

저작자표시-비영리-동일조건변경허락 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

l 이차적 저작물을 작성할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

동일조건변경허락. 귀하가 이 저작물을 개작, 변형 또는 가공했을 경우
에는, 이 저작물과 동일한 이용허락조건하에서만 배포할 수 있습니다.

http://creativecommons.org/licenses/by-nc-sa/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-sa/2.0/kr/

공학박사학위논문

고성능저장장치를위한블럭

입출력서브시스템최적화

Optimizing Block I/O Subsystem
for Fast Storage Devices

2012년 7월

서울대학교대학원

전기컴퓨터공학부

유영진

Abstract

Recent development of storage devices has been driven by advanced

memory technology, which shifts the paradigm of data access mechanism

from magnetics and mechanics to electronics. As a result, the latency of

Solid State Drives (SSD) is cut down to order of microseconds. In spite of

the emergence of fast storage devices, however, the existing storage stack

cannot keep pace with the speed of the new device since the software has

been too optimized to a slow disk for decades; storage vendors like Fusion-

IO and OCZ started to implement their own fast storage stack that would

maximize the benefit of their products. Storage systems are now facing an

important challenge exploiting the low-latency characteristics of these de-

vices.

In this paper, we propose six types of block I/O subsystem that exploit

the performance feature of an SSD with ultra low latency. Our optimiza-

tion principles are 1) minimizing per-request overhead by redesigning I/O

path, and 2) mitigating per-request overhead by using a request batching

scheme. The techniques of device polling and synchronous I/O path belong

to the first principle, while dispatching discontiguous block requests in a

single I/O operation belongs to the second one. Unlike the previous works

that mostly focus on the elimination of some software layers, we actively

optimize the existing OS components and implement new functionalities to

achieve both low latency and high throughput. We demonstrate the effec-

tiveness of our designs with actual prototypes that operate in recent Linux

i

kernel 2.6.32. Evaluation results show that synchronous I/O path (SyncPath)

attains 3.3x reduction in software-latency under single-threaded workload

and a new merge scheme with double buffering (2Q) leads to 4.4x improve-

ment in throughput under multi-threaded workload, compared to the Linux

block I/O subsystem. In addition, the hybrid I/O path design (HTM) deliv-

ers 87%∼100% of the performance of low-latency devices to an applica-

tion regardless of request access patterns or request types. We believe that

our block I/O subsystem designs are general enough to be implemented for

next-generation SSDs pursuing near-DRAM latency and throughput.

Keywords : I/O subsystem, Storage device, Latency, Throughput

Student Number : 2006-21228

ii

Contents

I. Introduction . 1

1.1 Motivation: Slow Software on Fast Hardware 3

1.2 Contributions . 6

1.3 Overview . 7

II. Background . 9

2.1 Trends in Storage Technology 9

2.2 Analysis of I/O Path . 11

2.3 Optimization Techniques by I/O Subsystem 13

III. Analyzing the Legacy of Disk-based I/O Subsystem 15

3.1 Problem 1: High Software Latency 16

3.1.1 Interrupt Latency 16

3.1.2 Delayed Execution 17

3.2 Problem 2: Low Random Throughput 20

3.2.1 Narrow Block I/O Interface 20

3.2.2 Disk-oriented Configuration of I/O Subsystem . . . 22

IV. Design Exploration of I/O Subsystem 25

4.1 Baseline Design: Asynchronous I/O Path and Interrupt . . . 26

4.2 Design 1: Making Entire I/O Path Synchronous 26

4.3 New I/O Interface: Dispatching Discontiguous Block Re-

quests in a Single I/O Request 29

iii

4.4 Design 2: Merging Discontiguous Block Requests Synchronously 30

4.5 Design 3: Merging Discontiguous Block Requests Asyn-

chronously . 34

4.6 Design 4: Choosing I/O Path Dynamically Based on a Re-

quest Property . 37

4.7 Design 5: Including Upper Layer to Bridge Semantic Gap

between VFS and Block I/O Subsystem 38

4.8 Design 6: Using Double Buffering to Avoid Lock Contention 40

4.9 Design Summary . 42

V. Implementation Details . 44

5.1 Block I/O Subsystem in Linux 44

5.2 New Storage Device Interface 47

VI. Evaluation . 48

6.1 Latency Reduction . 48

6.2 Microbenchmark 1: Iozone 50

6.3 Microbenchmark 2: Fio . 53

6.4 Macrobenchmark 1: Postmark 53

6.5 Macrobenchmark 2: TPC-C 56

6.6 Sensitivity Analysis . 58

6.7 CPU Utilization . 60

6.8 Temporal Merge Count . 62

VII. Related Work . 64

7.1 Software Stack Optimization 65

iv

7.1.1 Network I/O Subsystem 65

7.1.2 Block I/O Subsystem 67

7.2 Exploiting Device Functionality 68

7.3 Extending Device Interface 69

VIII. Conclusion . 71

References . 75

Abstract . 84

Acknowledgements . 86

v

List of Figures

Figure 1. Baseline I/O subsystem evaluation with Iozone 5

Figure 2. Common I/O path in Linux storage stack 12

Figure 3. Hardware-latency breakdown of DRAM-SSD 17

Figure 4. Effect of data transfer size on device-/channel- utiliza-

tion . 22

Figure 5. Fully-synchronous I/O path in SyncPath design 28

Figure 6. Iozone evaluation of SyncPath and SCSI INTR 29

Figure 7. Comparison between spatial merge and temporal merge 31

Figure 8. Synchronous temporal merge in STM design 32

Figure 9. Iozone evaluation of STM and SyncPath 33

Figure 10. Temporal merge with I/O scheduler in ATM design . . 35

Figure 11. Iozone evaluation of ATM and STM 36

Figure 12. Iozone evaluation of HTM and ATM 38

Figure 13. Read-ahead dilema in HTM 39

Figure 14. Iozone evaluation of VFS-HTM and HTM 40

Figure 15. Iozone evaluation of 2Q and VFS-HTM 41

Figure 16. Iozone evaluation of 2Q, VFS-HTM and SCSI INTR . 43

Figure 17. Iozone evaluation of the proposed I/O subsystems . . . 50

Figure 18. Fio evaluation of the proposed I/O subsystems 53

Figure 19. Aggregated postmark throughput where postmark(N)

means that the N instances of postmark are simultane-

ously executed . 54

vi

Figure 20. TPC-C throughput with varying the number of ware-

houses . 56

Figure 21. Influence of hardware latency on the benefit of tempo-

ral merge . 59

Figure 22. Profiling CPU utilization under {Iozone, 32 Threads} 61

Figure 23. The cumulative distribution of merge count under Fio

workload with 4 KB random read/write 63

vii

List of Tables

Table 1. Latency-breakdown of the common-case I/O path 19

Table 2. Default configuration of a request queue 24

Table 3. Symbol description for I/O subsystem design 29

Table 4. Optimizations applied to each I/O subsystem version where

each symbol indicates the followings, O: fully support,

△: partially support, and ×: don’t support. 42

Table 5. Configurations of the tested I/O workloads 48

Table 6. Latency of accessing a 4KB page by each I/O subsystem 49

Table 7. Application throughput normalized to SCSI INTR 52

Table 8. Description of the types of CPU time 60

viii

Chapter 1

Introduction

Improving I/O performance has always been one of the most important

challenges in optimizing computer system. Since mechanism of accessing

data in a storage device heavily affects the performance of applications, re-

searchers have sought the ways of reducing time to access data by develop-

ing new hardware and software technologies.

An I/O subsystem [1, 2] is a part of storage stack in an OS and handles

I/O requests to serve file system or a user process. It reflects the underly-

ing hardware features of a storage device into its design to make the best

I/O performance with the device. For decades, this I/O subsystem has been

optimized for magenetic hard disk drives. Considering the mechanism of a

disk, the I/O subsystem tries 1) to maximize the amount of data transfer in

a single I/O operation by merging contiguous requests [3], and 2) to mini-

mize the seek movement of a disk head by reordering the requests [4]. After

dispatching an I/O request to a disk, the I/O subsystem yields CPU resource

for other useful jobs and waits for interrupt notification of the request com-

pletion.

Nowaday, fast storage devices have been emerging into the market.

As the paradigm of data access mechanism moves toward electronics from

magnetics and mechanics, the new storage devices achieve the ultra-low

latency of a few microseconds and orders of magnitude higher throughput

1

than a disk can provide. Flash memory contributes to the success of the

memory-based storage devices in the market [5, 6], and the next-generation

memory, called Storage Class Memory, is expected to keep the success for

a while by providing near-DRAM performance and non-volatility [7].

Unfortunately, the ordinary practice to put new storage devices into an

existing I/O subsystem limits the I/O performance of storage system, which

is a well-announced problem in previous studies; even recent versions of

Linux I/O subsystem have difficulty in exploiting the full performance of

a fast SSD. Without redesigning many OS components as a whole, storage

system cannot realize the true potential of the device. As a result, Moneta

[8] and Onyx [9] strive to modify software stack in OS, and provide an opti-

mized hardware interface for their Phase-Change-Memory [10] based SSD.

Fusion-IO [11] is also known to distribute a customized I/O subsystem [12]

for their high-performance SSD products to deliver the maximum through-

put to user applications.

Hence, a modern storage system is now facing an important challenge

of exploiting the performance of fast storage devices. Although the charac-

teristics of the underlying hardware are changing rapidly, existing I/O sub-

systems are unaware of them and still has a specific design optimized for

a disk. In this dissertation, we will investigate the design problems inher-

ent in the existing I/O subsystems and explore new designs to maximize the

benefits of a memory-based storage device with ultra-low latency.

2

1.1 Motivation: Slow Software on Fast Hard-
ware

For clarity, we define a few terms regarding the performance of storage

system.

• Device throughput is the maximum possible throughput measured

inside a storage device. It is determined by hardware technology such

as the storage medium and the device architecture.

• Application throughput is the throughput measured by a user-level

application. We assumed that the size of working set is much larger

than physical memory and an application cannot benefit from memory

cache hit. Based on the assumption, application throughput is limited

by device throughput; the former is always less than the latter. We fur-

ther define sequential throughput and random throughput which

correspond to the observed application throughputs under sequential

access workload and random access workload, respectively.

• Hardware latency is the response time of a storage device, i.e. the

time between the dispatch of an I/O request and the completion of

it. A disk has non-uniform hardware latency due to its internal state

like the current position of a disk head and the logical-to-physical

mapping [13].

• Software latency is the sum of 1) the time taken before the dispatch

of an I/O request, and 2) the time taken after the completion of it.

It represents software overhead in storage stack in an OS, including

3

overheads of merging requests, copying data into/from DMA buffers,

setting up a DMA controller, waking up the processes that issues the

requests and etc.

The two metrics, latency and throughput, are widely used to evaluate

the I/O performance of storage system [14]. Latency is the sum of hardware

latency and software latency and throughput is data transfer rate (bytes/sec).

The reduced latency usually contributes to the increased throughput; if the

latency of a request is minimized, the random throughput would be maxi-

mized. On the other hand, the sequential throughput may not be directly af-

fected by per-request latency. Rather, certain optimization techniques such

as request merging enhances the sequential throughput at the cost of the

increased latencies of some requests.

Based on the intuition about the relationship between the two perfor-

mance metrics, the existing I/O subsystem pursues a balance between the

low-latency and the high-throughput. If the high random throughput is fa-

vored, the software latency of each I/O request should be reduced by op-

timizing the I/O path in the I/O subsystem. For the case of enhancing the

sequential throughput, the techniques of batching multiple requests and mit-

igating the per-request software latency are the effective solution.

To understand the performance effect of the disk-based I/O subsys-

tem on a low-latency storage device, we choose to use the recent Linux I/O

subsystem and the DRAM-SSD [15]. The hardware latency of the SSD to

access a 4KB page is 7 usecs and the device throughput is about 700 MB/s

according to the vendor’s information. Since the performance goal of the

4

 0

 100

 200

 300

 400

 500

 600

 700

 800

Seq.Read Seq.Write Rand.Read Rand.Write Rand.Mixed

Io
z
o
n
e
 T

h
ro

u
g
h
p
u
t
(M

B
/s

)

Iozone Workload (RAM=2GB, Dataset=32GB, DRAM-SSD)

Device Throughput

1 Thread 32 Threads

Figure 1: Baseline I/O subsystem evaluation with Iozone

next-generation memory such as Phase-Change Memory [10], FeRAM [7],

STT-RAM [16] and MRAM is to achieve near-DRAM latency and through-

put, we believe that our observations will be effective even in the near future

without loss of generality.

Figure 1 reports the application throughput of Iozone [17]. Compar-

ing the application throughput to the device throughput under the different

workloads, we found two obvious performance-gap problems, which are

clarified by the following problem definitions:

P1. The application throughput is lower than the device throughput.

P2. The random throughput is lower than the sequential throughput.

When the hardware latency dominated the latency of an I/O request, the

software latency was insignificant and it was relatively easy to deliver the

device throughput to an application. For example, the device throughput of a

disk is around 100 MB/s and an application is able to exploit the full perfor-

5

mance if it accesses I/O requests contiguously in increasing order. However,

when it comes to a low-latency storage device, even a small software delay

can degrade I/O performance. To solve P1, the software overhead caused by

each layer in the storage stack in an OS should be deeply examined.

P2 is natural for a disk having mechanical moving parts, but unfair for

an SSD consisting of multiple memory chips; at least in the hardware per-

spective, a single large request that stripes to multiple chips inside a device

is no different than a bunch of small requests, each of which targets a dif-

ferent chip. To solve P2, we should attack this point and rethink the way of

dispatching multiple block requests both at hardware and software level.

Our final goal is to design a high-performance I/O subsystem that ex-

ploits the full performance of a low-latency storage device regardless of

request access patterns of an application (sequential or random) or request

types (read or write).

1.2 Contributions

The contributions are summarized as follows:

• We investigated the software latency of an I/O request in the recent

Linux I/O subsystem to contrast it with the hardware latency of a

low-latency storage device

• We designed a new block I/O interface to dispatch multiple discon-

tiguous block requests in an I/O request

6

• We designed six types of I/O subsystems to deeply understand the

interaction between an I/O subsystem and a low-latency storage de-

vice, and to find the most efficient one for next-generation fast storage

devices

One of our optimization techniques, called temporal merge, essentially

needs hardware modifications to utilize a customized interface beyond the

standard. Although it is known to be hard to reach a consensus between OS

communities and storage vendors [18], the effectiveness of our solution will

be a drive to rethink the current block I/O interface and revise a standard

for next-generation host controller interfaces like NVMHCI [19]. All of our

work have targeted I/O subsystems for the DRAM-SSD, but we believe that

the design rationales or discussions will still be useful for other storage de-

vices with different performance features.

