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Abstract

To solve material/geometric nonlinear structural systems, iterative evaluation of internal
forces and tangent stiffness matrices is required. This increases the computation time for
nonlinear static/dynamic analysis. Although various reduced-order modeling technigques
have been proposed to effectively solve nonlinear structural analysis problems, problems
arise in the reduction of the system matrices. Since most reduction methods only reduce
the system matrix after the stiffness and mass matrix construction process, the
construction itself proceeds in full domain. In most cases of nonlinear analysis, the
construction of system matrix takes a large amount of computation time, comparable to
the computation time of the solving process. Although this problem can be tackled with
STiffness Evaluation Procedure (STEP), which uses polynomial formulations to describe
nonlinear internal forces, the construction time of the reduced model increases rapidly
with the cubic power of the system size.

In this paper, Stiffness Evaluation method based on Element Connectivity (SEEC) is
proposed. The element connectivity of the finite element models is used to evaluate the
nonlinear stiffness coefficients. The proposed method minimizes the effect of the system
size when the computational model is constructed. In addition, the Reduced Order
Modeling (ROM) technique using Proper Orthogonal Decomposition (POD) is applied to
enhance the efficiency of the SEEC method, which is referred to as SEECROM. This

enables effective analysis and design of large-scale problems. Moreover, SEECROM s



easily characterized by design parameters. The parameterization is readily achieved with
element-wise nature of the proposed method. SEECROM is successfully demonstrated
for structural dynamic analysis of geometrically nonlinear shell structures under the
perturbation of external loads. SEECROM-Parameterization is also successfully
demonstrated for static and dynamic analysis of hyperelastic materials that have material
and geometric nonlinearities.

In the case of flexible multibody systems, nonlinearities are caused by the rigid motions
of the structure rather than the deformation of the flexible parts. Since the approaches to
the multibody dynamics are different from the structural dynamics, the reduction methods
which have been developed for the structural analyses cannot be utilized in direct manner.
However, this can be achieved with the aid of Absolute Nodal Coordinate Formulation
(ANCF), which takes the analogous format to the governing finite element formulation of
structural dynamics. SEECROM method is combined to ANCF to form an efficient
reduced model of the flexible multibody system. A number of examples are provided for
the verification of the proposed reduction method and its parameterization.

For the application to the optimization of nonlinear structures, it is vital that reduced
order models be efficiently parameterized for the design parameters. SEECROM-
Parameterization fits easily to the optimization problems concerning nonlinear systems.
To show the validity of the proposed methodology, two sample optimization problems are
subjected to a static structural system with a hyperelastic material and a multibody

dynamic system.
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1. INTRODUCTION

Different from linear analyses, which can be conducted in a single solution step,
nonlinear analyses are usually solved by performing iterations of the linear analysis.
Therefore, a nonlinear analysis takes more computational resources than a linear one. In
cases of structural dynamic analysis or design problems, which contain nonlinearities, the
iterative nonlinear analysis is again recursively solved at every iteration step. Therefore,
many studies have been carried out to solve nonlinear analysis problems in reduced time
and effort.

Reduced-order modeling techniques, which are well developed for linear systems, have
also been adapted for nonlinear systems. However, in nonlinear analysis, the system
matrices should be re-constructed as the structure deforms. The problem here is that the
re-construction process is carried out in full domain even with a model reduction
technique. Most reduction methods merely aim at shrinking the fully constructed matrix
to a reduced one. While the computation time for the solution-solving process (i.e.,
inverse of tangent stiffness matrices) is reduced, the construction of the system matrices
of the reduced one takes the same amount of time as that of the full analysis.

As a computationally efficient approach of nonlinear analysis, Muravyov and Rizzi
proposed the STEP (STiffness Evaluation Procedure) method [1]. In this method,
nonlinear internal forces are represented by a 3rd order polynomial formulation of
displacements. Since the coefficients of each term of polynomial displacements, which

are called stiffness, are evaluated to construct an internal force model, the method is



referred to as “stiffness evaluation.” If the representative model is accurate enough, the
nonlinear internal force vector and the tangent stiffness matrix can be promptly computed
as the structure deforms. In recent years, as extensions of the STEP method, nonintrusive
structural dynamic reduced-order modeling approaches have been proposed [2]. They are
also referred to as “indirect” since they do not require any internal information of the
governing equations or the detailed formula for the system. This enables straightforward
use of commercial codes such as NASTRAN, ABAQUS, and ANSYS. The nonintrusive
approaches were validated in various applications, including prediction of fatigue life [3-
4], nonlinear stochastic computations [5-6], and nonlinear post-buckling analyses [7]. A
strategy that enables STEP applications to more complex structures was also proposed by
Perez at al. [8] The nonlinear static response analysis of a nine-bay panel model with
86,000 degrees of freedom and 85 reduction modes was successfully conducted.

Still, further consideration should be given to the efficiency of the process of identifying
the internal force model. Usually in the stiffness evaluation procedure, the coefficients of
the polynomial displacements can be identified by a series of results of the full finite
element simulations. The required number of computations increases with the cubic
power of the system size. In the cases of large-scale problems, the identification of
nonlinear stiffness coefficients of these stiffness evaluation methods is computationally
prohibited even with the reduced-order modeling techniques. In most cases, the
computational efficiency is mainly based on the size of the problems.

In structural optimization problems, the issue outlined above becomes worse as it is
necessary to update the design variables in every iteration. If a nonlinear dynamic system

is concerned, for instance, the time marching simulation of the system should be



performed in each iteration of the optimization process. A step of time integration
simulation includes a number of nonlinear structural analyses, which again includes a set
of linear analyses. In this case, therefore, a parameterization technique, which
reconstructs the system as a function of design parameters, is useful. However, not many
research activities have been conducted on the parameterization of stiffness evaluation
procedure. Although there is an integrated method that combines stiffness evaluation with
reduced-order modeling and a parameterization technique [9], it does not directly use the
strength of the stiffness evaluation method for the parameterization.

The main goal of this paper is to develop a method that extends the application of the
stiffness evaluation procedure to large-scale analyses and design problems. To this end, in
this work, Stiffness Evaluation method based on the Element Connectivity (SEEC) is
presented. The element connectivity of the finite element models is used to evaluate the
stiffness coefficients. In finite element methods, the internal force at a specific degree of
freedom is related to the displacements at the corresponding degrees of freedom within
the connected elements. Therefore, in the proposed methods, the stiffness coefficients are
evaluated within the connected elements. Then the required number of full finite element
computations for the evaluation of the stiffness coefficients is mainly determined by the
characteristics of the element rather than by the problem size. Moreover, to enhance the
efficiency, Reduced Order Modeling (ROM) using Proper Orthogonal Decomposition
(POD) is applied to the proposed method. This process is referred to as SEECROM.
Different from the conventional approaches with reduced-order modeling, the reduction is
carried out after the stiffness evaluation. One more advantage of the proposed method is

the easy utilization of parameterization. Due to the element-wise nature of the



identification process of stiffness coefficients, SEECROM models are easily constructed
with variation of design parameters.

The present study was conducted to propose an efficient nonlinear model reduction
method by enhancing the stiffness evaluation methods. The two main targets of this paper
can be briefly described as follows: 1) For large-scale problems, the proposal of a
stiffness evaluation method that has less dependency on the system size 2) For design
problems, effective parameterization of the proposed stiffness evaluation method.

The proposal of SEECROM and its parameterization is followed by two other
applications. The first application is the reduced order modeling of multibody dynamics.
Most analyses of flexible multibody dynamics are based on Floating Frame of Reference
Formulation (FFRF). It imposes the local coordinates for each flexible part, which
enables the use of linear stiffness matrices. In the formulations of FFRF, however, inertia
parts are introduced and the mass matrix becomes nonlinear. Therefore, the utilization of
the reduction methods that have been developed based on the structural analyses cannot
be directly achieved. The alternative approach is Absolute Nodal Coordinate Formulation
(ANCEF), which uses global absolute coordinates and slopes. This leads to a constant mass
matrix and nonlinear stiffness matrix which is analogous to the system matrices of
nonlinear static structural analysis. Since the additional inertia terms are also vanished
due to the use of absolute nodal coordinates, the equation of motion with ANCF forms in
a similar way in nonlinear static structural system. This enables the utilization of ROM
methods developed for the static nonlinear structural analysis. SEECROM and its
parameterization technique is combined to ANCF for the reduced modeling of multibody

dynamics. Various examples which include free-falling pendulum, slider crank and four-



bar mechanism are successfully demonstrated.

In addition, the parameterized SEECROM can be easily applied to the structural
optimization of nonlinear system. If nonlinearities are present in the system, the
optimization process inherits the problem of the previous nonlinear reduction methods.
This has been the obstacle to the study of the optimization concerning nonlinear systems.
The iterations within the optimization process tends to deflate the efficiency of reduced
order models while inflate the error rate. Thus the accuracy and the efficiency of the
reduced model become crucial factors. The parameterization of the nonlinear model is
another important factor for the application of reduced order models to the optimization
procedure. If SEECROM-Parameterization is conducted with the proper sampling
strategy, it can provide the desired reduced order model which meets the requirements.
Two cases of optimization problems are subjected to a structural nonlinear system and a
multibody dynamic system to validate the proposed method.

This paper is organized as follows. Sect. 2 introduces the conventional stiffness
evaluation method of nonlinear structural analysis. In Sect. 3, the new stiffness evaluation
method is derived based on the finite element connectivity. Its extension to the reduced-
order modeling and parameterization are presented in Sect. 4 and Sect. 5, respectively.
Test examples and results are included in each of these sections. The other two
applications of the proposed method are presented in Sect. 6 and Sect. 7. The application
to multibody dynamics is covered in Sect. 6 and the extension to the structural

optimization is presented in Sect. 7. The conclusions are given in Sect. 8.



2. STIFFNESS EVALUATION
2.1. Stiffness evaluation methods

The equations of motion of an arbitrary structural system can be written as

where Mij and Cij are the mass and the linear proportional damping matrices,

respectively, U is the displacement vector, and Fi is the external force vector. The
total number of degrees of freedom of the system is equal to N . If material or geometric
nonlinearities are considered, the internal force Fi(U) is modified from its linear

composition. It becomes nonlinear in the displacement term U; as the structure deforms,
the values of the internal force change. Therefore, to solve the system with nonlinearities,
an iterative evaluation of deformed states is required. Newton’s method is commonly

used to solve the structural nonlinearities. Eq. (2.2) represents the iterative process with

the tangent stiffness matrix Kj(U,) and the internal force I'.(u,)  with the

displacement U,. The equation is solved for AUJ-, and then the next iteration step is

generated by Eq. (2.3) with the updated displacement U. The tangent stiffness matrix can
be computed from the U-derivative of the internal force as shown in Eq. (2.4). Eq. (2.2)-

(2.4) are repeated until the equilibrium of the system is obtained.

Mt +Cyu; +Ki (Ug)au; + T (uy) = F (2.2)
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where AU=U-U, (2.3)

T
Kj(ug) = 2t @4

I lu=u,

Since the iterative nature makes the solution process of the full nonlinear system
inefficient, many studies have been carried out to solve the nonlinear analysis in reduced
time and effort. Various reduced-order modeling techniques have also been proposed to
enhance the efficiency of solving these nonlinearities. However, most reduction methods
aim at shrinking the fully constructed matrix to a reduced one. The construction of the
internal force and the tangent stiffness are still conducted in full domain, which is still a
large-sized problem since the construction of the system matrices takes a large portion of
the total computation time of nonlinear analyses. Moreover, the equilibrium of the system
can easily be destabilized if a reduction technique tries to shrink the construction process
of the internal force.

