to exploit social rela-

tionship among users.

To solve the above issues, I seek to exploit the relationship between the

offline MSNs and online Social Network Services (SNSs). It is discovered

that there is a dramatic rise in the number of mobile users who participate in

the online SNSs, e.g., Facebook [26], Twitter [27], Tumblr [28], Sina Weibo

[29] and so on, where more and more content is recommended and spread

rapidly and widely [25] [30]. By investigating related measurements and

modeling studies of the MSNs and SNSs, I discovered the following key

points, which can be utilized for content dissemination:

• In online SNSs, the access pattern of each user can be measured, sta-

tistically modeled and thus predicted. That is, we can analyze the ac-

cess delay between the content generation time and the user access

time [31], which is per-user dependent mainly due to people’s dif-

ferent life styles [22] [25] [32]. We can disseminate the content of

interest to users considering their different delay sensitivities (require-

ments).

• In online SNSs, a user’s influence, or spreading impact, to other

users, can be modeled based on the analysis of social behavior his-

tories, for example the forwarding probability.

• In offline MSNs, the mobility patterns of users can be measured and

modeled [12] [20] [33] [34] [35], and hence a different offline mobil-
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ity impact of each user to disseminate the content to others can be

derived.

• User relationships and interests in online SNSs have significant ho-

mophily and locality properties (to be detailed in Ch. 2), which is

similar to those of offline MSNs [24] [36] [37]. Users are mostly

both clustered by geographical regions and interests, which can be

exploited for traffic offloading.

Therefore, I am motivated to propose a Mobile Traffic Offloading frame-

work by SNS-Based opportunistic Sharing in MSNs, TOSS. TOSS pushes

the content object to a properly selected group of seed users, who will op-

portunistically meet and share the content with others, depending on their

spreading impact in the SNS and their mobility impact in the MSN. TOSS

further exploits the user-dependent access delay between the content gener-

ation time and each user’s access time for traffic offloading purposes. From

trace-driven evaluation and model-based analysis, TOSS lessens the cellular

traffic up to 86.5% while still satisfying the delay requirements of all users.

To the best of our knowledge, this is the first study that seeks to combine on-

line SNSs with offline MSNs for traffic offloading considering user access

patterns. Furthermore we propose a analytical framework, named Push-

Share based on TOSS, which extends the offloading scenario to multi-cell

environment. We theoretically model and analyze how the content can be

pushed to a set of users and then shared to other users, where handovers

are modeled based on the multi-compartment model. We also formulate the

mathematical optimization framework, by which the trade-off between the

4



dissemination delay and the energy cost is explored.

The advantages of offloading the cellular traffic by the opportunistic

user-to-user sharing have been discussed in prior studies [10] [21] [38] [39]

[40]. Furthermore, I compare pushing and sharing with other well-known

strategies of content dissemination:

• Pull-based Unicast: In the traditional pull-based delivery, the file of

interest may be downloaded via cellular links as many times as the

number of subscribers [3] [4]. Meanwhile, our proposed model lever-

ages the social meets of users, to offload the redundant downloads

from the cellular links to local connectivities.

• Broadcast/Multicast: When multiple users (in the same cell) wish to

receive the same content, broadcasting (or multicasting) would be ef-

ficient. However, for broadcasting, the lowest bit rate is normally used

to cover all the mobile users in its cell, which reduces the efficiency

substantially. And yet, the reliability of the content delivery is still

difficult to achieve. There is also a security issue since non-subscriber

users can also receive the content.

The rest of the thesis is organized as follows. After reviewing the re-

lated work in Ch. 2, I discuss the first study, TOSS framework, in Ch. 3.

The framework details are in Sec. 3.1, and related optimization issues are

discussed in Sec. 3.2. The trace-driven evaluation and the numerical analy-

sis are shown in Sec. 3.3 and Sec. 3.4, respectively, followed by concluding

remarks in Sec. 3.5. The second study, Push-Share, is introduced in Ch. 4.

First I introduce the framework details in Sec. 4.1, as well as the system
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model in Sec. 4.2. Then I detail the content dissemination process in a sin-

gle cell and multiple cells in Secs. 4.3 and 4.4, respectively. I discuss how

to optimize the system parameters in Sec. 4.5. Numerical results are shown

in Sec. 4.6, followed by concluding remarks in Sec. 4.7. By the end of the

thesis, I make some conclusions in Ch. 5
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Chapter 2

Related Work

2.1 Opportunistic Sharing in DTNs/MSNs

The epidemic content delivery in DTNs/MSNs has been extensively studied

recently. Zhang et al. [20] have developed a differentiation-based model to

study the delay of epidemic content delivery. For the purpose of energy con-

servation, Li et al. [13] also have designed an energy-efficient opportunistic

content delivery framework in DTNs. The scalability and optimality of con-

tent dissemination by exploiting user-to-user contacts has been modeled as

a social welfare maximization problem in [10]. Similarly, [21] has solved

the maximization of traffic offloading utility in DTNs as a knapsack prob-

lem. Regarding the slow start and long completion time of the epidemic

delivery, strategic pushing is studied to expedite the dissemination in [11].

Whitebeck et al. [9] also demonstrated the effectiveness of opportunistic of-

floading strategies based on practical mobility traces. While the above stud-

ies were limited to single cell environments, Wang et al. extend the pushing

and sharing model into multi-cell cellular network environments in [12].

Accelerating the content dissemination by leveraging users’ social re-

lationships becomes a more popular research topic recently. BUBBLE Rap

[41] utilizes social grouping characteristics for content dissemination. And

[23] offloads up to 73.66% mobile traffic through social participation in the

7



MSN based on selection of the optimal initial seed users. [42] proposes to

assign interest tags to the users and content objects to identify their pref-

erences of content, and then utilizes users local centrality for efficient con-

tent sharing in DTNs. Similarly, ContentPlace [43] utilizes social central

betweenness of mobile users to optimize the mobile content sharing. The

SimBet [44] routing scheme in DTNs is also based on the analysis of user

similarity due to the clustering effect and thus the calculation of user central-

ity. The similarity concept is also utilized by [45] and [46], both in which

user encounter history is explored for getting the friendship similarity for

delegation forwarding in the DTNs/MSNs. Therefore we are also motivated

to extend the epidemic sharing in MSNs by considering the real social re-

lationships in SNSs. Furthermore, Bao et al. carried real tests in Manhattan

and identified the sharing-based offloading can reduce 30% to 70% mobile

traffic [47]. In this thesis, security or privacy problems are not considered,

but related studies such as [48] [49] and [50] can be referred.

The sharing in MSNs mainly relies on user-to-user local short-range

communication techniques. Among existing user-to-user sharing methods,

e.g., Bluetooth, Wi-Fi Direct, and NFC [17], which are based on public

short-range communication techniques, the Wi-Fi Direct is becoming pop-

ular and popular. For instance, Apple’s Airdrop [51] provides convenient

user interface for a user to share a content to nearby users with ease. The

HyCloud even utilizes cloud computing for enhancing the sharing among

mobile users [52]. Recently the Device-to-Device (D2D) communication in

the operator authorized spectrum becomes quite hot [18]. Device-to-device

(D2D) communication underlaying a 3GPP LTE-Advanced cellular network
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is studied as an enabler of local services with limited interference impact on

the primary cellular network. Based on optimal resource allocation and in-

terference management, D2D communication can increase the total through-

put observed in the cell area as studied in [19] [53] and [54]. This will fur-

ther enhance the development of user-to-user sharing for traffic offloading

in emerging mobile networks.

2.2 Mobile Traffic Offloading

There actually have been lots of studies focusing on the mobile traffic of-

floading by deploying Wi-Fi Access Points (APs). The realistic measure-

ment from Korean Telecom (KT) [55] has pointed out that about 18% to

26% cellular traffic load is offloaded to KT’s Wi-Fi APs. Similar studeis are

carried in US, such as [56] and [57]. Depending on the density of AP de-

ployment, the Wi-Fi based offloading can have different performance. For

example, up to 65% traffic can be offloaded to Wi-Fi APs as practically

studied in [58], in the downtown of Seoul, Korea. Y. Im et al. has proposed

a cost-aware offloading with the throughput-delay trade-offs for offloading

by Wi-Fi APs [59]. The economics of traffic offloading by Wi-Fi APs has

been studied in [60] and the work in [61] further analyzes a more compli-

cated offloading economics with the balance between delay and capacity of

the network.

Regarding the traffic offloading based on user-to-user opportunistic

sharing, how to encourage people to share during moving is thus interesting

for researchers to design incentive-based business model, such as pricing

9



study Win-Coupon in [39] to encourage the traffic offloading by DTNs. B.

Tang et al. has also studied the benefit-based data caching and forwarding

in ad hoc networks [62]. The self-interest-drive incentives for ad dissemina-

tion in autonomous MSNs is studied in [63]. Moreover, IPAD is a incentive-

based design with conjunctive consideration with privacy [64], and iDEAL

[65] is an incentivized cellular offloading based auction game.

2.3 Information/Content Spreading in SNSs

In this thesis, we consider the social relationship of users, so it is necessary

to survey related studies on information and content spreading in SNSs.

Dozens of years ago, in [66] the people social influence has been researched

and identified as a “two-step flow of communication”, that is, most people

form their opinions under the influence of “opinion leaders”, who in turn are

influenced by the media source. Also the study in [67] declares that a small

number of “opinion leaders” who have strong impact on spreading informa-

tion perform the key roles to broadcast information by a socially connected

network. Currently SNSs have been playing the important role for propagat-

ing media content [68]. In SNSs, due to the effect of “word-of-mouth” [24],

users can significantly impact the information spreading to other users [69]

[70]. Many studies have proposed to use probabilistic modeling to analyze

the information/content commenting or re-sharing activities, and thus the in-

formation spreading impact among users [31] [32] [68] [70] [71] [72] [73].

Especially, the recommendation from famous people, who have potentially

strong impact to others, may accelerate the topic spreading as studied in
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[31] [74]. Also [25] indicates that people’s historical impact on information

sharing can impact and thus enable the accurately forecasting of the future

sharing activities. Furthermore [25] points out that there are always some

delays of re-sharing behaviors while the spreading impact of each user is

accumulated hop by hop. This access delay between the content generation

time and the user access time due to people’s different life styles has been

mentioned in many studies [22] [25] [32]. Researchers can obtain, analyze,

and even predict the spreading impact and the access delays of SNS users

based on measurement traces [30] [31].

Studies in [24] and [37] report that user relationships and interests in

SNSs have significant homophily and locality characteristics as similar to

those in MSNs. Homophily is the tendency of individuals to associate and

bond with similar others [75]. The homophily here means online and offline

users are both highly clustered by regions and interests, which also is stud-

ied as “birds-of-a-feather” in [76]. User homophily significantly impacts the

information diffusion in social media. People with similar interests like to

share and transfer the interesting information with each other. For instance,

if one’s friends watched a video, one will watch the video with very high

probability. Locality is originally a phenomenon describing the same value,

or related storage locations, being frequently accessed [77]. More specifi-

cally, in this thesis, the locality means that people who are graphically close

may have similar trends of accessing the content and sharing with each other

[24]. Even in online SNSs, users may significantly interact with and thus

impact others in proximity, which also indicates the locality nature [36].

In other words, users within a short geographical distance have a higher

11



probability of posting the same content than those users who are physically

located farther apart. Thus, the locality characteristics of user interests can

be utilized to facilitate the traffic load balancing [2] and content delivery

[37].
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Chapter 3

TOSS: Traffic Offloading Assisted by
Social Network Services via
Opportunistic Sharing in Mobile
Social Networks

3.1 Framework Details

3.1.1 Preliminaries

Eva 

Alex Cindy 
David 

Online SNS 

Offline MSN 

Alex Eva 

David Bob Cindy 

CP 

Bob 

Microblog with 

video link 

Video 

content 

object 

Each mobile user has a 

corresponding account in the SNS 

Direct pushing 

Opportunistic sharing 

Spreading Impact 

Fig. 3.1. Illustration of the TOSS framework containing the online SNS and
the offline MSN
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The TOSS framework entails both an online SNS and an offline MSN.