1.3 Overview

This paper is organized as follows:

• Background: The chapter 2 covers the basic explanation about the

I/O path in Linux I/O subsystem. It also describes the recent trends in

storage technology that make our solution feasible.

• Motivation: The chapter 3 analyzes the four factors that prevent the

I/O subsystem from achieving the device throughput of a low-latency

storage device. The detailed description will be based on the two prob-

lem definitions P1 and P2.

7

• Solution: The chapter 4 proposes various I/O subsystem designs,

which are improved step by step by reflecting the hardware features

and the interaction between OS components and an I/O subsystem. In

the chapter 5, the implementation issues specific to the Linux kernel

development are given.

• Evaluation: The different I/O subsystem designs are evaluated in

the chapter 6, which include varying concurrency and request access

patterns.

• Conclusion: We summarize the key points of our I/O subsystem de-

signs and their contributions in the chapter 8. Finally, we discuss some

issues about our solution to be used for commercial use.

8

Chapter 2

Background

In this chapter, we will look into the recent trends in storage technology

which makes it possible for our solution to be more practical. Then, the

detailed description about the architecture of the existing I/O subsystem will

be presented for further discussion in the later chapters.

2.1 Trends in Storage Technology

Recent development of storage devices have been driven by advanced

hardware technology, which shifts the paradigm of data access mechanism

from magnetics and mechanics to electronics. As a result, the I/O perfor-

mance of recent SSDs is an order of magnitude higher than that of tradi-

tional disks in terms of latency and throughput. Two critical technologies

have enabled the dramatic progress in a storage device:

• New Storage Medium: Storage medium is the physical material for

storing bit data. It determines the data access mechanism. In case of a

HDD, magnetic platter is used for storing data and requires a mechan-

ical moving head to sense magnetic flux over the surface of the platter,

which takes a few milliseconds even in the best case. On the contrary,

accessing flash memory can be done by transistor technology without

mechanical overhead. The academic society is now actively studying

9

Storage Class Memory [20] to use it either as a storage device [21] or

as main memory in a computer system [22, 23, 24, 25].

• Efficient Device-Architecture: To benefit from the parallelism of the

multiple units of storage medium, recent SSDs have an efficient ar-

chitecture to pipeline successive I/O requests, to concurrently stripe

non-conflicting requests to multiple destinations [26, 27, 28], to ser-

vice requests out-of-order [29] and etc. While the storage medium

affects the hardware latency, the architecture of a storage device in-

fluences the device throughput of a storage device. It is known that

a Flash-based SSD manufactured by Fusion-IO [30] also uses many

flash chips to maximize the device throughput.

Along with the development of storage devices, computer systems are

experiencing radical progress in hardware components to deal with stor-

age devices; the host bus interface is moving towards faster ones, e.g. from

SATA-2 (3 Gb/s) to SATA-3 (6 Gb/s) or PCI-Express (4 GB/s per direction).

Additionally, the advent of many-core processors is especially a momentous

change in storage system environment since the benefit of dedicating certain

cores to I/O processing would come at reasonable cost, which was consid-

ered harmful in the past.

Recently, high processing-power and high IO-performance became mu-

tually essential to each other. If the processing power is low, the utilization

of the underlying storage device would also be low, making it hard to attain

high I/O performance. On the other hand, if the performance of the storage

device is not high enough, each CPU would race against others (e.g. due to

10

polling [8]) to perform I/O operations on the shared device, and result in the

collapse of the scalability in many-core system. Fusion-IO also states that

the CPU cost for I/O operations is no longer cheap and affects the applica-

tion’s performance [11].

2.2 Analysis of I/O Path

An I/O request contains all the necessary information to perform an

I/O operation on the underlying storage device, such as the sector address,

a list of host memory segments, transfer size and etc. The sequence of soft-

ware layers that I/O request goes through is defined as the I/O path. We can

classify it into two types depending on the direction of I/O requests; 1) the

descending I/O path reaches the storage device from an application, and 2)

the ascending I/O path does the opposite, i.e. from the storage device to an

application.

In the context of Linux storage stack, the I/O subsystem is composed

of Block Layer, SCSI Subsystem, and Device Driver. Figure 2 illustrates

the common I/O path in the I/O subsystem. When the Virtual File System

(VFS) cannot find a requested page from page cache (read miss), or run

short of available pages for buffering writes (write miss), it builds an I/O

request filled with a target storage address retrieved by the File System,

and initiates the descending I/O path by submitting the request to the Block

Layer. This layer performs two important block-level optimizations, I/O

scheduling and request merging. Those techniques are effective only when

there are multiple requests in a request queue; if I/O scheduler has more

11

VFS/File System

Block Layer

Device

 Driver

put to sleep
software

latency

hardware

latency

Storage Device

synchronous I/O path
asynchronous I/O path

SCSI Subsystem

I/
O

 S
u

b
s
y
s
te

mwake up

kblockd

Interrupt

SoftIRQ

process

scheduling

<wait_queue>

Figure 2: Common I/O path in Linux storage stack

candidates, the possibility of generating more efficient schedules would be

increased. For this purpose, the descending I/O path is usually suspended at

this moment by plugging mechanism.

The rest of the descending I/O path is resumed either 1) by a kernel

thread called kblockd, or 2) by a conditional trigger based on the state

of a request queue such as the number of I/O requests in the queue and

the time passed since the last dispatch of a request. This event is called

unplugging and one of I/O requests in the request queue is dispatched to

the underlying SCSI Subsystem. The layer prepares DMA buffer, sets up

scatter-gather entries, and initiates DMA transfer by invoking the callback

routine registered by the Device Driver.

The storage device issues an interrupt signal to notify the Device Driver

of the completion of an I/O request. After freeing resources allocated by the

12

SCSI subsystem, the Device Driver puts off further completion handling,

anticipating that the remaining work can be done by SoftIRQ handler on the

original CPU that submitted the I/O request. Finally, the handler wakes up

the user process waiting for the pages in the completed I/O request. When

the OS schedules the awaken process, it starts to copy the requested pages

into user space and finishes the ascending I/O path.

2.3 Optimization Techniques by I/O Subsystem

Generally, there are two approaches to improve the performance of I/O

subsystem. They are 1) reducing per-request latency and 2) hiding (or mit-

igating) per-request latency by batching multiple requests in an I/O oper-

ation. The first one has to be solved by re-designing the I/O path in the

I/O subsystem. The other one involves the request batching scheme (1) at

software-level like request merge by Block Layer, or (2) at hardware-level

like command queueing [31] which accumulates multiple requests inside a

device and mitigates per-request protocol overhead.

• Reducing per-request latency: I/O scheduler, contained in the Block

Layer, estimates the hardware latency of an I/O request by calculating

the seek distance when the request is dispatched, which is called seek-

optimization heuristics. The Linux I/O subsystem has three I/O sched-

ulers [32], CFQ, Anticipatory [33] and Deadline, mainly based on

one-way elevator algorithm. NCQ [31, 34] is regarded as a hardware-

level I/O scheduler; it overcomes the inability of rotational-latency-

sensitive scheduling at software-level [35] and reschedules multiple

13

commands by considering the exact position of a disk head with the

help of the firmware.

• Mitigating per-request latency: The technique of merging spatially

adjacent I/O requests has been one of the most successful optimiza-

tions in handling a storage device [3]. We call this technique spatial

merge in further explanation. It helps the OS to get the maximum

throughput from a storage device by 1) mitigating mechanical over-

head in case of a disk, e.g. seek-time and rotational-delay, and 2) ac-

cessing multiple memory chips in parallel in case of a memory-based

SSD. A single large request produced by this technique always en-

hances the utilization of a storage device, thus increasing application

throughput.

14

Chapter 3

Analyzing the Legacy of Disk-based
I/O Subsystem

In this chapter, we deeply investigate the effect of using the existing

I/O subsystem on a low-latency storage device. A reasonable conclusion

is drawn from the analysis that the current I/O subsystem cannot fully ex-

ploit the performance of a low-latency storage device due to several reasons,

which are 1) interrupt overhead that emerges as the hardware latency of a

storage device becomes as low as a few microseconds, 2) delayed execu-

tion that incurs the overhead of context switch and process scheduling, 3)

request merging based only on spatial-adjacency, which is too restrictive for

SSDs with no moving parts, 4) disk-oriented configuration that favors only

seek-optimization which may not be useful for storage devices other than

disks.

The two performance gap problems, P1 and P2 has been described in

§1.1. In the following sections, we examine how each of the four factors

contribute to the problems when a low-latency storage device is used with

the existing disk-based I/O subsystem.

15

3.1 Problem 1: High Software Latency

As shown in Figure 1, the Linux I/O subsystem incurs performance

degradation when delivering the device throughput to an application. We

have performed latency analysis to examine whether any software overhead

exists in the I/O path.

3.1.1 Interrupt Latency

To analyze the interrupt overhead, we split the hardware latency of our

DRAM-SSD into several components as shown in Figure 3. The time spent

in each phase is measured by a logic analyzer. Interrupt latency is defined as

the time between the generation of an interrupt by a device and the servicing

of the interrupt. The measurement shows that the interrupt latency for an

I/O request approaches 2∼3 usecs. This overhead consumes 25% of the

hardware latency for 4 KB access and more than 40% for 512 bytes and 1

KB access.

Consequently, we revisit the problem of interrupts, which has been a

classic topic in network stack design [36, 37, 38, 39, 40], but this time in

the Linux I/O subsystem. Traditionally, the I/O subsystems in modern OSes

have used interrupt to confirm the completion of an I/O request. Since the

interrupt latency is just 0.1% of the hardware latency of a disk, interrupt

mechanism has been regarded as the low-cost notification method. However,

this is not true anymore. The interrupt latency of 2∼3 usecs now becomes

significant enough to affect the application throughput when we use a low-

latency storage device that responds to OS within a few microseconds. Now

16

 0

 5000

 10000

 15000

 20000

 25000

 30000

512 1024 2048 4096 8192 16384

T
im

e
 (

n
s
e
c
)

The Size of I/O Request (Bytes)

Interrupt Latency
Control transfer

DRAM access
Data transfer

Figure 3: Hardware-latency breakdown of DRAM-SSD

we have to question the old custom of using interrupt notification for storage

devices.

3.1.2 Delayed Execution

Using the kernel-level profiling tool kprobe, we perform latency anal-

ysis of the I/O path and show the timeline of an I/O request passing through

each software layer. At any point in the I/O path, CPU is in one of the

four different contexts; 1) a user process, 2) a kernel thread (kblockd),

3) a SoftIRQ handler, or 4) an interrupt handler. When the CPU context

is switched from one to another, the I/O path is suspended and resumed.

We define such property asynchronous, and such asynchronous points in

the I/O path, asynchrony. Asynchrony due to kernel preemption is not in-

cluded in our discussion. Linux I/O subsystem is composed of BLK (block

17

layer), SCSI (SCSI subsystem), and DEV (device driver). To simplify the

measurement of per-request latency breakdown, we used a single-threaded

workload {dd, 1 thr, seq(read), direct I/O} where the next I/O request enters

I/O subsystem only when the previous one is completed. R represents the

hardware latency of reading a 4KB page from a storage device. In case of

DRAM-SSD, R is 7 usec.

Table 1 shows that the software latency (53 usecs) is much higher than

the hardware latency (7 usec) and also show the performance bottleneck is

not in hardware anymore; now the bottleneck is in software. Major software

latencies stem from the asynchronous I/O path design. It took 9 usecs for the

CPU context to switch from the interrupt handler to the SoftIRQ handler,

and 4 usecs from the SoftIRQ handler to the user process. The I/O path in

the Linux storage stack contains 3∼4 asynchrony in a typical case, each of

which essentially leads to a context switch.

There are two reasons why Linux I/O subsystem depends on the SoftIRQ

handler to perform post-processing on the completed I/O requests:

• Cache-friendly request retirement: The interrupt handler has a be-

lief that the completed I/O request may exist in the L1/L2 cache of

the CPU that originally submitted the request. Expecting the post-

processing of the completed request would benefit the CPU cache,

the interrupt handler puts off further request retirement [41].

• Limitation of top-half design: Linux and most OSes, have a model

of two split handlers, called top-half and bottom-half, to deal with in-

terrupt. The OS usually puts some timing constraints on the execution

18

Layer Context Function In/Out Time
VFS dd do sync read in 0
BLK dd generic make request in 4
BLK dd generic make request out 7
SCSI dd scsi request fn in 9
SCSI dd scsi request fn out 16
VFS dd io schedule in 18
DEV interrupt SSD intr in R+18
DEV interrupt SSD intr out R+27
BLK softirq blk done softirq in R+36
BLK softirq bio endio in R+39
BLK softirq bio endio out R+41
SCSI softirq scsi run queue in R+45
SCSI softirq scsi run queue out R+46
BLK softirq blk done softirq out R+47
VFS dd io schedule out R+51
VFS dd do sync read out R+53
VFS dd do sync read in R+56

Table 1: Latency-breakdown of the common-case I/O path

of top-half such as the top half should not follow any slow path that

makes the current CPU context schedule out. If the execution of the

slow path is unavoidable, the remaining work must be delivered to the

bottom half through the asynchoronous I/O path.

As the Linux I/O subsystem relies on a few event notification chan-

nels, e.g. reserving the invocation of SoftIRQ handler, or adding a work

to the queues of other kernel threads, the software delay of a few usecs

is inevitable. These overheads have been insignificant when the hardware

latency is high enough, but become noticeable with the emergence of low-

latency storage devices. Therefore, we should consider whether the asyn-

19

chronous I/O path design is suitable for high-performance I/O subsystems.

3.2 Problem 2: Low Random Throughput

Figure 1 indicates that the random throughput achieved by the existing

I/O subsystem is only about 25% of the sequential throughput. A similar

result is also observed in a heavily-loaded scenario where 32 threads are

concurrently requesting data access. Without batching multiple requests, the

random throughput would hardly attain higher performance than the current

version. In this section, we investigate the limitations of the request merging

scheme in the Linux I/O subsystem and point out some configuration issues

that make it hard for the I/O scheduler to accumulate many I/O requests in

a request queue.

3.2.1 Narrow Block I/O Interface

Spatial merge builds a single large I/O request from multiple contigu-

ous requests, and achieves device throughput, e.g. 80∼100 MB/s in case of a

disk. However, this scheme has some limitations when it comes to handling

low-latency memory-based storage devices:

• High Software-latency: I/O scheduler blocks a request queue to pre-

vent I/O requests from being sent to a storage device, which means

plugging. From this point on, each I/O request is enqueued into the

request queue and tested whether it is spatially-adjacent to any pre-

vious requests within. Even if the queue is empty, a newly enqueued

I/O request should wait until the queue becomes unplugged, usually

20

triggered by kblockd’s wakeup. The plug/unplug mechanism is the

main source of I/O scheduler overhead since it accompanies OS de-

lay due to process scheduling. For this reason, many previous works

[41, 8, 9, 42] tried to bypass I/O scheduler instead of trying to benefit

from it.