A stiffness evaluation technique is one possible solution to tackle this efficiency
problem. It uses polynomial formulations to describe nonlinear internal forces. The
internal force is expressed by 3rd order polynomial terms in displacement U, which is
shown in Eq. (2.5). The validity of the use of the 3rd degree polynomial functions is

discussed in Appendix A.

Mijuj —i—C”-l]j + Kigl)uj + Kigi)ujuk + Kiﬁ?UjUM = F. ) ia j,k1| =1..,N (2.5)

where Kigl),KiEﬁ),Kéil) are the nonlinear stiffness coefficients.

In this paper, the polynomial terms of the internal force are expressed in compact form

and represented with tildes as below.



M,t; +Cyu, + T, (u) =F, (2.6)

7]
where T'; (u) = Ky, u;u,u, 2.7)

The iterative form is shown as,

M, +Cyu; + K (Uo)au; + T (ug) =F, (2.8)
. oL (u)

h K! =i/ 2.9

where K (u,) o, | (2.9)

Here we shortened the expression by including 1 as a value of the displacement U,

which enables UUl, to indicate U; as well as U, (U;(J@) and uu (@),

respectively). The stiffness coefficient Kijkl is basically a collection of the coefficients
for all possible combinations of displacements.

Once the stiffness coefficient Kijkl is evaluated, the iterative computations of the i
component of the nonlinear internal force Fi (U) can be conducted efficiently. Let

U;U U, is rearranged as the vector function of U°(u), then the internal force can be
represented as in the form of linear multiplications. See Eq. (2.10).

[i(u)=KuS(u), j=1..p (2.10)

where P is the total number of the combinations. The subscript C represents the

rearrangement by the vector alignment of the combinations. While the internal force

Fi (U) in its original form requires a process of reconstruction (integration, assembly,

etc.) as the structure deforms, the internal force Fi (U) in the stiffness evaluation method



does not require any reconstruction process. Since the stiffness coefficient in the stiffness
evaluation method is constant against deformation, the nonlinear internal force is
computed in a linear manner without the re-identification process.

Still, the efficiency is insufficient in most cases of the stiffness evaluation. In the

evaluation process of the stiffness coefficients Kij,d, the required number of full finite

element nonlinear analyses is equal to the number of unknown stiffness coefficients to be
evaluated. Therefore, the construction time for a polynomial model of the internal force
increases with the cubic power of the total number of degrees of freedom.

There are basically two approaches to the identification of the stiffness coefficients. It
depends on the sampling of the displacements and the corresponding internal forces. One
approach imposes a series of load cases on the finite element model and obtains the
induced responses. The other approach prescribes a set of displacements to evaluate the
stiffness coefficients. Regardless of the approaches chosen, however, the number of

stiffness coefficients to be identified remains equal.

Let the number of full degrees of freedom be N ; then the number of nonlinear

stiffness coefficients to be evaluated is +1|'|3 —1. This can be expressed as
%(N +3)(N+2)(N+1)—1. For example, if N =100, the number of required

nonlinear computations is 176,850. If N =1,000, the number increases to 167,668,500.
2.2. Stiffness evaluation methods with reduced order modeling

Combined with the model order reduction method, the efficiency of the stiffness



evaluation method can be enhanced. Instead of using the original coordinates in full

domain, the reduced coordinates are used to identify the nonlinear stiffness coefficients.
Then, the number of nonlinear stiffness coefficients to be evaluated becomes |, +1H3 -1

with a reduced number of degrees of freedom . It increases with the cubic power of
the size of the reduced system. However, the reduction rate is determined by the
characteristics of the full model. Therefore, even with the reduced-order modeling, the
stiffness evaluation method is strongly dependent on the size and the complexity of the

full model.

. . . . 3
There is an alternative approach to reducing the computational effort from O(N ) to

2 . o . -
O(N )[8]. It uses a tangent stiffness matrix in the process of stiffness coefficient

identification to improve the efficiency of the construction of the internal force model.
Nonlinear static response analysis of a nine-bay panel model with 86,000 degrees of
freedom and 85 reduction modes was successfully conducted with this approach. Still, the
computational efficiency is mostly determined by the size and the complexity of the full
finite element problems. In this work, a stiffness evaluation method that has less relation

to the number of total elements or degrees of freedom is proposed.

10 ]



3. STIFFNESS EVALUATION BASED ON ELEMENT CONNECTIVITY

In the conventional stiffness evaluation methods, the computational effort for solving full

finite element nonlinear analysis problems increases proportionally to the 3rd power of

the number of total degrees of freedom. This is the main factor that prevents the method

from being applied to larger and more complex problems. In this section, we propose a

new stiffness evaluation method that reduces the dependency of computational efficiency

on the full model size/complexity.

3.1. Determination of displacements combination

In general, a linear internal force Fi and its stiffness matrix

shown below.
I\1 Kll
FZ KZl
F N KN 1

12

A

22

IN

I(NN

Uy

K;j are composed as

(3.1)

If the stiffness matrix is constructed properly, a large portion of the elements on the off-

diagonal sides of the matrix will have zero values as in Eq. (3.2). The zero value of Kij

means that Fi does not have a dependency on U;.
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1—‘l Kll K12 0 O ul

I, K, K, 0 0 |lu,
=| : D 0|l : (3.2)

0 0 . . )

Iy 0 0 0 ... Kyluy

This is simply shown with four linear elements in Fig. 3.1. The linear force value Fi is

only affected by the displacements that belong to the adjacent elements.
Because of the nature of finite element methods, the dependencies are bounded by the
element connectivity in nonlinear cases as well. The nonlinear stiffness coefficients in

stiffness evaluation methods also have similar characteristics. The nonlinear internal force

I, (U) of the i™degree of freedom is determined by Kijklujuku, , Where Kijkl has non-

zero values if the internal force I';(U) has a dependency on U;UU; . It is shown already

that the nonlinear relation can be expressed in a linear manner with Eq. (2.10). With the

rearranged format, the internal force vector in stiffness evaluation can be written as

o] oKy Ky o0 o u
r,| Ky K ... 0 0 [u

=i i 0| : (3.3)
: (N R |
Tyl |0 0 0 ... Kijus

where N is the size of the full domain and P is the total number of displacement

combinations.

The method we propose here is based on the characteristics of the finite elements

described above. As for the computation of the internal force Fi on the i™ degree of

12 2]



freedom, the adjacent elements around the i"™ node are selected. Then the 3-

combinations of displacements from these selected elements are computed element by

element. Then, I', is expressed as the sum of these element-wise polynomial terms.

This operation is denoted in Eq. (3.4).
. - AE ~ AE
I (u) = KijklZ[ujukul]n = KijZ[ulj:(u)]n (3.4)
n=1 n=1

where AE indicates the number of adjacent elements.
Fig. 3.2 illustrates the nonlinear internal force at the specific degree of freedom (. To
compute the internal force value, the combination terms are composed only within the

adjacent elements around the point (. See Eq. (3.5).

v c c c c
Fq - qu [uj E6 +[uj}E7 +[ui}510 -I_[ui]en (3.5)
Then, the length P of the polynomial displacement vector U’ (U), which is the

number of unknown nonlinear stiffness coefficients, is greatly reduced since all the
coefficients that belong to the outside of the adjacent elements have zero values. The

number of nonlinear stiffness coefficients to be evaluated per degree of freedom of

internal forces becomes 4(,.,H, —1)—7:w—4—7, where € is the

number of degrees of freedom in one element and -y is the number of shared

combinations within adjacent elements. For example, if the element has 4 nodes per
element and 2 degrees of freedom per node, the number of unknown coefficients per

internal force becomes 529 (v =127) regardless of the problem size. Whether the total

number of degrees of freedom is 100 or 10,000, the number of unknowns per internal
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force remains 529 in this case. Therefore, the difference in the number of unknowns
between the conventional stiffness evaluation and the proposed method grows as the
problem size increases.

The relations between the number of unknowns and the total degrees of freedom are
summarized in Table 3.1. It should be noted that the size of the reduced system is
largely determined by the characteristics of the problem, such as the size or the
complexity of the problem, which again determine the total number of unknowns. In
contrast, with the SEEC method, the number of unknowns increases linearly with the
problem size. These are illustrated in Fig. 3.3. with a fixed reduction rate of 1% and the
element described in the previous paragraph.

With the proposed approach, therefore, the composition of displacement combinations
and nonlinear stiffness coefficients is mainly determined by the element connectivity of
the chosen finite element. The total size of the problem only linearly influences the total
number of unknowns. Furthermore, the identification of stiffness coefficient matrix is
independently obtained from a specific internal force DOF by DOF. Thus the stiffness
evaluation process can be easily parallelized. Since the element connectivity is effectively
used in the proposed method, this new stiffness method is named as Stiffness Evaluation

based on Element Connectivity (SEEC).
3.2. Evaluation of stiffness coefficients

3.2.1. Sampling
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It is pointed out that with the SEEC approach, the number of the unknown coefficients
for the stiffness evaluation is mainly determined by the type of the finite element with the
linear dependency on the problem size. In addition, the number of required sampling sets
is entirely determined by the element characteristics. The sampling set that is composed
of displacements and the corresponding internal forces are required for the identification
of the stiffness coefficients. In the conventional method, the number of sampling sets is
equal to the number of unknown coefficients. On the other hand, in the SEEC approach,
the number of sampling sets is determined by the unknown coefficients per internal force
without the linear dependency on N . Since the evaluation process per internal force is
conducted independently, the same solution sets can be applied for the each computation
per internal force. Hence the number of the sampling sets is entirely determined by the
element type.

In the case of a four-node shell element with 5 degrees of freedom per node, there are

20 degrees of freedom in an element. If the number of adjacent elements is 4, the number

of combinations for an internal force equals to 4(2o+1H3 —1)—7. With the
consideration of shared combination number -y, this becomes 5,995, which determines

the number of sampling sets required in the sampling process. It is notable that the
number does not change with the size or the complexity of the problem.
The sampling procedure is listed below.
1) Compose the displacement combinations for each degree of freedom of nonlinear
internal force. They are automatically computed by the type of the element and the
mesh chosen for the problem.

2) Determine the training problem(s). The training problem whose solution sufficiently
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includes the span of the target responses should be set up in advance. Then,
determine the number of iteration steps according to the number of the required
solution sets, which is determined by the number of displacement combinations per
internal force.

3) Solve the training problems and save the sampling sets of [displacements-internal
forces]. These sampling sets are used for the evaluation of the nonlinear stiffness
coefficients in Sect. 3.2.2. They are also used for the construction of the reduced
model in Sect. 4. In this paper, proper orthogonal modes extracted from the sampled
data are applied in reduced-order modeling.

If the training problem is the nonlinear structural dynamic analysis, the sampling sets are
stored from the each time step or with selected iteration steps in each time step. The
strength of this procedure using training problems is that one can easily include the

effective sampling points by intuition.

3.2.2. Minimum norm Least Squares

If S number of sampling sets are saved in the sampling procedure, the nonlinear

internal force on i™ degree of freedom can be expressed as below.

C Cc C
Up Uy .o Ugg
N T
Fil Fi2 iS sampling Kil Ki2 Kip . . . (3.6)
ué, us, ... us
Pl p2 PS lsampling

where P is the number of displacement combinations and S is the number of the
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stored sampling sets from the sampling process.

The data sets from the sampling are indicated by sampling in lower case. From the
sampling procedure, displacements and their corresponding internal forces are saved. The

internal force matrix Fsa is directly stored from the sampling process. The

mpling

displacement combination matrix [UC] ’ is formed as follows. The set of
sampling

combinations obtained from the adjacent elements are rearranged into a px1 vector as
in Eq. (3.3). Then, the sampled displacements are employed to create a PXS
displacement combination matrix.

