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Abstract 

 

To solve material/geometric nonlinear structural systems, iterative evaluation of internal 

forces and tangent stiffness matrices is required. This increases the computation time for 

nonlinear static/dynamic analysis. Although various reduced-order modeling techniques 

have been proposed to effectively solve nonlinear structural analysis problems, problems 

arise in the reduction of the system matrices. Since most reduction methods only reduce 

the system matrix after the stiffness and mass matrix construction process, the 

construction itself proceeds in full domain. In most cases of nonlinear analysis, the 

construction of system matrix takes a large amount of computation time, comparable to 

the computation time of the solving process. Although this problem can be tackled with 

STiffness Evaluation Procedure (STEP), which uses polynomial formulations to describe 

nonlinear internal forces, the construction time of the reduced model increases rapidly 

with the cubic power of the system size.  

In this paper, Stiffness Evaluation method based on Element Connectivity (SEEC) is 

proposed. The element connectivity of the finite element models is used to evaluate the 

nonlinear stiffness coefficients. The proposed method minimizes the effect of the system 

size when the computational model is constructed. In addition, the Reduced Order 

Modeling (ROM) technique using Proper Orthogonal Decomposition (POD) is applied to 

enhance the efficiency of the SEEC method, which is referred to as SEECROM. This 

enables effective analysis and design of large-scale problems. Moreover, SEECROM is 
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easily characterized by design parameters. The parameterization is readily achieved with 

element-wise nature of the proposed method. SEECROM is successfully demonstrated 

for structural dynamic analysis of geometrically nonlinear shell structures under the 

perturbation of external loads. SEECROM-Parameterization is also successfully 

demonstrated for static and dynamic analysis of hyperelastic materials that have material 

and geometric nonlinearities. 

In the case of flexible multibody systems, nonlinearities are caused by the rigid motions 

of the structure rather than the deformation of the flexible parts. Since the approaches to 

the multibody dynamics are different from the structural dynamics, the reduction methods 

which have been developed for the structural analyses cannot be utilized in direct manner. 

However, this can be achieved with the aid of Absolute Nodal Coordinate Formulation 

(ANCF), which takes the analogous format to the governing finite element formulation of 

structural dynamics. SEECROM method is combined to ANCF to form an efficient 

reduced model of the flexible multibody system. A number of examples are provided for 

the verification of the proposed reduction method and its parameterization.  

For the application to the optimization of nonlinear structures, it is vital that reduced 

order models be efficiently parameterized for the design parameters. SEECROM-

Parameterization fits easily to the optimization problems concerning nonlinear systems. 

To show the validity of the proposed methodology, two sample optimization problems are 

subjected to a static structural system with a hyperelastic material and a multibody 

dynamic system. 
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1. INTRODUCTION 

 

Different from linear analyses, which can be conducted in a single solution step, 

nonlinear analyses are usually solved by performing iterations of the linear analysis. 

Therefore, a nonlinear analysis takes more computational resources than a linear one. In 

cases of structural dynamic analysis or design problems, which contain nonlinearities, the 

iterative nonlinear analysis is again recursively solved at every iteration step. Therefore, 

many studies have been carried out to solve nonlinear analysis problems in reduced time 

and effort. 

Reduced-order modeling techniques, which are well developed for linear systems, have 

also been adapted for nonlinear systems. However, in nonlinear analysis, the system 

matrices should be re-constructed as the structure deforms. The problem here is that the 

re-construction process is carried out in full domain even with a model reduction 

technique. Most reduction methods merely aim at shrinking the fully constructed matrix 

to a reduced one. While the computation time for the solution-solving process (i.e., 

inverse of tangent stiffness matrices) is reduced, the construction of the system matrices 

of the reduced one takes the same amount of time as that of the full analysis. 

As a computationally efficient approach of nonlinear analysis, Muravyov and Rizzi 

proposed the STEP (STiffness Evaluation Procedure) method [1]. In this method, 

nonlinear internal forces are represented by a 3rd order polynomial formulation of 

displacements. Since the coefficients of each term of polynomial displacements, which 

are called stiffness, are evaluated to construct an internal force model, the method is 
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referred to as “stiffness evaluation.” If the representative model is accurate enough, the 

nonlinear internal force vector and the tangent stiffness matrix can be promptly computed 

as the structure deforms. In recent years, as extensions of the STEP method, nonintrusive 

structural dynamic reduced-order modeling approaches have been proposed [2]. They are 

also referred to as “indirect” since they do not require any internal information of the 

governing equations or the detailed formula for the system. This enables straightforward 

use of commercial codes such as NASTRAN, ABAQUS, and ANSYS. The nonintrusive 

approaches were validated in various applications, including prediction of fatigue life [3-

4], nonlinear stochastic computations [5-6], and nonlinear post-buckling analyses [7]. A 

strategy that enables STEP applications to more complex structures was also proposed by 

Perez at al. [8] The nonlinear static response analysis of a nine-bay panel model with 

86,000 degrees of freedom and 85 reduction modes was successfully conducted.  

Still, further consideration should be given to the efficiency of the process of identifying 

the internal force model. Usually in the stiffness evaluation procedure, the coefficients of 

the polynomial displacements can be identified by a series of results of the full finite 

element simulations. The required number of computations increases with the cubic 

power of the system size. In the cases of large-scale problems, the identification of 

nonlinear stiffness coefficients of these stiffness evaluation methods is computationally 

prohibited even with the reduced-order modeling techniques. In most cases, the 

computational efficiency is mainly based on the size of the problems.  

In structural optimization problems, the issue outlined above becomes worse as it is 

necessary to update the design variables in every iteration. If a nonlinear dynamic system 

is concerned, for instance, the time marching simulation of the system should be 
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performed in each iteration of the optimization process. A step of time integration 

simulation includes a number of nonlinear structural analyses, which again includes a set 

of linear analyses. In this case, therefore, a parameterization technique, which 

reconstructs the system as a function of design parameters, is useful. However, not many 

research activities have been conducted on the parameterization of stiffness evaluation 

procedure. Although there is an integrated method that combines stiffness evaluation with 

reduced-order modeling and a parameterization technique [9], it does not directly use the 

strength of the stiffness evaluation method for the parameterization.  

The main goal of this paper is to develop a method that extends the application of the 

stiffness evaluation procedure to large-scale analyses and design problems. To this end, in 

this work, Stiffness Evaluation method based on the Element Connectivity (SEEC) is 

presented. The element connectivity of the finite element models is used to evaluate the 

stiffness coefficients. In finite element methods, the internal force at a specific degree of 

freedom is related to the displacements at the corresponding degrees of freedom within 

the connected elements. Therefore, in the proposed methods, the stiffness coefficients are 

evaluated within the connected elements. Then the required number of full finite element 

computations for the evaluation of the stiffness coefficients is mainly determined by the 

characteristics of the element rather than by the problem size. Moreover, to enhance the 

efficiency, Reduced Order Modeling (ROM) using Proper Orthogonal Decomposition 

(POD) is applied to the proposed method. This process is referred to as SEECROM. 

Different from the conventional approaches with reduced-order modeling, the reduction is 

carried out after the stiffness evaluation. One more advantage of the proposed method is 

the easy utilization of parameterization. Due to the element-wise nature of the 



 

4 

 

identification process of stiffness coefficients, SEECROM models are easily constructed 

with variation of design parameters. 

The present study was conducted to propose an efficient nonlinear model reduction 

method by enhancing the stiffness evaluation methods. The two main targets of this paper 

can be briefly described as follows: 1) For large-scale problems, the proposal of a 

stiffness evaluation method that has less dependency on the system size 2) For design 

problems, effective parameterization of the proposed stiffness evaluation method.  

The proposal of SEECROM and its parameterization is followed by two other 

applications. The first application is the reduced order modeling of multibody dynamics. 

Most analyses of flexible multibody dynamics are based on Floating Frame of Reference 

Formulation (FFRF). It imposes the local coordinates for each flexible part, which 

enables the use of linear stiffness matrices. In the formulations of FFRF, however, inertia 

parts are introduced and the mass matrix becomes nonlinear. Therefore, the utilization of 

the reduction methods that have been developed based on the structural analyses cannot 

be directly achieved. The alternative approach is Absolute Nodal Coordinate Formulation 

(ANCF), which uses global absolute coordinates and slopes. This leads to a constant mass 

matrix and nonlinear stiffness matrix which is analogous to the system matrices of 

nonlinear static structural analysis. Since the additional inertia terms are also vanished 

due to the use of absolute nodal coordinates, the equation of motion with ANCF forms in 

a similar way in nonlinear static structural system. This enables the utilization of ROM 

methods developed for the static nonlinear structural analysis. SEECROM and its 

parameterization technique is combined to ANCF for the reduced modeling of multibody 

dynamics. Various examples which include free-falling pendulum, slider crank and four-
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bar mechanism are successfully demonstrated. 

 In addition, the parameterized SEECROM can be easily applied to the structural 

optimization of nonlinear system. If nonlinearities are present in the system, the 

optimization process inherits the problem of the previous nonlinear reduction methods. 

This has been the obstacle to the study of the optimization concerning nonlinear systems. 

The iterations within the optimization process tends to deflate the efficiency of reduced 

order models while inflate the error rate. Thus the accuracy and the efficiency of the 

reduced model become crucial factors. The parameterization of the nonlinear model is 

another important factor for the application of reduced order models to the optimization 

procedure. If SEECROM-Parameterization is conducted with the proper sampling 

strategy, it can provide the desired reduced order model which meets the requirements. 

Two cases of optimization problems are subjected to a structural nonlinear system and a 

multibody dynamic system to validate the proposed method. 

This paper is organized as follows. Sect. 2 introduces the conventional stiffness 

evaluation method of nonlinear structural analysis. In Sect. 3, the new stiffness evaluation 

method is derived based on the finite element connectivity. Its extension to the reduced-

order modeling and parameterization are presented in Sect. 4 and Sect. 5, respectively. 

Test examples and results are included in each of these sections. The other two 

applications of the proposed method are presented in Sect. 6 and Sect. 7. The application 

to multibody dynamics is covered in Sect. 6 and the extension to the structural 

optimization is presented in Sect. 7. The conclusions are given in Sect. 8. 
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2. STIFFNESS EVALUATION 

 

2.1. Stiffness evaluation methods 

 

The equations of motion of an arbitrary structural system can be written as 

( )  ,     , 1,..., .ij j ij j i iM u C u F i j Nu                (2.1) 

where ijM  and ijC  are the mass and the linear proportional damping matrices, 

respectively, u  is the displacement vector, and iF  is the external force vector. The 

total number of degrees of freedom of the system is equal to N . If material or geometric 

nonlinearities are considered, the internal force ( )i u  is modified from its linear 

composition. It becomes nonlinear in the displacement term u ; as the structure deforms, 

the values of the internal force change. Therefore, to solve the system with nonlinearities, 

an iterative evaluation of deformed states is required. Newton’s method is commonly 

used to solve the structural nonlinearities. Eq. (2.2) represents the iterative process with 

the tangent stiffness matrix 0( )t

ijK u  and the internal force 0( )i u  with the 

displacement 0u . The equation is solved for Δ ju , and then the next iteration step is 

generated by Eq. (2.3) with the updated displacement u . The tangent stiffness matrix can 

be computed from the u -derivative of the internal force as shown in Eq. (2.4). Eq. (2.2)-

(2.4) are repeated until the equilibrium of the system is obtained.  

0 0Δ( ) ( )t

ij j ij j ij j i iM u C u K u Fu u                (2.2) 
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where 0Δu u u                                  (2.3) 

0

0( )t i
ij

j

K
u

u u

u                         (2.4) 

Since the iterative nature makes the solution process of the full nonlinear system 

inefficient, many studies have been carried out to solve the nonlinear analysis in reduced 

time and effort. Various reduced-order modeling techniques have also been proposed to 

enhance the efficiency of solving these nonlinearities. However, most reduction methods 

aim at shrinking the fully constructed matrix to a reduced one. The construction of the 

internal force and the tangent stiffness are still conducted in full domain, which is still a 

large-sized problem since the construction of the system matrices takes a large portion of 

the total computation time of nonlinear analyses. Moreover, the equilibrium of the system 

can easily be destabilized if a reduction technique tries to shrink the construction process 

of the internal force. 

A stiffness evaluation technique is one possible solution to tackle this efficiency 

problem. It uses polynomial formulations to describe nonlinear internal forces. The 

internal force is expressed by 3rd order polynomial terms in displacement u , which is 

shown in Eq. (2.5). The validity of the use of the 3rd degree polynomial functions is 

discussed in Appendix A.   

(1) (2) (3)  ,     , , , 1,...,ij j ij j ij j ijk j k ijkl j k l iM u C u K u K u u K u u u F i j k l N   (2.5) 

where 
(1)

ijK ,
(2)

ijkK ,
(3)

ijklK  are the nonlinear stiffness coefficients. 

In this paper, the polynomial terms of the internal force are expressed in compact form 

and represented with tildes as below.   
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( )ij j ij j i iM u C u Fu                         (2.6) 

where ( )i ijkl j k lK u u uu                         (2.7) 

The iterative form is shown as, 

0 0Δ( ) ( )t

ij j ij j ij j i iM u C u K u Fu u                  (2.8) 

where 

0

0

( )
( )t i

ij

j

K
u

u u

u
u                      (2.9)  

Here we shortened the expression by including 1 as a value of the displacement u , 

which enables j k lu u u  to indicate ju  as well as j ku u  ( (1)(1)ju  and (1)j ku u , 

respectively). The stiffness coefficient ijklK  is basically a collection of the coefficients 

for all possible combinations of displacements. 

Once the stiffness coefficient ijklK  is evaluated, the iterative computations of the thi  

component of the nonlinear internal force ( )i u  can be conducted efficiently. Let 

j k lu u u  is rearranged as the vector function of ( )cu u , then the internal force can be 

represented as in the form of linear multiplications. See Eq. (2.10). 

( ) ( ),      1,...,c c

i ij jK u j pu u                    (2.10) 

where p  is the total number of the combinations. The subscript c  represents the 

rearrangement by the vector alignment of the combinations. While the internal force 

( )i u  in its original form requires a process of reconstruction (integration, assembly, 

etc.) as the structure deforms, the internal force ( )i u  in the stiffness evaluation method 
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does not require any reconstruction process. Since the stiffness coefficient in the stiffness 

evaluation method is constant against deformation, the nonlinear internal force is 

computed in a linear manner without the re-identification process.  

Still, the efficiency is insufficient in most cases of the stiffness evaluation. In the 

evaluation process of the stiffness coefficients ijklK , the required number of full finite 

element nonlinear analyses is equal to the number of unknown stiffness coefficients to be 

evaluated. Therefore, the construction time for a polynomial model of the internal force 

increases with the cubic power of the total number of degrees of freedom. 

There are basically two approaches to the identification of the stiffness coefficients. It 

depends on the sampling of the displacements and the corresponding internal forces. One 

approach imposes a series of load cases on the finite element model and obtains the 

induced responses. The other approach prescribes a set of displacements to evaluate the 

stiffness coefficients. Regardless of the approaches chosen, however, the number of 

stiffness coefficients to be identified remains equal. 

