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Abstract 

Critical Crack Path Dependent Shear 
Strength Models of Concrete Beams 

without Web Reinforcement 
 

Lim, Woo Young 

Department of Architecture and Architectural Engineering 

The Graduate School 

Seoul National University 

 

This dissertation aims at estimating the critical crack path dependent shear strength 

of reinforced concrete beams without web reinforcement and investigating size 

effect by using the mixed mode fracture in linear elastic fracture mechanics (LEFM) 

approach. This approach has been supplied the theoretical basis for size effect in 

shear strength because the stress states at the crack tip can be expressed as a 

function of crack length.  

Even though the efforts of numerous experimental and analytical studies for shear 

strength and size effect of reinforced concrete beams, a fundamental theory 

explaining the size effect and shear failure mode of slender and deep beams without 

web reinforcement considering critical crack path is still missing. Current code 

provisions and many existing models are based on empirical and statistical 

considerations. 
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To determine the shear strength and investigate the size effect of reinforced 

concrete beams, a failure mechanism based on the critical crack path and crack 

length was proposed. This study assumes biaxial stress fields at the diagonal critical 

crack tip in both diagonal tension failure and sliding failure modes. The transition 

area which is located from uniaxial stress states below the neutral axis of beams to 

biaxial stress states above the neutral axis requires the change of primary fracture 

mode. This failure is defined as material failure such as separation and sliding. To 

provide the deformation dependent strength model, the modified Mohr-Coulomb 

criteria was used and failure mechanism was investigated by using concrete failure 

criteria. For investigating the stress states at critical diagonal crack tip, size 

dependent critical stress intensity factors for mode-I and mode-II fracture expressed 

in terms of ultimate stresses determined by material failure criteria and crack length 

were proposed. From the relationship between the stress intensity factor and critical 

stress intensity factor, it is recognized that size effect is related to the crack length 

for both mode-I and mode-II fracture. 

To obtain the shear strength of slender beams without web reinforcement, failure 

modes are classified into diagonal tension failure and sliding failure on the basis of 

critical crack path. And it is assumed that softening occurs at cracked section in the 

compression zone. In addition a newly flexural-shear behavior of reinforced 

concrete beams without web reinforcement based on the concrete strain for diagonal 

tension failure and sliding failure was proposed. The ultimate shear strength is 

determined at the intersection between flexural behavior curves and shear limit 

curves represented the softening. 

To determine the shear strength of deep beams without web reinforcement, behavior 

of prismatic body of concrete subjected to uniaxial compression was investigated. 

Both normal stress and shear stress assume to exist in the prismatic body on the 

basis of theory of elasticity. As a result, deep beams also showed the size effect for 

effective depth. 
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Proposed models are to estimate the shear strength of reinforced concrete slender 

and deep beams without web reinforcement. The proposed theory accurately 

predicts the experimental results for the ultimate shear stress of slender and deep 

beams with various strengths of concrete, steel ratio, shear span-to-depth ratio and 

effective depth. 

Finally, the proposed theoretical models based on the critical crack path and crack 

length are more reasonable to explain the size effect of reinforced concrete beams 

than existing models. 

 

Keywords : critical crack path, shear strength, size effect, critical stress intensity 

factor, mixed mode fracture, failure mechanism 

Student Number : 2007-30163 
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1. Introduction 

 

1.1 Research Background and Problem Statements 

Shear strength of reinforced concrete beams is affected by various design 

parameters, concrete strength '
cf , reinforcement steel ratio  , shear span-to-depth 

ratio /a d , and effective depth, d  as shown in Fig. (1.1). Generally as increasing 

with the reinforcement steel ratio the normalized shear stress increases. (Fig. 1.1(b)) 

And normalized shear stress decreases as shear span-to-depth ratio and effective 

depth increases. (Fig. 1.1 (c), (d)) 

 

Figure 1.1 Influence of various design parameters: (a) concrete strength, '
cf ; 

(b) reinforcement steel ratio,  ; (c) shear span-to-depth ratio, 

/a d ; (d) effective depth, d (data from Reineck et al. 2003) 
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For these reasons, despite the numerous experimental and analytical studies over the 

decades, the problem of how shear failures occur in reinforced concrete beams still 

remains. Thus, it is fact that international codes, such as ACI code (ACI 318-08) or 

Eurocode 2, are based on semi- or empirical considerations. 

Many reinforced concrete structural members, especially slender and deep beams 

without web reinforcement, showed that the shear stress decrease with increase in 

the size of members. 

Many design code provisions, ACI 318-08, CEB-FIP, Eurocode, and JSCE are more 

or less the result of statistical analysis of experimental results. Kani (1967) showed 

that such a procedure may be dangerous because test specimens used in laboratory 

experiments are usually smaller than structural members in reality. Kani (1967) 

investigated the size effect of concrete for shear strength and after that, Collins et al. 

(1996), Collins and Kuchma (1997), and Collins and Mitchell (1997) showed the 

influence of member size and maximum aggregate size on shear stress at failure as 

shown in Fig. (1.2). Walraven et al. (1994) found that crack propagation beam 

quicker as the specimen size became larger. 

The reinforced concrete beams are classified into three types depending on shear 

span-to-depth ratio (a/d) on the basis of failure mechanism. In slender beams having 

a/d from about 2.5 to about 6, the beam fails at the inclined cracking load. Very 

slender beams, with a/d greater than about 6, will fail in flexure prior to the 

formation of inclined cracks. Fig. (1.3) presents several tests performed by 

Leonhardt and Walther (1962) where a/d was varied from 1.5 to 8.0 and shows the 

influence of a/d on shear strength. For small values of a/d, the cracks practically do 

not develop through the inclined strut and thus the flexural strength can be reached. 

For larger values of a/d, cracks develop through the inclined struts, consequently 

decreasing the shear strength of the member. (Muttoni et al., 2008) 
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Consequentially, the shear strength of RC beams without web reinforcement 

appears to be affect by the beam depth and the shear span-to-depth ratio. 

 

Figure 1.2 Influence of member size and maximum aggregate size on shear 
stress at failure (Collins et al., 1996) 

 

Figure 1.3 Size Effect of Reinforced Concrete: (a) tests by Leonhardt and 
Walther (1962); (b) comparing actual strength with failure load 
according to theory of plasticity. 
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1.2 Research Objectives and Scope 

The main objectives of this dissertation are to provide theoretical formula for shear 

strength of reinforced concrete beams without web reinforcement based on critical 

crack path and to evaluate the size effect in linear elastic fracture mechanics 

approach. Specific objectives are as follows: 

 

(1) To provide a rational failure mechanism of reinforced concrete structural 

members subjected to bending moment and shear on the basis of critical crack path. 

(2) To determine size dependent critical stress intensity factors for mode-I and 

mode-II fracture, KIc and KIIc. 

(3) To present an appropriate strength evaluation of the prismatic body for sliding 

failure considering a size effect. 

(4) To develop a theoretical formula for shear strength of reinforced concrete beams 

without web reinforcement. 

 

To achieve these objectives, effective stress intensity factor in linear elastic fracture 

mechanics which can be expressed the stress state at the crack tip and crack length 

is used. 

 

Based on these results, rational and theoretical formulas for shear strength of 

reinforced concrete beams without web reinforcement were developed considering 

the interaction between normal stress and shear stress at critical diagonal crack tip. 

The proposed models were verified by the comparisons with the results of code 

provisions and existing experimental results. 
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1.3 Organization of the Dissertation  

In chapter 2, current design provisions such as ACI 318-08, CEB-FIP model code 

1990, Eurocode 2, and JSCE are reviewed. Recent code provisions for shear 

strength of reinforced concrete members considering size effect are summarized. 

Also, other previous researches on the shear strength regarding the size effect of RC 

slender beams are presented. 

In chapter 3, behavior of concrete under uniaxial tension and uniaxial compression 

is introduced. And softening of concrete is investigated on the basis of fracture 

mechanics. 

In chapter 4, fracture mechanics of concrete are reviewed. Size dependent stress 

intensity factor and critical stress intensity factor for mode-I and mode-II fracture 

are investigated. And to calculate the shear strength of reinforced concrete beams, 

mixed mode fracture and size effect in linear elastic fracture mechanics are 

reviewed. 

In chapter 5, flexural behavior of reinforced concrete slender beams without web 

reinforcement is investigated. To find the location where a critical diagonal crack 

occurs in compression zone, primary parameters in flexural behavior of concrete 

beams are investigated based on the concrete strain. 

In chapter 6, shear strength of reinforced concrete members without web reinforced 

concrete is evaluated on the basis of failure mechanism which depends on the 

critical diagonal crack. And theoretical predictions and experimental results are 

compared. 

Summary and conclusions are presented in chapter 7.  
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2. Literature Review 

 

2.1 Current Design Provisions 

2.1.1 ACI 318-08 Building Code 

ACI 318-08 building code (ACI, 2008) specifies the empirical design method for 

shear strength of reinforced concrete members. The shear strength is based on an 

average shear stress on the full effective cross section bd . In a member without 

shear reinforcement, shear is assumed to be carried by the concrete web. In a 

member with shear reinforcement, a portion of the shear strength is assumed to be 

provided by the concrete and the remainder by the shear reinforcement. 

The nominal shear strength of beam is as follows. 

n c sV V V   (2.1) 

where nV  is the nominal shear strength, cV  is nominal shear strength provided by 

concrete, and sV  is nominal shear strength provided by shear reinforcement. 

The nominal shear strength provided by concrete is computed by as follows. 

'0.17c cV f bd  (2.2) 

or 

'0.16 17 u
c c w

u

V d
V f bd

M
 

 
  
 

 (2.3) 

Equation (2.3) is basic expression for shear strength of members without shear 

reinforcement. 
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The shear strength provided by concrete cV  is assumed to be the same for beams 

with and without shear reinforcement and is taken as the shear causing significant 

inclined cracking. 

The nominal shear strength provided by shear reinforcement is 

v yt
s

A f d
V

s
  (2.4) 

where vA  is the area of shear reinforcement within spacing s . 

The current ACI Code (318-08) base its design on the diagonal cracking strength of 

the normal strength concrete (NSC) beams, with the depth less than 400mm, 

without considering the influence of beam size. 

 

2.1.2 CEB-FIP Model Code 1990 

CEB-FIP model code (1990) suggests a more sophisticated empirical formula based 

on Zsutty’s (1971) equation and adding an extra term to account for the size effect 

as following Eq. (2.5). 

If shear cracking would occur in the serviceability limit state the amount of shear 

reinforcement controlling the opening of diagonal crack may be very small and the 

criteria of serviceability may be violated. In the absence of a more precise 

calculation the shear force causing shear cracking may be estimated as follows. 

 
1/3

1/3'3 200
0.15 1 100cr c red

v

d
V f b d

a d


  
        

 (2.5) 

where 

va  is the distance from major load to support 

  is the ratio of flexural tensile reinforcement ( /sA bd ) anchored at the support 
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redb  is the reduced web breadth 

 1/3
3 / vd a  is an empirical expression allowing for the influence of the transverse 

compression from the loads and support reaction 

 

2.1.3 Eurocode 2 

In Eurocode 2, shear stress depends on concrete strength, effective depth and 

longitudinal reinforcement steel ratio. 

The recommended design value for the shear resistance ,Rd cV  is given by 

 1/3

, , 1 1100Rd c Rd c ck cpV C k f k bd      (2.6) 

with a minimum of 

 , min 1Rd c cpV v k bd   (2.7) 

where 

200
1 2.0k

d
    with d in mm 

1 0.02siA

bd
    

slA  is the area of the tensile reinforcement 

b  is the smallest width of the cross section in the tensile area [mm] 

cp  / 0.2Ed c cdN A f   [MPa] 

EdN  is the axial force in the cross section due to loading or prestressing 

cA  is the area of concrete cross section [mm2] 

The recommended value for ,Rd cC  is 0.18 / c  and 1k  is 0.15. 
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The shear strength of concrete without axial force or presstressing is as follow 

 1/3'
, 1

0.18 200
100Rd c c

c

V f bd
d




 
   

 
 (2.8) 

where c  is the partial safety factor for concrete 1.0c   

The design of members with web reinforcement is based on truss model called by 

variable strut inclination method as shown in Fig. (2.1) 

 

Figure 2.1 Truss model and notation for shear reinforced members 

where   is the angle between shear reinforcement and the beam axis 

perpendicular to the shear force,   is the angle between the concrete compression 

strut and the beam axis, tdF  is the design value of the tensile force in the 

longitudinal reinforcement, cdF  is the design value of the concrete compression 

force in the direction of the longitudinal member axis, b  is the minimum width 

between tension and compression chords and z  is the inner lever arm, for a 

member with constant depth. 
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In Eurocode 1 the designer should choose an appropriate angle   (the angle 

between the assumed concrete compression strut and the tension chord) to use in the 

model. The limits on cot  are between 1 and 2.5. Thus, the maximum shear 

capacity depends on   as following equation. 

, cotsw
Rd s ywd

A
V zf

s
  (2.9) 

where swA  is the cross-sectional area of the shear reinforcement, s  is the spacing 

of the stirrups and ywdf  is the design yield strength of the shear reinforcement. 

 

2.1.4 JSCE 

The design shear capacity of a member ydV  may be obtained using Eq. (2.10). 

When both bent longitudinal bars and stirrups are arranged as shear reinforcement, 

it should be ensured that the stirrups provided carry at least 50% of the shear force 

provided by shear reinforcement. 

yd cd sd pedV V V V    (2.10) 

where cdV  is the design shear capacity of linear members without shear 

reinforcement steel calculated by  

/cd d p n vcd w bV f b d          (2.11) 

'0.20vcd cdf f  [MPa] where 0.72vcdf   [MPa] 

4 1/d d   [ d : m] when 1.5d   d  is taken as 1.5. 

3 100p wp   when 1.5p   p  is taken as 1.5. 
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 '
01 / 0n d dM M N     when 2n   n  is taken as 2. 

 '
01 2 / 0n d dM M N     when 0n   n  is taken as 0. 

wp  /sA bd  

b  is 1.3 in general 

 

2.2 Previous Researches 

2.2.1 Fracture Mechanics Approach 

Bazant and Kim (1984) have proposed the size effect model that combined the 

existing code formulas for diagonal failure of longitudinally reinforced concrete 

beams without web reinforcement. 

It is assumed that the end segment of a beam shown in Fig. (2.2), in which a 

constant shear force V  acts throughout the shear span a . And bending moment at 

any distance x  from the support expressed as M Tjd  where  T T x  is 

tensile force resultant acting at the centroid of longitudinal reinforcement, and 

 j j x  is variable coefficient. The shear force expressed as /V dM dx , and 

the derivative is written as a sum of two terms 

1 2 1 2, ,
dT dj

V V V V jd V Td
dx dx

     (2.12) 

By empirically selecting values of T  and j ,  

 

1
1/2 '

1 1 2 2,
/

m
m q

c r
V k f bd V c bd

a d




   (2.13-a, b) 

where 1k , q , m and 2c  are empirical constants.  
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As a result, total shear stress is expressed as 

 

1/2

'
1 2

0

1
/

q
c r

a

d
v k f k

da d






  
       

 (2.14) 

Proposed equation has been compared to essentially all important experimental 

evidence, both that with regard to the effect of steel ratio, shear span, and concrete 

strength, and the more limited on with regard to the effect of size. 

The several required empirical constants were obtained by statistically analysis. As 

a result of all statistical comparisons, the following formula is proposed for the 

mean ultimate nominal shear strength. 

  3
5'10

3000 / /
1 / 25

u c

a

v f a d
d d


 


 (2.15) 

Gustafsson and Hillerborg (1988) proposed a finite analysis for longitudinally 

reinforced concrete beams based on a nonlinear fracture mechanics model called the 

fictitious crack model as shown in Fig. (2.3). 

Concrete and steel are assumed to be linear elastic materials. And a single diagonal 

crack is assumed. 

Shear stress across the fracture zone carried by aggregate interlocking between the 

fracture surface was not considered nor was the shear force carried by dowel action 

of the reinforcement steel considered. 

In Fig. (2.4) , normalized calculated shear strength /v tf f  are shown versus / chd l . 

This figure indicates a significant decrease in shear strength with decreased 

characteristic length and with increased beam size. 

Consideration of the characteristic length of the concrete may be equally important 

a consideration of beam size and might thus reduce the apparently large scatter in 

shear strength test data. 
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Figure 2.2 Diagonal shear failure of longitudinal reinforced concrete beam 
proposed by Bazant and Kim (1984): (a) decomposition of shear 
loading capacity; (b) composite action; (c) arch action 

 

Figure 2.3 Assumptions for modeling proposed by Gustafsson and Hillerborg: 
(a) Shear strength anlaysis; (b) Geometrical shapes of beams; (b) 

Bond stress b  versus bond slip s  

x

jd

jd

V

1V

1V

2V

2V

C

T

1C

1T

2C

2T

d

d

d

b
a

(a)

(b)

(c)

0j d

u

Check of compression failure

Concrete :
linear elastic

Steel :
linear elastic

Bond-
stress slip

Several crack
paths considered

Fracture zone according to 
fictitious crack model

P 0.3d

/ 20d
/ 40d 

/ 3, 6, 9l d  0.5, 1.0, 1.5, 2.0% 

d

1.0

0.2

/b tf

 / 2 /f ts G f

(a) (b)

(c)
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Figure 2.4 Theoretical shear strength versus ratio / chd l  

Gustafsson and Hillerborg have suggested that it should be possible to achieve 

consideration of chl  in existing empirical shear strength formulas simply by 

replacing the measure of beam size d  in the actual size reduction factor by the 

ratio / chd l . 

An approximate relation for simple analysis of the influence of ratio / chd l  was 

proposed as follows. 

0.25

v

t ch

f d
k

f l


 

  
 

 (2.16) 

where k  is proportional constant.  

Jenq and Shah (1989) have proposed a model based on their two-parameter fracture 

model. A diagonal failure of a longitudinally reinforced concrete beams is assumed 

in Fig. (2.5), where a single diagonal linear crack is assumed to be responsible for 

shear failure of the beam and the value 45    was used. It was assumed that any 
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crack growth in the concrete take place when the stress intensity factor at the crack 

tip attains the mode-I fracture toughness s
IcK . It is assumed that the steel force 

along the beam,  sF x , is represent by a power law as follow 

 
1

,max

2
N

s s s y

x
F x F A f

S
   
 

 (2.17) 

where ,maxsF  is the maximum steel force at the mid-span ( / 2x S ), and the value 

of 1N  is a constant whose value will be adopted after numerical experimentation 

based on a bilinear approximation to the bond slip and frictional pullout behavior of 

the reinforcing bars. Based on the test data reported by Ferguson and Thompson, 

Jenq and Shah proposed that 

1/2

,max 2.509s tF Sf
b

   
 

 (2.18) 

where the tensile strength  2
1.4705 /s

t Ic cf K E CTOD  based on the two 

parameter fracture mode. 

 

Figure 2.5 Theoretical failure mode proposed by Jenq and Shah (1989): (a) 
theoretical failure mode for modeling diagonal shear failure of 
reinforced concrete beam; (b) Balance condition for calculating 

value of sP  

x

ckx

/ 2S

a

P

 sF x

ckx/ 2sP

 sF x

C

a

sb

2

3 3 s

b a
b b

(a) (b)
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Based on LEFM,  

1
s
Ic I N

a
K K ag

b
      

 
 (2.19) 

where N  is the nominal stress at the section x  and  1 /g a b  is the geometric 

function. For three-point bending beams with / 4S b  ,    23 /N mP x b t  , and 

 1 /g a b  is given by 

      
  

2

1

1.99 / 1 / 2.15 3.93 / 2.70 /

1 / 1 /

a b a b a b a ba
g

b a b a b

           
 (2.20) 

As a result, the total shear strength of the beam, uv  is given as 

m s
u

P PP
v

bt bt


   (2.21) 

where mP  is the force resisted by the concrete and sP  is the force resisted by the 

longitudinal steel. 

 

2.2.2 Strut-and-Tie Model 

Reinforced concrete beam theory is based on equilibrium, compatibility, and the 

constitutive behavior of the materials, steel and concrete. It is assumed that the 

strain varies linearly through the depth of a member and this assumption is validated 

by St. Venant’s principle. 

However this principle does not apply in the discontinuity regions within reinforced 

concrete members near concentrated loads, openings, or changes in cross section. 
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Because of their geometry, the full volume of deep beams and column brackets 

qualify as discontinuity regions. 

When concrete cracks, the strain field is disrupted, causing a redistribution of the 

internal forces. So it is possible to represent the internal forces within D-regions 

using a statically determinate truss, referred to as a strut-and-tie model. 

Strut-and-tie model are based on a lower bound solution in the theory of plasticity. 

Basic assumptions for this model are assumed as perfectly plastic behavior of the 

material and small deformation of the structure. 

Hong and Ha (2012) have proposed model that is suitable for estimating the shear 

strength of RC beams with an intermediate /a h , as their governing diagonal 

failure modes. They study considers that the mechanism of diagonal cracking 

reduced the width of a concrete strut and hence causes a reduction in the capacity of 

the concrete strut as shown in Fig. (2.6). 

The reduced width of concrete strut can be defined as follows. 

2'
2 1

1sw

h



    

 
 (2.22) 

where '
sw  means the reduced width of concrete strut,   represent the ratio of the 

shear span to the overall depth of the member ( /a h  ),   means the ratio of 

the flexural compression depth to the overall depth of the members, 

3/ 1.53nc h   .   represents the longitudinal reinforcement ratio. 

The proposed shear strength model is as follows 

  2 2

'
1 13

4 cv f
   



  
  (2.23) 
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The derived equation for the shear strength is expressed in terms of the strength of 

concrete '
cf , the ratio of the flexural compression depth to the overall depth of the 

member  . 

 

Figure 2.6 Inclined compressive strut with reduced strut width: (a) ideal strut-
and-tie model; (b) influence of flexure and bond; (c) reduced strut 
width 

2.2.3 Deformation based Design 

Zararis and Papadakis (2001) have proposed the very simple formulation of shear 

strength of reinforced concrete beams without web reinforcement to take into 

account the size effect as follows. 

1.2 0.2u
u ct

V a c
v d f

bd d d
    
 

 (2.24) 

where 1.2 0.2 0.65
a

d
d

   ( d  in meters) 

To define the failure criteria of the compression zone it is assumed that splitting of 

concrete occurs at the second branch of critical crack. Split-cylinder tensile tests 

reported by Hasegawa et al. (1985) were used to explain the size effect of the above 

formulation. The factor  1.2 0.2 cta f  means the size effect on the diagonal shear 

failure of slender beams, with a minimum value of 0.65. 

P

P

P P

PP

C

T

(a) (b) (c)
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Finally, they have suggested that shear strength is related to the tensile strength of 

concrete at the compression zone. 

 

Figure 2.7 Failure due to splitting of concrete proposed by Zararis et al. 
(2001): (a) Distribution of normal stresses along line of second 
branch of critical crack; (b) Splitting failure of concrete 

Park and Choi (2006) have proposed the strain-based shear strength model. To 

define the failure mechanism of the compression zone subjected to the combined 

stresses, Rankine’s failure criteria were used. A concrete failure occurs then the 

principal stress resulting from the combined stresses reaches the material strength. 

When the principal compressive stress reaches the compressive strength of concrete 

'
cf , failure controlled by compression occurs, and when principal tensile stress 

reaches the tensile strength concrete '
cf  failure controlled by tension occurs. The 

failure criteria of the compression is defined as follows. 

 

For failure controlled by compression : 

 
2

2 '
1 2 2

u u
u cv f

 
        

 
 (2.25-a) 

For failure controlled by tension : 

crl



a
P

z

10.5 c

fT

fC

P / sinP 

/ sinP 

d l

(a) (b)
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2

2 '
2 2 2

u u
u tv f

 
       

 
 (2.25-b) 

Mottoni and Ruiz (2008) have suggested the critical shear crack theory which is 

assumed that the shear strength is checked in a section where the width of the 

critical shear crack represented by the strain at a depth of 0.6d  from the 

compression face and the critical crack width w  is proportional to the longitudinal 

strain as shown in Eq. (2.26). 

w d  (2.26) 

where   means the strain in the control depth 0.6d  derived based on the bending 

moment M  in the critical section. 