Suppose there are total N mobile users, ui, i= 1, ...,N, who have correspond-

ing SNS identities. Because we focus on the content spreading in an online

SNS, we use a directional graph to model the SNS1, e.g., Twitter [28], Sina

Weibo [29]. The online SNS can thus be represented by, G(V,E), where V

is the set of users in the online SNS, and E is the set of directional edges.

If u j follows ui, u j is one follower of ui and ui is one followee of u j. As

we focus on the content spreading, the directional edge (represented by an

arrow in Fig. 3.1) is from ui to u j, denoted by vi j. That is, ui has a direct

impact to u j for content spreading. There can be a bidirectional relationship

where two users follow each other.

We define the home-site, where a user create and shares content in the

SNS platform, as the microblog, and we define a short message posted by a

user containing the content (or link to the content) as a micropost2, and the

content file is called a content object. Furthermore, we define the timeline

of a user in online SNS as the serie of all microposts published by a user in

his/her microblog, sorted by time.

At any time, a user may find or create a new interesting article, image,

or video, and share it in the SNS as an initiator. All his/her followers will

then be able to access the content, and some of them will further re-share in

their timelines. Making comments will not induce any information spread;

thus we only consider the re-share activities. Afterwards, what TOSS seeks

1TOSS can also work with any SNS based on the bidirectional graph model (e.g., Face-
book [26]) since it is a subset of the directional graph model.

2It can be a tweet in Twitter or a post in Facebook.
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to achieve is that, while the micropost with the content is being spread to

other users in the online SNS, the content object will be accessed and deliv-

ered among user devices in the offline MSN. Note that the TOSS framework

is not confined strictly to the dissemination of one popular content to all the

users, but applies to general deliveries of any content to a group of potential

recipients with any size.

TOSS defines four factors for user ui: two for the online SNS, (1) the

outgoing spreading impact, IS→
i , and (2) the incoming spreading impact,

IS←
i , which indicate how important the user is for propagating the micropost

(to others or from others); two for the offline MSN, (3) the outgoing mobility

impact, IM→
i , and (4) the incoming mobility impact, IM←

i , which indicate

how important the user is for sharing the content object (to others or from

others) via physical encounters. We will discuss how to calculate them in

Sec. 3.1.2 and Sec. 3.1.4.

Considering the above factors, TOSS seeks to select a proper subset

of users as seeds for pushing the content object directly via cellular links,

and to exploit the user-to-user sharing in the offline MSN, while satisfying

different access delay requirements of different users. We define a vector−→p

to indicate whether to push the content object to a user via cellular links or

not, e.g., pi = 1 means pushing the content object directly to user ui.

From the illustrated scenario of TOSS in Fig. 3.1, in the online SNS,

Cindy shares a video (link) to Eva and Alex, who may in turn share with Bob

and David, respectively. Meanwhile, the video content is first downloaded

via a cellular link and stored in Cindy’s phone. However in the offline MSN,

Cindy is geographically distant from other people but David is in proximity.
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Although David may not know Cindy, TOSS detects that the IS→ impact of

Cindy to David via Alex is also very strong, and thus lets Cindy share the

video with David via a local Wi-Fi connectivity. Furthermore TOSS evalu-

ates the IM→ impact of Alex, and pushes another copy to him via a cellular

link, because Alex is likely to meet Bob and Eva in the offline MSN fre-

quently, and Bob and Eva often access content with some delays. Then the

content object will be propagated by local connectivities from Alex to Bob

and to Eva at a later time. TOSS reduces 3/5 of the cellular traffic in this

example scenario.

3.1.2 Spreading Impact in the Online SNS

We extend the previous probabilistic models [68] [70] [71] [72] [74] to

quantify the content spreading impact in the SNS. Hereby we define, the

IS→ factor of user ui to user u j, denoted by γi j, 0≤ γi j ≤ 1, is the ratio of the

number of microposts of ui that u j accesses and re-shares to the number of

all microposts of u j in u j’s timeline. Thus for a given object of ui in the fu-

ture, And thus γi j is the probability that u j will re-share the micropost from

ui [30].

Based on the SNS graph G, we define Uh
i as the set of h-hop upstream

neighbors (followees) of user ui through all possible shortest h-hop paths

without a loop, and likewise Dh
i as that of h-hop downstream neighbors (fol-

lowers). And we use γh
i j to denote the IS→ factor from user ui to u j by any

h-hop path (inversely γh
ji as the IS← factor from user u j to ui). From u j’s

point of view over a certain period, we need to consider (1) the number of

microposts that u j has created by herself, c j, (2) the number of re-shared
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microposts by u j from ui, ri j, and (3) the number of re-shared microposts

from all h-hop followees, to calculate IS→
i as follows:

γ
1
i j =

ri j

c j +
∑

uk∈U1
j

rk j
, (3.1)

γ
2
i j = 1−

∏

k∈D1
i ∩U1

j

(
1− γ

1
ik ∗ γ

1
k j
)
, (3.2)

γ
3
i j = 1−

∏

k∈D2
i ∩U1

j

(
1− γ

2
ik ∗ γ

1
k j
)
, (3.3)

γ
h
i j = 1−

∏

k∈Dh−1
i ∩U1

j

(
1− γ

h−1
ik ∗ γ

1
k j

)
. (3.4)

We use γ∗i j to denote the impact from user ui to user u j via all possible paths

with less than or equal to H hops, computed by:

γ
∗
i j = 1−

H∏

n=1

(
1− γ

n
i j
)
, (3.5)

where H is less than or equal to the maximal diameter of the SNS graph G.

Then IS→
i and IS←

i of ui to and from the whole user base can be respectively

calculated by

IS→
i =

N∑

j=1

γ
∗
i j, IS←

i =

N∑

j=1

γ
∗
ji. (3.6)

Note that it is reported in [25] [76] that the average path length in SNS

graphs is about 4.12 and the spreading impact after 3 hops becomes negli-

gible.

17



3.1.3 Access Delays of Users in the SNS

3.1.3.1 Access Delay

A 

timeline 

timeline 

B 

The Access Delay 

Content 

Provider 

A

A shares a video microblog

B sees 

A’s share 

B re-shares 

the video 

B buffers 

the video 

B watches 

the video 

t0 

t1 t2 t3 

Fig. 3.2. Illustration of the content access delay between A’s content gener-
ation time and B’s access time

Different users have different patterns of accessing content via the on-

line SNS. Some may access the SNS frequently, while others access the

SNS at relatively longer intervals. Thus the access delay between the con-

tent generation time and user’s access time becomes different for each user

[22] [25] [32].

As illustrated in Fig. 3.2, user A creates a micropost for an interesting

video in the SNS at t0. One of A’s followers, B, happens to see A’s micropost

after a certain delay at t1 due to B’s personal business. Once B clicks to play

it, a buffering delay is needed until t2; B will re-share the video at t3 after

watching it. In practice, it is hard to obtain t1 and t2 data. Thus we consider

B’s access delay as t3− t0, which can be captured from the SNS measure-
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ment trace by checking B’s re-sharing time from the SNS measurement.

To investigate access delays, we collected the SNS trace data of ap-

proximately 2.2 million users from the biggest online SNS in China, Sina

Weibo (measurement details will be explained in Ch. 3.3). The access delay

is gathered as the time difference between the generation time of the original

micropost and the time of re-sharing by a follower.

We pick up three real users from the online SNS trace, and plot their

access delays by probability distribution function (PDF) as shown in Fig.

3.3. User u1 is likely to access the content frequently with short delays. But

users u2 and u3 have significant delays, on the order of hours and days, re-

spectively. In this regard, we can classify all users into two types: (a) keen

users, who check microposts frequently, and access content object with

short access delays mostly, e.g. u1; (b) dull users, who mostly access the

microposts with substantial delays, e.g. u2 and u3. Generally, TOSS tends to

push content to keen users, but seeks to utilize the opportunistic sharing in

the MSN to disseminate the object to dull users.

3.1.3.2 Modeling of the Access Delays

We use a PDF to model the access delays of each user, say ui, in terms of the

probability to access the content at t, denoted as Ai (t). As similar to [10],

Ai (t) can be considered as the access utility function. If the content object

is already obtained locally in the user’s device when she has the highest

probability to access the content, she will be mostly satisfied.

In order to model the various distributions of access delays with differ-

ent shapes of PDF curves, we choose to use Weibull distribution for fitting,
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Fig. 3.3. The access delay distributions of three real users with Weibull
fitting

which is commonly used for profiling user behaviors in SNSs [78]:

Ai (t,βi,ki) = ki
βi

(
t
βi

)ki−1
e−
(

t
βi

)ki

, t ≥ 0, (3.7)
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where the fitting parameters βi and ki can identify the access pattern of user

ui (note that ki controls the curve shape). When ki ≥ 1, the Weibull fitting

curve can represent the distribution of the access delays of keen users; if

ki < 1, the Weibull fitting curve has a peak, and thus, can represent the dis-

tribution of access delays of dull users. It is measured that (to be discussed

in Sec. 3.3) about 2/3 of SNS users are dull ones with large access delays,

which is a sufficiently large portion of users that allows TOSS to disseminate

the content object by offline opportunistic sharing.

Note that, there can be many different functions for fitting statistical

data into functions, but we stick to use Weibull fitting, as a large number of

studies use Weibull for fitting human behavior statistics, such as [78] for user

behaviors in online SNSs, [79] for user web browsing activities, [80] for user

access patterns in Wi-Fi networks, and [81] for traffic flows in online games.

In these related papers, the fitting faithfulness is not mentioned, since the

parameter k and λ are actually the important ones for analyzing patterns and

for reproducing the user behaviors. Also we use MATLAB wblfit function

[82] to analyze and carry out Weibull fitting on the access delays, and it does

not return the value of likelihood (faithfulness), but only returns the k and

λ with the maximal likelihood estimation. Therefore although the analysis

here has some limitation regarding the faithfulness of the fitting, we believe

the Weibull fitting can well reflect the patterns of user access delays.

3.1.4 Mobility Impact in the Offline MSN

It has been studied that mobile users in the offline MSNs (or DTNs), have

different mobility patterns [12] [20] [33] [34] [35] , and hence different po-
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tentials for sharing content. Thus the mobility impact, IM, is defined to quan-

tify the capability of a mobile user to share a content object with other users

via opportunistic meetings, or say contacts, while roaming in the MSN. The

temporary connectivity with nearby users mostly relies on active discovery

mechanisms; thus we assume all mobile users are synchronized with a low

duty cycle for probing as proposed by eDiscovery [16].

Referring to [10] [12] [13] [20] [33] [34] [35] [42] we assume that

the inter-contact intervals of any two mobile users follow the exponential

distribution. We use λi j to denote the opportunistic contact rate of user ui

with user u j. Note that there are many practical methods to measure λi j

values, e.g., centralized measurement by the location management entity

in the MNO [83] or by distributed user-to-user exchanges [43]. Note that

the contact duration is ignorable in TOSS, because we assume the content

delivery is always finished successfully during the contact due to the high

bandwidth of local communications (e.g., Wi-Fi) [10] [12] [20] [42].

We adopt the epidemic modeling from [13] [20] to model the oppor-

tunistic sharing in TOSS with the continuous time Markov chain. We let

Si(t) be the probability that user ui may have the content until t, 0≤ Si (t)≤

1, while 1−Si (t) is the probability that user ui has not received the content

until t. Si (t) will be increasing over t while roaming and meeting users in the

offline MSN. The increment of Si(t) within a period ∆t, that is Si (t +∆t)−

Si (t), will be calculated in the following procedure.

The probability of user ui to meet user u j during ∆t, is 1− e−λi j∆t due

to the exponential decay of inter-contact intervals. The probability that user

ui can get the content from another user u j via opportunistically meeting,
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denoted by εi j, can be calculated by:

εi j =
(

1− e−λi j∆t
)
· γ∗ji ·S j (t) , (3.8)

where the IS→ impact factor from u j to ui, γ∗ji, is considered as both (i) the

spreading probability that u j will re-share microposts from ui and (ii) the

sharing probability that ui can obtain the content object from u j.