Let the number of full degrees of freedom be N ; then the number of nonlinear 

stiffness coefficients to be evaluated is 1 3 1N H . This can be expressed as 

1
( 3)( 2)( 1) 1

6
N N N . For example, if N =100, the number of required 

nonlinear computations is 176,850. If N =1,000, the number increases to 167,668,500.  

 

2.2. Stiffness evaluation methods with reduced order modeling 

 

Combined with the model order reduction method, the efficiency of the stiffness 
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evaluation method can be enhanced. Instead of using the original coordinates in full 

domain, the reduced coordinates are used to identify the nonlinear stiffness coefficients. 

Then, the number of nonlinear stiffness coefficients to be evaluated becomes 1 3 1m H  

with a reduced number of degrees of freedom m . It increases with the cubic power of 

the size of the reduced system. However, the reduction rate is determined by the 

characteristics of the full model. Therefore, even with the reduced-order modeling, the 

stiffness evaluation method is strongly dependent on the size and the complexity of the 

full model.  

There is an alternative approach to reducing the computational effort from 
3( )O N  to 

2( )O N [8]. It uses a tangent stiffness matrix in the process of stiffness coefficient 

identification to improve the efficiency of the construction of the internal force model. 

Nonlinear static response analysis of a nine-bay panel model with 86,000 degrees of 

freedom and 85 reduction modes was successfully conducted with this approach. Still, the 

computational efficiency is mostly determined by the size and the complexity of the full 

finite element problems. In this work, a stiffness evaluation method that has less relation 

to the number of total elements or degrees of freedom is proposed. 
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3. STIFFNESS EVALUATION BASED ON ELEMENT CONNECTIVITY  

 

In the conventional stiffness evaluation methods, the computational effort for solving full 

finite element nonlinear analysis problems increases proportionally to the 3rd power of 

the number of total degrees of freedom. This is the main factor that prevents the method 

from being applied to larger and more complex problems. In this section, we propose a 

new stiffness evaluation method that reduces the dependency of computational efficiency 

on the full model size/complexity. 

 

3.1. Determination of displacements combination 

 

In general, a linear internal force i  and its stiffness matrix ijK  are composed as 

shown below. 

1 11 12 1 1

2 21 22 2

1

N

N N NN N

K K K u

K K u

K K u

             (3.1) 

If the stiffness matrix is constructed properly, a large portion of the elements on the off-

diagonal sides of the matrix will have zero values as in Eq. (3.2). The zero value of ijK  

means that i  does not have a dependency on ju .  
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1 11 12 1

2 21 22 2

0 0

0 0

0

0 0

0 0 0N NN N

K K u

K K u

K u

              (3.2) 

 This is simply shown with four linear elements in Fig. 3.1. The linear force value i  is 

only affected by the displacements that belong to the adjacent elements.  

Because of the nature of finite element methods, the dependencies are bounded by the 

element connectivity in nonlinear cases as well. The nonlinear stiffness coefficients in 

stiffness evaluation methods also have similar characteristics. The nonlinear internal force 

( )i u  of the thi degree of freedom is determined by ijkl j k lK u u u , where ijklK  has non-

zero values if the internal force ( )i u  has a dependency on j k lu u u . It is shown already 

that the nonlinear relation can be expressed in a linear manner with Eq. (2.10). With the 

rearranged format, the internal force vector in stiffness evaluation can be written as  

111 121

221 222

0 0

0 0

0

0 0

0 0 0

cc c

cc c

cc

pNpN

uK K

uK K

uK

              (3.3) 

 where N  is the size of the full domain and p  is the total number of displacement 

combinations. 

The method we propose here is based on the characteristics of the finite elements 

described above. As for the computation of the internal force i  on the thi  degree of 
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freedom, the adjacent elements around the thi  node are selected. Then the 3-

combinations of displacements from these selected elements are computed element by 

element. Then, i  is expressed as the sum of these element-wise polynomial terms. 

This operation is denoted in Eq. (3.4).  

1 1

( ) ( )
AE AE

c

i ijkl j k l ij jn n
n n

K u u u K uu u             (3.4) 

 where AE  indicates the number of adjacent elements.  

 Fig. 3.2 illustrates the nonlinear internal force at the specific degree of freedom q . To 

compute the internal force value, the combination terms are composed only within the 

adjacent elements around the point q . See Eq. (3.5).   

6 7 10 11

c c c c

q qj j j j jE E E E
K u u u u            (3.5) 

Then, the length p  of the polynomial displacement vector ( )c

iu u , which is the 

number of unknown nonlinear stiffness coefficients, is greatly reduced since all the 

coefficients that belong to the outside of the adjacent elements have zero values. The 

number of nonlinear stiffness coefficients to be evaluated per degree of freedom of 

internal forces becomes 
2( 3)( 2)( 1)

1 3 3
4( 1) 4

e e e

e Η , where e  is the 

number of degrees of freedom in one element and  is the number of shared 

combinations within adjacent elements. For example, if the element has 4 nodes per 

element and 2 degrees of freedom per node, the number of unknown coefficients per 

internal force becomes 529 ( =127) regardless of the problem size. Whether the total 

number of degrees of freedom is 100 or 10,000, the number of unknowns per internal 
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force remains 529 in this case. Therefore, the difference in the number of unknowns 

between the conventional stiffness evaluation and the proposed method grows as the 

problem size increases.  

The relations between the number of unknowns and the total degrees of freedom are 

summarized in Table 3.1. It should be noted that the size of the reduced system   is 

largely determined by the characteristics of the problem, such as the size or the 

complexity of the problem, which again determine the total number of unknowns. In 

contrast, with the SEEC method, the number of unknowns increases linearly with the 

problem size. These are illustrated in Fig. 3.3. with a fixed reduction rate of 1% and the 

element described in the previous paragraph. 

With the proposed approach, therefore, the composition of displacement combinations 

and nonlinear stiffness coefficients is mainly determined by the element connectivity of 

the chosen finite element. The total size of the problem only linearly influences the total 

number of unknowns. Furthermore, the identification of stiffness coefficient matrix is 

independently obtained from a specific internal force DOF by DOF. Thus the stiffness 

evaluation process can be easily parallelized. Since the element connectivity is effectively 

used in the proposed method, this new stiffness method is named as Stiffness Evaluation 

based on Element Connectivity (SEEC). 

 

3.2. Evaluation of stiffness coefficients 

 

3.2.1. Sampling 
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It is pointed out that with the SEEC approach, the number of the unknown coefficients 

for the stiffness evaluation is mainly determined by the type of the finite element with the 

linear dependency on the problem size. In addition, the number of required sampling sets 

is entirely determined by the element characteristics. The sampling set that is composed 

of displacements and the corresponding internal forces are required for the identification 

of the stiffness coefficients. In the conventional method, the number of sampling sets is 

equal to the number of unknown coefficients. On the other hand, in the SEEC approach, 

the number of sampling sets is determined by the unknown coefficients per internal force 

without the linear dependency on N . Since the evaluation process per internal force is 

conducted independently, the same solution sets can be applied for the each computation 

per internal force. Hence the number of the sampling sets is entirely determined by the 

element type.  

In the case of a four-node shell element with 5 degrees of freedom per node, there are 

20 degrees of freedom in an element. If the number of adjacent elements is 4, the number 

of combinations for an internal force equals to 20 1 34( 1)Η . With the 

consideration of shared combination number , this becomes 5,995, which determines 

the number of sampling sets required in the sampling process. It is notable that the 

number does not change with the size or the complexity of the problem. 

The sampling procedure is listed below. 

1) Compose the displacement combinations for each degree of freedom of nonlinear 

internal force. They are automatically computed by the type of the element and the 

mesh chosen for the problem. 

2) Determine the training problem(s). The training problem whose solution sufficiently 
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includes the span of the target responses should be set up in advance. Then, 

determine the number of iteration steps according to the number of the required 

solution sets, which is determined by the number of displacement combinations per 

internal force. 

3) Solve the training problems and save the sampling sets of [displacements-internal 

forces]. These sampling sets are used for the evaluation of the nonlinear stiffness 

coefficients in Sect. 3.2.2. They are also used for the construction of the reduced 

model in Sect. 4. In this paper, proper orthogonal modes extracted from the sampled 

data are applied in reduced-order modeling. 

If the training problem is the nonlinear structural dynamic analysis, the sampling sets are 

stored from the each time step or with selected iteration steps in each time step. The 

strength of this procedure using training problems is that one can easily include the 

effective sampling points by intuition. 

 

3.2.2. Minimum norm Least Squares 

 

If s  number of sampling sets are saved in the sampling procedure, the nonlinear 

internal force on thi  degree of freedom can be expressed as below.  

11 12 1

21 22 2

1 2 1 2

1 2

c c c

s

c c c

s

i i is i i ipsampling

c c c

p p ps sampling

u u u

u u u
K K K

u u u

  (3.6) 

where p  is the number of displacement combinations and s  is the number of the 
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stored sampling sets from the sampling process. 

The data sets from the sampling are indicated by sampling  in lower case. From the 

sampling procedure, displacements and their corresponding internal forces are saved. The 

internal force matrix 
sampling

 is directly stored from the sampling process. The 

displacement combination matrix c

sampling
u  is formed as follows. The set of 

combinations obtained from the adjacent elements are rearranged into a 1p  vector as 

in Eq. (3.3). Then, the sampled displacements are employed to create a p s  

displacement combination matrix.  

Using the Least Squares method, the nonlinear stiffness coefficients K  in Eq. (3.6) 

can be determined even if s  is not equal to p . The process is illustrated below. First, 

as shown in Eq. (3.7), Eq. (3.6) can be reorganized into the form of Ax b . 

111 12 1 1

221 22 2 2

1 2

c c c

ip i

c c c

ip i

c c c

iss s sp ip

samplingsampling

u u u K

u u u K

u u u K

                 (3.7) 

where 

111 12 1 1

221 22 2 2

1 2

 ,       ,      

c c c

ip i

c c c

ip i

c c c

iss s sp ip

samplingsampling

u u u K

u u u K
A x b

u u u K

     (3.8) 

Eq. (3.7) can be solved differently by using the characteristics of A . The sampling 

process and the problem itself affect the composition of A  matrix. A  is not 

necessarily a square matrix, while the size of the matrix is determined by [the number of 
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sampled sampling sets s ] × [the size of the polynomial displacement vector p ]. Even 

if it is square, the rank is not guaranteed to be full. One of the methods of obtaining the 

solution when the matrix has rank deficiency is the minimum norm Least Squares, which 

is represented in Eq. (3.9). This method yields a unique solution of Eq. (3.7) with the 

rectangular and rank-deficient matrix A .  

2
min

x
b Ax  ,  

2
min

x
x                     (3.9) 

The minimum norm Least Square solution can be obtained by QR factorization with 

column pivoting. It yields sparse solutions, which means that the solution has zero 

elements. A solution where the elements have as few non-zeros as possible is obtained. 

The solution x  with k  nonzero elements is obtained by QR factorization with column 

pivoting where k  is the rank of A  as in Eq. (3.10).  

rank( )   min( , )A k s p                    (3.10) 

The process of QR factorization with column pivoting is illustrated below. 

By QR factorization, the s p  matrix A  is expressed as,  

0

R
A Q                            (3.11) 

where R  is a p p  upper triangular matrix and Q  is an s s  orthogonal square 

matrix, which have the characteristics as shown in Eq. (3.12) and Eq. (3.13), respectively. 

2 2
x Qx                          (3.12) 

TQ Q I                           (3.13) 

 In the method of QR factorization with column pivoting, the column permutation matrix 
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E  is multiplied to Eq. (3.11). E  is composed such that the diagonal elements of R  

have magnitude in descending order. 

0

T
R

A Q E                        (3.14) 

 Eq. (3.14) represents the column pivoting method where R  becomes the matrix in Eq. 

(3.15). If k  is the effective rank of A , 11R  is a k k  upper triangular matrix. 

11 12

0 0

R R
R                       (3.15) 

 The solution x  in Eq. (3.8) is obtained from Eq. (3.16)-(3.18) 

T TQ Ax Q b                       (3.16) 

1

11
ˆ

0

R c
x E                       (3.17) 

Tc Q b                          (3.18) 

 where ĉ  is the first k  elements of c . 

The thi  row of the nonlinear stiffness coefficients matrix ijK  in Eq. (3.19) is 

constructed from the solution x  above. To construct the stiffness coefficients completely, 

x  should be solved by the number of total degrees of freedom. However, since the 

number of displacement combinations p  is relatively small and parallel computations 

are easily applied as the computation works independently, the construction process can 

be achieved efficiently. For further understanding of QR factorization for minimum norm 

Least Square solutions, see references [10,11]. 
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( )c

i ij jK u u                         (3.19) 

111 12 11

221 222

1

c

p

c

c

pN NpN

uK K K

uK K

uK K

             (3.20) 

Once the stiffness coefficients matrix ijK  is established, the nonlinear internal forces at 

deformed states are obtained as follows. First, the displacement combination vector 

( )cu u  is computed from the current displacements. Then, the stiffness coefficient matrix 

is multiplied with the combination vector, which simply yields the nonlinear internal 

forces. These are shown in Eqs. (3.19)-(3.20). 

 

3.3. Computation of tangent stiffness 

 

The internal force composed of the stiffness coefficients is differentiated to yield the 

tangent stiffness. The differentiation is iteratively repeated in every time step, which 

guides the system to a force equilibrium state. Although Finite Difference Method (FDM) 

is easily applied to compute tangent stiffness [12], it requires a great deal of 

computational resources. The computational efficiency can be enhanced if the tangent 

stiffness is directly provided by analytical differentiation of internal forces.  

The tangent stiffness can be analytically derived with the stiffness evaluation method as 

in Eq. (3.21). Since the internal force is composed as the sum of the 3rd order 

displacement combinations, the tangent stiffness matrix is obtained by simple 



 

21 

 

differentiations in terms of its displacement as given below. 

0

0

0

( )
( ) ( )t i

iq ijkl jq k l kq l j lq j k u u
q

K K u u u u u u
u

u u

u
u    (3.21) 

where 
ij

 is Kronecker delta in Eq. (3.22) 

0 if  ,

1 if  .
ij

i j

i j
                       (3.22) 

 The equations above for the computation of tangent stiffness can be used within the 

proposed method. Although the computation efficiency of Eq. (3.21) itself is not 

improved compared with FDM, the addition of the analytical approach maintains the 

accuracy and the stability of the system. 
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Table 3.1 

Relation between the number of unknowns and problem size 

 
CONVENTIONAL METHOD PROPOSED METHOD 

SEEC Full With ROM 

PER 
INTERNAL 

FORCE 

3 21
( 6 11 )

6
N N N

 

3 21
( 6 11 )

6
m m m  

 

3 21
( 6 11 )

6
e e e  

 

ENTIRE 
DOMAIN 

 

4 3 21
( 6 11 )

6
N N N

 

 

4 3 21
( 6 11 )

6
m m m

 

 

3 21
{ ( 6 11 ) }

6
N e e e

 
N
m
e  

 
 
 

:  Total number of degrees of freedom 
:  Number of degrees of freedom in reduced system 
:  Number of degrees of freedom in one element 
:  Number of shared combinations within adjacent elements 
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Figure 3.1. Relation between force values and element connectivity 

 

 

 

Figure 3.2. Element-wise construction of nonlinear internal force 
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Figure 3.3. Relation between number of unknowns and problem size  
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4. REDUCED ORDER MODELING USING SEEC 

 

In this section, ROM is combined with the SEEC method to improve the computation 

efficiency of the SEEC method. It is applied to reduce the computation time of Eq. (3.19) 

and Eq. (3.20); the reduced modeling here is not related to the stiffness evaluation 

procedure given in Sect. 3.2. Instead, it applies to the use of the internal force model 

constructed in the previous section. The combined method is referred to as SEECROM. 