• Low Device-/Channel- Utilization: When a flash-based SSD re-

ceives a single large I/O request, it splits the request into smaller ones

and stripes them to multiple flash chips for maximizing parallelism

[8]. However, the benefit is exploited only by a large-sized request; if

discontiguous small requests are dispatched to a storage device one by

one, the concurrent access to flash chips would hardly occur, lowering

overall device utilization. The small data transfer in an I/O operation

is also harmful to channel utilization. As shown in Figure 4, smaller

size of an I/O request leads to lower I/O throughput.

The limitations of spatial merge originate from the narrow block I/O

interface that supports the dispatch of an I/O request that only have con-

tiguous block addresses. This interface seems reasonable when we consider

the mechanism of a disk because non-adjacent block requests can never be

serviced concurrently. On the contrary, recent SSDs already have an archi-

tecture that services multiple I/O requests in parallel (as discussed in §2.1).

The current block I/O interface is too restrictive for those SSDs since it

limits the benefit of the parallelism inside a device. The narrow interface

enhances the device-/channel- utilization only when a single large request is

dispatched, which is not achievable under random access workload because

21

 0

 100

 200

 300

 400

 500

 600

 700

 800

512 1024 2048 4096 8192 16384

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

The Size of I/O Request (Byte)

poll interrupt

Figure 4: Effect of data transfer size on device-/channel- utilization

of the failure of spatial merge.

The plug/unplug mechanism to check spatial-adjacency incurs signif-

icant software overhead; if we can relax the constraint of spatial-adjacency

and instead utilize only a very small time window to combine requests, the

software latency taken by request merging scheme would be reduced.

3.2.2 Disk-oriented Configuration of I/O Subsystem

I/O scheduler maintains the number of I/O requests to a certain level

in a request queue to apply spatial merge or schedule algorithm on them.

To prevent some requests from being starved, the I/O scheduler forces the

request queue to be unplugged to flush the requests in the queue if some con-

ditions are met. The threshold value, called unplug thresh, limits the maxi-

mum number of block requests in a request queue. It is one of the configu-

22

ration of a request queue as explained in Table 2, and is compared against

the current number of block requests that are not dispatched yet, whenever

a new request is inserted. If there are more requests in a queue than the

threshold, the CPU context that is about to insert the request synchronously

performs the unplug routine.

However, the existing I/O subsystem is configured based only on the

characteristics of a disk. For the following reasons, the I/O scheduler (con-

tained in the I/O subsystem) is hardly able to pile up many block requests:

• Threshold for slow storage devices: The default unplug thresh is

set to 4, which triggers the unplug event very frequently when used on

low-latency storage devices. Unlike HDDs, low-latency SSDs service

an I/O request within a few microseconds, reducing the chances of

accumulating successive block requests.

• Fairness policy of I/O scheduler: In case of CFQ scheduler, the

block requests in a request queue (in fact, multiple queues of CFQ)

is often flushed before the number of block requests reach the un-

plug thresh value; CFQ tries to guarantee fairness among the concur-

rent processes by forcing a specific request queue to be unplugged.

• Favor of read requests: A read request mostly results from a block-

ing system call by a user process, so it is favored by the Linux I/O

subsystem by triggering the unplug event immediately after inserting

the read request. Due to this, the I/O subsystem usually fails to accu-

mulate many block requests in a request queue.

23

Parameter Default Description
I/O scheduler CFQ Complete Fair Queueing scheduler
unplug delay 3 ms Timer expiration value
unplug thresh 4 The maximum limit of I/O requests in a queue

ra pages 128 The maximum limit of pages for read-ahead

Table 2: Default configuration of a request queue

Additionally, some heuristics of an I/O scheduler produces unneces-

sary software delay. For example, Anticipatory scheduler waits for future

requests to be spatially-adjacent to any in a request queue and leaves a stor-

age device idle for a few milliseconds. Even if Noop scheduler is used, it is

known that the code increases the I/O path and incurs a few usecs software

overhead [41]. Some research [43, 2] point out that they are not suitable for

recent SSDs that do not have any mechanical moving parts.

24

Chapter 4

Design Exploration of I/O Subsystem

In this section, we explore five I/O subsystem designs to fully under-

stand the interaction between each I/O subsystem and low-latency storage

devices in the hope of relaying the device throughput to an application with-

out performance loss. Each design has some advantages over the others,

or faces unexpected semantic gap between the I/O subsystem and the up-

per layer. Although there is no silver bullet that achieves the best latency

and throughput in all workloads due to their tradeoff relationship [14], our

design exploration would help us find the most efficient design for future

low-latency SSDs even if their characteristics may vary from their origin.

Our designs are mainly based on the following optimization techniques:

O1. Using poll instead of interrupt,

O2. Establishing synchronous I/O path,

O3. Merging and dispatching discontiguous requests with the help of an

extended block I/O interface,

O4. Eliminating disk-assumptions in I/O scheduler

Each technique influences the I/O subsystem design to reduce unnecessary

delay (by O1 and O2) or to hide per-request latency (by O3 and O4). Some

25

of them are mutually exclusive (e.g. O2 and O4), and others can be com-

bined (e.g. O1 and O3) to benefit from both approaches.

4.1 Baseline Design: Asynchronous I/O Path and
Interrupt

Our baseline I/O subsystem, called SCSI INTR, is registered to the

SCSI subsystem as shown in Figure 2. It relies on asynchronous I/O path;

a write request goes through the four context switches, which is a user pro-

cess → kblockd → interrupt → SoftIRQ handler → a user process, and a

read request follows the I/O path of a user process → interrupt → SoftIRQ

handler → a user process. In the case of a read request, it is favored by the

existing I/O subsystem, hence dispatched to a storage device synchronously

in the context of a user process instead of kblockd (as discussed in §3.2.2).

4.2 Design 1: Making Entire I/O Path Synchronous

The first optimization was to change the detection method of I/O com-

pletions from interrupt to poll. In this design, the I/O subsystem, which we

call ”SyncPath”, busily waits on a specific I/O port to check the comple-

tion of I/O requests. As soon as a completion is detected, SyncPath initiates

a post handling routine without a context switch, which removes 1 asyn-

chrony in the ascending I/O path.

Due to the poll mechanism, SyncPath does not have to split the post

handling process into top-half (interrupt handler) and bottom-half (SoftIRQ

handler). This is possible since the polling is performed in the context of

26

a specific process, i.e. a user process or kblockd, and allows any slow path

execution that happens to yield CPU resource to other processes. This fur-

ther eliminates 1 asynchrony (interrupt → SoftIRQ handler) and reduces the

software latency in the ascending path.

Bypassing the I/O scheduler is a well-known technique to reduce asyn-

chrony in the descending I/O path [8, 41]. By registering a customized func-

tion to the block layer, I/O requests are directed to SyncPath instead of the

I/O scheduler. Then, SyncPath dispatches them directly to the underlying

storage device, not depending on a background kernel thread kblockd.

The positive effect of utilizing both the poll mechanism and the by-

pass of the I/O scheduler is that a user process is not necessarily put to

sleep after submitting an I/O request; at the time when a user process re-

turns to the VFS/FS layer after submitting an I/O request, the requested

data already becomes ready, i.e. page is up-to-date in terms of Linux ker-

nel. Consequently, SyncPath makes the I/O path fully synchronous without

any context switches during the descending/ascending path. Figure 5 illus-

trates an example that four processes submit I/O requests and follow their

I/O paths synchronously. Each symbol is explained in Table 3.

According to the result in Figure 6, SyncPath achieves the improve-

ment of 1.58x∼2.47x under random access workload, and the improvement

of 1.14x under sequential access workload over SCSI INTR. Those im-

provements come from the reduced number of asynchrony in the I/O path

and get higher as the per-request size is smaller; when sequential read work-

load is given, the read-ahead condition is met and a large-sized request (32

pages by default) is created. The request increases the hardware latency of

27

CPU1 CPU2 CPU3 CPU4

M

U

W

IO

M

M

M

IO

IO

IO

ti
m
e
lin
e

U

W

U

W
U

W

exclusive

operation

Figure 5: Fully-synchronous I/O path in SyncPath design

transferring data, while the software latency becomes relatively ignorable.

Consequently, the benefit of optimizing the I/O path is reduced.

Interestingly, in the case of SyncPath, the sequential write throughput

is close to the random write throughput. The reason is that the synchronous

I/O path gives up the chance to combine successive write requests; we can-

not anticipate any change of latency-hiding technique. Although SyncPath is

more effective than SCSI INTR in most workloads, the application through-

put by SyncPath is still lower than the device throughput.

28

Symbol Description
 The current I/O request
9 The next I/O request
M DMA pre-processing (DMA-map)
IO Initiate DMA and poll on the completion
U DMA post-processing (DMA-unmap)
W Wake up the process that requested I/O
B Prepare DMA-able buffer (Bounce)

Table 3: Symbol description for I/O subsystem design

 0

 100

 200

 300

 400

 500

 600

 700

 800

Seq.Read Seq.Write Rand.Read Rand.Write Rand.Mixed

Io
z
o
n
e
 T

h
ro

u
g
h
p
u
t
(M

B
/s

)

Iozone Workload (RAM=2GB, Dataset=32GB, DRAM-SSD)

Device Throughput

SCSI_INTR SyncPath

Figure 6: Iozone evaluation of SyncPath and SCSI INTR

4.3 New I/O Interface: Dispatching Discontigu-
ous Block Requests in a Single I/O Request

Spatial merge in the Linux I/O subsystem identifies spatial-adjacency

(or spatial locality) from contiguous block requests. Sending a set of con-

tiguous requests in an I/O request can actually be a good way to hide per-

request latency. However, it should be questioned that such design based on

spatial-adjacency is still the best choice for low-latency storage devices with

29

different characteristics compared to disks.

Considering the two limitations of spatial merge technique (in §3.2.1),

we devise a new batching scheme called temporal merge efficient for non-

rotational and non-seeking memory-based storage devices. This mechanism

is not based on spatial-adjacency but rather combines requests into one,

based on temporal locality even if their addresses are not contiguous. Thus,

the requests that reach I/O subsystem within a short time window can be

sent to the underlying device together.

Of course, the mechanism requires hardware modification since the

current DMA operations only allow mappings of data from discontiguous

memory segments into a single contiguous storage address space. We imple-

mented a device-level scatter/gather operation in the controller inside our

target SSD and exposed an interface for the OS to issue temporally-merged

I/O requests. This new functionality is illustrated in Figure 7. It plays a key

role of increasing random throughput close to sequential throughput in the

subsequent I/O subsystem designs.

4.4 Design 2: Merging Discontiguous Block Re-
quests Synchronously

The second design of our I/O subsystem is called STM (Synchronous

Temporal Merge), and implements temporal merge by using the extended

block I/O interface mentioned in the previous section. We call the prop-

erty of STM ’synchronous’ since the technique combines multiple block

requests without relying on plug/unplug mechanism; as long as there is any

30

host

memory

storage

addr. space

Single

I/O

Req.

Temporally-merged Request

host

memory

storage

addr. space

Four

I/O

Req.

Spatially-merged Request

Figure 7: Comparison between spatial merge and temporal merge

request inside this I/O subsystem, at least one CPU context will be spin-

ning until the storage device becomes idle. Unlike the case in SyncPath,

not all threads follow the whole I/O path. Instead, only one thread (a win-

ning thread) gathers block requests from other threads (losing threads) and

execute the synchronous I/O path on behalf of others.

Figure 8 describes a situation where four threads are concurrently sub-

mitting block requests to STM. STM chooses only one thread (called win-

ner) among the concurrent ones by using an atomic operation, and makes the

thread follow the descending/ascending I/O path on behalf of others (called

losers); the losing threads yield their CPU resource for other useful jobs

and are put to sleep. The winner builds a temporally-merged request, maps

buffers into DMAable region, and initiates DMA transfer. After detecting

the request completion, the thread unmaps the DMA buffers and wakes up

the losing threads.

STM overcomes the two limitations of spatial merge discussed in §3.2.1.

31

CPU1 CPU2 CPU3 CPU4

Compare-And-Set (CAS)
ti
m

e
lin

e

M M M

Temporal

 Merge

winner

IO

U U U

W W W

CAS

Temporal

 Merge

M M

IO

winner

add to queue

U U

W W

add to queue

Figure 8: Synchronous temporal merge in STM design

First, there is no process scheduling overhead during the merge operation.

The winner does not rely on plug/unplug mechanism and follows synchronous

I/O path, which minimizes the software latency. Second, temporal merge al-

ways succeeds in building a large I/O request as long as the request queue

has enough block requests, enhancing device-/channel- utilization. The tech-

nique makes it possible to raise the random throughput to the sequential

throughput, which is not achievable by spatial merge with traditional block

I/O interface.

Figure 9 shows that the performance improvement of STM over Sync-

Path is about 48∼150%. The sequential write throughput of STM is 93%

higher than that of SyncPath and 24% higher than that of SCSI INTR that

32

 0

 100

 200

 300

 400

 500

 600

 700

 800

Seq.Read Seq.Write Rand.Read Rand.Write Rand.Mixed

Io
z
o
n
e
 T

h
ro

u
g
h
p
u
t
(M

B
/s

)

Iozone Workload (RAM=2GB, Dataset=32GB, DRAM-SSD)

Device Throughput

SyncPath STM

Figure 9: Iozone evaluation of STM and SyncPath

utilizes spatial merge; temporal merge effectively overcomes the limitations

of spatial merge.

The weak point of STM is that the number of the concurrent block

requests directly affects the performance. If a single thread issues I/O re-

quests one-by-one, no improvement is expected over SyncPath since that

thread will be a winner and always proceed with one I/O request at all time.

This kind of problem is observed when a kernel thread performs write-back

on dirty pages; even though multiple user processes concurrently invoke

write system calls, their data remain in the page cache, and is later flushed

by a single thread. Single-threaded write-intensive applications like cp or

dd, suffer from performance degradation.

33

4.5 Design 3: Merging Discontiguous Block Re-
quests Asynchronously

To decouple the I/O performance from the number of the concurrent

block requests in the I/O subsystem, we choose to design another I/O sub-

system, called ATM, that accumulates I/O requests regardless of the concur-

rency.

ATM substitutes the SCSI subsystem in the existing storage stack (§2.2)

to make the best use of underlying storage devices. Instead of bypassing the

I/O scheduler, ATM actively utilizes it to pile up I/O requests in a queue.

When kblockd is scheduled by the OS, it invokes a customized dispatch

routine of ATM, which dequeues multiple I/O requests at a time. Then, ATM

builds a temporally-merged request and dispatches it.