Using the Least Squares method, the nonlinear stiffness coefficients K in Eq. (3.6)

can be determined even if S is not equal to P . The process is illustrated below. First,

as shown in Eq. (3.7), Eq. (3.6) can be reorganized into the form of Ax=D.

[ c [ 7
ull u12 u1p Kil Pil
us,  us us || K. I
21 22 2 2 2
oo Pl = (3.7)
c c c 7
usl usz usp ip Fis
sampling sampling
c c c =
Uy Uy 1p K r,
us, us ¢ K. T
21 22 2 2 2
where A=| 7 Sl ox=1 0, b= (3.8)
c c c =
U s Usp Kip 148
sampling sampling

Eqg. (3.7) can be solved differently by using the characteristics of A. The sampling

process and the problem itself affect the composition of A matrix. A is not

necessarily a square matrix, while the size of the matrix is determined by [the number of
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sampled sampling sets S] x [the size of the polynomial displacement vector P ]. Even

if it is square, the rank is not guaranteed to be full. One of the methods of obtaining the
solution when the matrix has rank deficiency is the minimum norm Least Squares, which

is represented in Eq. (3.9). This method yields a unique solution of Eq. (3.7) with the
rectangular and rank-deficient matrix A.
mxin||b—Ax||2 : mXin||x||2 (3.9)
The minimum norm Least Square solution can be obtained by QR factorization with
column pivoting. It yields sparse solutions, which means that the solution has zero
elements. A solution where the elements have as few non-zeros as possible is obtained.
The solution X with k nonzero elements is obtained by QR factorization with column
pivoting where k isthe rank of A asin Eq. (3.10).
rank(A) =k < min(s, p) (3.10)
The process of QR factorization with column pivoting is illustrated below.

By QR factorization, the SX P matrix A is expressed as,

R
e[ any

where R isa PX P upper triangular matrixand Q isan SXS orthogonal square

matrix, which have the characteristics as shown in Eq. (3.12) and Eq. (3.13), respectively.

[, =1, (312)

Q'Q=I (3.13)

In the method of QR factorization with column pivoting, the column permutation matrix



E is multiplied to Eq. (3.11). E is composed such that the diagonal elements of R

have magnitude in descending order.
R T
A=Q 0 E (3.14)

Eq. (3.14) represents the column pivoting method where R becomes the matrix in Eq.

(3.15). If k isthe effective rank of A, Ry isa kxk upper triangular matrix.

= Ral RSZ] (3.15)
The solution X in Eq. (3.8) is obtained from Eq. (3.16)-(3.18)
Q"Ax=Q'b (3.16)
x=E [Rﬂlé] (3.17)
0
c=Q'b (3.18)

where € isthe first k elements of C.

The i"™ row of the nonlinear stiffness coefficients matrix Kij in Eq. (3.19) is

constructed from the solution X above. To construct the stiffness coefficients completely,
X should be solved by the number of total degrees of freedom. However, since the
number of displacement combinations P is relatively small and parallel computations

are easily applied as the computation works independently, the construction process can
be achieved efficiently. For further understanding of QR factorization for minimum norm

Least Square solutions, see references [10,11].
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I, =Kyus(u) (3.19)

fl Ile Klz Klp uy
PZ K21 K22 u;

=] : (3.20)
Lyl K Ky [|US

Once the stiffness coefficients matrix Kij is established, the nonlinear internal forces at

deformed states are obtained as follows. First, the displacement combination vector

u‘(u) is computed from the current displacements. Then, the stiffness coefficient matrix

is multiplied with the combination vector, which simply yields the nonlinear internal

forces. These are shown in Egs. (3.19)-(3.20).
3.3. Computation of tangent stiffness

The internal force composed of the stiffness coefficients is differentiated to yield the
tangent stiffness. The differentiation is iteratively repeated in every time step, which
guides the system to a force equilibrium state. Although Finite Difference Method (FDM)
is easily applied to compute tangent stiffness [12], it requires a great deal of
computational resources. The computational efficiency can be enhanced if the tangent
stiffness is directly provided by analytical differentiation of internal forces.

The tangent stiffness can be analytically derived with the stiffness evaluation method as
in Eqg. (3.21). Since the internal force is composed as the sum of the 3rd order

displacement combinations, the tangent stiffness matrix is obtained by simple
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differentiations in terms of its displacement as given below.

. or. (u .
Kitq (Uy) = —'( ) = Kija (0UUy +6,uU; +6Iqujuk)‘u:uo (3.21)

a4 lu=y,

where 5, is Kronecker delta in Eqg. (3.22)

6—0 if i=], (3.22)

T ifi= . ‘
The equations above for the computation of tangent stiffness can be used within the
proposed method. Although the computation efficiency of Eq. (3.21) itself is not

improved compared with FDM, the addition of the analytical approach maintains the

accuracy and the stability of the system.

I M | g
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Table 3.1

Relation between the number of unknowns and problem size

CONVENTIONAL METHOD PROPOSED METHOD
Full With ROM SEEC
PER 1 3 2
Z(N®+6N2+11N
INTERNAL | 6 (N"+ +1IN) 1(m3 +6m’ +11m) 1(e3 +6e” +11e) —~
FORCE 6 6
ENTIRE | L \4 | 6N° 4+1IN2 2 (m® 4 6m° +11m?)  N{E (€7 + 662 +11e) — 4}
DOMAIN | & {6 6

Total number of degrees of freedom

Number of degrees of freedom in reduced system
Number of degrees of freedom in one element

Number of shared combinations within adjacent elements

<2 @® 32
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4. REDUCED ORDER MODELING USING SEEC

In this section, ROM is combined with the SEEC method to improve the computation
efficiency of the SEEC method. It is applied to reduce the computation time of Eq. (3.19)
and Eq. (3.20); the reduced modeling here is not related to the stiffness evaluation
procedure given in Sect. 3.2. Instead, it applies to the use of the internal force model
constructed in the previous section. The combined method is referred to as SEECROM.

One of the critical differences between SEECROM and the other ROM-based stiffness
evaluation approaches is related to the application sequence of the ROM. The
conventional approaches apply ROM before the evaluation of the stiffness coefficients.
This makes the computation of internal force to take place on the reduced coordinates,
and results in a loss in accuracy. On the other hand, SEECROM applies ROM after the
evaluation of the stiffness coefficients. Since the stiffness evaluation is performed on the
full original coordinates, the accuracy can be guaranteed. It is important in the reduced-
order modeling of nonlinear structural dynamics that the reduction is conducted while
keeping the equilibrium of the governing equation. If the equilibrium is maintained based
on the reduced coordinates, the stability as well as the accuracy of the system continues to
deteriorate as the analysis is repeated. SEECROM resolves this issue by performing ROM
after SEEC. While the preceding SEEC method guarantees accuracy with sufficient
efficiency (the former by the full coordinate computation and the latter by the element
connectivity), the following ROM enhances the efficiency further without degradation of

accuracy.

25 ]



4.1. Proper orthogonal decomposition

In this paper, POD is used as a reduction method. It is known that the POD method
yields the best representation of given data sets. The proper orthogonal modes obtained
from the POD process are the orthogonal bases for forming the reduced coordinates. The
reduction modes are extracted from the displacement data sets stored in Sect.3.2.1. If the
number of degrees of freedom exceeds the number of sampling sets, the method of
snapshots [13,14] can be used. The procedure of POD reduction using the snapshot
method is briefly given below. For a more detailed explanation, check references [15,16].

Eqg. (33) represents the snapshots matrix from the displacements of sampling data.

-t - w0
O_g y?_g O _g
uf o, u?-u, - uP -0
U= 2 ' 2 2 ‘ 2 2 . 2 (41)
uP o, u@-a, - ul -0,

where N, S and U represent the number of total degrees of freedom, number of
sampling sets, and average value of sampled displacements U, respectively. The POD
modes ¢ can be obtained from the eigenmodes U in Eg. (4.2) to form the POD
representation of the displacements yroo in Eq. (4.3). Then, a number of dominant POD
modes are selected for the reduction of the system according to the targeted reduction rate.
Uu=u-u" (4.2)
o+, j=1..m (4.3)

where r is the generalized coordinates for the reduced model and M is the number of
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selected reduction modes.
4.2. Proper orthogonal decomposition with SEEC

If U is substituted by roe, Eq. (2.6) and Eq. (2.8) can be expressed in the reduced form,

respectively, as
&M Dst; + & Cy Bt + ¢kifk (U) =@ F. (4.4)

b; Mlkgbkjfj +¢|iclk¢kj fj + ¢|i ka (u0)¢ijrj +¢kifk (Uo) = ¢ki F (4.5)

Note that the internal force 1, (u) is computed from the full coordinate u.

Furthermore, the computation of the tangent stiffness K' in Eq. (4.5) is accelerated

with the reduced-order modeling. Let the internal force be represented with the reduction
modes as shown in Eq. (4.6). This can be differentiated by r to construct the reduced

tangent stiffness matrix. See Eq. (4.7).
DLy (U) = 9 Ky 03 PPl T, (4.6)

oL (u)

o K|t|< (Uo)¢kj =& or

u=!

Qbkj
Uo 4.7

- ¢IiKIjqz (¢jkuquz +¢qkuzuj +¢zkujuq)‘u:u0 ¢kj

If the reduced form of stiffness coefficients qu K are saved in advance and used for

the repeated computations in nonlinear analysis, the efficiency is further improved since

the reduced tangent stiffness matrix is directly obtained.
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4.3. Application of SEECROM

A few sets of structural dynamic analyses of geometric nonlinear elements were
performed for the validation of SEECROM. Previously, it was addressed that the
efficiency of SEEC is determined by the complexity of the element itself, rather than by
the size of the problem. The shell element used here, which has 54 degrees of freedom
per element, is sufficient to verify the effectiveness of the proposed method.

For the demonstration of the proposed method, an offline-online methodology was
applied. In the offline stage, the stiffness evaluation models are constructed. As presented
in Sect. 3, after the determination of the combinations, the stiffness coefficients are
evaluated with the sampling process. With these stiffness coefficients and POD of
sampled displacements, the nonlinear internal force model is constructed based on the
reduced coordinates. In the online stage, the internal force model constructed in the
offline stage is solved. The approximate solutions of internal forces are obtained by
various displacement inputs. The efficiency and the accuracy of SEECROM are
compared by the results in the online stage.

The nonlinear shell element used in the example had 9 nodes per element and 6 degrees
of freedom per node, which yielded 54 degrees of freedom per element. Fig. 4.1 shows
the configurations of the example. The uniform thickness of the shell was 0.01 m. With
fixed ends, the shell was subjected to out-of-plane dynamic loads at the middle of the

other ends. The structural dynamic analysis was performed under the perturbation of the
external dynamic loads. The dynamic load was composed of two design parameters [
and H, asshown in Fig. 4.2. In the offline stage, sampling loads were imposed to obtain
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solution sets and perform POD. Sampling loads of 100 N, 500 N, and 1,000 N, as denoted
with the dotted lines in Fig. 4.2, were imposed. The shell had an elastic modulus of 5 GPa
and a density of 5,000 kg/m3. A Newmark method was applied for nonlinear transient
analysis.

For the verification of the accuracy of SEECROM, a set of nonlinear transient analyses
were performed for the 9 different sets of design parameters. The properties of the design
parameters and the results of full order and SEECROM analysis are shown in Fig. 4.3.
Eight elements (total number of degrees of freedom = 270) were used for both models,
and 27 POD modes were used for SEECROM. In the graphs of Fig. 4.3, it can be seen
that the response results from the two approaches overlap regardless of the variation in
design variables, which proves the accuracy of SEECROM.

