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Abstract

In many practical computer vision scenarios it is possible to use information

gleaned from the previous observations through the sampling process. In order

to achieve a good performance with small computation, it is desirable that the

samples cover the domain of target distribution with the small number of sam-

ples as possible via a concept of active or adaptive sampling. Based on the ac-

tive sampling strategy, sampling could be concentrated on attentional portions,

which can improve not only the sampling efficiency but also performances of al-

gorithms. In this thesis, we define three different attentional sampling concepts,

structured attentional sampling, empirical attentional sampling and selective at-

tentional sampling. The proposed attentional sampling methods are successfully

applied to computer vision problems, by achieving dramatic improvement in the

sense of performance as well as computational load.

The structured attentional sampling scheme uses an inherent structure to

sample an interesting region densely instead of equally distributed sampling over

the entire region. This sampling scheme is applied to a tracking failure detection

method by imitating human visual system. In this scheme, we adopt a sampling

structure based on Log-polar transformation simulating retina structure. Since

the log-polar structure shows invariance against rotational changes and intensi-

fies translational changes, it helps to reduce false alarms arising from rotational

pose variations and increase true alarms in abrupt translational changes. In ad-

dition, foveal predominant property of log-polar structure helps to detect the

tracking failing moment by amplifying the resolution around focus (tracking box

center) and blurring the peripheries. Each ganglion cell corresponds to a pixel

of log-polar image, and its adaptation is modeled as Gaussian mixture model.
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The validity of the structured attentional sampling method is illustrated through

various experiments.

The empirical attentional sampling scheme uses previously obtained empiri-

cal knowledge when sampling in current time. The empirical knowledge is mod-

eled by a probability distribution function through an empirical learning process.

This empirical sampling scheme is applied to mask generation to speed up con-

ventional background subtraction algorithms for moving object detection. The

proposed sampling strategy is designed to focus on attentional region such as

foreground regions. The attentional region is estimated by using the detection

results in the previous frame in a recursive probabilistic way. We generate a

foreground probability map by using foreground properties of temporal, spatial,

and frequency properties. Based on this foreground probability map, randomly

scattered sampling, spatially expanding importance sampling and surprise pixel

sampling are performed sequentially to make the attention sampling mask. The

efficiency of the proposed empirical attention sampling method is shown through

various experiments. The proposed masking method successfully speeds up pixel-

wise background subtraction methods approximately 6.6 times without deteri-

orating detection performance. Also real-time detection with Full HD video is

successfully achieved by various conventional background subtraction algorithms

together with the proposed sampling scheme.

The selective attentional sampling scheme does not use whole data but selects

only important data enough to achieve a given classification objective. This se-

lective sampling scheme is applied to the recognition of pop dances. Pop dances

are action streams consisting of diverse actions which cannot be simply anno-

tated. For such “unannotatable” action streams, conventional methods cannot

be applied directly due to their complexity and longevity. In order to describe

unannotatable action stream effectively, the proposed method employs a novel
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mid-level “feature flow” with low dimensional embedding. Also, for the purpose

of recognition, “attentional motion spots” holding important information about

the sequence are automatically selected. The feature values and the temporal

locations of each attentional motion spot are modeled with Gaussian mixtures

as “Action Charts.” The Action Chart describes the characteristics of an action

stream in the spatio-temporal domain. Using the abstract information in the

Action Charts, the proposed method efficiently recognizes pop dance sequences.

In order to demonstrate the validity of the proposed method, we compare our

method against the state-of-the-art methods with a newly built SNU Pop-Dance

dataset containing long action streams composed of diverse actions.

Keywords: attentional sampling scheme, structured attentional sampling,

empirical attentional sampling, selective attentional sampling, tracking failure

detection, speed-up of background subtraction, complex action recognition

Student ID Number: 2006-21280
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Chapter 1

Introduction

1.1 Motivations

When human perceives the surroundings, one instinctively focuses on important

parts and disregards the rest, which is called as attention in human cognition

research area[1]. The attention is performed in different ways depending on the

task. For example as shown in Figure 1.1 [2], when looking at a picture, people

look briefly at bland backgrounds and start focusing on “structurally salient”

features, like a painting on a wall. Then people can easily recognize that this is a

picture of kitchen and start to look closely at “empirically important” parts, such

as a gas stove, a sink, or on the table which is empirically known to be related

with the kitchen. However, if there is a tail wagging dog on the kitchen floor or

if people are asked to find something “selectively” in the picture, then people

will focus on it rather than others. Clearly there are different types of attention

and there is a feedback between the prior knowlege and the sensing process. One

starts by having a rough idea of the entire scene and gather informations using

instinctively designed sensing mechanisms, and then has attention on particularly

1



(a) (b)

Figure 1.1: Attentional region by tracking eye movement. (a) example of a natural
scene (b) tracked eye movement during the first seconds of scene perception [2].
(source: MSU Vision Cognition Laboratory)

“attentional” details using empirical knowledges or specific intentions.

The attentional learning and sensing processes are natural abilities for hu-

mans however most data sampling processes of artificial learning algorithms and

sensing devices do not take advantage of the attentional scheme [2]. For example,

all the image pixels of digital camera have the same importance in the image,

and most detection algorithms perform full search in the image to detect mov-

ing object or faces. This kind of inflexible processes can bring about redundant

computational costs or infeasible solutions.

In this thesis we propose attentional schemes to improve the processing ef-

ficiency in visual computing such as moving object detection/tracking and ac-

tion recognition and so on. We define three categories of attentional sampling as

structured attentional sampling, empirical attentional sampling and selective at-

tentional sampling (as shown in Figure 1.2). With these attentional sampling

methods we can encompass various applications that achieve significant effi-

ciency improvements. In this thesis, the structured, empirical, and selective at-

tentional sampling schemes are applied to tracking failure detection [3, 4, 5, 6],

2
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Figure 1.2: Types of the proposed attentional sampling schemes.

moving object detection [6, 7, 8, 6, 9, 10, 11, 12, 13, 14], and action recogni-

tion [15, 16, 17, 18, 19, 20], respectively.

1.2 Contents of Research

The proposed attentional sampling is a kind of preprocessing method which

should be placed prior to conventional computer vision algorithms as shown in

Figure 1.3. However, unlike the general preprocessing filters, the proposed sam-

pling method is problem-dependent and requires a sophisticated sampling strat-

egy design using prior knowledge about the problem. In the following, we present

the basic concepts for the attentional sampling schemes and their applications to

visual computing.

1.2.1 Structured Attentional Sampling

Structured attentional sampling performs data sampling according to a pre-designed

sampling pattern structure. A sparsely but regularly designed attentional sam-

pling pattern can reduce computational load and achieve a noise reduction effect

as well. This sampling method is performed in a passive way comparing to the

others. The predetermined sampling pattern does not vary as time goes on, but

3
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Figure 1.3: (a) A conventional flow of computer vision system. (b) The location
of the proposed attentional sampling method in a system flow.

an anchoring position of the sampling pattern is adaptively changed. This is sim-

ilar to human eye mechanism. Human can freely change a focusing point but

cannot change a distribution of retina ganglion cells which do sampling as pho-

toreceptors. This sampling method is easy to implement and fast, but designing

sampling pattern is critical. A prior knowledge about an attacking problem must

be reflected on the sampling pattern.

Suppose that we find a sampling point set Xt at time t. The Xt is obtained

using an anchoring position c, a structured sampling pattern S(c; Ψ) pre-designed

using a prior knowlege Ψ.

• Structured attentional sampling: Xt can be obtained as

Xt = h({S(c; Ψ)},Ut), (1.1)

where h(·) is a deterministic function, and Ut accounts for possible random-

ization of the sampling rule.

In general the function h(·), together with Ut, is called the sampling strategy at

time t [2]. This approach is applied to a tracking failure detection which uses log-

4



polar transformation as a sampling structure by imitating human visual system.

This part is presented in Chapter 2.

1.2.2 Empirical Attentional Sampling

Several empirical and theoretical results suggest that the use of data collected

in early stages can be very helpful for efficient selection of new samples [21, 22].

The empirical attentional sampling is designed based on this results. This sam-

pling method is similar to a human sensing mechanism of experience. People can

efficiently focus on important parts when they are accustomed to the situation.

In order to simulate the experience, we present a probability density map of at-

tention which is squentially updated by the previous results. The sampling in the

current state is performed based on the probability density map. Designing of the

density map and update rule is a user designing part reflecting prior knowledge

on a target problem.

Suppose that we choose a sampling point set Xt (at time t ∈ T = {1, ..., T})

among current input data image It. The sampling points are collected based on

the current input data It, a previous sampling point set Xt−1, its result set Yt−1,

and sequentially updated density map Pt−1.

• Empirical attentional sampling: Xt is obtained by

Xt = h(It,Xt−1,Yt−1,Pt−1,Ut), (1.2)

Pt = D(Xt,Yt,Pt−1; Ψ), (1.3)

where h(·) is a deterministic function, and Ut accounts for possible random-

ization of the sampling rule. D(·; Ψ) implies a user designed update rule for

density map update.

5



This approach is applied for sampling mask generation to speed up the con-

ventional background subtraction algorithms. The proposed sampling strategy is

designed to focus on attentional region such as forground regions. This part is

presented in Chapter 3.

1.2.3 Selective Attentional Sampling

Selective attentional sampling selects distinctive points using prior knowlegde

about dataset or higher level intention and performs classification and recognition

only using the selected samples. The selected samples should include important

data enough to achieve a given objective without redundancy. So in this sampling

method, the system designer’s knowledge is actively reflected in designing the

attention scheme. This sampling method simulates active human attention by

intention or belief.

Suppose that we select an attentional sampling point set Xt (at time t ∈

T = {1, ..., T}) among the current input data It. The attentional point selection

is performed by measuring each data point’s importance denoted byM(I; Ψ). The

importance measure is designed by a system designer reflecting his/her knowledge

about the dataset (Ψ). For example, in recognizing a long pop dancing movement,

we remember not the whole dancing motions but only some important and char-

acteristic dancing motions. The characteristic motions are mainly determined by

motion intensity, interesting poses or syncronization to music etc. These deter-

mining features (Ψ) are used for measuring motion importance (M(·; Ψ)) and

highly importance motions are selected for recognition.

• Selective attentional sampling: Time t ∈ T = {1, ..., T} and location

in data space p ∈ N = {1, ..., N}

Xt = h(M({I(1...t)
N (p)}; Ψ),Ut), (1.4)

6



where h(·) is a deterministic function, and Mt is an importance measure

of an attentional feature point.

Measurement of the amount of importance for each point should be defined first

and an appropriate classification method for the sparsely sampled points is re-

quired. If the sampled data are informative and distinctive enough, then training

solely with the sampled data can reduce computational load significantly without

performance degeneration. This approach is applied to modeling the sequential

flow characteristics of spatio-temporal data patterns for recognizing long and

complex action sequences such as pop dances. As a result, a new Action Chart

method is developed to recognize Pop dances based on this selective attentional

sampling concept. This part is presented in Chapter 4. Finally Chapter 5 gives

concluding remarks as well as speculation on future research directions and open

problems.
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Chapter 2

Structured Attentional

Sampling for Tracking Failure

Detection

2.1 Introduction

The sampling pattern S(c; Ψ in Eq.1.1 for the structured attentional sampling

can be designed freely depending on the purpose of a target application, and the

sampling pattern can meet a purposes such as sparse sampling for computational

efficiency and intensive sampling for accuracy only if sufficient prior knowledge

(Ψ) about the target application is provided. In this chapter, a designing of a

structured attentional sampling strategy for tracking failure detection (TFD) is

presented. We show that a properly designed sampling pattern can provide not

only computational efficiency but also novel properties for the special purpose.

In this chapter, we use a log-polar sampling as shown in Figure 2.1 from the

basic prior knowledge that object tracking is the same job of placing the tracking

8



(a) (b)

Figure 2.1: (a) Conventional spatially uniform sampling. (b) Structured atten-
tional sampling.

object in the center of tracking box in every frames.

In computer vision, there have been lots of efforts to improve tracking perfor-

mance, and as a result, most algorithms work well for many challenging situations.

Nevertheless, they still lost their tracking object in the long run. Current visual

surveillance system [23] restores failed tracker manually. However if we can detect

a tracking failure moment, the restoration can be performed automatically. So

the TFD is an important component for automatic tracking system.

Most of the existing TFD methods are based on checking similarity measures.

[3, 4] detect tracking failure by thresholding a similarity measure of tracker. How-

ever, because the similarity measures are not originally designed for TFD, they

cannot represent a status of current tracker exactly. Sometimes the similarity

measure frequently results in a low value even when the tracking is successful

or varies smoothly when the tracking fails by slow changes. So [5] defines a new

similarity measure only for TFD. It is assuemed that the boundary of tracking

box does not include any pixels of tracking object. However, in actual application,

9



this assumption may be easily violated and as a result it leads to frequent false

alarms.