The shear strength considering the effects of the critical crack width, the aggregate 

size and the concrete compressive strength have been proposed as following 

equations. 

1 2

6 1 120
16

R

w c

g

V
db d f
d







 [MPa, mm] (2.27) 

where gd  represents the aggregate size for high-strength concrete ( ' 60cf   MPa) 

or light-weight concrete gd  should be taken equal to zero because the crack 

surface develops through the aggregates as proposed by Angelakos et al. (2001), 

and Bentz et al. (2006).  

Fig. 2.8 shows the degradation of shear strength as increasing the effective depth or 

deformation.  
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Figure 2.8 Shear strength of simply supported reinforced concrete beams 
subjected to concentrated load proposed by Muttoni et al. (2008) 

 

2.2.4 Regression Analysis 

Zsutty (1968) have proposed the shear strength by using an empirical method which 

combines the techniques of dimensional analysis and statistical regression analysis 

as follows. 

1/3
'2.2cr

c

V d
f

bd a
   

 
 (2.28) 

where   represents the ratio of reinforcement steel. 

Zsutty’s equation took into account the influence of the compression strength of the 

concrete and the longitudinal reinforcement ratio. When the steel ratio is small, 

flexural cracks extend higher into the beam and open wider. 
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2.3 Review 

Shear resistance of reinforced concrete beams has been studied extensively over the 

last few decades. Nevertheless, most theoretical and experimental researches even 

the current design codes are based on empirical and statistical method to express the 

size effect especially. In this chapter, current code provisions and previous 

researches for shear strength reinforced concrete beams with or without web 

reinforcement were studied. 

 

Only ACI 318-08 based on empirical formulations does not provide the size effect. 

On the other hand CEB-FIP model code, Eurocode 2, and JSCE based on empirical 

and statistical method take into account the size effect in their formula directly as 

shown in Eq. (2.5), Eq. (2.8), and Eq. (2.10). Fig. (2.9) and Table (2-1) show the 

comparisons of shear strength recommended by code provisions for effective depth. 

For comparisons, four simply supported prototype reinforced concrete beams 

subjected concentrated load tested by Kani (1967) were used. Material properties 

and geometry of specimens such as concrete strength ' 27MPacf  , width of beams

2152.3mmb  , ratio of reinforcement 2.8%  , and shear span-to-depth ratio 

/ 4.0a d   are same. All of code provisions except ACI 318-08 show the 

degradation of shear strength as an effective depth increases and represent very 

rational accuracy. However, ACI 318-08 shows constant values regardless of 

effective depth of specimen. 
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Figure 2.9 Comparisons of shear strength recommended by code provisions 
for effective depth 

Table 2-1 Experimental results by Kani (1967) 

Author Beam 
'

cf
 

[MPa] 

b  

[mm]

d  

[mm]

h  

[mm]
/a d



[%] 

tV  

[kN] 

tv  

[MPa] 

Kani 

(1967) 

52 24.8 152 138 152 3.93 2.69 28.9 0.28 

84 27.5 151 271 305 4.01 2.83 55.4 0.26 

63 26.2 154 543 610 4.00 2.77 93.2 0.22 

3044 29.5 152 1097 1220 3.97 2.73 159.1 0.18 

Mean value 27.0 152.3   4.00 2.80   
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3. Behavior of Concrete 

 

3.1 Uniaxial Compression 

The compressive strength of concrete is usually obtained from cylinders with a 

height to diameter ratio of 2. The standard cylinder is 300mm high by 150mm in 

diameter, and the resulting compressive cylinder strength is termed '
cf . 

Concrete is a mixture of cement paste and aggregate, each of which has an 

essentially linear and brittle stress-strain relationship in compression. Brittle 

materials tend to develop tensile fractures perpendicular to the direction of the 

largest tensile strain. When concrete is subjected to uniaxial compressive loading, 

cracks tend to develop parallel to the maximum compressive stress. 

Fig. ( ) represents typical stress-strain curves obtained from concrete cylinders 

loaded in uniaxial compression in a test. The curves are almost linear up to about 

one-half the compressive strength. The peak of the curve for high-strength concrete 

is relatively sharp, but for low-strength concrete the curve has a flat top. The strain 

at the maximum stress is approximately 0.002. 

After peak stress the curves softening of concrete occurs due to the gradual 

formation of microcracks within the structure of concrete. 

 

3.2 Uniaxial Tension 

The tensile strength of concrete, which is 8 and 15 percent of the compressive 

strength, can be obtained directly from tension specimens. However, because of the 

difficulties of holding the specimens to achieve axial tension the direct tension test 

is infrequently used. 
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Figure 3.1 Stress-strain curves for concrete cylinders loaded in uniaxial 
compression 

Two types of tests are widely used. The first of these is the modulus of rupture in 

which a plain concrete beam, generally 150mm×150mm×750mm long, is loaded in 

flexure at the 3-points of a 600mm span until it fails due to cracking on the tension 

face. The modulus of rupture rf  is calculated from the following equation. 

2

6
r

M
f

bh
  (3.1) 

where M  is flexural moment, b is width of specimen, and h  means the overall 

depth of specimen. 

The second tensile test is the split cylinder test. In case of this test, the tensile 

strength of concrete may be measured indirectly in terms of the computed tensile 

stress at which a cylinder placed horizontally in a testing machine and loaded along 

a diameter will split. From the theory of elasticity, the splitting tensile strength, ctf  

is computed as follows. 

2
ct

P
f

ld
  (3.2) 

(MPa)


0 0.002 
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where P  is the maximum applied load, l  is the length of specimen, and d  is the 

diameter of specimen. 

Fig. (3.2) shows the split-cylinder test for tensile strength. The split cylinder tensile 

strength usually ranges from 50 to 75% of the modulus of rupture. The difference is 

mainly due to the stress distribution in the concrete of the flexural member. 

According to ACI 318 code provisions, for normalweight concrete, the average 

splitting tensile strength ctf  is approximately equal to '0.56ct cf f . 

 

Figure 3.2 Split-cylinder test for tensile strength 

3.3 Biaxial Stress Behavior 

A biaxial stress condition occurs if the principal stresses act only in two directions. 

A failure curve for elements with direct stress in one direction combined with shear 

stress, as found by Bresler and Pister (1958), appears in Fig. (3.3). The curve 

indicates that the compressive strength of concrete is reduced in the presence of 

shear stress. This action may influence the strength of concrete in the compression 

zone of beams. 

1

2

tension compression
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Figure 3.3 Combination of direct stress and shear causing failure of concrete 

3.4 Softening of Concrete 

Softening is a gradual decrease of resistance from the peak load due to the 

continuous increase of deformation. Softening is found in stress-deformation 

relationship as shown in Fig. (3.4). It is characterized by the descending branch of 

the stress-strain or deformation curve. Due to the heterogeneity of concrete the 

material is gradually weakened and this cause progressive failure of internal bonds 

when concrete is subjected to progressive deformation [Hsu et al. (1963)]. 

Vonk (1992) introduced the softening of concrete as following. Initially, the 

cracking starts as microcracking. They are stable, which means that they grow only 

when the load is increased. At the peak load, the macrocrack starts. They are 

unstable, which means that the load has to decrease to avoid an uncontrolled growth. 

In a deformation-controlled test, this macrocrack growth results in softening and 

localization of deformation. Localization of deformation means that all further 

deformation concentrate in the macrocracks, while the concrete parts in series with 

these macrocracks show decreasing deformation due to unloading. 

Softening and localization of deformation show the concrete in tension as well as 

under compression. 





xx
xy

yx
'0.2 cf

Uniaxial tensile
strength

Uniaxial compressive
strength
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Figure 3.4  Stress-strain relationship of concrete under uniaxial load [Elfgren 
(1989)]: (a) in uniaxial tension; (b) in uniaxial compression 

Though concrete is normally is used in compression, its fracture behavior in tension 

is very important as well as fracture under compression. Unfortunately only few 

experiments on concrete subjected to uniaxial tension are presented.  

Hillerborg et al. (1976) introduced the “fictitious crack model” which is capable of 

describing the failure of concrete in tension. A typical stress-elongation curve for a 

concrete plate subjected to uniaxial tension is shown in Fig. (3.5). 

It is assumed that strain localization appears only after the maximum load is reached. 

The area under the entire softening stress-elongation curve,  w , is denoted as 

fG , which is given by 

 
0

cw

fG w dw   (3.3) 

where cw  is the critical crack separation displacement when the softening stress is 

equal to zero. The material fracture toughness fG  represents the energy absorbed 

per unit area of crack and is regarded as a material fracture parameter. 
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In the fictitious crack model, the softening stress-separation curve  w  is 

assumed to be a material property that is independent of structural geometry and 

size. It is noted that the softening curve  w  can be completely determined if the 

material tensile strength ctf , the fracture toughness fG , and the shape of the 

 w  curve are known. ctf  is a standard tensile strength measured on specimens 

of specified size and cured and tested in a specified way. The tensile strength is not 

always known. The main reason is that concrete is cracked, and cracking reduces 

the strength of concrete. 

 

Figure 3.5  Fictitious crack model: (a) test specimen under uniaixal tension; (b) 
influence of specimen length; (c) stress-train diagram for regions 
outside the fracture process zone; (d) stress-crack opening 
relationship of fictitious crack 
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(1) Compression Failure controlled by Principal Stresses 

 

A common representation of the stress-strain curve for concretes with strengths up 

to about 40MPa is the modified Hognestad stress-strain curve shown in Fig.(3.6). 

This consists of a second-degree parabola with apex at a strain of ''1.8 /c cf E , where 

'' '0.9c cf f  followed by a downward-sloping line terminating at a stress of '0.85 cf  

and limiting strain of 0.038. 

2 ''
''

0
0 0

2 1.8
,c c c

c c
c

f
f f

E

 


 

  
    
   

 (3.4) 

For normal-weight concrete ACI Section 8.5.1 gives the modulus of elasticity as 

'4700c cE f  [MPa] (3.5) 

 

Figure 3.6 Uniaxial compression: (a) test specimen; (b) influence of length; (c) 
stress-strain diagram proposed by Hognestad 

Several prisms with varying height (H=50, 100 and 200mm) and constant cross-

sectional area (A=100×100mm2) were loaded between brushes.  

In Fig. (3.6-b) the axial stress-strain curves for three specimens with different height 

are plotted. Note that the stress axis made dimensionless with respect to the peak 

stress measured in each separate experiment. The peak stress measured in the three 
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tests is same. In the pre-peak region the stress-strain curve is the same for all 

heights, however, in the descending branch, the slope of the softening branch 

decreases when the height of the specimen decreases. When the post-peak curves 

are drawn as load-displacement curves as shown in Fig. (3.6-c) the differences in 

post-peak behavior disappear almost completely. 

A localized deformation is smeared over different specimen heights, leading to the 

observed decrease of the softening slope in terms of stress and strain. In fact it is 

shown that failure in uniaxial compression is similar to the localized fracture mode 

observed in uniaxial tension. Only the location and orientation of the macroscopic 

fracture plane is different. In uniaxial tension, a localized macroscopic fracture 

plane develops perpendicular to the tensile direction and in uniaxial compression a 

shear type fracture plane develops which takes the form of a zig-zag band when the 

specimen height is decreased. 

 

(2) Compression Failure controlled by Sliding Failure Mode 

 

The occurrence of localization of deformation during softening of concrete 

subjected to uniaxial compression was for the first time shown by Van Mier (1984). 

As shown in Fig. (3.7), the curves for specimens of different slenderness

 / 0.5 ~ 2.0h d  , where h  is a height and d  represents width of specimen, 

were observed to fall in a narrow bundle. It should be mentioned that for the 

considered specimen slenderness the maximum stress varied only slightly. 
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Figure 3.7 Localized failure of concrete in uniaxial compression: Effect of 
specimen slenderness on (a) the complete stress-strain curve; (b) 
the postpeak stress-deformation cruve.(Van Mier, 1984, 2009) 

Fig. (3.8) shows the various stages of localized crack growth. Before the peak 

(Stage a) no cracking Beyond peak, at state b, inclined cracks appear to develop 

from three corners of triaxially loaded specimens are the reason for crack initiation 

in the corners. The cracks at Stage b are critical cracks according to the definition 

given above. At Stage c, well in the softening regime, the cracks from two positive 

corners propagate toward the center of the specimen. At Stage d, e, and f the shear 

band grows to cross the entire specimen cross section. 

An interesting result which is explained the influence of boundary constraint on the 

fracture behavior of uniaxial compressed cylinders tested by Kotsovos (1983). The 

results are shown in Fig. (3.6). Tests were carried out under varying boundary 

conditions with different frictional characteristics. When the friction at the 

specimen-loading platen interface was reduced, the slope of the softening branch 

became increasingly steep. The various observed fracture modes are shown in the 

same figure. It must be concluded that material, specimen and testing machine 

characteristics are interacting, and have a considerable influence on the observed 

stress-deformation response. 
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Figure 3.8 Shear-band propagation in prismatic specimens subjected to plane 
strain [Van Geel (1998), Van Mier (2009)] 

 

Figure 3.9 Influence of boundary conditions on the uniaxial load-
displacement behavior in compression (Kotsovos 1983): (a) Load-
displacement relationship obtained from tests; (b) Typical fracture 
modes of cylinders 
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3.3 Summary 

This section presented the behavior of concrete and softening of concrete. From the 

study of uniaxial tension and compression behavior of concrete, the main points can 

be summarized as follows. 

 

The same as the tensile failure, the compression failure of concrete exhibits a size 

effect. Unfortunately, to date the compressive response of concrete and its 

contribution to the post-peak response of a reinforced concrete beam has still not 

been clearly understood. 

Failure mechanism of concrete under uniaxial tension and compression is classified 

into the general compression failure and sliding failure. Not only the general 

compression failure but also sliding failure shows the size effect. 
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4.Fracture Mechanics of Concrete 

 

4.1 Linear Elastic Fracture Mechanics 

For many years fracture mechanics has been used to study the crack propagation of 

mechanical components. It has been used methods of analytical solid mechanics to 

calculate the force on a crack and those of experimental solid mechanics to 

characterize the material's resistance to fracture.  

Linear elastic fracture mechanics (LEFM) is the basic theory of fracture, originated 

by Griffith (1921, 1924) and completed in its essential aspects by Irwin (1957, 1958) 

and Rice (1968). This assumes that the material is isotropic and linear elastic. Based 

on these assumptions, the stress field near the crack tip is calculated by using the 

theory of elasticity.  

LEFM is applicable to any material as long as certain conditions are met. These 

conditions rely on the presence of all basic ideal conditions analyzed in LEFM in 

which all materials are elastic except in a vanishingly small region (a point) at the 

crack tip. In fact, the stress near the crack tip is so high that some kind of 

inelasticity must take place in the immediate vicinity of the crack tip.  

The theory of Linear Elastic Fracture Mechanics (LEFM) has been developed using 

a stress intensity factor determined by the stress analysis, and expressed as a 

function of stress and crack size i.e. (stress)×(length)1/2. The strain energy release 

rate, or the stress intensity at the crack tip (KC), eventually, will inevitably reach a 

critical value. 

In this LEFM, fracture mode is classified into three types as shown in Fig. (4.1). 

 

(1) Opening mode, Mode I  



36 

The crack surfaces separate symmetrically with respect to the planes xy and xz. 

 

(2) Sliding mode, Mode II 

The crack surfaces slide relative to each other symmetrically with respect to the 

plane xy and skew-symmetrically with respect to the plane xz. 

 

(3) Tearing mode, Mode III 

The crack surfaces slide relative to each other skew-symmetrically with respect to 

both planes xy and xz. 

 

 

Figure 4.1  Three basic pure fracture modes: (a) Mode I or pure opening mode 
(b) Mode II or in-plane shear mode (c) Mode III or anti-plane shear 
mode 

The stress and deformation fields associated with each of these three deformation 

modes will be determined for the cases of plane strain and generalized plane stress. 

   , , , , 0u u x y v v x y w    (4.1) 

where u , v  and w  represent the displacement components along the axes x , y  

and z , respectively. Thus, the strains and stresses depend only on the variables x  
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and y . In crack problems, plane strain conditions are approximated in plates with 

large thickness relative to the crack length. 

A generalized plane stress state parallel to the xy  plane is defined by 

0z zx zy      (4.2) 

     , , , , ,x x y y xy xyx y x y x y         (4.3) 

where x , y , z  and xy , zx , zy  mean the normal and shear stresses 

associated with the system xyz . Generalized plane stress conditions are realized in 

thin flat plates with traction-free surfaces. In crack problems, the generalized plane 

stress conditions are approximated in plates with crack lengths that are large in 

relation to the plate thickness.  

 

4.2 Stress Intensity Factor 

To predict the stress state near the crack tip a stress intensity factor has been used in 

fracture mechanics. From the linear elastic theory Irwin showed that the stresses in 

the vicinity of a crack tip take the form as follows. 

 
2

ij ij

K
f

r
 


   (4.4) 

where ,r   are the cylindrical polar co-ordinates of a point with respect to the 

crack tip. 

K  is a quantity which gives the magnitude of elastic stress field. It is called the 

stress intensity factor. Dimensional analysis shows that K  must be linear related to 

stress and directly related to the square root of a characteristic length. 

The general form of the stress intensity factor is given by 
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a
K a f

W
     

 
 (4.5) 

where  /f a W  is a dimensionless parameter that depends on the geometries of 

the specimen and crack, and   is the remotely applied stress. For an infinite plate 

with a central crack with length 2a ,  / 1f a W   and thus K a  . 

 

Figure 4.2 A crack of length 2a in an infinite plate subjected to a uniform 
stress σ∞ at infinity 

Fig. (4.2) shows that a crack of length 2a  which occupies the element a x a    

along the x-axis in an infinite plate subjected to uniform equal stresses   along 

the y  and x directions at infinity. The boundary conditions of the problem may 

be stated as follows 

0y xyi    for 0y  , a x a    (4.6) 

And 

0x  , y  , 0xy   for 2 2x y   (4.7) 
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The function defined by 

2 2I

z
Z

z a




 (4.8) 

Satisfies the boundary condition Eqs.(4.6) and (4.7) and therefore is the 

Westergaard function for the problem shown in Fig. (4.2) 

If we place the origin of the coordinate system at the crack tip z a  through the 

transformation 

z a    (4.9) 

Equation (4.8) takes the form 

 
 

1
2

a
Z

a

 

 
 


   

 (4.10) 

Expanding Eq. ( 4.10) we obtain 

  2 3

1

1 1 3 1 3 6
1

2 2 2 4 2 2 4 5 22

a
Z

a a aa

    



             

     
  (4.11) 

For small  , this is near the crack tip at x a , Equation (4.11) may be written 

1
2

IK
Z

a
  (4.13) 

where IK a   

Using polar coordinate, ,r   we have 

ire    (4.14) 

And the stresses near the crack tip are determined as follows. 
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                   
 (4.15) 
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
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 (4.16) 
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 (4.17) 

Similarly, for mode-II crack in an infinite cracked plate subjected to plane shearing, 

as shown in Fig. (4.3), the stress components near the crack tip are as follows. 

3
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 (4.18) 
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 (4.20) 

where the stress intensity factor for mode-II fracture IIK  is given by 

IIK a   (4.21) 

The values of IK  and IIK  account for singularity of the stress field at the crack tip 

and are function of load, specimen geometry, boundary condition, and crack size. 

Stress intensity factors can serve as a fracture criterion. A crack propagates 

whenever IK  or IIK  is equal to  

,I Ic II IIcK K K K   (4.22) 
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Figure 4.3 A crack of length 2a in an infinite plate subjected to uniform in-
plane shear stresses τ∞ at infinity 

where IcK  and IIcK  are the critical stress intensity factors for mode-I and mode-II 

cracks, respectively. The values of IcK  and IIcK  are regard as material fracture 

properties based on linear elastic fracture mechanics. 

Stress intensity factors can also be used to characterize structures. Based on how 

stress intensity factors change with crack lengths, structures can be classified as 

positive and negative geometries. The stress intensity factor increases with the 

increasing crack length for the positive-geometry structures. On the other hand, the 

stress intensity factor initially decreases and then increases with the crack 

propagation for the negative-geometry structures. Therefore, based on linear elastic 

solutions, any propagation of the crack means a catastrophic failure for positive-

geometry structures. [Shah et al. (1995)] 
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4.3 Critical Stress Intensity Factor 

Mode-1 fracture is uniquely determined by IK  since the stress state of the material 

surrounding a very small fracture process zone, crack tip, the crack will propagate 

until this stress intensity factor reaches a certain critical value IcK , called critical 

stress intensity factor or fracture toughness. IcK  for the given material may be 

determined performing a fracture test and determining the IK  value that provoked 

failure. Because the energy fracture criterion must also hold, and indeed does 

according to the fundamental relationship, is related to the fracture energy fG  by 

Ic fK EG  (4.23) 

With this definition, the local fracture criterion for pure mode 1 may be stated in 

analogy to the energy criterion 

 

if I IcK K  then : No crack growth (stable) 

if I IcK K  then : Quasi-static growth possible 

if I IcK K  then : Dynamic growth (unstable) 

 

For loadings that are not pure mode 1, the problem becomes more difficult because, 

in general, an initially straight crack kinks upon fracture and the criteria must give 

not only the loading combination that produces the fracture, but also the kink 

direction. 

The early researches on concrete fracture often attempted to apply LEFM directly to 

evaluate the fracture tests. In this case, the fracture toughness is calculated from the 
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peak load uP  (or nominal strength Nu ) using the LEFM formula for a 

propagating crack in a specimen. If the geometry is so-called  

 

4.4 Material Properties and Nonlinear Zone 

4.4.1 Nonlinear Behavior of Concrete 

Concrete, rocks, most ceramics and sintered metals contain defects, such are pores 

and cracks even in the virgin state. These defects reduce their tensile capacity. 

Fig. (4.4) shows the typical tensile stress-elongation curves for quasi-brittle material. 

Initially, randomly distributed microcracks are formed. At some point before the 

peak stress, microcracks begin to localize into a macrocrack that propagates at the 

peak stress. Strain softening is observed under steady-state propagation of this crack. 

 

Figure 4.4 Tensile stress-elongation curves: (a) linear elastic materials; (b) 
Quasi-brittle materials 

The basic difference between fracture principles applied to different kinds of 

material is shown in Fig. (4.5). A nonlinear zone ahead of the crack tip is composed 

of fracture process zone and hardening plasticity. LEFM is applied to the material in 

which the zone is very small in case of Fig. (4.5-a). Fig. (4.5-b) shows the nonlinear 

behavior for ductile material in which the zone with nonlinear material behavior or 
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hardening plasticity is large and the fracture zone is small. The third case is 

applicable to nonlinear behavior of cementitious materials in which the fracture 

zone is large and hardening plasticity is small. 

 

Figure 4.5  Types of nonlinear zone in different types of materials: (a) Linear 
elastic; (b) Nonlinear plastic; and (c) Quasibrittle 

In the other way, the nonlinear behavior of three different types of materials 

subjected to uniaxial tension can be shown using stress-deformation relationship as 

illustrated in Fig. (4.6). 

 

Figure 4.6  Stress-displacement behavior under uniaxial tension: (a) Brittle; (b) 
Ductile; and (c) Quasi-brittle materials 
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The brittle material shows a linear elastic behavior almost up to the peak load, and a 

crack will propagates through the specimen just after the peak. The ductile material 

behavior shown in Fig. (4.6-b) is characterized by a pronounced yield plateau and 

the nonlinear behavior starts much behavior the onset of crack localization. In the 

quasibrittle material, the nonlinear behavior starts before the peak load and then 

upon arrival at the peak load, crack localization will occur. 