One of the critical differences between SEECROM and the other ROM-based stiffness 

evaluation approaches is related to the application sequence of the ROM. The 

conventional approaches apply ROM before the evaluation of the stiffness coefficients. 

This makes the computation of internal force to take place on the reduced coordinates, 

and results in a loss in accuracy. On the other hand, SEECROM applies ROM after the 

evaluation of the stiffness coefficients. Since the stiffness evaluation is performed on the 

full original coordinates, the accuracy can be guaranteed. It is important in the reduced-

order modeling of nonlinear structural dynamics that the reduction is conducted while 

keeping the equilibrium of the governing equation. If the equilibrium is maintained based 

on the reduced coordinates, the stability as well as the accuracy of the system continues to 

deteriorate as the analysis is repeated. SEECROM resolves this issue by performing ROM 

after SEEC. While the preceding SEEC method guarantees accuracy with sufficient 

efficiency (the former by the full coordinate computation and the latter by the element 

connectivity), the following ROM enhances the efficiency further without degradation of 

accuracy. 
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4.1. Proper orthogonal decomposition 

 

In this paper, POD is used as a reduction method. It is known that the POD method 

yields the best representation of given data sets. The proper orthogonal modes obtained 

from the POD process are the orthogonal bases for forming the reduced coordinates. The 

reduction modes are extracted from the displacement data sets stored in Sect.3.2.1. If the 

number of degrees of freedom exceeds the number of sampling sets, the method of 

snapshots [13,14] can be used. The procedure of POD reduction using the snapshot 

method is briefly given below. For a more detailed explanation, check references [15,16]. 

 Eq. (33) represents the snapshots matrix from the displacements of sampling data.  

(1) (2) ( )

1 1 1 1 1 1

(1) (2) ( )

2 2 2 2 2 2

(1) (2) ( )

   
 

   
 
 

    

s

s

s

N N N N N N

u u u u u u

u u u u u u
U

u u u u u u

               (4.1) 

where N , s  and u  represent the number of total degrees of freedom, number of 

sampling sets, and average value of sampled displacements u , respectively. The POD 

modes   can be obtained from the eigenmodes Û  in Eq. (4.2) to form the POD 

representation of the displacements PODu  in Eq. (4.3). Then, a number of dominant POD 

modes are selected for the reduction of the system according to the targeted reduction rate. 

ˆ TU U U                           (4.2) 

,      1,...,  POD

i ij j iu r u j m                   (4.3) 

where r  is the generalized coordinates for the reduced model and m  is the number of 
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selected reduction modes. 

 

4.2. Proper orthogonal decomposition with SEEC 

 

If u  is substituted by PODu , Eq. (2.6) and Eq. (2.8) can be expressed in the reduced form, 

respectively, as 

( )li lk kj j li lk kj j ki k ki kM r C r Fu .             (4.4) 

0 0Δ( ) ( )t

li lk kj j li lk kj j li lk kj j ki k ki kM r C r K r Fu u      (4.5) 

Note that the internal force ( )i u  is computed from the full coordinate u . 

Furthermore, the computation of the tangent stiffness 
tK  in Eq. (4.5) is accelerated 

with the reduced-order modeling. Let the internal force be represented with the reduction 

modes as shown in Eq. (4.6). This can be differentiated by r  to construct the reduced 

tangent stiffness matrix. See Eq. (4.7). 

( )ki k ki kjql jv qw lz v w zK r r ru                   (4.6) 

0

0

0

( )
( )

( )

t l
li lk kj li kj

k

li ljqz jk q z qk z j zk j q kju u

K
r

K u u u u u u

u u

u
u

      (4.7) 

If the reduced form of stiffness coefficients 
T K  are saved in advance and used for 

the repeated computations in nonlinear analysis, the efficiency is further improved since 

the reduced tangent stiffness matrix is directly obtained. 
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4.3. Application of SEECROM 

 

A few sets of structural dynamic analyses of geometric nonlinear elements were 

performed for the validation of SEECROM. Previously, it was addressed that the 

efficiency of SEEC is determined by the complexity of the element itself, rather than by 

the size of the problem. The shell element used here, which has 54 degrees of freedom 

per element, is sufficient to verify the effectiveness of the proposed method.  

For the demonstration of the proposed method, an offline-online methodology was 

applied. In the offline stage, the stiffness evaluation models are constructed. As presented 

in Sect. 3, after the determination of the combinations, the stiffness coefficients are 

evaluated with the sampling process. With these stiffness coefficients and POD of 

sampled displacements, the nonlinear internal force model is constructed based on the 

reduced coordinates. In the online stage, the internal force model constructed in the 

offline stage is solved. The approximate solutions of internal forces are obtained by 

various displacement inputs. The efficiency and the accuracy of SEECROM are 

compared by the results in the online stage. 

The nonlinear shell element used in the example had 9 nodes per element and 6 degrees 

of freedom per node, which yielded 54 degrees of freedom per element. Fig. 4.1 shows 

the configurations of the example. The uniform thickness of the shell was 0.01 m. With 

fixed ends, the shell was subjected to out-of-plane dynamic loads at the middle of the 

other ends. The structural dynamic analysis was performed under the perturbation of the 

external dynamic loads. The dynamic load was composed of two design parameters 1  

and 2  as shown in Fig. 4.2. In the offline stage, sampling loads were imposed to obtain 
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solution sets and perform POD. Sampling loads of 100 N, 500 N, and 1,000 N, as denoted 

with the dotted lines in Fig. 4.2, were imposed. The shell had an elastic modulus of 5 GPa 

and a density of 5,000 kg/m3. A Newmark method was applied for nonlinear transient 

analysis. 

For the verification of the accuracy of SEECROM, a set of nonlinear transient analyses 

were performed for the 9 different sets of design parameters. The properties of the design 

parameters and the results of full order and SEECROM analysis are shown in Fig. 4.3. 

Eight elements (total number of degrees of freedom = 270) were used for both models, 

and 27 POD modes were used for SEECROM. In the graphs of Fig. 4.3, it can be seen 

that the response results from the two approaches overlap regardless of the variation in 

design variables, which proves the accuracy of SEECROM. 

For the verification of the efficiency of SEECROM method, the nonlinear transient 

analysis was repeated as the number of elements was increased by 8/32/72. (The total 

number of degrees of freedom was increased as 270/918/1950.) The computation time 

and the displacement response were compared between the SEECROM method and the 

POD-only reduction method. In this example, the reduced models were constructed with 

32 POD modes in both methods. It should be noted that the required number of sampling 

sets was fixed regardless of the number of elements used. Two load cases (CASE 1 & 

CASE 2) were created for the verification, which are drawn with solid lines whereas the 

sampling loads for the training analyses are drawn with dotted lines in Fig. 4.4 and Fig. 

4.5. 

 The snapshots displayed in Fig. 4.6 and Fig. 4.7 are the responses of full-order nonlinear 

transient analyses under the load cases of CASE 1 and CASE 2, respectively. The 
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responses of reduced analyses are compared in Fig. 4.8 and Fig. 4.9. The results from 

SEECROM are denoted with red solid lines, and the POD results are drawn with blue 

dotted lines. The black dotted lines show the responses under the sampling loads for 

reference. 

Excellent agreement between the two reduction methods is obtained for the two load 

cases. The accuracy of SEECROM is guaranteed regardless of whether the obtained 

response and the sampled responses have a similar tendency (CASE 2) or not (CASE 1). 

The computation times for SEECROM and POD-only reduction methods are compared 

for CASE 1 and CASE 2 in Fig. 4.10 and Fig. 4.11. The “time rate” represents the 

computation time of the POD method divided by the computation time of the SEECROM 

method. The SEECROM method is approximately 15 times faster than the POD reduction 

method in CASE 1 and 17 times faster in CASE 2. It should be noted that the rate is 

maintained regardless of the size of the system.   
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Figure 4.1. Configuration of shell element 

 

 

 

Figure 4.2. External loads for shell example 
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Figure 4.3. Responses under perturbation of external loads 
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Figure 4.4. Load configurations: CASE 1 

 

 

Figure 4.5. Load configurations: CASE 2 
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Figure 4.6. Time response of shell: CASE 1 
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Figure 4.7. Time response of shell: CASE 2 
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Figure 4.8. Time response under design variable 

perturbation: CASE 1 
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Figure 4.9. Time response under design variable 

perturbation: CASE 2 
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Figure 4.10. Computation time comparison by number of elements: CASE 1 

 

 

Figure 4.11. Computation time comparison by number of elements: CASE 2 
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5. PARAMETERIZATION BASED ON SEECROM 

 

In the process of parametric studies or design optimizations, the system is continuously 

solved under different values of input parameters. If the relation between the parameters 

and the system matrices is complex, the whole process becomes quite inefficient since the 

system matrices should be reconstructed whenever the parameters change. The process of 

parameterization makes the system be characterized by input parameter variations. The 

system is decomposed into the parameter-related terms and the parameter-non-related 

terms. Thus, the aim of this section is the parameterization of SEECROM model. The 

nonlinear internal force model composed of SEECROM will be further characterized by 

the design parameters.  

 

5.1. Parameterization strategy of SEECROM 

 

The parameterization technique should be adjusted to fit the purpose. As for the 

parameter studies or design optimizations, the element-wise-imposed parameters are the 

most common cases. In these cases, the values of parameters are imposed element by 

element, which is a huge advantage for the parameterization of SEECROM. Furthermore, 

the displacement combinations are also determined element by element with the SEEC 

approach. 

 Fig. 5.1 shows the identical element composition to the element composition shown in 

Fig. 3.2. The addition to the Fig. 3.2 is the parameter variations; the design parameter  

is distributed in an element-wise manner. Then, Eq. (3.4) and Eq. (3.5) are simply 
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adjusted to have the design parameters. Eq. (5.1) below shows that the nonlinear internal 

force takes  as an input parameters. The design parameters are multiplied with the 

displacement combinations for each element and summed up for the whole elements. For 

instance, Eq. (5.2) shows that the internal force at the specific degree of freedom q  in 

Fig. 5.1 is determined with the design parameters and the displacement combinations 

within the adjacent elements. 

1 1

( , ) ( )
AE AE

c

i ijkl n j k l ij n jn n
n n

K u u u K uu u           (5.1) 

1 1 2 36 7 10 11

c c c c

q qj j j j jE E E E
K u u u u          (5.2) 

 For clarification, the displacement combinations can be altered to include the design 

parameters as in Eq. (5.3). Let the displacements be the original input parameters of the 

nonlinear internal force model in SEEC method, then the relation below is considered as 

the inclusion of the new input parameters for the approximate model.  

ˆ ( , ) ( )c c

j ju uu u                       (5.3) 

 Then, the equations for the SEEC internal force model with the parameterization are 

simplified as follows: 

1

ˆ( , ) ( , )
AE

c

i ij j n
n

K uu u                   (5.4) 

6 7 10 11
ˆ ˆ ˆ ˆc c c c

q qj j j j jE E E E
K u u u u            (5.5) 

 The sampling strategy with the parameterization is also not quite different from the non-

parameterized SEEC. When determining the training problems, one needs to check for 

the range of the input parameters to be used for the online stage and to include the 
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response results from the boundary values of the input parameters. Eq. (5.6) shows the 

sampling sets with the parameterization and the stiffness coefficients K  to be identified. 
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where p  is the number of displacement combinations and s  is the number of the 

sampling sets. 

The process of the identification of the stiffness coefficients is essentially identical to the 

non-parameterized approach. As below, the sampling sets are reorganized into the form 

of Ax b  to be solved with the minimum norm Least Square.  
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 Therefore, the nonlinear internal force model with the parameterization is given by 

ˆ( , ) ( , )c

i ij jK uu u                       (5.9) 
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 Since the reduced-order modeling and the computation of the tangent stiffness are 

strongly dependent on the displacements rather than other input parameters, the 

SEECROM-Parameterization is completed with the previously described ROM 

procedures. The complete form of the nonlinear internal force with SEECROM-

Parameterization is given in Eq. (5.11) – Eq. (5.13). 

ˆ( , ) ( , )R R c
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               (5.13) 

 

5.2. Application of SEECROM-Parameterization 

 

The static and the structural nonlinear analyses of plane elements with a hyperelastic 

material are demonstrated to verify the accuracy and the efficiency of the proposed 

SEECROM-Parameterization method. The element has 4 nodes per element and 2 

degrees of freedom per node, which yields 8 degrees of freedom per element. The 
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hyperelastic material is modeled as Neo-Hookean with a shear modulus of =1.5 MPa 

and bulk modulus of =1.0 GPa.  

 As shown in Fig. 5.2, a 0.02 0.02 m square plane with radius of R=0.002 m is bounded 

on one side and the external load is imposed on the other side. A total of 2,451 elements 

are uniformly constructed with 50 mesh each along the plane edge. The total number of 

the degrees of freedom is 5,568. 

 

5.2.1. Static analysis of Neo-Hookean hyperelastic material 

 

For the verification of the SEECROM-parameterization method with the hyperelastic 

example, a static case is demonstrated first. The selected design parameters included the 

thickness of the elements as well as the magnitude of the external load. Since the external 

loads and the internal force are not directly related to each other in construction, the 

SEECROM-Parameterization only concerns the thickness of the elements as the input 

parameters for the parameterization. Fig. 5.3 shows the composition of the input 

parameters. The whole domain was divided into 4 sections, and a different value of 

element thickness was imposed on each section. 

In the sampling stage, training analyses were conducted for the various sampling values 

of loads and element thicknesses. The magnitude of the sampling load was fixed as 30 N 

while the sampling thicknesses of 4 sections were chosen from 3 different values (0.001 

m / 0.002 m / 0.003 m). The response results of SEECROM-Parameterization were 

compared with the full analysis results. Additionally, for the verification of efficiency, 

reduced analysis with POD was conducted for reference. The reference method only uses 
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POD for reduced-order modeling. It does not use stiffness evaluation or a 

parameterization technique. The reduction rate for both reduction methods was 1 %. The 

number of reduced degrees of freedom was 51, and the number of total degrees of 

freedom was 5,568. 

The design parameters were randomly perturbed for the static analysis in the online 

stage. An arbitrary chosen set of design parameters is given in Table 5.1. The deformation 

of the structure under the random perturbation is illustrated in Fig. 5.4. The light blue 

faces indicate the results of full analysis, while the dark blue edges indicate the 

deformation from the SEECROM-Parameterization. It can be seen that the two results are 

identical. Fig. 5.5 contains the computation time for the online stage. SEECROM-

Parameterization and POD-only reduction is performed against the full-order analysis. 