We propose a new approach for TFD by mimicking human visual system.

When people look at an object, the attentional area seems clear but periph-

eries are blurred. This is because of the structure of the retina of a human eye.

Fovea [24] is a part of the eye, located in the center of the macula region of the

retina. The fovea is responsible for sharp central vision and is surrounded by the

parafovea belt and the perifovea outer region. The parafovea and perifovea are

composed of sparse ganglion cells [24]. Approximately 50% of the nerve fibers in

the optic nerve carry information from the fovea, while the other 50% carry infor-

mation from the rest of the retina. Log-polar image geometry was first motivated

by its resemblance with the structure of the retina [25]. We use a log-polar image

for simulating human vision and its characteristics.

Our method focuses on capturing a distinctive feature when tracking fails

instead of comparing similarity measures. At an instant when a target object

moves out of the area of focus (i.e. tracking fails), the object suddenly becomes

blurry, whereas the surroundings gets sharp. We use this sudden sharp and blur

view change as an important feature for TFD. Human can detect the changing

moment by percepting the amount of fired (stimulated by new color) ganglion

cell. We model ganglion cells in the retina as pixels in log-polar image and the

adaptation of ganglion cell as Gaussian mixture model (GMM) [6]. So, the per-

ception of the amount of fired ganglion cells is modeled by counting new colored

pixels in the log-polar image. This measure is independent of the tracker, so it

can be applied to any trackers. The effectiveness of the proposed TFD is shown

by several experiments.

10



(a) (b)

Figure 2.2: (a) Light micropraph of ganglion cells of human retina [24]. (Left)
parafoveal region. (Center) midperifovea region. (Right) perifovea region. (b) The
log-polar transformation. The radially logarithmic sampling entails that foveal
information is represented by a large number of pixels in the log-polar image.[25]

2.2 Characteristics of Log-Polar Image and Tracking

Failure

2.2.1 Properties of Log-Polar Image

The log-polar transformation [25] means a conformal mapping (preserves oriented

angles between curves and neighborhood relationships) from the point (x, y) on

the cartesian plane to point (ρ, θ) in the log-polar plane, where

ρ = log(
√
x2 + y2) (2.1)

θ = arctan(y/x). (2.2)

The log-polar mapping has three properties. Biological plausibility, rotation

and scaling invariance, and foveal predominance [25]. As going away from the

fovea region, the ganglion cells are sparsely distributed (Fig. 2.2(a)). This charac-
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(a) (b)

(c) (d)

Figure 2.3: (a) Reference image (b) Scaled by 0.7 (c) Rotated 45 degree in clock-
wise (d) Translated (20, 20) pixels. Log-polar images (the second image) in (b)
and (c) are almost invariant from (a), but that in (d) is largly varying.

teristic is approximated logarithmic-polar law [25] (Fig. 2.2(b)). The translational

changes in Cartesian space tends to bring out bigger variations in log-polar im-

ages than rotational and scaling changes (see Fig. 2.3). Foveated targets occupy

most of pixels in the log-polar image and the background elements are coarsly

sampled. On the other hand, if the foveated point is placed in the background

area, then background elements are densely sampled, while target object elements

are sampled sparsely.

2.2.2 Tracking Failure in Log-Polar Image

Definition 2.2.1 (Tracking failure). The tracking failure moment is defined as

the moment when the center of tracking box (CTB) is moved to background region

12



Center of Tracking Box

Region of Tracking Object

Region of Background

(a) Success (b) Failure

Figure 2.4: The definition of tracking failure.

(RB) from the region of tracking object (RTO) (see Figure 2.4)..

In the view of CTB, tracking failure appears like crossing over the boundary

line between RTO and RB. It means that, under our definition, translational

changes are more important than rotational and scaling changes in the tracking

box images.

From the property of area differentiation (rdrdθ = dxdy, r =
√
x2 + y2) and

(2.2)(2.2), we derive below relationships.

dρdθ =
1

r2
dxdy, (2.3)

dρdθ =
1

x2 + y2
dxdy. (2.4)

The CTB corresponds to foveated point of eye. According to Definition 2.2.1,

tracking failure appears when the CTB crosses over the boundary line between

RTO and RB. It means that, under our definition, translational changes are more

important than rotational and scaling changes in the tracking box images.

In Fig. 2.5, we model the tracking failure situation. The result shows that

log-polar transformed image intensifies the changes around CTB and decrease

13
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Figure 2.5: Moving a tracking box by two pixels, we check the shape and ratio
of tracking object pixels in tracking box. The boundary crossing moment can be
detected distinctively in log-polar space comparing to Cartesian space.

the changes of peripheries. This is induced by nonlinear predominance property

of log-polar transformation and it helps to capture a boundary crossing moment

and ignore other background changes. So, the two properties (rotation and scaling

invariance, and foveal predominance) of log-polar image are effective for TFD.

2.3 Tracking Failure Detection Algorithm

2.3.1 Modeling of Ganglion Cell Adaptation

From the biological plausibility of log-polar image, each ganglion cell corresponds

to each pixel of log-polar image. For dynamic modeling of pixels in tracking box

image, we adopt the framework of online GMM method [6].

In tracking box image, majority of pixel values are varying as a target moves.

For dynamic modeling of these pixels in tracking box image, we adopt the frame-
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work of online method of Stauffer et. al. [6]. At any time t, what is known about

at a particular pixel (ρ,θ), is its history

{X(1), ..., X(t)} => {Ilog−polar(ρ, θ, i) : 1 ≤ i ≤ t} (2.5)

where Ilog−polar is the image sequence of log-polar transformed images. {X(1), ..., X(t)}

is a sequence of log-polar transformed images Ilog−polar and each image is com-

posed of N pixels X(t) = {X1(t), ..., XN (t)}. The history of pixel n is modeled

by a mixture of K Gaussian distributions. The probability of observing a current

pixel value is

P (Xn(t)) =
K∑
k=1

ωkn(t) ∗ η(Xn(t), µkn(t),Σk
n(t)) (2.6)

where ωkn(t) is an weight, µkn(t) is the mean value and Σk
n(t) is the covariance

matrix of each Gaussian in the mixture at time t respectively.

η(Xn(t), µkn(t),Σk
n(t)) =

1

(2π)
n
2 |Σk

n(t)|
1
2

e−
1
2

(Xn(t)−µkn(t))T Σ−1(Xn(t)−µkn(t)). (2.7)

In this formulation, ωkn(t), µkn(t), σkn(t)
2

are updated by following equations as in

[6].

ωkn(t) = (1− α)ωkn(t− 1) + αMk
n(t) (2.8)

where α is a learning rate and Mk
n(t) is 1 for a matched model and 0 for the

others.

µkn(t) = (1− ν)µkn(t− 1) + νXn(t) (2.9)

σkn(t)
2

= (1− ν)σkn(t− 1)
2

(2.10)

+ν(Xn(t)− µkn(t))T (Xn(t)− µkn(t)),
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where ν is αη(Xn(t)|µkn(t), σkn(t)).

2.3.2 Initialization of GMM

When the tracking starts, we can get color information of tracking box from initial

image. Because the tracking box usually wraps tracking object tightly and places

CTB in RTO, most pixels within tracking box correspond to the portion of RTO.

Also the log-polar tranformation makes peripheral pixels less emphasized. Using

the color information of tracking box we set an initial color model of tracking ob-

ject. We set initial values of ωkinit(1), µkinit(1), σkinit(1)
2

using the color information

of initial tracking box image X(1). Because we do not know how many colors the

tracking object are composed of, mean shift clustering (MSC) [26, 27] method

is used to find the number.

With N pixel points {X1(1), ..., XN (1)} ∈ R3 (RGB color space), we find

K clusters (K color distributions) by means of MSC. Each color distribution

Ck(k=1...K) is composed of nk(
∑K

k=1 nk = N) pixel pointsXk
i(i=1...nk)(1). We model

each color distribution as Gaussian distribution and calculate initial parame-

ter values with clustered pixel points. ωkinit(1) = nk/N is an weight, µkinit(1) =

(
∑nk

i=1X
k
i (1))/nk is the mean. Σk

init(1) = σkinit(1)
2
I (each color space is indepen-

dent and have the same variance σkinit(1)
2

= (
∑nk

i=1 (Xk
i (1)− µkinit(1))2)/nk) is

the covariance matrix of each kth(k = 1...K) color distribution respectively. N

pixels of X(t) share the same initial values.

2.3.3 Tracking Failure Detection

Every new pixel is checked whether it belongs to existing one of K models and

classified as familiar pixel or unseen pixel. The unseen pixel has high probability

of being a part of occluding object or background which means out of target. This

16



is similar to every ganglion cell’s independent firing (stimulated by new color).

New color perception is modeled as checking abruptly changing pixel (ACP). An

ACP is defined as a pixel out of 2.5 standard deviations of a existing one of K

models.

ACPn(t) =


0 if (Xn(t)− µkn(t))2 < 2.5σkn(t)

2

∀k = 1, ...,K,

1 otherwise .

(2.11)

Then, in order to detect tracking failure, ACP ratio ξACP in current image

X(t) is measured by

ξACP =

∑N
n=1ACPn
N

. (2.12)

Using ξACP , tracking failure is determined by thresholding:

χTFD(X(t)) =


1 if ξACP > T,

0 otherwise .

(2.13)

where T is a threshold value, experimentally defined. Figure 2.6 shows the overall

scheme of our proposing method.

2.4 Experimental Results

To evaluate the validity of our TFD algorithm, we conducted some experiments.

We implemented our algorithm in MATLAB for simulation with a threshold

T = 0.4.
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Figure 2.6: Overall TFD algorithm flow chart
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(a) (b) (c) (d)

Figure 2.7: (a) shows the ξACP comparison. Occlusion occurs as frame 56. (b) is
the tracking object image of frame 1. (c) and (d) are images of frame 58 and its
ACP image in Cartesian space and log-polar space respectively.

2.4.1 Effectiveness of Log-Polar Transformation and Initial Color

Model Generation

We verify our claim that log-polar space is suitable for TFD than cartesian space.

Fig. 2.7 shows a comparison between the ACP detection in two different spaces,

cartesian space and log-polar space. As we can see in Fig. 2.7(a), the change

around CTB is magnified in log-polar space. Also, while the tracking box size in

the cartesian space is 110x40, that in the log-polar transformed image is 36x15.

So using log-polar space can reduce the computation load 8 times less with better

performance. Fig. 2.8 shows the effect of setting initial color model. There are

several inner boundaries in RTO which induce false alarms. By setting initial color

model for GMM, we could achieve to give less alarms for inner boundaries.

To evaluate the performance of the proposed algorithm, we compare the TFD

accuracy with K-means Tracker TFD [5] (Because [5] is a tracker independent

TFD measure based method same as ours). As we can see in Fig. 2.9, our method

can afford to occlusion and scale changes not giving false alarm until tracker really

misses the target.
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Figure 2.8: The first row represents a TFD result without initial color model
generation and the second row is a TFD result by using initial color model.

2.4.2 Combining with various tracking algorithms

The proposed TFD method can be applied to any tracking algorithm. Fig. 2.10

shows combined TFD results with different tracking methods, kernel based track-

ing [28] and particle filter tracking [29]. Because our method evaluates current

tracking status not by an implicit similarity measure of tracker but by an explicit

tracking result image (which is analogous to the way of people make a decision),

we can see that our TFD method can be successfully combined with any kinds

of tracking algorithm.

The proposed method also can be used for enhancing tracking performance

by feedback. Fig. 2.11 shows tracking performances of IVT tracker [29] measured

by root mean square error (RMSE) comparing to ground truth. When tracking

failure measure increases, TFD makes the tracker to stop updating tracking tem-

plate models and widen particle spreading range. This feedback helps tracking

algorithm more robust.
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(a) Occlusion

(b) Scale change

Figure 2.9: K-means TFD gives an alarm when the score is over 0.7 (This value
is from [5]), and the proposed TFD gives alarm when the score is over 0.4. In
ground truth, tracking fail occurred at frames 35 in (a) because of occlusion and
frames 42 in (b) because of target becomes too small.
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Figure 2.10: The first and second rows show TFD results combined with kernel
based tracking [28] and the third and fourth rows are TFD results of particle
filter based tracking [29].
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Figure 2.11: Feedback of TFD enhances tracking performance. The blue and
red bold lines are averaged values of 10 results. Even the GMM initialization
has random factor of MSC, many experimental results show that the TFD can
improve the performance.