Considering the εi j of ui from all users, the probably that ui can get the

content from others within ∆t is,

1−
N∏

j=1, j ̸=i

(1− εi j). (3.9)

Hence based on the probability that ui has not received the content,

Si (t +∆t)−Si (t) = (1−Si (t)) ·


1−

N∏

j=1, j ̸=i

(1− εi j)


 . (3.10)

Letting ∆t→ 0, the derivative of Si(t) will be

•
Si (t) = lim

∆t→∞

Si(t+∆t)−Si(t)
∆t

= lim
∆t→∞

(1−Si(t))·
(

1−
N∏

j=1, j ̸=i
(1−εi j)

)
∆t

= (1−Si (t)) ·
N∑

j=1, j ̸=i
λi j · γ∗ji ·S j (t)

, (3.11)

where initially Si (0) = pi from −→p .

Solving the above matrix of the ordinary differential equation system is

complicated. However, we can find a numerical solution easily by approxi-
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mation with power series [84] [85]. We skip the details of the procedure for

getting numerical solutions, since this is trivially straight forward.

Given a pushing vector −→p , we can calculate how long it will take for

any user ui to obtain the content by the inverse function of Si(t) with Si(t) =

1, defined as the content obtaining delay of ui, denoted by t∗i :

t∗i = S−1
i

({
γ
∗
ji
}
,
{

λi j
}
,−→p
)

, j = 1, ...,N, j ̸= i, (3.12)

where
{

γ∗ji

}
is the series of IS← factors from all other users to ui in the SNS,

and
{

λi j
}

is the series of meeting rates of user ui to all other users in the

MSN. Note that TOSS mainly seeks the optimal −→p to match the content

obtaining delays of all users with their access delay PDFs.

IM→
i is actually the same as IM←

i since λi j = λ ji for any ui and u j due

to the symmetric nature of contacts. Hereby, we define the IM factor for ui

as,

IM→
i = IM←

i = λ
∗
i =

N∑

j=1

λi j. (3.13)

And then we will only use IM to denote the mobility impact. We can use ap-

proximation methods, e.g., the Newton Method, to get the numerical result

of the inverse function of Si(t).

Note that above content obtaining delay is the expected delay that user

can obtain a content based on opportunistic sharing while moving, which

is an objective factor depending on the mobility traces by given an initial

pushing vector. It is different from previously mentioned content access de-

lay, which is a subjective factor depending on user behaviors (life styles);
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TOSS fits the access delays of users by Weibull function, which converts

the subjective access delays into objective probability distribution function,

and then uses it for indicating user’s delay QoS requirement. So TOSS is

just right seeking for a perfect match between these two.

3.2 System Optimization

By evaluating IS (both incoming and outgoing) and IM values of all users,

how to choose proper set of seeds for initial pushing, −→p , to get the content

obtaining delay t∗ for each user in order to maximize the sum of the access

utilities (access probabilities) for all users becomes the objective of TOSS.

Maximize :−→p

N∑
i=1

Ai (t∗i ,βi,ki)

=
N∑

i=1
Ai

(
Si
−1
({

γ∗ji

}
,
{

λi j
}
,−→p
)
,βi,ki

)

( j = 1, ...,N, j ̸= i)

Subject to : |−→p | ≤C ,

(3.14)

where the number of initial pushing seeds, C, is a constraint controlled by

the MNO, and we call
∑

Ai(t) the total access utility function of the whole

user base.

This problem is similar to the social welfare maximization problem,

discussed in [10]. Solving the above optimization problem analytically is

hard, since all related equations are not in closed-form. With power se-

ries approximations, we can find the maximum values by general numerical

methods. Also we can even tune and find the needed C by given a target total
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access utility value. One of the key remaining future work will be the reduc-

tion of the complexity of the equations and thus the optimization problem.

We design a heuristic algorithm to find the near-optimal solution−→p for

maximizing
∑

Ai(t) numerically, based on the hill-climbing method [86],

as shown in Algorithm 3.1. Initially we select the top C users from all users

sorted by IM in descending order (IS→ or IS← works similarly) and itera-

tively exchange the pi and p j values of any two users ui and u j if the larger
∑

Ai(t) can be obtained, until the increment of
∑

Ai(t) is smaller than a

specified threshold. Note that the above modeling and the heuristic algo-

rithm are calculated in MATLAB [82].

3.3 Trace-Driven Measurement

To evaluate the effectiveness of TOSS framework, we need SNS trace data

to quantify the spreading impact factors and access delays, as well as MSN

trace data to analyze the mobility impact. However, in public, there is no

available trace data that contains both the SNS and the MSN activities. Thus,

we choose to take separate measurements, and combine them by some map-

ping strategies, which will be explained in Sec. 3.4.1.

3.3.1 Measurement of the Online SNS

We select the most popular online SNS in China, Sina Weibo, and keep

track of 2,223,294 users for four weeks during July, 2012. We collected

37,267,512 microposts generated (and partially re-shared) by the users, and

further obtained the list of all the re-sharing activities for each micropost.
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Algorithm 3.1 A Hill-climbing algorithm to seek near-optimal initial push-
ing seeds

// Initializing −→p
for all i = 1→ N do

pi=0; vi = λ∗i , γ∗i , or random;
end for
Sort vi by Descent Order (↓);
for all i = 1→C do

pi=1;
end for

Asum =
N∑

i=1
Ai

(
S−1

i

({
γ∗ji

}
,
{

λi j
}
, pi

)
,βi,ki

)
,

( j = 1...N, j ̸= i);
// Hill-Climbing
repeat

flag=true;
for all i = 1→ N do

for all j = i+1→ N do
if (flag==true) AND (pi + p j == 1) then

Exchange(pi, p j);

A′sum =
N∑

i=1
Ai

(
Si
−1
(−→

γ∗i ,
−→
λi , pi

)
,βi,ki

)
,

( j = 1...N, j ̸= i);
if A′sum > Asum then

δ = A′sum−Asum;Asum = A′sum;
flag=false;

end if
end if

end for
end for

until δ < T hreshold
return Asum, −→p

We implemented the data collection software, which starts from 15 famous

users of distributing popular video clips, and expands the user base from

their followers. Capturing the next hop followers is carried out iteratively.

The captured data includes details of owner’s account profile, all microposts
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with timestamps of the owner, all comments and reposts with timestamps,

as well as the profile of the users that make comments and reposts to the

owner. Note that there are some robots in Sina Weibo, which always re-

share some microposts of famous people with extremely short delays, and

thus we exclude users with no followers, no followees, or no self-created

microposts. How to precisely exclude all the robots in the SNS trace is out

of the scope of this thesis, and there are many related studies for reference

such as [87] [88] and [89]. In all, we believe that the 2.2 million user base

can reflect the ground-truth of the social impact factors and the access delay

statistics.

3.3.1.1 Spreading Impact, γ∗i j and IS

Recall that γ∗i j is the spreading impact of one user to another user based on

the accumulation of user-to-user reposting ratio via any possbile paths, cal-

culated by Eq. (3.5) and IS is the overall spreading impact of the user to all

users in the SNS, calculated by Eq. (3.6). However calculating γi j for the

whole user base takes substantially long time. Thus we choose a sub-graph

of 4,311 users by random walking method for evaluation (to be detailed

later). And we let H = 4 to consider up to 4-hop paths among the users as

suggested in [25]. The γ∗i j of each pair of users is sorted and shown in the

log-log scale in Fig. 3.4(a), which indicates the strong online spread impact

among the socially grouped users. 98,168 pairs have γ≥ 0.95 in Fig. 3.4(a),

which may be due to some strongly connected users, and 47,680 pairs have

γ = 1, which may be due to some remaining robots that we cannot exclude.

Fig. 3.4(a) shows the user-to-user impact mostly follows the power-law dis-
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Fig. 3.4. Measurement values of γi j and IS (4,311 users)

tribution [90] indicating that a small number of user pairs have very strong

impact, while many other users have little impact. The IS→ and IS← values

of those users are plotted in Fig. 3.4(b), which also shows that a smaller
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number of people have significant outgoing impact (IS→) to the whole SNS,

while many users are relatively less impacted by others (IS←).

One important issue here is whether the randomly selected sub-graph

of the SNS can still reflect the characteristics of the whole SNS user base.

There have been some related measurement studies pointing out that: the

SNS is a scale-free network [25] [91] [92] [93] [94] [95] and [96]. A scale-

free network is a complex network whose degree distribution follows the

power-law, at least asymptotically, which means in such kind of network, a

small number of nodes make dominant impact to the network, while many

nodes make very small impact, if we consider the node degree or the spread-

ing impact (re-sharing ratio) as the impact of a node to the network [91] [93]

and [97].

As researched in [93] [94] and [97], due to the nature characteristics

of scale-free complex networks, no matter we choose any sub-graph from

the whole network graph (with not too small size) by random walking or

by random-sampling, similar characteristics (power-law distribution of node

strength) can be still obtained.

Furthermore, we take a check on whether the sub-graphs that we ab-

stracted from the online SNS graph corresponding to the mobility traces

(to be detailed in Ch. 3.3.2) can be suitable to still keep the characteristics.

Obviously the number of nodes in each SNS sub-graph is the same as the

number of nodes in the corresponding mobility trace, and for each trace we

carry out sub-graph sampling for five times, and then make average value.

We draw the log-log plots for the spreading impact factor of the nodes from

sampled sub-graphs as shown in Fig. 3.5. All of the figures are able to re-
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Fig. 3.5. Measurement values of IS for sub-graphs sampled from the SNS
graph with different sizes corresponding to the mobility traces

flect the asymptotical power-law trend, that is, a very small number of nodes

impact the network significantly, but most of the nodes have weak impact.

They have quite similar trends to the curves as shown in Fig. 3.4 (b), So

conclusively, all of the sub-graphs with different sizes can still represent the

SNS, and it will be an acceptable methodology to map the SNS sub-graphs

to the mobility traces. Note that in the following part, the online spreading

impact factor is normalized and then applied.
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3.3.1.2 Access Delay Distribution of ui, Ai(t)

Measurement results of the access delays on the whole user base, Ai(t) from

Eq. (3.7), are shown in Fig. 3.6. From the cumulative distribution function

(CDF) of the average of all the access delays of each user in Fig. 3.6(a), half

of the users have the average access delay larger than 23,880 seconds, which

is about 6 hours and 38 minutes. Taking a closer look, we find (1) 3.67% of

users have the average access delay less than 10 minutes, (2) 20.38% of

users have the delay smaller than 1 hour, and (3) 26.79% of users access

the SNS with average delay larger than 1 day. Furthermore, we calculate the

Weibull fitting parameters of all users, and the CDF of the shape parameter

k of all users is shown in Fig. 3.6(b), which indicates that 32.63% of users

have k < 1, who are likely to be keen users, while 67.37% of users can be

classified as dull users. Therefore, we verify that a substantial number of

users access the SNSs with sufficiently large delays, which we can exploit

for offline opportunistic sharing.

3.3.2 Measurement of Offline MSNs, λi j and IM

We choose four mobility traces, MIT [98], Infocom [99], Beijing [100], and

SUVnet [101], in order to evaluate the performance of TOSS. These traces

record either direct contacts among users carrying mobile devices or GPS-

coordinates of each user’s mobile route, and the traces details are shown

in Table 3.1. The four traces differ in their scales, durations, and mobility

patterns; The MIT and the Infocom traces are collected by normal people,

but the Bejing and the SUVnet traces are collected by vehicles. The Beijing
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Table. 3.1. Mobility traces

Trace Link Users Days Contacts Avg.λ
MIT[98] Bluetooth 100 246 54,667 0.01532

Infocom[99] Bluetooth 41 4 22,459 0.14167
Beijing[100] / 182 150 8,894 0.00023
SUVnet[101] / 4,311 30 169,762 0.00131

and the SUVnet traces have no record of contacts, but only GPS coordi-

nates with time. We assume two users have a contact once they are within a

sufficiently small distance (20 meters) during a short interval (20s).