Compared to the full analysis, POD analysis is 1.58 times faster whereas SEECROM-

Parameterization is 23.1 times faster.   

 

5.2.2. Dynamic analysis of Neo-Hookean hyperelastic material 

 

The structural dynamic analysis of hyperelastic material is demonstrated in this section. 

As in the previous example, the load magnitude and the element thickness were selected 

as the design parameters. The SEECROM-Parameterization model was constructed with 

two input parameters of element thickness. Fig. 5.6 shows the division of the two design 

sections for the input parameters. The dynamic load uniformly imposed on the right side 

of the plane was composed as the multiplication of the load magnitude and the load 

profile shown in Fig. 5.7. For the training analyses in the sampling stage, the sampled 



 

45 

 

load magnitude was set to 30 N and the thicknesses of 2 sections were chosen from 3 

sample values (0.001 m / 0.002 m / 0.003 m). The number of reduced degrees of freedom 

was 102, which is 2% of the full model. 

For the transient analysis in the online stage, the design parameters were randomly 

perturbed as given in Table 5.2. The dynamic response of the structure under the random 

perturbation is illustrated in Fig. 5.8. The displayed snapshots indicate that the accuracy 

of SEECROM-Parameterization is maintained over the analysis time. The middle point 

on the right side of the plane was selected, and the displacement in the x-direction is 

plotted in Fig. 5.9. The figure shows that the responses from SEECROM-

Parameterization and POD reduction agree well with the full-order response. 

 The computation time for the online stage is shown in Fig. 5.10. SEECROM-

Parameterization and POD reduction were conducted against the full-order analysis. POD 

reduction was 1.51 times faster than the full analysis, whereas SEECROM-

Parameterization was 23.8 times faster. 
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Table 5.1 

Randomly perturbed design parameters for static case 

Load 
magnitude 

Element thickness 

λ1 λ2 λ3 λ4 

29.94 N 0.0012 m 0.0019 m 0.0012 m 0.0029 m 

 
 

 

 

Table 5.2 

Randomly perturbed design parameters for dynamic case 

Load 
magnitude 

Element thickness 

λ1 λ2 

28.94 N 0.0017 m 0.0014 m 
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Figure 5.1. Element-wise construction of nonlinear internal force and its 

parameterization 
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Figure 5.2. Analysis conditions for square plane for SEECROM-Parameterization 

 

 

 

Figure 5.3. Input parameters for static analysis 
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Figure 5.4. Static response under random perturbation of input parameters 

 

 

Figure 5.5. Computation time for online stage of static analysis under random 

perturbation of input parameters 
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Figure 5.6. Input parameters for dynamic analysis 

 

 

 

Figure 5.7. Amplitude of external dynamic loads 
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Figure 5.8. Dynamic response under random perturbation of input parameters: 

snapshots 
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Figure 5.9. Dynamic response under random perturbation of input parameters:  

time response of selected point 

 

 

Figure 5.10. Computation time for online stage of dynamic analysis  

under random perturbation of input parameters 
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6. APPLICATON TO MULTIBODY DYNAMICS 

 

6.1. Motivation 

 

Recent years have witnessed growing interest in the efficient analysis of flexible 

multibody dynamics. For instance, control problems of flexible robot arm systems require 

real-time simulations of flexible multibody dynamics. To solve these systems with high 

accuracy, structural analysis of the flexible parts should be performed with a sufficient 

number of elements, which decreases the efficiency of the entire analysis. To meet the 

requirement of real-time simulation, a method that can increase the efficiency of large-

system analysis is essential. Another example arises in the aircraft industries. For the 

development of aircraft with low emissions and high fuel efficiency, the design of high-

aspect-ratio wings is crucial, which leads to large deformation of the structure. Therefore, 

aerodynamic analysis should be performed with the consideration of nonlinearities caused 

by the large deformation. Since this requires repetition of nonlinear structural analysis for 

each time step of dynamic analysis, high efficiency of the nonlinear analysis must be 

guaranteed. Therefore, an efficient analysis technique that considers the nonlinearities in 

rigid body motion as well as flexible deformation is highly demanded in the field of 

flexible multibody dynamics. 

 To enhance the efficiency of multibody dynamic simulations, the technique of reduced-

order modeling (ROM) has been used widely. Still, the utilization of ROM in flexible 

multibody analysis problems has not been fully studied. The difficulty in the utilization of 
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ROM comes from the limitations of the ROM technique itself: although ROM has been 

well developed for linear systems, its adaption to use with nonlinear systems is still in its 

beginning stages. Whether nonlinearities arise from rigid body motion or the flexibility of 

structures, the system matrices should be re-constructed as the state of the system changes. 

The problem is that the re-construction of system matrices should be performed in the full 

domain before the reduction process begins. Since most reduction methods only shrink 

the computation time for the solution process after the reduction process, the time of the 

repeated construction process takes nearly the same amount as that of a full analysis. 

The stiffness evaluation procedure (STEP) method, proposed by Muravyov and Rizzi [1] 

is one of the computationally efficient approaches of nonlinear analysis. It represents 

nonlinear internal forces by a third-order polynomial formulation of displacements. If the 

representative model is constructed with sufficient accuracy, the system matrices can be 

computed immediately as the nonlinear system is updated. However, the identification of 

the representative internal force model itself takes time. Since the coefficients of the 

polynomial displacements are identified by a series of responses from the finite element 

simulations in the full domain, the required number of simulations should be kept small. 

This creates a limitation on the application of the STEP method as the number of full 

simulations increases with the cubic power of the system size. It can be stated that the 

application of this approach to large-scale problems is computationally prohibitive. 

 In this section, the application of the STEP method is extended to multibody dynamic 

analyses. To this end, new stiffness evaluation methods developed for large-scale 

analyses are proposed in the previous sections. They are referred to as SEEC and 

SEECROM: the stiffness evaluation method based on element connectivity and its 
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reduced-order modeling, respectively. In the proposed methods, the stiffness coefficients 

are evaluated within the connected elements. This makes the number of required 

simulations determined by the characteristics of the element itself rather than by the 

problem size. Moreover, proper orthogonal decomposition (POD), which is a ROM 

method, is utilized to enhance the efficiency of the proposed method. System matrices are 

constructed by stiffness evaluations based on element connectivity information, which is 

followed by the reduction of system matrices by the POD method. In this way, the 

proposed method keeps the accuracy of the representative model and increases the 

efficiency of the reduced model. 

 SEEC and SEECROM were originally developed for analysis of nonlinear structural 

dynamics systems, where the mass matrix is composed of constants while the internal 

force vector and the stiffness matrix are nonlinear in the deformation of the structure. The 

nonlinear values should be updated repeatedly as the displacements change. Thus, the 

proposed methods construct efficient representative models for internal forces and 

stiffness matrices. 

 However, the composition of the system matrices in flexible multibody analysis is 

different from the structural analysis. In the floating frame of reference formulation 

(FFRF), which is the most widely used technique in the analysis of flexible multibody 

dynamics, the stiffness matrix is composed of constants while the mass matrix has 

nonlinearities. Not only should the mass matrix be updated repeatedly at every iteration, 

but the terms in relations with the inertia forces should also be computed recursively. 

Therefore, the proposed methods, which are developed to construct nonlinear internal 

force models, cannot be applied directly to this formulation of multibody dynamics. 
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Fortunately, there is an alternative approach for multibody dynamics that uses different 

coordinate systems from FFRF. This approach, referred to as absolute nodal coordinate 

formulation (ANCF), uses absolute coordinates and slopes. This leads to a constant mass 

matrix and a nonlinear stiffness matrix, which are analogous to the system matrices of 

nonlinear structural dynamics. Since the additional inertia terms also vanish due to the 

use of absolute nodal coordinates, the equation of motion with ANCF is formed in a 

similar way to nonlinear structural dynamics systems. This enables the direct utilization 

of ROM methods that have been developed for nonlinear structural analysis. 

 ANCF approaches were originally proposed by Shabana and co-authors [17–20]. The 

ANCF is designed particularly for large deformation analysis in multibody applications. 

It describes the absolute values of the displacements and finite slopes in a global 

coordinate system, which leads to stable solutions of the integration process under large 

rotations and deformations. However, in most cases, the multibody dynamic analysis with 

ANCF takes a large amount of time. The inefficiency comes from two main factors: 1) 

the complexity in the composition of nonlinear internal forces of ANCF elements and 2) 

the iterative calculations used to update the state of the system. Moreover, the 

computation time rises as the number of ANCF elements increases. 

 Various studies have been made to raise the efficiency of the ANCF approaches. ANCF 

elements were simplified in various ways with appropriate assumptions according to the 

characteristics of specific problems [19]. Mode-based reduced-order modeling, including 

the Craig–Bampton method, was applied to ANCF approaches [21–23]. Still, further 

consideration should be made with regard to the enhancement of efficiency while 

preserving the nonlinear nature of the ANCF approaches. Ways to reduce the time needed 
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for the re-construction of the system matrices should be devised, as well. 

 In this section, SEECROM is applied to ANCF beam elements. The proposed methods 

can be successfully applied to ANCF to yield efficient solution responses in flexible 

multibody dynamics. The previous reduction methods for ANCF-multibody dynamics 

have the same limitations as the reduction methods for nonlinear structural analysis: they 

only reduce the computation time for the solution process, and not the construction time 

for system matrices. Since the stiffness matrices in ANCF should be updated at every 

iteration, if the construction time for the system matrix is not reduced, there is a definite 

limit on the efficiency gain. Contrary to previous ROM methods, SEECROM handles the 

construction of the system matrices, fully enhancing the efficiency of flexible multibody 

dynamics. The applications of SEECROM to ANCF beam elements are demonstrated for 

various numerical examples such as a free-falling pendulum, a slider-crank mechanism, 

and a four-bar mechanism. 

 

6.2. ANCF formulation 

 

The most preferred and widely used approach in multibody dynamics is the floating 

frame of reference formulation (FFRF), which uses a mixed set of absolute and local 

reference coordinates. Although the use of mixed coordinates allows the stiffness matrix 

to take a simple form, as in linear static structural analyses for small-deformation 

problems, it also creates inertial forces and the nonlinear mass matrix. On the other hand, 

the absolute nodal coordinate formulation (ANCF) uses only absolute global coordinates. 

This simplifies the mass matrix and makes the inertia forces disappear. Instead, the 
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stiffness matrix takes a nonlinear form, which is analogous to the formulation of 

nonlinear structural dynamics. The composition of the nodal coordinates and the 

construction of the equation of motion and its system matrices in the case of ANCF beam 

elements are addressed below [20]. 

In the ANCF elements, displacements and displacement gradients are used as nodal 

coordinates. These absolute coordinates are defined in terms of the element shape 

function and the vector of nodal coordinates as below:  

 r = Se                             (6.1) 

where r  is the global position vector of an arbitrary point on the neutral axis of the 

beam element, S  is a global shape function, and e  is the vector of nodal coordinates, 

which includes global displacements and gradients. The configurations of ANCF beam 

elements are shown in Fig. 6.1. 

In Fig. 6.1, x  is the length of an arbitrary point from the node, and l  is the length of 

an undeformed beam element. 1X  and 2X  are global coordinates, and the vector of 

nodal coordinates e  is given by 
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    (6.3) 

 

Then, the position vector r  is described with the global shape function below: 
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where 
x

l
  . 

Now, with the global position vector r , after some simple algebraic manipulations , the 

kinetic energy T  of the beam is expressed as 

  T T T1 1 1

2 2 2

T

V V

T dV dV 
 
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where V  is volume,   is mass density, and M  is the element mass matrix, which is 

constant. While the ANCF leads to a simple expression for the mass matrix, it results in a 

relatively complex expression for the stiffness matrix. The element stiffness matrix K  

can be derived from the strain energy U , which is given by 
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where E  is the modulus of elasticity, a  is the cross-sectional area, I  is the second 

moment of area of the beam element, lu  are the longitudinal displacements, and tu  

are the transverse displacements.  

 Since the element coordinates e  only contain the absolute values of positions and 

gradients, it can be seen that the stiffness matrix for the ANCF beam element becomes a 

highly nonlinear function. Various methods have been proposed to reduce the 
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inefficiency due to this nonlinearity. In this paper, one of the simple methods proposed by 

Berzeri and Shabana [19] is utilized; it is assumed that the longitudinal deformation is 

small and the strain is constant within an element. Even with the simplest model, however, 

a significant amount of time is required to perform the time-marching simulation of 

multibody dynamics. Moreover, the computation time increases rapidly with the number 

of elements. 

 In the next section, the method for enhancing the efficiency of the ANCF model is 

presented. The reduction method developed for nonlinear structural dynamics is applied 

to the ANCF model based on the fact that their governing equations have analogous 

formulations. Although a simplified ANCF beam element is used in the numerical 

examples in this paper, the proposed method is readily applicable regardless of the 

formulation. 

 

6.3. Reduced-order modeling of ANCF model with SEECROM 

 

6.3.1. Application of SEECROM to ANCF beam elements 

 

As addressed in the previous section, an ANCF beam element is composed of two nodes, 

and the each node contains four degrees of freedom, which include the global 

displacements X and Y as well as their corresponding global slopes. In total, eight 

degrees of freedom complete one element, as shown in Eq. (6.2). It is proposed that the 

SEECROM model is constructed in element-wise manner with the third-order polynomial 

displacement combination within each element. Since there are eight degrees of freedom 
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in an element and the number of adjacent elements is two, the number of displacement 

combinations for an internal force is equal to 
8 1 32( 1)Η . With the consideration of 

shared combination , this number becomes 294. This determines the number of 

sampling sets to obtain in the sampling process.  

Overall, there is no notable difference in the process of SEECROM model construction 

between ANCF analyses and structural analyses. The construction sequence follows the 

procedure described in Sect. 3 and Sect. 4. 

 

6.3.2. Application of SEECROM 

 

In this section, the proposed SEECROM method is applied to multibody dynamics to 

solve various examples that include a free-falling pendulum, a slider-crank mechanism, 

and a four-bar mechanism. These are successfully demonstrated with ANCF beam 

elements. The constraints for joints are imposed with Lagrange multiplier methods, and a 

Newmark method combined with a Newton-Raphson formulation is applied for the time 

integration scheme. 

 

6.3.2.1. Double pendulum 

The multibody dynamics analysis of a free-falling pendulum is performed based on 

ANCF. The pendulum has a pin joint in the middle, as shown in Fig. 6.2. The first body 

with a grey color has an elastic modulus of 80 MPa and an area of 900 mm2. For the red-

colored second body, these quantities are 1 MPa and 900 mm2, respectively. The 

dynamic analysis was performed under the gravity force in the –y direction over a total 
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time of T=1.3 s. The sampling parameter is the mass of each body; the initial masses of 

the bodies were given as 1.216 kg and 0.982 kg, respectively. For the sampling process, 

training dynamic analyses were performed with a perturbed sampling mass. Fig. 6.3 

shows the perturbed position of the end point of the pendulum during the sampling 

process. The perturbation rate varied as 0.5 / 1.0 / 1.5. Under the perturbation of the mass 

of the bodies, solution sets composed of the displacements and the corresponding internal 

forces were collected. According to the characteristics of the ANCF beam elements, the 

sufficient number of solution sets was computed as 294. These solution sets were used for 

the evaluation of the stiffness coefficients and the extraction of POD modes, which 

completed the SEECROM model of the given ANCF beam example. Then, with the 

SEECROM model, dynamic analyses were performed under a randomly imposed set of 

masses. The responses were compared to the POD-based reduced analyses and the full 

analyses. The reference analysis for reduction uses only POD based on the snapshot 

method. 