2.5 Final Remarks and Discussion

In this chapter, we presented a tracking failure detection method using the struc-

tured attentional sampling. Based on the knowledge of tracking and human visual

system, we designed the log-polar sampling as the sampling pattern of atten-

tional sampling. By adopting log-polar sampling for modeling retina image, we

could intensify the translational change. This property makes it possible to detect

tracking failure moment easily. We modeled ganglion cell adaptation using online

GMM and detected abrupt change in pixels. Experimental results show that the

properly designed structured attentional sampling can gives less false alarms with

less samples, and can be applied to any tracking methods.
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Chapter 3

Empirical Attentional

Sampling for Speed-up of

Background Subtraction

3.1 Introduction

The empirical attentional sampling scenario allows the sample location to be cho-

sen using the information collected up to that point[2]. So the sampling becomes

adaptive and flexible[21]. However, a prior information about the dependency

between samples and labels are necessary to design the sampling strategy. In this

chapter, a designing of an empirical attentional sampling strategy for background

subtraction algorithm is presented.

Background subtraction is a process which aims to segment moving fore-

ground objects from a relatively stationary background[30]. Recently pixel-based

probabilistic model methods [7, 8, 6, 9, 10, 11] gained lots of interests and have

shown good detection results. There have been many improvements in detection
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(a) (b) (c) (d) (e) 

Figure 3.1: Background subtraction by active attentional sampling mask. (a) In-
put video image (b) Foreground probability map (c) Active attentional sampling
mask (d) Sampled pixels (e) Foreground detection result

performance for these methods under various situations, but the computational

time still takes too much time. Computation time reduction issue is getting more

important in a systematic view, because the background subtraction is generally

considered as a low level image processing task, which needs to be done with little

computation, and video sizes are getting bigger.

To reduce computation time of background subtraction methods, several ap-

proaches have been studied. The first type of approach is based on optimizing

algorithms. Although the Gaussian mixture model (GMM) scheme proposed by

Stauffer and Grimson[6] works well for various environments, it suffers from slow

learning rates and heavy computational load for each frame[11]. Lee [31] makes

the convergence fast by using a modified schedule that gradually switches be-

tween two stage learning schemes. Zivkovic[9] achieved a significant speed-up

by formulating a Bayesian approach to select the required number of Gaussian

modes for each pixel in the scene. Gorur[11] modified Zivkovic’s method[9] by

windowed weight update that minimizes floating point computations. However

this optimization approach is hard to be generalized to all background subtrac-

tion methods. Also the speed-up ratio is not enough for real-time computation

in full HD videos.
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The second type of approach is using parallel computation. Multi-core pro-

cessors in a parallel form, using the OpenMP system are applied for speed-

up[32]. Also Graphical Processing Units (GPUs) are used to achieve real-time

performance[33] with computationally heavy algorithms. Pham et al.[12] per-

form real time detection even in full HD video using GPU. Until now, allegedly,

using GPUs is the only way to perform background subtraction of full HD video

in real time[12]. They could successfully achieve speed-up, but special hardware

resources are required.

A selective sampling based speed-up method is the third type of approach.

Park et al.[13] proposed a hierarchical quad-tree structure to decompose an in-

put image. A randomly sampled pixel, which is a node of the tree, is classified

as background or foreground. The corresponding node is divided into four child

nodes if it is foreground, and then the sampling procedure is carried out re-

cursively. Using the image decomposition, they could achieve the computational

complexity reduction. However, their algorithm may miss small objects because

they randomly sample from a relatively large region. Kim et al.[34] presented a

sampling mask designing method which can be readily applied to many existing

object detection algorithms. Lee et al.[14] proposed a two-level pixel sampling

method. They coarsely sampled pixels according to a regularly designed pattern

and then it refines the shapes of foreground objects. Their algorithm provides

accurate segmentation results without flickering artifacts. Kim et al.[34] and Lee

et al.[14] use compactly designed grid pattern masks to detect small objects, but

these grid patterns still cause redundant operations.

In this chapter, we propose a new method of the third type of approach

(sampling mask approach) which can be utilized together with the other two

approaches. We aim to find an active attentional sampling solution which can

be generally applied to most conventional background subtraction methods. We
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design a foreground probability map based on temporal, spatial and frequency

properties of the foreground region. Using previous foreground detection result,

the foreground probability map is updated. A sequential coarse-to-fine approach,

which involves sparse random sampling and filling in a space in attentional re-

gion according to the probability map, achieves a very significant reduction in

computation time without degrading the detection performance. Figure 3.1 illus-

trates the process of the proposed algorithm. By combining with conventional

background subtraction methods, our method makes these methods even be able

to handle full HD videos in real-time.

3.2 Overview

3.2.1 Motivation

We imitate the selective attention mechanism of human[35], where previously

recognized results are reflected in the focusing position of current frame. When a

guard monitors a CCTV camera, he/she does not concentrate on whole of the im-

age since he/she has empirically learned that the video image can be categorized

into background region, unimportant dynamic scene region and important mov-

ing object apprearing region. Then he/she takes his/her attention to the regions

which have moving object appearing intentionally and does a sparse scanning to

the other regions such as background or dynamic region. The key idea of proposed

approach is to simulate this selective attention scheme.

In general, most pixels from surveillance video are background region, and

foreground region takes very small portion in both spatially and temporally. We

have measured a percentage of the foreground area of commonly used data set in
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Data Set # of tested frames Mean(%) Std.

Wallflower 7553 5.03 6.25

VSSN2006 16074 2.30 1.13

PETS2006 41194 1.04 0.26

AVSS2007 33000 3.36 1.02

PETS2009 2581 5.48 1.58

SABS 6400 2.42 1.83

Average 2.42 1.18

Table 3.1: Statistical foreground region ratio of several widely used datasets. Only
2.42% of total pixels are foreground pixels.

background subtraction papers. The tested data sets are Wallflower1, VSSN20062,

PETS20063, AVSS2007 i-LIDS challenge4, PETS20095 and SABS[36]6. As we can

see in Table3.1, the proportions of foreground regions are very small. Hence, if

background substraction can be focused on foreground area, necessary calculation

would be reduced significantly. In this chapter we try to find attentional region

in a current frame considering foreground region detected in a previous frame.

3.2.2 Overall Scheme of Proposed Algorithm

Figure 3.2 shows the overall scheme of the proposed method. To get active sam-

pling mask for background substraction, we use three properties of foreground;

temporal, spatial, frequency properties. The temporal property is that a pixel is

more likely to be a part of the foreground region if it has been a foreground pixel

previously. The spatial property is that a pixel has a high probability of being a

foreground pixel if its surrounding pixels are of the foreground. The probability is

1http://research.microsoft.com/~jckrumm/wallflower/testimages.htm
2http://mmc36.informatik.uni-augsburg.de/VSSN06$\_$OSAC
3http://www.cvg.rdg.ac.uk/PETS2006/data.html
4http://www.eecs.qmul.ac.uk/~andrea/avss2007$\_$ss$\_$challenge.html
5http://www.cvg.rdg.ac.uk/PETS2009/a.html
6http://www.vis.uni-stuttgart.de/index.php?id=sabs
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Figure 3.2: Overall scheme of the proposed algorithm.

proportional to the number of surrounding foreground pixels. This spatial ergodic

property was also used in [37][30] for background modeling. The frequency prop-

erty is that if foreground/background index of a pixel is changed too frequently,

then the pixel is more likely to be a noise or dynamic background region. So the

probability of being a stable foreground region is low. Based on the properties,

we make a foreground probability map PFG (described in Section 3.3).

The active sampling strategy is updated in every frame according to the

foreground probability map (PFG)t−1. The strategy is composed of three sampling

strategies such as randomly scattered sampling, spatially expanding importance

sampling, and surprise pixel sampling, which are performed sequentially. We make

the sampling mask Mt at every frame (described in Section 3.4). Using sampling

mask Mt, selective pixel-wise background subtraction is performed, only for the

pixels of Mt(n) = 1 where n indicates the pixel index. This sampling mask can

be combined with any kind of pixel-wise background subtraction methods.

In addition, newly updated foreground probability map (PFG)t in the current
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frame is also used to refine the detection result. Detected pixels of low probability

region are filtered out except surprise pixels. This refining step reduces many false

alarms caused by dynmic background movements (regular movements such as tree

waving, fountain and water ripples) and small noises.

The background subtraction task finds a sequence of detection masks {D1, ..., DT }

using a sequence of video frames {I1, ..., IT } and sampling mask {M1, ...,MT }.

Each video image It, sampling mask Mt and detection mask Dt are composed

of N pixels {It(1), ..., It(N)}, {Mt(1), ...,Mt(N)} and {Dt(1), ..., Dt(N)} respec-

tively. All the masks are binary masks. In this chapter, selective pixel-wise back-

ground subtraction is performed, only for the pixels of Mt(n) = 1. The detection

mask at pixel n shall be denoted with the symbol D(n): D(n) = 0 if pixel n

belongs to the background and D(n) = 1 if it belongs to the foreground.

There are several empirical and theoretical results suggesting that use of data

collected in early stages can be significantly more efficient to guide the selection of

new samples [21, 22]. Conventional background subtraction algorithms are based

on passive sampling. The collection of sample points is chosen independent to

the labels, and a prior probability distribution of foreground is assumed uniform.

So, in order to detect unexpected foreground, the sampling becomes a full search

regardless of previous observations.

On the other hand, the active sampling scenario allows the sample location

to be chosen using the information collected up to that point[2]. So the sampling

becomes adaptive and flexible[21]. However, a prior information about the depen-

dency between samples and labels are necessary to design the sampling strategy.

In the following sections, we describe a way how to design the sampling strategy

using the properties of attentional foreground region.
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3.3 Foreground Probability Map Generation

3.3.1 Estimation of Foreground Properties

Estimation models are proposed to measure the temporal, spatial, and frequency

properties of each pixel. The three property measures are referred to as {MT ,MS ,

andMF }. The temporal property measureMT is estimated by the recent history

of detection results. The spatial property MS is estimated by the number of

foreground pixels around each pixel. The frequency propertyMF is estimated by

the ratio of detection result flipping over a period of time. All estimation models

are updated by a running average method, with learning rates αT , αF and αS

(all learning rates are between 0 and 1). The estimation models for the measures

of the properties are given in the following.

• Temporal propertyMT : At each location n, a recent history of detection

mask results at that location are averaged to estimate the property.

Mt
T (n) = (1− αT )Mt−1

T (n) + αTD
t(n). (3.1)

As the value of Mt
T (n) comes close to 1, the possibility of foreground ap-

pearance at the pixel is high.

• Spatial propertyMS : Detection results of nearby pixels are used to mea-

sure the spatial coherency of each pixel n.

Mt
S(n) = (1− αS)Mt−1

S (n) + αSs
t(n), (3.2)

(st(n) =
1

w2

∑
i∈N (n)

Dt(i)),

where N (n) denotes a spatial neighborhood around pixel n (w × w square

region centered at n).Mt
S(n) closer to 1 means high probability of being a
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part of the foreground.

• Frequency property MF : If detection results have been changed twice

during previous three frames, we consider it as a clue of dynamic scene.

Mt
F (n) = (1− αF )Mt−1

F (n) + αF f
t(n), (3.3)

f t(n) =


1 (Dt−2(n) 6= Dt−1(n))

&(Dt−1(n) 6= Dt(n))

0 otherwise .

where f t(n) denotes a frequently changing property at n. Unlike the other

measures, the pixel n has a high probability of being a foreground, as the

value Mt
F (n) is close to 0.

3.3.2 Foreground Probability Map: PFG

Background detection considers only the background model, and the foreground

probability map is usually considered to be uniform, which means no prior shape

of orientation of the foreground is explicitly assumed. Our aim is to replace the

naive, uniform foreground probability density model with a more accurate esti-

mate based on the previous detection results and the three foreground properties.

By estimating the three foreground properties, we get the three measurements,

MT ,MS , and MF . Every measurement has a value between 0 and 1. So we

define the foreground probability for a pixel n at frame t as

P tFG(n) =Mt
T (n)×Mt

S(n)× (1−Mt
F (n)). (3.4)

The foreground probability map P tFG is a composition of {P tFG(n)}Nn=1.
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3.4 Active Sampling Mask Generation

The sampling mask Mt is obtained by a combination of three masks by a pixel-

wise ‘OR’ operation (⊕) as

Mt = Mt
RS ⊕Mt

SEI ⊕Mt
SP , (3.5)

where Mt
RS , Mt

SEI and Mt
SP are sampling masks of randomly scattered sam-

pling (SRS), spatially expanding importance sampling (SSEI) and surprise pixel

sampling (SSP ) respectively.

At each sampling stage, the sampling masks are generated based on the

foreground probability map PFG and foreground detection result D. We design

the active sampling strategies as

Mt
RS = StRS(Mt−1

RS , D
t−1, P t−1

FG ), (3.6)

Mt
SEI = StSEI(M

t
RS , P

t−1
FG ), (3.7)

Mt
SP = StSP (Mt

RS , D
t−1, P t−1

FG ). (3.8)

Figure 3.4 shows the foregorund property measurements, corresponding sam-

pling mask Mt and foreground detection results with and without Mt. In the

following, we describe the details on the sampling strategies in (3.6), (3.7), and

(3.8).