 

4.4.2 Concrete Crack and Fracture Process Zone 

 

In this section, the equations for a crack tip based on linear elastic region were 

obtained. These equations result in infinite stresses at the crack tip, therefore, there 

is a stress singularity. This solution assumes the size of the inelastic zone at the 

crack tip is zero. However, real materials have some finite size R . This limits the 

stresses at the crack tip. More importantly, structural materials deform plastically 

above the yield stress and so in reality there will be a plastic zone surrounding the 

crack tip. 

Fig. (4.7) shows the estimation of size of plastic zone at crack tip. The distribution 

of y  ahead of the crack tip will be as shown in Fig. (4.7-a). The value of y  is 

greater than the material yield stress ys  for the region 0pr r . The distance 0pr  

indicates the size of plastic zone at crack tip and its value can be estimated from the 

condition of y ys   at 0pr r . 
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Fig. (4.7-b) shows the size of plastic zone at crack tip proposed by Irwin (1960). For 

the analysis there are several restrictions. 

1) The plastic zone shape is considered to be circular. 

2) Only the situation along the x-axis is analyzed. 

3) The material behavior is considered to be elastic-perfectly plastic. 

4) A plane stress state is considered. 

5) Assuming that the area of A is equal to the area of B, the size of plastic 

zone pr  is obtained as follows. 

2 2
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1 I
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r a r a


  
   

         
   

 (4.25) 

It is seen that the size of the plastic zone, pr , based on the above second-order 

estimation is twice as large as the first-order estimation, 0pr . 

 

Figure 4.7 Estimation of size of plastic zone at crack tip: (a) A first 
approximation; (b) Proposed by Irwin (1960) 

Consequentially, it should be noted that since LEFM assumes the size of fracture 

process zone is zero, that is, there is singularity at the crack tip, in other words, it is 

impossible to apply the LEFM directly, it is necessary to determine the fracture 

process zone to resolve the singularity. 
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4.6.3 Fracture Process zone for Mixed Mode Fracture 

The mechanical behavior of structure is greatly influenced by the materials used. 

Generally, based on tensile stress-deformation relationship, structural failure is 

classified brittle, ductile and quasi-brittle as shown in Fig. (4.6). When a brittle 

failure occurs, the stress drops to zero suddenly. On the other hand, stress stays a 

constant when ductile failure takes place. In case of quasi-brittle materials, after 

peak stress, the stress decreases gradually as shown in Fig. (4.6-c). In this case, an 

inelastic zone develops at the location of the maximum stress when fracture occurs. 

This inelastic zone is often referred to a fracture process zone. Generally, the 

normal tensile stress decreases toward the crack tip within the fracture process zone. 

The development of fracture process zone usually causes a softening behavior in the 

load-deformation relationship. This happens for concrete, rock, cemented sands etc. 

When concrete is subjected to a large compression parallel to the crack plane (as in 

splitting fracture), the fracture process zone may be large. 

Fig. (4.8) shows the three types of fracture process zone which explain how the 

softening influences. Irwin proposed that the presence of the crack tip plastic zone 

reduces the stiffness of the structure, and this is equivalent to that of a structure 

containing a longer crack. The distribution of stress 1  (principal tensile stress at 

compression zone) at the tip of the effective crack is given in Fig. (4.8-a). The stress 

over the length of 1r  and at the tip of the effective crack is limited to ctf . 

Further analysis shows that if the progressive softening is concave upward, instead 

of linear, one can get much larger sizes of the fracture process zone for quasi-brittle 

materials. 
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Figure 4.8 Size of fracture process zone 

To prove this result, take the case shown in Fig. (4.8-c), in which the stress profile 

along the fracture zone is parabolic of degree n . The areas OBCDO and DEBCD to 

be equal.  
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This equation leads to the following solution. 
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This shows that the nonlinear zone size may be many times Irwin’s estimate for 

metal. The values of n  for concrete may be of the order of 7 and as large as 14. 

To sum up, one may state that the nonlinear zone ahead of the crack tip at the 

critical state for a very large structure may be written as 
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where   is dimensionless constant taking the value 1/  for Irwin’s estimate for 

metal. While, for quasi-brittle materials, this value is roughly between 2 and 5 for 
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concrete. Consequentially the fracture process zone is proportional to  . Hillerborg 

et al. (1976) called the right-hand side of the above equation the characteristic 

length chl . 

If the critical stress intensity factor for mode-I fracture IcK  is constant, the size of 

fracture process zone R  decreases with increasing the tensile strength of concrete 

as shown in Fig. (4.9). Equation (4.28) shows that the size of fracture process zone 

is inversely proportional to the square of tensile strength of concrete. Because the 

tensile strength ctf  is function of compressive strength of concrete '
cf , the value 

of R  is reduced as the compressive strength increases. 

 

Figure 4.9 Variation of size of fracture process zone for concrete strength 

Fig. (4.10) represents the size of fracture process zone for compressive strength of 

concrete. Because the critical stress intensity factor is function of elastic modulus of 

concrete cE  and fracture energy fG . 
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Figure 4.10 Size of fracture process zone: (a) for concrete strength and (b) for 
effective depth with test results 
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4.5 Size Dependent Critical Stress Intensity Factor 

The critical stress intensity factor or fracture toughness of cement paste, mortar and 

concrete has been measured by many investigators. 

Ohgishi et al. (1986) performed the experimental study to investigate the 

dependency on test parameter of critical stress intensity factor, IcK  of cement 

paste and mortar. According to test results of cement paste IcK  is not constant for 

the beam depth as shown in Fig. (4.11). As the depth of beam increases, IcK

increases. 

Higgins et al. (1976) investigated the fracture behavior of hardened cement paste. 

As a result of three point-bending tests critical stress intensity factor varies with 

beam depth. And Hillerborg (1984) reported that according to the Bologna tests as a 

function of the beam depth, IcK  increases as the depth of beam increases. 

 

Figure 4.11 Dependence of the apparent fracture toughness on the specimen 
size: (a) Concrete (Di Leo’s data, after Hillerborg 1984); (b) 
Mortar (after Ohgishi et al. 1986); (c) Hardened cement paste 
(after Higgins and Bailey 1976) 
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Critical stress intensity factors also depend on the crack length. The effect of crack 

length on a critical stress intensity factor is comparable to the effect of specimen 

dimensions. In both cases the condition of applicability of linear elastic fracture 

mechanics claims independence of fracture toughness of the respective variable. 

The experimental results on the effect of crack length are rather contradictory. 

The decrease of fracture toughness with increasing crack length is explained by 

Hillemeier and Hilsdorf. They conducted an analytical and experimental 

investigation on hardened cement paste. Their results show that the value of IcK  

decreases with increasing crack length. Shah and McGarry reported increasing IcK  

with increasing notch depth. However, since the failure in their experiments seem to 

be catastrophic. 

However many tests have ignored the effect of crack growth on IcK . Hardened 

cement paste is generally brittle, and it is difficult to restrict and control crack 

growth, particularly in flexural tests. Therefore, The value of IcK  would be 

expected to be independent of crack growth in cement paste. However, both 

notched beam and DCB tests show that fracture toughness decreases with crack 

growth. 

Based on these experimental results, Bazant (1998) has proposed that the apparent 

fracture toughness INuK  is defined as the value of INK  at peak load as follows. 

 0INu NuK Dk   (4.29) 

where Nu  represents the peak load, D  is size of specimen and 0  means the 

relative crack length calculated by /ca D . 

It should be noted that critical stress intensity factor is dependent on the size, depth 

of beam. 
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For mode-I fracture, the critical stress intensity factor IcK  is defined as 

( )Ic f IK EG  and also for mode-II facture, critical stress intensity factor can be 

expressed as ( )IIc f IIK EG , where ( )f IG  and ( )f IIG  represent the fracture 

energy for pure mode-I and mode-II fracture, respectively. Generally, it is said that 

these factors should be determined by experiment. 

For mixed modes, Bazant says in his book that the critical stress intensity factor for 

mode-II or mode-III fractures should be determined by using phenomenological 

approach like ellipsoidal failure locus or maximum principal stress criterion. 

Following equation shows the ellipsoidal failure locus. 

2 2

2 2
1 0I II

Ic IIc

K K

K K
    (4.30) 

where IcK  and IIcK  are material parameter to be determined by experiment. 

This pure phenomenological approach may prove practically useful, but gives no 

insight into the way fracture proceeds. Moreover, according to Eq. (4.30), critical 

stress intensity factor for mode-II fracture depends on the mode-I fracture. Thus, In 

this formula there is no evidence to explain the critical stress intensity factor itself. 

As mentioned above that the critical stress intensity factors can be obtained by using 

ultimate values at the crack tip. The main difference is that conventional critical 

stress intensity factor based on energy approaches is constant always regardless of 

geometry but the latter is not constant in accordance with size of beams. 

Thus, in this study, critical stress intensity factors by ultimate stress at crack tip 

were used as follows. 

Mode-I fracture : 0Ic uK a   (4.31) 

Mode-II fracture : 0IIc uK a   (4.32) 
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where u  and u  are ultimate stress causing the mode-I and mode-II fracture, 

respectively. 

 

4.6 Size Effect 

4.6.1 Size Effect of Linear Elastic Materials 

Consider the cracked plane loaded in mode-I fracture. Let 0a  be the initial crack 

length and 0  the initial relative crack length. From the Eq. (4.13), crack growth 

condition I IcK K  is fulfilled when N  reaches a maximum given by 

   ˆ
I N

w

P
K k d k

b d
     (4.33) 

where  k̂   and  k   are dimensionless functions, /ca d   is relative crack 

length, where ca  means the crack length and d represents the size of specimen. 

 
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K

d k



 for 0   (4.34) 

If  k   increase with  , then Nu  decreases. On the other hand, if  k   

decrease Nu  increases and reaches a maximum when  k   is minimum.  

In any case, since both 0  is constant for geometrically similar structures, it turns 

out that the nominal strength is always inversely proportional to the square root of 

the size as following equation. 

1
1Nu Nu

d

d
   (4.35) 
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where 1Nu  and 1d  are nominal strength and size of geometrically similar 

structure, respectively. 

Thus, it has been generally proved that geometrically similar structures following 

LEFM exhibit the inverse square root size effect. 

 

4.6.2 Size Effect of Concrete Structures 

Based on the load-deflection relationship two basic types, ductile and brittle, are 

distinguished as shown in Fig. (4.12)  

If load-deflection diagram does not have such a plateau, the failure is not plastic but 

brittle shown in Fig. (4.12-b) If there no significant geometric effects such as the 

P    effect in buckling, the absence of a plateau implies the existence of 

softening in the material due to fracture.  

 

Figure 4.12 Load deflection diagram of ductile and brittle structures (ACI 
Committee 446, 1992) 

Consider a punching shear failure in a slab as shown in Fig. (4.13). In part (a) is 
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cross section gradually plasticizes until all its points are at the yield limit. If the 

material exhibits softening the stress peak moves across the failure zone as shown in 

parts (c) and (d). For the cast of the structure is large the stress profile develops a 

steep stress drop behind the peak-stress point. This effect depends on the relative 

size of the process zone versus the size of the structure. 

 

Figure 4.13 Progressive nature of failure illustrated fro punching shear of a slab 
(ACI Committee 446, 1992) 

By general convention, the load capacity predicted by plastic limit analysis or an 

theory in which the material failure criterion is expressed in terms of stress or strain 

(or both) are said to exhibit no size effect as shown in Fig. (4.14). 

The size effect is defined through a comparison of geometrically similar structures 

of different sizes. It is conveniently characterized in terms of the nominal strength, 

Nu , representing the value of the nominal stress, N , at maximum (ultimate) load, 
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uP . The nominal stress represent any actual stress in the structure and may be 

defined simply as /N P bD  ; b  is the thickness of a two-dimensional structure, 

and D  is the characteristic dimension of the structure, which may be chosen as any 

dimension, e.g., the depth of the beam. 

According to the classical failure theories, such as the elastic analysis with 

allowable stress, plastic limit analysis, or any other theory that uses some type of a 

strength limit or failure surface in terms of stress or strain Nu  is constant, i.e., 

independent of structural size. 

 

Figure 4.14 Fracture mechanics size effect for geometrically similar structures 
of different sizes (ACI Committee 446, 1992) 
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4.7 Mixed-Mode Fracture of Concrete Beams 

4.7.1 Introduction 

In reality, mixed mode fracture combined by mode-I fracture (opening) and mode-II 

fracture (shearing) is observed in reinforced concrete structures. Many researchers 

have studied the mixed mode fracture concrete. Ingraffea and Gerstle (1985) 

reported that the finial failure load is very sensitive to the material constants, i.e., 

tensile strength, fracture energy and shape of the stress-separation curve) used in the 

fictitious crack model proposed by Hillerborg et al. (1976). It has been reported that 

it is very difficult to accurately determine these material properties from laboratory 

tests. Therefore, a trial and error method or numerical analysis has to be used to 

determine the appropriate material properties for the particular experimental results. 

Therefore, it is necessary to evaluate the mixed mode fracture more accurately 

based on theoretical background. In this section, mixed-mode fracture will be 

discussed for proposed newly failure mechanism of reinforced concrete slender 

beams. 

Erdogan and Shi (1963) proposed maximum principal stress criterion for in-plane 

mixed mode crack growth will happen along the direction for which the initial 

normal stress across the possible crack path is tensile, principal and maximum. 

Consider a crack in a mixed-mode stress field governed by the values of the 

opening-mode IK  and sliding-mode IIK  stress intensity factors, the singular 

polar stress components (Fig. 4.15) near the crack tip are expressed by 

3 21
cos 3 cos sin

2 2 22
I IIK K

r


  


    
 (4.36) 
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 (4.37) 

 

Figure 4.15 Stress notation in region of crack tip: (a) Cartesian stress; (b) polar 
stresses 

The assumptions made in the criterion for crack extension in brittle materials may 

be stated as 

 

(a) The crack extension starts from its tip along the radial direction c   on 

which   becomes the maximum. 

(b) Fracture stats when that maximum of   reaches a critical stress c  equal to 

the fracture stress in uniaxial tension. 

(c) The magnitude 2 2
r    of the traction vector is the maximum with respect 

to  . 

 

Observe that the circumferential stress   in the direction of crack extension is a 

principal stress, and the shear stress r  for that direction vanishes. The crack 

extension angle c  is calculated by 
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2 2 2cos sin cos cos 2sin 0
2 2 2 2 2I IIK K
        

 
 (4.38) 

Dividing the above equation by  3cos / 2 one gets a second degree equation in 

 tan / 2  which gives the cracking directions as a function of the ratio /I IIK K  
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                
 (4.39) 

For opening-mode loading ( 0, 0I IIK K  ), Equations (4.38) and (4.39) yield 

0c  , I IcK K , while for sliding-mode loading they give 

1 1 3
cos 70.6 ,

3 4c II IIc IcK K K        (4.40) 

Eliminating c  in equation and gives the fracture locus in I IIK K  coordinates 

shown in Fig. (4.16). 

 

 

Figure 4.16 Failure loci for different mixed mode fracture criteria 
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4.7.2 Size Dependent Effective Stress Intensity Factors 

Stress intensity factor is defined as function of stress at the crack tip and crack 

length as mentioned in Section 4.2. If the crack length is identical, the stress 

intensity factor for mode-I fracture can be expressed as normal stress at the crack tip 

and it can be given as shear stress in case of mode-II fracture. Both cases are 

assumed that only normal stress or shear stress exists at the crack tip for pure 

bending or pure shear. 

However, both the normal and shear stress exist at the tip of diagonal crack. In this 

case, mixed-mode fracture occurs due to those combined stresses. 

Consider the reinforced concrete beam with rectangular section as shown in Fig. 

(4.17). It is assumed that failure mechanisms are divided into four regions with 

crack growth, that is, pure bending zone, flexural tension zone, pure shear zone and 

compression zone. 

When a RC beam is subjected to bending moment the pure flexural cracks occur in 

the pure bending zone perpendicularly up to reinforcement steel at distance ax . 

And then, the inclined crack is developed from reinforcement steel indicated point 

A to neutral axis denoted point B with the angle 1  in the flexural tension zone. 

The second branch which is another inclined crack with the 2  occurs toward the 

load point crossing the compression zone. 

Based on the crack growth, the failure mechanism of concrete can be divided into 

two fracture mode. If the failure is controlled by tension, in other words, a principal 

tensile stress reaches a tensile stress, diagonal tension failure occurs. On the other 

hand, if the failure is controlled by friction, that is, the stress intensity factor is equal 

to the critical stress intensity factor for mode-II fracture, sliding failure takes place. 

Since stress intensity factors can be used to characterized structures, that is, stress 
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intensity factors change with crack lengths, shear strength can be expressed by 

stress intensity factor based on crack growth. 

 

 

Figure 4.17 Stress states for height of reinforced concrete beams: (a) reinforced 
concrete beams subjected to concentrated load; (b), (c), (d), (e) 
stress states at concrete cover zone, flexural tension zone, pure 
shear zone and compression zone, respectively. 

(1) Effective stress intensity factor in flexural tension zone 

 

After propagation of flexural cracks in the concrete cover zone, the inclined crack 

occurs due to combined stresses with normal stress and shear stress. This crack 

propagates from the reinforcement steel to the neutral axis. Because the variation of 
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principal stresses depends on the depth of the beam, thus stress intensity factor will 

vary throughout the beam depth. 

In flexural tension zone, the crack tip is subjected to combined stresses, horizontal 

normal stress and shear stress, both mode-I (opening) and mode-II (sliding) 

components exist in this zone. 

The principal tensile stress and shear stress with respect to 1 1x y  axis are 

1 0 0cos 2 sin 2
2 2

x x
x xy

 
       (4.41) 

1 1 0 0sin 2 cos 2
2

x
x y xy


       (4.42) 

where 0  represent the angle of inclined crack in pure bending zone as illustrated 

in Fig. (4.17). 

Thus, the stress intensity factors for mode-I and mode-II fracture can be expressed 

in terms of principal stress and crack length as follows. 

1 1 1,I x c II x y cK a K a      (4.43) 

where 1x  means the principal tensile stress, 1 1x y  represents the shear stress 

acting on the cracked plane, and ca  is the length of the newly inclined crack 

developed from initial crack tip which assumes the flexural crack in pure bending 

zone. 

Jenq and Shah (1988) have proposed the effective stress intensity factor for mixed 

mode fracture of concrete with combining IK  and IIK  as follows. 

2 2
eff I IIK K K   (4.44) 
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As shown in Fig. (4.17), concrete fracture is governed by mode-I facture as same as 

separation failure in modified Mohr-Coulomb criterion in flexural tension region 

(Fig. 4.17–c). Thus, the effective stress intensity factor for mixed mode fracture in 

flexural tension zone is obtained as follows. 

 
2 2

2
0 0 0 0 0 0cos cos 2 sin 2cos 1 sin cosxy xy

eff x eff
x x

K a
 

       
 

    
        

     
(4.45) 

Because the initial crack angle 0  can be considered as zero, the effective stress 

intensity factor in flexural tension zone is obtained as follows.. 

2

1 xy
eff x eff

x

K a


 


 
   

 
 (4.46) 

As you can see Eq. (4.46), effective stress intensity factor in flexural tension zone 

depends on the ratio of shear stress to normal stress and the angle of initial crack. 

In this zone inclined crack will propagate when a principal tensile stress reaches the 

maximum value. Therefore, the effective stress intensity factor in flexural tension 

zone should be equal to IcK . 

 

(2) Effective stress intensity factor in pure shear zone 

 

The stress intensity factors for mode-I and mode-II fracture in pure shear zone are 

given by 

1 1 1,I x c II x y cK a K a      (4.47) 
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To determine the stress intensity factor, it is assumed that the only shear stress acts 

on the plane. Thus, the principal tensile stress and shear stress acting on cracked 

plane can be expressed as follows. 

1 1sin2x xy    (4.48) 

1 1 1cos2x y xy    (4.49) 

where 1  means the angle of inclined crack which is developed from the flexural 

crack tip as shown in Fig. (4.17). Substituting Eq.(4.48) and Eq. (4.49) into Eq.(4.47) 

yields 

1sin2I xy cK a    (4.50) 

1cos2II xy cK a    (4.51) 

Since an effective stress intensity factor can be expressed by Eq.(4.44), inserting Eq. 

(4.50) and Eq.(4.51) into Eq. (4.44) and organizing yields 

eff xy effK a   (4.52) 

 

(3) Effective stress intensity factor in compression zone 

 

In the compression region of reinforced concrete beams, compressive stress and 

shear stress act on the plane simultaneously as shown in Fig. (4.17-b, c).  

The stress intensity factor for mode-I and mode-II fracture is obtained as follows. 

1 1 1,I x c II x y cK a K a      (4.53) 
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Here, the stress intensity factor for mode-I fracture appears negative value. This 

means that closing failure mode occurs in this zone due to compressive stress. 

From Fig. (4.17-c), principal tensile stress and shear stress is 

2
1 2 2 2cos 2 sin cosx x xy         (4.54) 

 2
1 1 2 2 2sin cos 2cos 1x y x xy         (4.55) 

where 2  means the angle of inclined crack in pure shear zone as illustrated in Fig. 

(4.17). 

Inserting Eq.(4.54) and Eq.(4.55) into Eq.(4.53) yields 

 2 2 2cos 2sin cosI xy cK a n       (4.56) 

 2
2 2 22cos 1 sin cosII xy cK a n          (4.57) 

where n  is the ratio of compressive stress and shear stress  /x xy  . 

An effective stress intensity factor for mixed mode in compression zone is obtained 

as follows. 

2 2
2 2 2cos 2 sin cos 1eff xy effK a n n        (4.58) 

Since it is assumed that failure mechanism of compression zone is governing by 

sliding failure (mode-II fracture), the effective stress intensity factor in compression 

zone should be equal to critical stress intensity factor for mode-II fracture. 
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4.8 Summary 

In this chapter, linear elastic fracture mechanics based on linear elastic stress field 

in cracked bodies, with emphasis on the problem of a single crack in an infinite 

plate was studied. The principal findings are summarized as follows. 

1) Concrete Fracture mode is classified into the mode-I (opening), mode-II 

(shearing), and mode-III (out-of-plane shearing). 

2) Stress intensity factors for mode-I and mode-II fracture in linear elastic 

fracture mechanics represent the stress state at the crack tip. These factors 

are consisted of stress at the crack tip and length of crack. And stress 

intensity factor for mixed mode fracture contains both of these factors. 

3) Critical stress intensity factors represent the material properties and are 

related to the fracture energy fG . Crack will propagates when this stress 

intensity factors reach a certain critical values IcK  or IIcK , called fracture 

toughness. 

4) Geometrically similar structures following linear elastic fracture mechanics 

exhibit the size effect law. 

5) It is assumed that concrete is the quasi-brittle material which shows the 

post peak behavior due to uniaxial tension and compression localization. 

6) To resolve the singularity at the crack tip, the size of fracture process zone 

is needed. 

7) Stress intensity factors IK , IIK  for mode-I and mode-II fracture are 

determined as function of ultimate stress at the crack tip and are dependent 

on the size of specimen. 
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5. Flexural Behavior of Reinforced Concrete Beams 
without Web Reinforcement 

 

5.1 Introduction 

Generally, reinforced concrete slender beams without web reinforcement with 

/ 2.5a d   subjected to concentrated load appear the flexural behavior.  

Flexural capacity is assessed on the basis of the plane sections theory. The theory 

describes analytically the relationship between flexural capacity and geometric 

characteristics by considering the equilibrium conditions at critical cross section. 

Determinations of this chapter are depth of neutral axis xc , above the critical 

diagonal crack, distance Ax  where the location of critical diagonal crack from the 

support,  diagonal crack angle at compression zone 2 , resultant compressive 

forces fC  and moment arm xjd . 