With 80 elements for each body and a reduction rate of 4 %, the total and reduced 

number of degrees of freedom were 628 and 25, respectively. The multibody dynamic 

analyses were performed under the two different cases with randomly chosen mass sets of 

[1.057 kg, 0.6 kg] for CASE 1 and [1.121 kg, 1.390 kg] for CASE 2. The first and second 

values in the brackets indicate the masses of the first and second bodies, respectively.   

The response results from the multibody dynamic analysis under the two cases of 

randomly perturbed mass are plotted in Figs. 6.4 to 6.7. The even-numbered figures 

represent the motion of the pendulum for every 15 time steps. The pendulum is drawn 

with darker lines over time while the initial position is denoted with a pink line. The odd-
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numbered figures show the position of the end point over time for different methods 

including SEECROM, POD reduction, and full analysis. It can be seen that the three 

methods have the same responses under the randomly perturbed mass variables, which 

verifies the accuracy of the SEECROM model.  

The efficiency can be verified with the results drawn in Figs. 6.8 and 6.9. The 

computation times of dynamic analysis under SEECROM and POD reduction are 

compared for CASE 1 and CASE 2 in Figs. 6.8 and 6.9, respectively. In CASE 1, it can 

be seen that the SEECROM method is approximately 167 times faster than full analysis, 

while the POD reduction method is 20.63 times faster. In CASE 2, SEECROM and POD 

methods are 210.7 and 18.83 times faster than full analysis, respectively. 

For the verification of the efficiency of the SEECROM method under various system 

sizes, the process was repeated as the number of elements was increased by 20, 40, 80, 

and 160. (The total number of degrees of freedom was increased by 88, 168, 328, and 

648.) Identical numbers of elements for each pendulum were imposed, and the reduced 

models were constructed with 26 POD modes for all cases. In Fig. 6.10, two specific time 

rates are depicted over the increasing numbers of elements. The first time rate refers to 

the computation time of the full analysis over the POD reduction method, and the second 

time rate refers to the computation time of the full analysis over the SEECROM method. 

They indicate the relative efficiency of POD and SEECROM method compared to the full 

analysis. It can be seen that the gap between two rates is widened as the number of 

elements increases. Although the POD reduction method becomes enhanced with the 

number of elements, the efficiency of the SEECROM method is magnified with the 

growth of system size.    
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6.3.2.2. Slider-crank mechanism 

The multibody dynamic analysis of the slider-crank mechanism shown in Fig. 6.11 was 

performed with ANCF elements. SEECROM was applied, and results were compared to 

POD reduction and full system analysis. The crankshaft and the connecting rod were 

composed of 40 and 60 ANCF beam elements, respectively. The two bodies had identical 

areas of 78.54 mm2 and densities of 2,770 kg/m3. The Young’s modulus of the 

crankshaft was 100 MPa while that of the connecting rod was 5 MPa. The moment M  

applied at the crank is expressed as 

0.1670.01(1 ) 0.7

0 0.7

t

e tM

t
               (6.7) 

where  is the sampling parameter, which varied as 0.25 / 0.5 / 0.75 / 1 in the sampling 

process.  

 The dynamic analysis was performed under the randomly selected parameter =0.861. 

Fig. 6.12 shows the motion of the slider-crank under the perturbed moment, which is 

drawn with darker lines over time while the initial position is denoted with a pink line. 

Fig. 6.13 shows the position of the end point that slides along the x-axis. It can be seen 

that the results of SEECROM, POD, and full analysis match perfectly. The efficiency of 

the SEECROM method can be verified by Fig. 6.14: SEECROM analysis was 157.6 

times faster than full system analysis, while the POD reduction method was 16.4 times 

faster than full analysis. 
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6.3.2.3. Four-bar mechanism 

The multibody dynamic analysis of the four-bar mechanism shown in Fig. 6.15 was 

performed with ANCF elements. The dynamic response obtained using the SEECROM 

method was compared to POD reduction and full system analysis. The crankshaft, the 

coupler, and the follower were composed of 20, 50, and 40 ANCF beam elements, 

respectively. The material properties of each body are listed in Table 6.1. The moment   

applied at the crank is expressed as 

16.32

10sin(3 ) 0.2778

465.9 0.2778t

t t
M

e t
               (6.8) 

where  is the sampling parameter, which varied by 0.25 / 0.5 / 0.75 / 1 in the training 

analyses of the sampling process.  

Dynamics analysis was performed with a randomly perturbed moment M  with the 

selected parameter =0.935. The dynamic response of the structure under the 

perturbation is illustrated in Fig. 6.16. The displayed snapshots indicate the high degree 

of accuracy of the SEECROM method over the analysis time. The response of the full 

model drawn as the light blue line matched well with the dark blue line denoting the 

response of the SEECROM model. The change of the position of the joint between the 

coupler and the follower is shown in Fig. 6.17. The results of the three analyses match 

perfectly. The efficiency of the SEECROM method is verified by Fig. 6.18; while the 

SEECROM analysis was faster than the full system analysis by 63.1 times, the POD 

reduction method was 7.22 times faster than the full analysis. 
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6.4. Parameterization of ANCF model with SEECROM 

 

6.4.1. Parameterization strategy of SEECROM 

 

The procedure of parameterization for ANCF model basically follows the strategy 

introduced in Sect. 5.1. The internal force model using SEEC method has the element-

wisely collected terms of 3rd order input displacements as the input variables. If design 

parameters are imposed in element wise manner, the internal force model can be 

constructed with the parameters which are combined with the 3rd order displacements 

combination to make the 4th order input variables. See Fig. 5.1 and Eq. (5.3)-(5.5) for 

more detail.  

 If the design parameter  has a linear relation with the internal force such as Young’s 

modulus in ANCF beam elements, the inclusion of the new input parameters  is 

completed with the simple linear multiplication as expressed in Eq. (5.3). If the design 

parameter  has a nonlinear relation with the internal force, the inclusion of the 

parameter should be carefully chosen under the consideration of the relation between the 

parameter and the internal forces. For example, let’s assume that diameters d  in ANCF 

beam elements are chosen as design parameters. While the relation between the diameters 

and the internal forces is nonlinear, the internal force in ANCF beam is affected 

proportionally by the area of the beam and the second moment of the area, which are 

represented by 2d  and 4d , respectively. Thus, for the parameterization of the diameters 

d  in the ANCF beam elements, 2d  and 4d  should be separately included as the new 

input parameters instead of d  itself. 
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6.4.2. Application of SEECROM-Parameterization 

 

In this section, the parameterization of ANCF beam model is conducted based on 

SEECROM method to solve multibody dynamics under the changes of parameters. 

Various numerical examples which include free-falling pendulum, slider-crank and four-

bar mechanism are demonstrated. The multiple point constraints for joints in the 

examples are imposed with Lagrange multiplier.  

 

6.4.2.1. Double pendulum 

The dynamic analysis of the pendulums with a pin joint in the middle shown in Fig. 6.19 

was solved with SEECROM and its parameterization technique. The first pendulum with 

grey color are consist of 40 elements and has an area of 900 mm2 with 1.216 kg of mass. 

For the red colored second pendulum, it has 40 elements and an area of 900 mm2 with 

0.982 kg of mass. The dynamic analysis was performed under the gravity force in –y 

direction over the total time T=1.3s. The design parameters for the parameterization are 

the Young’s modulus E  of each pendulum, which are indicated in the Fig. 6.19 with 

1  and 2 . 

In the sampling stage, the design parameters are directly chosen as the sampling 

parameters. The training analyses were conducted as the parameters are changed by 

1MPa / 10MPa / 100MPa. The response results of SEECROM were compared to the 

results from the full analysis and the POD reduction method under the randomly selected 

parameter values, [
*

1 ,
*

2 ] = [70.9 MPa, 4.15 MPa]. The first and the second values in 



 

68 

 

the bracket equal to the Young’s modulus of the first pendulum and the second pendulum, 

respectively. The total number of degrees of freedom is 328 and the reduction rate is 

15 %.  

 The deformation of the structure under the random perturbation *  is illustrated in 

Fig. 6.20. It is drawn with more dark lines over time T=1.3s while the initial position is 

indicated with pink line. The position of the end point of the second pendulum is shown 

in Fig. 6.21. The results of two reduction method are well matched with the full system 

analysis. The computation time of the three methods are shown in Fig. 6.22. SEECROM 

analysis is faster than the full system analysis by 43.2 times and POD reduction method is 

5.62 times faster than the full analysis. 

 

6.4.2.2. Slider-crank mechanism 

 The slider crank is shown in Fig. 6.23 with the element-wisely imposed design 

parameters 1  and 2 . The crankshaft and the connecting rod are composed with 40 

and 60 ANCF beam elements, respectively. Two bodies have the identical area of 78.54 

mm2 and the density of 2770 kg/m3. The moment M  applied at the crank is expressed as 

0.1670.01(1 ) 0.7

0 0.7

t

e tM

t
               (6.9) 

The multibody dynamic analysis of the slider crank was performed based on ANCF. 

Young’s modulus of each body is selected as the input parameters for the 

parameterization of the SEECROM-representation of the given ANCF model.  

In the offline stage, the training analyses were conducted as the design parameters are 
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changed by 1 MPa / 10 MPa / 100 MPa. The response from the SEECROM method is 

compared to the POD reduction and the full system analysis under the randomly 

perturbed parameter values, [
*

1 ,
*

2 ] = [8.51 MPa, 6.34 MPa]. The total number of 

degrees of freedom is equal to 408 and the reduction rate is 15 % with the 61 reduction 

modes.  

The dynamic response of the structure under the random perturbation *  is illustrated 

in Fig. 6.24, which is drawn with more dark lines over time T=1.6s with the initial 

position depicted in pink line. The position of the end point of the connecting rod that 

slides along the x-axis is shown in Fig. 6.25. The figure shows that the responses from 

SEECROM method and POD reduction method agree well with the full-order response. 

The computation time for the online stage is shown in Fig. 6.26. POD reduction was 

11.56 times faster than the full analysis, whereas SEECROM-Parameterization was 123.1 

times faster. 

 

6.4.2.3. Four-bar mechanism 

An example of four-bar mechanism is shown in Fig. 6.27 with the design parameters 

1 , 2  and 3 , which are imposed for the crankshaft, the coupler and the follower, 

respectively. The multibody dynamic analysis of the example was performed with the 

ANCF beam elements under the moment M  employed at the crank. The moment is 

expressed as  

16.32

sin(3 ) 0.2778

465.9 0.2778t

t t
M

e t
               (6.10) 

The material properties of each body are identical to the values listed in Table 6.1 except 
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the Young’s modulus of each body, which is selected as the input parameters for the 

parameterization of the SEECROM model of the example.  

A set of training analyses were conducted in the offline stage as the design parameters 

are changed by 10 MPa / 50 MPa / 100 MPa. Under the randomly perturbed parameter 

values of [
*

1 , 
*

2 , 
*

3 ] = [35.1 MPa, 59.2 MPa, 96.2 MPa], the dynamic response of the 

SEECROM is compared to the POD reduction and the full system analysis. The total 

number of degrees of freedom is 452 whereas the number of reduction modes is 54 with 

the reduction rate of 12 %. 

The snapshots displayed on Fig. 6.28 are the responses of full order and SEECROM 

analyses under the perturbed parameter * . The results from SEECROM are denoted 

with dark blue lines and the full order results are drawn with light blue lines. It can be 

seen that the excellent matching between the two methods is obtained. Moreover, the 

joint link between the coupler and the follower is selected as the observation point. The 

time response of the point in Y-direction is drawn in Fig. 6.29. It can be seen that the two 

reduction methods have the same results with the full system dynamic analysis. The 

efficiency of the proposed method can be verified from Fig. 6.30. Whereas the 

computation time of POD reduction was 8.46 times faster than the full analysis, the 

analysis using SEECROM method was 66.2 times faster. 
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Table 6.1 

Material properties of four-bar mechanism 

 

 

  

 Crankshaft Coupler Follower 

Number of 

elements 
20 50 40 

length (m) 0.2 0.9 0.52 

Density (kg/m3) 2709 1402 4003 

A (mm2) 1257 1960 7068 

E (MPa) 1,000 5 500 
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(a) 

 

 

(b) 

 

Figure 6.1. (a) Undeformed and (b) deformed configurations of ANCF elements 
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Figure 6.2. Configuration of the double pendulum with a pin joint in the middle 

 

 

 

 
Figure 6.3. Traces of the dynamic analysis in the sampling process 

 

  



 

74 

 

 

 

 
Figure 6.4. Deformation of the double pendulum under multibody dynamic analysis: 

CASE 1 

 

 
Figure 6.5. Transverse position of the end point of the double pendulum:  

CASE 1 
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Figure 6.6. Deformation of the double pendulum under multibody dynamic analysis: 

CASE 2 

 

 
Figure 6.7. Transverse position of the end point of the double pendulum:  

CASE 2 

  



 

76 

 

 

 

 

 

 

 
Figure 6.8. Computation time for the double pendulum:  

CASE 1 

 

 

 

 

 
Figure 6.9. Computation time for the double pendulum:  

CASE 2 
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Figure 6.10. Computation time with the number of elements 
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Figure 6.11. Configuration of slider-crank mechanism 
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Figure 6.12. Deformation of the slider-crank mechanism with time (T=1.6s) 

 

 

 

Figure 6.13. X-position of the end of the connecting rod with time 
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Figure 6.14. Computation time for the slider-crank mechanism 
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Figure 6.15. Configuration of the four-bar mechanism 
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Figure 6.16. Deformation of the four-bar mechanism with time (T=1.1s) 
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Figure 6.17. Y-position of the joint between the coupler and the follower 
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Figure 6.18. Computation time of the four-bar mechanism 
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Figure 6.19. Configuration of the double pendulum with design parameters 
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Figure 6.20. Deformation of the double pendulum under dynamic analysis 

 

 

 
Figure 6.21. Transverse position of the end point of the double pendulum 
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Figure 6.22. Computation time for the double pendulum with parameterization 
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Figure 6.23. Configuration of the slider-crank mechanism with design parameters 
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Figure 6.24. Deformation of the slider-crank mechanism with time (T=1.6s) 

 

 

Figure 6.25. X-position of the end of the connecting rod with time 

 



 

90 

 

 

 

 

 

 

 

 

 

Figure 6.26. Computation time for the slider-crank mechanism  

with parameterization 
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Figure 6.27. Configuration of the four-bar mechanism with design parameters 
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Figure 6.28. Deformation of the four-bar mechanism with time (T=1.1s) 
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Figure 6.29. Y-position of the joint between the coupler and the follower 
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Figure 6.30. Computation time for the four-bar mechanism with parameterization 
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7. APPLICATON TO OPTIMIZATION PROCESS 

 

7.1. Motivation 

 

The process of the design optimization of finite element structures takes a significant 

amount of computation time and resources. It needs numerous iterations of system 

analyses as the values of design parameters are changed in search of the optimal design. 