Figure 10 shows an example of 4 threads’ submitting six block re-

quests. Each thread in the context of a user process prepares a DMAable

buffer by queue-bouncing before it enters into ATM. So the burden of map-

ping multiple DMA buffers by a single thread, i.e. 6 ”M”s, is removed. After

the I/O request is completed, SoftIRQ jobs of unmapping DMA buffers and

waking up user processes are handed over to other cores. Consequently, the

whole ascending I/O path is executed on the CPU where the I/O request was

originally submitted.

At first, it was anticipated that ATM would form a larger I/O request

than the one by STM and increase throughput. However, such expectation

proved to be wrong; the number of requests was not high enough (4 at max-

imum) that the benefit of temporal merge had been canceled out by the soft-

34

CPU1 CPU2 CPU3 CPU4

Insert into I/O scheduler's queue
ti
m

e
lin

e

Temporal

 Merge

U

W

i) kworker wakes up, or ii) explicit unplug invocation

B

IO

BB
B

B

B

M M M M M M
perform nothing due to the queue bouncing (B)

U

W

U

W

U

W

U

W

U

W

Asynchronous

per-cpu execution

by SoftIRQ handler

Figure 10: Temporal merge with I/O scheduler in ATM design

ware latency of the I/O scheduler. Some default parameters, in Table 2, that

controls the behavior of I/O schedulers were only effective for HDD and

thus limited the potential performance of low latency storage devices.

So, our next step was to eliminate disk assumptions in the I/O sched-

uler. ATM chooses noop instead of cfq which is the default I/O scheduler

in the recent Linux releases. The former accumulates I/O requests to the

maximum threshold, while the latter unplugs a request queue prematurely

as described in §3.2.2. Increasing unplug_thresh from 4 to 32 shows a

good balance between throughput and latency under various environments,

but it should be tuned when the performance features of the underlying stor-

age device change. Unplug_timer is set to 1 ms, the minimum timer pe-

35

 0

 100

 200

 300

 400

 500

 600

 700

 800

Seq.Read Seq.Write Rand.Read Rand.Write Rand.Mixed

Io
z
o
n
e
 T

h
ro

u
g
h
p
u
t
(M

B
/s

)

Iozone Workload (RAM=2GB, Dataset=32GB, DRAM-SSD)

Device Throughput

STM ATM

Figure 11: Iozone evaluation of ATM and STM

riod in our system, to prevent a storage device from being idle for too long.

This can be more fine-grained by using high-resolution timers [44, 45].

Figure 11 indicates that ATM performs better than STM under write

workloads; the improvements are 18%, 5% under sequential and random

write workloads having multiple threads respectively and 50% when only a

single thread issues many writes. In spite of the increased write throughput,

ATM fails to perform temporal merge on the read requests due to the critical

section design in the Block Layer. A read I/O request is dispatched as soon

as they are inserted into a request queue with a spinlock queuelock held. This

allows ATM only one I/O request at any time, lowering I/O performance to

that of spatial merge. There exists a semantic gap between the Block Layer

and ATM, which motivates our next I/O subsystem design.

36

4.6 Design 4: Choosing I/O Path Dynamically
Based on a Request Property

From the previous results, we can infer that STM is a good choice for

read-intensive workloads since the read system call is a blocking opera-

tion and thus significantly affected by the latency of I/O request. On the

contrary, write-intensive applications would prefer the throughput-oriented

design like ATM since write is non-blocking and rapid flushes of dirty

pages into the storage device is a critical factor that enhances the applica-

tion throughput.

Based on intuition, we came up with a hybrid design called HTM (Hy-

brid Temporal Merge). The general idea is to take advantages of both de-

signs. If the I/O subsystem identifies an incoming I/O request to be latency-

sensitive, it directs the request to STM and otherwise to ATM. HTM infers

the ”latency-sensitivity” based on the bio->bi_rw flag. If the flag indi-

cates that the request is a read type or an O DIRECT type, HTM regards

it as a latency-sensitive one, and makes it follow the synchronous I/O path

in STM. As shown in Figure 12, HTM helps an application to observe the

throughput achieved by STM in case of read workloads, and by ATM in case

of write workloads.

Still, the random read throughput is only 45% of the device through-

put. Considering that the random write throughput is very close to the de-

vice throughput, it is regarded that temporal merge is effectively enhancing

device-/channel- utilization. The root cause of the low random read through-

put is due to the semantic gap between the read-ahead logic in VFS layer

37

 0

 100

 200

 300

 400

 500

 600

 700

 800

Seq.Read Seq.Write Rand.Read Rand.Write Rand.Mixed

Io
z
o
n
e
 T

h
ro

u
g
h
p
u
t
(M

B
/s

)

Iozone Workload (RAM=2GB, Dataset=32GB, DRAM-SSD)

Device Throughput

STM ATM HTM

Figure 12: Iozone evaluation of HTM and ATM

and the underlying I/O subsystem. This problem motivates the need for de-

signing a new type of I/O subsystem.

4.7 Design 5: Including Upper Layer to Bridge
Semantic Gap between VFS and Block I/O
Subsystem

Figure 13 shows the relationships between the size of read-ahead and

the sequential/random read throughput of Iozone. The size of read-ahead

determines how many pages should be read from a storage device when

sequential access is detected and therefore can affect the sequential read

throughput.

However, the variation of the random read throughput was unexpected

since the access pattern cannot be sequential. It is confirmed that this mis-

behavior was due to the context lookup heuristics implemented inside VFS

38

 0

 100

 200

 300

 400

 500

 600

 700

 800

R.A.=0 R.A.=32 R.A.=64 R.A.=128 R.A.=256 R.A.=512

A
p
p
lic

a
ti
o
n
 T

h
ro

u
g
h
p
u
t
(M

B
/s

)

Iozone Workload (RAM=2GB, Dataset=32GB, DRAM-SSD)

Device Throughput

Sequential Read Random Read

Figure 13: Read-ahead dilema in HTM

layer. The algorithm was for detecting sequentiality from the multiple se-

quential streams, but misunderstood when the random requests arrive in

a small region within a short time interval. As a result, the random read

throughput observed at HTM was in fact 610 MB/s while the goodput, the

throughput observed at a user application, was 316 MB/s.

The read-ahead dilema, whether to enable read-ahead or not, can be

resolved by simply disabling the context lookup logic. The new I/O sub-

system, called VFS-HTM, is designed to cover this upper layer to avoid

applying modification to kernel core in place. The evaluation result of VFS-

HTM is shown in Figure 14. The random read throughput is increased by

94%, which achieves 87% of the device throughput.

It is noticeable that the mixed random throughput still remains at 74%

of the device throughput. In spite of the use of the hybrid I/O path, the

throughput is lower than both the throughput of the random read and the

throughput of the random write. This performance gap is due to the lack of

39

 0

 100

 200

 300

 400

 500

 600

 700

 800

Seq.Read Seq.Write Rand.Read Rand.Write Rand.Mixed

Io
z
o
n
e
 T

h
ro

u
g
h
p
u
t
(M

B
/s

)

Iozone Workload (RAM=2GB, Dataset=32GB, DRAM-SSD)

Device Throughput

HTM VFS-HTM

Figure 14: Iozone evaluation of VFS-HTM and HTM

global management of the two I/O paths for reads and writes. When a block

request follows read I/O path, the write requests in a request queue may be

prematurely dispatched to a storage device since the unplug event would

be triggered to deal with the read request. The five I/O subsystem designs

discussed up to now are optimized for read-only or write-only workloads

but not for the mixture of reads and writes.

4.8 Design 6: Using Double Buffering to Avoid
Lock Contention

To overcome the disadvantage of VFS-HTM regarding the interference

between the read and the write path, we choose to improve the design of

ATM by redesigning the critical section. The inherent problem is that the

Block Layer in Linux uses the same spinlock both for inserting a request

and for dispatching a request.

To mitigate the contention and give a chance for a request queue to

40

 0

 100

 200

 300

 400

 500

 600

 700

 800

Seq.Read Seq.Write Rand.Read Rand.Write Rand.Mixed

Io
z
o
n
e
 T

h
ro

u
g
h
p
u
t
(M

B
/s

)

Iozone Workload (RAM=2GB, Dataset=32GB, DRAM-SSD)

Device Throughput

VFS-HTM 2Q

Figure 15: Iozone evaluation of 2Q and VFS-HTM

accumulate more requests, our new I/O subsystem, called 2Q, uses one more

queue, called Shadow Queue (SQ), to buffer the requests to be dispatched

soon. The procedure of moving block requests from the request queue to the

SQ is called a draining. Draining block requests is short enough that holding

the spinlock queuelock does starve other threads.

As described in Figure 15, 2Q shows 44% of improvement over VFS-

HTM. Unlike VFS-HTM that unplugs a request queue for every read re-

quest, 2Q effectively piles up block requests regardless of their read/write

types. However, the significant performance degradation is occurred under

a sequential write workload, which is not observed when ext2 is used. It

seems that the synchronous writes issued by a journaling thread prevent the

next requests from entering into the I/O subsystem, while VFS-HTM does

not experience this problem due to the bypass of the I/O scheduler. Identify-

ing such synchronous requests and immediately unplugging a request queue

is the remaining challenge of 2Q.

41

I/O subsystem design O
1

(P
ol

lin
g)

O
2

(S
yn

ch
.p

at
h)

O
3

(R
ea

d-
m

er
ge

)

O
3

(W
ri

te
-m

er
ge

)

O
4

(D
e-

di
sk

if
y)

R
ea

d-
ah

ea
d

Fi
x

SCSI INTR (Baseline) × × × △ × ×
SyncPath (Zero context switch) O O × × × ×
STM (Synch. Temporal Merge) O △ O △ × ×
ATM (Async. Temporal Merge) O △ × O O ×
HTM (Hybrid Temporal Merge) O △ O O O ×
VFS-HTM (VFS-included) O △ O O O O
2Q (Double Buffering) O × O O O O

Table 4: Optimizations applied to each I/O subsystem version where each
symbol indicates the followings, O: fully support, △: partially support, and
×: don’t support.

4.9 Design Summary

Key optimization techniques applied to the I/O subsystem designs are

summarized in Table 4. The baseline I/O subsystem, SCSI INTR, partially

supports write-merge since it can combine requests based only on spatial-

adjacency. ATM may synchronously dispatch I/O requests when the number

of requests in a requst queue reaches the limit of unplug thresh, so it is

checked as ’partially support’.

42

 0

 100

 200

 300

 400

 500

 600

 700

 800

Seq.Read Seq.Write Rand.Read Rand.Write Rand.Mixed

Io
z
o
n
e
 T

h
ro

u
g
h
p
u
t
(M

B
/s

)

Iozone Workload (RAM=2GB, Dataset=32GB, DRAM-SSD)

Device Throughput

SCSI_INTR VFS-HTM 2Q

Figure 16: Iozone evaluation of 2Q, VFS-HTM and SCSI INTR

43

Chapter 5

Implementation Details

In this chapter, the implementation details of the I/O subsystems and

the hardware interface are presented.

5.1 Block I/O Subsystem in Linux

Each I/O subsystem is implemented as a loadable kernel module for

linux 2.6.32 and requires no modification of the OS. The Linux storage

stack is composed of several layers as described in §2.2 and each layer in-

vokes the lower/upper layer’s functionalities with function pointers. This

OS design enables any device module to register its own customized func-

tion between two adjacent layers, which is exploited by our I/O subsystem

implementation.

• scsi host template→queuecommand: The function pointer is invoked

by SCSI subsystem to perform a device-specific protocol. SCSI INTR

registers the customized dispatch function that extracts DMA infor-

mation from the SCSI command and issues a PCI request to our

DRAM-SSD.

• request queue→make request fn: File system uses the function pointer

to utilize the I/O service provided by the I/O subsystem. Every block

44

device has a request queue that provides a callback to which other de-

vice driver can register the device-specific dispatch routine. When an

I/O request is about to be submitted to the I/O subsystem, the callback

function is invoked. SyncPath, STM, HTM use this function pointer

to bypass the I/O scheduler. Before entering into the I/O subsystem, a

thread does not hold any spinlock, which enables the multiple threads

to be in the I/O subsystem concurrently. STM utilizes such concur-

rency to combine the multiple block requests into one I/O request.

• request queue→request fn: The function pointer is invoked either 1)

asynchronously by kblockd, or 2) synchronously by a process context.

The semantics of the function pointer is that it is time to dispatch an

I/O request, so pick the most appropriate candidate from a request

queue and dispatch it to a device. This routine is usually invoked after

spatial merge or request scheduling is performed on a request queue.

ATM and HTM hooks the function pointer and dequeues as many

block requests from a request queue as possible to perform temporal

merge on them. Since a thread holds a spinlock, called queuelock,

before calling the function pointer, no two threads can exist at this

layer. So, simply moving STM into ATM does not produce the benefit

of merging read requests. To take advantage of both I/O path, HTM

hooks the make request fn first, checks the attribute of a block request

and selectively re-directs the request to ATM by invoking the function

address remembered at loading time of the module.

45

ATM implements cache-friendly request retirement (as discussed in

§3.1.2) by using a SoftIRQ handler instead of Inter-Processor Interrupt (IPI).

IPI forces other CPU cores to deal with the registered interrupt handler

which incurs two context switches to make the original job resume its ex-

ecution. On the contrary, SoftIRQ is an implementation of Soft Timer [36]

and is invoked at the appropriate moment such as the point after an inter-

rupt context is ended, which does not need to save the CPU context. The

main benefit of ATM comes from the write-intensive workloads which fa-

vor high throughput rather than low latency, so SoftIRQ is the better choice

for ATM than IPI. The existing post-processing handler in SCSI subsystem

is designed to serially unmap DMA buffers, which can be significantly high

for low-latency storage devices. Since ATM substitutes the SCSI subsys-

tem, it can reuse SCSI-specific variables in a request. Four of them, tag,

cmd len, sense, and sense len, are chosen to contain DMA-related informa-

tion such as the direction, the number of scatter-gather entries, the pointer

to the scatter-gather list and the size of the sgtable. Then the SoftIRQ han-

dler invoked on each CPU core is able to unmap DMA buffers and keep the

routine of request retirement.

To drain block requests, 2Q breaks the assumption that request fn func-

tion should keep holding a spinlock queuelock. The 2Q works just like ATM,

but when requested to dispatch an I/O request, it releases the spinlock and

drains as many block requests as possible to perform temporal merge on the

shadow queue. Before returning to the upper layer, 2Q should acquire the

spinlock to guarantee the post conditions as expected by the upper layer.

46

5.2 New Storage Device Interface

To support polling mechanism for request completions, we developed

a new interface in the FPGA of the DRAM-SSD. First, we added a control

register, called INT DISABLE, so that I/O subsystem can enable/disable in-

terrupt mechanism. Next, we added a status register to report an I/O comple-

tion (IO DONE). Our I/O subsystems utilize the two registers to implement

polling mechanism.