Four basic assumptions are made when deriving a general theory for the flexural 

strength of reinforced concrete sections. 

(1) Plane Sections before bending remain plane after bending. This means that the 

unit strains in a beam above and below the neutral axis are proportional to the 

distance from the axis. 

(2) The stress-strain curve is known. The bending stress   at any point depends 

on the strain at that point in a manner given by the stress-strain diagram of the 

material 

(3) The stress-strain curve for concrete, defining the magnitude and distribution of 

compressive stress, is known (Fig. (5.1)) 
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(4) Tension stiffening effect of reinforcement steel is neglected as shown in Fig. 

(5.1 -c) 

 

 

Figure 5.1  Stress-strain relationship of materials: (a) concrete in compression; 
(b) concrete in tension; and (c) reinforcement steel in tension 

5.2 Moment-Curvature Relationship 

When the load is gradually increased from zero to the magnitude that will cause the 

beam to fail, several different stages of behavior can be distinguished as shown in 

Figs. (5.2) and (5.3). 

 

Figure 5.2 Moment-curvature relationship 
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At low loads, as long as the maximum tensile stress in the concrete is smaller than 

the modulus of rupture rf , the entire concrete is effective in resisting stress, in 

compression on one side and in tension on the other side of the neutral axis. The 

strains at this stage are very small, and the stress distribution was essentially linear 

in this stage. The moment and curvature are shown by point A in Fig. (5.2). The 

moment-curvature diagram for this stage is linear. At this stage, the tensile strain of 

concrete /ct ct cf E   is and the tensile strain of reinforcement steel is smaller than 

the yield strain. 

When the applied load is further increased, flexural tensile crack occurs and 

propagates upward to the level of the neutral plane. After the initial flexural 

cracking, the tensile force in the concrete was transferred to the longitudinal 

reinforcement steel. As a result, less of the concrete section was effective in 

resisting moments. At stage C, it is assumed that longitudinal reinforcement steel 

reaches yield strain 0.002sy  . The compressive stress is still closed to being 

linear. 

Eventually, the ultimate capacity of the beam is reached. Failure can be caused in 

one of two ways. When relatively moderate amounts of reinforcement are employed, 

at some value of the load the steel will reach its yield point. Diagonal tension failure 

may occur after yielding of the reinforcement. 

If large amounts of reinforcement or normal amounts of steel of very high strength 

are employed, the compressive strain of the concrete may be reached the ultimate 

strain cu . If the concrete strain in the compression zone increases to the ultimate 

strain that causes crushing of the concrete before not yielding of the reinforcement, 

the compression failure occurs in the compression zone. Exact criteria for this 

compression occurrence are not yet known, but it has been observed that rectangular 

beams failure in compression when the concrete strains reach values of about 0.003 



71 

to 0.004. ACI Section 10.2.3 specifies a limiting compressive strain, cu , equal to 

0.003. In Europe, the CEB Model Codes uses a limiting strain 0.0035cu   for 

beams.  

 

Figure 5.3  Stress and strain distribution: (a) section; (b) crack propagation; (c) 
strain distribution and (d) stress distiribution 

sA

sA

b

d
h

sA

A

B

C

D

c c

ca

'
cf

cr

(b) (c) (d)(a)



72 

5.3 Depth of neutral axis 

When the tensile stress ctf  exceeds the modulus of rupture, cracks form. If the 

steel stress has not reached the yield point, both materials continue to behave 

elastically as shown in Fig. (5.4). The distance to the neutral axis, in this stage, is 

conventionally expressed as a fraction kd  of the effective depth d . To determine 

the depth of the neutral axis, one can proceed from basic principles by accounting 

directly for the forces that act on the cross section. the concrete stress is distributed 

linearly. Thus, the total compression force C  and the total tension force T  are 

,
2

c
c s s

f
C bkd T A f   (5.1) 

where cf  means concrete strength, b  is the width, sA  and sf  are the area and 

strength of longitudinal reinforcement, respectively. 

Equilibrium requires that the couple constituted by the two forces C  and T  be 

equal to the external bending moment . Hence, taking moments about C  gives 

s sM Tjd A f jd   (5.2) 

Where jd  is the internal lever arm between C  and T  and is given as follows. 

3

kd
jd d   (5.3) 

Using the triangles in Fig. (5.4) and substituting /sA bd   and /s cn E E  give a 

quadratic equation solution for /c d  as follows 

 2
2

c
n n n

d
      (5.4) 
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Figure 5.4 Depth of neutral axis 

In limit theory of plasticity, fully rectangular stress block for whole compression 

zone is used as shown in Fig. (5.5). Consider the case of a beam with a rectangular 

cross section having height h  and width b  subjected to pure bending. The 

reinforcement is a tensile reinforcement with area sA . The effective depth is d . If 

the strength of tensile reinforcement reaches the yield strength yf , the stress 

distribution at failure will be as shown in Fig. (5.5). From the equilibrium, 

s y ceA f f bc  (5.5) 

where cef  is an effective strength of concrete. 

Thus, the depth of neutral axis is obtained as follows. 

y

ce

fc

d f
  (5.6) 

where   is the ratio of reinforcement.  

The /c d  can be expressed as follows. 

c

d
  (5.7) 
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where   is the degree of reinforcement and is obtained by 

s y y

ce ce

A f f

bdf f
    (5.8) 

The yield moment in pure bending pM  can then be determined as follows. 

  21
0.5 1

2p s y ceM A f d c bd f      
 

 (5.9) 

 

Figure 5.5 Normal stress distribution at the failure moment 

The solution described above is valid only when c d , that is 1  . If 1  , the 

stress distribution at failure will be as shown in Fig. (5.5-c). In this case c d  and 

reinforcement will not yield. The failure moment will be 

21

2p ceM bd f  (5.10) 

Beams with 1   are called normally reinforced beams and beams with 1   are 

called overreinforced beams. Fig. (5.6) shows the yield moment versus reinforced 

degree in theory of plasticity. 
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Figure 5.6 Yield moment versus reinforcement degree 

To obtain the more realistic simulation of the stress-strain relationship of concrete, 

compressive normal stress was assumed to be parabolically distributed in the 

compression zone because no explicit stress-strain curve for concrete under 

compression based on fracture mechanics was available. (See Fig. (5.7)) 
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 (5.11) 

or  
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 (5.12) 

According to ACI 318-08, the modulus of elasticity is defined as the slope of the 

line drawn from a stress of zero to a compressive stress of '0.45 cf . The ACI 318-08 

code provision is provided the modulus of elasticity for normal-weight concrete and 

high strength concrete as follows. 

For normal-weight concrete, ACI 318-08 gives the modulus of elasticity as 
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'4700 [MPa]c cE f  (5.13) 

ACI Committee 363 proposed the following equation for high-strength concrete 

'3320 6895 [MPa]c cE f   (5.14) 

 

Figure 5.7 Stress-strain relationship 

Since resultant compressive forces cC  and tensile forces sT are acting on the cross 

section, the horizontal equilibrium of the forces as shown in Fig. (5.8) is formulated 

as follows. Resultant compressive forces are obtained by integrating the stress 

distribution along the compression zone. 

 
0

c

s s cbdE b z dz     (5.15) 

where   /s c d c c    

If the strain is distributed linearly, steel strain can be expressed concrete strain by 

using similar triangles and replacing, /s cE E  and /sA bd  with n  and  , 

respectively. A following equation for /c d  is function of n ,  , '
cf , and c . 
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   2 '

'

8

3
4

3

s c s c c s c

c

E E f E
c

d f

       
  (5.16) 

The depth compression zone xc  and moment lever arm xjd  of cracked section are 

defined as function of c . 

 

Figure 5.8 Stress and strain distribution of RC beams with rectangular section 

To compare the value of /c d , an following example was used. The example which 

is a reinforced concrete beams with rectangular cross section has values of 

' 40MPacf  , =0.02 , =6.7n , 400MPayf  , and 200GPasE  . Fig. (5.9) 

shows the variation of the /c d for concrete strain. 

It is seen that the value of /c d  obtained from the Eq. (5.16) varies with increasing 

the normal strain c . However the depth of neutral axis obtained from Eq. (5.4) and 

Eq. (5.7) does not depend on the deformation.  
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Figure 5.9 Variation of c/d for concrete strain 
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5.4 Moment Capacity 

Fig. (5.10) shows the variation of normal stress and strain according to crack 

propagation. The Ax  and Bx  represent the position which occur the initial flexural 

crack and diagonal crack at flexural tension zone, respectively.  The ca  and cb  

are the concrete strain at loading point and distance Bx , respectively. It is assumed 

that a critical diagonal crack propagates with angle 1  after initial crack at distance 

Ax . 

In case of simple beam subjected to concentrated load, shear strength is identical at 

any point within the whole shear span. Thus the moment at loading point can be 

expressed as follows. 

   '

0

2

3

ac

a a c a aM z dz b jd f b c jd       (5.17) 

where  
 

 
0

0

3

8

a

a

c

a a ac

z z dz
jd d c d c

z dz




    


 

According to experimental study performed by MacGregor et al. (1960), inclined 

crack will propagate rapidly up to the neutral axis due to the additional applied load 

in case of simple beam subjected to concentrated load. From the previous researches 

(Park and Choi, 2006), it can be assumed that additional applied load '0.05 cf bd

(MPa) is required to make the inclined crack reach the neutral axis.  

From the moment at distance Bx  from the support,   0

Bc

B BM z dz b jd   the 

distance Ax  can be obtained as follows. The Bc  and Bjd  mean the depth of 

neutral axis and moment arm at distance Bx .  
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Figure 5.10 Variation of normal stress and strain according to crack 
propagation 
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'0.05 aA
c

A

MM
f bd

x a
   (5.18) 

where 
2

6A cr r

bh
M M f   and rf  is modulus of rupture '0.62r cf f  

As a result, Ax  can be obtained as follows.
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 (5.19) 

As we assumed that the shear strength or stress is identical at any point within the 

shear span x  can be defined. In this study, to calculate the normal strain the ratio 

of shear stress to normal stress was used as follows. 
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 (5.20) 

where x  and xy  are normal and shear stress at crack tip, respectively. And x  

represents the distance from the support for horizontal axis and y  means the 

vertical distance with respect to neutral axis. Thus, the ratios of shear stress to 

normal stress at section a-a and at loading point is obtained. 
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 (5.21) 

where B  and B  are normal stress and shear stress at section a-a and a  and a  

present the normal stress and shear stress at the loading point. 

Because the shear stresses B  and a  is identical, the normal strain at section a-a 

is defined as follows. 
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B
cB ca

x

a
   (5.22) 

where cB  means the concrete strain at section a-a. 

As a result, the normal strain at any point within the shear span varies linearly from 

the any point to the loading point. 

The moment at distance Bx  from the support can be calculated by assuming that 

the strain and stress of extreme fiber vary linearly 

1

2 3
x

x c cx x

c
M E bc d    

 
 (5.23) 

where ca  is the strain of extreme fiber and xc  is the depth of neutral axis at 

distance x . 

 

5.5 Summary 

In this chapter, flexural behavior of reinforced concrete slender beams based on 

concrete strain was investigated. The principal findings can be summarized as 

follows. 

 

1) The depth of neutral axis was obtained by assuming that the distribution of 

concrete and which is a function of the concrete strain. Thus, the proposed 

depth of neutral axis increases with increasing the concrete strain. 

2) Stress and strain of the cracked concrete at the cracked section could be 

determined by using the fact that shear strength is identical along the shear 

span. 

3) Moment carrying capacity at loading point was determined as function of 

concrete strain.  
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6. Critical Crack Path Dependent Shear Strength 

 

6.1 Introduction 

Generally shear strength of reinforced concrete members in flexure depends on the 

failure mode of concrete, i.e. diagonal tension failure, diagonal compression failure 

and sliding failure. 

Most previous theoretical and experimental studies have concentrated on beams 

with and without web reinforcement. These theories have been assumed that if 

principal tensile stress in the diagonal struts reaches the tensile strength of concrete 

diagonal tension failure occurs (Park and Choi, 2006). In the strut-and-tie model 

based on plasticity theorem (Hong and Ha, 2004, 2012), principal compressive 

stress in the diagonal struts reaches the compressive strength of concrete diagonal 

compression failure occurs. Based on these studies, many useful and reasonable 

results have been obtained. Especially, to obtain the precise and rational analysis 

results, Bazant and Kim (1984) and Zsutty (1971) established the several required 

empirical constants by using the statistical method and regression analysis, 

respectively. 

However, shear strength obtained by equilibrium condition and failure criteria 

cannot explain size effect. And it has been known that statistical or regression 

method cannot present the evidence or theoretical basis strictly. 

Therefore, it is necessary to evaluate the formula of shear strength of reinforced 

concrete structures which is capable of explaining the size effect theoretically. 

In this chapter, based on the critical crack path and crack propagation, shear 

strength of reinforced concrete beams without web reinforcement considering the 

size effect is proposed. 
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6.2 Crack Path Dependent Failure Mechanism 

6.2.1 Characteristics of Critical Diagonal Crack 

In reinforced concrete beams without web reinforcement under 4-point loading, the 

critical crack typically involves two branches. Normally these two branches are 

formed at different time instants and are due to different causes. 

Fig. (6.1) shows the final crack pattern of reinforced concrete beams without web 

reinforcement under 4-point loading. The first branch is an inclined shear crack 

which develops after the onset of nearby flexural cracking. The first branch is 

usually formed at the end of the flexural cracks. Generally, the height of the first 

branch is similar to that of the flexural cracks. The failure is caused by the 

formation of the second branch of the critical crack, which initiates from the tip of 

the first branch and propagates, abruptly or gradually, toward the loading point 

crossing the compression zone. This mode of failure is conventionally called 

diagonal tension failure, and it occurs only in slender beams with a shear span to 

depth ratio a/d > 2.5. 

The height of first inclined cracks is assumed same as the height of flexural cracks 

as shown in Fig. (6.2). To obtain the height of first inclined cracks equilibrium 

condition is considered as follows. 

c

s

c

d c







 (6.1) 

where c  is the depth of compression zone, d  is effective depth, c  is the 

concrete strain at extreme fiber, and s  is the strain of reinforcement steel. Zararis 

et al. (2001) have proposed that inclined cracks propagate at the end of the bottom 

of compression zone. This means that tensile strength of concrete is neglected to 
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obtain flexural moment capacity simply. But in this study tensile strength concrete 

is considered at the flexural tensile zone so it is assumed that inclined cracks 

propagate from the bottom of the beam toward the concrete tension zone as 

illustrated in Fig. (6.1). 

 

Figure 6.1  Final pattern of cracking of test beams: (a) without web 
reinforcement; (b) with web reinforcement [Karayiannis et al. 
(1999) and Zararis (2003)] 

 

Figure 6.2 Height of single and diagonal cracks 
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6.2.2 Failure Mechanisms 

Generally shear failure may be classified into three types, diagonal tension failure, 

diagonal compression failure and true shear failure. The diagonal crack, once 

formed, spreads toward and partially into the compression zone but stop short of 

penetrating to the compression face. The failure load may be significantly higher 

than that at which the diagonal crack first formed. Fig. (6.3) shows the critical crack 

path dependent failure mechanism. If the crack propagates from B to C diagonal 

tension failure may occur. On the other hand, the critical crack grows from B to C’ 

sliding failure may take place due to the resultant compressive strength, fC . 

 

Figure 6.3 Critical crack path dependent failure mechanism 

Diagonal tension failure occurs when a/d>2.5. Fig. (6.4) illustrates the diagonal 

tension failure. The diagonal crack starts from the last flexural crack and propagates 

to the neural axis with further increase in load. Diagonal cracks must exist before a 

shear failure can occur. The corresponding diagonal cracking shear can be 

calculated as the shear necessary to cause a principal tensile stress equal to the 

tensile strength of the concrete. In most reinforced concrete beams, however, 

flexural cracks occur first and extend more or less vertically into the beam. These 
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alter the state of stress in the beam, causing a stress concentration near the head of 

the crack. 

 

Figure 6.4 Diagonal tension failure 

Diagonal compression failure is mainly caused by the crushing of concrete in the 

compression zone at the top of the critical diagonal crack. Other types of failure 

include the crushing of concrete in the web, crushing of concrete underneath the 

supports. Experiments have shown that in simply supported deep beams with a 

shear span-to-depth ratio a/d between 1.0 and 2.5 approximately.  

Sliding failure occurs due to shear friction caused by the resultant compressive 

strength as shown in Fig. (6.5).  

 

Figure 6.5 Sliding failure 

P

P

a

d

A

B

C

P

P

a

d

A

B

C’



88 

True shear failure occurs when shear span is too short a/d < 1. In this case shear is 

carried by concrete strut and the final failure is splitting or it may fail in 

compression at the support. 

 

6.3 Diagonal Cracking Strength 

6.3.1 General 

To calculate the shear strength of reinforced concrete beams without web 

reinforcement, it is very important to know the stress states at the crack tip. In 

LEFM, for these purposes, a stress intensity factor has been used to estimate the 

normal stress or shear stress at the tip of diagonal crack.  

ACI 318-08 estimate the shear contribution of concrete in reinforced concrete 

beams when the critical diagonal crack initiates. This code provision assumes that 

the beams cannot carry an additional load after that. 

In this section, diagonal cracking strength is proposed by using the linear elastic 

fracture mechanics considering the crack propagation. 

 

6.3.2 Effective Stress Intensity Factor 

Jenq and Shah (1989) assumed that the stress intensity factor can be approximated 

by the stress intensity factor of a pure bend beam with a symmetric edge notch 

subjected to bending moment. It is noted that the Jenq and Shah model is based on a 

single crack located at center of the beam length. As shown in Fig. (6.6), stress 

states are very different between a central crack and a inclined crack tip. Only the 

normal stress acts on the single central crack tip. On the other hand, both normal 

stress and shear stress act on the diagonal crack tip simultaneously. 
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Since stress intensity factor is defined as the stress state at the crack although the 

Jenq and Shah model can be predict diagonal shear failure of concrete beams their 

model seems to underestimate the diagonal shear strength of concrete beams. 

 

Figure 6.6 Stress states at the center and inclined cracks 

After propagation of flexural cracks in the concrete cover zone the inclined crack 

occurs due to combined stresses with horizontal normal stress and shear stress. This 

crack propagates from the reinforcement steel to the end of the concrete tensile zone. 

Because the variation of principal stresses depends on the depth of the beam, thus 

stress intensity factor will vary throughout the beam depth. 

In flexural tension zone, the crack tip is subjected to combined stresses, horizontal 

normal stress and shear stress, both mode-I (opening) and mode-II (sliding) 

components exist in this zone. 

Thus, the stress intensity factors for mode-I and mode-II fracture can be expressed 

in terms of principal stress and crack length as follows. 

1 1 1,I x c II x y cK a K a      (6.2) 

wb

d

a

ca

A B

x x
xy

x x

xy

Point A Point B



90 

where 1x  means the principal tensile stress, 1 1x y  represents the shear stress 

acting on the cracked plane, and ca  is the length of the newly inclined crack 

developed from initial crack tip which assumes the flexural crack in pure bending 

zone. 

Combining IK  and IIK  and organizing yields 

2

1 x
eff xy eff

xy

K a
 

 

    
 

 (6.3) 

where effa  means the effective crack length as shown in Fig. (6.7). Thus, effective 

crack length ceffa  can be expressed as 

effa h c   (6.4) 

where c  means the depth of neutral axis represented by as follows. 

 2
2

c
n n n

d
      ( 6.5) 

It is noted that the effective crack length is defined as the vertical component of 

diagonal crack in this study. 

As you can see Eq. (6.3), the effective stress intensity factor in flexural tension zone 

depends on the ratio of shear stress to normal stress and the angle of initial crack. 

In this zone a diagonal crack will propagate when a principal tensile stress reaches 

the maximum value. Therefore, the effective stress intensity factor in flexural 

tension zone should be equal to IcK  as follows. 

eff IcK K  (6.6) 
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Figure 6.7  Mode-I fracture in flexural tension zone: (a) mode-I fracture; (b) 
inclined crack and (c) stress states and Mohr’s circle 

6.3.3 Critical Stress Intensity Factor 

Based on the linear elastic fracture mechanics, it is assumed that flexural tension 

zone fails when the principal tensile stress reaches the ultimate state. Thus, the 

failure mechanism of this zone assumes to be governed by mode-I fracture 

(opening). 

The critical stress intensity factor is obtained by 

0Ic uK a   (6.7) 
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where u  is the ultimate principal tensile stress and 0a  represents initial crack 

length. In this study, ultimate tensile stress is equal to tensile strength of concrete 

and initial crack length is same as the concrete cover as shown in Fig.(6.7). Thus, 

u ctf   (6.8) 

0 ca c  (6.9) 

where ctf  is tensile stress of concrete and cc  means the length of concrete cover. 

It should be noted that critical stress intensity factor is expressed in terms of tensile 

strength of concrete and initial crack length. Generally a critical stress intensity 

factor have been expressed in terms of elastic modulus of concrete ( cE ) and fracture 

energy ( fG ) by energy approach. However, in this study, critical stress intensity 

factor is obtained by applying the maximum stress at the crack tip considering 

failure condition of concrete and initial crack length directly. 

The critical intensity factor IcK  in the LEFM is defined as fEG . Therefore, to 

find the critical intensity factor fracture energy fG  should be known. Bazant and 

Oh (1983) have proposed that energy release rate fG  is calculated by following 

empirical formula by analyzing numerous test data. 

  22.72 3.10 a
f ct ct

c

d
G f f

E
   [N/mm] (6.10) 

where ad  is the maximum aggregate size. Here, an energy release rate fG  is 

expressed in terms of the tensile strength of concrete, elastic modulus and maximum 

aggregate size in crack band theory. 
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Fig. (6.8) shows the comparisons of the proposed critical stress intensity factor with 

the formula proposed by Bazant and Oh (1983). 

Proposed critical stress intensity factor shows the different values for effective 

depth. On the other hand, Eq. (6.10) shows almost constant values regardless of size 

of specimens. 

 

Figure 6.8 Comparison of prediction with critical stress intensity factor 
proposed by Bazant and Oh (1983) 

Fig (6.9) and Table (6-1) show the proposed critical stress intensity factor calculated 

from Eq. (6.7) with the selected test results (Chana, 1981) . As the effective depth 

increases proposed critical stress intensity factor for mode-I fracture increases. This 

means that the proposed critical stress intensity factor depends on the size. 
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Figure 6.9 Critical stress intensity factor for mode-I fracture 

Table 6-1 Experimental results by Chana (1981) 

Beam 
'

cf  

[MPa] 

wb  

[mm] 

d  

[mm] 

h  

[mm]

cc  

[mm]
/a d

  

[%] 

tV  

[kN]

tv  

[MPa] 

IcK  

[N/mm3/2] 

2.1a 39.5 203 356 406 50 3.00 1.73 96.0 0.21 34.9 

2.1b 39.5 203 356 406 50 3.00 1.73 97.1 0.21 34.9 

2.2a 33.3 203 356 406 50 3.00 1.73 87.4 0.21 32.0 

2.2b 33.3 203 356 406 50 3.00 1.73 94.4 0.23 23.1 

2.3a 36.2 203 356 406 50 3.00 1.73 99.4 0.23 24.1 

2.3b 36.2 203 356 406 50 3.00 1.73 96.4 0.22 24.1 

3.1a 27.6 100 177 202 25 3.00 1.77 23.8 0.26 21.0 

3.1b 27.6 100 177 202 25 3.00 1.77 23.9 0.26 21.0 

3.2a 29.4 100 177 202 25 3.00 1.77 24.5 0.26 21.7 

3.2b 29.4 100 177 202 25 3.00 1.77 25.5 0.27 25.4 

3.3a 32.1 100 177 202 25 3.00 1.77 26.5 0.26 26.6 

3.3b 32.1 100 177 202 25 3.00 1.77 23.2 0.23 18.8 

D1 25.3 100 177 202 25 3.00 1.77 22.1 0.25 16.7 

D2 25.9 100 177 202 25 3.00 1.77 23.4 0.26 16.9 

4.1a 24.7 60 106 121 15 3.00 1.78 9.8 0.31 11.8 

4.1b 24.7 60 106 121 15 3.00 1.78 8.7 0.28 11.8 
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4.2a 24.7 60 106 121 15 3.00 1.78 9.0 0.28 11.8 

4.2b 24.7 60 106 121 15 3.00 1.78 9.7 0.31 11.8 

4.3a 41.7 60 106 121 15 3.00 1.78 11.7 0.28 15.4 

4.3b 41.7 60 106 121 15 3.00 1.78 12.3 0.30 15.4 

4.4a 41.7 60 106 121 15 3.00 1.78 9.6 0.23 12.0 

4.4b 41.7 60 106 121 15 3.00 1.78 10.5 0.26 12.0 

5.1a 32.2 200 170 200 30 3.00 1.84 47.8 0.25 10.5 

5.1b 32.2 200 170 200 30 3.00 1.84 47.8 0.25 10.5 

5.2a 31.8 200 170 200 30 3.00 1.84 55.0 0.29 15.8 

5.2b 31.8 200 170 200 30 3.00 1.84 56.0 0.29 17.3 

 

Diagonal cracking angle can be calculated by using the Mohr’s circle as shown in 

Fig. (6.7-c). Therefore, the orientation of section of principal stress with respect to 

the vertical face of the member, denoted as 1  is given by  

 1

2
tan 2 xy

x





  (6.11) 

Because the diagonal crack in flexural tension zone occurs when the principal 

tensile stress reaches the tensile strength of concrete, a following equation must be 

satisfied. 