The iteration should be repeated until the updated design satisfies a certain condition 

defined for the optimization problem. If the size of the system is large that the inverse 

process to obtain the displacement solutions gets inefficient, reduced order methods can 

be effectively applied. The related researches, which conduct optimizations based on the 

reduced order model, have been popular in decades. 

In the cases when nonlinearities are present in the finite element structures, the 

optimization process becomes more complex. The system matrices should be 

reconstructed as the system responses change, which makes the construction process take 

the half of the computation time of the entire nonlinear analysis. This has been the 

obstacle to the application of the reduced order modeling to the optimization of nonlinear 

structures. The optimization process inherits the characteristics of the reduction methods 

applied for the system analyses. The problem is that most reduction methods for 

nonlinear structures only reduce the computation time of the solution process of the 

system, not the construction process of the system matrices.  

Parameterizations of reduced order models are also the critical point for the application 
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of reduction methods to optimization problems. Even if a reduction method efficiently 

reduces the computation time for nonlinear analyses, without the inclusion of design 

parameters to the reduced model, the reduced order modeling becomes ineffective in the 

optimization process. The design parameters are continuously changed until the response 

of the system meets the design requirements. The system matrices are changed to yield 

the different responses for the different parameters. Without the parameterization 

techniques, therefore, the construction of system matrices and the reduced order modeling 

of these matrices should be repeated as the design parameters change.  

In this paper, a new method of parameterized reduced order models is proposed. It is 

referred to as SEECROM since the reduced order models use stiffness evaluation method 

based on the element connectivity of finite elements. SEECROM reduces the 

computation time for the system matrices construction process as well as the time for the 

solution process. An equivalent model based on SEECROM substitutes the assembly and 

the integration process of the full system analysis. The input and the output of the 

equivalent models are the displacements and the corresponding internal forces, 

respectively. In the stiffness evaluation methods, the internal forces are composed as the 

sum of the 3rd order polynomial displacements. Each polynomial term is multiplied by 

the constant coefficients. Theses coefficients are called as ‘stiffness coefficients’ and they 

are efficiently obtained with the relation from the finite element connectivity. Then, the 

reduction technique with Proper Orthogonal Decomposition method is applied to enhance 

the efficiency of the equivalent model.  

SEECROM is especially useful when it comes to the parameterization of nonlinear 

structures. In the proposed method, the nonlinear internal force model is constructed in 
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element-wise manner. This simply enables the parameterization. The design parameters 

can be easily multiplied element by element in the evaluation process of the stiffness 

coefficients to complete the parameterized reduced order model. With the proposed 

method, the nonlinear internal forces can be computed effectively without the re-

evaluation of these stiffness coefficients since they are constant values which are 

independent from the displacements or the design parameters. The numerical integration 

and the assembly process are eliminated as well with the use of the proposed method. 

Due to the efficiency for the nonlinear analyses and the ability to be parameterized for the 

design parameters, SEECROM is perfectly fitted for the reduced order modeling of 

nonlinear structures subjected to the optimization problems.  

 This section is categorized as follows. First, the conventional process of the optimization 

of nonlinear structures is presented in Sect. 7.2. The reason for the excessive requirement 

of computational resources and thus the needs for the reduced order models as well as the 

parameterization are explained. In Sect. 7.3, the newly developed parameterized reduced 

order modeling method for nonlinear finite element system, SEECROM, is utilized to the 

optimization process. The sampling strategy for the multiple design parameters and the 

issue of the computational efficiency for the large scale problems are also discussed. In 

the final section, two sample optimization problems are demonstrated. A static structural 

system with a hyperelastic material and a multibody dynamic system. A thickness design 

problem of the structure with hyperelastic material is solved under strain constraints and a 

system of for-bar mechanism based on ANCF elements is subjected a diameter design 

problem. The formal example is a multi-variables problem with 16 design parameters and 

the latter example is time-dependent simulation. The sampling strategy is numerically 
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demonstrated and the computational efficiency is compared in detail. 

 

7.2. Optimization of nonlinear system 

 

A general process of an optimization problem is depicted in the flow chart illustrated in 

Fig. 7.1. In the search of the optimal values, the design variables are iteratively changed 

to proceed to the next iteration steps and to find the direction to the optimal state. 

Whenever the design variables are changed, the system analyses are repeated to get the 

corresponding system responses which are verified against the design requirements. 

As shown in Fig. 7.1, the optimization process consists of the iterative system analyses. 

One iteration cycle includes the system analysis to get the responses from the system, the 

validation of the design requirements of the system and the design update. Moreover, to 

determine the design parameters for the next iteration step, sensitivity analyses are 

required. The process to find the direction of optimization problems is referred to 

sensitivity analysis. In the cases when the sensitivity is cannot be obtained analytically, it 

can be computed from numerical differentiations, which enhances the computational 

burden. In general, the numerical calculations for sensitivities require the equal number of 

system analyses to the number of design parameters. Thus the number of system analysis 

required for one iteration cycle becomes the number of design parameters plus one. 

If a structure to be optimized has nonlinear characteristics, an additional iterative 

process to solve nonlinearities is added in the optimization process to compose two layers 

of iteration cycles. This is illustrated in Fig. 7.2 where the system analysis itself forms the 

iteration cycle. In Fig. 7.2, the outer cycle of the iteration is performed with the update of 
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the design parameters. It is terminated as the desired responses are obtained to meet the 

design requirements. Within one cycle of the outer iteration, the values of the design 

parameters are maintained. The inner iterations find the nonlinear system responses from 

the solutions of the discretized equations, which terminated when the force equilibrium is 

achieved. Then, with this new equilibrium state, cost and constraint functions are 

evaluated and the outer cycle resumes. 

Therefore, in the optimization process of nonlinear structures, the nonlinear system 

analysis is performed more than the number of design parameters per design iteration 

cycle. This is why the reduced order modeling is a tempting technique for the efficiency 

of the optimization process. Nevertheless, there exist two main obstacles blocking the 

application of the reduced order models. Firstly, the reduced order models for nonlinear 

structures should have sufficiently high efficiency. In addition to the reduction of the 

system matrix size, the construction of the matrices should be performed efficiently. 

Secondly, the reduced order models should be parameterized by the design parameters. 

To embrace the change of the design, system matrices should be reconstructed. If the 

system matrices are parameterized with the design parameters, the construction process 

can be skipped, which enhance the efficiency of the optimization. 

 Fig. 7.3 shows the optimization process of nonlinear structures with the reduced order 

modeling based on POD method. Since it is highly accessible in most cases of reduced 

order modeling and it represents nonlinear characteristics well, POD method is the most 

popular in the reduced order modeling concerning nonlinear systems. Check Sect. 4.1 for 

a more detailed explanation. The process of optimization with POD method is divided 

into two stages. The offline stage includes all the preparation works required before 
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proceeding to the optimization process. The reduction modes are computed from the 

snapshot data obtained in the sampling analyses. The main process of the optimization 

occurs in the online stage where the iterative system analyses are performed as the design 

changes. The conventional approach of reduced order models including POD method 

requires the reconstruction of system matrices as the displacements are updated. Although 

the discretized equation is solved efficiently with reduced order model, the reconstruction 

of system matrices cancels the effect.  

To skip the process of matrix construction, it should be possible to update the system 

matrices so that they can take the changes of the input parameters. In the optimization 

process of nonlinear structures, the input parameters are the displacements and the design 

parameters. If the reduced order model cannot embrace design parameters, therefore, it 

should be reconstructed as the design changes, which costs a great deal of computational 

resources. 

For a reduced order model to substitute the nonlinear system analysis, in short, it is 

important that 1) the model should yield the system response efficiently and 2) accept the 

design parameters as input variables. Therefore, the efficient method for a parameterized 

nonlinear reduced modeling is required. This requirement exactly coincides with the 

descriptions for SEECROM-Parameterization, which was proposed in Sect. 3 to Sect. 5. 

 

7.3. SEECROM-Parameterization for optimization of nonlinear system 

 

7.3.1. Optimization procedure using SEECROM-Parameterization 
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SEECROM effectively computes the nonlinear internal force and the tangent stiffness to 

solve an optimization problem for nonlinear systems. Still, there are two main issues to be 

discussed before the adaptation of the ROM method to the optimization process; 1) 

SEECROM model should be composed in relation with the design parameters of the 

optimization problem. 2) A new sampling strategy should be devised for the large number 

of design parameters. They are discusses in Sect. 7.3.1.1 and Sect. 7.3.1.2, respectively. 

The complete optimization procedure with SEECROM method is illustrated in Sect. 

7.3.1.3. 

 

7.3.1.1. Parameterization by design parameters 

SEECROM method constructs an equivalent model to compute nonlinear internal forces 

from the current displacements. In other words, the input and output parameters for the 

equivalent model are the displacements and the corresponding internal forces, 

respectively. The internal force ( )i u  at the thi  degree of freedom can be represented 

by  

1 1

( ) ( )
AE AE

c

i ijkl j k l ij jn n
n n

K u u u K uu u             (7.1) 

 where ijklK  is the stiffness coefficients and AE  indicates the number of adjacent 

elements. 

The addition of the parameterization technique means the addition of the new input 

parameters which build the corresponding internal forces together. Then, the internal 

forces, the output parameters of SEECROM model, are changed according to the 

perturbations of the added input design parameters as well as the update of the 
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displacements. Since SEECROM model is composed in element-wise manner, the 

parameterization of SEECROM model is easily achieved by  

1 1

( , ) ( )
AE AE

c

i ijkl n j k l ij n jn n
n n

K u u u K uu u           (7.2) 

The simple modification of Eq. (7.1) leads to the above equation; the design parameters 

n  is multiplied to the original equation for each element. If a design parameter has a 

linear relation with the internal force such as the thickness of the plane elements, Eq. (7.2) 

can be directly applied to the parameterization of SEECROM model with the direct 

substitution of n  to the thickness for the thn  element.  

This process can be modified according to the relation between the design parameters 

and the corresponding internal forces. For example, if the design parameters is the 

diameter nd  of a beam element, it is not linearly related to the internal force. In the 

beam elements, the internal force is obtained as the sum of its bending part and the shear 

part. These two parts are proportional to the cross-sectional area and the second moment 

of area, which correspond to 
2

nd  and 
4

nd , respectively. Thus, the Eq. (7.2) for this 

specific example can be represented as 

2 4

1 1

( , )
AE AE

i ijkl n j k l ijkl n j k ln n
n n

K d u u u K d u u uu           (7.3) 

This can be regarded that the two different input design parameters 
2

nd  and 
4

nd  are 

added to the SEECROM model instead of a parameter nd . This indicates that although 

the number of design parameter is just one on the surface, the number can be doubled by 
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the characteristics of the parameter. Whether the design parameters are added linearly or 

non-linearly, the important thing is that the parameterization of SEECROM can be easily 

tailored to suit the requirements of the problems. 

 

7.3.1.2. Sampling criteria 

The solution sets required to evaluate the stiffness coefficients are collected from the 

training analyses. In the parameterized modeling, the sets consist of the design parameters, 

the displacements and the corresponding internal forces. The composition of the solution 

sets should be compact and sufficient since it determines the accuracy and the efficiency 

of the SEECROM method. In this section, the criteria to obtain the solution sets will be 

discussed.  

As stated in Sect. 3, the number of required solution sets is determined based on the 

number of unknown coefficients of displacement combinations. If design parameters are 

added in the process as shown in Eq. (7.2) and Eq. (7.3), the number of unknown 

coefficients increases according to the characteristics of the parameters. 

The composition of the solution sets comes from the composition of the training 

analyses. In design problems, the range of the design parameters are given as the design 

requirements. Then, the training analysis can be repeated under the various compositions 

of the design parameters. The range of the training analyses as well as the solution sets 

are determined by the lower and the upper bounds of the design parameters.  

The basic rules in the selection of the solution sets are simple. 1) The collected system 

responses should span the responses may occur in the optimization process. 2) The 

sampling number should be kept minimum to reduce the computation time for the 



 

104 

 

training analyses.  

However, it is not simple to establish the standards for the sampling analyses. Although 

ideally, the solution sets should be independent each other, the solution sets of element 

displacements obtained from training analyses tend to have rank deficiency. Moreover, 

the full rank sets do not guarantee the accuracy of the equivalent model. Do not forget 

that the SEEC method is an approximated model based on the polynomial expansion. In 

other words, it is difficult to obtain a specific number of displacements sets which are 

independent each other, and it is even not necessary.  

In the middle of the identification process of the stiffness coefficients, however, the 

accuracy of the equivalent model can be checked. The rate of the independent solution 

sets against the number of unknowns can be used as the indicator  such as 

rank of ( )rank of solution sets

number of unknowns number of unknowns

c

element
element

u u
     (7.4) 

where ( )cu u is the displacement sets in combination form with design parameters. 

 Now, based on the indicator , it can be determined whether the training analyses 

should be added more or not. Engineers can design training analyses by the experiences 

based on the values of the indicator. In the examples in this paper, the equivalent model is 

constructed with the indicator  to be larger than 0.5. In the numerical examples in the 

following section, the relations among the indicator, the model accuracy and the 

composition of the training analyses are demonstrated. 

 

7.3.1.3. Optimization procedure with SEECROM 

 The optimization procedure based on POD method in Fig. 7.3 can be modified by 
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SEECROM method, which is illustrated in Fig. 7.4. The major difference between two 

figures is the requirement for the system matrix construction in the nonlinear system 

analyses. With the application of SEECROM method, the construction process can be 

omitted. The equivalent model based on SEECROM directly takes the changes of the 

design parameters and the displacements to yield the corresponding internal forces. The 

downside from the application of SEECROM exists in the offline stage; the identification 

of the stiffness coefficients takes computational resources. Fortunately, the efficiency loss 

in the offline stage is easily redeemed in the online stage.  

With the strategies of the parameterized ROM for optimization procedures presented 

above, a sample numerical problem was solved in the following section. A static structure 

with hyperelastic material is subjected to the design optimization problems. The 

computation time required for the online and the offline stage is discussed by three 

different cases of approaches. The system analysis based on SEECROM approach was 

performed against the reference analyses, which are the full system analysis and the 

reduced model analysis based on POD method. A design optimization of a multibody 

dynamic system is also solved for the mass minimization with the diameters of each body 

as a design parameter. The procedures and the results are demonstrated for the 

verification of the proposed method. 

 

7.3.2. Numerical examples 

 

Two optimization problems which handle the different nonlinearities are demonstrated 

in this section. The first example concerns the structural static system with material 
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nonlinearities. The structure composed with hyperelastic elements is subjected to an 

optimization problem which has 16 design variables of thickness for 16 sections. The 

mass of the structure is minimized under strain constraints. The second example concerns 

the multibody dynamic analysis which requires the time marching analysis. The diameter 

of each body of the four-bar mechanism is computed from the optimization process with 

the constraints imposed on the axial stresses. 