For the verification of the efficiency of SEECROM method, the nonlinear transient
analysis was repeated as the number of elements was increased by 8/32/72. (The total
number of degrees of freedom was increased as 270/918/1950.) The computation time
and the displacement response were compared between the SEECROM method and the
POD-only reduction method. In this example, the reduced models were constructed with
32 POD modes in both methods. It should be noted that the required humber of sampling
sets was fixed regardless of the number of elements used. Two load cases (CASE 1 &
CASE 2) were created for the verification, which are drawn with solid lines whereas the
sampling loads for the training analyses are drawn with dotted lines in Fig. 4.4 and Fig.
4.5,

The snapshots displayed in Fig. 4.6 and Fig. 4.7 are the responses of full-order nonlinear

transient analyses under the load cases of CASE 1 and CASE 2, respectively. The

29 2]



responses of reduced analyses are compared in Fig. 4.8 and Fig. 4.9. The results from
SEECROM are denoted with red solid lines, and the POD results are drawn with blue
dotted lines. The black dotted lines show the responses under the sampling loads for
reference.

Excellent agreement between the two reduction methods is obtained for the two load
cases. The accuracy of SEECROM is guaranteed regardless of whether the obtained
response and the sampled responses have a similar tendency (CASE 2) or not (CASE 1).

The computation times for SEECROM and POD-only reduction methods are compared
for CASE 1 and CASE 2 in Fig. 4.10 and Fig. 4.11. The “time rate” represents the
computation time of the POD method divided by the computation time of the SEECROM
method. The SEECROM method is approximately 15 times faster than the POD reduction
method in CASE 1 and 17 times faster in CASE 2. It should be noted that the rate is

maintained regardless of the size of the system.

30 2]



l #ELEM=8

'\ #DOF=270 {oiids
\\l;
#ELEM=32 o—
=

' #DOF=918
\\%\
\\\§
#ELEM=72 o
L : \\§ #DOF=1,950
Z 7
Y/
X

#ELEM=8

#ELEM=32

#ELEM=72

=

* Loading point

Figure 4.1. Configuration of shell element

1000
—Perturbed load
800 [ ~Unperturbed load (Sampling)
g 600 |
=
[
S 400t 11,]
200 i
e
0 0.05 0.1 0.15 0.2
Time (s)

Figure 4.2. External loads for shell example

31 J’r-! _CI:I_ ]—-'ll ;



1 o001

Sampling

T S N T

"2 001 400
"3 001 800 |3 0005 400 | 6| 0.01 400 |9 002 400

Perturbation of design variables

100 |1 0005 100 [ 4 o0.01

"2 0005 200 ['5° o.01

100 |7 o0.02
200 '8 0.02

100
200

= SEECROM

s=sw=sn Full order

05 05 05
E 1] E 0 E 0
N N N
05 05 - 05
0 0.05 01 0.15 02 0.05 01 0.15 02 0 0.05 0.1 0.15
Time (s) Time (s) Time (s)
05 0.5 0.5
E E E
£ 90 E £
N ~N o ;l’ 0
05 05
0 005 01 0.15 02 0.05 0.1 0.15 02 -0.50 0.05 0.1 0.15
Time (s) Time (s) Time (s)
0.5 0.5 0.5
B E E
N L oo
05 05 05
0 0.05 0.1 0.15 02 0 0.05 0.1 0.15 02 0 0.05 0.1 0.15
Time (s) Time (s) Time (s)
Figure 4.3. Responses under perturbation of external loads
32 oy 5 7
"I" = 1L

L



1000

— Perturbed Load
800 - - Unperturbed Load (Sampling
g 600 r
=
=]
3
3400 b
200
O L L L J
0 0.05 0.1 0.15 0.2
Time (s)
Figure 4.4. Load configurations: CASE 1
1000 A
— Perturbed Load
800 -t Unperturbed Load (Sampling
g 600
b=
o] :
Q :
3400 H-
2001
oL ‘ . ‘ ‘
0 0.05 0.1 0.15 0.2
Time (s)

Figure 4.5. Load configurations: CASE 2

33



Time step =0

Time step = 30

0.0000 s

0.0171s

Time step = 60

7

0.0343 s

Time step =90

-

0.0514 s

Time step = 120

-

0.0686 s

Time step = 150

_/

0.0857 s

Time step = 180

—

0.1029 s

Time step =210

~

0.1200 s

Time step = 240

0.1371 s

Time step = 270

~

0.1543 s

Time step = 300

—_—

0.1714 s

Time step = 330

-

0.1886 s

Figure 4.6. Time response of shell: CASE 1

34



Time step =0

0.0000 s

Time step = 30

e

0.0171s

Time step = 60
f

—

0.0343 s

Time step =90

e

Time step = 120

_

Time step = 150

\
0.0514 s 0.0686 s 0.0857 s
Time step = 180 | Time step =210 | Time step =240
0.1029 s 0.1200 s 0.1371 s

Time step =270

T

0.1543 s

Time step = 300

_

0.1714 s

Time step =330

v

0.1886 s

Figure 4.7. Time response of shell: CASE 2

35



#ELEM=8 o}
0af
02f
01} i

0

Z(m)

01

021

031

04r
002 004 006 008 01 012 014 016 018 02
Time (s)

05
0

#ELEM=32

Z(m)

0 002 004 006 008 01 012 014 016 0.18 02
Time (s)

o
>

#ELEM=72

Z(m)

05

0 002 004 006 008 01 012 014 016 0.18 02
Time (s)

Perturbed/SEECROM ~ - = Perturbed/POD
----------- Unperturbed/Full order [Sampling]

Figure 4.8. Time response under design variable

perturbation: CASE 1

" 2 Mg el



#ELEM=8 04l

0 002 004 006 008 01 012 014 016 018 02
Time (s)

0 002 004 006 008 01 012 014 016 018 02
Time (s)

05

0 002 004 006 008 01 012 014 016 018 02
Time (s)

Perturbed/SEECROM ~ - = Perturbed/POD
----------- Unperturbed/Full order [Sampling]

Figure 4.9. Time response under design variable

perturbation: CASE 2

37



The computation time of

nonlinear transient analysis (s) Time rate
1800 18
1600 P — 1500 16
1400 I 14
1200 15.6 15.0 : N
1000 10
800 615 8
600 6
400 e 4
9.40
SEECROM ~ POD  SEECROM  POD  SEECROM  POD
#ELEM =8 #ELEM = 32 #ELEM = 72

Time rate = computation time of
POD/SEECROM

Figure 4.10. Computation time comparison by number of elements: CASE 1

The computation time of

nonlinear transient analysis (s) Time rate
2400 2100 20
2100 — e e -
1800 17.3 17.8 18.0 -
1500 12.5
1200 895 10
900 75
600 5
213 75
300 117 -

12.3 50.4
0 | — — 0
SEECROM POD SEECROM POD SEECROM POD
#ELEM =8 #ELEM = 32 #ELEM = 72

Time rate = computation time of

POD/SEECROM

Figure 4.11. Computation time comparison by number of elements: CASE 2

: 2 A& el



5. PARAMETERIZATION BASED ON SEECROM

In the process of parametric studies or design optimizations, the system is continuously
solved under different values of input parameters. If the relation between the parameters
and the system matrices is complex, the whole process becomes quite inefficient since the
system matrices should be reconstructed whenever the parameters change. The process of
parameterization makes the system be characterized by input parameter variations. The
system is decomposed into the parameter-related terms and the parameter-non-related
terms. Thus, the aim of this section is the parameterization of SEECROM model. The
nonlinear internal force model composed of SEECROM will be further characterized by

the design parameters.
5.1. Parameterization strategy of SEECROM

The parameterization technique should be adjusted to fit the purpose. As for the
parameter studies or design optimizations, the element-wise-imposed parameters are the
most common cases. In these cases, the values of parameters are imposed element by
element, which is a huge advantage for the parameterization of SEECROM. Furthermore,
the displacement combinations are also determined element by element with the SEEC
approach.

Fig. 5.1 shows the identical element composition to the element composition shown in
Fig. 3.2. The addition to the Fig. 3.2 is the parameter variations; the design parameter \

is distributed in an element-wise manner. Then, Eqg. (3.4) and Eq. (3.5) are simply
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adjusted to have the design parameters. Eq. (5.1) below shows that the nonlinear internal
force takes \ as an input parameters. The design parameters are multiplied with the
displacement combinations for each element and summed up for the whole elements. For
instance, Eq. (5.2) shows that the internal force at the specific degree of freedom ( in
Fig. 5.1 is determined with the design parameters and the displacement combinations

within the adjacent elements.

AE AE
fi (\u)= Kijklz/\n [ujukul]n = Kijz)‘n [U?(U)]n (5.1)
n=1 n=1
1:‘q = qu Al[u}:]EG +)\1[u?]57 +)\2 [u”mo +>\3 [u?]Ell (5:2)

For clarification, the displacement combinations can be altered to include the design
parameters as in Eq. (5.3). Let the displacements be the original input parameters of the
nonlinear internal force model in SEEC method, then the relation below is considered as

the inclusion of the new input parameters for the approximate model.
G5 (A, u) = AJus (u)] (5.3)

Then, the equations for the SEEC internal force model with the parameterization are

simplified as follows:

L.(wu) =K, [a§(A,u)]n (5.4)

n=1

Fq - KQi [ﬂ? E6 +[OJ?]

ol 4l

J]EIO

+0s

J ]Ell (5.5)

E7

The sampling strategy with the parameterization is also not quite different from the non-
parameterized SEEC. When determining the training problems, one needs to check for

the range of the input parameters to be used for the online stage and to include the
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response results from the boundary values of the input parameters. Eg. (5.6) shows the

sampling sets with the parameterization and the stiffness coefficients K to be identified.

AC  AC Ac
u; U, ... Ug
AC AC AC
-~ ~ ~ +|U u u
21 22 2s
Iy Tip oo T sampling Ki Ki ip . (5.6)
AC AC AC
u u ... u
Pl “p2 PS |sampling

where P is the number of displacement combinations and S is the number of the

sampling sets.
The process of the identification of the stiffness coefficients is essentially identical to the

non-parameterized approach. As below, the sampling sets are reorganized into the form

of AX=Db to be solved with the minimum norm Least Square.

~C c ~C 7
ull u12 ulp Kil i1
0;1 0;2 0; K 2 1—"2
S = (5.7)
~C ~C ~C 7
usl usz usp Kip Fis
sampling sampling
~C c ~C 7
l"Ill u12 ulp Ki1 F|l
s as, ... G K., T,
where A= 7 Pl o x=[F, b= (5.8)
~C ~C ~C 7
usl usz te usp Kip Fis
sampling sampling
Therefore, the nonlinear internal force model with the parameterization is given by
T 7 e
[ (A u) = K;u; (A u) (5.9)
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Since the reduced-order modeling and the computation of the tangent stiffness are
strongly dependent on the displacements rather than other input parameters, the
SEECROM-Parameterization is completed with the previously described ROM
procedures. The complete form of the nonlinear internal force with SEECROM-

Parameterization is given in Eq. (5.11) — Eqg. (5.13).

T (A u) = KaE (A u) (5.11)

I~WiR (/\’ U) = ¢kifk ()\, U) , KUR = ¢y Kkj (5.12)
Iy KL K§ K |[a
I3 |Ka Ka 0,

Cl=] : (5.13)
Inl K Ko |05

5.2. Application of SEECROM-Parameterization

The static and the structural nonlinear analyses of plane elements with a hyperelastic
material are demonstrated to verify the accuracy and the efficiency of the proposed
SEECROM-Parameterization method. The element has 4 nodes per element and 2

degrees of freedom per node, which yields 8 degrees of freedom per element. The
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hyperelastic material is modeled as Neo-Hookean with a shear modulus of (¢ =1.5 MPa

and bulk modulus of ,=1.0 GPa.