2
2

1 2 2
x x

xy ctf
 

      
 

 (6.12) 

By using Eq. (6.12), the ratio of shear stress to normal stress can be expressed as 

follows. 

2

xy ct ct

x x x

f f
  

   
    

   
 (6.13) 
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As a result, the ratio of shear stress to normal stress depends on the normal stress at 

cracked section in flexural tension zone. Fig. (6.10) shows the variation of diagonal 

crack angle in flexural tension zone for normal stress and the ratio of shear stress to 

normal stress. The angle decreases with increasing the normal stress. However, the 

angle increases as the ratio of shear stress to normal stress increases. As a result, the 

angle will converge to the 45 degrees. 

 

Figure 6.10 Variation of diagonal crack angle in flexural tension zone: (a) for 
normal stress and (b) for the ratio of shear stress to normal stress 

6.3.4 Shear Strength of Flexural Tension Zone 

As mentioned in Section 6.3.2, an effective stress intensity factor at the flexural 

tension zone is given by following relationship between normal stress and shear 

stress. 

2

1 x
eff xy eff

xy

K a


 

 

    
 

 (6.14) 

Because the mode-I fracture occurs when the effective stress intensity factor is 

equal to critical stress intensity factor for mode-I fracture 0Ic uK a  , by using 

the Eqs (6.7) and (6.14), the shear stress is obtained as follows. 
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0

2

1

ct
xy

x

xy

f a

h c






 

   
 

 (6.15) 

where 0a  means the initial crack length. If the concrete strain reaches the 

/ct ct cf E   at any point where the diagonal crack initiates, the crack propagates to 

near the neutral axis rapidly without additional load. Therefore, it can be assumed 

that the initial crack length can be considered as the crack which occurs at concrete 

cover zone. 

As a result, the shear strength can be written as follows. 

2

0.84

1

ct c
ft

x

xy

f bh c
V

h c



 

   
 

 (6.16) 

where cc  is the concrete cover length 

According to ACI 318-08 usually estimate the shear contribution in reinforced 

concrete beams at the time of the initiation of critical diagonal crack. To predict the 

diagonal cracking strength it is assumed that critical diagonal crack starts at the end 

of the flexural crack. The ACI code provision has recommended the diagonal 

cracking strength as follows. 

'1
[MPa]

6cr cv f  (6.17) 

Hong and Ha (2012) proposed the diagonal cracking strength by using the stress 

conditions at the flexural bond cracks and the equilibrium condition of the whole 

system of the infinitesimal element of concrete and steel bars in the horizontal 

direction as follows. 
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'0.2 [MPa]cr cv f  (6.18) 

It is seen that Eq. (6.15) contains the ratio of shear stress to normal stress. As a 

result, the proposed diagonal cracking strength depends on this value because this 

value represents the stress state at the tip of critical diagonal crack.  

To compare the diagonal cracking strength, the ratio of shear stress to normal stress 

was obtained from Eq. (6.19). 

2

xy ct ct

x x x

f f
  

   
    

   
 (6.19) 

where x  and xy  are normal stress and shear stress at the crack tip, respectively. 

Because a critical diagonal crack propagates to the neutral axis, normal stress can be 

considered as modulus of rupture rf  specified in ACI 318-08. 

'0.625 [MPa]r cf f  (6.20) 

Therefore the ratio of shear stress to normal stress is obtained as follows. 

2

xy ct ct

x r r

f f

f f




   
    

   
 (6.21) 

As a result, the ratio of shear stress to normal stress depends on the concrete 

strength because ctf  and rf  are function of concrete strength. Fig. (6.11) shows 

the ratio of shear stress to normal stress for concrete strength '
cf . This value 

increases with increasing the concrete strength.  
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Figure 6.11 Variation of the ratio of shear stress to normal stress for concrete 
strength 

Fig. (6.12) shows the comparison of proposed diagonal cracking strength with ACI 

code provision and previous researches. Therefore, equation (6.15) indicates that the 

proposed diagonal cracking strength is more conservative than those of 

recommended strength obtained by ACI 318-08 and Hong and Ha (2012) (See Fig. 

(6.13~6.15)). However, for high-strength concrete, ' 50MPacf  , those values are 

not conservative with respect to strength recommended by ACI 318-08. 

 

Figure 6.12 Cracking strength for concrete strength 

0.0

0.5

1.0

1.5

2.0

2.5

0 20 40 60 80 100

τ x
y

/ σ
x

fc' (MPa)

0.0

0.5

1.0

1.5

2.0

2.5

0 20 40 60 80 100

τ c
r

(M
P

a)

fc' (MPa)

ACI 318-08

Hong and Ha (2012)



100 

 

Figure 6.13 Comparison of prediction with experimental results 
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Figure 6.14 Comparison of prediction of ACI 318-08 with experimental results 
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Figure 6.15 Comparison of prediction of Hong et al. with experimental results 
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6.4 Shear Strength for Diagonal Tension Failure 

6.4.1 General 

The results of experiments show that the shear failure of reinforced concrete slender 

beams without web reinforcement is always governed by tension failure rather that 

compression failure in compression zone. During the many years, researchers have 

made a lot of attempts to predict the shear strength reinforced concrete beams based 

on mainly experimental and statistical studies although the design formulas for 

diagonal tension failure have been improved. Especially, the current formulas which 

contain the size effect are based on the statistical analysis only. 

Thus, it is necessary to evaluate the shear strength based on theoretical background. 

In this section, by using the failure criteria and effective stress intensity factor, a 

newly strength model is proposed on the basis of crack propagation and crack path. 

 

6.4.2 Failure Criteria 

Diagonal tension failure occurs when a principal tensile stress reaches a tensile 

stress of concrete in compression zone. As shown in Fig. (6.16) the principal tensile 

stress is obtained by combining normal stress and shear stress at the crack tip. Thus, 

a following equation is fulfilled. 

2
2

1 2 2
x x

xy ctf
 

       
 

 (6.22) 

where x  and xy  are normal stress and shear stress at the crack tip and ctf  

means the tensile stress of concrete. 
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Figure 6.16 Stress state of compression zone and Mohr's circle 

In this study, following tensile strength of concrete was used 

'2/30.3ct cf f  (6.23) 

This is an average value evaluated from the relatively few shear tests where the 

tensile strength of concrete was actually determined by means of control specimen. 

(Reineck, 1991) 

Thus, the shear stress is obtained as follows. 

2
xy ct x ctf f    (6.24) 

Fig. (6.17) shows the variation of shear stress for normal stress. The shear stress 

increases with increasing the normal stress. Since the tensile stress is function of 

compressive stress of concrete, the shear stress increases with increasing the 

compressive stress of concrete.  
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Figure 6.17 Variation of shear stress for normal stress at the crack tip 

 

6.4.3 Effective Stress Intensity Factor 

To apply the linear elastic fracture mechanics, it is assumed that softening of 

concrete occurs in compression zone. Fig. (6.18) shows the critical diagonal crack at 

compression zone. In this region, both compressive stress and shear stress act on the 

plane simultaneously. The inclined crack propagated already as 0a  and then the 

new crack grows from the initial crack tip.  

Thus, the stress intensity factors for mode-I and mode-II fracture can be expressed 

as follows. 

1I x cK a   (6.25) 

1 1II x y cK a   (6.26) 

From Fig. (6.18-c), principal tensile stress and shear stress are as follows. 

2
1 1 1 1cos 2 sin cosx x xy         (6.27) 
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 2
1 1 1 1 1sin cos 2cos 1x y x xy         (6.28) 

 

Figure 6.18 Mode-I fracture in compression zone: (a) mode-I fracture; (b) 
inclined crack and (c) stress states and Mohr’s circle 

where 1  means the angle of inclined crack in pure shear zone as illustrated in Fig. 

(6.18). 

Inserting the principal stress 1x  and shear stress 1 1x y  into Eqs.(6.27) and (6.28) 

yields. 
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 2
1 1 12cos 1 sin cosx

II xy c
xy

K a


    


 
   

  
 (6.30) 

where x  and xy  are normal stress and shear stress at the crack tip, respectively. 

An effective stress intensity factor for mixed mode fracture is 

 2 2
eff I IIK K K   (6.31) 

Substituting Eq.(6.29) and Eq. (6.30) into Eq. (6.31) and organizing yields 

2

2
1 1 1cos 2 sin cos 1x x

eff xy eff
xy xy

K a
 

    
 
   

        
   

 (6.32) 

where 1  is initial crack angle which has 45 degrees and effa  means the diagonal 

crack length from the longitudinal reinforcement to the crack tip developed in 

compression zone as shown in Fig. (6.19). Since the initial crack 0a  was 

developed in concrete cover zone already, an effective crack propagates from point 

B to the loading point as illustrated in Fig. (6.19-b). 

 

Figure 6.19 Initial and effective crack length 
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Thus, the initial crack length and effective crack length are obtained as follows. 

0 ca c  (6.33) 

eff xa d c   (6.34) 

where xc  represents the depth of neutral axis at cracked section. Because it is 

assumed that the softening occurs in compression zone, if critical diagonal crack is 

developed at any point, crack will propagate to the loading plate very rapidly.  

In this study, effective crack length is defined as the vertical component to the 

diagonal crack. However, this may be wrong. Jenq and Shah (1989) is applied this 

method in his research to determine the shear strength of reinforced concrete beams 

without web reinforcement by using linear elastic fracture mechanics. Although this 

method does not have any logical basis, there are not significant problems to apply. 

From Eq. (6.32), an effective stress intensity factor is obtained as follows. 

2

0.5 1x x
eff xy eff

xy xy

K a
 

 
 
   

        
   

 (6.35) 

According to the LEFM, a diagonal crack will propagate when the effective stress 

intensity factor is equal to critical stress intensity factor for mode-I or mode-II 

fracture. If the failure of the compression zone is governed by the mode-I fracture, a 

diagonal tension failure will occur.  

 

6.4.4 Shear Strength 

To determine the shear strength by using effective stress intensity factor for mixed 

mode, it is assumed that the principal tensile stress reaches the tensile stress at the 

crack tip in compression zone as shown in Fig. (6.20). 
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Once the crack occurs at any location fracture process zone is formed. In case of 

concrete, this zone is very large as described in Section. Thus, it is assumed that the 

critical diagonal crack occurs at point B fracture process zone is formed throughout 

the compression zone. Although the stresses exist at the fracture process zone, in 

this study, these stresses are ignored. 

 

Figure 6.20 Failure condition of diagonal tension failure 

As mentioned in Section, a diagonal tension failure will occur when the effective 

stress intensity factor is equal to the critical stress intensity factor for mode-I 

fracture as following relationship in linear elastic fracture mechanics approaches. 

1eff eff IcK a K    (6.36) 
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where D  is the size of member. 

According to Bazant the critical stress intensity factor depends on the beam size, 

shape, or notch depth. This means that this value varies with testing condition. Thus, 

Bazant proposed the nominal stress intensity factor INK  as the stress intensity 
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factor computed for the actual load and the initial crack length. Then, the apparent 

fracture toughness INuK  is defined as the value of INK  at peak load. Thus, 

INu IcK K  (6.37) 

In this study, the critical stress intensity factor for mode-I IcK  can be represented 

as 

1 0Ic uK a   (6.38) 

where 1u  means the ultimate principal tensile stress at the crack tip, 0a  is the 

initial crack length. Because diagonal tension failure occurs when 1u  is equal to 

tensile stress ctf , the critical stress intensity factor IcK  is expressed as follows. 

0Ic ctK f a  (6.39) 

From Eq. (6.35), the critical stress intensity factor can be obtained as follows.  

2

0.5 1x x
Ic xy eff

xy xy

K a
 

 
 
   

        
   

 (6.40) 

By using the Eq. (6.39 ) the shear stress at the crack tip can be written as 

2

0.5 1

Ic
xy

x x
eff

xy xy

K

a


 
 


   

       
   

 (6.41) 

Inserting the critical stress intensity factor for mode-I fracture into the Eq. ( ) yields 
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0
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 
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   

       
   

 (6.42) 

where effa  is the effective crack length in compression zone. The ratio of normal 

stress to shear stress can be calculated from following equation. 

2

xy ct ct

x x x

f f
  

 
  

 
 (6.43) 

As a result, shear stress is function of tensile stress of concrete and initial and 

effective crack length. If the initial crack length is constant, shear stress decreases as 

the crack propagates more. Besides, the shear stress is reduced with increasing the 

ratio of normal stress to shear stress at the crack tip. 

As a result, the shear strength can be expressed as follows. 

0

2

0.5 1

ct
xy

eff
x x

xy xy

f bh a
V bh

a


 
 

 
   

       
   

 (6.44) 

where b  is the width and h  means the total height. 

Diagonal tension failure is caused by the combing normal compressive stress and 

shear stress at the tip of critical diagonal crack in compression zone of simply 

supported reinforced concrete beams subjected to concentrated load.  

The process to calculate the shear strength of reinforced concrete beams subjected 

to concentrated load is summarized as following. 

1) Assume the compressive strain of the loading point ca . 

2) Calculate the depth of neutral axis ac  and moment arm ajd  
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3) Determine the moment aM  and shear demand aV  

4) Calculate the 0x  and 1x  

5) Calculate the x , xc , xjd , and AM , AV  

6) Determine the 0a  and effa  

8) Determine the shear strength xy  

 

A slender beam generally appears the flexural behavior. When the shear force 

developed by flexure of a beam reaches the shear capacity, the failure is governed 

by shear behavior. Fig. (6.21) shows the proposed flexural-shear behavior of 

reinforced concrete beams without web reinforcement. As the concrete strain at 

loading point increases the moment the shear demand increases. At that time, the 

shear capacity at the compression zone decreases due to softening of concrete in 

compression zone. The predicted shear strength is determined the intersection of the 

shear demand curve and shear capacity curve.  

 

Figure 6.21 Proposed flexural-shear behavior 
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Fig. (6.22) shows the flexural-shear behavior of the test specimens AO-3-3b and 

AO-3-7b with rectangular cross section subjected to concentrated load by Mphonde 

et al. (1984). Primary parameter is concrete strength. Except the concrete strength, 

all parameters are same. The width of specimen, shear span-to-depth ratio, and 

longitudinal reinforcement ratio is 152 mm, 3.58, and 3.36%, respectively. As the 

concrete strength increases the shear strength increases. In case of AO-3-3b 

specimen, shear strength is determined after yielding of longitudinal reinforcement. 

On the other hand, shear strength of AO-3-7b specimen is obtained before the 

yielding. As a result, the predicted shear strength depends on the compressive 

strength of concrete. 

 

Figure 6.22 Analysis results for diagonal tension failure 
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6.4.5 Verification and Effect of Primary Parameters 

The proposed model is applied as follows for the prediction of the ultimate shear 

strength of reinforced concrete slender beams without web reinforcement. 

In order to investigate the influence of shear span-depth ratio and effective depth on 

shear stress, total 214 test results from the literature are selected. This test data list 

includes the test results of Ahmad et al. (1986), Bresler et al. (1963), Chana (1981), 

Cossio et al. (1960), Elzanaty et al. (1986), Feldman et al. (1955), Hallgren (1994), 

Harnadi et al. (1980), Hanson (1961), Kani (1967), Krefeld et al. (1966), 

Podgorniak (1998), Laupa et al. (1953), Leonhardt et al. (1962), Mathey et al. 

(1963), Morrow et al. (1957), Mphonde et al. (1984), Rajagopalan et al. (1968), 

Remmel (1991), Ruesch et al. (1962), Schcolz (1994), Taylor (1986, 1972), 

Thorenfeld et al. (1990), Walraven (1978), Thorenfeldt (1990), Islam et al. (1998), 

Lambolle et al. (1990), Kulkami et al. (1998), Coderwail et al. (1974), Moody et al. 

(1954), Ferguson (1956) for slender beams with various strength of concrete 

'14.0 59.3[MPa]cf  , beam width 90 400 [mm]b  , effective depth 

110 930 [mm]d  , shear span-to-depth ratio 2.76 / 8.04a d  , total height 

125 1000 [mm]h  , and longitudinal reinforcement ratio 0.25 4.51[%]  . 

The cross section of all specimens is rectangular and failed by diagonal shear failure. 

And they are simply supported and subjected to one or two symmetric concentrated 

loads. Table and Fig. shows the comparisons of the proposed model with code 

provisions, ACI 318-08 for shear span-to-depth ratio /a d , compressive strength 

of concrete '
cf , effective depth d  and longitudinal reinforcement ratio  . 

Fig. (6.23~6.26) presents the comparison of the predicted shear strength with test 

results for primary design parameters, shear span-to-depth ratio, concrete strength, 

effective depth, and longitudinal reinforcement ratio. It can be shown that the 
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theoretical results are in good agreement with the experiment results compared to 

other code provisions. The average of prediction to experiment ratio is 1.06 and the 

standard deviation is 0.17. On the other hand, for  ACI 318-08, 0.72 in mean value 

and 0.20 in standard deviation, respectively.  

Fig. (6.23) shows the ultimate shear strength for effective depth. The proposed 

model represents the size effect very reasonably, on the other hand, shear strength 

predicted by ACI 318-08 is size independent. 

 

Figure 6.23 Ultimate shear strength for effective depth: (a) proposed model and 
(b) ACI 318-08 
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Table 6-2 Dimensions and properties of test specimen 

Authors 

Numbers

of 

specimens

'
cf  

[MPa] 

b  

[mm] 

d  

[mm] 
/a d  

h  

[mm] 

  

[%] 

Ahmad et al. 

(1986) 
3 59.3 127 

203 

~208 

3.00 

~4.00 
254 

1.77 

~3.93 

Bresler et al. 

(1963) 
3 

21.4 

~35.9 

305 

~307 

461 

~466 

3.97 

~6.93 

556 

~561 

1.81 

~2.73 

Chana 

(1981) 
3 

31.2 

~37.0 
203 356 3.00 406 1.74 

Cossio et al. 

(1960) 
9 

18.5 

~34.9 
152 252 

3.00 

~6.03 
305 

0.98 

~3.35 

Elzanaty et al. 

(1986) 
5 

19.7 

~38.0 
178 

269 

~273 
4.00 305 

1.00 

~2.50 

Feldman et al. 

(1955) 
4 

24.5 

~26.6 
152 252 

3.02 

~6.04 
305 3.35 

Hallgren 

(1994) 
10 

24.7 

~57.8 

150 

~157 

191 

~196 

3.57 

~3.66 

232 

~249 

2.25 

~4.10 

Harnadi et al. 

(1980) 
3 

20.9 

~28.8 
100 

370 

~372 

3.44 

~5.97 
400 

1.08 

~1.70 

Hanson 

(1961) 
5 

19.9 

~29.4 
152 267 4.95 305 

1.25 

~2.53 

Kani 

(1967) 
13 

24.0 

~26.1 

151 

~156 

269 

~546 

2.95 

~8.04 

305 

~610 

2.66 

~2.84 

Krefeld et al. 

(1966) 
28 

15.9 

~36.5 

152 

~254 

238 

~483 

2.89 

~6.09 

305 

~533 

1.34 

~4.51 

Podgorniak et al. 

(1998) 
3 35.2 300 

110 

~450 

3.00 

~3.07 

125 

~500 

0.81 

~0.91 

Laupa et al. 

(1953) 
6 

14.0 

~30.7 
152 

262 

~269 

4.54 

~4.65 
305 

1.90 

~4.11 

Leonhardt et al. 

(1962) 
22 

19.8 

~37.2 

100 

~225 

140 

~600 

2.78 

~6.00 

160 

~670 

1.14 

~2.07 

Mathey et al. 

(1963) 
9 

22.3 

~27.8 
203 403 

2.84 

~3.78 
457 

0.47 

~2.55 

Morrow et al. 

(1957) 
11 

14.0 

~43.4 

305 

~308 

356 

~375 

2.76 

~5.87 
406 

1.87 

~3.92 

Mphonde et al. 

(1984) 

4 20.3 

~40.7 

152 298 3.58 337 2.34 

~3.36 

Rajagopalan et al. 

(1968) 

10 22.5 

~36.5 

151 

~154 

259 

~268 

3.83 

~4.92 

311 0.25 

~1.73 

Ruesch et al. 

(1962) 

3 22.0 

~23.1 

90 

~180 

111 

~262 

3.60 

~3.62 

134 

~302 

2.63 

~2.64 
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Authors 

Numbers

of 

specimens

'
cf  

[MPa] 

b  

[mm] 

d  

[mm] 
/a d  

h  

[mm] 

  

[%] 

Taylor 

(1986) 
10 

23.0 

~40.8 

200 

~400 

370 

~930 

3.00 

~3.02 

406 

~1000 

1.03 

~1.54 

Thorenfeld et al. 

(1990) 
8 51.3 150 207 

3.00 

~4.00 
250 

1.82 

~3.24 

Walraven 

(1978) 
2 

22.9 

~23.2 
200 

420 

~720 
3.00 

450 

~750 

0.74 

~0.79 

Thorenfeldt 

(1990) 
2 55.1 150 207 

3.00 

~4.00 
250 3.23. 

Islam et al. 

(1998) 
9 

25.3 

~48.3 
150 

205 

~207 

2.90 

~3.86 
250 

2.02 

~3.19 

Lambolle et al. 

(1998) 
2 

32.3 

~35.3 
200 415 3.01 450 

0.97 

~1.45 

Kulkami et al. 

(1998) 
3 

39.8 

~42.8 
102 152 

3.50 

~5.00 
178 1.37 

Coderwail et al. 

(1974) 
1 28.2 135 234 3.08 260 0.97 

Moody et al. 

(1954) 
22 

14.6 

~39.1 

152 

~178 

262 

~272 

2.95 

~3.41 
305 

1.60 

~2.37 

Ferguson 

(1956) 
1 27.8 101 189 3.23 210 2.08 

Total 214 
14.0 

~59.3 

90 

~400 

110 

~930 

2.76 

~8.04 

125 

~1000 

0.25 

~4.51 
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Figure 6.24 Comparison of predictions with experimental results: (a) for shear span-

to-depth ratio, (b) effective depth 
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Figure 6.25 Comparison of predictions with experimental results: (c) for 
concrete strength, (b) longitudinal reinforcement ratio 
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Figure 6.26 Comparison of ACI 318-08 with experimental results: (a) for shear 
span-to-depth ratio, (b) effective depth 
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Figure 6.27 Comparison of ACI 318-08 with experimental results: (a) for shear 
span-to-depth ratio, (b) effective depth 
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6.5 Shear Strength for Sliding Failure 

6.5.1 Introduction 

In reinforced concrete design, there are situations where transfer of shear across a 

specific plane needs to be considered. Generally, shear friction is the term used to 

describe the mechanism of shear transfer along a concrete-to-concrete interface. 