3.4.1 Randomly Scattered Sampling

First, 100 × ρ% (usually ρ 0.05 to 0.1) pixels of the entire pixels are selected

through randomly scattered sampling. Uniform random sampling approximates

that every pixel is checked probabilistically on average once among 1/ρ frames.
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(a) (b)

(c) (d)

Figure 3.3: Active attentional mask generation. (a) is a current input video image.
(b) shows the active attentional mask used for background subtraction. The white
points are randomly scattered sampling mask Mt

RS . The blue pixels represent
Mt

SEI and the red regions are Mt
SP . As we can see in (b), most of mask Mt

become zeros. The mask, whose redundancy is removed, optimizes the necessary
computational load. (c) Foreground detection result by GMM method [6] with
the active mask. (d) Foreground detection result by GMM method [6] without
the mask.
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Figure 3.4: Foreground probability map generation. (a) Temporal property Mt
T .

(b) Spatial property Mt
S . (gc) Frequency property Mt

F . (d) Foreground proba-
bility map P tFG
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The number of random samples Ns is ρN . This number is constant for all frames.

However, some of the random points generated in the previous frames are worth

to be preserved. The determination of these points are based on the amount

of information measured by the foreground probability P t−1
FG . A sample point n

which was Mt−1
RS (n) = Dt−1(n) = 1 is used again in current frame(Mt

RS(n) =

1). Therefore, the number of reused samples Nreuse changes adaptively. Then,

Ns −Nreuse samples are resampled randomly across the entire image.

3.4.2 Spatially Expanding Importance Sampling

The randomly sampled mask Mt
RS is too sparse to construct a complete fore-

ground region and might miss small objects. It is therefore necessary to fill the

space between sparse points in the foreground region. In order to fill the space, we

develop an appropriate importance sampling solution focusing only on necessary

region compactly.

Conventional importance sampling[38] draws samples densely where the im-

portance weight is high. In our case, the sampling mask should cover all of the

foreground pixels and so the dense sampling is not enough in the foreground re-

gion. To solve this full coverage sampling problem, we propose a spatially expand-

ing importance sampling method which expands the sampling area proportional

to the importance weight at every point of Mt
RS = 1 as shown in Figure 3.5. The

shape of the expanded region is a square with width of ζt which depends on the

importance weight at the ith randomly scattered sample. Even though the square

regions are overlapped, they are depicted by one region with Mt
SEI = 1 as shown

in Figure 3.5.

If the proposal distribution is assumed as an uniform distribution, importance

weight of each randomly scattered sample i (where Mt
RS(i) = 1) becomes rt(i) =

P tFG(i). Proportional to rt(i), we expand the sampling region N (i) with size of
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Figure 3.5: Spatially expanding importance sampling mask MSEI generation by
foreground probability map PFG. (a) is PFG. (b) For each point of MRS , the
spatially expanding region width ζs is calculated. (c) The mask MSEI is generated
by setting all the inside points of the square to 1.
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(a) (b) (c)

Figure 3.6: The effect of the parameter k. (a) rt = 1, k = 1. (b) rt = P tFG, k = 1.
(c) rt = P tFG, k =

√
3.

ζt(i)× ζt(i) centered at pixel i, i.e.

Mt
SEI(N (i)) = 1. (3.9)

The spatially expanding width ζt(i) is determined as

ζt(i) = round(rt(i)× ωs), (3.10)

ωs = k
√
N/Ns. (3.11)

ωs is an expanding constant with parameter k (usually k is
√

3 or
√

5).

Figure 3.6 shows how ωs is designed and the effect of the parameter k. As shown

in Figure 3.6(a), the ωs with k = 1 and rt = 1 implies a width of one square under

an assumption that the image is equally decomposed into Ns squares centered at

regularly distributed Ns samples. However, in actual situation, the Ns samples

are not distributed regularly and most of rt are less than 1. So the sampling

mask Mt
SEI can not cover the estimated foreground region compactly as shown

in Figure 3.6(b). The parameter k (larger than 1) expands the sampling masks

so that the masks cover the foreground region compactly (Figure 3.6(c)). As we

can see in Figure 3.3(b), high foreground probability regions are widely sampled

and most of ζt(n) are 0 in low probability region.
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3.4.3 Surprise Pixel Sampling Mask

Even if we estimate the foreground probability correctly, the foreground detection

still has unpredictability intrinsically. Abnormal foreground is caused by sponta-

neousness. For example, a person or a car suddenly appears from a new direc-

tion, or a thief enters into a restricted area. These surprisingly appearing moving

objects should be detected successfully. In addition, rarely appearing very fast

moving objects could be lost, because the spatially expanded region may not be

wide enough.

The randomly scattered samples become important when capturing these

unpredictable cases. A pixel is defined as a surprise pixel if it was foreground in

the previous frame even though its foreground probability is small. Because the

foreground object is not expected to exist there, the observation of foreground

pixel is very surprising. So by widening the sampling area around the pixel in a

current frame can find new foreground pixels. For pixel i (where Mt
RS(i) = 1),

the surprise pixel index ξt(i) is given by

ξt(i) =


1 (P t−1

FG (i) < θt−1
th )&(Dt−1(i) = 1)

0 otherwise .

(3.12)

where θt−1
th = max(P t−1

FG /ωs). Surprise pixel sampling mask is generated as Mt
SP (N (i)) =

1 for N (i) region (ωs × ωs region centered at i if ξt(i) = 1).

3.5 Computational Efficiency Boundary

We calculate a computational efficiency of the proposed method (CP ) comparing

to the conventional full search method (CF ). α and αstd imply an average ratio

(from 0 to 1) of foreground pixels and its standard deviation in a video, respec-
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tively. β is a computational complexity ratio of each computation block (such as

PFG,M
t
RS ,M

t
SEI ,M

t
SP generation) of proposed method comparing to original

detection method. βmax and βmin are the largest and smallest value, respectively.

Other parameters (ρ and k) are described above. The detailed derivation of the

efficiency boundary is given in Appendix A of this thesis. The derived efficiency

boundary is given

(α− αstd) {βmin + (1− ρ)(1 + βmin)}+ ρ(1 + 2βmin)

<
CP
CF

< (α+ αstd)k
2 {βmax + (1− ρ)(1 + βmax)}+ ρ(1 + 2βmax). (3.13)

Figure 3.7 is a simulated result of the efficiency boundary. We have validated

the analysis result (3.13) through actual experimental values. In our implemen-

tation GMM[6] method and SABS dataset [36] is used with βmin = 0.03, βmax =

0.33, k =
√

3 and ρ = 0.05. In this case, actual CP /CF is 0.25 which is between

lower bound (0.06) and upper bound (0.29) of analysis (3.13). Also we verified

that actually measured computational efficiency is placed in the middle of the

derived lower bound and upper bound as shown in Figure 3.8.

3.6 Experimental Results

We evaluated the performance of the proposed method on several video se-

quences of various resolutions and situations to prove its practical applicabil-

ity. The results are compared to the existing background subtraction methods

such as GMM[6], KDE[8], efficient GMM[31], shadow GMM[10], Zivkovic[9]7,

and Gorur[11].

7implementation from author: www.zoranz.net
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Figure 3.7: Derived efficiency bound of CP /CF . (a) is a lower bound and (b) is a
upper bound.
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Figure 3.8: Experimental verification of the derived efficiency boundaries.

We implemented our algorithm in C++ for simulation with Intel Core i7

2.67GHz processor and 2.97GB RAM. Throughout the whole experiments, we do

not use any kind of parallel processing methods, such as GPUs, OpenMP, pthread,

and SIMD(single instruction multiple data). We have implemented the algorithm

to be computed in a sequential way in a single core, to show its efficiency. The

parameters of background subtraction methods are optimized one by one for

various videos as was in [36], but the parameters of the proposed method are the

same regardless of combining detection methods and testing videos. The used

parameters are αT = 0.1, αF = 0.01, αS = 0.05, ρ = 0.05 and k =
√

3.

3.6.1 Efficiency of Active Attentional Sampling

We have monitored sequential intensity changes of two pixels (A and B) in Figure

3.9(a) (AVSS i-LIDS dataset is used). A is from a road and B is a pixel of a

building wall. Active attentional sampling resulted in different number of samples.
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Sampling Method A B

Uniform Sampling 20.09 3.04
Proposed Sampling 9.64 3.79

Table 3.2: Estimation accuracy comparison in RMSE.

As we have expected, the road pixels are more frequently sampled. Also the

effectiveness of active attentional sampling is compared with uniform sampling.

As shown in Figure 3.9, the proposed sampling does not miss critical points

(such as radically changing values). We have measured the RMSE (root mean

squared error) of two different sampling methods in Table 3.2. The results show

that the proposed sampling catches pixel value changing moment adaptively and

accurately with much less samples.

3.6.2 Detection Performance Comparison

The SABS dataset[36] is used to test detection performance of the proposed

method over various situations. The SABS dataset is an artificial dataset for pixel-

wise evaluation of background subtraction method. For every frame of each test

sequence, ground-truth annotation is provided as foreground masks. Even though

it is generated artificially, there are realistic scenarios such as light reflection,

shadows, traffic lights and waving trees. When considering the fact that the best

F1-Measure in [36] is just 0.8, SABS datasets are difficult enough to evaluate the

performance of algorithm. The correctness of foreground detection is expressed

by F1-Measure as in [36] which is a harmonic mean of recall and precision,

F1 = 2× recall × precision
recall + precision

. (3.14)

Detection results are optimally tuned and the value of Figure 3.10 is an average

of each frames’s F1-Measure over whole sequences. The proposed method can
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Figure 3.9: The intensity of pixel A changes frequently because of the crossing
cars. The value of B remains almost unchanged. The graphs show the intensity
values and bars under the graphs indicate the sampled positions. For pixel A, the
active attentional sampling samples 256 times and 25 times for pixel B during 500
frames. The same number of samples are generated uniformly for each sequence,
and the piecewise constant interpolation is performed to reconstruct the sequence.
(b) and (d) show estimated intensity graphs by proposed sampling method for A
and B, respectively. (c) and (e) are reconstructed graphs by uniform sampling.
We can see that the proposed one concentrate the sampling on the foreground
pixels in frames with moving objects.
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Figure 3.10: Best F1-Measure for various background subtraction methods. Post
image processing methods, such as opening/closing, also can be used.

be successfully combined with various background subtraction methods and post

image processing methods without performance degradation.

3.6.3 Speed-up Performance Comparison

Figure 3.11 shows computation time speed-up results. The proposed method sig-

nificantly shortens the detection time (on average 6.6 times). Fast detection al-

gorithms show relatively small speed-up ratio than computationally heavy algo-

rithms. This is because the mask generation time becomes relatively large com-

pared to the detection time.

Figure 3.12 shows computation time changes over frames. GMM[6] method

and SABS video[36] (bootstrap video) are used for the test. The computational

time of the proposed method increases as the ratio of foreground region becomes

large. However, the original GMM also takes more time when the foreground

region increases. So the ratio of speed-up is maintained uniformly.
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Figure 3.11: Comparisons of the computational time speed-up. The tests were
performed with full HD videos. The speed-up ratio of computationally heavy
algorithms, such as GMM[6], shadow GMM[10] and KDE[8], is approximately
8.5 and the speed-up ratio of fast detection algorithms, such as Zivkovic[9] and
Gorur[11], is approximately 3.
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Figure 3.12: Computational time changes over foreground region ratio. The fore-
ground region varies from 0 % to 10%. Not only the proposed method but also the
original detection [6] takes more time as the ratio of foreground region increases.
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Park et al. [13] Kim et al. [34] Lee et al. [14] Proposed

Speed-up Ratio(%) 218.1 273.5 284.7 656.2
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Figure 3.13: Comparison of selective sampling-based speed-up methods. All the
methods were commonly applied to GMM [6].

Also, we have compared the computational complexity reduction performance

with similar selective sampling-based methods; Park et al.[13], Kim et al.[34] and

Lee et al.[14]. All speed-up performance data are based on the optimized values

of the original paper. Figure 3.13 show the average speed-up performances. The

speed-up ratio of our method outperforms the others. The other subsampling

strategies are pre-designed regardless of video situation. So many unnecessary

samplings are inevitable because of the regularly designed sampling pattern. This

causes redundant calculations. The sampling strategy of our method is totally dif-

ferent from the grid pattern based subsampling approach. Proposed probabilistic

sampling approach is more adaptive to various video situations and becomes more

efficient by reducing redundant calculations.
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Method Original(FPS) Proposed(FPS)

GPU [12] 78.9 -
GMM[6] 1.6 18.6
KDE[8] 3.5 31.5

Efficient GMM[31] 3.4 23.5
Shadow GMM[10] 2.2 23.5

Zivkovic[9] 9.7 29.7
Gorur[11] 11.8 33.7

Table 3.3: Comparisons of detection time in full HD videos (1920×1080) in terms
of frame rate (FPS).