As shown in Fig. 5.2, a 0.02x0.02 m square plane with radius of R=0.002 m is bounded
on one side and the external load is imposed on the other side. A total of 2,451 elements
are uniformly constructed with 50 mesh each along the plane edge. The total number of

the degrees of freedom is 5,568.
5.2.1. Static analysis of Neo-Hookean hyperelastic material

For the verification of the SEECROM-parameterization method with the hyperelastic
example, a static case is demonstrated first. The selected design parameters included the
thickness of the elements as well as the magnitude of the external load. Since the external
loads and the internal force are not directly related to each other in construction, the
SEECROM-Parameterization only concerns the thickness of the elements as the input
parameters for the parameterization. Fig. 5.3 shows the composition of the input
parameters. The whole domain was divided into 4 sections, and a different value of
element thickness was imposed on each section.

In the sampling stage, training analyses were conducted for the various sampling values
of loads and element thicknesses. The magnitude of the sampling load was fixed as 30 N
while the sampling thicknesses of 4 sections were chosen from 3 different values (0.001
m / 0.002 m / 0.003 m). The response results of SEECROM-Parameterization were
compared with the full analysis results. Additionally, for the verification of efficiency,

reduced analysis with POD was conducted for reference. The reference method only uses

43 2]



POD for reduced-order modeling. It does not use stiffness evaluation or a
parameterization technique. The reduction rate for both reduction methods was 1 %. The
number of reduced degrees of freedom was 51, and the number of total degrees of
freedom was 5,568.

The design parameters were randomly perturbed for the static analysis in the online
stage. An arbitrary chosen set of design parameters is given in Table 5.1. The deformation
of the structure under the random perturbation is illustrated in Fig. 5.4. The light blue
faces indicate the results of full analysis, while the dark blue edges indicate the
deformation from the SEECROM-Parameterization. It can be seen that the two results are
identical. Fig. 5.5 contains the computation time for the online stage. SEECROM-
Parameterization and POD-only reduction is performed against the full-order analysis.
Compared to the full analysis, POD analysis is 1.58 times faster whereas SEECROM-

Parameterization is 23.1 times faster.
5.2.2. Dynamic analysis of Neo-Hookean hyperelastic material

The structural dynamic analysis of hyperelastic material is demonstrated in this section.
As in the previous example, the load magnitude and the element thickness were selected
as the design parameters. The SEECROM-Parameterization model was constructed with
two input parameters of element thickness. Fig. 5.6 shows the division of the two design
sections for the input parameters. The dynamic load uniformly imposed on the right side
of the plane was composed as the multiplication of the load magnitude and the load

profile shown in Fig. 5.7. For the training analyses in the sampling stage, the sampled
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load magnitude was set to 30 N and the thicknesses of 2 sections were chosen from 3
sample values (0.001 m / 0.002 m / 0.003 m). The number of reduced degrees of freedom
was 102, which is 2% of the full model.

For the transient analysis in the online stage, the design parameters were randomly
perturbed as given in Table 5.2. The dynamic response of the structure under the random
perturbation is illustrated in Fig. 5.8. The displayed snapshots indicate that the accuracy
of SEECROM-Parameterization is maintained over the analysis time. The middle point
on the right side of the plane was selected, and the displacement in the x-direction is
plotted in Fig. 5.9. The figure shows that the responses from SEECROM-
Parameterization and POD reduction agree well with the full-order response.

The computation time for the online stage is shown in Fig. 5.10. SEECROM-
Parameterization and POD reduction were conducted against the full-order analysis. POD
reduction was 1.51 times faster than the full analysis, whereas SEECROM-

Parameterization was 23.8 times faster.
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Table 5.1

Randomly perturbed design parameters for static case

Load Element thickness
magnitude Al A2 A3 A4
29.94 N 0.0012 m 0.0019 m 0.0012 m 0.0029 m
Table 5.2

Randomly perturbed design parameters for dynamic case

Load Element thickness
magnitude Al A2
28.94 N 0.0017 m 0.0014 m
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Figure 5.6. Input parameters for dynamic analysis
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6. APPLICATON TO MULTIBODY DYNAMICS
6.1. Motivation

Recent years have witnessed growing interest in the efficient analysis of flexible
multibody dynamics. For instance, control problems of flexible robot arm systems require
real-time simulations of flexible multibody dynamics. To solve these systems with high
accuracy, structural analysis of the flexible parts should be performed with a sufficient
number of elements, which decreases the efficiency of the entire analysis. To meet the
requirement of real-time simulation, a method that can increase the efficiency of large-
system analysis is essential. Another example arises in the aircraft industries. For the
development of aircraft with low emissions and high fuel efficiency, the design of high-
aspect-ratio wings is crucial, which leads to large deformation of the structure. Therefore,
aerodynamic analysis should be performed with the consideration of nonlinearities caused
by the large deformation. Since this requires repetition of nonlinear structural analysis for
each time step of dynamic analysis, high efficiency of the nonlinear analysis must be
guaranteed. Therefore, an efficient analysis technique that considers the nonlinearities in
rigid body motion as well as flexible deformation is highly demanded in the field of
flexible multibody dynamics.

To enhance the efficiency of multibody dynamic simulations, the technique of reduced-
order modeling (ROM) has been used widely. Still, the utilization of ROM in flexible

multibody analysis problems has not been fully studied. The difficulty in the utilization of
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ROM comes from the limitations of the ROM technique itself: although ROM has been
well developed for linear systems, its adaption to use with nonlinear systems is still in its
beginning stages. Whether nonlinearities arise from rigid body motion or the flexibility of
structures, the system matrices should be re-constructed as the state of the system changes.
The problem is that the re-construction of system matrices should be performed in the full
domain before the reduction process begins. Since most reduction methods only shrink
the computation time for the solution process after the reduction process, the time of the
repeated construction process takes nearly the same amount as that of a full analysis.

The stiffness evaluation procedure (STEP) method, proposed by Muravyov and Rizzi [1]
is one of the computationally efficient approaches of nonlinear analysis. It represents
nonlinear internal forces by a third-order polynomial formulation of displacements. If the
representative model is constructed with sufficient accuracy, the system matrices can be
computed immediately as the nonlinear system is updated. However, the identification of
the representative internal force model itself takes time. Since the coefficients of the
polynomial displacements are identified by a series of responses from the finite element
simulations in the full domain, the required number of simulations should be kept small.
This creates a limitation on the application of the STEP method as the number of full
simulations increases with the cubic power of the system size. It can be stated that the
application of this approach to large-scale problems is computationally prohibitive.

In this section, the application of the STEP method is extended to multibody dynamic
analyses. To this end, new stiffness evaluation methods developed for large-scale
analyses are proposed in the previous sections. They are referred to as SEEC and

SEECROM: the stiffness evaluation method based on element connectivity and its
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reduced-order modeling, respectively. In the proposed methods, the stiffness coefficients
are evaluated within the connected elements. This makes the number of required
simulations determined by the characteristics of the element itself rather than by the
problem size. Moreover, proper orthogonal decomposition (POD), which is a ROM
method, is utilized to enhance the efficiency of the proposed method. System matrices are
constructed by stiffness evaluations based on element connectivity information, which is
followed by the reduction of system matrices by the POD method. In this way, the
proposed method keeps the accuracy of the representative model and increases the
efficiency of the reduced model.

SEEC and SEECROM were originally developed for analysis of nonlinear structural
dynamics systems, where the mass matrix is composed of constants while the internal
force vector and the stiffness matrix are nonlinear in the deformation of the structure. The
nonlinear values should be updated repeatedly as the displacements change. Thus, the
proposed methods construct efficient representative models for internal forces and
stiffness matrices.

However, the composition of the system matrices in flexible multibody analysis is
different from the structural analysis. In the floating frame of reference formulation
(FFRF), which is the most widely used technique in the analysis of flexible multibody
dynamics, the stiffness matrix is composed of constants while the mass matrix has
nonlinearities. Not only should the mass matrix be updated repeatedly at every iteration,
but the terms in relations with the inertia forces should also be computed recursively.
Therefore, the proposed methods, which are developed to construct nonlinear internal

force models, cannot be applied directly to this formulation of multibody dynamics.
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Fortunately, there is an alternative approach for multibody dynamics that uses different
coordinate systems from FFRF. This approach, referred to as absolute nodal coordinate
formulation (ANCF), uses absolute coordinates and slopes. This leads to a constant mass
matrix and a nonlinear stiffness matrix, which are analogous to the system matrices of
nonlinear structural dynamics. Since the additional inertia terms also vanish due to the
use of absolute nodal coordinates, the equation of motion with ANCF is formed in a
similar way to nonlinear structural dynamics systems. This enables the direct utilization
of ROM methods that have been developed for nonlinear structural analysis.

ANCF approaches were originally proposed by Shabana and co-authors [17-20]. The
ANCEF is designed particularly for large deformation analysis in multibody applications.
It describes the absolute values of the displacements and finite slopes in a global
coordinate system, which leads to stable solutions of the integration process under large
rotations and deformations. However, in most cases, the multibody dynamic analysis with
ANCEF takes a large amount of time. The inefficiency comes from two main factors: 1)
the complexity in the composition of nonlinear internal forces of ANCF elements and 2)
the iterative calculations used to update the state of the system. Moreover, the
computation time rises as the number of ANCF elements increases.

Various studies have been made to raise the efficiency of the ANCF approaches. ANCF
elements were simplified in various ways with appropriate assumptions according to the
characteristics of specific problems [19]. Mode-based reduced-order modeling, including
the Craig—Bampton method, was applied to ANCF approaches [21-23]. Still, further
consideration should be made with regard to the enhancement of efficiency while

preserving the nonlinear nature of the ANCF approaches. Ways to reduce the time needed
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for the re-construction of the system matrices should be devised, as well.

In this section, SEECROM is applied to ANCF beam elements. The proposed methods
can be successfully applied to ANCF to yield efficient solution responses in flexible
multibody dynamics. The previous reduction methods for ANCF-multibody dynamics
have the same limitations as the reduction methods for nonlinear structural analysis: they
only reduce the computation time for the solution process, and not the construction time
for system matrices. Since the stiffness matrices in ANCF should be updated at every
iteration, if the construction time for the system matrix is not reduced, there is a definite
limit on the efficiency gain. Contrary to previous ROM methods, SEECROM handles the
construction of the system matrices, fully enhancing the efficiency of flexible multibody
dynamics. The applications of SEECROM to ANCF beam elements are demonstrated for
various numerical examples such as a free-falling pendulum, a slider-crank mechanism,

and a four-bar mechanism.
6.2. ANCF formulation

The most preferred and widely used approach in multibody dynamics is the floating
frame of reference formulation (FFRF), which uses a mixed set of absolute and local
reference coordinates. Although the use of mixed coordinates allows the stiffness matrix
to take a simple form, as in linear static structural analyses for small-deformation
problems, it also creates inertial forces and the nonlinear mass matrix. On the other hand,
the absolute nodal coordinate formulation (ANCF) uses only absolute global coordinates.

This simplifies the mass matrix and makes the inertia forces disappear. Instead, the
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stiffness matrix takes a nonlinear form, which is analogous to the formulation of
nonlinear structural dynamics. The composition of the nodal coordinates and the
construction of the equation of motion and its system matrices in the case of ANCF beam
elements are addressed below [20].