Our DRAM-SSD has a separate DMA engine that performs device-

level scatter-gather I/O operation by using a list of request descriptors. We

defined a new data structure, Block Control Table (BCT), which can contain

1,024 requests in a table at maximum. Each element in BCT is encoded

as (host memory segment, storage segment, data size). The kernel memory

region of BCT is allocated when the device driver is loaded and accessed by

the FPGA with consistent DMA access function.

47

Chapter 6

Evaluation

To evaluate our I/O subsystem designs for low latency storage devices,

we used a set of microbenchmarks as shown in Table 5. For evaluation

we used a machine with two Xeon E5630 2.53 quad core CPUs (total 8

cores) running a Linux 2.6.32 vanilla kernel. DRAM-SSD [15] is used as

the low-latency storage device for evaluation. The tested I/O subsystems are

SCSI INTR, SyncPath, STM, ATM, HTM, and 2Q.

Benchmark Configuration
IOzone [17] Thr∈[1,8,16,32], RecSize=4KB,

IO=buffered, FileSystem=ext3
fio [46] Pattern=randrw, Size=32G, Thr∈[1,8,16,32,64]

postmark [47] # of postmark instances∈[1,4,8,16],
of files=200K, # of trans.=300K

TPC-C BenchmarkSQL [48] with Postgresql,
Warehouse∈[10,50], Terminal∈[1, 5,10,15]
fsync=off, auto vaccuum=off, full page writes=off
random page cost=1.0

Table 5: Configurations of the tested I/O workloads

6.1 Latency Reduction

We measured the latency of a read I/O request by profiling the response

time of page cache miss routine that starts from do_sync_read kernel

48

Software-latency Hardware-latency
SCSI INTR 20 usecs (74%) 7 usecs (26%)
SCSI POLL 13 usecs (65%) 7 usecs (35%)

SyncPath, STM, HTM 5 usecs (42%) 7 usecs (58%)
ATM 8 usecs (53%) 7 usecs (47%)
2Q 6 usecs (46%) 7 usecs (54%)

Table 6: Latency of accessing a 4KB page by each I/O subsystem

function, which is shown in Table 6. To measure a pure per-request latency,

a single-threaded workload dd is executed with O DIRECT option, which

allows I/O subsystem only one I/O request at any time.

The baseline I/O subsystem SCSI INTR incurs the highest software

latency which accounts for 74% of the total latency. Using poll instead of

interrupt cuts down the software latency by 7 usecs and eliminating any con-

text switch in the I/O path reduces the additional delay by 8 usecs. The syn-

chronous I/O path achieves 3.3x reduction in software latency when com-

pared to the I/O path in the existing Linux I/O subsystem. In the case of

STM and HTM, a user thread, dd, always becomes a winner and follows the

synchronous I/O path just as in SyncPath; context switch does not occur in

the path. Since both ATM and 2Q utilize the I/O scheduler to accumulate

block requests in a request queue, the delay of 1∼3 usecs is added to the

software latency. 2Q checks the state of a storage device and synchronously

dispatches an I/O request if the device is idle, which accounts for the lower

software latency than ATM.

49

 0

 100

 200

 300

 400

 500

 600

 700

 800

Seq.Read Seq.Write Rand.Read Rand.Write Rand.Mixed

Io
z
o

n
e

 T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Iozone Workload (Ext3, 1 Thr, RAM=2GB, Dataset=32GB)

Device Throughput

SCSI_INTR
SyncPath

STM
ATM

HTM
2Q

(a) 1 Thread

 0

 100

 200

 300

 400

 500

 600

 700

 800

Seq.Read Seq.Write Rand.Read Rand.Write Rand.Mixed

Io
z
o

n
e

 T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Iozone Workload (Ext3, 32 Thr, RAM=2GB, Dataset=32GB)

Device Throughput

SCSI_INTR
SyncPath

STM
ATM

HTM
2Q

(b) 32 Threads

Figure 17: Iozone evaluation of the proposed I/O subsystems

6.2 Microbenchmark 1: Iozone

Interrupt vs. Poll: In Table 7, the existing interrupt-based I/O subsys-

tem, SCSI INTR, outperforms all of the poll-based designs under a single-

threaded sequential read workload. In the workload, VFS always detects the

sequentiality of data access, and issues a large-sized read request containing

32 pages (= 128 KB). It takes 177 usecs for our DRAM-SSD to service the

request. From the result, when per-request size is high enough, using inter-

50

rupt instead of poll can be a better solution because the interrupt latency

becomes relatively insignificant. On the contrary, when a system is heavily-

loaded by many threads, poll is always better than interrupt, showing 15%

of improvement in this case (SyncPath vs. SCSI INTR). Both STM and 2Q

can benefit more by performing temporal merge on multiple read-ahead re-

quests.

Reduced context switch: When a single-threaded random read workload

is given, the per-request software latency can be easily identified. The num-

ber of context switches of the I/O path in each I/O subsystem is 3∼4 for

SCSI INTR (a read and a write respectively), 1∼2 for (ATM, 2Q) and 0

for (SyncPath, STM, HTM). It is noticeable that the performance improve-

ment over SCSI INTR is inversely-proportional to the number of context

switches: 27∼42% by (ATM, 2Q) and 63∼65% by (SyncPath, STM, HTM).

Although the I/O path in STM may experience more context switches under

a multi-threaded workload, the benefit of temporal merge cancels out the

harm caused by context switch, showing more improvement.

STM vs. ATM: In Figure 17(a), STM fails to merge write requests under

a sequential write workload since only a single journaling thread submits a

series of 4 KB pages one by one; when the concurrency is 1, STM cannot

merge any requests. On the contrary, ATM uses the asynchronus I/O path

to accumulate many requests even when the concurrency is 1, and exploits

the device throughput from the workload. Under a multi-threaded random

read workload, ATM is equal to or less than SyncPath that does not perform

any merge operation. The failure of ATM’s merging read requests is due

to the critical section design (as discussed in §4.5), while STM succeeds

51

Thr= 1, Ext3 Seq.R Seq.W Rand.R Rand.W Rand.M
SyncPath 0.87 0.54 1.65 1.12 1.65

STM 0.87 0.54 1.63 1.11 1.63
ATM 0.90 1.02 1.27 1.63 1.27
HTM 0.87 1.03 1.63 1.60 1.63

2Q 0.89 1.01 1.42 1.62 1.41
Thr=32, Ext3 Seq.R Seq.W Rand.R Rand.W Rand.M

SyncPath 1.15 0.74 2.07 1.09 2.02
STM 1.25 1.44 3.99 2.26 4.05
ATM 1.19 1.65 1.93 2.40 3.22
HTM 1.25 1.62 4.00 2.40 3.05

2Q 1.29 1.05 3.94 2.52 4.39

Table 7: Application throughput normalized to SCSI INTR

in combining multiple read requests. These results obviously motivate the

design of HTM that takes advantage of both designs. In the case of ext2, a

write-back thread instead of a journaling thread submits a bunch of requests

(total of 32 pages), so the sequential write throughput becomes high enough

in spite of the lack of merge operations.

No performance penalty of STM: When we compare single-threaded

throughput between SyncPath and STM, it is hard to find meaningful per-

formance difference as in Table 7. Even when STM always fails to merge

requests due to the single-thread workload, the performance degradation is

less than 2% over SyncPath.

ATM vs. 2Q: ATM fails to merge read requests since the I/O scheduler

in Linux is designed to dispatch an I/O request without delay if it is a read

request. Compared to ATM, 2Q shows 2.04x throughput under a random

read workload while the random write throughput shows no big difference.

52

 0

 1

 2

 3

 4

 5

THR 1 THR 8 THR 16 THR 32 THR 64N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t
to

 S
C

S
I_

IN
T

R

Fio Workload (Rand R/W, RAM=2GB, Dataset=32GB)

SyncPath
STM

ATM
HTM

2Q

Figure 18: Fio evaluation of the proposed I/O subsystems

6.3 Microbenchmark 2: Fio

We have used other microbenchmarks to confirm the previous obser-

vations with different workloads. As shown in Figure 18, when the concur-

rency is 1, the I/O subsystems that rely on the I/O scheduler show worse

throughput due to the increase of per-request software latency. As more

threads exist in a system, temporal merge becomes more beneficial espe-

cially when used with the I/O scheduler. In the case of 2Q, when 32 threads

issue read/write requests in random access pattern, 4.6x of improvement

over SCSI INTR is observed.

6.4 Macrobenchmark 1: Postmark

Postmark [47] simulates web servers by creating/appending/deleting a

set of files, each of which corresponding to one user mail. Recently, it is

reported that postmark does not generate I/O traffic enough to test a storage

53

 0

 50

 100

 150

 200

 250

 300

S.INTR
SyncPath

STM ATM HTM 2Q

A
g

g
re

g
a

te
d

 T
h

ro
u

g
h

p
u

t
(M

B
/s

)
Write Read

(a) Postmark(1)

 0

 50

 100

 150

 200

 250

 300

S.INTR
SyncPath

STM ATM HTM 2Q

A
g

g
re

g
a

te
d

 T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Write Read

(b) Postmark(4)

 0

 50

 100

 150

 200

 250

 300

S.INTR
SyncPath

STM ATM HTM 2Q

A
g

g
re

g
a

te
d

 T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Write Read

(c) Postmark(8)

 0

 50

 100

 150

 200

 250

 300

S.INTR
SyncPath

STM ATM HTM 2Q

A
g

g
re

g
a

te
d

 T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Write Read

(d) Postmark(16)

Figure 19: Aggregated postmark throughput where postmark(N) means that
the N instances of postmark are simultaneously executed

system [49]. One possible solution is to run multiple instances of postmark

in parallel [50, 51]. This approach gives more stress to the underlying block

I/O subsystem, so is chosen as our evaluation method. The configuration of

each postmark instance is described in Table 5. From the results of aggre-

gated postmark throughput in Figure 19, we have a few observations like the

following.

Positive Effect of Increased Concurrency: Comparing Figure 19(a) and

19(b), we can observe the following throughput improvement: {SyncPath:

16%, STM: 8%, ATM: 52%, HTM: 57%, 2Q: 43%}. In spite of the inca-

pability of merging requests, SyncPath achieves the improvement because

54

high concurrency usually increases the number of outstanding I/O requests

and reduces inter-arrival delay [52] between two successive requests. This

positive effect also contributes to the improvements of other I/O subsys-

tems. ATM with Postmark(4) accomplishes 1.52x improvement over ATM

with Postmark(1), which is much more than what STM achieves. The rea-

sons of the difference are 1) postmark generates write-intensive workload

and 2) I/O schduler is very advantageous to the characteristic. As postmark

produces write requests 7 times more than read ones, ATM, HTM, and 2Q

with I/O scheduler show the relatively high performance.

Negative Effect of Increased Concurrency: Comparing Figure 19(b) and

19(d), we can observe the following throughput degradation: {SyncPath: -

32%, STM: -29%, ATM: -26%, HTM: -22%, 2Q: -16%}. This result stems

from resource contention; each I/O operation, e.g. DMA map/unmap and

polling, requires a spinlock resource before the beginning for the purpose of

guaranteeing the safe transition of a device state. If the concurrency in a sys-

tem is increased, many CPU cycles would be consumed by each core during

waiting for the spinlock resource. In the experiment, when the number of

postmark instances is close to or higher than the number of CPU cores, the

performance degradation is observed. It convinces us that the concurrency

higher than a certain threshold may be harmful to I/O performance. To pre-

vent the excessive number of threads from participating in I/O operations,

we can think of another block I/O subsystem design having a limited number

of CPU cores dedicated to I/O operations. SCSI INTR experiences 32% of

throughput degradation (149→101 MB/s) as the concurrency changes from

1 (Figure 19(a)) to 16 (Figure 19(d)). Such problem originates from the

55

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

Term=1 Term=5 Term=10 Term=15

T
ra

n
s
a

c
ti
o

n
s
/S

e
c

TPC-C (Postgresql, Ext3)

SCSI_INTR
SyncPath

STM
ATM

HTM
2Q

(a) Warehouses=10

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

Term=1 Term=5 Term=10 Term=15

T
ra

n
s
a

c
ti
o

n
s
/S

e
c

TPC-C (Postgresql, Ext3)

SCSI_INTR
SyncPath

STM
ATM

HTM
2Q

(b) Warehouses=50

Figure 20: TPC-C throughput with varying the number of warehouses

frequent interrupt events that prevents a foreground task from progressing,

which is usually observed in receive livelock problem [37].

6.5 Macrobenchmark 2: TPC-C

BenchmarkSQL [48] is a multi-threaded java client implementation

that simulates TPC-C workload. We used Postgresql as a backend DBMS

and ran BenchmarkSQL on the same machine. The ratio of each transac-

56

tion type that will be issued during an experiment follows TPC-C specifi-

cation [53]: {NewOrder: 45%, Payment: 43%, OrderStatus: 4%, Delivery:

4%, StockLevel: 4%}. To maximize the number of outstanding I/O requests

in a kernel, the configuration in Table 5 was used.

Slow I/O Path in DBMS (Term=1): As shown in Figure 20, the perfor-

mance of each I/O subsystem is about the same to another when the number

of terminals is 1. Since the most part of I/O path is contained in DBMS

itself, the duration of CPU time in I/O subsystem is relatively small; high

inter arrival delay causes the I/O subsystems to be in idle state often. Without

proper optimizations to the I/O path in DBMS such as embedding device-

awareness into application-level heuristics, our block I/O subsystem cannot

benefit much from this workload.

DBMS’s Conservatism in Consistency Enforcement (Term>1): When

the number of terminals increases (in Figure 20(a)), inter arrival delay be-

comes shorter due to the queued requests inside DBMS. In this case, the

overhead of I/O subsystems dominates the software latency and the differ-

ent throughputs are observed by the I/O subsystems. Interestingly, Sync-

Path without supporting request merging shows the highest transactions/sec

(i.e. tps). Before experiments, we expected that ATM and 2Q would show

the best throughput since TPC-C workload is known to incur many write

requests, which is proven to be wrong by this experiment. DBMS mostly

tries to keep the number of outstanding I/O requests low; InnoDB engine

in MySQL is known to maintain only 2 or 3 concurrent requests in a ker-

nel [54]. This kind of conservatism is to enforce consistency requirement

of DBMS but at the cost of giving up futher optimizations achievable in

57

block I/O subsystems. Hence, the high concurrency at application-level (or

DBMS-level) is not directly translated to the benefit of request merging.

SyncPath that does not incur the software latency due to request merging

shows the best performance.

6.6 Sensitivity Analysis

To show the generality of our optimization techniques toward other

storage devices with different performance features, we first emulate the

various hardware latency of a storage device by using intentional software

delay, and measure the Iozone throughput. We used the following two strate-

gies to determine software delay for each temporally-merged I/O request:

(F) the fixed amount of software delay I/O request and (C) the calculated

software delay proportional to the size of an I/O request.