 

7.3.2.1. Application to nonlinear structural analysis 

The first example is the mass minimization of a nonlinear structure with the hyperelastic 

material. The square plane with a hole is fixed by one side and loaded by the opposite 

side. The width of the plane is 0.02 m and the diameter of the hole is 0.004 m. The 

configuration is shown is Fig. 7.5. The hyperelastic elements are modeled as Neo-

Hookean with the shear modulus of =1.5 MPa, bulk modulus of =1.0 GPa and 

density of =1,000 kg/m3. The element has 4 nodes per element and 2 degrees of 

freedom per node, which makes 8 degrees of freedom per element. The structure is 

composed of 2,544 elements and 5,360 degrees of freedom. The distributed loads are 

imposed with the direction of 30˚ as shown in the figure. The magnitude of the static load 

is 20 N. 

 Fig. 7.5 also shows the composition of the design parameters. The entire domain is 

uniformly divided into 16 square regions which can have different thickness as design 

variables. The each design sections are illustrated with different colors. The mass of 

( )m λ  is minimized while the constraint enforces a limit on the maximum stain of the 

structure. The optimization problem is stated as 
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minimize   ( )

subject to  11 0.5

                 12 0.3

                  0.001 m 0.003 m,        1,...,16i

m

E

E

i

λ
λ

        (7.5) 

where 11E  and 12E  are the components of Lagrangian strain E . 

 

Test cases for sampling 

To solve the optimization problem with SEECROM approach, the equivalent internal 

force model should be constructed in the offline stage. Since the preparation works in the 

offline stage take the additional time, the sampling analyses should be performed 

efficiently while keeping the accuracy of the equivalent model. To this end, sampling 

strategies should be devised. In Sect. 7.3.1.2, therefore, an indicator , which can be 

calculated by Eq. (7.4), is provided to evaluate the state of the equivalent model.  

To observe the relation between the indicator and the accuracy of the equivalent model, 

4 cases of training analyses are demonstrated based on the example above. Since the load 

cases is fixed in the optimization problem, the training analyses are controlled by the 

composition of the design parameters. The design parameters are selected to have the 

values in the range of the design requirements. The lower bound 
L

, the upper bound 

U
 and the middle value of 0.002 mM

 are used for the demonstration. 

 In Case A, three full finite nonlinear analyses are performed for sampling. Three 

different values of thickness (
L

,
M

,
U

) are imposed uniformly for each analysis. In 

Case B, 16 analyses are performed. Each design section is perturbed for each analysis. 

Based on the lower bound 
L

 as default, each design section is perturbed to upper 
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bound value 
U

. In Case C, the opposite case of the Case B is added to make 32 analyses. 

The added analyses have the upper bound 
U

 as default, and the perturbation is given 

with the lower bound 
L

. Case D includes 256 analyses upon various combination of 

design parameters to the Case C. Fig. 7.6 shows the design parameters for each cases in 

simple drawing. 

 The indicator  is calculated for each case in Fig. 7.6. The number of unknowns per 

element is 164 by the characteristics of the element and the rank of the displacement sets 

( )cu u  is computed for each training case. The accuracy of the equivalent model for 

each case can be evaluated by the comparison of the displacement responses. The design 

parameters at the optimal state are imposed for the validation. The mean values of 

response differences between the POD reduction and SEECROM analyses are 0.18 %, 

0.025 % and 0.0099 % for Case B, Case C and Case D. In Case A, the SEECROM 

analysis fails to give solutions. 

 In practical case, the responses of the equivalent model cannot be computed in the 

offline stage. Thus the indicator  is useful, which can be easily computed without a 

computational burden. In the demonstration of four cases in Fig. 7.6, Case B to Case C 

have the indicator  over 0.5. Although the value of indicator increases as the number 

of training analyses become larger, it should be noted that the computation time also 

increases by the number of analyses. The Case B is sufficient accuracy and efficiency, in 

this section, the 16 training analyses of Case B are performed to construct the reduced 

model.   
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Test cases for efficiency check 

 Once the SEECROM model is constructed based on the sampling analyses, the offline 

stage is completed. Based on the computation time for the offline stage, the validity of the 

reduced order model for the optimization can be investigated in advance. The time 

required for the optimization process can be predicted beforehand. Assume that one 

iteration of optimization cycle consists of the nonlinear analysis at the current design state 

and the sensitivity analyses. Then, the number of analyses required in an iteration step is 

equal to the number of design parameters plus one.  

To verify the SEECROM approach, the reduced model analysis based on POD method 

and the full model analysis are conducted as references. If the computation time to solve 

one set of nonlinear analysis is obtained for each method, the overall time for 

optimization process can be predicted by the number of iteration step. CaseⅠ and 

CaseⅡ which have different number of elements are tested. They are composed of 5,360 

and 21,280 degrees of freedom, respectively. The number of reduced degrees of freedom 

is 26 for two cases. The computation time is classified in Table 7.1 for each case and each 

method.  

Fig. 7.7 shows the predicted computation time by the iteration number in the 

optimization process. Due to the offline computation, the full system analysis is favorable 

in the beginning of the iteration over the analyses based on POD or SEECROM method. 

In the results shown in Fig. 7.7, the efficiency of SEECROM method beats the full 

analysis during the first iteration step for both cases. On the contrary, it can be seen that 

the POD approach gain its efficiency gradually but still takes more time than the full 



 

110 

 

analysis at the 10th iteration step. It is important to note that the efficiency of SEECROM 

is maintained as the size of the structural system is multiplied by 4. Moreover, the time 

for the offline computation can be easily shortened with the parallel computation, which 

is also shown in Fig. 7.7 with the assumption of 8 workers.  

 

The optimization process is conducted with the optimization toolbox in Matlab. The 

solver of fmincon is used with the algorithm of ‘Sequential quadratic programming’. 

Initially, the design has a mass of m =7.75 × 10-4 kg, and the design requirements are 

satisfied.  

 The optimization problem is solved with three different approaches. First, the 

optimization based on the full system analysis is performed for the reference. In addition, 

the problem is solved with reduced order models; the conventional POD reduction 

method and the proposed SEECROM method are applied, respectively. For the 

verification of the effectiveness of the proposed method, the computation time is 

compared for the three methods as well as the optimized designs and the convergence 

histories. 

The training analyses are conducted for the 16 sets of design parameters. The Case B in 

Fig. 7.6 is used. While the magnitude of the load is fixed, the 16 compositions of design 

parameters are imposed for full system analyses. The design parameters, the 

displacements and the internal forces are saved as the solution set during the iterations.  

The structure to be optimized is composed with 2,304 elements and 4,802 degrees of 

freedom, which is reduced to have 26 degrees of freedom with the reduction rate 0.5 %.  

 Fig. 7.8 shows the convergence histories of the optimization process. The convergence 
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is attained after 31~32 iterations. In addition, the evolution of design constraints is 

depicted in Fig. 7.9. All three approaches have the similar tendencies for the progression 

in the objectives and the constraints. 

 The optimized designs are illustrated with Fig. 7.10 and Fig. 7.11. The results from the 

reduction methods exhibit good agreement with the results from the full analysis. The 

E11 and E12 strain distributions at the optimal state are also illustrated in Fig. 7.12. The 

distribution satisfies the design requirement for the allowable strain. In Fig. 7.13, the 

computation time for the three approaches are compared. The proposed method exhibits 

significantly faster results than the optimization based on the full system analysis. It is 

25.2 times faster than POD based reduction method and 24.6 times faster than the full 

analysis. POD method is slower than the full system analysis  

 

7.3.2.2. Application to multibody dynamics 

The optimization problem concerns the mass minimization of a four-bar mechanism 

shown in Fig. 7.14. The three flexible links have a constant solid circular cross-section. 

The material properties including Young’s modulus and the density of each link are listed 

in Table 7.2. The gravity is imposed in the opposite y-direction. The crankshaft is driven 

by the moment M  below 

180cos(2.5 )M t                        (7.6) 

The simulation is performed based on ANCF elements presented in Sect. 6. The time 

marching analysis is conducted with Newmark method with the time step of 0.001 s over 

the total time of T = 0.2 s.  

The design parameters 
i
 are the diameters of three flexible links, which are initially 
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set to 0.075 m. The optimization problem is to find the link diameters which minimize the 

total mass of the system ( )m λ  under axial stress constraints , ( )j e λ  at each time step 

j  for each beam element e , which is stated as 

,

minimize   ( )

subject to   20 MPa,               1,..., 200,      =1,...,40

                  0.05 m 0.1 m,      1,...,3

j e

i

m

j e

i

λ
λ

        (7.7) 

The initial design has a mass of 19.39 kg. The optimization process is conducted with 

the optimization toobox in Matlab. The solver of fmincon is used with the algorithm of 

‘Sequential quadratic programming’.  

 The optimization problem is solved with two different approaches. SEECROM method 

is used against the full order analysis. For the verification of the effectiveness of the 

proposed method, the computation time is compared as well as the optimized designs and 

the convergence histories. 

In the offline stage to construct the equivalent model, the sampling analyses are trained 

by the design parameter values. The sampling diameters of 3 sections are subjected with 

the combinations from the 3 different values (0.05 m / 0.075 m / 0.1 m) which are 

determined from the lower and upper bounds of the design parameters. Then the number 

of sampling analyses conducted becomes 33 , which yield the sufficient number of 

solution sets to identify the stiffness coefficients. On the other hand, there is an important 

issue to be considered; the diameter in ANCF elements has the nonlinear relation with the 

internal forces. It was stated in Sect. 7.3.1.1 where the instructions are given with Eq. 

(7.3). Thus, the stiffness evaluation should be carried out as instructed in the previous 

section with the particular care on the design variables. 
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The cost function and the constraint history are illustrated in Fig. 7.15 and Fig. 7.16. The 

results from the full system analysis and SEECROM approach was depicted, which 

shows the similar tendency over the iteration process. The optimized designs are depicted 

in Fig. 7.17 and Fig. 7.18. It can be seen that the nearly identical designs are obtained 

from the two approaches. The computation time for the two approaches are compared in 

Fig. 7.19 and Fig. 7.20, which illustrate the total time of the optimization and the 

calculation time per iteration, respectively. In both representations, it can be seen that 

SEECROM is significantly faster than the full analysis. 
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Table 7.1 

Computation time of the test cases for efficiency check (s)  

 Case Ⅰ Case Ⅱ 

Full POD SEECROM Full POD SEECROM 

Offline stage 0 3,281 3,572 0 15,301 16,707 

Per nonlinear 

analysis 
163.3 156.4 2.69 832 763.9 10.06 

 

 

 

Table 7.2 

Material properties of four-bar mechanism 

 

 

 

  

 Crankshaft Coupler Follower 

Number of 

elements 
10 20 10 

length (m) 0.2 0.9 0.52 

Density (kg/m3) 2,709 2,709 2,709 

E (GPa) 73 73 73 
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Figure 7.1. General process of optimization problem 
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Figure 7.2. General process of optimization problem with nonlinear system 
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Figure 7.3. Process of optimization problem for nonlinear structure  

with reduced order modeling based on POD method 
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Figure 7.4. Process of optimization problem for nonlinear structure  

with SEECROM method 
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Figure 7.5. Nonlinear structure subjected to the optimization problem 
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Figure 7.6. Test cases for sampling 
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Figure 7.7. Test cases for efficiency check: prediction of computation time 
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Figure 7.8. Cost function history from the optimization problem  

of material nonlinear analysis 
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Figure 7.9. Constraints history from the optimization problem  

of material nonlinear analysis   
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Figure 7.10. Design parameters at the optimal state from the optimization problem  

of material nonlinear analysis   
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Figure 7.11. Optimal designs from the optimization problem  

of material nonlinear analysis 
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Figure 7.12. Strain distribution at the optimal state from the optimization problem  

of material nonlinear analysis 
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Figure 7.13. Computation time for the optimization problem  

of material nonlinear analysis 
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Figure 7.14. Four-bar mechanism subjected to the optimization problem 
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Figure 7.15. Cost function history from the optimization problem of multibody 

dynamics 
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Figure 7.16. Constraints history from the optimization problem of multibody 

dynamics 
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Figure 7.17. Design parameters at the optimal state from the optimization problem 

of multibody dynamics 

 

 

 

 
Figure 7.18. Optimal designs from the optimization problem of multibody dynamics 

 



 

132 

 

 

 

 

Figure 7.19. Computation time for the optimization problem of multibody dynamics 

 

 

 

Figure 7.20. Computation time per iteration for the optimization problem of 

multibody dynamics 
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8. CONCLUSIONS 

 

This research was conducted to present a new nonlinear model reduction method that 

has both sufficient efficiency and accuracy to be applied to structural dynamic analyses or 

design optimization problems. To this end, the stiffness evaluation method, which is one 

of the nonlinear model reduction approaches, was modified to enlarge its potential 

applications. First, a new stiffness evaluation method that has less dependency on the size 

of the problem was proposed for applications to large-scale problems. In addition, a 

parameterization technique was adapted to the proposed method for applications to design 

problems.  

To be specific, the proposed method, referred to as SEECROM, was developed to 

enhance the conventional stiffness evaluation methods. First, the element connectivity of 

the finite elements was used to reduce the number of unknown stiffness coefficients. 

SEECROM relies on the characteristics of the finite element itself rather than on the 

complexity or the size of the problem. The application sequence of ROM was reversed to 

guarantee both accuracy and efficiency. The parameterization of SEECROM was also 

developed directly based on the characteristics from the element connectivity. The design 

parameters were simply added to the input parameters of the SEECROM model by using 

the element-wise nature of the proposed algorithm. 

SEECROM and its parameterization technique were directly applied to the reduced-

order modeling of flexible multibody dynamics. Various numerical examples with ANCF 

beam elements successfully demonstrated the efficiency and accuracy of the proposed 
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method. In future investigations, plate and solid elements based on ANCF will be 

implemented with the SEECROM method. Applications can be expanded to numerical 

examples with more constraints, including contact problems. Overall, SEECROM gives 

more possibilities to ANCF methods, which could contribute to the study of multibody 

dynamics for highly flexible structures. 

The extension of the SEECROM-Parameterization to the optimization problems was 

also achieved. Since the nonlinear reduced order modeling has recently became an active 

research field, its application to optimization problems is in the beginning stage. 

Although the proposed method was successfully solved the problem concerning structural 

nonlinearities as well as multibody dynamics, further extensions are required. In future 

investigations, large-scale optimization problems will be solved for various applications. 

The applications can be expanded to multi-physics problems, and this can be accelerated 

with the aid of commercial programs. 
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APPENDIX A  

VALIDITY OF 3rd DEGREE POLYNOMIAL APPROXIMATION 

 

Using the first Piola-Kirchhoff stress jiP , the total Lagrangian form of internal nodal 

forces at node I  are integrated over the initial configuration , which is given by  

0

int

0
I

iI ji

j

N
f P d

X
                    (A1) 

where IN  is the shape function and jX  is the initial position. 

In this equation, it should be noted that only the stress term is dependent on the 

displacements. Therefore, the compositions of the first Piola-Kirchhoff stress determine 

the approximation order of the polynomial description in the stiffness evaluation methods.   