3.6.4 Real-time Detection in Full HD Video

Until now, allegedly, using GPU is the only solution of real time detection in

full HD video[12]. However, as shown in Table 3.3, our method makes it possible

for the conventional pixel-wise background subtraction methods to be used for

high resolution videos in real-time. The experiments are performed with GeForce

GTS 250 (128 CUDA cores) for GPU version [12]8 and a single core processor for

the others. Every detection method is applied to a full HD video (1920 × 1080)

with optimal parameters and detection time is measured with and without our

method, seperately.

3.7 Final Remarks and Discussion

The computational time problem of background subtraction is very critical be-

cause it is generally considered as a lower level image processing task and the

video size is getting bigger. In this chapter, we proposed a speed-up method

of conventional background subtraction algorithms using temporal attentional

sampling mask generation method based on empirical attentional sampling con-

8implementation from http://www.codeproject.com/KB/GPU-Programming/cubgs.aspx
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cept. The motionless background region can be skipped by attentional sampling.

We designed a foreground probability map by measuring three foreground re-

gion properties, and active attentional sampling is performed to make a sampling

mask. Various experiments show that the proposed method can speed up about

6.6 times without detection performance deterioration. Also our method makes

it possible for the conventional background subtraction algorithms to perform

real-time detection in Full HD videos with a single core processor.
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Chapter 4

Selective Attentional Sampling

for Recognition of Pop Dances

4.1 Introduction

The selective attentional sampling strategy is similar to feature data selection.

This sampling can be useful if some characteristic data points are appeared repet-

itively with a similar pattern. By designing the importance measure function of

each data point, M(I; Ψ) in section 1.2.3 with proper prior knowledge about

the target data, the selective attentional sampling can filter out many redundant

data. So this sampling scheme requires a highest level prior knowledge about

the target application among the proposed three attentional sampling methods,

because the selected few sample points should be informative enough to rep-

resent the characteristics of the rest points. Therefore the selective attentional

sampling is appropriate to high level vision problems which are based on high

level informative features such as action recognition, object recognition and scene

understanding. In this chaper, we present how the selective attentional sampling
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scheme can be used for complex action recognition, especially Pop dance recog-

nition. Figure 4.1 is a conceptual illustration of the presented scheme.

Action recognition has been widely studied for decades and there are many

successful approaches in recognizing simple actions [15]. Recently, following the

success of simple action recognition, more realistic and complex activity recogni-

tion tasks have been dealt with. Research on complex activities has progressed

to the recognition of real videos such as internet videos [16] or surveillance

videos [39], human interactions [40, 15], group activities [41, 15] and temporally

composed action sequences [17]. However, the current status of the research on

complex activities is in its initial phase, far from the recognition ability of human.

In our work, we are interested in a new class of complex activity, namely rec-

ognizing action streams that are natural, temporally long, not repeated, and not

able to be simply annotated into parts (unannotatable). Example of such action

streams are dances, pantomimes, and monodramas (illustrated in Figure 4.2).

Difficulty in recognizing such action streams arises from the flexibility and the

high dimensionality of the human body and motion. Also, even the same actions

are expressed differently depending on the body shape and habits of the actor.

Dance is a good example of these kinds of complex activities. Even people dancing

together to the same music, such as the famous ‘Macarena’ or ‘Gangnam Style,’

may show different pose, motion duration, speed, etc. However, people can easily

recognize the name of dance and catch distinctive motion parts without much

effort. A reliable and efficient solution to this problem would be useful for various

areas, such as dance video categorization, abstraction and retrieval in YouTube,

or real-time dance scoring games.

Recognizing these unannotatable action streams, having natural, diverse, and

flexible motions, is not an easy task. We need good features and strong and ef-

ficient classifiers able to deal with long and complex sequences. Various features
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Figure 4.1: A conceptual illustration of selective attentional sampling in spatio-
temporal space for the complex action recognition. Among many action data
flows, shaded regions are characteristic regions which are found by the importance
measure function M(I; Ψ). Action data points only in the characteristic regions
are sampled for recognition.
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Figure 4.2: Sample frames of action recognition datasets. The first row is from
KTH [42] and Weizmann [43] dataset. The secont and third rows are from
HMDB51 [44] and Olympic Sports dataset [17] respectively. The fourth row is
from ballet dataset [45]. The last row is from the proposed Pop-Dance dataset.
Frames of KTH, HMDB51 and Olympic Sports dataset are easy to be named
such as punching, running, kissing, shooting gun, smoking, high jump etc. Es-
pecially the ballet motions and postures have very specific names ‘Pas de chat’,
Arabesque, Fouetté en tournant, and Grand jeté (from the left). Compared to
these actions, all actions of the Pop-Dance dataset are unannotatable. They only
can be named as a part of each dance.
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have been proposed for behavior recognition until now, but they cannot be used

directly in our case. Local features, such as HoG/HoF [18] and cuboids [19], rep-

resent local spatio-temporal changes as a vector. The local features can represent

motion changes with small numbers of features, but they cannot imply temporal

ordering and arrangement of features in the action sequence [17]. Global spatio-

temporal templates such as spatio-temporal shapes [43] and motion history [20]

have been proposed to contain such temporal ordering of motions and repre-

sent human body pose changes along temporal sequence. Also Fathi et al. [46]

proposed mid-level motion features which are built from low-level optical flow

information by a learning method. These methods contain more motion infor-

mation than local features, but are not appropriate for long sequence since they

require extensive memory and are computational complex.

Classifiers used for traditional methods are also not suitable in our case. Dy-

namic time warping (DTW) algorithm and its variations [47, 48, 49, 50, 15] is

one of the successful methods used for behavior recognition. However the DTW

algorithm takes polynomial time and memory complexity finding the optimal

nonlinear match between two feature flows. Also some probabilistic state transi-

tion models, such as Hidden semi-Markov Models (HSMMs) [51] and Conditional

Random Fields (CRFs) [52], have been used for modeling temporal structure but

they require predefined states which are not straight forward in our case. Re-

cently, [17, 16] modeled the temporal structure using latent SVM. However, the

number of low-level events/actions should be predetermined which is also not

possible for our case of the unannotatable and undecomposable action sequences.

In this chapter, we propose a flexible and efficient method for recognizing

pop dances, which is a presentable example of unannotatable action streams

with natural, diverse, and flexible motions. Since conventional low-level and mid-

level features are not enough, we propose a new method for mid-level feature
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generation from various local features representing diverse motion characteristics.

The method characterizes global and sequential motion changes by a feature

flow which require small memory, suitable for long sequences. To overcome the

limitations of traditional classifiers, we propose a novel recognition method which

catches and focuses on distinctive instances along the complex motion flow and

efficiently recognizes long and complex sequences with promising performance.

To catch distinctive instances in the motion sequences, we propose a method

based on zero-velocity points. There have been lots of researches [53, 54, 20, 55]

using the zero-velocity or zero-crossing points of the stream of motion feature.

They are usually used for motion segmentation in relatively short sequences, be-

cause a little noise will result in many false segments. This makes the zero-velocity

based method be applicable to long sequences robustly. However, in our method,

we propose a new filtering method (refered to as “attention measure method”)

for removing false detections, thus making the zero-velocity based method to be

applicable for long sequences. After the filtering process, instances that survive

are distictive instances decribing the action stream. We will refer to these in-

stances as Attentional Motion Spot (AMS), which are automatically determined

in our scheme.

Our recognition method then focuses on this AMS. AMSs appear in a similar

spatio-temporal pattern for the same class of dances. We group nearby AMSs

together and model each group using generative Gaussian mixture models (GMM)

in spatio-temporal space. The temporal sketch of this model looks like a music

chart, thus we name our model as Action Chart. Action Charts describe motion

types and temporal motion sequences as if they are notes and rhythms of songs. In

order to test the validity of our method, we have built a new dataset composed of

various dancing sequences, which are difficult to be discriminated by the existing

methods. Several experiments are conducted to analyze the effect of each mid-level
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Figure 4.3: (a) Overall scheme of building Action Chart and using it for action
recognition. (b) shows the generated Action Chart of “You and I” by IU.

feature and the results show that our method has good recognition performance

with low computational complexity.

4.2 Action Chart

The proposed Action Chart is obtained by the following five steps: (1) extracting

low-level features, (2) generating a mid-level motion feature using extracted low-

level features, (3) embedding the mid-level feature to a low dimensional vector

in order to represent the activity as temporal motion feature flow, (4) detecting
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AMS in the feature flow, and (5) constructing Action Chart by modeling the AMS

action distribution in spatio-temporal domain. Figure 4.3(a) shows the overall

scheme of the proposed method.

4.2.1 Motion Feature Flow (MFF)

In order to generate the Action Chart, the complex and long motion variations

should be represented as a feature sequence. The feature sequence should contain

abundant motion properties in low dimensions. In order to achieve this require-

ment, we develop a new mid-level motion feature constructing method which

uses low-level local feature information. We named the mid-level motion feature

as motion feature flow (MFF).

Conventional low-level local feature detectors such as Gabor filtering [19] and

Harris-3D [18] find local motion changes in spatio-temporal space, and local fea-

tures such as cuboids [19] and HoG (Histogram of Gradient) and HoF (Histogram

of Flow) descriptors [56] are independent to each other in space and time. For

the description and recognition of long actions, global temporal motion change

information are more important rather than accurate portrayal of short time mo-

tion. So the local features are unsuitable to recognize long and complex action

sequences which should be represented as consecutive actions.

Low-level Features

To build a good mid-level feature, we use both the Gabor filtering detector [19]

and the Harris-3D feature point detector [18] with HoG/HoF descriptor [56].

The two detectors behave differently having their own strong points. As shown

in [57], Gabor filtering finds much more features than Harris-3D, with filter re-

sponses available for each feature point. On the other hand, Harris-3D detector
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shows good recognition performances when it is combined with HoG/HoF de-

scriptors [57]. We extract them both in our case to use the strong points of both

features.

The feature points are detected in a stack of images denoted by I = {I(x, y, t)|t =

1, ..., N}. Feature point sets of each frame detected by Gabor filtering are rep-

resented by {P 1, ..., PN} and each P t at frame t not only contains the feature

location information px and py, but also has the filter response value r ( i.e.

P t = {ptx(i), pty(i), r
t(i)|0 ≤ i ≤ ntp} where ntp is the number of features detected).

Also the other local features, which are detected by Harris-3D detector and de-

scribed by HoG/HoF descriptors, are quantized by a descriptor codebook, which

is obtained by k-means clustering (we set k as 1000 in the experiments.) of the

descriptors in the training set.

MMF Generation

The MFF (M) is composed of general (MG) and particular (MP ) motion fea-

tures. The MFF M is a temporal flow of N features, that is, M = {Mt|t =

1, . . . , N}. Each Mt is represented as a 21-dimentional vector. The general mo-

tion feature MG is composed of five measurements; motion intensity (mI), mo-

tion extent (mE), motion speed (mS), motion distinctiveness (mDIS) and motion

diversity (mDIV ). The motion intensity, extent, and speed represent quantita-

tive property of motion while the distinctiveness and diversity reflect qualitative

property of motion. At every tth frame, the five measurements are obtained in

the following.

• Motion intensity mt
I : Gabor filtering finds a pixel whose intensity has

been changed for short time. If we assume that the intensity change is caused

by motion, the number of detected feature points would be proportional
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to motion intensity. More local features will be detected around a high

intensity motion area. So we measure the motion intensity by the number

of cuboid features as

mt
I = ntp. (4.1)

• Motion extent mt
E : Motion extent measures how widely current motion

is occurring and it is measured by spatial distribution of feature points.

We measure the motion extent by a norm of standard deviations of feature

point locations as

mt
E = (

1

ntp
{
nt
p∑

i=1

(ptx(i)− µtx)2 +

nt
p∑

i=1

(pty(i)− µty)2})
1
2 , (4.2)

where µtx = 1
nt
p

∑nt
p

i=1 p
t
x(i) and µty = 1

nt
p

∑nt
p

i=1 p
t
y(i).

• Motion speed mt
S : Gabor filtering detector is tuned to fire whenever vari-

ations in local image intensities contain periodic frequency components or

spatio-temporal corners. This means that action in the same period of the

filter will give a strong response to the filter, and slow action or pure trans-

lation motion will induce small response. We set the period of the filter

to 15 frames/sec which means the motion with period of 0.5 seconds in 30

frames/sec video will give the strongest response. However human motion is

not faster than this in general, so we consider small response is only caused

by slower motion than the period time. So the motion speed is measured

by sum of filter response values as

mt
S =

nt
p∑

i=1

rt(i). (4.3)
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• Motion distinctiveness mt
DIS : Motion distinctiveness measures how much

current motion (at t frame) is changed comparing to the previous motion

(t−1 frame). It is well known that the histogram of bag-of-words codebook

can describe a short motion as a vector [56, 57]. ht represents a normalize

histogram of codebook memberships of 100 frames centered at time t. So

we measure the motion changes by chi-square distance between ht−1 and

ht as follows,

mt
DIS = χ2(ht−1, ht) =

k∑
i=1

(ht−1(i)− ht(i))2

ht−1(i) + ht(i)
. (4.4)

• Motion diversity mt
DIV : Various codebook memberships of ht imply that

the current motion is composed of diverse local motions. So we measure the

codebook diversity by entropy of ht as

mt
DIV = −

k∑
i=1

ht(i) log ht(i) (4.5)

Each measurement is one-dimensional data sequence. By concatenating the

five motion measurementsMT
G = [mI ,mE ,mS ,mDIS ,mDIV ], the general motion

feature MG becomes a five-dimensional data sequence (MG ∈ R5×N ).