Graceful Performance Degradation of STM: Figure 21(a) shows the

throughput variation of SyncPath and STM when the delay type F is given.

The result proves that temporal merge scheme makes the I/O subsystem less

sensitive to the increase of hardware latency; if hardware latency of a new

storage device is about 500 usec (i.e. F=500) and device throughput remains

the same to the DRAM-SSD in our evaluation (i.e. 700 MB/s), STM is able

to achieve 16% of the original throughput with F=0, which is the 11.1 times

of improvement over SyncPath.

Break-even Point of Request Merging: Figure 21(a) shows the through-

put variation of SyncPath and STM when the delay type C is given. It is

observed that the two I/O performance of SyncPath and STM are the same

58

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

T
h

ro
u

g
h

p
u

t
N

o
rm

a
liz

e
d

 t
o

 D
e

la
y
=

0

Per-Request Delay (usec)

SyncPath(0 usec)=315 MB/s

STM (0 usec)=611 MB/s

SyncPath(500 usec)=8 MB/s

STM (500 usec)=99 MB/s

SyncPath
STM

(a) Fixed software delay is given to each temporally-merged request

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

T
h

ro
u

g
h

p
u

t
N

o
rm

a
liz

e
d

 t
o

 D
e

la
y
=

0

Per-Page Delay (usec)

SyncPath(0 usec)=315 MB/s

STM (0 usec)=611 MB/s

SyncPath(100 usec)=35 MB/s

STM (100 usec)=38 MB/s

SyncPath
STM

(b) Software delay is proportional to request size

Figure 21: Influence of hardware latency on the benefit of temporal merge

(315*0.38 ≃ 611*0.2) if 25 usec of software delay is given to each 4 KB

data (i.e. C=25). We define the value (25 usec in this evaluation) break-even

point. If hardware latency becomes higher than break-even point, the benefit

of temporal merge could be trivial; For the case of C=0, sending 4 pages in

a single I/O operation performs 1.57x better than sending just 1 page, while

the former performs only 1.03x better than the latter when given C=20. In

summary, if hardware latency of a new device has higher latency and lower

59

device throughput than our DRAM-SSD, the temporal merge scheme would

be beneficial only when the hardware latency is less than a certain break-

even point.

6.7 CPU Utilization

CPU time is classified into the four types as described in Table 8. Sys

time includes the period of device polling, and if it becomes 100%, the over-

all system utilization may be degraded since any foreground tasks or OS

services may be delayed.

CPU Time Description
wait CPU is idle & the number of outstanding requests>0
idle CPU is idle & the number of outstanding requests=0
user CPU is executing at the user level
sys CPU is executing at the kernel level

Table 8: Description of the types of CPU time

CPU Utilization at Both Ends: SCSI INTR always shows the least sum of

user+sys time; Figure 22(c) indicates that SCSI INTR makes 80% of CPU

time idle, which means that there is no outstanding request for the most

of time. High software overhead due to context switches or asynchronous

I/O path causes the high idle time, which accounts for the low random read

throughput of SCSI INTR as shown in Figure 17(b). The other end is Sync-

Path; SyncPath saturates CPU resources under all of {Iozone, 32 Threads}

workloads when the concurrency is high. Although SyncPath performs the

best under TPC-C workload evaluation (§6.5), it may degrade responsive-

60

 0

 20

 40

 60

 80

 100

S.INTR
SyncPath

STM ATM HTM 2Q

C
P

U
 U

ti
liz

a
ti
o

n
(%

)
wait idle user sys

(a) Sequential write

 0

 20

 40

 60

 80

 100

S.INTR
SyncPath

STM ATM HTM 2Q

C
P

U
 U

ti
liz

a
ti
o

n
(%

)

wait idle user sys

(b) Sequential read

 0

 20

 40

 60

 80

 100

S.INTR
SyncPath

STM ATM HTM 2Q

C
P

U
 U

ti
liz

a
ti
o

n
(%

)

wait idle user sys

(c) Random read

 0

 20

 40

 60

 80

 100

S.INTR
SyncPath

STM ATM HTM 2Q

C
P

U
 U

ti
liz

a
ti
o

n
(%

)

wait idle user sys

(d) Random write

Figure 22: Profiling CPU utilization under {Iozone, 32 Threads}

ness of some foreground tasks if they are highly-interactive such as bash or

a movie player.

STM vs. ATM: Figure 22(c) and 22(d) describe that STM and ATM save

CPU cycles under different workloads; STM saves 55% of CPU cycles un-

der random read workload, while ATM does 65% of CPU cycles under ran-

dom write workload. In the opposite case, STM/ATM saturates 100%/88%

of CPU resources under random write/read workloads respectively. The

main difference originates from the use of I/O scheduler; I/O scheduler is

useful to accumulate write requests but cannot pile up read requests since the

critical section design of block layer in Linux as discussed in (§4.5). HTM

61

takes the advantages from the both and always maintains the moderate CPU

utilization.

6.8 Temporal Merge Count

Figure 23(a) demonstrates that the concurrency significantly affects the

distribution of temporal merge count, i.e. the number block requests in an

I/O operation. In the cases of SCSI INTR and ATM, 95% of the merge count

was 1 (not shown in this graph).

ATM effectively collects multiple (write) requests when the concur-

rency is not high, as shown in Figure 23(b). For example, when there is only

one thread that submits write requests, the transfer size of 89% of requests

is 128 KB containing 32 pages and contributes to the high device-/channel-

utilization. Interestingly, the temporal merge count becomes lower when

the concurrency is higher. The reason is that a user thread does not rely on

page cache and synchronously dispatches a write request if the page cache is

heavily pressured by write-intensive workloads. This causes a request queue

to be unplugged prematurely before it reaches the threshold, which is un-

plug thresh currently set to 32.

62

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

C
u
m

u
la

ti
v
e
 R

a
ti
o

Temporal Merge Count

Thread=64
Thread=32
Thread=16
Thread=8
Thread=4
Thread=1

(a) STM, Random Read

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

C
u
m

u
la

ti
v
e
 R

a
ti
o

Temporal Merge Count

Thread=64
Thread=32
Thread=16
Thread=8
Thread=4
Thread=1

(b) ATM, Random Write

Figure 23: The cumulative distribution of merge count under Fio workload
with 4 KB random read/write

63

Chapter 7

Related Work

An OS has various software stack including block I/O subsystem, net-

work I/O subsystem, virtual memory subsystem, and etc. They have layered

architectures [55] that compose of multiple software components; two adja-

cent components communicate with each other via a specific interface. The

advantage of a layered architecture is that optimizations can be applied to

each layer independently of others as long as the interface is correctly used.

However, as the interface is static, those layers fail to exchange useful in-

formation about advanced hardware features, which limits the potential I/O

performance of the hardware. We call this as semantic gap problem [18, 56].

In the following section, we examine many optimization techniques ap-

plied to network I/O subsystem and how they affect the high-performance

storage stack in other studies. Hardware functionalities as well as software

optimizations can help enhance the I/O performance of storage system. Fi-

nally, we will describe many researches that focus on bridging the semantic

gap between software and hardware by using an extended interface.

64

7.1 Software Stack Optimization

7.1.1 Network I/O Subsystem

Network Interface Card (NIC) is another low-latency device that strongly

demands highly-optimized software stack. Recent NICs such as Inifiband

[57], Myrinet [58], 10g Ethernet and etc, guarantees latency as low as a

few microseconds, and therefore could not be fully exploited by the existing

OS components. To achieve maximum throughput from NICs, as high as

network link speed, network I/O subsystem applies many optimizations to

incoming packets based on two major principles [59, 60]: 1) reducing per-

packet overhead and 2) reducing per-byte overhead. The former principle

mitigates per-packet processing by batching multiple packets and benefits

from the high link utilization. Extended frame [59, 61] and interrupt coa-

lescing [60] belong to this case. The latter one boosts the speed of per-packet

processing by offloading checksum calculation [59], zero-copy networking

[60, 61], and etc. Those principles are very similar to ours; the I/O subsys-

tems proposed in this paper 1) minimize per-request latencies by merging

temporally-adajcent block requests, and 2) maximize the performance of

request processing by utilizing synchronous I/O path.

Intel recently announced the new technology, Intel I/O Acceleration

Technology (IOAT) to improve data flow across the platform to enhance sys-

tem performance [62, 63]. They found network bottleneck in multi-gigabit

ethernet environment and clarified what factors had made such bottleneck.

They are classified into three categories: 1) system overhead (e.g. inter-

rupt handling, buffer management), 2) TCP/IP processing overhead, and

65

3) memory access overhead (e.g. data moves, CPU stalls). To eliminate

these overhead, IOAT uses parallel processing of TCP, asynchronous low-

cost copy, TCP/IP stack optimization and etc. IOAT gives us some hints

to improve our I/O subsystem designs. Memory copy overheads and cache-

awareness are not considered in our proposed solutions. If hardware latency,

which is 7 usec for reading/writing a page, becomes lower due to memory

technology, system overhead would become more distinguishable that the

IOAT-like approach could contribute to an optimized storage stack.

RouteBricks [64] sets two performance goals, which are 1) fully ex-

ploiting network bandwidth with a single server, and 2) achieving scalable

performance across multiple servers. To achieve the first goal, RouteBrick

devised per-core network queue to avoid contention between cores; when

packets arrive within a few microseconds, a single queue suffers from seri-

ous contention. The paper explores the design of network I/O subsystem to

run Click router [65] efficiently, e.g. whether to use pipelining or paralleliz-

ing, whether to use multiple queues, where to split packets at NIC or CPU

cores, and etc. This approach is very similar to our design exploration of

block I/O subsystems considering several design choices. The second per-

formance goal can support RAID construction of multiple storage devices.

The existing RAID software cannot benefit from our I/O subsystem since

it has false assumption about underlying devices; it believes that the under-

yling I/O subsystem would interact with devices via interrupt instead of poll.

Due to the synchronous I/O path optimization, the striping code intended

for parallel accesses to multiple devices is serialized and limits the scalabil-

ity of RAID performance. Hence, making block I/O subsytem RAID-aware

66

and exploiting parallelism across multiple devices will be one of our future

works.

PacketShader [66] offloads some computation to GPU cores and ac-

celeartes routing functionality. The basic idea is to exploit the processing

power of hundreds of GPU cores in network I/O subsystem. PacketShader

optimized network I/O subsystem in many aspects since the latency of a

graphic card is about a few microseconds and its benefit is canceled out by

the slow network stack; the kernel launch time, i.e. the latency between the

time to hand over a computation job to GPU and the time to start the job,

was much higher than the computation time itself. PacketShader implements

a new packet engine that utilizes huge packet buffer, gather/scatter macha-

nism, and etc. to minimize per-packet overhead and to maximize parallelism

across GPU cores.

7.1.2 Block I/O Subsystem

With the advent of high performance storage devices, researches assert

the need for optimized storage stack to fully utilize their performance. Mon-

eta [8] and Onyx [9] applied several software techniques such as the bypass

of I/O scheduler, avoiding interrupts and the removal of spinlocks as well

as a few hardware optimizations; The paper [41] also suggests that short-

circuiting SCSI subsystem and ATA driver is a way to reduce software-

latency. However, these works mainly focus on the benefit of individual

optimization technique but not much on its side-effects. For example, spin-

ning [8] reduces software-latency but may degrade the performance of fore-

ground tasks due to high CPU usage.

67

Recently, the Linux block layer started to learn from the lessons in

network stack by reflecting polling mechanism into its design. Blk-poll [67]

is known as a general framework to implement a customized polling routine

for a block device for the purpose of reducing per-request latency. It gives

us a chance of designing another I/O subsystem, which is one of our future

works.

7.2 Exploiting Device Functionality

A new device funcationality can contribute to high I/O performance

and affect to the design of software stack. For example, modern ethernet

NIC supports RDMA [60] and TCP offloading [68]. They minimize over-

head in network I/O subsystem by copying data from a device to mem-

ory (or vice versa) without host CPU intervention and relieving the burden

of TCP/IP processing from host CPU. They can operate either in interrupt

mode or in polling mode; using the hybrid approach [40], network I/O sub-

system achieves high throughput under heavily-loaded situation while main-

taining high responsiveness under the opposite situation.

Block I/O subsystem has been developed to make the best use of new

storage device features. Modern storage devices implement command queue-

ing technique (e.g. TCQ, NCQ [31]) which enable the devices to reorder I/O

requests with hardware/firmware-level information; for example, NCQ cor-

rectly estimates the disk head position and reflects the information into the

service order, which had been impossible for software-level approach (Ref:

SUNY). Block I/O subsystem exploits the feature and handles out-of-order

68

request completions with tag management scheme.

The DRAM-SSD used in Moneta [8] supports full-duplex mode en-

abling concurrent data transfer between read stream and write stream. Con-

sidering the new feature, Moneta proposes 2Q design that maintains two in-

dependent request queues for reads and writes. It is reported that the scheme

enforces no performance penelty over the existing schemes and achieves

about two times of throughput improvement under mixed read/write work-

loads.

7.3 Extending Device Interface

Some new device features proposed in academic society can be realized

only when storage vendors implement new interfaces to exploit the benefits.

We call the new interfaces as extended interfaces since they contain more

high-level information than the existing narrow interfaces [18, 56, 69] The

most representative interface extension of a storage device is Object-based

Storage Interface (OSD) [70] specified by T10 technical committee. The

OSD interface re-defines the roles of block I/O subsystem and block de-

vices; the extended interface directly relays high-level information such as

file creation/deletion to the underlying device, while the existing interface

only allows block-level read/write requests not having block liveness infor-

mation. This gives additional optimization chances to storage devices since

they can choose the most appropriate block candidates based on hardware

knowledge.

The new block I/O interface proposed in this paper is beyond the stan-

69

dard and needs hardware modifications. Designing a new interface and im-

plementing its semantics in hardware should be supported by vendors. For

example, in case of SATA-2 devices, adding a new block I/O interface re-

quires modifications to Advanced Host Controller Interface (AHCI) [71] by

Intel and the firmware of storage devices by manufacturers such as WD,

Seagate and etc. For recent SSDs connected to a PCI-E channel like Fusio-

nIO’s [30] or OCZ’s [72], the vendors should design their own register maps

and distribute the new device driver to allow communication with the new

I/O ports.

70

Chapter 8

Conclusion

We have explored the six I/O subsystem designs to find the most effi-

cient one that relays the high performance of a low-latency storage device to

an application without performance loss. To achieve the performance goal,

the I/O subsystem should part from disk-based storage stack; our optimized

I/O subsystems proposed in this paper are based on two key optimizations,

1) a low-latency synchronous I/O path, considered unpractical in traditional

disk-based storage system, and 2) a new request batching scheme, called

temporal merge, not achievable by the existing block I/O interface. Unlike

the previous researches that have focused mostly on bypassing several soft-

ware layers to OS delay [41, 8, 9, 42], we have paid much attention to re-

design the existing layers to make the best use of a low-latency device.