Generally, the sliding failure occurs due to shear friction capacity. 

In the theory of plasticity, concrete is assumed as a rigid plastic material. When the 

combined stresses exceed the modified Mohr-Coulomb failure criteria, a sliding 

failure takes place along a surface in the space or along a line in the plane. To 

determine the shear capacity of reinforced concrete beams without web 

reinforcement, Zhang (1994) proposed the crack sliding model. This model is based 

on the upper bound theorem of the plasticity. According to the crack sliding model, 

the cracking of concrete introduces potential yield line due to a reduced sliding 

resistance. As a result, shear failure occurs as sliding in cracks. 

Shear friction capacity caused by sliding failure can be obtained by using the 

modified Mohr-Coulomb failure criteria. Design codes such as Eurocode 2 and ACI 

318-08 define the maximum shear stress that can be transferred through aggregated 

interlock in terms of the Coulomb failure criteria as following equation. 

c    (6.45) 

where   is normal stress, c  is cohesion and   represents the coefficient related 

to the roughness of the interface. The cohesion factor c  is usually defined in terms 

of the concrete tensile strength. 

In fracture mechanics approaches, the sliding failure can be explained by mixed 

mode fracture containing mode-I and mode-II fracture because the diagonal cracks 
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propagates due to combination of normal stress and shear stress. When a stress 

intensity factor, which is function of shear stress at the diagonal crack tip and crack 

length for mixed mode fracture, is equal to the critical stress intensity factor for 

mode-II fracture, the diagonal crack will propagate. 

 

6.5.2 Shear Transfer across a crack 

The forces transferring shear across an inclined crack in a beam without web 

reinforcement are illustrated in Fig. (6.27). 

 

Figure 6.28 Forces transferring shear across an inclined crack 

Shear is transferred across line A-B-C by czV , the shear in compression zone, by 

ayV , the vertical component of the shear transferred across the crack by interlock of 

the aggregate particles on the two faces of the crack, and by dV , the dowel action of 

the longitudinal reinforcement.  
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Especially, according to Fenwick and Paulay’s experiments about 70% of the 

contribution of shear strength is caused by aggregate interlock approximately, while 

the remaining 30% was carried by the compression zone and dowel action. After 

that, Taylor estimated that the contribution of aggregate interlock was predominant. 

As a result, the magnitudes of contribution of aggregate interlock is 35~50%, dowel 

force and compression zone represent 15~25%, 20~40%, respectively. 

 

Figure 6.29 Components of shear resistance obtained by Taylor (1970) 

Shear transfer in the interface was due primarily to aggregate interlock and hence 

caused by those aggregates that protruded from the crack surface. However, as 

cracks go through the aggregate in lightweight and high-strength concrete yet still 

have the ability to transfer shear, the term friction is more appropriate. The four 

basic parameters involved are the crack interface shear stress, normal stress, crack 

width, and crack slip. Walraven (1981) made numerous tests and developed a model 

that considered the probability that aggregate particles, idealized as spheres, would 

project from the crack interface. As slip develops, the matrix phase deforms 
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plastically, coming into contact with projecting aggregates. The stresses in the 

contact zones are comprised of a constant pressure, and a constant shear. 

 

Figure 6.30 Walraven's crack model: (a) no contact; (b) growing contact and (c) 
maximum contact 

Walraven tested 88 push-off shear transfer specimens. The major difference 

between these tests and those by Mattock and others was that Walraven kept the 

crack widths, w , constant throughout each test. Vecchio and Collins proposed the 

relationships between the shear across the crack civ , the crack width w , and the 

required compressive stress on the crack cif have been experimentally studied by a 

number of investigators, including Walraven. Based on Walraven’s work the 

following relationship was derived. 
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And where a  is the maximum aggregate size in millimeters and the stress stress 

are in MPa. The crack width w  is computed from the spacing, s , of the inclined 

crack as 

1w s  (6.48) 

where 1  is the principal tensile strain, which is assumed to act perpendicular to the 

crack, and s  is the spacing of the cracks, measured perpendicular to the cracks 

1
sin cos

mx my

s

s s

  


  (6.49) 

Collins and Kuchma (1999) proposed the following simple equation using the 

parameters identified by the MCFT. 

'245
0.9

1275 35
16

c
c c

a

V
v f

dbd
d

 



 (6.50) 

Collins and Kuchma assumed a uniform crack opening displacement along the shear 

crack, equal to the average crack width, that corresponds to a strong stress 

singularity with a power of -1 around the crack tip. This means that the size effect 

on the shear strength with a power of -1 for very large sizes. 

CEB-FIP Model code provides design equations (6.51) and (6.52) for rough 

interfaces. This model assumes a linear relationship up to a crack slip of 0.1mm. 

Where less than us  shear slip occurs along the interface, the mobilized shear stress 

corresponding to the actual shear slip value may be calculated as follows. 

For 0.1mms   5 ult s   (6.51) 
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For 0.1mms   

4 3

0.5 0.3 0.03
u u

s
 
 
   

     
   

 (6.52) 

where '2/3 1/30.4u cf   and s  in mm. 

The shear slip along a rough interface is accompanied by a crack opening, which 

may be calculated as follows 

2/30.6 [mm]w s  (6.53) 

Reineck (1991) used the following constitutive equations for the friction of crack 

faces without normal stress   on the crack face. Shear stress decreases as the 

crack width increases linearly. 

'0.45 1
0.9fr t

w
f    
 

 (6.54) 

where '
tf  is the concrete tensile strength 

 

6.5.3 Failure Criteria 

To define the failure mechanism of the compression zone, modified Mohr-Coulomb 

failure criteria was used. It is based on the observation that failure often occurs 

along certain sliding planes or yield planes, the resistance of which is determined by 

a parameter termed the cohesion and an internal friction, the magnitude of which 

depends on the normal stress in the sliding failure. Sliding failure is assumed to 

occur in a section when the Coulomb frictional hypothesis is fulfilled. In other 

words, if the shear stress   in the section exceeds the sliding resistance, sliding 

failure will occur. 

Shear friction failure occurs when a following condition is satisfied. 
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   1 2 1 2

1 1
cos sin

2 2
c          (6.55) 

where 1  and 2  mean principal tensile and compressive stress and   represents 

the internal angle. 

Inserting tan  , we have 

   2
2 2

1 21 2 1c            (6.56) 

If a parameter k  is defined by 

 2
21k      (6.57) 

Therefore, the conditions for sliding failure can be written as follows. 

1 2 2k c k    (6.58) 

Since the compression test will always involve sliding failure, following equation is 

fulfilled. 

' 2cf c k  (6.59) 

If concrete is identified with a modified Coulomb material, the parameter k  has a 

value of around 4 for low strength concrete. If this value is selected as 0.75   

and corresponding to an angle of friction is 37   , From Eq. ( ), cohesion c  is 

obtained as follows. 

'1

4 cc f  (6.60) 

Since the sliding failure due to shear friction occurs at compression zone of beams, 

principal tensile and compressive stresses can be represented as follows. 
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2

2
1 2 2

x x
xy

 
      

 
 (6.61) 

2

2
2 2 2

x x
xy

 
      

 
 (6.62) 

where x  is normal stress and xy  means the shear stress at the tip of critical 

diagonal crack. 

Substituting Eqs.(6.61) and (6.62) into Eq. (6.55) and organizing yields 

'2 ' 20.2 3 4xy c c x xf f      (6.63) 

As you can see that if the normal stress is zero the shear stress is equal to '0.2 cf . 

ACI 318-08 have proposed the upper limit on shear friction strength. According to 

this code provision for normal-weight concrete either placed monolithically or 

placed against hardened concrete with surface intentionally roughened, shear 

strength shall not exceed the smallest of '0.2 c cf A ,  '3.3 0.08 c cf A  and 11 cA . 

However, as shown in Fig. (6.30), because the shear stress obtained from Eq. (6.63) 

depends on normal stress, the shear stress increases with increasing the normal 

stress at first time. After peak point, the shear stress is reduced as the normal stress 

increases. 

The ratio of shear stress to normal stress can be obtained from Eq. (6.63) by 

dividing into the normal stress. 

2' '

0.2 3 4xy c c

x x x

f f
  

   
     

   
 (6.64) 

Fig. (6.31) shows that the variation of the ratio of shear stress to normal stress with 

increasing the ratio of compressive strength to normal stress. The ratio of shear 
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stress to normal stress increases with increasing the ratio of compressive strength to 

normal stress. 

 

 

Figure 6.31 Variation of shear stress for normal stress in case of sliding failure 

 

Figure 6.32 Variation of the ratio of shear stress to normal stress for concrete 
strength 

  

0

3

6

9

12

15

0 10 20 30 40 50

τ x
y

(M
P

a)

σx (MPa)

' 30MPacf 

' 35MPacf 

' 40MPacf 

' 45MPacf 

0

1

2

3

4

5

0 5 10 15 20 25

τ x
y 

/ σ
x

fc' / σx



131 

6.5.4 Shear Strength 

In LEFM, if the effective stress intensity factor for mixed mode is equal to the 

critical stress intensity factor for mode-II fracture IIcK , sliding failure will occur. 

eff IIcK K  (6.32) 

In this case, the shear stress at the crack tip is obtained as follows. 

2

0.5 1

IIc
xy

x x
eff

xy xy

K

a


 
 


   

       
   

 (6.33) 

where x  is the normal compressive stress and xy  is the shear stress at the 

diagonal crack tip. 

The critical stress intensity factor for mode-II fracture IIcK  can be written as 

function of ultimate shear stress u  and initial crack length 0a . 

0IIc uK a   (6.34) 

As described in Fig. (6.32), generally the shear stress is the maximum at the neutral 

axis. Thus, the ultimate shear stress can be calculated by using the stress states at 

near the neutral axis. The ultimate shear stress for sliding failure u  is obtained by 

using modified Mohr-Coulomb criterion. 

Inserting the principal stresses 1 xy  , 2 xy    and internal angle 37   , 

cohesion '1 / 4 cc f  into Eq. ( ), the ultimate shear stress can be expressed as 

'0.2u cf   (6.35) 
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Figure 6.33 Stress states and Mohr’s circle: (a) pure shear and (b) biaxial stress 

Substituting Eq. (6.35) into Eq. (6.34) yields 

'
00.2IIc cK f a  (6.36) 

As a result, the critical stress intensity factor for mode-II fracture is defined as the 

function of concrete strength '
cf  and initial crack length 0a . This equation can 

also be expressed as follows. 

 ' '00.2 0.2IIc c c c

a
K f h f hk

h
    (6.37) 

where h  means the total height of beams. 

If the dimensionless function  ck   is constant, IIcK increases proportional to  

h . Fig.(6.33) shows the critical stress intensity factor for mode-II fracture for 

effective depth. Experimental results by Chana (1981) were selected. As the 

effective depth increases the critical stress intensity factor mode-II fracture 

increases. This means that critical stress intensity factor for mode-II fracture is 

dependent on the size. 
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Figure 6.34 Critical stress intensity factor KIIc for mode-II fracture 

Inserting Eq.(6.36) into Eq. (6.33), the shear stress at the crack tip can be obtained 

as follows. 
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 (6.38) 

where 
2' '

0.2 3 4xy c c

x x x

f f
  

   
     
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The shear stress depends on the initial crack length 0a  and effective crack length 

effa . Fig. (6.34) illustrates the initial and effective crack length for diagonal tension 

failure. In this study, initial crack length is defined as the concrete cover length. 

And the effective crack length is determined the length increased from the neutral 

axis. 

0 ca c  (6.39) 
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where xc  represents the depth of neutral axis at cracked section as shown in Fig. 

(6.34). 

 

Figure 6.35 Initial and effective crack length for sliding failure mode 

Finally, the proposed shear strength for sliding failure is obtained as follows. 
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 (6.41) 

Fig. (6.35) shows the analysis results for specimen 8-1 tested by Leonhardt et al. 

(1962). Material properties of this specimen are shown in Fig. (6.35) also. As a 

result, the ultimate shear stress uv  is obtained from the intersection between 

flexural behavior curve and sliding failure limit curve after yielding of 

reinforcement.  
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Figure 6.36 Proposed flexural-shear behavior for sliding failure 

6.5.5 Verification 

The proposed sliding crack model is applied as follows for the prediction of the 

ultimate shear strength of reinforced concrete slender beams without web 

reinforcement. 

In order to investigate the influence of shear span-depth ratio and effective depth on 

shear stress, total 77 test results from the literature are selected. This test data list 

includes the test results of Cossio et al. (1960), Elzanaty et al. (1986), Feldman et al. 

(1955), Hallgren (1994), Harnadi et al. (1980), Hanson (1961), Kani (1967), Krefeld 

et al. (1966) for slender beams with various strength of concrete 

'18.3 52.8[MPa]cf  , beam width 100 254 [mm]b  , effective depth 

191 559 [mm]d  , shear span-to-depth ratio 2.89 / 8.04a d  , total height 

232 640 [mm]h  , and longitudinal reinforcement ratio 0.98 4.51[%]  . 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 10 20 30 40 50 60

v u
(M

P
a)

εc (×10-3)

Leonhardt et al. (1962)

Specimen name : 8-1

' 29.4MPa, 190mm, 270mm, / 6.0

1.28MPa
c

test

f b d a d

v

   



Flexural behavior

Sliding failure limit



136 

The cross section of all specimens is rectangular and failed by diagonal shear failure. 

And they are simply supported and subjected to one or two symmetric concentrated 

loads. Table 6-3 shows the comparisons of the proposed sliding model with ACI 

318-08 for shear span-to-depth ratio /a d , compressive strength of concrete '
cf , 

effective depth d  and longitudinal reinforcement ratio  . 

Fig. (6.36) presents the comparisons of predicted value for sliding failure with for 

diagonal tension failure. The average of prediction for sliding failure to experiment 

ratio is 1.26 and the standard deviation is 0.26. On the other hand, for diagonal 

tension failure, 1.00 in mean value and 0.14 in standard deviation, respectively. 

As a result, the proposed theory for sliding failure accurately predicts the 

experimental observation for the ultimate shear force of extensive well-grounded 

test series of slender beams in case of / 4a d  . However, in case of / 4a d  , the 

predictions of proposed model tends to overestimate. 

 

Figure 6.37 Comparison of predictions with experimental results for a/d 
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Table 6-3 Dimensions and material properties of test specimens 

Authors 
Specimen 

name 

'
cf  

[MPa] 

b  

[mm] 

d  

[mm]
/a d

h  

[mm]


[%]

testv

[MPa]

dtv
 [MPa]

frv  

 [MPa] 
(2)/(1)† (3)/(1)† 

Cossio et al. 

(1960) 

L-2a 34.9 152 252 3.02 305 3.35 2.09 1.98 2.82 0.95 1.35 

L-3 26.6 152 252 4.02 305 3.35 1.39 1.50 1.78 1.08 1.28 

L-4 24.5 152 252 5.02 305 3.35 1.34 1.27 1.38 0.95 1.03 

L-5 26.5 152 252 6.03 305 3.35 1.33 1.19 1.27 0.89 0.95 

A2 29.9 152 254 3.00 305 0.98 1.08 1.33 1.74 1.23 1.61 

A3 18.5 152 254 4.00 305 0.98 0.89 0.87 0.89 0.98 1.00 

A-12 25.4 152 254 3.00 305 3.33 1.53 1.59 2.17 1.04 1.42 

A-13 21.0 152 254 4.00 305 3.33 1.21 1.26 1.46 1.04 1.20 

A-14 26.1 152 254 5.00 305 3.33 1.42 1.33 1.46 0.94 1.03 

Elzanaty et al. 

(1986) 

F11 19.7 178 272 4.00 305 1.20 0.94 0.91 1.06 0.97 1.13 

F12 19.7 178 269 4.00 305 2.50 1.14 1.10 1.34 0.96 1.18 

F8 38.0 178 273 4.00 305 1.00 0.96 1.34 1.84 1.39 1.91 

F13 38.0 178 272 4.00 305 1.20 0.97 1.40 1.94 1.44 2.00 

F14 38.0 178 269 4.00 305 2.50 1.35 1.68 2.42 1.25 1.79 

Feldman 

(1955) 

L-2A 24.9 152 252 3.02 305 3.35 2.09 1.59 2.09 0.76 1.00 

L-3 26.6 152 252 4.02 305 3.35 1.39 1.50 1.79 1.08 1.28 

L-4 24.5 152 252 5.03 305 3.35 1.34 1.26 1.38 0.94 1.03 

L-5 26.5 152 252 6.04 305 3.35 1.34 1.19 1.28 0.89 0.96 

Hallgren 

(1994) 

B90SB 

17-2-45 
24.7 157 191 3.66 232 2.26 1.97 1.36 1.63 0.69 0.83 

B90SB 

18-2-45 
24.7 155 194 3.60 235 2.25 2.10 1.37 1.65 0.65 0.79 

B91SD 

1-4-61 
57.8 156 194 3.61 247 3.98 2.92 2.83 3.88 0.97 1.33 

B91SD 

2-4-61 
57.8 156 195 3.59 248 3.96 2.96 2.80 3.91 0.95 1.32 

B91SD 

5-4-58 
55.4 156 196 3.57 249 3.94 2.55 2.73 3.80 1.07 1.49 

B91SD 

6-4-58 
55.4 150 196 3.57 249 4.10 2.81 2.77 3.80 0.99 1.35 

B90SB 

5-2-33 
31.2 156 191 3.66 232 2.28 1.88 1.60 1.95 0.85 1.04 

B90SB 

6-2-33 
31.2 156 194 3.61 235 2.24 1.77 1.60 2.02 0.91 1.14 

B90SB 

9-2-31 
29.5 156 192 3.65 233 2.26 1.64 1.53 1.86 0.94 1.14 

B90SB 

10-2-31 
29.5 157 193 3.63 234 2.20 1.77 1.53 1.88 0.87 1.06 

Harnadi et al. 

(1980) 
G1 28.8 100 370 3.46 400 1.70 1.20 1.15 1.86 0.96 1.55 
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Authors 
Specimen 

name 

'
cf  

[MPa] 

b  

[mm] 

d  

[mm]
/a d

h  

[mm]


[%]

testv

[MPa]

dtv
 [MPa]

frv
 [MPa] 

(2)/(1)† (3)/(1)† 

Harnadi et al. 

(1980) 

G2 22.3 100 372 3.44 400 1.08 1.10 0.91 1.29 0.83 1.17 

G3 20.9 100 372 5.97 400 1.08 0.81 0.71 0.83 0.87 1.02 

Hanson 

(1961) 

A4 19.9 152 267 4.95 305 1.25 0.83 0.85 0.93 1.02 1.12 

B4 29.4 152 267 4.95 305 1.25 1.05 1.12 1.33 1.06 1.26 

BW4 28.2 152 267 4.95 305 1.25 0.99 1.09 1.30 1.11 1.32 

8B2 29.3 152 267 4.95 305 2.53 1.29 1.33 1.63 1.03 1.26 

B2 29.3 152 267 4.95 305 2.22 1.29 1.29 1.57 1.00 1.22 

Kani 

(1967) 

63 24.9 154 546 4.00 610 2.78 1.11 1.26 1.73 1.14 1.56 

64 24.4 156 540 8.04 610 2.76 0.94 0.90 0.94 0.96 1.00 

66 25.1 156 541 6.02 610 2.75 1.08 1.09 1.26 1.01 1.17 

79 24.8 153 559 6.84 610 2.72 0.98 0.98 1.14 1.00 1.16 

74/75 25.9 152 524 3.11 610 2.84 1.35 1.48 2.10 1.09 1.55 

71 26.0 155 544 2.99 610 2.66 1.21 1.30 2.14 1.07 1.77 

81 26.1 153 272 5.98 305 2.79 1.23 1.12 1.29 0.91 1.05 

84 26.1 151 271 4.00 305 2.84 1.35 1.32 1.78 0.98 1.31 

96 24.0 156 275 3.95 305 2.71 1.31 1.20 1.66 0.91 1.26 

83 26.1 156 271 3.00 305 2.75 1.54 1.33 2.16 0.87 1.40 

97 25.9 152 276 2.95 305 2.69 1.49 1.17 2.14 0.79 1.44 

91 26.1 154 269 6.06 305 2.70 1.23 1.12 1.26 0.91 1.02 

92 26.1 152 270 7.03 305 2.73 1.12 1.02 1.12 0.91 1.00 

Krefeld et al. 

(1966) 

11A2 28.7 152 314 2.91 381 3.42 1.54 1.77 2.45 1.15 1.59 

12A2 28.6 152 238 3.85 305 4.51 1.77 1.74 1.96 0.98 1.11 

18A2 18.3 152 316 2.89 381 2.64 1.32 1.25 1.55 0.95 1.18 

18B2 18.9 152 316 2.89 381 2.64 1.50 1.28 1.59 0.85 1.06 

18C2 21.5 152 316 2.89 381 2.64 1.53 1.39 1.77 0.91 1.16 

18D2 21.0 152 316 2.89 381 2.64 1.25 1.37 1.76 1.09 1.41 

16A2 21.1 152 240 3.81 305 1.74 1.15 1.12 1.20 0.98 1.05 

17A2 20.9 152 243 3.77 305 2.14 1.19 1.18 1.33 0.99 1.11 

3AC 19.8 152 256 4.77 305 2.03 1.13 0.99 1.06 0.87 0.94 

3CC 19.5 152 256 5.96 305 2.03 0.91 0.85 0.90 0.93 0.98 

3AAC 32.8 152 256 3.58 305 2.03 1.43 1.61 2.05 1.13 1.43 

4AAC 27.7 152 254 3.60 305 2.66 1.50 1.53 1.92 1.02 1.28 

5AAC 31.2 152 252 3.62 305 3.31 1.49 1.74 2.25 1.17 1.51 

6AAC 32.7 152 250 3.65 305 4.35 1.58 1.91 2.46 1.21 1.56 

3AC 30.3 152 256 4.77 305 2.03 1.37 1.35 1.58 0.98 1.15 

4AC 29.0 152 254 4.80 305 2.66 1.39 1.39 1.60 1.00 1.15 

5AC 31.2 152 252 4.83 305 3.31 1.42 1.54 1.78 1.09 1.26 

6AC 32.4 152 250 4.87 305 4.35 1.56 1.66 1.90 1.07 1.22 
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Authors 
Specimen 

name 

'
cf  

[MPa] 

b  

[mm] 

d  

[mm]
/a d

h  

[mm]


[%]

testv

[MPa]

dtv
 [MPa]

frv
 [MPa] 

(2)/(1)† (3)/(1)† 

Krefeld et al. 