Recall that the λi j is the inter-contact rate of two users, which indicates

the mobility impact between them. And the IM
i is the overal mobility impact

factor of a user to the whole user base in the MSN base on Eq. (3.13) We

analyze the traces and obtain the inter-contact intervals (1/λi j) of all user

pairs, as shown in Fig. 3.7(a). The Infocom trace has the highest contact rate

because users are at a conference spot, and thus have high contact rates. The

MIT trace also has high contact rate since users are friends within the cam-

pus. The Beijing and the SUVnet traces have large inter-contact intervals

because they have relatively low frequency of GPS records and large user

base, which is considered as sparse user density. IM values of all users of

the traces (values smaller than 0.001 are ignored) are plotted in Fig. 3.7(b),

which indicates the similar trends of the traces as discussed above. Users

in the Infocom trace have the highest potentials to obtain the content by

sharing, but users in the Beijing trace have the weakest potentials.
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Fig. 3.7. Measurement values of λi j and IM
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Fig. 3.8. Measurement and modeling results of content obtaining delays by
1 random pushing

3.3.3 Content Obtaining Delays, t∗i

We investigate the content obtaining delays, t∗i from Eq. 3.12, of all users

by just 1 random initial pushing (averaging 20 runs with different random
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Table. 3.2. Correlation regression analysis between the traces and modeling

Trace Pearson Correlation Significance
MIT[98] 0.973 0.000

Infocom[99] 0.979 0.000
Beijing[100] 0.976 0.000
SUVnet[101] 0.968 0.000

seeds) for the four traces. Made a program to go through the mobility trace

entry by entry, to simulate the content propagation and obtain results by the

end. And then, we use the empirical λ values of all pairs extracted from the

traces and import to the modeling derived in Sec. 3.1.4, and calculate the

obtaining delays by MATLAB [82] and Mathematica [102]. From the CDFs

in Fig. 3.8(a), the Infocom trace has the smallest obtaining delays mostly

within 1 day, while the Beijing trace shows the longest delays even up to

10 days. The model with practical λ values in Fig. 3.8(b) shows the similar

performance to the real traces.

In order to precisely verify the accuracy of our modeling to the real

traces, from the two figures, Fig. 3.8(a) for the real traces, and Fig. 3.8(b)

for the modeling, we carry out the bivariate correlation regression analy-

sis on them, in order to get the Pearson correlation coefficients, by using

SPSS [103]. As shown in Table. 3.2, the results of the correlation coeffi-

cients between the real traces and by the modeling are in the range of 0.973

to 0.979, which means the simulation and modeling can fit perfectly with a

sufficiently high accuracy.
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Fig. 3.9. Performance impact of C on content obtaining delay t∗

3.3.4 How C Impacts the Obtaining Delay, t∗i

We further investigate how the number of initial seeds, C, impacts the con-

tent obtaining delays as shown in Fig. 3.9, where Y-axis shows the average

value of the obtaining delays of all users in log scale. Note that we will

mostly focus on the initial pushing ratio, which is the ratio of the number of

seeds to the total number of users in each trace. We start with pushing to 1

random user (i.e., C = 1), until randomly pushing to 50% of all users in each

trace, and make the average from 20 runs. Note that we do not consider the

IS impact yet. As more users are selected as initial seeds, the average delay

decreases significantly, but there are still some users with large obtaining
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delays even we push to 50% of the users.

3.4 Performance Evaluation

We now consider how the spreading and mobility impact factors (IS and IM)

affect the total access utility function (
∑

Ai(t)) to evaluate TOSS frame-

work.

3.4.1 How C Impacts the Total Access Utility,
∑

Ai(t)

Due to the lack of a trace that contains the activities of the same users in

both online SNSs and offline MSNs, we consider three choices for mapping

SNS users to MSN users in each of the four mobility traces: (1) random:

SNS users are randomly mapped to MSN users; (2) h-h: both SNS and MSN

users are sorted in descending order of IS→ and IM respectively, and then are

mapped correspondingly; (3) h-l: both users are sorted as similar to h-h, but

an SNS user with high IS→ is mapped to an MSN user with low IM. Since

the number of SNS users is much larger than that of MSN users in each

trace, we pick accounts from the SNS trace by random-walk sampling to

match the number of MSN users in each trace.

Regarding the methodology of mapping a sub-graph of online SNS by

random-walk sampling to the offline MSN graph, we carry out following

discussion: It is already studied that when we consider the mobility impact

(meeting rate) of two users as their vector strength, and the overal mobility

impact of one user (sum of all mobility impact to all other users) as the node

strength, the MSN can be also classified as a scale-free network [99] [104]
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[105] [106] [107] [108] and [109]. That is in the MSN, a small number of

users are always moving quickly and meet many components, while many

of the users are relatively stable to meet limited number of other users.

So regarding each mobility trace with different amount of mobile users,

as we discussed in Sec. 3.3.1.1, we take random-walk-based sampling to ob-

tain the subgraphs from the SNS trace with corresponding number of user

accounts, and then map one SNS account to one mobile user by above map-

ping choices. Note that the online spreading impact factor is normalized and

then applied. Conclusively, it is a reasonable methodology to map between

online and offline traces in the case of lacking such a trace with both in-

formation. To seek or carry out such a measurement study to track both the

online SNS activities and offline MSN activities for a group of people is one

important future work.

Note that, actually due to the locality nature of human-beings, TOSS

framework will still perform well even facing to the scenarios with a very

large user base (e.g., a city, or even a country); although people move and

travel sometimes, they still meet most of friends in most cases, which is the

clustered effect for a group of users, which will not be impacted by the

whole user base. In another word, people are constrained by our life style

and location due to the inherent nature of locality, as studied in [109] [110].

To select the users who will be initial seeds, −→p , constrained by the

allowed total number of seeds, C, we consider the following five pushing

strategies based on the impact factors:

• p-λ: we sort users by IM (
∑

λ∗i ) in descending order and choose the
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top C ones (similar to [10]);

• p-γ→: we sort users by IS→ (
∑

γ∗i j) in descending order and choose

the top C ones (similar to [41] [43]);

• p-γ←: we sort users by IS← (
∑

γ∗ji) in descending order and choose

the top C ones;

• p-λ∗ γ→: we sort users by IM ∗ IS→ conjunctively in descending order

and choose the top C ones;

• p-λ∗ γ←: we sort users by IM ∗ IS← conjunctively in descending order

and choose the top C ones;

There are many viral marketing methods to evaluate a SNS user’s

strength regarding information spreading, for example we can easily qual-

ify by node degree including outgoing degree (number of followees) and

incoming degree (number of followers). Note that here the arrow direction

is the “following/followed” relationship, reverse to the spreading direction.

Furthermore the PageRank algorithm [111] [112] is also comprehensively

used for SNS analysis, which is a link analysis algorithm of Google by as-

signing a numerical weighting to each element of a hyperlinked set of nodes,

with the purpose of “measuring” its relative importance. We apply the gen-

eral PageRank algorithm on the selected SNSN subgraphs and obtain the

PageRank scores. We also consider a random pushing and the heuristic al-

gorithm, and hence we have five more initial pushing strategies based on the

graphs:

• p-R: we randomly choose C users;
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• p-D→: we sort users by outgoing node degree in descending order and

choose C users;

• p-D←: we sort users by incoming node degree in descending order

and choose C users;

• p-Pr: we sort users by PageRank score in descending order and choose

top C users;

• p-H: we run the hill-climbing heuristic algorithm to obtain the near-

optimal pushing vector.

We investigate how−→p under the 10 pushing strategies impacts the total

access utility of all users,
∑

Ai(t), with only the MIT trace as shown in Fig.

3.10, and we skip to show the results of other traces since they show very

similar trends. The percentage in the figures is C devided by the number

of users in each trace. We can see that as the number of initial seeds in-

creases,
∑

Ai(t) increases and converges to the maximum. In all cases p-H

converges to the maximum the fastest, while p-λ∗ γ→ and p-λ∗ γ← as well

as p-Pr perform very well. p-R always performs the worst, but p-D→ and p-

D← also performs poorly. Note that the maximal value of
∑

A is capped in

different mapping schemes, which means the total user satisfaction is deter-

mined by the scenario user nature. The results of different mapping schemes

show marginal differences, because TOSS always chooses the users with

strong impact strength, and also the access delays provide large space for

sharing. In following parts, we will average the evaluation results across

the three mapping schemes to reflect various user behaviors in the SNS and
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MSN.

3.4.2 Satisfying 100%, 90%, and 80% of Users

Recall that the access utility function of ui is Ai(t). A user is satisfied, if

she can obtain the content when her access probability (Ai(t)) approaches

its maximum (in the fitting Weibull pdf). If we aim to make 100% of users

obtain the content by initial pushing and sharing, substantially large delays

may take place for certain users (e.g., a user with low γ and λ values [12]).

Therefore, we investigate what percentage of users (initial pushing ratio)

should be initial seeds to satisfy the access delay requirements of 100%,

90%, and 80% of users depending on different pushing strategies.

From Sec. 3.2 and Fig. 3.10,
∑

Ai(t) is an increasing function of C

(|−→p |), and the number of satisfied user is also an increasing function of C.

The C value that makes
∑

Ai(t) approach its maximum will be the standard

number of initial pushing seeds for satisfying 100% of user. We examine

how C can be reduced (for higher offloading gains) if we target the satisfac-

tion of 90% and 80% of users.

From Fig. 3.11, to satisfy 100% of all users, p-H always finds the best

initial pushing vector (i.e., the least number of seeds), and p-R performs

the poorest, while p-D→ and p-D← also performs poorly, so simply pushing

by node degree is not that preferred. In most cases, p-λ ∗ γ→ and p-λ ∗ γ←

perform the second best, which implies that we can conjunctively consider

the IS and IM factor by simple multiplication to achieve near-optimal per-

formance. p-Pr achieves not so good performance compared with strategies

by impact factors, as it focuses the connections of the network graph but
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Fig. 3.11. Initial pushing ratios to satisfy 100%, 90%, and 80% of all users

ignores the historical spreading impact, while our proposed factors (γ)make

better sense. In MIT and Infocom traces, λ-based strategies performance
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better than γ-base ones, which means the mobility factor decides more on

the sharing process when nodes are with high mobility. In Beijing and SU-

Vnet traces, γ-base ones perform better, which means the social factor con-

trols more when nodes are with low mobility. Note that the Infocom trace

always has the best performance; only 13.5% initial pushing ratio can satisfy

all users by the p-H.

When we target to satisfy 90% of all users, the required initial pushing

ratio is reduced significantly. With simple pushing strategies, for the MIT

and the Infocom traces, only 15.4% and 10.5% of users need to be the ini-

tial seeds on average. The number of initial seeds is further dramatically

reduced, when satisfying 80% of users. Approximately 10% initial pushing

ratio is needed for all traces except the Beijing trace, which requires about

17% initial pushing ratio. The Beijing and SUVnet traces always need rela-

tively larger number of initial seeds due to their low contact rates and large

user bases. Also some worse-case users bring ineffectiveness for opportunis-

tic sharing, but it may be better to push the content to them in the beginning,

if they have keen access delay requirement, or it will be better to let them to

carry out on-demand fetching when they approach the peaks of their access

delay PDF.

Generally, p-H is about 15-24% better than p-R, and 12-16% better

than p-λ and p-γ, and the multiplication of p-λ and p-γ will be quite a good

solution in practical. It is a balance between performance and complexity.

The implication is that, if we focus on the best performance, we can run the

heuristic algorithm; if we want a balance between complexity and perfor-

mance, we can evaluate user online spreading impact and offline mobility
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impact, and choose proper strategy for offloading. p-R can still offload cer-

tain amount of traffic, which indicates that the sharing-based offloading can

work very well in practical actually, because this is mainly due to the poten-

tial of the user access delays as discussed in Sec. 3.1.3.1.