There are still some issues to be discussed to utilize our technique for

commercial/enterprise use:

• Parallelism Across Devices: It is a very common practice to com-

bine multiple storage devices in a RAID device when we consider

enterprise-class storage products [73, 74]. RAID enables an OS to

access multiple devices concurrently by splitting a large I/O request

into smaller ones and dispatching them in a parallel fashion. How-

ever, the existing RAID software is based on the assumption that an

71

OS interacts with storage devices asynchronoulsy via interrupt mech-

anism; the optimization of synchronous I/O path and polling mecha-

nism would prevent an OS from dispatching requests in parallel. To

deal with this problem, our block I/O subsystem should be distin-

guish whether the underlying device is a physical block device or a

RAID device. If it is a RAID device, the polling mechanism should

be virtualized; 1) an I/O request could be dispatched to an idle storage

device even if poll is started, 2) all of busy devices part of a RAID de-

vice should be polled in a round-robin fashion. The one of our future

works is to implement RAID-awareness into our next design of block

I/O subsystem.

• Parallelism Across Servers: In this paper, only a single server envi-

ronment is considered; the benchmarks do not stress out network I/O

subsystem or virtual memory subsystem but put pressure on block

I/O subsystem only. For a hadoop cluster [75] consisting of multiple

server nodes, HDFS would read data from one node and transfer it to

other nodes, consuming CPU resources for block I/O subsystem and

network I/O subsystem respectively. In this case, I/O path of a request

becomes longer than the one discussed in §2.2, which affects design

choices such as synchronous vs. asynchronous data transfer, packet

batching schemes and etc. The cross-domain optimization performed

by IO-Lite [76] is required in this example scenario.

• Application-level Optimization: DBMSes including Postgresql, Mysql

and Oracle usually perform most of data management for themselves

72

instead of relying on OS services; page buffering, prefetching, flush-

ing, synchronizing operations are usually done at application-level. In

the case that most parts of I/O path are hidden by an application, block

I/O subsystem cannot benefit much from temporal merge scheme due

to the small number of requests at the time of batching them. Accord-

ing to our TPC-C evaluation (§6.5), SyncPath that simply dispatches

block requests as soon as possible without batching scheme outper-

forms others. In the end, optimizing application layer with storage

stack is essential to achieve device throughput at application-level.

Event channel between threads should be synchronous if it becomes

bottleneck, and any heuristic, e.g. spatial merge, based on the assump-

tion that the underlying storage device is a disk must be eliminiated.

Optimizing applications such as DBMS, Java VM, web server and

making them device-aware is one of our future works.

• Reliability Problem: Partial updates among multiple writes due to

crash failure may lead to irrecoverable corruption to the file system

state since a device may re-schedule the service order of requests

and not preserve OS policy. One possible solution is to implement

an ’atomic update interface’ that guarantees all-or-nothing seman-

tics; by shadowing the destinations of write requests and manipulat-

ing logical-to-physical mapping state, I/O subsystem would provide

atomicity for multiple write requests.

A well-designed interface between an OS and a storage device is very

important since 1) it is critical to the I/O performance experienced by an

73

OS and 2) once fixed, it is hardly changed for generations, which we have

already learned from old lesson [18]. The extended block I/O interface, i.e.

device-level scatter-gather I/O, gives an OS a chance to exploit the maxi-

mum throughput from low-latency memory-based storage devices. We sug-

gest that a next-generation host controller interface, e.g. NVMHCI [19],

should include this kind of functionality into its design. One of our future

work directs to broaden the scope of an I/O subsystem to cover the upper

layers like file system, VFS, or even user-level library [77]. We believe that

the semantic gap we found between the VFS and the I/O subsystem can be

an example leading us to extend discussions of ”low-latency device”-aware

optimizations to the entire storage stack.

74

참고문헌

[1] G. R. Ganger and Y. N. Patt, “Using system-level models to evalu-

ate i/o subsystem designs,” IEEE TRANSACTIONS ON COMPUTERS,

vol. 47, no. 6, pp. 667–678, 1998.

[2] M. Dunn and A. L. N. Reddy, “A new i/o scheduler for solid state

devices,” Tech. Rep. TAMU-ECE-2009-02, Department of Electrical

and Computer Engineering Texas AM University, 2009.

[3] D. I. Shin, Y. J. Yu, H. S. Kim, H. Eom, and H. Y. Yeom, “Re-

quest bridging and interleaving: Improving the performance of small

synchronous updates under seek-optimizing disk subsystems,” Trans.

Storage, vol. 7, pp. 4:1–4:31, July 2011.

[4] B. L. Worthington, G. R. Ganger, and Y. N. Patt, “Scheduling algo-

rithms for modern disk drives,” ACM SIGMETRICS ’94, pp. 241–251,

1994.

[5] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and A. Row-

stron, “Migrating server storage to ssds: analysis of tradeoffs,” in Pro-

ceedings of the 4th ACM European conference on Computer systems,

EuroSys ’09, (New York, NY, USA), pp. 145–158, ACM, 2009.

[6] S.-W. Lee, B. Moon, C. Park, J.-M. Kim, and S.-W. Kim, “A case for

flash memory ssd in enterprise database applications,” in Proceedings

of the 2008 ACM SIGMOD international conference on Management

of data, SIGMOD ’08, (New York, NY, USA), pp. 1075–1086, ACM,

2008.

[7] T. Mikolajick, C. Dehm, W. Hartner, I. Kasko, M. Kastner, N. Nagel,

M. Moert, and C. Mazure, “Feram technology for high density appli-

cations,” Microelectronics Reliability, vol. 41, no. 7, pp. 947 – 950,

2001.

75

[8] A. M. Caulfield, A. De, J. Coburn, T. I. Mollow, R. K. Gupta, and

S. Swanson, “Moneta: A high-performance storage array architecture

for next-generation, non-volatile memories,” in Proceedings of the

2010 43rd Annual IEEE/ACM MICRO’10, pp. 385–395, 2010.

[9] A. Ameen, Caulfield, T. I. Adrian M., Mollov, R. K. Gupta, and

S. Swanson, “Onyx: A protoype phase-change memory storage array,”

in Proceedings of the 3rd USENIX HotStorage’11, pp. 1–5, 2011.

[10] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. c. Chen, R. M.

Shelby, M. Salinga, D. Krebs, S. h. Chen, H. l. Lung, and C. H. Lam,

“Phase-change random access memory: A scalable technology,” 2008.

[11] W. K. Josephson, L. A. Bongo, D. Flynn, and K. Li, “Dfs: a file system

for virtualized flash storage,” in FAST’10, pp. 7–7, USENIX Associa-

tion.

[12] Fusion-IO, “iomemory virtual storage layer (vsl),

http://www.fusionio.com/overviews/vsl-technical-overview/.”

[13] C. Ruemmler and J. Wilkes, “An introduction to disk drive modeling,”

Computer, vol. 27, pp. 17–28, March 1994.

[14] J. Zhang, A. Sivasubramaniam, Q. Wang, A. Riska, and E. Riedel,

“Storage performance virtualization via throughput and latency con-

trol,” Trans. Storage, vol. 2, pp. 283–308, August 2006.

[15] TailwindStorage, “Extreme 3804, http://tailwindstorage.com /prod-

ucts/.”

[16] M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Ya-

mane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, H. Nagao, and

H. Kano, “A novel nonvolatile memory with spin torque transfer mag-

netization switching: spin-ram,” in Electron Devices Meeting, 2005.,

pp. 459 –462.

[17] W. Norcott and D. Capps, “Iozone benchmark,

http://www.iozone.org.”

76

[18] G. R. Ganger, “Blurring the line between oses and storage devices,”

2001.

[19] A. Huffman, “Nvm express revision 1.0c,” tech. rep., Intel Corpora-

tion, 2012.

[20] R. F. Freitas and W. W. Wilcke, “Storage-class memory: the next stor-

age system technology,” IBM J. Res. Dev., vol. 52, pp. 439–447, July

2008.

[21] A. Caulfield, J. Coburn, T. Mollov, A. De, A. Akel, J. He, A. Jagath-

eesan, R. Gupta, A. Snavely, and S. Swanson, “Understanding the

impact of emerging non-volatile memories on high-performance, io-

intensive computing,” in High Performance Computing, Networking,

Storage and Analysis (SC), 2010 International Conference for, pp. 1

–11, nov. 2010.

[22] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and

D. Coetzee, “Better i/o through byte-addressable, persistent memory,”

in Proceedings of the ACM SIGOPS 22nd symposium on Operating

systems principles, SOSP ’09, (New York, NY, USA), pp. 133–146,

ACM, 2009.

[23] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase

change memory as a scalable dram alternative,” ISCA ’09, pp. 2–13,

2009.

[24] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high per-

formance main memory system using phase-change memory technol-

ogy,” in Proceedings of the 36th annual ISCA’09, pp. 24–33, 2009.

[25] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy ef-

ficient main memory using phase change memory technology,” ISCA

’09, pp. 14–23, ACM.

[26] S. Lee, K. Fleming, J. Park, K. Ha, A. M. Caulfield, S. Swanson,

Arvind, and J. Kim, “Bluessd: An open platform for cross-layer ex-

77

periments for nand flash-based ssds,” in The 5th Workshop on Archi-

tectural Research Prototyping, 2010.

[27] B. Yoo, Y. Won, J. Choi, S. Yoon, S. Cho, and S. Kang, “Ssd charac-

terization: from energy consumption’s perspective,” in Proceedings of

the 3rd USENIX conference on Hot topics in storage and file systems,

HotStorage’11, (Berkeley, CA, USA), pp. 3–3, USENIX Association,

2011.

[28] L.-P. Chang and T.-W. Kuo, “An adaptive striping architecture for flash

memory storage systems of embedded systems,” in Real-Time and Em-

bedded Technology and Applications Symposium, 2002. Proceedings.

Eighth IEEE, pp. 187 – 196, 2002.

[29] E. H. Nam, B. S. J. Kim, H. Eom, and S. L. Min, “Ozone (o3): An

out-of-order flash memory controller architecture,” Computers, IEEE

Transactions on, vol. 60, pp. 653 –666, may 2011.

[30] Fusion-IO, “iodrive octal data sheet, http://www.fusionio.com/data-

sheets/iodrive-octal-data-sheet/.”

[31] B. Dees, “Native command queuing - advanced performance in desk-

top storage,” Potentials, IEEE, vol. 24, pp. 4 – 7, oct.-nov. 2005.

[32] S. Seelam, R. Romero, P. Teller, and B. Buros, “Enhancements to linux

i/o scheduling,” in Linux Symposium, 2005.

[33] S. Iyer and P. Druschel, “Anticipatory scheduling: a disk scheduling

framework to overcome deceptive idleness in synchronous i/o,” in

Proceedings of the eighteenth ACM symposium on Operating systems

principles, SOSP ’01, (New York, NY, USA), pp. 117–130, ACM,

2001.

[34] Intel and Seagate, “Serial ata native command queueing,” joint

whitepaper, Intel Corp. and Seagate Technology, 2003.

78

[35] L. Huang and T. Chiueh, “Implementation of a rotation latency sen-

sitive disk scheduler,” Technical Report ECSL-TR81, SUNY, Stony

Brook, 2000.

[36] M. Aron and P. Druschel, “Soft timers: efficient microsecond software

timer support for network processing,” ACM Trans. Comput. Syst.,

vol. 18, pp. 197–228, August 2000.

[37] X. Chang, J. Muppala, Z. Han, and J. Liu, “Analysis of interrupt co-

alescing schemes for receive-livelock problem in gigabit ethernet net-

work hosts,” in ICC’08., pp. 1835 –1839.

[38] I. Kim, J. Moon, and H. Y. Yeom, “Timer-based interrupt mitigation

for high performance packet processing,” in In Proc. 5th International

Conference on HighPerformance Computing in the Asia-Pacific Re-

gion, Gold, 2001.

[39] K. Salah, K. El-Badawi, and F. Haidari, “Performance analysis and

comparison of interrupt-handling schemes in gigabit networks,” Com-

put. Commun., vol. 30, pp. 3425–3441, November 2007.

[40] K. Salah and A. Qahtan, “Implementation and experimental perfor-

mance evaluation of a hybrid interrupt-handling scheme,” Comput.

Commun., vol. 32, pp. 179–188, January 2009.

[41] E. Seppanen, M. O’Keefe, and D. Lilja, “High performance solid

state storage under linux,” in Mass Storage Systems and Technologies

(MSST’10), pp. 1 –12.

[42] J. Yang, D. B. Minturn, and F. Hady, “When poll is better than inter-

rupt,” in FAST’12.

[43] J. Kim, Y. Oh, E. Kim, J. Choi, D. Lee, and S. H. Noh, “Disk sched-

ulers for solid state drivers,” in Proceedings of the seventh ACM in-

ternational conference on Embedded software, EMSOFT ’09, (New

York, NY, USA), pp. 295–304, ACM, 2009.

79

[44] T. Gleixner and D. Niehaus, “Hrtimers and beyond: Transforming the

linux time subsystems,” in the Ottawa Linux Symposium (OLS), vol. 1,

pp. 333–346, July 2006.

[45] T. Gleixner and I. Molnar, “hrtimers - subsystem for high-resolution

kernel timers, kernel documentation ”hrtimers.txt”.”

[46] J. Axboe, “Fio benchmark, http://freshmeat.net/projects/fio.”

[47] J. Katcher, “Postmark: A new file system benchmark,” 1997.

[48] BenchmarkSQL, “http://sourceforge.net/ projects/benchmarksql.”

[49] A. Traeger, E. Zadok, N. Joukov, and C. P. Wright, “A nine year

study of file system and storage benchmarking,” Trans. Storage, vol. 4,

pp. 5:1–5:56, May 2008.

[50] A. Aranya, C. P. Wright, and E. Zadok, “Tracefs: A file system to trace

them all,” in Proceedings of the 3rd USENIX Conference on File and

Storage Technologies, FAST ’04, (Berkeley, CA, USA), pp. 129–145,

USENIX Association, 2004.

[51] E. Anderson, M. Kallahalla, M. Uysal, and R. Swaminathan, “Buttress:

A toolkit for flexible and high fidelity i/o benchmarking,” in Proceed-

ings of the 3rd USENIX Conference on File and Storage Technologies,

FAST ’04, (Berkeley, CA, USA), pp. 45–58, USENIX Association,

2004.

[52] N. Talagala, R. Arpaci-Dusseau, and D. Patterson, “Micro-benchmark

based extraction of local and global disk,” tech. rep., Berkeley, CA,

USA, 2000.

[53] T. P. P. Council, “Tpc benchmark c, standard specification, revision

5.11, http://www.tpc.org/tpcc/spec/tpcc current.pdf,” 2010.