The particular motion feature MP = {mP (n)|n = 1, ..., 16) represents the

number of local feature points p(x,y) and their relative location using a concentric

16-bin histogram method as shown in Figure 4.4. We place the center of the con-

centric circular bin at the estimated center of human and the radius of the circle

is the same as the half of human height. The center position and the height can

be estimated using foreground information or human detection algorithm [55]. In

this chapter we estimate the values of current frame using the locational infor-

mation of feature points of the previous 100 frames. The mean of feature point

61



0 2 4 6 8 10 12 14 16
0

5

10

15

bin

# 
of

 fe
at

ur
e

ℳ𝑃= [2 0 0 0 1 0 2 3 0 1 15 0 0 1 12 3]T 

Figure 4.4: Particular motion feature MP .

locations is estimated as the center and the mean of the maximum distances from

the center is estimated as the half of human height.

Finally, the MMF at time t becomes

(Mt)T = [Mt
G,Mt

P ] = [mt
I ,m

t
E ,m

t
S ,m

t
DIS ,m

t
DIV ,m

t
P (1, . . . , 16)]. (4.6)

The measured data flow is too peaky because of noises, so we smooth the data

flow using local polynomial regression fitting [58] with a low degree of smoothing

(span=0.03).

4.2.2 Hierarchical Low Dimensional Embedding

To avoid the curse of dimensionality in analyzing motion streams, the MFFM is

required to be embedded to a lower dimensional space. There have been some ef-

forts to find the most appropriate low-dimensional embedding method for action

recognition [59, 60]. Wang et al. [55] have experimentally verified that linear meth-

ods (such as Principal Component Analysis (PCA), Linear Discriminant Analysis

(LDA) and Locality Preserveing Projections [55]) outperform nonlinear methods

(Locally Linear Embedding (LLE) [61] and Laplacian Eigenmaps (LE) [62]) in

action recognition. This conventional linear embedding method considers all di-

mensions of high-dimensional data at the same level and linearly combines them.
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Figure 4.5: Concept of the HLDE and the embedded data sequences of “Gee” by
SNSD. Different color implies different people.

HoweverM consists of two information groups;MG andMP . They have different

numbers of dimensions and each dimension has different amounts of information.

Each dimension of MG implies distinctive motion information while 16 dimen-

sions of MP represent only one motion information in a combination. In other

words, the importance of each dimension is different.

To handle this problem, we propose a hierarchical low dimensional embedding

(HLDE) method. First, we embed five dimensional general feature vector MG

into a two dimensional vector UT = [u1, u2] using PCA and we simultaneously

apply Mean and Standard deviation-distance embedding (MSDE) [63] to reduce

the particular feature vector MP having 16 dimensions into a two dimensional

vector V T = [v1, v2]. Then, we perform PCA again on the four dimensional vector

W T = [U, V ] = [u1, u2, v1, v2] reducing it to a two dimensional feature vector

XT = [x1, x2]. In figure 4.5, we show the concept of the proposed HLDE and

an example of the embedded results XT = [x1, x2]. As we can see, the principal

dimensional data x1 contains more characteristic motion information than the

second dimension x2. Since our goal is to recognize the dance class, using only

the principal dimension x1 for recognition (X = {x1}) is sufficient.
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4.2.3 Attentional Motion Spot Selection

Psychological study [64, 65, 66] reports that dividing ongoing activity into mean-

ingful actions is essential for perception and later memory, and the segmenta-

tion is strongly related to motion changes [64]. By mimicking the human per-

ception mechanism, we propose a method to catch and focus on distinctive in-

stances along the motion flow X. The motion feature data X is a sequential data

X = {xt|t = 1...N}. We define these distinctive instances as attentional motion

spot (AMS) and we use velocity (first derivative) of X to find the AMS, similar to

human using motion changes as a clue for segmentation. We define a zero-velocity

point set Z = {z1, z2, . . .} = {t|∆tx
t = xt+1 − xt = 0} and convexity index ξt as

ξt =


1 ∆2

tx
t ≤ 0

−1 ∆2
tx
t > 0 ,

(4.7)

where ∆2
tx
t = ∆tx

t − ∆tx
t−1. The number of zero-velocity point is determined

adaptively. To avoid the false detection problem which other methods using zero-

velocity [53, 20, 55] suffer from, we introduce an attention measure η at jth

zero-velocity point zj defined as

η(zj) =

∣∣∣∣xzj − xzj−1

zj − zj−1

∣∣∣∣+

∣∣∣∣xzj+1 − xzj
zj+1 − zj

∣∣∣∣ . (4.8)

We use η to filter out the noisy zero-velocity points by thresholding and make

an attentional point set T = {τ1, τ2, . . . , τn} = {zj |η(zj) > ε} (ε is 0.005 in

the experiments) as shown in the first chart of Figure 4.6. n is the number of

attentional points determined automatically. The ith AMS of X is composed of

two components; (for about ith AMS) attentional point τi and its corresponding
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convexity indexed xτi value. The AMS set Ψ is defined as

Ψ = {ψ1, ψ2, . . . , ψn}, (4.9)

where ψTi = [τi, x
τiξτi ] (see the second chart of Figure 4.6).

4.2.4 Action Chart Generation and Recognition

The Action Chart is the multivariate Gaussian model of AMSs in spatio-temporal

domain. In order to generate the Action Chart of each action class c ∈ 1...C,

training motion streams Xc
s (s ∈ 1...Sc) are temporally aligned using DTW [67]

and the AMS set Ψc
s is generated independently. After all AMSs are generated

from all motion streams for an action class, they are placed on a spatio temporal

space. We then group the closely placed AMSs based on temporal proximity as

shown in the third row of Figure 4.6.

We group AMSs which are temporally placed within δ frames (δ is 50 in the

experiments). We denote the group set as G. The number of groups of c class

N c
G and the number of AMSs of gth group N

(c,g)
E are automatically decided. Each

group is modeled as a weighted multivariate Gaussian model ωcgN (µcg,Σ
c
g), where,

ωcg =
N

(c,g)
E

Sc
, (4.10)

µcg =
1

N
(c,g)
E

∑
ψc
i∈Gc

g

ψci , (4.11)

Σc
g =

1

N
(c,g)
E

∑
ψc
i∈Gc

g

(ψci − µcg)(ψci − µcg)T (4.12)

The class of the test action stream Xtest is determined through maximum

likelihood estimations. The AMS set of Xtest is obtained and represented as

Ψtest = {ψtest1 , ..., ψtestntest}. The class recognition is performed by matching the
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Figure 4.6: Illustration of AMS selection and Action Chart generation
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Ψtest and the generated Action Chart of each class c ∈ 1...C one by one,

p(Ψtest|c) =
1

N c
G

ntest∑
i=1

Nc
G∑

g=1

ωcgN (ψtesti |µcg,Σc
g) (4.13)

C(Xtest) = argmax
c

p(Ψtest|c). (4.14)

4.3 Experimental Results

To evaluate the validity of the proposed method, we have compared our method

with other well known methods [56, 17]. The evaluation was performed with syn-

thesized complex actions using the Weizmann dataset [43] as in [17] and our

own action dataset named Pop-Dance dataset. We implemented our algorithm

and the method by Niebles et al. [17] in Matlab for simulation with Intel Core i7

3.40GHz processor and 16.0GB RAM. The parameters and inital values in Niebles

et al. [17] were carefully optimized one by one for various datasets, while the pa-

rameters of the proposed method were set to the same regardless of datasets.

We used the binaries provided by [56] to extract Harris-3D feature point and the

HOG/HOF feature descriptors, and matlab code for Gabor filter based feature

detector were provided by the author of [19]. VLFeat library [68] was used to ob-

tain the bag-of-words codebook and SVM was implemented using LIBSVM [69].

4.3.1 Pop-Dance Dataset

Well-known action datasets such as KTH [42], Weizmann [43] and HMDB51 [44]

datasets are relatively short and contain only one action in a video clip. Therefore,

they are not appropriate for evaluating an algorithm for recognition of complex
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Figure 4.8: Sample frames of Pop Dance Dataset.
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Figure 4.9: Sample frames of Pop-Dance dataset (Gangnam Style by Psy). Even
people are dancing the same part of dance, they look different. The dataset will
be made available online.

action sequences. Olympic Sports dataset [17] contains complex motions that

go beyond simple punctual or repetitive actions, but still, the number of atomic

motions is small (3 to 4) and the motions are simple. The case of dancing contains

relatively complex and diverse motions with large degrees of freedom. To evaluate

complex activity recognition algorithms, we built up a new dataset which contains

motion sequences of people dancing following Pop songs.

The dataset is consisted of video clips of people dancing downloaded from

YouTube. Video clips in the dataset are relatively long, composed of diverse ac-

tions. Each person in the dataset dances differently in his/her own style to the

same music. Also the dance motions show large variations depending in camera

view point, human scale, appearance, clothes, shadow and illumination condi-

tions as shown in Figure 4.9. The dataset contains 10 dances: “You and I”-IU,

“Goodbye Baby”-MissA, “Alone”-Sistar, “Twinkle”-TTS, “Be My Baby”-Wonder

Girls, “Lupin”-Kara, “Electric Shock”-Fx, “Lucifer”-SHINee, “Gee”-SNSD, and

“Gangnam Style”-Psy. Each dance was performed by 10 different people. In total,

the dataset is composed of 100 dancing video sequences of 100 different people as
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Data Set year
action video ave. # of frms

resol.
video

class # clip # per video clip source

KTH [42] 2004 6 600 483 160x120 Recorded

Weizmann [43] 2005 10 93 61 180x144 Recorded

UCF-Sports [71] 2009 9 150 64
480x360 BBC
720x576 ESPN

Hollywood2 [72] 2009 12 3669 340
480x360

69 movies
720x576

Olympic [17] 2010 16 784 233
320x240

YouTube
1280x720

UCF50 [73] 2012 50 6680 200 320x240 YouTube

HMDB51 [44] 2011 51 6766 94 height: 240 Internet

Pop Dance 2012 10 100 6190 640x480 YouTube

Table 4.1: Comparison with widely used datasets.

shown in Figure 4.8. The average length of the video clips in the dataset is 6190

frames long (specific lengths of each dance classes are shown in Table 4.2. To the

best of our knowledge, this is the longest action video clip of one person acting

in the vision community (Table 4.1). Also our Pop-Dance dataset is much more

difficult than the existing Ballet dataset [70, 45], because of the diverse types

of motions within the dataset. Ballet is usually composed of sequential annotat-

able ballet poses (Figure 4.2), but dance poses of Pop-Dance dataset are neither

annotatable nor separable.

4.3.2 Validation of Proposed Features

To verify the effects of the mid-level features and the low dimensional embed-

ding method used in our thesis, we measured the classification performance of

the proposed method under various configurations of mid-level features. In this

experiment, we tested the effect of a mid-level feature by leave-one-out (LOO)

strategy. As shown in Figure 4.10, without all general motion features (MG),
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Singer Song Number of frames

IU You and I 6860
MissA Goodbye Baby 6583
Sistar Alone 6000
TTS Twinkle 6100

Wonder Girls Be My Baby 6034
Kara Lupin 5595
Fx Electric Shock 5772

SHINee Lucifer 7020
SNSD Gee 5710
Psy Gangnam Style 6225

Average 6190

Table 4.2: Informations of Pop dance dataset.
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Figure 4.10: Performance of our method with different configurations.
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large degradation in performance (21%) is shown which implies the general fea-

tures take a significant role in recognition performance. Among the general fea-

tures, motion intensity(mI) and motion speed (mS) are shown to be influential

to the performance. The result shows the best performance when using the all

features proposed in our thesis. Also, to show the effect of HLDE, we tested it

with different dimension reduction schemes with MFF. As shown in Figure 4.10,

with various configurations our method shows different performances, demon-

strating the effects of each components of the proposed method. Especially for

the multi-class linear discriminant analysis (MLDA) [74], even the MLDA finds

axes (the number of classes-1=9) that best separate the categories, we only use

the first principal dimension only not the whole 9 dimensions for the algorithm.

The result shows that the proposed HLDE outperforms all other configurations.