3.4.3 On-Demand Delivery

If a user who has not obtained the content (by initial pushing or sharing)

until she actually accesses it, we have to deliver it over a cellular link, which

is called on-demand delivery. Then the traffic of the content delivered on-

demand is not offloaded. We now compare the three target percentages of

satisfied users (investigated above) in terms of total offloaded traffic. For

example, in the case of 90% of satisfied users, 10% of remaining users (i.e.,

those who have not received the content) will access the content via cellu-

lar links. Table 3.3 shows how much traffic is offloaded from cellular links

for the three cases, where the offloaded traffic ratios of the nice pushing

strategies are averaged, which are juxtaposed with that of p-H. Note that

boldfaced numbers are the highest amount of traffic reduction for each trace

across the three target satisfaction cases (i.e., 100%, 90% and 80%). When

lowering the percentage of satisfied users from 100% to 90% and to 80%,

although the initial pushing ratios become reduced, in some cases, the on-

demand delivery for abandoned 10% and 20% of users may increase the

total cellular traffic instead. In the MIT, Beijing and SUVnet traces, initial

pushing for the 90% of users plus on-demand delivery for the 10% of users

actually reduces the cellular traffic the most. Overall, TOSS can reduce from

63.8% to 86.5% of the cellular traffic load while satisfying the access delay
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requirements of all users.

We notice a balance between the traffic reduction due to the initial

pushing and the traffic increment by the on-demand delivery, as the satis-

faction percentage of users changes. The balance is about how to deal with

those worse-case users (with both low online mobility impact and low of-

fline mobility impact). For some of them who have urgent requirement of

access delays, TOSS can just push in the beginning, but those who have

large access delays will be a burden on selecting the optimal initial push-

ing seeds by TOSS, as they are hard to reach even by many hops. Instead,

it will be better for TOSS to exclude them for a better solution to satisfy a

part of other users at the beginning, and then they will carry out on-demand

delivery. Note that the Infocom trace can achieve the highest traffic reduc-

tion with the target percentage being 100% due to its high contact rates and

small user base, and there is very little worse-case users who will not impact

the system at all.

Table. 3.3. Percentage (%) of Traffic Reduction With On-Demand Delivery
- Simple/Heuristic

Trace 100% 90% 80%
MIT[98] 73.6 / 76.3 74.6 / 76.9 70.9 / 72.2

Infocom[99] 85.3 / 86.5 79.5 / 80.4 73.4 / 74.1
Beijing[100] 65.3 / 68.4 65.0 / 68.9 63.8 / 65.2
SUVnet[101] 68.5 / 70.3 68.7 / 71.0 68.3 /70.7

3.5 Conclusion

In this chapter, we proposed the TOSS framework to offload the mobile cel-

lular traffic by leveraging user-to-user local communications, with discus-
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sions on the pushing strategies to select the appropriate initial seeds depend-

ing on their spreading impact in the online SNS and their mobility impact

in the offline MSN. By analyzing the online SNS traces, we learn that a

large portion of SNS users have large access delays, which is exploited and

utilized for traffic offloading purposes. Trace-driven evaluation reveals that

TOSS can reduce from 63.8% to 86.5% of the cellular traffic while guaran-

teeing the access delay requirements of all users. In particular, users with

high mobility impact will play key roles for traffic offloading in scenarios of

high user mobility or high user density, and the social spreading impact will

then control the content dissemination in scenarios of low user mobility or

sparse user density. For worse-case users with both low online and offline

impact, it may be better to let them carry out on-demand delivery. Over-

ally, TOSS framework considering both online SNSs and offline MSNs can

archieve good performance of disseminating content and offloading traffic

efficiently.
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Chapter 4

Push-Share: Content Dissemination
by Pushing and Sharing in Mobile
Cellular Networks - An Analytical
Study

4.1 Framework Details

The data explosion problem in mobile cellular networks has become the

most critical issue [1]. Mobile network operators (MNOs) seek to mitigate

the traffic burden on their cellular links. As the link capacity enhancement

in current mobile cellular networks (e.g., 3G and 4G) is unlikely to keep

pace with the soaring traffic demand due to limited frequency spectrum, we

should investigate this issue from other perspectives.

One of the outstanding trends in the Internet traffic is that increasingly

more traffic is attributed to content-oriented applications and services. From

this perspective, in addition to the traditional pull-based (request-based)

communications, users (or applications) increasingly tend to subscribe to

some pushing services from content providers (CPs), and the CPs push the

content to subscribers as soon as the content is generated. For instance, the

Really Simple Syndication (RSS) is one of the most popular pushing ser-
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vices, by which users can receive the newest photos, documents and video

clips. Also YouTube provides some channel-based subscription service to

push new and popular videos to users. Many applications in smart phones

rely on push mechanisms as well. There are some studies to demonstrate

the advantages of push-based models over pull-based models in various

contexts (e.g., mission-critical applications [38] and push-to-peer streaming

[113]).

From delay perspective, users may not always have to instantly access

the content of interest as soon as the content is generated. Instead, some de-

lay is tolerable depending on the users’ daily lives and the content natures.

For instance, a new music video is generated in the morning, but many peo-

ple may watch it in the evening or even after some days. Also as reported in

[3], when people download content files, there is a substantial disparity in

the popularity of the files. That is, only a small portion of content files may

be downloaded by a large number of users, which results in multiple users

downloading the same content multiple times via cellular links redundantly

[3] [4]. Therefore, it is attractive to exploit the affordable delivery delay in

such a way that users can receive the content via non-cellular links (e.g.,

Wi-Fi). For instance, if a user who is to be pushed a file learns that another

user who already got the file is nearby, they can “share” the file via Wi-Fi

ad hoc connectivity.

From the above observations, we propose Push-Share framework to

use both “pushing” (over cellular links) and “sharing” over Wi-Fi links (or

other local short-range communication techniques) for the content dissemi-

nation to subscribers, which can reduce the traffic load on cellular links. The
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content can be of any type, such as news articles, stock information, adver-

tisements, social events, weather forecasts, and video clips (which currently

consumes more than a half of the whole mobile traffic [1]).

We simply illustrate how a file is disseminated in Push-Share by push-

ing and sharing in Fig. 4.1. Once a file (to which users have subscribed) is

generated, the CP sends the file to a dissemination server (DS) in the MNO.

The DS is in charge of disseminating the file to the subscribed users until its

deadline (or the maximum tolerable delivery delay). The DS will deliver the

file to the caching spaces of base stations (BSs), each of which then pushes

the file to mobile stations (MSs) of the subscribed users via cellular links.

Note that only a subset of MSs will receive the file by the pushing. If an

MS with the file opportunistically gets in contact with another nearby MS

without the file, they will set up a Wi-Fi connectivity to share the file. The

opportunistic content delivery by these “social meets” has been extensively

studied in the name of delay tolerant networks (DTNs) [10] [20] [33] [34]

[114]. We assume that every MS wakes up periodically with a low duty cycle

to probe other MSs nearby for content “sharing” purposes referring to study

in eDiscovery [16]. For sake of clarity, we call the direct delivery between

MSs “sharing”, while “pushing” is for the delivery via cellular links.

Therefore, the focus of Push-Share framework is on how to coordinate

the pushing and the sharing in the dissemination. Also, by using the multi-

compartment model, we discuss how the content is disseminated among

multiple cells with handovers. We further formulate an optimization frame-

work for the dissemination performance, and explore the trade-off between

the energy cost and dissemination delay. To the best of our knowledge,
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Fig. 4.1. Illustration of content dissemination by pushing via cellular links
and by sharing via Wi-Fi links among MSs with handovers

Push-Share framework is the first study to theoretically model and analyze

the content dissemination across multiple cells in cellular networks based

on pushing and sharing.

4.2 System Model

We illustrate a dissemination scenario in Fig. 4.1, where there is one CP and

one MNO with three BSs, b1, b2 and b3. Each BS services multiple MSs

in its cell who are interested in the CP’s content. For example, m1, m2 and

m3 are within the cell of b1. Hereby, we only focus on those MSs who have
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Table. 4.1. Variables and notation of the system model

Variable Explanation (default value in evaluation)

bi BS with id i

n number of total BSs (20)

Mi number of MSs in the area of bi (1000)

mk a typical MS with index k

λ average meeting rate of MSs in the cell (0.00001)

φ energy consumption per delivery via Wi-Fi (1)

Φ energy consumption per delivery via cellular link (4)

ρ probing cost per time unit (0.001)

Pinit the amount of initial push (50)

Pf inal the amount of final push (50)

S (t) the function of number of updated MSs in the cell to time t

tO dissemination completion time with only pushing

t∗ dissemination completion time with both sharing and pushing

C (t) accumulative cost function of MSs in the cell to time t

C∗ cost to disseminate content to all MSs in the cell

ℓxy handover rate of MSs from BS bx to BS by
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subscribed to the content from the CP, and thus ignore other ones. Even

though a single CP may disseminate multiple files to the MSs periodically

or concurrently, we focus a single file for sake of exposition. Also we do not

consider MSs who may turn off during the dissemination. The notation and

the default values are shown in Table 4.1.

As for “pushing”, the CP first delivers a file for a particular group of

MSs(its group identifier is needed) to the DS of the MNO. In a cellular net-

work, the location management entity (LME) [83] keeps track of the loca-

tions of the MSs. Thus, along with the LME, the DS knows: (i) which MSs

have subscribed the content, and (ii) which MSs of the group are serviced

by each BS. Then the DS will dispatch the file to all the BSs that service

the MSs. Each BS will initially push the content file to some of the MSs in

its cell. For instance, BS b1 will deliver the content to m1 at the beginning.

There can be different strategies regarding which MSs will be pushed first,

but this is out of our scope (see [10] and [23] for details). Here by I deploy

a random strategy which we will describe later in Sec. 4.3.2.

As for “sharing”, MSs will move with a certain mobility model. Ac-

cording to [10] [20] [33] [34] and [114], the intervals between consecutive

meets of any pair of MSs, called the inter-contact times (ICTs), are assumed

to follow an exponential distribution. Also based on the measurements in

[33], we assume that MSs at different places will have different mobility

patterns and thus MSs at different BSs will have different mean rates of

inter-contacts, denoted as λi for BS bi, (also called meeting rate interchange-

ably). For instance, a park area will have a longer ICT than a subway station.

Each MS periodically probes to check whether there is any nearby MS that
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holds the content being disseminated. We assume the MSs are synchronized

and the probing is triggered with a sufficiently low duty cycle, say, during

the first 5ms period in every second. (The energy consumption per time unit

due to probing is denoted by ρ.) If there is, two MSs will share the content

via ad-hoc Wi-Fi connectivity. For instance, m1 occasionally meets m2 and

shares the content, and later m2 meets and shares with m3. If an MS obtained

the content by either pushing or sharing, we say the MS is “updated”.

Some MSs do not like to participate in carrying and sharing content

with others due to security, privacy or cost issues. We will exclude those

MSs from the model. Note that related security and privacy issues in sharing

can be handled by some prior work in opportunistic DTN such as [48] [49]

and [50]. Also since the focus is to model and analyze how the content can

be disseminated across multiple cells in a macro perspective, we assume

that the content can be shared successfully via Wi-Fi during the meets with

fairly high bit rates.

With the initial pushing and sharing, some MSs may not be able to

obtain the content for a long time due to the limitation of the opportunistic

sharing. Those MSs will request the final push from the BS, to be detailed

later in Sec. 4.3.2.

4.3 Content Dissemination in Single Cell

In this section, we discuss the content dissemination within a single cell. For

simplicity, we temporarily assume that for a certain amount of duration, the

MSs will stay in a single cell and will not make handovers. We will discuss

56



the case of multiple cells with handovers in Sec. 4.4. As we consider a single

BS in this section, we omit the BS’s index i.

4.3.1 Content Dissemination by Sharing Only

We first focus on how the content is gradually disseminated to MSs over

time t in a single cell by sharing only, where the number of MSs who are to

receive the content is denoted by M. Let S(t) be the state of the continuous-

time Markov chain system, which indicates the number of MSs that have

received the content until time t by sharing. We will obtain S(t) from its

derivative based on the similar methodology as used in [13] and [20]; thus

we show only the main steps for the sake of simplicity.