In the ANCF elements, displacements and displacement gradients are used as nodal
coordinates. These absolute coordinates are defined in terms of the element shape
function and the vector of nodal coordinates as below:

r=Se (6.1)
where r is the global position vector of an arbitrary point on the neutral axis of the
beam element, S is a global shape function, and € is the vector of nodal coordinates,
which includes global displacements and gradients. The configurations of ANCF beam
elements are shown in Fig. 6.1.

In Fig. 6.1, X is the length of an arbitrary point from the node, and | is the length of

an undeformed beam element. X1 and Xz are global coordinates, and the vector of

nodal coordinates € is given by

e =g e, e, e e e £ ¢ (6.2)
(8><1) —
position gradient position gradient

or, or,

&= 1|x=o €, = r2|x=0 &= Sx 4= Sx
Xlx-0 Xlo  (6.3)

e =1 e =", e—5rl _on

5 1y 6~ 2]y 7T oy 8 —
X X OX|, OX |,

Then, the position vector r is described with the global shape function below:
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where & :IK.

Now, with the global position vector r, after some simple algebraic manipulations , the

kinetic energy T of the beam is expressed as
1 1 1
T==|pr'rdv==¢"| [ pS™SdV |6 ==&"Me (6.5)
ot = frsrsa o

where V isvolume, o ismassdensity,and M is the element mass matrix, which is
constant. While the ANCF leads to a simple expression for the mass matrix, it results in a
relatively complex expression for the stiffness matrix. The element stiffness matrix K

can be derived from the strain energy U , which is given by

2 2 2
U=2[|Ea[ 2] +E1| 24| |ox=2eTke (6.6)
270 OX OX 2

where E is the modulus of elasticity, d is the cross-sectional area, | is the second

moment of area of the beam element, U, are the longitudinal displacements, and U,

are the transverse displacements.
Since the element coordinates € only contain the absolute values of positions and
gradients, it can be seen that the stiffness matrix for the ANCF beam element becomes a

highly nonlinear function. Various methods have been proposed to reduce the
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inefficiency due to this nonlinearity. In this paper, one of the simple methods proposed by
Berzeri and Shabana [19] is utilized; it is assumed that the longitudinal deformation is
small and the strain is constant within an element. Even with the simplest model, however,
a significant amount of time is required to perform the time-marching simulation of
multibody dynamics. Moreover, the computation time increases rapidly with the number
of elements.

In the next section, the method for enhancing the efficiency of the ANCF model is
presented. The reduction method developed for nonlinear structural dynamics is applied
to the ANCF model based on the fact that their governing equations have analogous
formulations. Although a simplified ANCF beam element is used in the numerical
examples in this paper, the proposed method is readily applicable regardless of the

formulation.
6.3. Reduced-order modeling of ANCF model with SEECROM
6.3.1. Application of SEECROM to ANCF beam elements

As addressed in the previous section, an ANCF beam element is composed of two nodes,
and the each node contains four degrees of freedom, which include the global
displacements X and Y as well as their corresponding global slopes. In total, eight
degrees of freedom complete one element, as shown in Eqg. (6.2). It is proposed that the
SEECROM model is constructed in element-wise manner with the third-order polynomial

displacement combination within each element. Since there are eight degrees of freedom
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in an element and the number of adjacent elements is two, the number of displacement

combinations for an internal force is equal to 2(, ,H, —1) —~ . With the consideration of
shared combination 7, this number becomes 294. This determines the number of

sampling sets to obtain in the sampling process.
Overall, there is no notable difference in the process of SEECROM model construction
between ANCF analyses and structural analyses. The construction sequence follows the

procedure described in Sect. 3 and Sect. 4.
6.3.2. Application of SEECROM

In this section, the proposed SEECROM method is applied to multibody dynamics to
solve various examples that include a free-falling pendulum, a slider-crank mechanism,
and a four-bar mechanism. These are successfully demonstrated with ANCF beam
elements. The constraints for joints are imposed with Lagrange multiplier methods, and a
Newmark method combined with a Newton-Raphson formulation is applied for the time

integration scheme.

6.3.2.1. Double pendulum

The multibody dynamics analysis of a free-falling pendulum is performed based on
ANCF. The pendulum has a pin joint in the middle, as shown in Fig. 6.2. The first body
with a grey color has an elastic modulus of 80 MPa and an area of 900 mm2. For the red-
colored second body, these quantities are 1 MPa and 900 mm2, respectively. The

dynamic analysis was performed under the gravity force in the —y direction over a total
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time of T=1.3 s. The sampling parameter is the mass of each body; the initial masses of
the bodies were given as 1.216 kg and 0.982 kg, respectively. For the sampling process,
training dynamic analyses were performed with a perturbed sampling mass. Fig. 6.3
shows the perturbed position of the end point of the pendulum during the sampling
process. The perturbation rate varied as 0.5 /1.0 / 1.5. Under the perturbation of the mass
of the bodies, solution sets composed of the displacements and the corresponding internal
forces were collected. According to the characteristics of the ANCF beam elements, the
sufficient number of solution sets was computed as 294. These solution sets were used for
the evaluation of the stiffness coefficients and the extraction of POD modes, which
completed the SEECROM model of the given ANCF beam example. Then, with the
SEECROM model, dynamic analyses were performed under a randomly imposed set of
masses. The responses were compared to the POD-based reduced analyses and the full
analyses. The reference analysis for reduction uses only POD based on the snapshot
method.

With 80 elements for each body and a reduction rate of 4 %, the total and reduced
number of degrees of freedom were 628 and 25, respectively. The multibody dynamic
analyses were performed under the two different cases with randomly chosen mass sets of
[1.057 kg, 0.6 kg] for CASE 1 and [1.121 kg, 1.390 kg] for CASE 2. The first and second
values in the brackets indicate the masses of the first and second bodies, respectively.

The response results from the multibody dynamic analysis under the two cases of
randomly perturbed mass are plotted in Figs. 6.4 to 6.7. The even-numbered figures
represent the motion of the pendulum for every 15 time steps. The pendulum is drawn

with darker lines over time while the initial position is denoted with a pink line. The odd-



numbered figures show the position of the end point over time for different methods
including SEECROM, POD reduction, and full analysis. It can be seen that the three
methods have the same responses under the randomly perturbed mass variables, which
verifies the accuracy of the SEECROM model.

The efficiency can be verified with the results drawn in Figs. 6.8 and 6.9. The
computation times of dynamic analysis under SEECROM and POD reduction are
compared for CASE 1 and CASE 2 in Figs. 6.8 and 6.9, respectively. In CASE 1, it can
be seen that the SEECROM method is approximately 167 times faster than full analysis,
while the POD reduction method is 20.63 times faster. In CASE 2, SEECROM and POD
methods are 210.7 and 18.83 times faster than full analysis, respectively.

For the verification of the efficiency of the SEECROM method under various system
sizes, the process was repeated as the number of elements was increased by 20, 40, 80,
and 160. (The total number of degrees of freedom was increased by 88, 168, 328, and
648.) Identical numbers of elements for each pendulum were imposed, and the reduced
models were constructed with 26 POD modes for all cases. In Fig. 6.10, two specific time
rates are depicted over the increasing numbers of elements. The first time rate refers to
the computation time of the full analysis over the POD reduction method, and the second
time rate refers to the computation time of the full analysis over the SEECROM method.
They indicate the relative efficiency of POD and SEECROM method compared to the full
analysis. It can be seen that the gap between two rates is widened as the number of
elements increases. Although the POD reduction method becomes enhanced with the
number of elements, the efficiency of the SEECROM method is magnified with the

growth of system size.



6.3.2.2. Slider-crank mechanism

The multibody dynamic analysis of the slider-crank mechanism shown in Fig. 6.11 was
performed with ANCF elements. SEECROM was applied, and results were compared to
POD reduction and full system analysis. The crankshaft and the connecting rod were
composed of 40 and 60 ANCF beam elements, respectively. The two bodies had identical
areas of 78.54 mm?2 and densities of 2,770 kg/m3. The Young’s modulus of the
crankshaft was 100 MPa while that of the connecting rod was 5 MPa. The moment M

applied at the crank is expressed as

t
M = A x0.01(1—-e%%7) t<0.7
0 t>0.7

(6.7)

where ) is the sampling parameter, which varied as 0.25/ 0.5/ 0.75/ 1 in the sampling
process.

The dynamic analysis was performed under the randomly selected parameter A=0.861.
Fig. 6.12 shows the motion of the slider-crank under the perturbed moment, which is
drawn with darker lines over time while the initial position is denoted with a pink line.
Fig. 6.13 shows the position of the end point that slides along the x-axis. It can be seen
that the results of SEECROM, POD, and full analysis match perfectly. The efficiency of
the SEECROM method can be verified by Fig. 6.14: SEECROM analysis was 157.6
times faster than full system analysis, while the POD reduction method was 16.4 times

faster than full analysis.



6.3.2.3. Four-bar mechanism

The multibody dynamic analysis of the four-bar mechanism shown in Fig. 6.15 was
performed with ANCF elements. The dynamic response obtained using the SEECROM
method was compared to POD reduction and full system analysis. The crankshaft, the
coupler, and the follower were composed of 20, 50, and 40 ANCF beam elements,
respectively. The material properties of each body are listed in Table 6.1. The moment

applied at the crank is expressed as

(6.8)

[ Ax10sin(3at) t<0.2778
| Ax465.9e %% t>0.2778

where )\ is the sampling parameter, which varied by 0.25/ 0.5/ 0.75 / 1 in the training
analyses of the sampling process.

Dynamics analysis was performed with a randomly perturbed moment M with the
selected parameter A =0.935. The dynamic response of the structure under the
perturbation is illustrated in Fig. 6.16. The displayed snapshots indicate the high degree
of accuracy of the SEECROM method over the analysis time. The response of the full
model drawn as the light blue line matched well with the dark blue line denoting the
response of the SEECROM model. The change of the position of the joint between the
coupler and the follower is shown in Fig. 6.17. The results of the three analyses match
perfectly. The efficiency of the SEECROM method is verified by Fig. 6.18; while the
SEECROM analysis was faster than the full system analysis by 63.1 times, the POD

reduction method was 7.22 times faster than the full analysis.



6.4. Parameterization of ANCF model with SEECROM
6.4.1. Parameterization strategy of SEECROM

The procedure of parameterization for ANCF model basically follows the strategy
introduced in Sect. 5.1. The internal force model using SEEC method has the element-
wisely collected terms of 3" order input displacements as the input variables. If design
parameters are imposed in element wise manner, the internal force model can be
constructed with the parameters which are combined with the 3™ order displacements
combination to make the 4" order input variables. See Fig. 5.1 and Eq. (5.3)-(5.5) for
more detail.

If the design parameter A has a linear relation with the internal force such as Young’s
modulus in ANCF beam elements, the inclusion of the new input parameters \ is
completed with the simple linear multiplication as expressed in Eqg. (5.3). If the design
parameter A has a nonlinear relation with the internal force, the inclusion of the
parameter should be carefully chosen under the consideration of the relation between the
parameter and the internal forces. For example, let’s assume that diameters d in ANCF
beam elements are chosen as design parameters. While the relation between the diameters
and the internal forces is nonlinear, the internal force in ANCF beam is affected
proportionally by the area of the beam and the second moment of the area, which are
represented by d? and d*, respectively. Thus, for the parameterization of the diameters
d inthe ANCF beam elements, d? and d* should be separately included as the new

input parameters instead of d itself.
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6.4.2. Application of SEECROM-Parameterization

In this section, the parameterization of ANCF beam model is conducted based on
SEECROM method to solve multibody dynamics under the changes of parameters.
Various numerical examples which include free-falling pendulum, slider-crank and four-
bar mechanism are demonstrated. The multiple point constraints for joints in the

examples are imposed with Lagrange multiplier.