(1966) 

4CC 36.5 152 254 6.00 305 2.66 1.36 1.45 1.64 1.07 1.21 

5CC 35.6 152 252 6.04 305 3.31 1.50 1.49 1.65 0.99 1.10 

6CC 36.5 152 250 6.09 305 4.35 1.66 1.59 1.74 0.96 1.05 

C 15.9 203 483 3.16 533 1.57 0.86 0.86 1.15 1.00 1.33 

OCA 33.9 152 254 6.00 305 2.66 1.26 1.38 1.53 1.10 1.22 

OCB 33.9 152 254 6.00 305 2.66 1.36 1.38 1.53 1.01 1.13 

OCA 36.4 254 456 4.01 508 2.20 1.27 1.54 2.29 1.21 1.81 

OCB 36.4 254 456 4.01 508 2.20 1.15 1.54 2.28 1.34 1.98 

15A2 19.1 152 316 2.89 381 1.34 0.95 1.10 1.31 1.15 1.37 

15B2 19.7 152 316 2.89 381 1.34 1.08 1.12 1.31 1.03 1.21 

          Avg. 1.00 1.26 

          S.D 0.14 0.26 

† (1) testv   : experimental results 

† (2) dtv    : proposed shear strength for diagonal tension failure 

† (3) frv    : proposed shear strength for sliding failure 

 

6.5.6 Summary 

This section has presented the critical crack path dependent shear strength of 

reinforced concrete slender beams without reinforcement. By using location of 

inclined crack tip, stress intensity factor, and failure criteria of concrete, shear 

strength based on crack path was determined. The main points are given as follows: 

 

(1) To evaluate the critical crack path dependent shear strength of RC slender 

beams without web reinforcement, newly failure mechanism based on 

critical inclined crack propagation was proposed.  

(2) The ratio of shear stress to normal stress was determined by considering the 

location of critical inclined crack tip. The vertical distance y  and 

horizontal distance x  are calculated from the neural axis and a support, 

respectively. Consequentially, the ratio depends on the location of crack tip. 
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(3) The stress intensity factors for mode-I (opening) and mode-II (sliding) 

fracture were obtained from principal tensile stress and shear stress acting 

on cracked plane under the given stress states. 

(4) The critical stress intensity factor for mode-I and mode-II fracture were 

determined from the ultimate normal stress and shear stress in mode-I and 

mode-II fracture, respectively. Additionally, initial crack length is also 

considered. 

(5) The angle of critical inclined crack was obtained by using the failure 

criterion of concrete, modified Mohr-Coulomb criteria. As a result, this 

angle depends on the ratio of shear stress to normal stress at the crack tip. 
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6.6 Shear Strength of Reinforced Concrete Short Beams 
without Web Reinforcement 

6.6.1 Introduction 

In this chapter, we will derive the shear strength of reinforced concrete short beams 

proposed model based on crack growth. During the last 50 years, numerous studies 

on the shear strength of reinforced concrete short beams have been carried out. 

Many experimental results have been showed that the reinforced concrete short 

beams with shear span-to-depth ratio between 1.0 and 2.5 fail because of crushing 

of concrete in the diagonal strut. However, despite these developments, a rational 

and fundamental theory explaining the shear failure of short beams is still missing. 

In case of short beams, an important question is whether size effects also occur in 

the case of short beams. Walraven et al. (1994) proposed that in the short beams 

without web reinforcement, a significant size effect occurs. And size effect in short 

beams is very similar to that in slender beams in spite of the different types of 

failure. Crack propagation which is dependent beam depth is the key to explanation 

of size effect. 

The failure mechanism in a deep beam (a/d<2.5) differs significantly from that of a 

slender beam (a/d>2.5). Short shear spans with a/d form 1 to 2.5 develop inclined 

cracks and, after redistribution of internal forces, are able to carry additional load, in 

part by arch action. The final failure of such beams will be causes by a bond failure, 

a splitting failure, or a dowel failure along the tension reinforcement or by crushing 

of the compression zone over the crack. The latter is referred to as a shear 

compression failure. Because the inclined crack generally extends higher into the 

beam than does a flexural crack, failure occurs at less than the flexural moment 

capacity. 
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However, if the reinforced concrete deep beams have a very small amount of 

longitudinal reinforcement, flexural-shear failure occurs even though shear span-to-

depth ratio is small. In this case, flexural crack develop on the bottom of the beam 

or near the midspan of the beam at first. As applied load is increased, more flexural 

cracks follow accompanied by diagonal cracking. The longitudinal reinforcement 

will yield and critical diagonal crack will develop along the diagonal strut.  

 

6.6.2 Failure Mode of Diagonal Strut 

Concrete single strut subjected to uniaxial compressive stress has two different 

failure mechanisms. One is general compression failure induced by longitudinal 

cracks and the other is sliding failure by inclined crack as shown in Fig. (6.37) Main 

difference between two failure mechanisms is the causes of cracks. The 

Longitudinal cracks occur when principal tensile stress reaches the tensile stress of 

concrete, in this case principal tensile stress is same as the horizontal normal stress.  

On the other hand, diagonal crack occurs principal tensile stress combining normal 

stress and shear stress reaches the tensile stress of concrete as follows 

h ctf   (6.42) 

1 ctf   (6.43) 

where h  means horizontal normal stress and 1  represents principal tensile 

stress combining normal stress and shear stress. 

In both of two cases, it is identical that concrete failure occurs when compressive 

stress reaches '
cf .  
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Figure 6.38 Two different failure mechanism of concrete strut: (a) General 
compressive failure mechanism; (b) Compressive sliding failure 
mechanism 

In plasticity theory and general fracture mechanics approaches, general a failure 

mechanism of uniaxial compression assumes as shown in Fig. (6.37-a). To 

determine the compressive strength, let’s consider the single strut as shown in Fig. 

(6.37-b). It is assumed that the strut carries the uniaxial compression stress '
cf . 

 

6.6.3 Uniaxial Compression 

When concrete is subjected to uniaxial compression, the structural behavior of 

concrete is governed by localization of failure. Especially, the post-peak region of 

load-deformation curve greatly affected. It has been reported that the failure 

mechanism of uniaxial compression depends on such test conditions as specimen 

size, compressive strength friction between the loading plate and the specimen. 
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Particularly, the compressive failure is observed in reinforced concrete deep beams. 

In the previous researches, the size effect was found on the shear strength of RC 

deep beams without web reinforcement. This is because the localized failure of 

compression. 

Therefore, it is necessary to study the behavior of concrete under compression by 

considering the localization of cracks in order to analyze the post-peak behavior of 

concrete more accurately. 

 

6.6.4 Stress Concentrations 

Consider the stresses in a bar of rectangular cross section (width b , thickness t ) 

subjected to uniaxial compressive load P  as shown in Fig.(6.38). The peak stress 

directly under the load may be several times the average stress /P bt , depending 

upon the area over which the load is applied. However, the maximum stress 

diminishes rapidly as we move away from the point of load application, as shown 

by the stress diagram in the figure. At a distance from the end of the bar equal to the 

width b  of the bar, the stress distribution is nearly uniform, and the maximum 

stress is only a few percent larger than the average stress. 

It should be noted that when the prismatic bar is subjected to uniaxial compressive 

force internal stress depends on the height of prismatic bar. 

 

6.6.5 Concentrated Load at a Point of a Straight Boundary 

As above mentioned, the stresses in the prismatic bar depend on the height. To 

explain this phenomenon, let us consider a concentrated vertical force P  acting on 

a horizontal straight boundary AB of an infinitely large plate as shown in Fig. The 

distribution of the load along the thickness of the plate is uniform. And it is 
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assumed that the thickness of the plate is taken as unity, so that P  is the load per 

unit thickness. a  is the distance from the horizontal straight boundary AB and d  

represents the diameter of circle shown in Fig. (6.39-a). 

 

Figure 6.39 Stress distributions near the end of a bar of rectangular cross 
section subjected to a concentrated load P acting over a small area 
(Gere, 2001) 

There is a basic solution called the simple radial distribution. Any element C  at a 

distance r  from the point of application of load is subjected to a simple 

compression in the radial direction. Thus, the stress components are  

2 cos
rr

P

r




  ,  0r     (6.44) 

These values of the stress component should satisfy the equilibrium condition in 

polar coordinates as follows. 

P

bt
 

P

bt
 

P

bt
 

P

b

h
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2

2 2

1 1 2 cos
r

P

r r r r

  
 

 
   

 
 (6.45) 

 

Figure 6.40 Concentrated force at a point a straight boundary: (a) Concentrated 
vertical force P acting on a horizontal straight boundary AB of an 
infinitely large plate; (b) Distribution of the load along the 
thickness of the plate (Timoshenko, 1970) 

2

2
0

r
 

 


 (6.46) 

1
0r r r




       
 (6.47) 

where   represents the stress function and is expressed as 

sin
P

r  


   (6.48) 

Taking a horizontal plane mn at a distance a  from the straight edge of the plate, 

the normal and shear components of the stress on this plane at any point M are 

calculated from the simple compression in the radial direction as follows. 

P

da

r


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3
2 42 cos 2

cos cosxx rr

P P

r a

   
 

      (6.49) 

2
2 2 22 cos sin 2

sin sin cosyy rr

P P

r a

     
 

      (6.50) 

2
32 sin cos 2

sin cos sin cosxy rr

P P

r a

      
 

      (6.51) 

As a result, the normal stresses x , y  and shear stress xy  can be expressed in 

terms of the distance a . In other words, the stresses are inversely proportional to 

the distance a . 

Fig. (5.10) shows the distribution of stresses x  (vertical axis, compressive stress) 

and xy  along the horizontal plane mn is represented graphically. 

 

Figure 6.41 Distribution of normal and shear stresses 
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6.6.6 Sliding Failure of Prismatic Body 

As mentioned already, there are three stress components in prismatic body in pure 

compression.  

We consider a rectangular disk of modified Coulomb material with compressive and 

shear stresses as shown in Fig. (5.11). The disk has thickness B  and width D  

and loaded with the pure compression. In this study, since it is very difficult to 

explain the sliding failure in case of only compressive stresses act, it is assumed that 

the normal stress and shear stress act in the prismatic body and the sliding failure 

occurs due to shear stress. 

 

Figure 6.42 Sliding failure of a prismatic body: (a) Dimensions; (b) Normal 
and shear stresses; (c) Distribution of stresses; (d) Inclined crack 

Normal and shear stress can be expressed as follows 

2cosxx rr    (6.52) 

sin cosxy rr     (6.53) 
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where rr  means the normal stress component in the radial direction and given by  

2 cos
rr

P

r




   (6.54) 

The principal tensile stress 1x  and the shear stress acting on the cracked plane 

1 1x y  are obtained as follows 

2
1 cos 2 sin cosx x xy        (6.55) 

 2
1 1 sin cos 2cos 1x y x xy          (6.56) 

Substituting Eq. (6.54) into Eq. (6.52) and organizing yields 

 4 2
1

2
cos 1 sinx

P

a
  


    (6.57) 

3 3
1 1

2
sin cosx y

P

a
  


  (6.58) 

It should be noted that the principal tensile stress and shear stress expressed by Eqs. 

(6.57) and (6.58) depends on the distance a . These values decrease with increasing 

the distance a . 

Stress intensity factors for mode-I and mode-II fracture can be written as follows 

 4 2
1

2
cos 1 sinI x c c

P
K a a

a
    


     (6.59) 

3 3
1 1

2
sin cosII x y c c

P
K a a

a
    


   (6.60) 

Thus, the effective stress intensity factor for mixed mode fracture is 

2 2 42
cos sineff I II eff

P
K K K a

a
  


    (6.61) 
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where effa  represents the effective crack length. 

Since the prismatic body fails due to sliding failure, effective stress intensity factor 

is equal to the critical stress intensity factor for mode-II fracture as following 

equation. 

0IIc uK a   (6.62) 

where 0a  means the initial crack length. 

As a result, the compressive force P  is obtained as follows 

0
42cos sin
xy

eff

a a
P

a

 
 

  (6.63) 

Since the shear stress is equal to '0.2 cf  by failure criterion of concrete, modified 

Mohr-Coulomb criteria, Eq. (6.63) is modified as follows 

'
0

4

0.31

cos sin
c

eff

f a a
P

a 
  (6.64) 

Since the initial crack length 0a  is constant, the compressive force per unit 

thickness decreases as the ratio of total crack length to initial crack length increases. 

To determine the ultimate compressive force the angle of inclined crack should be 

determined. As mentioned above, sliding failure occurs due to shear stress. So, it is 

assumed that when shear stress reaches the maximum sliding failure occurs as 

shown in Fig. (6.43). 
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Figure 6.43 Maximum shear stresses 

The angle corresponding to maximum shear stress can be obtained as follows. 

 4 2 22
cos 3sin cos 0xyd P

d a


  

 
     (6.65) 

Solving the above equation the angle in the equation which satisfies is 30   . 

If the distance a  is equal to the height of prismatic body h , Eq. (6.65) can be 

modified as follows. 

' 01.1 c
eff

a
P f h

a
  (6.66) 

As mentioned in Section, the compressive force is the load per unit thickness. Thus, 

the ultimate compressive force corresponding to the area of cross-section is 

obtained as follows. 

' 01.1u c w
eff

a
P f b h

a
  (6.67) 
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If initial crack length is constant the compressive force inversely proportional to 

effective crack length. This means that the compressive force depends on the 

strength of concrete and crack length. Since the effective crack length is always 

larger than initial crack length, the compressive force decreases as the effective 

crack length increases. 

Table (6-4) and Fig. (6.44) show the variation of compressive force for size of 

specimen and angel. To estimate the size effect, some examples are used. It is 

assumed that effective crack propagates from the initial crack tip at the bottom of 

the specimen with rectangular cross section toward the loading point diagonally. 

The parameters and properties are represented Table (6-4). Initial crack length 0a  

10mm,   is 30 degrees, and height h  varies 100~500mm. 

As a result, compressive stress decreases as the size of specimen increases. And 

additionally, As the   increases the compressive stress also decreases as shown in 

Fig. (6.44-b). The angle of inclined crack is important parameter. 

It should be noted that the size effect shows in pure compression. 

Table 6-4 Examples for estimation of size effect 

oa  

[mm] 

h  

[mm] 

  

[degree] 
effa  

[mm] 
 0k   '

u

c

P

hf
 

10 100 30 103.9 0.316 0.341 
10 200 30 219.4 0.224 0.235 
10 300 30 334.9 0.183 0.190 
10 400 30 450.3 0.158 0.164 
10 500 30 565.8 0.141 0.146 
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Figure 6.44 Normalized compressive force: (a) Size effect of compressive force; 
(b) Degradation of compressive force for angle 

To predict the ultimate shear strength, a simple strut and tie model based on the 

theory of plasticity can be used. Let us consider the single strut and tie model as 

shown in Fig. (6.45). The strut carries the uniaxial compressive stress. And it is 

assumed that when this stress reaches the ultimate stress shear failure occurs. 
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Figure 6.45 Single strut 

If the strut inclination with a horizontal axis is   

0 0

0 0

tan
x h y

y a x
 
 


 (6.68) 

If the strut has to carry the vertical load P , 

'
0 cP x tf  (6.69) 

where t  means the thickness. 

To maintain equilibrium the horizontal resultant of compressive forces C  is 

'
0 cC y tf  (6.70) 

From Eq. (6.69) size of nodal zone can be obtained as follows 

0 '
c

P
x

tf
  (6.71) 

0cP f x t

0cC f y t

a

h

0y

0y

0x

0x0x

'
cf


0cC f y t

0cP f x t
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If Eq. (6.71) is divided by height h  we can obtain the ratio of shear stress to 

strength of concrete 

0
' '

c c

x P

h thf f


   (6.72) 

  represents the average shear stress along the overall depth h . 

Then, the size of 0y  is determined as 

0 0 01 1

2 4

y x xa

h h h h
     
 

 (6.73) 

Since this equation must have positive value, that is, when square root reaches zero 

the requirement of 0 /y h  reaches the maximum. Therefore, the maximum values 

of 0 /y h  is 1/2.  

Substituting this results into Eq. (6.73) and organizing yields 

2

0 1
1

2

x a a

h h h

         
 (6.74) 

This means that the maximum value of the average stress is 

2

'

1
1

2c

a a

f h h

          
 (6.75) 

The formula determines the highest load which can be carried by a strut of depth h  

and shear span a . 

In compressive sliding failure mechanism, it is assumed that vertical normal stress 

and shear stress are existed in the concrete. 
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Stress intensity factors for mode-I and mode-II fracture expressed by principal 

tensile stress and shear stress acting on cracked plane are represented as follows 

 cos 2sin cosI xy cK a n       (6.76) 

 22cos 1 sin cosII xy cK a n          (6.77) 

where ca  is length of crack and   means the angle of inclined crack respect to 

vertical axis and n  represents the ratio of normal stress to shear stress. 

By using these stress intensity factors, effective stress intensity factor for inclined 

crack can be obtained as follows. 

2 2 2 2cos 2 sin cos 1eff I II xy effK K K a n n          
(6.78) 

Angle of inclined crack is calculated from Mohr’s circle as follows 

 
2

tan 2 xy

x





  (6.79) 

where x  represents the compressive stress of concrete. 

When sliding failure occurs in diagonal strut the ratio of shear stress to normal 

stress is / 5.22xy x     

Thus, the angle of inclined crack with respect to vertical axis as shown in Fig.(6.42) 

is 

42.26     (6.80) 

This means that the angle of inclined crack is constant when sliding failure occurs at 

diagonal strut. 
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In sliding failure, effective stress intensity factor is equal to critical stress intensity 

factor for mode-II fracture. 

0eff IIc uK K a    (6.81) 

where 0a  represents length of initial crack. 

Shear stress for sliding failure is 

'0.2u cf   (6.82) 

Thus, shear stress is given by 

'
0

2 2

0.2

cos 2 sin cos 1

c
xy

eff

f a

an n


  


 
 (6.83) 

Inserting Eq. (6.80) into Eq. (6.83), ultimate shear stress is obtained as follows. 

' 00.24xy c
eff

a
f

a
   (6.84) 

Finally, ultimate shear stress is expressed as function of compressive strength of 

concrete and length of initial crack and effective crack. 

 

6.6.7 Shear Strength of Short Beams 

To calculate the shear strength of deep beams, a simple strut-and-tie model for 

reinforced concrete deep beams without web reinforcement is presented as shown in 

Fig. (6.46). The shear failure of the beam is assumed the crushing of the concrete 

strut after flexural crack shown in concrete cover zone has fully developed. And it is 

assumed that longitudinal reinforcement is yielded in advance before the crushing 
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of the concrete. Therefore, the depth of neutral axis can be considered as size of 

nodal zone. 

 

Figure 6.46 Strut-and-tie model for deep beam   

Shear stress can be derived from Eq. (6.85) expressed in terms of compressive 

strength of concrete and initial crack length and effective crack length as follows. 

' 00.24xy c
eff

a
f

a
   (6.85) 

where 0a  represents the initial crack length and effa  means the effective crack 

length. 

Thus, the shear strength of deep beams is given by 

' 00.24u c
eff

a
V f BD

a
  (6.86) 

where B  is thickness of diagonal strut and D  means depth of diagonal strut as 

shown in Fig. (6.42-a). 

In this study, initial crack length assumes the same as concrete cover length cc , 

therefore, effective crack length can be written as follows 

h

a

1
swd

cc



159 

coseff

d
a


  (6.90) 

 

Figure 6.47 Diagonal single strut of deep beams 

Substituting Eq.(6.90) into Eq.(6.86) yields 

' cos
0.24

sin cos
c n

u c
s s

c c h
V f

d


 

  (6.91) 

where nc  is depth of neutral axis expressed by  2
2nc d n n n       

, and 

s  means angle of diagonal strut and assumed to be tan /s a d  . 

 

6.6.8 Verification 

The proposed model is applied as follows for the prediction of the ultimate shear 

strength of reinforced concrete deep beams without web reinforcement tested by 

Walraven et al. (1994). They investigated the size effect of short beams in shear-
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loaded. Table (6-5) shows the information of test data. The material properties were 

kept constant and the specimen size was varied. The depth of the member was 

varied between 200 and 1000mm, whereas all other variables remained constant. In 

all the tests, the slenderness ratio was a/d=1. The reinforcement ratio of the 

specimens was generally 1.1 percent, so that failure by yielding of the longitudinal 

steel was excluded in advance. 

In Fig. (6.48), normalized shear stress  '/u u w cv V b d f  at inclined shear 

cracking are represented as a function of the effective depth d . It is shown that 

shear stress at shear failure decreases as increases the effective depth. This means 

shear stress of deep beams is size dependent. 

Table 6-5 Information of test data obtained by Walraven et al.(1994) 

Authors 
Speci-
men 

'
cf  

[MPa] 
wb  

[mm]
d  

[mm]
/a d
 

h  
[mm]

cc

[mm]

  
(%) 

uV  

[kN] 
uv  

[MPa] 

Walraven 
(1994) 

V711 18.1 250 160 1.0 200 40 1.1 165 0.97 

V022 19.9 250 360 1.0 400 40 1.1 270 0.67 

V511 19.8 250 560 1.0 600 40 1.1 350 0.56 

V411 19.4 250 740 1.0 800 60 1.1 365 0.45 

V211 20.4 250 930 1.0 1000 70 1.1 505 0.48 
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Figure 6.48 Test results and size effect obtained by Walraven et al.(1994) 

For comparison of experimental results and predictions, five specimens tested by 

Walraven et al. (1994) compared with the theoretical predictions from Eq. (7.70) 

with a varying effective depth. Table (6-6) and Fig. (6.49) show the comparison of 

ultimate shear strength or stress between test results and predictions. It is assumed 

that the angle of diagonal strut is constant and longitudinal reinforcement is yielded 

in advance as mentioned in Section. Both the test results and predictions show a 

tendency in which ultimate shear strength decreases as the effective depth increases. 

The ratio of experimental results to prediction was 1.02 in mean value and 0.12 in 

standard deviation, respectively. 
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Table 6-6 Comparison of ultimate shear strength between test results and 
predictions 

Authors 
Speci- 
men 

nc  
[mm] 

1  
(degree)

,u testV  

[kN] 
,u testv  

[MPa]
, .u predV  

[kN] 
, .u predv  

[MPa] 

,

, .

u test

u pred

V

V
 

Walraven et al. 
(1994) 

V711 59.5 42.26 165 0.97 149.5 0.88 1.10 

V022 131.4 42.26 270 0.67 246.5 0.62 1.10 

V511 204.6 42.26 350 0.56 305.9 0.49 1.14 

V411 271.5 42.26 365 0.45 422.0 0.52 0.86 

V211 337.9 42.26 505 0.48 537.3 0.51 0.94 

Mean       1.03 

Standard Deviation       0.12 

 

 

Figure 6.49 Comparison of shear stress between test data and predictions 

Fig. (6.50) shows the comparisons of size effect between the proposed model based 

on concrete softening and theory of plasticity proposed by using the strut-and-tie 

model as illustrated in Fig. (6.42). To compare the predictions with experimental 

results, 5 test specimens by Walraven et al. (1994) were selected. As a result, shear 

strength decreases as the effective depth increases mostly. However, the proposed 
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model based on diagonal crack growth and concrete softening appears the size 

effect better than the theory of plasticity. On the other hand, shear strength base on 

strut-and-tie model does not indicate the size effect precisely. 

 

Figure 6.50 Comparisons of size effect between proposed model based on 
concrete softening and theory of plasticity 

 

6.6.9 Summary 

 

In this section, based on failure mode of diagonal single strut and crack propagation, 

shear strength of reinforced concrete deep beams without web reinforcement was 

investigated. It is assumed that there are two stress components, that is, normal and 

shear stress, in diagonal single strut based on theory of elasticity. The main points 

can be summarized in following. 

 

(1) Based on theory of elasticity, normal and shear stress distributions were 

investigated. Unlike general solutions by the strut-and-tie model, in this 
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study, it is assumed that both normal and shear stresses exist in the 

diagonal single strut. 

(2) To obtain the shear strength of deep beams, it is assumed that diagonal 

single strut fails when the combined stress reaches the ultimate shear stress. 

(3) Diagonal strut fails when effective stress intensity factor effK  is equal to 

critical stress intensity factor mode-II fracture IIcK . 

(4) Shear strength decreases as the length of effective crack increases. Because 

how long the length of crack eventually means that the large the size of 

specimen, size effect also shows in deep beams without web reinforcement. 

(5) The proposed shear strength based on the softening of concrete and crack 

propagation appear the size effect clearly than theory of plasticity by using 

the strut-and-tie model. 