Due to the synchronized probing among MSs, an MS, say mk, will

always be able to discover other MSs in the Wi-Fi range. During a short

period, say ∆t, the probability for mk to get the content from any MS who

already got the content within ∆t, denoted by θt,t+∆t (mk), can be calculated

by

θt,t+∆t (mk) = 1−
(

1−
(

1− e−λ∆t
))S(t)

. (4.1)

Then summing this probability across all the MSs that have not received the

content at time t, the current number of updated MSs after ∆t, S(t+∆t), can

be calculated as

S (t +∆t) = S (t)+
M−S(t)∑

k=1

θt,t+∆t (mk), (4.2)
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whose expectation is given by

E [S (t +∆t)] = E [S (t)]+(M−E [S (t)]) ·E [θt,t+∆t (x)] (4.3)

We obtain the derivative of E [S (t)] by letting ∆t→ 0,

•
E [S (t)] = lim

∆t→0

E[S(t+∆t)]−E[S(t)]
∆t

= lim
∆t→0

(M−E[S(t)])·
(

1−(1−(1−e−λ∆t))
S(t)
)

∆t

=(M−E [S (t)])(λ ·E [S (t)]).

(4.4)

By solving the above ordinary differential equation (ODE), we finally obtain

the function S(t) by

S (t) =
S (0)MeMλt

M−S (0)+S (0)eMλt . (4.5)

Note that if there is no MS who has the content at the beginning, i.e., S(0) =

0, S (t) will always be zero. Therefore, the BS should push the file to at least

one MS, i.e., S(0) = 1, and then the MS with the content will disseminate

the file to other MSs by sharing. Thus, S(t) starting with only a single seed

will increase by sharing over time as

S (t) =
MeMλt

M−1+ eMλt . (4.6)

From Eq. (4.5) we can calculate the required delay, treq, to disseminate
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the content to Sdes MSs (1≤ Sdes ≤M) by,

treq = S−1 (Sdes) =
log
(

Sdes(M−S(0))
S(0)(M−Sdes)

)

Mλ
. (4.7)

S(t) from Eq. (4.5) in real domain cannot reach M in a finite time,

which means lim
t→+∞

S (t) = M, and thus the dissemination completion time

with only sharing, denoted by tO, would be tO = S−1 (M) = +∞. However

S(t) actually takes integer values, so we define that the dissemination will

be completed when S (t) = M−η, where η, 0 < η≪ 1, takes a sufficiently

small value, (e.g., η = 1). Then,

tO = S−1 (M)≈ S−1 (M−η) =
log
(
(M−η)(M−1)

η

)

Mλ
. (4.8)

4.3.2 Content Dissemination with Initial Push and Fi-
nal Push

We illustrate S(t) from Eq. (4.5) in Fig. 4.2(a), and we observe that the con-

tent dissemination only by sharing (starting with only a single seed) suffers

from both a slow start and a slow convergence, due to the limitation of the

opportunistic sharing. Therefore, we propose to increase the number of MSs

who receive the content from the BS to reduce the delay..

In order to investigate “when” the BS should push the content for effi-

cient dissemination, we evaluate how much dissemination completion time

is reduced by pushing the content to one more MS at an arbitrary time (X-

axis), as shown in Fig. 4.2(b). We observe that the additional pushing at the

59



M
S(t)

t
0

tinit

Pinit

tfinal

Pinit

slow start

slow

convergence

t*

to

( )lim
t

S t M
®+¥

=

(a) Content dissemination curve by sharing with a single seed

0 200 400 600 800 1000

10
0

10
2

10
4

10
−1

Time of Inserting An Additional Push

R
ed

u
ce

d
 t

O

 

 

λ= 0.000005

λ= 0.000010

λ= 0.000015

λ= 0.000020

(b) How much can one more push reduce delay? (M = 1000)

Fig. 4.2. How much can one more push accelerate the content dissemina-
tion?

60



beginning and at the end can reduce the dissemination completion time most

compared.

Therefore, we propose to disseminate content by three steps: (1) the

BS pushes the file to a certain number of MSs at the beginning, denoted by

Pinit , which is actually S(0) in Eq. (4.5); (2) the MSs will share the content

file via opportunistic meeting; (3) when most of the MSs have received the

content and there are still Pf inal not-yet-updated MSs, the BS finally pushes

the file to them.

How to choose which MSs appropriately for initial pushing is out of

the scope (see related work in [10] and [23]). Here we use a random strat-

egy as follows: for each BS, the DS will calculate the optimal number of

initial pushing Pinit based on the environments in each cell (refer to the op-

timization framework in Sec. 4.5), and send the file to the BS, along with

the ratio of Pinit
M , the interest identifier and the dissemination deadline. Then

each BS broadcasts a short message containing the information, and each

MS who is interested in the content will reply to the BS with the probability

of Pinit
M to confirm the initial pushing. In this way, the BS can push the file to

Pinit MSs probabilistically. At the deadline, the MSs who have not obtained

the content will ask the BS to push the content to them finally. Each BS does

not need to track the status of each MS and the dissemination progress.

Therefore, given the estimated Pinit and Pf inal , the time to push the con-

tent to all the Pf inal MSs who have not received the content, denoted by t∗,

is when the number of updated MSs S(t) becomes M−Pf inal . Thus t∗ be-

comes the practically dissemination completion time with both pushing and
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sharing. Based on Eq. (4.7), we have

t∗ = S−1 (M−Pf inal
)
=

log
(
(M−Pf inal)(M−Pinit)

Pf inalPinit

)

Mλ
. (4.9)

Finally the content dissemination function S(t) becomes a piece-wise func-

tion as follows,

S (t) =





Pinit t = 0,

Pinit MeMλt

M−Pinit+Pinit eMλt 0 < t < t∗,

M t∗ ≤ t.

(4.10)

4.3.3 Content Dissemination Energy Cost

The energy consumption is a critical issue for mobile networks because of

the limited power supply of mobile devices. We mainly discuss the energy

consumed at MSs for the content dissemination, which consists of:

• Probing: MSs periodically wake up with a sufficient duty cycle to de-

tect whether there are nearby MSs with the content. We use ρ to de-

note the energy cost per time unit for probing, which is much smaller

than those of receiving the content via a cellular link and sharing the

content via a Wi-Fi link.

• Pushing via cellular link: We use Φ to denote the energy cost for

receiving a file by BS’s unicast via a cellular link.

• Sharing via Wi-Fi link: We use φ to denote the energy cost for trans-

mitting and receiving a file from one MS to another via a Wi-Fi link.
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In practical, transmitting and receiving may consume different energy

cost, but as they are will be just constants in our model, we hence as-

sume the same value of them for simplicity, which will not affect our

modeling. Thus the sharing of a file by Wi-Fi will cost 2φ. From the

measurements in [115] and [116], Φ is greater than φ, and both are

greater than ρ.

Therefore the accumulative energy cost for all MSs until time t can be

then derived from Eq. (4.10) as follows:

C (t) =



ΦPinit t = 0,

ΦPinit +2φ(S (t)−Pinit)+Mρt 0 < t < t∗,

Φ(Pinit+Pf inal)+2φ(M−Pinit−Pf inal)+Mρt∗ t∗ ≤ t.

(4.11)

And after t∗, the energy cost for dissemination completion, denoted by C∗,

can be calculated as

C∗ =

Φ
(
Pinit +Pf inal

)
+2φ

(
M−Pinit −Pf inal

)
+Mρt∗.

(4.12)

4.4 Content Dissemination in Multiple Cells

If we consider a number of BSs covering a large area, we should model the

handovers among the cells, which strongly affect the content dissemination

collectively. For instance, a BS covering a subway station will have many

incoming and outgoing handover MSs, which either have the content or not.
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Thus we propose to adopt the multi-compartment model [117] to describe

the content dissemination in a multi-cell scenario with handovers, based on

the assumption that MSs’ handovers follow a certain random process [118]

[119].

The multi-compartment model is commonly used in the biology fields

(e.g., pharmacokinetics and biomedicine) to investigate the density of ma-

terials (e.g., drugs) in blood among different cells or parts of the organism,

called compartments, and to track how the blood with the materials is cir-

culating among compartments with some transition rates [117] [120]. These

transitions from one compartment to another are similar to the handovers of

MSs.

There have been some related studies for modeling handovers as a ran-

dom process in [118] [119], [121] [122] and [123]. According to these stud-

ies, the cell dwell time of an MS statistically follows a certain probability

distribution (e.g., exponential distribution). We use the average rate of the

random process model to represent the handover rate.

In an example scenario in Fig. 4.3(a), there are four cells b1, b2, b3

and b4, and between two neighbor BSs, the MSs are performing handovers

in or out with a certain rate, denoted by ℓxy, which is defined as the prob-

ability that an MS moves from BS bx to another BS by during a time unit.

Note that handover rates can be obtained or estimated based on practical

measurements by BSs and the LME in the MNO.

The multi-compartment model is based not only on the handover rates

but also on the number of the MSs, Mi, at each BS, bi. We consider two kinds

of scenarios for handovers to calculate Mi: (a) non-steady-state scenario,
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(a) A multi-cell scenario

(b) How does the handover affect the content dissemination?

Fig. 4.3. Modeling the handovers in the content dissemination

where the number of the MSs at each cell dynamically changes, for instance,

a BS in a residential area during commuting time; (b) steady-state scenario,

where the number of MSs at each cell can be assumed to be unchanged if

the incoming handovers and outgoing handovers balance.

We also define the neighborhood set, Ωi, which includes all neighbor

BSs of bi, for instance, Ω1 = {b2,b3} in Fig. 4.3(a).
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4.4.1 Non-steady-state Modeling of MSs in Multiple
Cells

In non-steady-state scenarios, Mi of each BS bi is dynamically changing;

thus we use function Mi(t) since Mi is changing over time t. Therefore, in a

short period, its derivative,
•

Mi (t), can be calculated based on the difference

between incoming MSs and outgoing MSs as follows,

•
Mi (t) =−Mi (t)

∑

bk∈Ωi

ℓik +
∑

bk∈Ωi

(ℓkiMk (t)). (4.13)

Thus, for the n BSs, there will be n equations, which formulate a 1st-

order linear homogeneous ODE system. Referring to [124] and [125], the

general solution is given by

Mi (t) =
n2∑

z=1

AzeBz(t−Cz), (4.14)

where the coefficients Az, Bz and Cz are coefficient constants that can be

calculated straightforward, but we will skip the details due to space limit

(see related work in [124] and [125]).

4.4.2 Steady-State Modeling of MSs in Multiple Cells

When the BSs are in a steady-state, the incoming and outgoing MSs practi-

cally make no change to the number of MSs at each BS. Then Mi(t) of any
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BS bi will be fixed to a static number Mi, which simplifies Eq. (4.13) to,

−Mi

∑

bk∈Ωi

ℓik +
∑

bk∈Ωi

(ℓkiMk) = 0. (4.15)

Therefore, n BSs will generate a linear system with n equations, which can

be easily solved to get Mi of each BS in the steady-state scenario.

4.4.3 How Handovers Affect the Content Dissemina-
tion

From the previous two subsections, we obtain the number of MSs at each

cell in either non-steady-state or steady-state scenario. Thus, along with the

known handover rates, we analyze how the handovers affect the content dis-

semination among cells based on the multi-compartment model. Note that

we change S(t) to S(t) to describe the dissemination function with han-

dovers in multi-cell scenarios.

As illustrated in Fig. 4.3(b), at an arbitrary time t, there are Sx(t) up-

dated MSs in cell bx and Sy(t) updated MSs in cell by, which are represented

by the light blue solid rectangles. Then during a short period, there will be

two types of MSs in the cell: (a) MSs who are performing handovers; (b)

MSs who are sharing the content. Note that we assume that during the pe-

riod, (a)-type MSs will not share the file, and (b)-type MSs will not perform

handovers. Then the red dashed rectangles represent the (a)-type MSs, who

move from one cell to another, and the dark blue shadowed rectangles rep-

resent the newly updated MSs during the period shared by (b)-type MSs.

In the non-steady-state scenario, considering those two types of MSs,
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the derivative function of Si(t) of BS bi can be extended based on Eq. (4.4)

as follows,

•
Si (t) =

(Mi (t)−Si (t))

(
1−

∑
bk∈Ωi

ℓik

)(
λ

(
1−

∑
bk∈Ωi

ℓik

)
Si (t)

)

−
∑

bk∈Ωi

ℓikSi (t)+
∑

bk∈Ωi

(lkiSk (t)).