6.4.2.1. Double pendulum

The dynamic analysis of the pendulums with a pin joint in the middle shown in Fig. 6.19
was solved with SEECROM and its parameterization technique. The first pendulum with
grey color are consist of 40 elements and has an area of 900 mm? with 1.216 kg of mass.
For the red colored second pendulum, it has 40 elements and an area of 900 mm? with
0.982 kg of mass. The dynamic analysis was performed under the gravity force in -y

direction over the total time T=1.3s. The design parameters for the parameterization are

the Young’s modulus E of each pendulum, which are indicated in the Fig. 6.19 with

A and A,

In the sampling stage, the design parameters are directly chosen as the sampling
parameters. The training analyses were conducted as the parameters are changed by
1MPa / 10MPa / 100MPa. The response results of SEECROM were compared to the
results from the full analysis and the POD reduction method under the randomly selected

parameter values, [)\1* ,)\;] = [70.9 MPa, 4.15 MPa]. The first and the second values in
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the bracket equal to the Young’s modulus of the first pendulum and the second pendulum,
respectively. The total number of degrees of freedom is 328 and the reduction rate is
15 %.

The deformation of the structure under the random perturbation \* is illustrated in
Fig. 6.20. It is drawn with more dark lines over time T=1.3s while the initial position is
indicated with pink line. The position of the end point of the second pendulum is shown
in Fig. 6.21. The results of two reduction method are well matched with the full system
analysis. The computation time of the three methods are shown in Fig. 6.22. SEECROM
analysis is faster than the full system analysis by 43.2 times and POD reduction method is

5.62 times faster than the full analysis.

6.4.2.2. Slider-crank mechanism

The slider crank is shown in Fig. 6.23 with the element-wisely imposed design
parameters )\1 and >\2. The crankshaft and the connecting rod are composed with 40

and 60 ANCF beam elements, respectively. Two bodies have the identical area of 78.54

mm? and the density of 2770 kg/me. The moment M applied at the crank is expressed as

—t

M — 10.01(1—e%%7) t<0.7
0 t>0.7

(6.9)

The multibody dynamic analysis of the slider crank was performed based on ANCF.
Young’s modulus of each body is selected as the input parameters for the
parameterization of the SEECROM-representation of the given ANCF model.

In the offline stage, the training analyses were conducted as the design parameters are
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changed by 1 MPa / 10 MPa / 100 MPa. The response from the SEECROM method is

compared to the POD reduction and the full system analysis under the randomly

perturbed parameter values, [)\1*,)\;] = [8.51 MPa, 6.34 MPa]. The total number of

degrees of freedom is equal to 408 and the reduction rate is 15 % with the 61 reduction
modes.

The dynamic response of the structure under the random perturbation \* is illustrated
in Fig. 6.24, which is drawn with more dark lines over time T=1.6s with the initial
position depicted in pink line. The position of the end point of the connecting rod that
slides along the x-axis is shown in Fig. 6.25. The figure shows that the responses from
SEECROM method and POD reduction method agree well with the full-order response.
The computation time for the online stage is shown in Fig. 6.26. POD reduction was
11.56 times faster than the full analysis, whereas SEECROM-Parameterization was 123.1

times faster.

6.4.2.3. Four-bar mechanism

An example of four-bar mechanism is shown in Fig. 6.27 with the design parameters

)\1, /\2 and >\3, which are imposed for the crankshaft, the coupler and the follower,
respectively. The multibody dynamic analysis of the example was performed with the
ANCF beam elements under the moment M employed at the crank. The moment is
expressed as

sin(3xt)  t<0.2778

— 6.10
465.9¢ %3 t>0.2778 (6.10)

The material properties of each body are identical to the values listed in Table 6.1 except
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the Young’s modulus of each body, which is selected as the input parameters for the
parameterization of the SEECROM model of the example.
A set of training analyses were conducted in the offline stage as the design parameters

are changed by 10 MPa / 50 MPa / 100 MPa. Under the randomly perturbed parameter

values of [)\1*, )\;, )\;] = [35.1 MPa, 59.2 MPa, 96.2 MPa], the dynamic response of the

SEECROM is compared to the POD reduction and the full system analysis. The total
number of degrees of freedom is 452 whereas the number of reduction modes is 54 with
the reduction rate of 12 %.

The snapshots displayed on Fig. 6.28 are the responses of full order and SEECROM
analyses under the perturbed parameter \". The results from SEECROM are denoted
with dark blue lines and the full order results are drawn with light blue lines. It can be
seen that the excellent matching between the two methods is obtained. Moreover, the
joint link between the coupler and the follower is selected as the observation point. The
time response of the point in Y-direction is drawn in Fig. 6.29. It can be seen that the two
reduction methods have the same results with the full system dynamic analysis. The
efficiency of the proposed method can be verified from Fig. 6.30. Whereas the
computation time of POD reduction was 8.46 times faster than the full analysis, the

analysis using SEECROM method was 66.2 times faster.
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Table 6.1

Material properties of four-bar mechanism

Number of
elements

length (m)
Density (kg/m?3)
A (mm?)

E (MPa)

71

Crankshaft Coupler Follower
20 50 40
0.2 0.9 0.52
2709 1402 4003
1257 1960 7068
1,000 5 500
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Figure 6.1. (a) Undeformed and (b) deformed configurations of ANCF elements
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Figure 6.8. Computation time for the double pendulum:
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Figure 6.11. Configuration of slider-crank mechanism
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Figure 6.15. Configuration of the four-bar mechanism
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Figure 6.19. Configuration of the double pendulum with design parameters
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Figure 6.27. Configuration of the four-bar mechanism with design parameters
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7. APPLICATON TO OPTIMIZATION PROCESS
7.1. Motivation

The process of the design optimization of finite element structures takes a significant
amount of computation time and resources. It needs numerous iterations of system
analyses as the values of design parameters are changed in search of the optimal design.
The iteration should be repeated until the updated design satisfies a certain condition
defined for the optimization problem. If the size of the system is large that the inverse
process to obtain the displacement solutions gets inefficient, reduced order methods can
be effectively applied. The related researches, which conduct optimizations based on the
reduced order model, have been popular in decades.

In the cases when nonlinearities are present in the finite element structures, the
optimization process becomes more complex. The system matrices should be
reconstructed as the system responses change, which makes the construction process take
the half of the computation time of the entire nonlinear analysis. This has been the
obstacle to the application of the reduced order modeling to the optimization of nonlinear
structures. The optimization process inherits the characteristics of the reduction methods
applied for the system analyses. The problem is that most reduction methods for
nonlinear structures only reduce the computation time of the solution process of the
system, not the construction process of the system matrices.

Parameterizations of reduced order models are also the critical point for the application
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of reduction methods to optimization problems. Even if a reduction method efficiently
reduces the computation time for nonlinear analyses, without the inclusion of design
parameters to the reduced model, the reduced order modeling becomes ineffective in the
optimization process. The design parameters are continuously changed until the response
of the system meets the design requirements. The system matrices are changed to yield
the different responses for the different parameters. Without the parameterization
techniques, therefore, the construction of system matrices and the reduced order modeling
of these matrices should be repeated as the design parameters change.

In this paper, a new method of parameterized reduced order models is proposed. It is
referred to as SEECROM since the reduced order models use stiffness evaluation method
based on the element connectivity of finite elements. SEECROM reduces the
computation time for the system matrices construction process as well as the time for the
solution process. An equivalent model based on SEECROM substitutes the assembly and
the integration process of the full system analysis. The input and the output of the
equivalent models are the displacements and the corresponding internal forces,
respectively. In the stiffness evaluation methods, the internal forces are composed as the
sum of the 3rd order polynomial displacements. Each polynomial term is multiplied by
the constant coefficients. Theses coefficients are called as ‘stiffness coefficients’ and they
are efficiently obtained with the relation from the finite element connectivity. Then, the
reduction technique with Proper Orthogonal Decomposition method is applied to enhance
the efficiency of the equivalent model.

SEECROM is especially useful when it comes to the parameterization of nonlinear

structures. In the proposed method, the nonlinear internal force model is constructed in
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element-wise manner. This simply enables the parameterization. The design parameters
can be easily multiplied element by element in the evaluation process of the stiffness
coefficients to complete the parameterized reduced order model. With the proposed
method, the nonlinear internal forces can be computed effectively without the re-
evaluation of these stiffness coefficients since they are constant values which are
independent from the displacements or the design parameters. The numerical integration
and the assembly process are eliminated as well with the use of the proposed method.
Due to the efficiency for the nonlinear analyses and the ability to be parameterized for the
design parameters, SEECROM is perfectly fitted for the reduced order modeling of
nonlinear structures subjected to the optimization problems.

This section is categorized as follows. First, the conventional process of the optimization
of nonlinear structures is presented in Sect. 7.2. The reason for the excessive requirement
of computational resources and thus the needs for the reduced order models as well as the
parameterization are explained. In Sect. 7.3, the newly developed parameterized reduced
order modeling method for nonlinear finite element system, SEECROM, is utilized to the
optimization process. The sampling strategy for the multiple design parameters and the
issue of the computational efficiency for the large scale problems are also discussed. In
the final section, two sample optimization problems are demonstrated. A static structural
system with a hyperelastic material and a multibody dynamic system. A thickness design
problem of the structure with hyperelastic material is solved under strain constraints and a
system of for-bar mechanism based on ANCF elements is subjected a diameter design
problem. The formal example is a multi-variables problem with 16 design parameters and

the latter example is time-dependent simulation. The sampling strategy is numerically
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demonstrated and the computational efficiency is compared in detail.
7.2. Optimization of nonlinear system

A general process of an optimization problem is depicted in the flow chart illustrated in
Fig. 7.1. In the search of the optimal values, the design variables are iteratively changed
to proceed to the next iteration steps and to find the direction to the optimal state.
Whenever the design variables are changed, the system analyses are repeated to get the
corresponding system responses which are verified against the design requirements.

As shown in Fig. 7.1, the optimization process consists of the iterative system analyses.
One iteration cycle includes the system analysis to get the responses from the system, the
validation of the design requirements of the system and the design update. Moreover, to
determine the design parameters for the next iteration step, sensitivity analyses are
required. The process to find the direction of optimization problems is referred to
sensitivity analysis. In the cases when the sensitivity is cannot be obtained analytically, it
can be computed from numerical differentiations, which enhances the computational
burden. In general, the numerical calculations for sensitivities require the equal number of
system analyses to the number of design parameters. Thus the number of system analysis
required for one iteration cycle becomes the number of design parameters plus one.

If a structure to be optimized has nonlinear characteristics, an additional iterative
process to solve nonlinearities is added in the optimization process to compose two layers
of iteration cycles. This is illustrated in Fig. 7.2 where the system analysis itself forms the

iteration cycle. In Fig. 7.2, the outer cycle of the iteration is performed with the update of
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the design parameters. It is terminated as the desired responses are obtained to meet the
design requirements. Within one cycle of the outer iteration, the values of the design
parameters are maintained. The inner iterations find the nonlinear system responses from
the solutions of the discretized equations, which terminated when the force equilibrium is
achieved. Then, with this new equilibrium state, cost and constraint functions are
evaluated and the outer cycle resumes.