Furthermore we verify the nonlinear embedding method MSDE by comparing

with linear embedding method PCA. The motion data MFF especially particular

motion features (MP ) has a nonlinear property, so linear embedding method

such as PCA is inappropriate for representing data in a low dimension as shown

in Figure 4.11.

4.3.3 Recognition Performance

The recognition performance of our method was compared to other well known

methods in three ways. First, the method was tested with a set of synthesized

complex actions using the discriminative simple actions from the Weizmann

dataset [43]. Second, we used the proposed Pop-Dance dataset with the whole se-

quence as the query using LOO strategy. Third, we used the Pop-Dance dataset

with only a part of the sequence as the query. The same codebook, generated

beforehand for each dataset, was used for all methods compared.
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Figure 4.11: Low dimensional embedding result comparisons between (a) linear
embedding method PCA and (b) nonlinear embedding method MSDE.
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Figure 4.12: Recognition performance comparison using synthesized Weizmann
dataset.

Synthesized Complex Actions

Using synthesized complex actions for measuring the performance was also per-

formed in [17]. A synthesized set of complex action sequences is constructed by

concatenating 3 simple motions from the Weizmann action database [43]: ‘jump’,

‘wave’ and ’jack’. In [17] only 6 complex action classes are generated using 3 sim-

ple motions, but we increased the number of complex action classes by allowing

repetition of the 3 atomic motions. Figure 4.12 shows the recognition performance

with respect to the number of atomic actions in the sequence compared to [17].

As the number of atomic actions increases, our method shows better recognition

performance than [17].

Pop-Dance Dataset Recognition

Performance comparison results for the Pop-Dance dataset using the whole se-

quence as the query is shown in Table 4.3. We compared our method with four
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Algorithm Perf. (%) Total Test Time (sec)

MFF+HLDE+SVM 15 94818.0
MFF+HLDE+DTW 64 17089.0

Laptev [56] 25 20.9
Niebles et al. [17] 66 31235.0

Proposed 79 57.4

Table 4.3: Recognition performance and classification time comparison with
widely used methods.

methods; SVM-based classification with MFF (separate SVM classifiers were

trained for each class using RBF kernel), DTW with MFF (similar to meth-

ods used in [49, 75]), the method by Laptev et al. [56], and the state-of-the-art

method by Niebles et al. [17]. We used a linear kernel for [17] and a χ2 kernel

for [56]. All the tests were conducted using LOO validation except for Niebles

et al. [17] we used ten-fold validation, since it took too much time for model

training.

We obtained the best recognition performance as well as a very short compu-

tational time compared to other methods. These results show that the proposed

Action Charts well model each sequences in an abstract manner. The fastness of

our method comes from the fact that we only use AMS for evaluating the fitness.

This is similar to looking at the “charts” of a song to determine which song a

person is listening to, which can be done efficiently. Note that DTW achieves bet-

ter recognition result than SVM. This is not surprising because the MFF itself is

a temporal feature flow. Confusion matrix for the results of our method on the

Pop-Dance dataset is shown in Figure 4.13. Our model performs relatively poorly

for the “Lupin”-Kara and “Electric Shock”-Fx classes. This can be due to the

weak discriminative power of the features extracted from these videos.
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Figure 4.13: Confusion matrix of the proposed method.

Recognizing with Parts of the Sequence

Our method can be applied not only for the case when the whole action sequence

is given as the query, but also for the case when only parts of the sequences

are given. Recognizing with parts is important for practical applications such

as video retrieval. In our test setting, whole sequences were used for training

and 1000 random portions (with random length longer than 1000 frames and

random positions) were used for testing. We compared our method only with

DTW since all other methods in Section 4.3.3 are not appropriate for this kind

of testing. We applied our method by finding the highest similarity score for each

class model by sliding the query on the model generated for the whole sequence,

and then selecting the class with highest score. Average performance is shown in

Table 4.4 and Figure 4.14 is the confusion matrix for the recognition results of our

method. Our method shows promising results both in recognition performance
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Figure 4.14: Cropped video recognition results represented as a confusion matrix.

Algorithm Perf. (%) Recog. Time per Video (sec)

DTW 24 129.4
Proposed 56.3 39.7

Table 4.4: Recognition performance and computation time for recognizing one
cropped video.

and computational time.

4.3.4 Automatic Action Abstraction

Automatic action abstraction is performed by concatenating frames around at-

tentional parts. This is a reasonable way to create abstracts of videos, since

attentional parts are very much similar to the human concept of characteristic

points in the video. We have experimentally validated that this is true by compar-

ing automatically found attentional points with manually indicated characteristic
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parts of each dance. Figure 4.15 and Figure 4.16 show the abstraction results of

two different dances. This evaluation method is similar to the methodologies used

for psychological studies [64]. Comparison with the human annotation of charac-

teristic parts coincide by 76.6(±8.0)%, being quite similar. This shows that our

abstraction method is reasonable.

4.4 Conclusions

In this chapter, we showed how the selective attentional sampling scheme can be

applied for recognizing long and unannotatable motion streams such as a dance.

For the recognition, we proposed a new motion feature flow generation method

using local features and hierarchical low-dimensional embedding method in order

to represent the motion changes as one dimensional feature flow. We designed the

importance measuring function for sample selection and named the selected points

as attentional motion spots (AMS). The AMSs are adaptively detected based on

significant temporal changes in motion flow. Spatio-temporal groups of AMSs

are modeled as weighted Gaussian models. The modeling results look similar to

musical chart, so we named our model as Action Chart. In order to validate the

proposed method, we generate a new complex action dataset; Pop-Dance dataset.

The experimental results show that the selective attentional sampling strategy

gives a promising recognition performance with a very low computational load.

Also it can be used for abstracting a long video sequence.
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Figure 4.15: Video abstraction using generated Action Chart for “Gangnam
Style” by Psy. The generated Action Chart are quite similar to manually checked
points. The accuracy is 80.4% and the video is compressed to 23.2% in length.
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Figure 4.16: Video abstraction using generated Action Chart for “Gee” by SNSD.
The generated Action Chart are quite similar to manually checked points. The
accuracy is 69.7% and the video is compressed to 27.0% in length.
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Chapter 5

Concluding Remarks

In this thesis, we proposed a generalized attentional sampling framework and

defined the attentional sampling as three categories, structured attentional sam-

pling, empirical attentional sampling, and selective attentional sampling. Each

attentional sampling concept was explicitly defined and applied to computer vi-

sion applications. Although the potential gains of attentional sampling seemed

very intuitive, there was a lack of understanding of its categories and properties.

This thesis contributed to that understanding by clarifying in a general way when

attentional sampling helps, and how much it helps. In the thesis it was shown

that attentional sampling could dramatically improve performance and efficiency.

The key contributions of this thesis are summarized as follows.

• Robust Tracking Failure Detection using Structure Attentional Sampling:

Chapter 2 is about structured attentional sampling and its application to

design a new scheme for detecting tracking failure moment. In order to

mimick human visual sensing structure, log-polar transformation to track-

ing image is adopted. As a result, we could achieve a significantly improved

TFD performance. Experimental results shows that our method could give
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much less false alarm and be more robust to target appearance change, and

that our TFD method could be applied to any tracking methods.

• Speed-up of Background Subtraction using Empirical Attentional Sampling:

Chapter 3 we showed how the empirical attentional sampling could be used

to reduce computational load. We proposed a speed-up method of conven-

tional background subtraction algorithms using active attention sampling

mask generation method based on empirical attention concept. The motion-

less background region could be skipped by attention sampling. We designed

a foreground probability map by measuring three foreground region prop-

erties, and active attention sampling was performed to make a sampling

mask. Various experiments showed that the proposed method could speed

up about 6.6 times without detection performance deterioration. Also our

method made it possible for the conventional background subtraction algo-

rithms to perform real-time detection in Full HD videos with a single core

processor.

• Action Chart generation for recognizing Pop dances using Selective Atten-

tional Sampling: In chapter 4 we proposed Action Chart for recognizing

long and complex action sequences and its generation method using se-

lective attentional sampling. We proposed a new motion feature flow and

hierarchical low-dimensional embedding method. Attentional motion spots

were adaptively selected based on significant temporal changes in motion

flow and were modeled as weighted Gaussian models. For validation we

built a new complex action dataset; Pop-Dance dataset. The experimental

results showed that the Action Chart gave a promising recognition perfor-

mance with a very low computational load by focusing only informative

data region. Also it could be used for abstracting a long video sequence.
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There are still many open questions regarding attentional sampling, in par-

ticular good “recipes” for the construction of realistic and general attentional

sampling algorithms are still unknown. Also various applications are possible

by properly combining different attentional sampling schemes depending on the

problem. For example, speed-up of head detection in a video might be possible if

the search space is drastically reduced by properly using the structured attentional

sampling and the empirical attentional sampling together. This thesis opens up

many avenues for future research.
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Appendix A

Derivation of Computational

Efficiency Boundaries

In this appendix, we provide a derivation of the computational efficiency of the

proposed method (CP ) comparing to the conventional full search method (CF ).

A.1 Definition of Notations

Let’s start with defining some notations first.

• Notations for pixel numbers

– Number of total pixels: N

– Number of randomly scattered sampling pixels: Ns = ρN

– Number of seed pixels for adaptively expanding sampling: Na (where

Mt
RS = 1)

– Number of sampling pixels of active sampling mask: NA (where the

sampling mask Mt = 1)
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• Notations of algorithms

– Ratio of foreground pixel to whole image: α (0 ≤ α ≤ 1)

– Standard deviation of α values through whole video: αstd

– Spatially expanding constant: ωs (ωs = k
√
N/Ns)

– Parameter of ωs: k (usually k is
√

3 or
√

5)

– Maximum spatially expanding width: ζmax

• Notations for representing calculation costs

– Cost of randomly scattered sampling for one pixel: Cr

– Cost of adaptively expanding sampling for one pixel: Ca

– Cost of updating foreground model for one pixel: Cf

– Cost of foreground detection for one pixel: CD

– Cost of background subtraction using conventional full sampling: CT

– Cost of background subtraction using the proposed active sampling:

CP

A.2 Derivative of the efficiency boundary

We designed the spatially expanding importance sampling expands the sampling

area proportional to the importance weight, and the expanding constant ws is

defined as ωs = k
√
N/Ns. Also the spatial expanding width ζ is proportional to

foreground probability and expanding constant. Because the foreground proba-

bility is between 0 and 1, the ζmax becomes ωs when the probability is 1. The

expected number of foreground pixels of current image becomes αN . Because the

Ns pixels are sampled uniformly throught the whole image, we assume the Na

becomes as
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Na ≈ α×Ns. (A.1)

It is assumed that the final active sampling mask fully covers the foreground

region (αN ≤ NA). At the same time, the active sampling mask is usually smaller

than the case of each of the Nas has maximum spatial expanding width ζmax.

NA ≤ ζ2
maxNa = ω2

sNa = (k2 N

Ns
)× αNs = αk2N. (A.2)

Using the two inequality properties, we can get the following inequality.

αN ≤ NA ≤ αk2N. (A.3)

The α is a measurement value of each frame by background subtraction meth-

ods. However the background subtraction methods can not perfectly detect all

the foreground pixels, so the α is essentially inaccurate. By considering this mea-

surement inaccuracy, the inequality margin of A.3 is widened by αstd as follows.

(α− αstd)N < NA < (α+ αstd)k
2N. (A.4)

The final goal of this derivation is to find a boundary of computational ra-

tio (CP /CT ). The totally computational cost of background subtraction method

using a conventional full sampling (CT ) is

CT = N × CD (A.5)

which does not require sampling mask generation cost. On the other hand, the

calculation cost of the proposed active sampling based background method (CP )

is composed of several sub computational parts, such as randomly scattered sam-
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pling cost (CrNs), adaptively expanding cost (CaNA), foreground model update

cost (Cf (Ns− NA
N ·Ns +NA)) and foreground detection cost (CD(Ns− NA

N ·Ns +

NA)).

CP = CrNs + CaNA + Cf (Ns −
NA

N
·Ns +NA) + CD(Ns −

NA

N
·Ns +NA)

= CrNs + CaNA + CfNs − Cf
NA

N
·Ns + CfNA + CDNs

−CD
NA

N
·Ns + CDNA

= CrNs + CfNs + CDNs + CaNA + CfNA + CDNA

−Cf
NA

N
·Ns − CD

NA

N
·Ns

= Ns(Cr + Cf + CD) +NA(Ca + Cf + CD − Cf
Ns

N
− CD

Ns

N
)

= Ns(Cr + Cf + CD) +NA(Ca + Cf + CD −
Ns

N
(Cf + CD))

= Ns(Cr + Cf + CD) +NA(Ca + (1− Ns

N
)(Cf + CD)). (A.6)

From A.6

NA =
CP −Ns(Cr + Cf + CD)

Ca + (1− Ns
N )(Cf + CD)

. (A.7)

We assume that every intermediate calculation costs such as Cr, Ca and Cf are

smaller than foreground detection cost CD.