[54] C. Hall and P. Bonnet, “Getting priorities straight: improving linux

support for database i/o,” in Proceedings of the 31st international con-

80

ference on Very large data bases, VLDB ’05, pp. 1116–1127, VLDB

Endowment, 2005.

[55] T. Shiroshita, “A data processing performance model for the osi ap-

plication layer protocols,” in Proceedings of the ACM symposium on

Communications architectures & protocols, SIGCOMM ’90, (New

York, NY, USA), pp. 60–68, ACM, 1990.

[56] T. E. Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,

“Bridging the information gap in storage protocol stacks,” in Proceed-

ings of the General Track of the annual conference on USENIX Annual

Technical Conference, ATEC ’02, (Berkeley, CA, USA), pp. 177–190,

USENIX Association, 2002.

[57] Infiniband, “http://www.mellanox.com/.”

[58] Myrinet, “http://www.myricom.com/.”

[59] A. Menon and W. Zwaenepoel, “Optimizing tcp receive performance,”

in USENIX 2008 Annual Technical Conference on Annual Technical

Conference, ATC’08, (Berkeley, CA, USA), pp. 85–98, USENIX As-

sociation, 2008.

[60] J. Chase, A. Gallatin, and K. Yocum, “End-system optimizations for

high-speed tcp,” IEEE Communications Magazine, vol. 39, pp. 68–74,

2000.

[61] S. Makineni and R. Iyer, “Architectural characterization of tcp/ip

packet processing on the pentium® m microprocessor,” in Pro-

ceedings of the 10th International Symposium on High Performance

Computer Architecture, HPCA ’04, (Washington, DC, USA), pp. 152–

, IEEE Computer Society, 2004.

[62] Intel, “Improving network performance in multi-core systems,” tech.

rep., 2007.

[63] Intel, “Accelerating high-speed networking with intel i/o acceleration

technology,” tech. rep., 2006.

81

[64] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Iannac-

cone, A. Knies, M. Manesh, and S. Ratnasamy, “Routebricks: exploit-

ing parallelism to scale software routers,” in Proceedings of the ACM

SIGOPS 22nd symposium on Operating systems principles, SOSP ’09,

(New York, NY, USA), pp. 15–28, ACM, 2009.

[65] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The

click modular router,” ACM Trans. Comput. Syst., vol. 18, pp. 263–

297, Aug. 2000.

[66] S. Han, K. Jang, K. Park, and S. Moon, “Packetshader: a gpu-

accelerated software router,” SIGCOMM Comput. Commun. Rev.,

vol. 40, pp. 195–206, Aug. 2010.

[67] J. Corbet, “Interrupt mitigation in the block layer,

http://lwn.net/articles/346219.”

[68] H.-y. Kim and S. Rixner, “Connection handoff policies for tcp offload

network interfaces,” in Proceedings of the 7th symposium on Oper-

ating systems design and implementation, OSDI ’06, (Berkeley, CA,

USA), pp. 293–306, USENIX Association, 2006.

[69] G. Sivathanu, S. Sundararaman, and E. Zadok, “Type-safe disks,” in

Proceedings of the 7th symposium on Operating systems design and

implementation, OSDI ’06, (Berkeley, CA, USA), pp. 15–28, USENIX

Association, 2006.

[70] M. Mesnier, G. Ganger, and E. Riedel, “Object-based storage,” Com-

munications Magazine, IEEE, vol. 41, pp. 84 – 90, aug. 2003.

[71] J. Boyd, “Serial ata advanced host conroller interface (ahci) 1.3,” June

2008.

[72] OCZ, “Ocz revodrive pci-express ssd,

http://www.ocztechnology.com/ocz-revodrive-pci-express-ssd.html.”

[73] NetApp, “Fas6200 series enterprise storage systems,

http://www.netapp.com/us/products/storage-systems/fas6200/.”

82

[74] EMC, “Emc clariion raid 6 technology: A detailed review,

http://www.emc.com/collateral/hardware/white-papers/h2891-

clariion-raid-6.pdf.”

[75] Hadoop, “http://hadoop.apache.org/.”

[76] V. S. Pai, P. Druschel, and W. Zwaenepoel, “Io-lite: a unified i/o buffer-

ing and caching system,” ACM Trans. Comput. Syst., vol. 18, pp. 37–

66, Feb. 2000.

[77] A. M. Caulfield et al., “Providing safe, user space access to fast, solid

state disks,” in ASPLOS’12, ACM.

83

Abstract

메모리기술의발달은저장장치하드웨어의발전을가져오게되

었고, 이는 데이터 접근의 패러다임을 기계적 방식에서 전기적 방식

으로이동하게만들었다.그결과,솔리드스테이트드라이브 (SSD)의

응답시간은마이크로초수준으로줄어들게되었다.하지만이러한빠

른 저장 장치의 등장에도 불구하고, 기존의 스토리지 스택은 그러한

새로운 장치의 속도를 따라올 수 없는 문제를 가지고 있는데, 그 이

유는스토리지스택이수십년간매우느린디스크에기반하여최적화

되어왔기때문이다. Fusion-IO나 OCZ와같은저장장치제조회사들

은자사의고성능저장장치의이점을극대화하기위해최적화된별도

의스토리지스택을구현하기시작했다.이제스토리지시스템은빠른

저장 장치의 낮은 응답 시간 특성을 최대한 이용할 수 있어야 한다는

도전에직면해있다.

본 논문에서는, 매우 낮은 응답 속도를 가지는 SSD의 성능을 최

대한이용할수있는블럭입출력서브시스템의 6가지타입에대해제

안한다.우리의최적화기법은다음의두가지로요약할수있다; 1)입

출력경로를재디자인함으로써개별요청의오버헤드를줄이는것, 2)

다수의 요청을 모아서 처리함으로써 개별 요청의 오버헤드를 가리는

것이다.디바이스폴링과동기적입출력경로가첫번째기법에해당하

고,비연속요청을하나의 I/O로처리하는것이두번째기법에해당한

다.기존의일들이불필요한소프트웨어계층을제거하는데초점을두

었던것과는달리,우리는적극적으로기존의소프트웨어컴포넌트들

을최적화하고새로운기능을추가하여낮은응답속도와높은처리량

84

(throughput)을 달성할 수 있도록 하였다. 우리의 블럭 입출력 서브시

스템은리눅스커널 2.6.32기반으로구현되었다.실험결과에따르면,

동기적인 입출력 경로 (SyncPath)의 경우, 단일 쓰레드 기반 워크로드

에서약 3.3배정도소프트웨어오버헤드를줄일수있었고,이중버퍼

링 (2Q)의 경우 다중 쓰레드 기반의 워크로드에서 4.4배 정도의 처리

량향상을볼수있었다.또한혼합입출력경로디자인 (HTM)의경우

입출력 요청의 접근 패턴이나 타입과 상관없이 저장 장치의 성능을

87%∼100% 까지 이끌어 낼 수 있었다. 제안된 블럭 입출력 서브시스

템디자인은매우일반적이기때문에차세대 SSD가등장할시점에도

효과적으로적용될수있을것으로기대한다.

Keywords : I/O subsystem, Storage device, Latency, Throughput

Student Number : 2006-21228

85

감사의글

지난 박사 과정을 돌이켜 보면, 어느 때보다도 바쁘고 힘든 시간

이었지만어느때보다도값진시간이아니었나생각합니다.연구의매

순간은실험결과에대한실망과희망으로뒤섞여울고웃었던기억이

가득했지만,이러한경험들은저를성장시켰고이제는연구의즐거움

이무엇인지어렴풋이알수있게된듯도합니다.

무엇보다도특히,연구를지도해주신염헌영교수님께깊은감사

를드립니다.언제나도전적인연구주제와최신의연구환경을지원해

주셨고, 제가 연구 방향을 잃지 않도록 조언과 격려를 아끼지 않으셨

습니다.교수님의지도덕분에연구과정에서부딪힌많은어려움들을

현명하게극복할수있었고,앞으로는어떤난관도극복할수있을것

이라는 자신감을 가지게 되었습니다. 연구 논문 및 프로젝트 진행에

있어완결성과일관성이라는소중한가치를가르쳐주신엄현상교수

님께도 깊은 감사의 말씀을 드리고, 바쁘신 와중에도 저의 박사 논문

심사를 위해 시간을 내어주시고 귀중한 조언을 해주신 민상렬 교수

님,유혁교수님,김지홍교수님께도이지면을빌려감사의말씀드립

니다.

제가연구에만집중할수있도록항상곁에서보살펴주시고지원

해주신부모님께도감사드립니다.힘들고지쳐마음이약해질때마다

용기를북돋아주시는아버지와따뜻한마음으로공감해주시는어머

니가 아니었다면 힘든 시간을 이겨내지 못했을 것입니다. 그리고 대

학원 생활의 시작과 끝을 함께 하고 기다려준, 언제나 밝은 표정으로

믿고따라와준,소중한제아내선희에게도말로표현하지못할감사를

전합니다.

같이연구실생활을했던소중한인연들에대해서도새삼감사의

말씀을드리고싶습니다.연구실의전통을만들어주신임영누나,현

주누나,영상형,형수형,정기형,종필형,현준형,효려누나,재욱이,

호섭형,성환형께감사드립니다.그리고기영,형준,윤기,지현,범모

형, 해욱 형, 용경 형, 경호 형, 정희 형, 승미, 창규, 보영, 성범, 운태,

승민,완희,민규형,계신,국태형,윤희,재우,찬호,세훈형,동유,민

영,내영,설웅형,신웅형께도감사드립니다.특히매번창의적인연구

주제로토론하길즐기셨던동인형,자유로우면서도균형잡힌시각을

가지신 형석 형, 연구 내적/외적인 모든 면에서 노련하셨던 은성 형,

미래의연구흐름예측에탁월한감각을가지신혁형,언제나가장솔

직한의견을내주시는인순누나,아버지같은마음으로모두를이끌어

준영원한랩장신규형을포함하여많은선후배님들에게서많은것들

을배울수있었습니다.세세한감사의말씀을적지는못했지만,모든

분들과나누었던추억들을소중하게간직하도록하겠습니다.

마지막으로, 이제 늠름한 박사가 된 손자를 흐뭇하게 내려보실,

하늘에 계시는 할머니께 마지막 감사의 말씀을 전합니다. 할머니 소

온∼자!

	I. Introduction
	1.1 Motivation: Slow Software on Fast Hardware
	1.2 Contributions
	1.3 Overview

	II. Background
	2.1 Trends in Storage Technology
	2.2 Analysis of I/O Path
	2.3 Optimization Techniques by I/O Subsystem

	III. Analyzing the Legacy of Disk-based I/O Subsystem
	3.1 Problem 1: High Software Latency
	3.1.1 Interrupt Latency
	3.1.2 Delayed Execution

	3.2 Problem 2: Low Random Throughput
	3.2.1 Narrow Block I/O Interface
	3.2.2 Disk-oriented Configuration of I/O Subsystem

	IV. Design Exploration of I/O Subsystem
	4.1 Baseline Design: Asynchronous I/O Path and Interrupt
	4.2 Design 1: Making Entire I/O Path Synchronous
	4.3 New I/O Interface: Dispatching Discontiguous Block Requests in a Single I/O Request
	4.4 Design 2: Merging Discontiguous Block Requests Synchronously
	4.5 Design 3: Merging Discontiguous Block Requests Asynchronously
	4.6 Design 4: Choosing I/O Path Dynamically Based on a Request Property
	4.7 Design 5: Including Upper Layer to Bridge Semantic Gap between VFS and Block I/O Subsystem
	4.8 Design 6: Using Double Buffering to Avoid Lock Contention
	4.9 Design Summary

	V. Implementation Details
	5.1 Block I/O Subsystem in Linux
	5.2 New Storage Device Interface

	VI. Evaluation
	6.1 Latency Reduction
	6.2 Microbenchmark 1: Iozone
	6.3 Microbenchmark 2: Fio
	6.4 Macrobenchmark 1: Postmark
	6.5 Macrobenchmark 2: TPC-C
	6.6 Sensitivity Analysis
	6.7 CPU Utilization
	6.8 Temporal Merge Count

	VII. RelatedWork
	7.1 Software Stack Optimization
	7.1.1 Network I/O Subsystem
	7.1.2 Block I/O Subsystem

	7.2 Exploiting Device Functionality
	7.3 Extending Device Interface

	VIII. Conclusion
	References
	Abstract
	Acknowledgements

<startpage>11
I. Introduction 1
 1.1 Motivation: Slow Software on Fast Hardware 3
 1.2 Contributions 6
 1.3 Overview 7
II. Background 9
 2.1 Trends in Storage Technology 9
 2.2 Analysis of I/O Path 11
 2.3 Optimization Techniques by I/O Subsystem 13
III. Analyzing the Legacy of Disk-based I/O Subsystem 15
 3.1 Problem 1: High Software Latency 16
 3.1.1 Interrupt Latency 16
 3.1.2 Delayed Execution 17
 3.2 Problem 2: Low Random Throughput 20
 3.2.1 Narrow Block I/O Interface 20
 3.2.2 Disk-oriented Configuration of I/O Subsystem 22
IV. Design Exploration of I/O Subsystem 25
 4.1 Baseline Design: Asynchronous I/O Path and Interrupt 26
 4.2 Design 1: Making Entire I/O Path Synchronous 26
 4.3 New I/O Interface: Dispatching Discontiguous Block Requests in a Single I/O Request 29
 4.4 Design 2: Merging Discontiguous Block Requests Synchronously 30
 4.5 Design 3: Merging Discontiguous Block Requests Asynchronously 34
 4.6 Design 4: Choosing I/O Path Dynamically Based on a Request Property 37
 4.7 Design 5: Including Upper Layer to Bridge Semantic Gap between VFS and Block I/O Subsystem 38
 4.8 Design 6: Using Double Buffering to Avoid Lock Contention 40
 4.9 Design Summary 42
V. Implementation Details 44
 5.1 Block I/O Subsystem in Linux 44
 5.2 New Storage Device Interface 47
VI. Evaluation 48
 6.1 Latency Reduction 48
 6.2 Microbenchmark 1: Iozone 50
 6.3 Microbenchmark 2: Fio 53
 6.4 Macrobenchmark 1: Postmark 53
 6.5 Macrobenchmark 2: TPC-C 56
 6.6 Sensitivity Analysis 58
 6.7 CPU Utilization 60
 6.8 Temporal Merge Count 62
VII. RelatedWork 64
 7.1 Software Stack Optimization 65
 7.1.1 Network I/O Subsystem 65
 7.1.2 Block I/O Subsystem 67
 7.2 Exploiting Device Functionality 68
 7.3 Extending Device Interface 69
VIII. Conclusion 71
References 75
Abstract 84
Acknowledgements 86
</body>