For the simplest nonlinear material model, a St. Venant-Kirchhoff material that exhibits 

large deformations can be considered. The first Piola-Kirchhoff stress tensor of the 

material is defined as  

( ) [2 tr( ) ]P F F E E I                   (A2) 

where Green strain tensor is 
1

( )
2

T
E F F I            (A3) 

From the above equations, it can be seen that the stress is a 3rd degree polynomial 

function of the deformation gradient tensor F . Moreover, by the definition of F  in 

Eq. (A4) and the interpretation of the displacements with nodal quantities in Eq. (A5), it 

can be derived that the nodal force is discretized as cubic polynomials of nodal 

deformations. 
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( )i i i
ij ij

j j j

x X u u
F

X X X
             (A4) 

    where ix  is the current position and iu  indicates the deformation. 

1

en

i iI I

I

u u N                        (A5) 

where iIu  is the nodal displacement and en  is the number of nodes of the element. 

Hence the use of a 3rd order polynomial from the components of the nodal displacements 

is adequate for the representation of the internal nodal force of the nonlinear model given 

above. 

 

 Alternatively, the updated Lagrangian form using the Cauchy stress ji  gives  

int I
iI ji

j

N
f d

x
                   (A6) 

   where  indicates the integration over the current configuration. 

1

ji jk kiJ F P  where det( )J F               (A7) 

As described below, by the relation between the first Piola-Kirchhoff stress and the 

Cauchy stress in Eq. (A7), Eq. (A6) is easily transformed into (A1). 

0 0

int 1

0 0
kI I I

iI ji jm mi ji

j k j j

XN N N
f d J F P Jd P d

x X x X
  (A8) 

This implies that the stiffness evaluation method can be applied regardless of the type of 

the formulations since the method only uses nodal deformations iIu  and the 
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corresponding internal forces 
int

iIf . They are invariant to the stresses or the reference 

coordinates used in the computation process. 

If a material takes a more complex form than a St. Venant-Kirchhoff model, the 

applicability of the stiffness evaluation method can be verified as follows. First, in the 

total Lagrangian approach shown in Eq. (A1), where the relation between the first Piola-

Kirchhoff stress and the deformation gradient is the sole factor, the order of the 

polynomial of iIu  used to express the stress P  should be identified. If the relation 

cannot be expressed in analytical form, the exact results and the approximate results from 

the 3rd order polynomial representation can be compared. Likewise, in the updated 

Lagrangian formulation in Eq. (A6), this can be achieved by the transformation into the 

total Lagrangian form. 

However, there are some cases when the updated form is preferred. For example, if the 

stress is computed by update algorithms, including the hypoelastic material in which the 

stress is provided in the rate form, the analyses are generally based on the updated 

Lagrangian formulation. In these cases, one can examine the Cauchy stress representation 

by the nodal deformation iIu  as follows. In Eq. (A9), the inverse of the matrix is 

decomposed into its determinant and the adjugate. Using this expression, the internal 

force in the updated form is represented as Eq. (A10) in which only the term kj jiA  is 

dependent on the nodal displacements iIu . 

1 1 1det( ) adj( ) JF F F A      where adj( ) adj( )
x

A F
X

   (A9) 
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0 0

int 1

0 0
I I I

iI ji kj ji kj ji

j k k

N N N
f d F Jd A d

x X X
   (A10) 

Then, the sufficiency of the 3rd order polynomial of iIu  for kj jiA  can be evaluated 

from the values of the stresses obtained in the sampling stage.  

In this work, a Neo-Hookean material, which is one of the isotropic constitutive models, 

was used for the demonstration of the proposed approach. The Piola-Kirchhoff stress of 

an isotropic constitutive model and the Neo-Hookean elasticity are defined in Eq. (A11) 

and Eq. (A12), respectively.  

3

1 2 3

( ) 2 4 2T TI
I I I

P F F FF F F          (A11) 

where  is the strain energy and 1I , 2I , and 3I  are the invariants of the 

deformation gradient F . 

2

1 3 1 3 3( , ) { log( ) 3} {log( )}
2 8

I I I I I         (A12) 

Then, the Neo-Hookean stress is computed as 

3log( )
( )

2

T TI
P F F F F              (A13) 

   where 
3 det( )I F                      (A14) 

To verify the applicability of the stiffness evaluation methods to a Neo-Hookean 

material, it should be checked in advance in the sampling stage that whether a 3rd degree 

polynomial of F  can approximate the stress P  with sufficient accuracy, which is 

shown as follows.  

First, by the definition of F  in Eq. (A4), T
F  and log(det( ))F  can be 
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approximated with Neumann series and Tayler series, respectively. See Eq. (A15) and Eq. 

(A16) 

2 3( ) ( )T T T T
F I H H H             (A15) 

2 31 1
log(det( )) tr( ) tr(( ) ) tr(( ) )

2 2
F H H H     (A16) 

    where H  is given by 

,    i I
ij iI

j j

u N
H u

X X
F = I + H                (A17) 

Then, the exact stress and the result from the 3rd order approximation of   can be 

compared to assess the availability of the stiffness evaluation methods. For instance, in 

the sampling analyses of the example in Sect. 5.2.1., the maximum percentage error of the 

stress was computed as 4.74%. The values of the strain when the maximum error occurs 

were 
xx

=0.064, xy =-0.499, yy =0.374. The approximation in the example was 

considered sufficient since the maximum error is under 5% at the point of deformation 

with near 50% strain, which was proved by the high accuracy of the complete SEECROM 

model. 

From the sampling data in the offline stage, as shown in the case above, one can predict 

the validity of the given method and modify the target problems or the finite element 

model to raise the accuracy of representative model. Since the error increases with the 

magnitude of the strain, it is recommended that the strain as well as the stress 

approximation error should be checked before the application of the stiffness evaluation 

methods. 
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국문요약 

 

 기하 비선형 및 재료 비선형 거동을 고려한 구조 해석에서 최종 변형을 

도출하기 위해서는, 내력 벡터와 강성 행렬을 반복적으로 도출하며 변형을 

갱신해 나아가는 과정을 거쳐야 한다. 이는 비선형성을 고려한 정적 및 동적 

해석에 있어서 계산 시간이 급증하는 까닭이다. 따라서 효과적인 해석을 

위하여 다양한 축소 모델 기법들이 제안되어 왔지만 그 효율성이 높지 않다. 

보통의 축소 기법은 각각 시스템 행렬의 크기를 줄이고, 줄어든 크기의 

시스템 행렬을 통해 효율적으로 응답을 도출할 수 있도록 한다. 즉, 축소 

기법을 적용하기 위해서는 시스템 행렬을 미리 구축해야 하는 것이다. 비선형 

해석의 경우 변형에 따라 시스템 행렬의 구축을 반복해야 하며, 이에 

소요되는 시간이 상당하다. 그러나 기존의 축소 기법은 시스템 응답 도출과 

관련된 효율성만 높이며, 행렬 구축에 소요되는 시간은 그대로 남는다.  

 등가 강성 행렬 기법(Stiffness Evaluation)을 활용하면 비선형 시스템 행렬 

구축의 효율성을 높일 수 있다. 해당 기법은 비선형 시스템의 내력 벡터를 

다항함수를 활용한 등가 모델로 나타낸다. 일단 해당 다항함수의 계수들을 

도출해 놓으면, 변형의 갱신을 즉각적으로 고려하여 내력 벡터와 강성 행렬을 

계산할 수 있으므로 행렬 구축에 소요되는 시간을 크게 줄일 수 있다. 문제는 

등가 모델 구축에 소요되는 시간이 시스템 크기의 3승에 비례하여 늘어나기 

때문에, 효율적이지 않다는 것이다.  

 본 연구에서는 유한 요소의 연결성을 고려하여 개선한 새로운 등가 강성 
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행렬 기법(SEEC; Stiffness Evaluation based on Element Connectivity)을 제안한다. 

유한 요소의 연결성을 이용하면, 다항함수의 구성 및 해당 계수들의 도출을 

국부적 및 병렬적으로 진행할 수 있다. 적합직교분해법(POD; Proper Orthogonal 

Decomposition)을 활용한 축소 모델 또한 연동되어 효율성을 높인다. 등가 

강성 행렬 기법의 계수들을 요소 연결성을 고려하여 효과적으로 산출한 뒤, 

축소 기법을 연동하면 정확도 및 효율성을 동시에 확보할 수 있다. 이 제안 

기법을 SEECROM으로 칭한다. SEECROM은 각 유한 요소의 특성을 활용하여 

국부적으로 구성된다는 특성을 갖기 때문에, 파라메트릭 기법의 적용이 

용이한 장점도 갖는다. 제안 기법의 효율 및 정확성은 기하 비선형성을 

가지는 쉘 구조물의 동적 해석과 초탄성 재료를 가지는 비선형 구조의 

정적/동적 해석에 적용하여 검증하였다.  

 제안 기법은 유연 다물체 동역학에도 적용할 수 있다. 보통의 유연 다물체 

동역학은 상대 절점 좌표계를 활용하여 해석하며, 그 경우 시스템 행렬의 

비선형성이 강성 행렬이 아닌 질량 행렬에 나타난다. 관성력과 관련하여 

추가되는 행렬도 고려하여야 하기 때문에, 동적 구조 해석을 기반으로 개발된 

축소 기법을 유연 다물체 동역학 문제에 그대로 활용하기에는 어려움이 있다. 

절대 절점 좌표계를 기반으로 하는 ANCF(Absolute Nodal Coordinate Formulation) 

기법의 경우, 유한 요소 기법을 적용한 지배 방정식이 비선형 동적 구조 해석 

모델과 유사한 형식을 갖는다. 따라서 ANCF 기법을 활용하면 구조 해석을 

기반으로 개발된 SEECROM을 유연 다물체 동역학에 적용할 수 있다. 제안 

기법과 파라메트릭 기법을 4절 기구를 포함한 주요한 유연 다물체 동역학 
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예제들에 적용하고 그 효율성과 정확성을 검증할 수 있었다. 

 파라메트릭 기법이 적용된 SEECROM은 비선형 시스템 구조의 최적 설계 

문제에도 적용이 용이하다. 현재 비선형 시스템의 축소 기법에 대한 연구가 

진행 중인 단계라, 이를 최적 설계 문제에 적용하는 연구는 아직 활발하지 

않은 분야이다. SEECROM은 다양한 종류의 비선형 시스템을 효율적으로 

축소하며, 파라메트릭 기법의 적용 또한 유용하기에 앞으로 다양한 최적 설계 

문제를 효과적으로 다룰 수 있을 것이라 예상된다. 본 연구에서는 비선형 

재료 거동을 갖는 구조 시스템과 4절 기구의 유연 다물체 동역학 시스템의 

구조 설계 문제를 예제로 들어 제안 기법의 효과를 검증하였다. 

 제안 기법은 요소 및 절점을 기반으로 수행되는 다양한 비선형 문제에 

적용이 가능할 것이다. 비선형성을 가지는 대형 시스템, 다물리 연성 시스템, 

상용 프로그램을 활용한 효율적인 해석 및 설계로의 확장이 기대된다. 

 

주요어: 파라메트릭 축소 모델, 기하 비선형 해석, 재료 비선형 해석, 등가 

강성 행렬 기법, 유연 다물체 동역학, 구조 최적 설계 

 

학번: 2010-20662 

 

 

 

 


	1. INTRODUCTION 
	2. STIFFNESS EVALUATION 
	2.1. Stiffness Evaluation Methods 
	2.2. Stiffness Evaluation Methods with Reduced-Order Modeling 

	3. STIFFNESS EVALUATION BASED ON ELEMENT CONNECTIVITY 
	3.1. Determination of Displacement Combination 
	3.2. Evaluation of Stiffness Coefficients 
	3.2.1. Sampling 
	3.2.2. Minimum Norm Least Squares 

	3.3. Computation of Tangent Stiffness 

	4. REDUCED ORDER MODELING USING SEEC 
	4.1. Proper Orthogonal Decomposition 
	4.2. Proper Orthogonal Decomposition with SEEC 
	4.3. Application of SEECROM 

	5. PARAMETERIZATION BASED ON SEECROM 
	5.1. Parameterization Strategy of SEECROM 
	5.2. Application of SEECROM-Parameterization 
	5.2.1. Static Analysis of Neo-Hookean Hyperelastic Material 
	5.2.2. Dynamic Analysis of Neo-Hookean Hyperelastic Material 


	6. APPLICATION TO MULTIBODY DYNAMICS 
	6.1. Motivation 
	6.2. ANCF Formulations 
	6.3. Reduced-Order Modeling of ANCF Model with SEECROM 
	6.3.1. Application of SEECROM to ANCF Beam Elements 
	6.3.2. Application of SEECROM 

	6.4. Parameterization of ANCF model with SEECROM 
	6.4.1. Parameterization Strategy of SEECROM 
	6.4.2. Application of SEECROM-Parameterization 


	7. APPLICATION TO OPTIMIZATION PROCESS 
	7.1. Motivation 
	7.2. Optimization of nonlinear system 
	7.3. SEECROM-Parameterization for optimization of nonlinear system 
	7.3.1. Optimization procedure using SEECROM-Parameterization 
	7.3.2. Numerical examples 


	8. CONCLUSIONS 
	REFERENCES 
	APPENDIX A 
	국문 요약 


<startpage>13
1. INTRODUCTION  1
2. STIFFNESS EVALUATION  6
 2.1. Stiffness Evaluation Methods  6
 2.2. Stiffness Evaluation Methods with Reduced-Order Modeling  9
3. STIFFNESS EVALUATION BASED ON ELEMENT CONNECTIVITY  11
 3.1. Determination of Displacement Combination  11
 3.2. Evaluation of Stiffness Coefficients  14
  3.2.1. Sampling  14
  3.2.2. Minimum Norm Least Squares  16
 3.3. Computation of Tangent Stiffness  20
4. REDUCED ORDER MODELING USING SEEC  25
 4.1. Proper Orthogonal Decomposition  26
 4.2. Proper Orthogonal Decomposition with SEEC  27
 4.3. Application of SEECROM  28
5. PARAMETERIZATION BASED ON SEECROM  39
 5.1. Parameterization Strategy of SEECROM  39
 5.2. Application of SEECROM-Parameterization  42
  5.2.1. Static Analysis of Neo-Hookean Hyperelastic Material  43
  5.2.2. Dynamic Analysis of Neo-Hookean Hyperelastic Material  44
6. APPLICATION TO MULTIBODY DYNAMICS  53
 6.1. Motivation  53
 6.2. ANCF Formulations  57
 6.3. Reduced-Order Modeling of ANCF Model with SEECROM  60
  6.3.1. Application of SEECROM to ANCF Beam Elements  60
  6.3.2. Application of SEECROM  61
 6.4. Parameterization of ANCF model with SEECROM  66
  6.4.1. Parameterization Strategy of SEECROM  66
  6.4.2. Application of SEECROM-Parameterization  67
7. APPLICATION TO OPTIMIZATION PROCESS  95
 7.1. Motivation  95
 7.2. Optimization of nonlinear system  98
 7.3. SEECROM-Parameterization for optimization of nonlinear system  100
  7.3.1. Optimization procedure using SEECROM-Parameterization  100
  7.3.2. Numerical examples  105
8. CONCLUSIONS  133
REFERENCES  135
APPENDIX A  139
±¹¹® ¿ä¾à  145
</body>