(4.16)

And for the steady-state scenario, the Mi(t) becomes Mi.

Finally, there will be a complicated ODE system with n differential

equations for modeling the content dissemination with both pushing and

sharing in multi-cell scenario.

In the steady-state scenario, the number of MSs at each BS is constant;

thus, the above ODE system is a 1st-order quadratic homogeneous ODE

system with constant coefficient, which is a Riccati type matrix differential

equation system. Jodar et al. [126] discussed its closed analytical approxi-

mation solution. Also Darling [127] proposed to convert the Riccati matrix

different equations to 2nd-order linear ODE system to obtain explicit so-

lutions. In non-steady-state scenario, the ODE system becomes a 1st-order

quadratic homogeneous ODE system with variable coefficients, which is

difficult to obtain its exact analytical solution, but can be approximated by

the power series methodology (see [85]). Furthermore, the homotopy pertur-

bation method can be also applied to obtain the approximation of S(t) (see

[84]). Due to the limited space, we skip the details of the solving procedure.

Regarding the energy cost for content dissemination in multiple cells

with handovers, based on the above Si(t) in Eq.(4.16), we can also easily
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extend Ci(t) in Eq. (4.11) and C∗i in Eq. (4.12), which are denoted by Ci(t)

and C∗i , respectively.

4.5 Optimization Framework

From previous modeling of the content dissemination in a single cell and

multiple cells with handovers, we discuss the optimization framework for

the DS in the MNO to allocate the Pinit and Pf inal to all BSs, in order to

achieve the minimum dissemination completion time and energy cost.

4.5.1 Minimum Dissemination Completion Delay

From Fig. 4.2(a), the effective allocation of the number of initial pushing

and final pushing becomes critical for accelerating the content dissemination

procedure for a shorter completion time. Then the problem becomes that, at

any BS, by given a specific upper bound of the number of MSs that are

going to be pushed, Ptotal , how to find the optimal values of Pinit and Pf inal

to achieve the minimum dissemination completion time t∗ referring to Eq.

(4.9):

min
Pinit ,Pf inal

{t∗}

Subject to : Pinit +Pf inal = Ptotal.

(4.17)

We replace Pf inal by Pf inal = Ptotal−Pinit , and find the minimum value

by letting ∂t∗
∂Pinit

= 0, so that the optimal value of Pinit is found as Pinit =
Ptotal

2 ,

which means that the BS should always equally allocate the number of ini-

tial pushing and that of final pushing so that the dissemination completion

time t∗ can be minimized, regarding a limited total number of pushing.
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Therefore, in the rest, we will just focus on the number of initial pushing,

Pinit , and consider Pf inal = Pinit by default. Note that the values of Pinit and

Pf inal should be less than the M
2 .

4.5.2 Minimum Dissemination Completion Cost

Referring to the measurements in [115] and [116], Φ is several times larger

than φ for one content delivery. If a BS pushes the content to more MSs

via the cellular link in order to get a smaller t∗, it may consume more en-

ergy; otherwise if a BS pushes to less MSs inducing a larger t∗, it may also

consume a large amount of probing energy over time. Thus we have the

problem on how to find the optimal value of Pinit to minimize the energy

cost for completing the dissemination as follows,

min
Pinit
{C∗} . (4.18)

Based on Eq. (4.12), we use the similar method in the previous sub-

section to solve ∂C∗
∂Pinit

= 0, and find the optimal Pinit for the minimum C∗

as,

Pinit =
M
2
−
√

Mλ(Mλ(Φ−2φ)−8ρ)(Φ−2φ)

2λ(Φ−2φ)
, (4.19)

under the condition of,

(Mλ(Φ−2φ)−8ρ)(Φ−2φ)≥ 0. (4.20)

Then we can obtain the minimum C∗ referring to Eq. (4.12). When the con-

dition in Eq. (4.20) equals to or less than 0, the optimal Pinit with Pinit =
M
2
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will lead to the minimum C∗.

In the multi-cell scenario, each BSs, bi, can locally calculate the op-

timal Piniti to minimize the energy cost C∗i , unless there is a limitation on

the total number of the MSs being pushed among all BSs, Pbudget , which is

smaller than the sum of the local optimal values of Piniti , that is

∑

∀bi

Piniti < Pbudget <
∑

∀bi

(
argmin

Piniti

C∗i

)
. (4.21)

With this constraint, the local optimization for each cell will not guar-

antee the minimum energy cost among all BSs. So the problem extends as

min
→

Pinit

{
∑
∀bi

C∗i

}

subject to :
∑
∀bi

Piniti < Pbudget .

(4.22)

It is hard to verify the convexity of C∗ to Pinit . So we will firstly approximate

the above objective function based on the power series methodology (see

[85]), and then carry out numerical analysis.

4.5.3 Conjunctive Minimization of Delay and Cost

Because CPs, MNOs and MSs all desire for both minimum delay t∗ and

cost C∗, we try to carry out overall optimization on both of them. Due to the

different unit of time and energy, we bring a weight factor, w, to combine

t∗ and C∗ conjunctively, which is also considered as the Pareto-optimality ,

and w indicates the emphasis on either the cost or delay. Thus, for a single

71



cell, we have the following minimization problem:

min
Pinit
{t∗+w ·C∗} . (4.23)

We solve it by letting ∂(t∗+w·C∗)
∂Pinit

= 0, and then obtain the solution as:

Pinit =
M
2
−
√

λ(M2λ(Φ−2φ)−8Mρ−4w)(Φ−2φ)

2λ(Φ−2φ)
, (4.24)

with a condition that

(
M2

λ(Φ−2φ)−8Mρ−4w
)
(Φ−2φ)≥ 0. (4.25)

For the multi-cell scenario, if there is a constraint on the total amount

of pushing, Pbudget , the same to Eq. (4.21), each BS cannot push as it wants

for local optimality between the delay and the cost; instead, all BSs must

endeavor for the global optimization for following problem,

min
→

Pinit

{
∑
bi

(t∗i +w ·C∗i )

}

subject to :
∑
∀bi

Piniti < Pbudget ,

(4.26)

which is hard to find the minimum value by open-form solutions. Similar to

previous subsection, we carry out approximation on the objective function

for just numerical results.
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4.6 Evaluation Results

We simulate the continuous-time Markov system of our proposed model in

Mathematica 8 [102] along with the support of MATLAB 2010 [82] and

Maple 14 [128]. For the purpose of evaluating the model realistically, we

set the parameters with reasonable values based on previous mobility work

in [114]: the meeting rate λi among MSs is from 0.0000001 to 0.0001 per

second, and the number of MSs under one BS, Mi, is within the range from

300 to 3000. Also referring to [115] and [116], we set φ = 1, Φ = 4, and ρ =

0.001 per second by default. Note that the default values of the parameters

are shown in Table 1.
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4.6.1 Content Dissemination within One Single Cell

The evaluation of the dissemination function S(t) in Eq. (4.10) and the com-

pletion time t∗ in Eq. (4.9) are shown in Fig. 4.4. From Fig. 4.4(a), when

there is only one push (Pinit = 1) at the beginning, the number of updated

MSs starts to grow slowly, and converges to the dissemination completion

slowly as well. When we increase the value of initial pushing, Pinit , the dis-

semination procedure can be greatly shortened.

Regarding the completion time t∗, we observe that a cell with a small

number of MSs will suffer from a large t∗, but a larger value for initial

pushing Pinit can reduce t∗ dramatically as shown in Fig. 4.4(b). This in-

dicates that when adjusting the values of initial pushing for the BSs, it is

more beneficial to push more copies to small cells from the perspective of

dissemination completion time. Fig. 4.4(c) and 4.4(d) both show that larger

values of λ and M can significantly accelerate the dissemination and thus

shorten t∗, because larger λ and M mean the higher probability that the MS

can meet other MSs and thus be able to get the content by sharing. However,

the benefit of increasing Pinit is not significant when the meeting rate is high,

as shown in Fig. 4.4(c).

The accumulative energy cost function of C(t) in Eq. (4.11) is evalu-

ated as shown in Fig. 4.5. From Fig. 4.5(a), we observe that the value of

Pinit has two-side impact on the C(t): a small Pinit (Pinit = 1) will induce

a long completion time, but the probing will consume a lot and thus C(t)

becomes quite large; however a large value of Pinit (Pinit = 125) can reduce

t∗ dramatically, but because of the more expensive energy cost for cellular
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links, it still consumes more C∗ than that when Pinit = 25. This falls into the

optimization framework on C∗ in Sec. 4.5.2, which we will discuss in later

paragraphs. Furthermore, we calculate the energy cost per updated MS over
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time as shown in Fig. 4.5(b), and we discover that a large group will actually

reduce the energy cost for each individual MS due to sharing.
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The evaluation on the energy cost for dissemination completion C∗ in

Eq. (4.6) is shown in Fig. 4.6. The relationship between Pinit and C∗ in Fig.

4.6(a) reflects our optimization framework in Sec. 4.5.2; Pinit can be adjusted

for a minimized C∗ under the condition in Eq. (4.20). In the case that the

condition is not satisfied (λ = 0.000002 in Fig. 4.6(b)), the optimal Pinit

for minimizing C∗ will be M
2 . Also when λ is larger, the optimal Pinit for

minimum C∗ is smaller. And also from Fig. 4.6(b), a higher meeting rate

λ means more frequent social sharing via Wi-Fi, and it can significantly

reduce the C∗, due to the lower energy cost of Wi-Fi links.

The trade-off between C∗ and t∗ is explored in Fig. 4.7(a) and 4.7(b),

when we adjusting Pinit with different numbers of MSs and meeting rates.

there is always a valley in the C∗-t∗ curve, where C∗ gets minimized (re-

ferring to Eq. (4.18)). The part of the curve on the left of the valley, where

C∗ and t∗ are in an inverse relation, defines the boundary of the achievable

delay-energy region (emphasized within the dashed rectangles) when Pinit

is higher than argmin
Pinit

{C∗}. This reflects the Pareto-optimal between C∗ and

t∗ discussed in Sec. 4.5.3, and depending on the weight factor w, it is easy

to find an optimal balance between C∗ and t∗ within the rectangle areas. On

the right part of the curve, when Pinit is not sufficiently large, the system will

suffer from both high energy cost and long dissemination completion time.

4.6.2 Content Dissemination within Multiple Cells

For investigating the content dissemination in multi-cell scenario with han-

dovers, we evaluate the MNO network in Fig. 4.3(a) as a typical example.

At the beginning, for Mi and λi for each cell, we randomly assign practi-
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cal values as introduced previously. Also the handover rates are set between

0.01 to 0.2 randomly, because the handover rates are not too high in real
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Fig. 4.8. Content dissemination in multi-cell scenario with handovers

measurements [118] [121] [122] and [123].

We firstly plot Si(t) of each cell without applying the handover rates

as shown in Fig. 4.8(a). We can see that each BS completes the content
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dissemination separately, regardless of either the very slow dissemination

of b2 in green color (the diamond dashed curve) with M2 = 558, or the very

fast one of b3 in red color (the circle dotted curve) with M3 = 590.

Then we apply the handover rates to the model and examine Mi(t)

as shown in Fig. 4.8(b). Each BS changes the number of MSs due to the

handovers of the MSs, and finally Mi(t) converges to a steady-state around

520 seconds. Note that we approximately assume the steady-state when the

change of Mi(t) per second is small than 1. The corresponding plot of Si(t)

is shown in Fig. 4.8(c), and we can see the BSs complete the dissemination

at the same time around 783 seconds. This is mainly because when MSs

are performing handovers, some of them carry the content but the other do

not; each cell will then exchange its both not-yet-updated MSs and updated

MSs with its neighbor cells. The cells, which originally disseminate content

fast, will “help” those who suffer from slow dissemination. Therefore, Si(t)

of BSs together grow and finally complete with same t∗ in a harmonized

manner.

4.6.3 Optimization Framework

The minimization of C∗ in a single cell is shown in Fig. 4.9(a) , 4.9(b) and

4.9(c). Note that the X-axis is in log scale. We see that with a larger meeting

rate λ, the BS can adjust Pinit to a smaller value for getting the minimum C∗.