Cr = βrCD (A.8)

Ca = βaCD (A.9)

Cf = βfCD (A.10)

0 < βmin ≤ {βr, βa, βf} ≤ βmax < 1. (A.11)
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By substituting (A.7) to (A.4), we can get

(α− αstd)N <
CP −Ns(Cr + Cf + CD)

Ca + (1− Ns
N )(Cf + CD)

< (α+ αstd)k
2N. (A.12)

First we consider the left inequality of (A.12).

(α− αstd)N <
CP −Ns(Cr + Cf + CD)

Ca + (1− Ns
N )(Cf + CD)

(A.13)

(α− αstd)N ·
{
Ca + (1− Ns

N
)(Cf + CD)

}
< CP −Ns(Cr + Cf + CD) (A.14)

CP > (α− αstd)N ·
{
Ca + (1− Ns

N
)(Cf + CD)

}
+Ns(Cr + Cf + CD)

> (α− αstd)N ·
{
βaCD + (1− Ns

N
)(βfCD + CD)

}
+Ns(βrCD + βfCD + CD)

> (α− αstd)N ·
{
βminCD + (1− Ns

N
)(βminCD + CD)

}
+Ns(βminCD + βminCD + CD)

> (α− αstd)N ·
{
βminCD + (1− Ns

N
)(1 + βmin)CD

}
+Ns(1 + 2βmin)CD

> (α− αstd)NCD ·
{
βmin + (1− Ns

N
)(1 + βmin)

}
+Ns(1 + 2βmin)CD

> NCD

[
(α− αstd)

{
βmin + (1− Ns

N
)(1 + βmin)

}
+
Ns

N
(1 + 2βmin)

]
.

(A.15)

By using (A.5)

(α− αstd)
{
βmin + (1− Ns

N
)(1 + βmin)

}
+
Ns

N
(1 + 2βmin) ≤ CP

CT
. (A.16)
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In the same way, the right inequality of (A.12) is

(α+ αstd)k
2N >

CP −Ns(Cr + Cf + CD)

Ca + (1− Ns
N )(Cf + CD)

. (A.17)

(α+αstd)k
2N ·

{
Ca + (1− Ns

N
)(Cf + CD)

}
> CP −Ns(Cr +Cf +CD). (A.18)

CP < (α+ αstd)k
2N ·

{
Ca + (1− Ns

N
)(Cf + CD)

}
+Ns(Cr + Cf + CD)

< (α+ αstd)k
2N ·

{
βaCD + (1− Ns

N
)(βfCD + CD)

}
+Ns(βrCD + βfCD + CD)

< (α+ αstd)k
2N ·

{
βmaxCD + (1− Ns

N
)(βmaxCD + CD)

}
+Ns(βmaxCD + βmaxCD + CD)

< (α+ αstd)k
2N ·

{
βmaxCD + (1− Ns

N
)(1 + βmax)CD

}
+Ns(1 + 2βmax)CD

< (α+ αstd)k
2NCD ·

{
βmax + (1− Ns

N
)(1 + βmax)

}
+Ns(1 + 2βmax)CD

< NCD

[
(α+ αstd)k

2

{
βmax + (1− Ns

N
)(1 + βmax)

}
+
Ns

N
(1 + 2βmax)

]
.

(A.19)

CP
CT

< (α+ αstd)k
2

{
βmax + (1− Ns

N
)(1 + βmax)

}
+
Ns

N
(1 + 2βmax). (A.20)

So we can get the computational efficiency of the proposed method comparing to

the conventional full sampling method by combining two inequalities (A.16) and
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(A.20) as

(α− αstd)
{
βmin + (1− Ns

N
)(1 + βmin)

}
+
Ns

N
(1 + 2βmin)

<
CP
CT

< (α+ αstd)k
2

{
βmax + (1− Ns

N
)(1 + βmax)

}
+
Ns

N
(1 + 2βmax).

(A.21)

Using the N = ρNs, the final inequality becomes

(α− αstd) {βmin + (1− ρ)(1 + βmin)}+ ρ(1 + 2βmin)

<
CP
CF

< (α+ αstd)k
2 {βmax + (1− ρ)(1 + βmax)}+ ρ(1 + 2βmax). (A.22)
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국문 초록

컴퓨터 비전 문제는 영상 획득 장치를 통해 픽셀 단위로 수치화된 데이터를 샘

플링하는것으로부터시작된다.가장기본이되는데이터인픽셀값들을그대로

사용하는 경우도 있고, 이 픽셀 값들을 조합하여 새로운 의미를 가진 데이터

들을 구성하고 샘플링 하여 사용하기도 한다. 좋은 성능을 얻기 위해서는 최대

한 많은 수의 데이터를 샘플링 하는 것이 필요하지만 이럴 경우 필요로 하는

연산량이 급격히 증가하는 문제가 있다. 반대로 연산량 만을 고려해 최소한의

데이터만 샘플링 하여 사용하는 경우 좋은 성능을 기대하기 어렵다. 그러므로

효율적인 연산량으로 최적의 성능을 얻기 위해서는, 이미지가 바뀜에 따라 혹은

시간이 흐름에 따라 문제를 풀기에 충분한 최소한의 데이터만 찾아내어 샘플링

하는능동샘플링(active sampling)개념이필요하다.이러한능동샘플링개념을

현실화하기 위해서는 문제를 해결하는데 중요한 데이터들을 찾아내는 과정이

매우 중요하며, 찾아낸 데이터들을 어떻게 집중하여 샘플링 하는가가 중요해진

다. 본 논문에서는 서로 다른 세 가지의 주의집중 샘플링(attentional sampling)

방법, 즉 구조적 주의집중 샘플링(structured attentional sampling), 경험적 주의

집중 샘플링(empirical attentional sampling), 선택적 주의집중 샘플링(selective

attentional sampling)을 제안하였다. 제안된 각각의 주의집중 샘플링 방법들은

주의집중이 필요한 중요 데이터들을 찾기 위해 문제의 특성에 대한 사전 지식

(prior knowledge)을 적용하는 세가지 방법을 제안하고 있으며, 그에 따라 적응

적으로 샘플링 하는 방법들이다. 제안된 주의집중 샘플링 방법들은 컴퓨터 비전

문제들에 성공적으로 적용되어 연산 효율뿐만 아니라 각 알고리즘의 성능을 크

게 향상 시켰다.

첫 번째 구조적 주의집중 샘플링(structured attentional sampling)은 문제의

특성에 맞춰 미리 구조화된 샘플링 패턴에 따라 샘플링을 수행하는 방법이다.

이러한 구조적 주의집중 샘플링 방법을 사람 눈의 구조를 흉내 내어 물체 추적
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실패를 탐지하는 데 적용하였다. 사람 눈 망막 위의 시신경 세포(ganglion cells)

의 분포를 근사화한 log-polar 패턴 구조로 이미지 픽셀 샘플링을 수행하여 사

람 눈의 유용한 특성을 흉내 내었다. Log-polar 패턴으로 샘플링 된 이미지는

회전(rotation) 변화에 의한 영향은 감소되어 나타나고, 좌우나 위아래로의 병진

(translation)변화는증폭되어나타나는특성이있다.이러한특성은회전에의해

나타나는포즈변화들로인해발생하는추적실패에대한거짓경보(false alarm)

들은 줄이고, 급격한 위치 변화로 인한 추적 실패에 대한 참 경보(true alarm)

를증가시킬수있다.게다가 log-polar구조의특징인중심와(fovea)선명화특성

(predominant property)은 초점이 맞춰진 중심 부분(추적 물체의 중심 부분)의

선명도는 증가시키고 그 이외의 주변부(추적 물체 바깥 부분)는 흐릿하게 함으

로써 추적 실패의 순간을 정확하게 탐지할 수 있도록 도와준다. 또한 망막 위의

시신경세포하나하나는 log-polar변환이미지의각픽셀에대응시켜,각세포가

빛에 적응하는 방식과 유사하게 각 픽셀의 추적 물체의 색상에 대한 적응을 가

우시안 혼합 모델(Gaussian mixture model)을 이용하여 모델링 하였다. 이러한

방식으로 제안된 추적 실패 탐지를 위한 구조적 주의집중 샘플링의 유용성은

다양한 실험을 통해 검증되었다.

두 번째 경험적 주의집중 샘플링(empirical attentional sampling)은 이전에

획득된 경험적 지식을 현재 단계 샘플링에 사용하는 방식이다. 경험적 지식은

경험 학습 과정을 통하여 확률 분포로 모델링 된다. 이러한 경험적 샘플링 개념

은 움직이는 물체 탐지를 위해 일반적으로 사용되는 배경 제거 방법들에 픽셀

단위의 선택적 연산 마스크를 적용하여 연산 속도를 향상시키는 방식으로 적용

되었다. 제안된 샘플링 방법은 전경 지역(foreground region)과 같이 주의집중을

필요로 하는 영역에 초점이 맞춰져 샘플링이 진행되도록 설계되었다. 주의집중

영역은 전경 확률 지도(foreground probability map)로 표현되고, 이 확률 지도

는 이전 프레임에서의 탐지 결과를 이용하여 재귀적(recursive) 확률 업데이트

방식으로 추정된다. 전경 확률 지도는 전경 부분의 시간적(temporal), 공간적

(spatial), 주파수적(frequency) 특성을 이용하여 생성되었다. 생성된 전경 확률
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지도를 이용하여, 무작위 샘플링(randomly scattered sampling), 공간 확장 방

식의 중요 샘플링(spatially expanding importance sampling), 놀람 픽셀 샘플링

(surprise pixel sampling)방법들이순차적으로진행되면서주의집중샘플링마스

크를 생성한다. 제안된 경험적 주의집중 샘플링 방법의 효율성은 다양한 실험을

통해검증되었다.제안된방법은기존의픽셀단위의배경제거방법의연산속도

를탐지성능저하없이약 6.6배향상시켰다.또한기존의배경제거알고리즘을

이용하여 full HD 영상(1920x1080)에서 실시간으로 움직이는 물체를 탐지할 수

있도록 하였다.

선택적 주의집중 샘플링(selective attentional sampling)은 주어진 데이터와

목적에 대한 사전 정보를 이용하여 문제의 해결을 위해 꼭 필요로 하는 중요

데이터만 미리 선택하여 문제 해결의 효율성을 높이는 방식이다. 본 논문에서는

이러한 선택적 샘플링 방식을 이용하여 일반인이 추는 유명 대중가요의 춤을

인식하는방법을제안하였다.대중가요춤은일반적으로,발레나리듬체조의춤

동작과는달리하나하나를따로이름을붙일수없는짧고복잡하며다양한행동

의 연속으로 나타난다. 특히 춤에 대한 일정한 제약이 없다 보니, 동작의 정확성

보다는추는사람의개성과자유로움에따라동일한춤도다양하게표현이된다.

이러한행동의자유로움과다양함,그리고시간적으로긴행동의길이때문에기

존의행동인식알고리즘은직접적으로적용할수없다.본논문에서는명확하게

구분할 수 없을 정도로 자유로운 행동의 흐름 특징을 효과적으로 표현하고 인식

알고리즘에적용할수있도록하기위해새로운행동특징표현방법을제안하고,

이를 효과적으로 낮은 차원 데이터로 표현하는 방법을 제안하였다. 또한 효율적

인 인식을 위해 특징적인 시공간적 행동의 변화 지점을 주의집중적 행동 지점

(attentional motion spot)라명명하고이를자동을선택하는방법을제안하였다.

이 특징 점들의 시공간적 분포를 혼합 가우시안(Gaussian) 분포로 모델링하고,

이렇게 표현된 모델링 방법을 행동 악보(Action Chart)라고 명명하였다. 이 행

동 악보는 시공간적인 행동의 흐름을 음악 악보처럼 중요 행동의 시간적 발생

지점과 종류, 지속 시간을 표현하고 있다. 이렇게 표현된 행동 악보를 이용하여
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새롭게 제작된 대중 가요 춤 데이터 세트를 효율적이고 효과적으로 인식하였다.

제안된 방법을 검증하기 위하여 제안된 방법을 구성하는 세부 알고리즘 하나

하나를 실험적으로 검증하여 각 부분의 필요성을 보였고, 현재 존재하는 길고

복잡한 행동을 인식하는 방법을 직접 구현하여 동일한 데이터 세트를 이용하여

제안된 방법이 인식 성능과 연산 시간측면에서 월등히 뛰어남을 검증하였다. 또

한 더 나아가 행동 악보를 이용하면 긴 춤 동작을 사람이 하는 것과 거의 유사한

성능으로 요약 가능함을 보였다.

주요어:주의집중샘플링,구조적주의집중샘플링,경험적주의집중샘플링,

선택적 주의집중 샘플링, 추적 실패 탐지, 배경 제거 알고리즘 속도 향상, 복잡

행동 인식, 대중가요 춤 인식

학번: 2006-21280
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