(6) As a result of comparisons of predictions with experimental results, it can 

be shown that predicted strength by the proposed equation agree well with 

the experimental results. 
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7. Summary and Conclusions 

 

7.1 Summary 

This dissertation aims at contributing a better understanding the size effect and 

focus on theoretical prediction of the shear strength of reinforced concrete beams 

without web reinforcement based on critical crack path and crack length. 

Numerous experiments and analysis for shear strength of reinforced concrete 

slender beams and deep beams have been studied for many years. Currently design 

code provisions present the empirical design equations based on the tremendous 

experimental results. Even though they consider the primary parameters, especially 

size effect, which are affected the shear strength, current design codes and the 

equations proposed by many researchers are based on the empirical and statistical 

consideration. 

To determine the shear strength and investigate the size effect of reinforced 

concrete beams, critical crack path dependent failure mechanism was proposed. 

This study assumes biaxial stress fields at the diagonal critical crack tip in both 

diagonal tension failure and sliding failure modes. The transition area which is 

located from uniaxial stress states below the neutral axis of beams to biaxial stress 

states above the neutral axis requires the change of primary fracture mode. This 

failure is defined as material failure such as separation and sliding. To provide the 

deformation dependent strength model, failure mechanism was investigated by 

using the modified Mohr-Coulomb criteria. For investigating the stress states at 

critical diagonal crack tip, size dependent critical stress intensity factors for mode-I 

and mode-II fracture were proposed. From the relationship between the stress 
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intensity factor and critical stress intensity factor, it is known that size effect is 

related to the crack length for both mode-I and mode-II fracture. 

Since the proposed model based on the crack propagation is function of initial crack 

length and effective crack length, it can properly explain the degradation of shear 

strength as the crack length increases precisely and can estimate shear strength of 

reinforced concrete slender and deep beams considering the size effect. Due to these 

advantages, the proposed strength model can more accurately estimate the strength 

of existing experimental results compared to other theoretical strength model. 

 

7.2 Conclusions 

For estimating shear strength of RC slender and deep beams without web 

reinforcement and explaining size effect, theoretical studies had been performed in 

linear elastic fracture mechanics approach. The conclusions of this dissertation can 

be summarized as follows: 

 

(1) Critical stress intensity factors for mode-I and mode-II fracture can be defined as 

function of ultimate stress at a crack tip and crack length and they are dependent on 

the size. 

(2) The Ultimate stress is determined by the material failure criteria. From modified 

Mohr-Coulomb criteria ultimate shear stress is obtained as '0.2u cf   (MPa) 

slender beams and as '0.24u cf   (MPa) for deep beams. 

(3) The proposed strength model based on crack propagation is more reasonable to 

explain the sliding failure mode of prismatic body of concrete than theory of 

plasticity since both normal stress and shear stress exist in the concrete diagonal 

strut under uniaxial compression. 
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(4) The relationship between initial and effective crack length affects the size effect 

of reinforced concrete beams.  

(5) As a result of comparison of shear strength due to the diagonal tension failure 

with the strength due to the sliding failure, it is recognized that shear strength 

depends on the critical crack path. 

(6) The proposed theory accurately predicts the experimental results for the ultimate 

shear stress of slender and deep beams with various strengths of concrete, steel ratio, 

shear span-to-depth ratio and effective depth. 
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Appendix : Details of Beams without Web Reinforcement 

 

Authors 
Specimen 

name 

'
cf  

[MPa]

b  

[mm]

d  

[mm]
/a d  

h  

[mm]

  

[%]

yf  

[MPa] 

testV  

[kN] 

Ahmad et al. 

(1986) 

A1 59.3 127 203 4.00 254 3.93 414 57.8 

A2 59.3 127 203 3.00 254 3.93 414 68.9 

A8 59.3 127 208 3.00 254 1.77 414 48.9 

Bresler 

(1963) 

0A-1 21.4 310 461 3.97 556 1.81 555 166.9 

0A-2 23.3 305 466 4.91 561 2.27 555 178.0 

0A-3 35.9 307 462 6.93 556 2.73 552 189.0 

Chana 

(1981) 

2.1 37 203 356 3.00 406 1.74 478 96.0 

2.2 31.2 203 356 3.00 406 1.74 478 87.4 

2.3 33.9 203 356 3.00 406 1.74 478 99.4 

Cossio et al. 

(1960) 

L-2a 34.9 152 252 3.02 305 3.35 282 80.1 

L-3 26.6 152 252 4.02 305 3.35 310 53.4 

L-4 24.5 152 252 5.02 305 3.35 303 51.2 

L-5 26.5 152 252 6.03 305 3.35 330 51.0 

A2 29.9 152 254 3.00 305 0.98 469 41.8 

A3 18.5 152 254 4.00 305 0.98 452 34.3 

A-12 25.4 152 254 3.00 305 3.33 314 59.0 

A-13 21 152 254 4.00 305 3.33 393 46.9 

A-14 26.1 152 254 5.00 305 3.33 364 54.7 

Elzanaty et al. 

(1986) 

F11 19.7 178 272 4.00 305 1.20 434 45.5 

F12 19.7 178 269 4.00 305 2.50 434 54.6 

F8 38 178 273 4.00 305 1.00 434 46.7 

F13 38 178 272 4.00 305 1.20 434 47.0 

F14 38 178 269 4.00 305 2.50 434 64.6 

Feldman et al. 

(1955) 

L-2A 24.9 152 252 3.02 305 3.35 283 80.1 

L-3 26.6 152 252 4.02 305 3.35 310 53.4 

L-4 24.5 152 252 5.03 305 3.35 303 51.2 
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 L-5 26.5 152 252 6.04 305 3.35 331 51.2 

 

Hallgren 

(1994) 

B90SB 

17-2-45 
24.7 157 191 3.66 232 2.26 630 59.0 

B90SB 

18-2-45 
24.7 155 194 3.60 235 2.25 630 63.0 

B91SD 

1-4-61 
57.8 156 194 3.61 247 3.98 494 88.5 

B91SD 

2-4-61 
57.8 156 195 3.59 248 3.96 494 90.0 

B91SD 

5-4-58 
55.4 156 196 3.57 249 3.94 494 78.0 

B91SD 

6-4-58 
55.4 150 196 3.57 249 4.10 494 82.5 

B90SB 

5-2-33 
31.2 156 191 3.66 232 2.28 651 56.0 

B90SB 

6-2-33 
31.2 156 194 3.61 235 2.24 651 53.5 

B90SB 

9-2-31 
29.5 156 192 3.65 233 2.26 651 49.0 

B90SB 

10-2-31 
29.5 157 193 3.63 234 2.20 651 53.5 

Harnadi et al. 

(1980) 

G1 28.8 100 370 3.46 400 1.70 400 44.5 

G2 22.3 100 372 3.44 400 1.08 460 41.0 

G3 20.9 100 372 5.97 400 1.08 800 30.3 

Hanson 

(1961) 

A4 19.9 152 267 4.95 305 1.25 611 33.8 

B4 29.4 152 267 4.95 305 1.25 611 42.8 

BW4 28.2 152 267 4.95 305 1.25 611 40.0 

8B2 29.3 152 267 4.95 305 2.53 637 52.4 

B2 29.3 152 267 4.95 305 2.22 637 52.4 

Kani 

(1967) 

63 24.9 154 546 4.00 610 2.78 352 93.2 

64 24.4 156 540 8.04 610 2.76 352 79.0 

66 25.1 156 541 6.02 610 2.75 352 90.8 

79 24.8 153 559 6.84 610 2.72 381 83.7 
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Kani 

(1967) 

74/75 25.9 152 524 3.11 610 2.84 365 107.9 

71 26 155 544 2.99 610 2.66 374 102.1 

Kani 

(1967) 

81 26.1 153 272 5.98 305 2.79 343 51.2 

84 26.1 151 271 4.00 305 2.84 342 55.4 

96 24 156 275 3.95 305 2.71 335 56.3 

83 26.1 156 271 3.00 305 2.75 343 65.0 

97 25.9 152 276 2.95 305 2.69 366 62.5 

91 26.1 154 269 6.06 305 2.70 364 51.0 

92 26.1 152 270 7.03 305 2.73 369 45.9 

Krefeld et al. 

(1966) 

11A2 28.7 152 314 2.91 381 3.42 401 73.4 

12A2 28.6 152 238 3.85 305 4.51 401 64.1 

18A2 18.3 152 316 2.89 381 2.64 478 63.2 

18B2 18.9 152 316 2.89 381 2.64 487 72.1 

18C2 21.5 152 316 2.89 381 2.64 487 73.4 

18D2 21 152 316 2.89 381 2.64 487 60.1 

16A2 21.1 152 240 3.81 305 1.74 487 41.8 

17A2 20.9 152 243 3.77 305 2.14 408 44.1 

3AC 19.8 152 256 4.77 305 2.03 386 44.1 

3CC 19.5 152 256 5.96 305 2.03 386 35.6 

3AAC 32.8 152 256 3.58 305 2.03 386 55.6 

4AAC 27.7 152 254 3.60 305 2.66 401 57.9 

5AAC 31.2 152 252 3.62 305 3.31 378 57.0 

6AAC 32.7 152 250 3.65 305 4.35 368 60.1 

3AC 30.3 152 256 4.77 305 2.03 386 53.4 

4AC 29 152 254 4.80 305 2.66 401 53.8 

5AC 31.2 152 252 4.83 305 3.31 378 54.3 

6AC 32.4 152 250 4.87 305 4.35 368 59.2 

4CC 36.5 152 254 6.00 305 2.66 401 52.5 
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Krefeld et al. 

(1966) 

5CC 35.6 152 252 6.04 305 3.31 378 57.4 

6CC 36.5 152 250 6.09 305 4.35 368 63.2 

C 15.9 203 483 3.16 533 1.57 401 84.6 

OCA 33.9 152 254 6.00 305 2.66 369 48.5 

OCB 33.9 152 254 6.00 305 2.66 368 52.5 

OCA 36.4 254 456 4.01 508 2.20 367 146.9 

OCB 36.4 254 456 4.01 508 2.20 366 133.5 

15A2 19.1 152 316 2.89 381 1.34 386 45.8 

15B2 19.7 152 316 2.89 381 1.34 386 52.1 

Podgorniak 

(1998) 

BN50 35.2 300 450 3.00 500 0.81 486 131.9 

BN25 35.2 300 225 3.00 250 0.89 437 73.0 

BN12 35.2 300 110 3.07 125 0.91 458 40.1 

Laupa et al. 

(1953) 

S2 25.6 152 269 4.54 305 2.08 284 42.5 

S3 30.7 152 265 4.60 305 2.52 410 53.1 

S4 29.3 152 263 4.61 305 3.21 309 55.6 

S5 28.4 152 262 4.65 305 4.11 315 49.8 

S11 14 152 267 4.56 305 1.90 328 33.8 

S13 24.9 152 262 4.56 305 4.11 304 49.8 

Leonhardt et al. 

(1962) 

5l 28 190 270 3.00 320 2.07 465 60.3 

5r 28 190 270 3.00 320 2.07 465 76.5 

6l 28 190 270 4.07 320 2.07 465 60.8 

6r 28 190 270 4.07 320 2.07 465 68.2 

7-1 29.4 190 270 5.00 320 2.07 465 62.3 

7-2 29.4 190 270 5.00 320 2.07 465 68.2 

8-1 29.4 190 270 6.00 320 2.07 465 65.7 

Leonhardt et al. 

(1962) 

8-2 29.4 190 270 6.00 320 2.07 465 65.7 

D2/1 35.4 100 140 3.00 160 1.62 427 21.2 

D2/2 35.4 100 140 3.00 160 1.62 427 23.3 
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Leonhardt et al. 

(1962) 

D3/1 36.6 150 210 3.00 240 1.62 413 46.4 

D3/2l 36.6 150 210 3.00 240 1.62 413 41.2 

D3/2r 36.6 150 210 3.00 240 1.62 413 44.5 

D4/1 33.6 200 280 3.00 320 1.62 439 74.1 

D4/2l 33.6 200 280 3.00 320 1.62 439 74.1 

D4/2r 33.6 200 280 3.00 320 1.62 439 68.7 

EA1 19.8 190 270 2.78 320 1.82 439 58.4 

EA2 19.8 190 270 2.78 320 1.78 490 74.6 

C1 37.2 100 150 3.00 180 1.14 425 21.6 

C2 37.2 150 300 3.00 330 1.14 425 64.8 

C3 37.2 200 450 3.00 500 1.14 425 99.1 

C4 37.2 225 600 3.00 670 1.14 425 147.2 

Mathey et al. 

(1963) 

I11a-17 27.8 203 403 3.78 457 2.55 505 90.0 

I11a-18 23.9 203 403 3.78 457 2.55 505 82.5 

Va-19 22.3 203 403 3.78 457 0.93 690 64.7 

Va-20 24.3 203 403 3.78 457 0.93 690 67.4 

V1a-24 25 203 403 3.78 457 0.47 696 55.7 

V1a-25 24.5 203 403 3.78 457 0.47 696 51.0 

Vib-21 24.8 203 403 2.84 457 0.84 707 73.0 

Vib-22 24.5 203 403 2.84 457 0.84 707 63.8 

Vib-23 29.0 203 403 2.84 457 0.84 707 76.7 

Morrow et al. 

(1957) 

B40 B4 33.0 305 368 2.76 406 1.89 378 159.1 

B56B8 14 305 368 3.86 406 1.89 471 102.2 

B56A4 23.7 305 375 3.80 406 2.45 330 141.1 

B56B4 25.9 305 368 3.86 406 1.89 441 124.8 

Morrow et al. 

(1957) 

B56E4 27 305 368 3.86 406 1.28 429 111.0 

B56A6 37.9 308 356 4.00 406 3.88 439 179.5 

B56B6 43.4 305 372 3.83 406 1.87 466 141.6 
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Morrow et al. 

(1957) 

B70B2 15.5 305 365 4.87 406 1.91 462 90.6 

B70A4 25.9 305 368 4.83 406 2.50 436 134.5 

B70A6 42.7 305 356 5.00 406 3.92 435 182.5 

B84B4 25.9 305 363 5.87 406 1.91 465 112.7 

Mphonde et al. 

(1984) 

AO-3-3b 20.3 152 298 3.58 337 3.36 414 64.3 

AO-3-3c 36.6 152 298 3.58 337 2.34 414 66.6 

AO-7-3a 36.9 152 298 3.58 337 3.36 414 82.0 

AO-7-3b 40.7 152 298 3.58 337 3.36 414 82.4 

Rajagopalan et al. 

(1968) 

S-1 34.7 154 259 4.92 311 1.42 655 35.6 

S-2 31.4 154 265 3.83 311 0.98 655 37.4 

S-3 27.5 152 267 4.19 311 0.81 524 31.1 

S-4 31.4 152 268 4.17 311 0.63 524 28.0 

S-5 36.5 152 262 4.27 311 0.53 1779 33.6 

S-9 23.8 152 262 4.27 311 0.53 1779 24.5 

S-6 29.5 151 268 4.17 311 0.35 1779 27.4 

S-7 27.2 152 268 4.17 311 0.25 1779 30.0 

S-12 28.2 152 268 4.17 311 0.25 1779 24.6 

S-13 22.5 152 265 4.22 311 1.73 655 40.0 

Ruesch 

(1962) 

l l X 22.0 90 111 3.60 134 2.63 481 14.6 

l l Y 22.0 120 199 3.60 229 2.64 407 30.1 

l l Z 23.1 180 262 3.62 302 2.64 412 54.7 

Taylor 

(1972) 

1A 35.3 203 370 3.02 406 1.03 350 63.1 

2A 40.8 203 370 3.02 406 1.54 350 93.5 

1B 35.3 203 370 3.02 406 1.03 350 77.2 

2B 40.8 203 370 3.02 406 1.54 350 102.6 

3B 38.8 203 370 3.02 406 1.03 350 77.6 

B1 23.0 200 465 3.00 500 1.35 420 104.3 
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Taylor 

(1972) 

B2 20.9 200 465 3.00 500 1.35 420 87.3 

B3 27.0 200 465 3.00 500 1.35 420 85.3 

A1 27.3 400 930 3.00 1000 1.35 420 358.4 

A2 23.9 400 930 3.00 1000 1.35 420 328.4 

Thorenfeld et al. 

(1990) 

B11 51.3 150 221 3.00 250 1.82 500 58.0 

B13 51.3 150 207 4.00 250 3.24 500 70.0 

B14 51.3 150 207 3.00 250 3.24 500 83.0 

B16 51.3 150 207 3.00 250 3.24 500 82.6 

B17 51.3 150 207 4.00 250 3.24 500 77.9 

B18 51.3 150 207 3.00 250 3.24 500 82.6 

B19 51.3 150 207 4.00 250 3.24 500 86.0 

B20 51.3 150 207 3.00 250 3.24 500 107.1 

Walraven 

(1978) 

A2 22.9 200 420 3.00 450 0.74 440 70.6 

A3 23.2 200 720 3.00 750 0.79 440 100.8 

Thorenfeldt 

(1990) 

B33 55.1 150 207 4.00 250 3.23 500 68.0 

B34 55.1 150 207 3.00 250 3.23 500 82.6 

Islam et al. 

(1998) 

M60-S0 48.3 150 207 3.86 250 2.02 554 45.5 

M60-S1 48.3 150 207 2.90 250 2.02 554 92.3 

M60-S3 48.3 150 207 2.90 250 2.02 554 90.4 

M60-S4 48.3 150 207 3.86 250 2.02 554 51.9 

M40-S0 32.7 150 205 3.90 250 3.19 320 55 

M40-S1 32.7 150 205 2.93 250 3.19 320 84.6 

M40-S3 32.7 150 205 2.93 250 3.19 320 80.7 

M25-S0 25.3 150 207 3.86 250 2.02 350 47.5 

M25-S3 25.3 150 207 2.90 250 2.02 350 56.5 

Lambolle et al. 

(1990) 

NS-1.07 35.3 200 415 3.01 450 0.97 545 127 

NS-1.45 32.3 200 415 3.01 450 1.45 545 180 
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Kulkami et al. 

(1998) 

B4JL20-S 39.8 102 152 5.00 178 1.37 518 19.5 

B3NO15-S 40.9 102 152 4.00 178 1.37 518 22.7 

B3NO30-S 42.8 102 152 3.50 178 1.37 518 24.2 

Coderwail et al. 

(1974) 
734-34 28.2 135 234 3.08 260 0.97 818 41.2 

Moody et al. 

(1954) 

A1 28.8 178 262 3.06 305 2.17 310 60.1 

A2 29.5 178 267 3.00 305 2.14 310 66.8 

A3 29.5 178 268 2.99 305 2.23 310 75.7 

A4 29.9 178 270 2.96 305 2.37 310 71.2 

B1 20.1 178 267 3.00 305 1.60 310 56.3 

B2 20.5 178 268 2.99 305 1.63 310 60.1 

B3 18.3 178 270 2.96 305 1.60 310 55.6 

B4 15.9 178 272 2.95 305 1.64 310 55.6 

1 34.9 152 268 3.41 305 1.90 310 57.9 

2 15.9 152 268 3.41 305 1.90 310 35.6 

3 24.5 152 268 3.41 305 1.90 310 52.3 

4 14.6 152 268 3.41 305 1.90 310 40.5 

5 29.2 152 268 3.41 305 1.90 310 52.1 

6 15.0 152 268 3.41 305 1.90 310 34.5 

7 29.4 152 268 3.41 305 1.90 310 51.2 

9 39.1 152 268 3.41 305 1.90 310 53.4 

10 22.7 152 268 3.41 305 1.90 310 49.0 

11 36.2 152 268 3.41 305 1.90 310 60.1 

12 19.2 152 268 3.41 305 1.90 310 47.2 

14 21.4 152 268 3.41 305 1.90 310 43.2 

15 35.5 152 268 3.41 305 1.90 310 51.2 

16 15.5 152 268 3.41 305 1.90 310 37.8 

Ferguson 

(1956) 
F2 27.8 101 189 3.23 210 2.08 310 22.3 
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초  록 

 

이 논문은 위험 균열 경로를 고려한 전단철근이 없는 철근 콘크리트 보

의 전단강도를 평가하고 선형탄성파괴역학에서의 혼합 파괴모드를 이용

하여 크기 효과를 알아보는데 주목적이 있다. 이러한 선형탄성파괴역학은 

균열 선단에서의 응력 상태를 균열의 길이의 함수로 표현할 수 있으므로 

전단강도에 대한 크기 효과에 대한 이론적인 근거를 제공해준다. 

철근콘크리트 부재의 전단강도와 크기효과에 대한 수많은 실험적, 해석적 

연구의 노력에도 불구하고 위험 균열 경로를 고려한 전단 철근이 없는 

일반 보와 깊은 보에 대해 크기 효과와 전단 파괴를 설명할 수 있는 근

본적인 이론이 여전히 제시되지 못하고 있는 실정이다. 기존의 규준과 제

시된 많은 모델은 경험에 의존하고 있으며 아울러 통계적인 방법에 기초

하고 있다. 

전단강도를 결정하고 철근 콘크리트 보의 크기 효과를 알아보기 위해 위

험 균열 경로와 균열 길이에 기초한 파괴 메커니즘을 제안하였다. 이 연

구에서는 사인장 파괴와 미끄럼 파괴에서 발생하는 대각 위험 균열 선단

에서 이축 응력 상태를 가정한다. 보의 중립축을 기준으로 응력의 변화가 

생기며 이는 주요 파괴 모드의 변화를 요구한다. 이러한 파괴는 분리파괴

와 미끄러짐 파괴와 같은 재료의 파괴로 정의되었다. 변형을 고려한 강도 

모델을 제시하기 위해 수정 모어 쿨롱 이론을 이용하였으며 재료의 파괴 

이론을 이용해 파괴 메커니즘을 알아보았다. 대각 균열 선단에서의 응력 

상태를 알아보기 위해 재료의 파괴 이론에 의해 결정된 극한 응력과 균

열 길이로 표현된 모드-I과 모드-II파괴에 대한 크기에 의존하는 임계 응

력 확대 계수를 제안하였다. 응력 확장 계수와 임계 응력 확장 계수와의 

관계로부터 크기 효과는 모드-I 파괴와 모드-II 파괴 모두 균열 길이에 관
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계된다는 것을 알 수 있다. 

전단 철근이 없는 일반보의 전단강도를 구하기 위해 파괴 모드를 위험 

균열 경로를 기초로 사인장 파괴와 미끄럼 파괴로 구분하였다. 그리고 압

축대의 위험 단면에서는 콘크리트 연화효과가 발생한다고 가정하였다. 또

한 사인장 파괴와 미끄럼 파괴에 대해 콘크리트 변형률에 기초한 새로운 

휨-전단 거동을 제안하였다. 극한 전단 강도는 휨 거동 곡선과 연화효과

를 나타내는 전단 곡선이 만나는 지점에서 결정된다. 

전단 철근이 없는 깊은 보의 전단력을 결정하기 위해 일축 압축력을 받

는 콘크리트 각기둥의 거동에 대해 알아보았다. 이 각기둥에는 수직응력

과 전단응력이 모두 존재한다고 가정하였다. 해석결과 깊은 보에서도 유

효 깊이에 대한 크기 효과를 보여주었다. 

제안된 모델을 철근콘크리트 전단 철근이 없는 일반 보와 깊은 보의 전

단 강도를 추정한다. 제안된 이론은 전단응력에 대해 다양한 콘크리트 강

도, 절근비, 전단 스팬비 그리고 유효 깊이를 갖는 일반 보와 깊은 보의 

실험 결과와 잘 일치하였다. 

위험 균열 경로와 균열 길이에 기초한 제안된 이론적인 모델은 이미 제

시된 다른 모델들 보다 철근 콘크리트 보의 크기 효과를 설명하는 데 보

다 합리적이다. 

 

주요어 : 위험 균열 경로, 전단강도, 크기효과, 임계응력확대계수, 혼합파

괴모드, 파괴 메커니즘 

학번 : 2007-30163 
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