But when λ goes smaller below a boundary (referring to the condition in Eq.

(4.20)), the BS will only have to set Pinit to M
2 for the minimum C∗, which

means to push the content to all of its MSs. The Pareto-optimality between

the delay and energy cost is evaluated in Fig. 4.9(c), which indicates if the
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Fig. 4.9. Optimization of C∗, t∗+w ·C∗, and Σ(t∗+w ·C∗)

MNO system emphasizes more on the energy cost (a higher value of w), Pinit

should be set to a higher value until M
2 . Fig. 4.9(d) shows the evaluation on

the Pbudget-constrained optimization in the multi-cell scenario (20 cells with

reasonable parameters). Depending on the boundary condition in Eq. (4.21),

when Pbudget is sufficient, BSs can freely adjust Piniti’s values individually

for both local and global minimum cost; when Pbudget is not enough, the

minimum energy cost increases. Also Σ(t∗i +w ·Ci
∗) follows the same trend.

Note that when Pbudget is quite small, BSs will have small Piniti , so BSs will

mostly rely on the ICT-based sharing, and thus suffer from high energy cost
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and large delay.

4.7 Conclusion

In this chapter, I proposed Push-Share framework to reduce the traffic load

on cellular links by coordinating pushing and sharing for disseminating

delay-tolerant content. Content dissemination can be adaptively accelerated

or decelerated to satisfy performance requirements by adjusting the initial

and final pushing rates. The multi-compartment model can be adopted for

modeling the content dissemination among multiple cells with handovers

in cellular networks. The proposed optimization framework can be used by

MNOs to control the pushing strategy for the objectives such as the mini-

mum delay or minimum cost.

The lessons from the analytic studies are summarized as follows: push-

ing more copies to cells with the fewer MSs can be more beneficial for re-

ducing the completion delay (Fig. 4.4(b)); the more users participate in shar-

ing, the more energy saving can be achieved due to the sharing (Fig. 4.5(b));

the completion delay and energy cost exhibit an inverse relation, which re-

flects the Pareto-optimality when the required completion delay is small (the

dashed boxes in Fig. 4.7(a)); if the requirement of completion delay is long,

the energy cost of neighborhood monitoring will be overwhelming as shown

in Figs. 4.7(a) and 4.7(b); the handovers among cells mix the MSs with or

without the content, which implies a balance of overall completion delays

among cells, and hence BSs can finish the content dissemination to their

MSs with almost similar delays (Fig. 4.8(c)). In the future, we will extend
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the model for more practical scenarios such as heterogeneous mobility and

transmission failure probability.
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Chapter 5

Summary and Future Work

In this thesis, I mainly focused on the user-to-user opportunistic sharing and

tried to elaborate its effectiveness and efficiency for mobile traffic offload-

ing, in order to solve the traffic explosion problem.

In the first work, I proposed the Traffic Offloading assisted by Social

network services via opportunistic Sharing in mobile social networks, TOSS

framework, to select optimal seed users for initial content pushing, depend-

ing on their content spreading impact in online social network services

(SNSs) and their mobility patterns in offline mobile social networks (MSNs).

Then users share the content via opportunistic local connectivity (like Wi-Fi

Direct and D2D) with each other. Also TOSS exploited the user-dependent

access delay between the content generation time and each user’s access

time for traffic offloading purposes. We modeled and analyzed the traffic of-

floading and content spreading among users by taking into account various

options in linking SNS and MSN trace data. And the trace-driven evalua-

tion showed that TOSS can reduce up to 86.5% of the cellular traffic while

satisfying the access delay requirements of all users.

Furthermore, I focused on the analytical research on Push-Share con-

tent disseminating in the second work, which is highly correlated with the

first study from the theoretical study perspective. In Push-Share, a content

is firstly pushed the to a subset of subscribers via cellular links, and mo-
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bile subscribers share the content via opportunistic local connectivity. We

theoretically modeled and analyzed how the content can be disseminated

across multiple cells, where handovers are modeled based on the multi-

compartment model. We also formulated mathematical framework to op-

timize the system, by which the trade-off between the dissemination delay

and the energy cost is explored.

From the measurement study, trace-driven analysis, theoretical mod-

eling and system optimization in above studies, the traffic offloading by

user-to-user opportunistic sharing in mobile social networks is proved to

be effective and efficient.

5.1 A Comparison with Traffic Offloading based
on Wi-Fi APs

As already discussed in Sec. 2.2, there actually have been many research

studies and realistic deployment cases for the mobile traffic offloading based

on Wi-Fi Access Points (APs), such as [55] [59]. and [58] in Korea, and [56]

[57] in USA. Also economics of traffic offloading by Wi-Fi APs have been

studied in [60] and in [61] in detail.

Regarding the realistic deployment of the proposed offloading by user-

to-user sharing, how to promote and encourage people to share content dur-

ing moving becomes one important issue, which is not only an issue of

technology. As the sharing-based offloading will help the MNO to reduce

their traffic load significantly, a popular research trend is to design incentive-

based business model for mobile operators and mobile users. It is advocated
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that the financial benefit will drive the motivation for users to cache con-

tent and share with nearby user either to reduce their cellular data plan, or

even to earn some money, such as research work in [39] [62] to utilize the

benefit-based data caching and forwarding in mobile networks. Also there

are new incentive-based designs for sharing-based offloading with further

consideration of user privacy, such as [63], IPAD [64] and iDEAL [65].

In order to comprehansively study the advantage and disadvantage of

the traffic offloading by opportunistic sharing and that by Wi-Fi APs, we

hereby compare the major pros and cons between them , as shown in Table.

5.1. It is clear that the offloading by Wi-Fi APs still consumes 100% back-

bone traffic, which is not completely solving the “traffic explosion problem”

but is keeping the high load to provider’s backhaul network. Furthermore, it

needs large-scale deployment, serving people indoor in most cases. But the

offloading by opportunistic sharing consumes little backbone traffic, and it

offloads traffic from cellular link to other local short-range links without any

infrastructure deployment. Sharing-based offloading is not replacing “Wi-Fi

APs”, but they will work together to solve the “traffic explosion problem”.

5.2 Practical Deployment and Application

A very easy beginning for deploying the sharing-based offloading frame-

work can be a mobile SNS application, with extra functions for discovering

nearby SNS friends, friends of friends, and even strangers, for exploring and

transmitting files with them by both active “request-to-share” and proac-

tive “background-share” mechanisms. Note that the MNO should track user
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Table. 5.1. Comparison between traffic offloading via user-to-user sharing
and that via Wi-Fi APs

via user-to-user Sharing via Wi-Fi AP
Cost to operators near zero Large scale deploy-

ment
Cost to users near zero (even with incen-

tive)
zero (most cases)

Backhual traffic 13.5 to 36.2%
(initial push + final on-
demand )

100%

Cellular traffic 13.5 to 36.2%
(initial push + final on-
demand )

zero

Energy consumption Probing + sending + receiv-
ing

probing + receiving

Availability Whenever there are users in
proximity

9 to 18% in US, 24 to
64% in KR

Business model Free or
incentive-based

Free or
complementary to
data plan

sharing activities via the application and count their incentives.e

When a user moves with the mobile device, most of content objects

that 1) accessed and shared by good friends in the SNS and MSN, and 2)

published by interesting or famous publishers that the user has subscribed

will be collected in the background already. Because it is expected to be able

to obtain the content object before users may access it, the sharing can be

carried out in the background, which can be considered as prefetching.

The user can even actively further explore more content resource via

the application, click interesting content objects for “accessing it later” de-

pending on the user’s life style and activity pattern, and set up a deadline

for obtaining it by opportunistic sharing. While the user moves around and

meets people, the pending content objects will be collected, i.e., prefetched,
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opportunistically. When the user wants to directly access the object, which

is not prefetched yet, on-demand delivery will be carried out then.

5.3 Future Work and Vision

Fig. 5.1. Illustration of the 2-tier structure for future mobile network

This thesis mainly focuses on the user-to-user opportunsitic sharing for

mobile traffic offloading, which is actually a part of my vision for the “two-

layered caching and sharing infrastructure in the future mobile network”,

as illustrated in Fig. 5.1. The layer 1 is actually the in-network caching of

mobile backhaul networks, which is the edge of the mobile networks con-

sisting a lot of Wi-Fi APs, macrocells and femtocells, the base stations of

which forms a “cooperative buffer” for mobile users. The topic is related to

the extension of the concept of Content-Centric Networking (Named Data
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Networking [129] [130]) into future mobile networks. And my focus in this

thesis is then the layer 2, that is the opportunistic user-to-user sharing under

the cells, based on the user mobility impact and social spreading impact.

Due to the cooperative caching and thus the resource re-utilization at the

cells, the mobile network can significantly reduce the traffic to the Inter-

net and to other providers, also the backbaul traffic can be further reduced

since mobile users frequently share popular and interesting content with

each other by local short-range communication.

Furthermore, since the D2D technique is being hotly discussed in 3GPP

standards for 4G LTE (LTE-advanced) networks [19], by which users use

operator authorized spectrum for direct communication without the support

of infrastructure. The transmission range of D2D communication can be

much larger than other local range communications (such as Wi-Fi Direct).

Therefore by optimal resource allocation and interference management, the

new D2D communication can increase the total throughput (resource uti-

lization) in the cell area as studied in [19] [53] and [54]. Therefore, based

on the analysis in this thesis, along with the trend of the significant growth of

the number of mobile devices, the D2D technique will significantly facilitate

the sharing-based offloading in mobile networks in the very near future.
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초록

최근모바일트래픽의빠른증가는이동통신사업자에게심각한문제

가 되고 있다. 이러한 문제를 해결하기 위해 단거리 통신 기술 및 모

바일소셜네트워크등을이용하여사용자간직접데이터를주고받는

오프로딩기법을사용하는것에대한연구가이루어지고있다.본논문

에서는사용자간직접통신을통한효율적인콘텐츠공유및오프로딩

기법을제안하고자한다.

첫번째연구로,모바일소셜네트워크에서사용자간직접전송기

회를 활용해 데이터를 공유하는 모바일 트래픽 오프로딩의 핵심 기

술인 TOSS를제안하였다. TOSS에서는셀룰러네트워크에서급속히

증가하고 있는 트래픽으로 인한 네트워크 과부하를 경감시키기 위해

온라인 소셜 네트워크에서 사용자의 연결성 및 오프라인 네트워크에

서 사용자의 이동성을 고려하여 콘텐츠를 전달할 사용자를 결정하고

블루투스나와이파이다이렉트등의기술을이용해콘텐츠를직접전

달하였다.또한소셜네트워크서비스사용자의서로다른콘텐츠접근

패턴, 즉 각 사용자가 콘텐츠 생성으로부터 오프로딩을 위해 콘텐츠

에접근하기까지의시간을고려하였다.본연구에서는이러한요건을

고려하여트래픽오프로딩과콘텐츠확산을모델링하고분석하였다.

모바일소셜네트워크의데이타셋을기반으로분석결과에서 TOSS는

모든사용자의딜레이요구조건을만족시키면서최대 86.5%의셀룰러

트래픽을경감시키는것을보였다.

두번째의연구에서는모바일네트워크에서멀티셀을고려하여콘

텐츠를배포하는프레임워크에대한연구를진행하였다.해당프레임
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워크에서 콘텐츠는 셀룰러 링크와 모바일 사용자간 로컬 링크를 통

해 푸시-공유 기반의 통신으로 전달 되였다. 이러한 기법을 바탕으로

multi-compartment 모델을 이용하여 셀 간 핸드오버 및 콘텐츠 전달을

모델링및분석하고,콘텐츠전달딜레이와에너지소모사이의 trade-

off를수학적인최적화기법을사용하여해결하였다.

본논문에서는이와같이기존의측정연구에기반한 trace-driven

분석,모델링및시스템최적화에대한연구를통해모바일소셜네트

워크에서 사용자간 직접 전송을 통한 오프로딩 기법이 고효율적임을

보였다.또한본논문은제안된기법의상용화전망및이를위한이슈

들에대한논의도포함하였다.

주요어: 모바일소셜네트워크,트래픽오프로딩,기회적인공유

학번: 2008-30709
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