Therefore, in the optimization process of nonlinear structures, the nonlinear system
analysis is performed more than the number of design parameters per design iteration
cycle. This is why the reduced order modeling is a tempting technique for the efficiency
of the optimization process. Nevertheless, there exist two main obstacles blocking the
application of the reduced order models. Firstly, the reduced order models for nonlinear
structures should have sufficiently high efficiency. In addition to the reduction of the
system matrix size, the construction of the matrices should be performed efficiently.
Secondly, the reduced order models should be parameterized by the design parameters.
To embrace the change of the design, system matrices should be reconstructed. If the
system matrices are parameterized with the design parameters, the construction process
can be skipped, which enhance the efficiency of the optimization.

Fig. 7.3 shows the optimization process of nonlinear structures with the reduced order
modeling based on POD method. Since it is highly accessible in most cases of reduced
order modeling and it represents nonlinear characteristics well, POD method is the most
popular in the reduced order modeling concerning nonlinear systems. Check Sect. 4.1 for
a more detailed explanation. The process of optimization with POD method is divided

into two stages. The offline stage includes all the preparation works required before

99 2]



proceeding to the optimization process. The reduction modes are computed from the
snapshot data obtained in the sampling analyses. The main process of the optimization
occurs in the online stage where the iterative system analyses are performed as the design
changes. The conventional approach of reduced order models including POD method
requires the reconstruction of system matrices as the displacements are updated. Although
the discretized equation is solved efficiently with reduced order model, the reconstruction
of system matrices cancels the effect.

To skip the process of matrix construction, it should be possible to update the system
matrices so that they can take the changes of the input parameters. In the optimization
process of nonlinear structures, the input parameters are the displacements and the design
parameters. If the reduced order model cannot embrace design parameters, therefore, it
should be reconstructed as the design changes, which costs a great deal of computational
resources.

For a reduced order model to substitute the nonlinear system analysis, in short, it is
important that 1) the model should yield the system response efficiently and 2) accept the
design parameters as input variables. Therefore, the efficient method for a parameterized
nonlinear reduced modeling is required. This requirement exactly coincides with the

descriptions for SEECROM-Parameterization, which was proposed in Sect. 3 to Sect. 5.
7.3. SEECROM-Parameterization for optimization of nonlinear system

7.3.1. Optimization procedure using SEECROM-Parameterization
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SEECROM effectively computes the nonlinear internal force and the tangent stiffness to
solve an optimization problem for nonlinear systems. Still, there are two main issues to be
discussed before the adaptation of the ROM method to the optimization process; 1)
SEECROM model should be composed in relation with the design parameters of the
optimization problem. 2) A new sampling strategy should be devised for the large number
of design parameters. They are discusses in Sect. 7.3.1.1 and Sect. 7.3.1.2, respectively.
The complete optimization procedure with SEECROM method is illustrated in Sect.

7.3.1.3.

7.3.1.1. Parameterization by design parameters
SEECROM method constructs an equivalent model to compute nonlinear internal forces
from the current displacements. In other words, the input and output parameters for the

equivalent model are the displacements and the corresponding internal forces,
respectively. The internal force Fi(U) atthe i™ degree of freedom can be represented

by

~ A _AE
T, (u)= KinIZ[ujukul]n = KUZ[U}‘(U)]” (7.1)

where Kijkl is the stiffness coefficients and AE indicates the number of adjacent

elements.

The addition of the parameterization technique means the addition of the new input
parameters which build the corresponding internal forces together. Then, the internal
forces, the output parameters of SEECROM model, are changed according to the

perturbations of the added input design parameters as well as the update of the
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displacements. Since SEECROM model is composed in element-wise manner, the

parameterization of SEECROM maodel is easily achieved by

~ o A
Ii(\u)= Kijklz)‘n [ujuku']n - KuZAn [ul?(u)]n (7.2)
n=1 n=1

The simple modification of Eq. (7.1) leads to the above equation; the design parameters

)\n is multiplied to the original equation for each element. If a design parameter has a

linear relation with the internal force such as the thickness of the plane elements, Eq. (7.2)

can be directly applied to the parameterization of SEECROM model with the direct

substitution of )\n to the thickness for the n™ element.

This process can be modified according to the relation between the design parameters

and the corresponding internal forces. For example, if the design parameters is the

diameter dn of a beam element, it is not linearly related to the internal force. In the

beam elements, the internal force is obtained as the sum of its bending part and the shear

part. These two parts are proportional to the cross-sectional area and the second moment

of area, which correspond to dn2 and d: , respectively. Thus, the Eqg. (7.2) for this

specific example can be represented as
5 _JE S,
Ty O0u) =Ky > d2[ujuy ]| +Kye > di [uuu| (7.3)
n=1 n=1

This can be regarded that the two different input design parameters df and d: are

added to the SEECROM model instead of a parameter dn. This indicates that although

the number of design parameter is just one on the surface, the number can be doubled by
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the characteristics of the parameter. Whether the design parameters are added linearly or
non-linearly, the important thing is that the parameterization of SEECROM can be easily

tailored to suit the requirements of the problems.

7.3.1.2. Sampling criteria

The solution sets required to evaluate the stiffness coefficients are collected from the
training analyses. In the parameterized modeling, the sets consist of the design parameters,
the displacements and the corresponding internal forces. The composition of the solution
sets should be compact and sufficient since it determines the accuracy and the efficiency
of the SEECROM method. In this section, the criteria to obtain the solution sets will be
discussed.

As stated in Sect. 3, the number of required solution sets is determined based on the
number of unknown coefficients of displacement combinations. If design parameters are
added in the process as shown in Eq. (7.2) and Eq. (7.3), the number of unknown
coefficients increases according to the characteristics of the parameters.

The composition of the solution sets comes from the composition of the training
analyses. In design problems, the range of the design parameters are given as the design
requirements. Then, the training analysis can be repeated under the various compositions
of the design parameters. The range of the training analyses as well as the solution sets
are determined by the lower and the upper bounds of the design parameters.

The basic rules in the selection of the solution sets are simple. 1) The collected system
responses should span the responses may occur in the optimization process. 2) The

sampling number should be kept minimum to reduce the computation time for the
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training analyses.

However, it is not simple to establish the standards for the sampling analyses. Although
ideally, the solution sets should be independent each other, the solution sets of element
displacements obtained from training analyses tend to have rank deficiency. Moreover,
the full rank sets do not guarantee the accuracy of the equivalent model. Do not forget
that the SEEC method is an approximated model based on the polynomial expansion. In
other words, it is difficult to obtain a specific number of displacements sets which are
independent each other, and it is even not necessary.

In the middle of the identification process of the stiffness coefficients, however, the
accuracy of the equivalent model can be checked. The rate of the independent solution
sets against the number of unknowns can be used as the indicator -y such as

rank of A[u“(u)] |
"~ number of unknowns

element

_ rank of solution sets |

— (7.4)
7 number of unknowns|

element

where A[u°(u)} is the displacement sets in combination form with design parameters.

Now, based on the indicator -y, it can be determined whether the training analyses
should be added more or not. Engineers can design training analyses by the experiences
based on the values of the indicator. In the examples in this paper, the equivalent model is
constructed with the indicator -y to be larger than 0.5. In the numerical examples in the
following section, the relations among the indicator, the model accuracy and the

composition of the training analyses are demonstrated.

7.3.1.3. Optimization procedure with SEECROM
The optimization procedure based on POD method in Fig. 7.3 can be modified by
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SEECROM method, which is illustrated in Fig. 7.4. The major difference between two
figures is the requirement for the system matrix construction in the nonlinear system
analyses. With the application of SEECROM method, the construction process can be
omitted. The equivalent model based on SEECROM directly takes the changes of the
design parameters and the displacements to yield the corresponding internal forces. The
downside from the application of SEECROM exists in the offline stage; the identification
of the stiffness coefficients takes computational resources. Fortunately, the efficiency loss
in the offline stage is easily redeemed in the online stage.

With the strategies of the parameterized ROM for optimization procedures presented
above, a sample numerical problem was solved in the following section. A static structure
with hyperelastic material is subjected to the design optimization problems. The
computation time required for the online and the offline stage is discussed by three
different cases of approaches. The system analysis based on SEECROM approach was
performed against the reference analyses, which are the full system analysis and the
reduced model analysis based on POD method. A design optimization of a multibody
dynamic system is also solved for the mass minimization with the diameters of each body
as a design parameter. The procedures and the results are demonstrated for the

verification of the proposed method.
7.3.2. Numerical examples

Two optimization problems which handle the different nonlinearities are demonstrated

in this section. The first example concerns the structural static system with material
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nonlinearities. The structure composed with hyperelastic elements is subjected to an
optimization problem which has 16 design variables of thickness for 16 sections. The
mass of the structure is minimized under strain constraints. The second example concerns
the multibody dynamic analysis which requires the time marching analysis. The diameter
of each body of the four-bar mechanism is computed from the optimization process with

the constraints imposed on the axial stresses.

7.3.2.1. Application to nonlinear structural analysis
The first example is the mass minimization of a nonlinear structure with the hyperelastic
material. The square plane with a hole is fixed by one side and loaded by the opposite
side. The width of the plane is 0.02 m and the diameter of the hole is 0.004 m. The
configuration is shown is Fig. 7.5. The hyperelastic elements are modeled as Neo-
Hookean with the shear modulus of f¢t=1.5 MPa, bulk modulus of »=1.0 GPa and
density of p=1,000 kg/m®. The element has 4 nodes per element and 2 degrees of
freedom per node, which makes 8 degrees of freedom per element. The structure is
composed of 2,544 elements and 5,360 degrees of freedom. The distributed loads are
imposed with the direction of 30° as shown in the figure. The magnitude of the static load
is 20 N.
Fig. 7.5 also shows the composition of the design parameters. The entire domain is
uniformly divided into 16 square regions which can have different thickness as design
variables. The each design sections are illustrated with different colors. The mass of

m(2) is minimized while the constraint enforces a limit on the maximum stain of the

structure. The optimization problem is stated as
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mini{nize m(1)
subjectto |E11<0.5
|E12<0.3
0.001m <\ <0.003 m, i=1..16

(7.5)

where E11 and E12 are the components of Lagrangian strain E .

Test cases for sampling

To solve the optimization problem with SEECROM approach, the equivalent internal
force model should be constructed in the offline stage. Since the preparation works in the
offline stage take the additional time, the sampling analyses should be performed
efficiently while keeping the accuracy of the equivalent model. To this end, sampling
strategies should be devised. In Sect. 7.3.1.2, therefore, an indicator -y , which can be
calculated by Eq. (7.4), is provided to evaluate the state of the equivalent model.

To observe the relation between the indicator and the accuracy of the equivalent model,
4 cases of training analyses are demonstrated based on the example above. Since the load
cases is fixed in the optimization problem, the training analyses are controlled by the
composition of the design parameters. The design parameters are selected to have the

values in the range of the design requirements. The lower bound ) _, the upper bound
2, and the middle value of X, —0.002 m are used for the demonstration.

In Case A, three full finite nonlinear analyses are performed for sampling. Three

different values of thickness ( .\, .),) are imposed uniformly for each analysis. In

Case B, 16 analyses are performed. Each design section is perturbed for each analysis.

Based on the lower bound X  as default, each design section is perturbed to upper
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bound value ), . In Case C, the opposite case of the Case B is added to make 32 analyses.
The added analyses have the upper bound ), as default, and the perturbation is given
with the lower bound . Case D includes 256 analyses upon various combination of

design parameters to the Case C. Fig. 7.6 shows the design parameters for each cases in
simple drawing.
The indicator -y is calculated for each case in Fig. 7.6. The number of unknowns per

element is 164 by the characteristics of the element and the rank of the displacement sets

)\[UC(U)} is computed for each training case. The accuracy of the equivalent model for

each case can be evaluated by the comparison of the displacement responses. The design
parameters at the optimal state are imposed for the validation. The mean values of
response differences between the POD reduction and SEECROM analyses are 0.18 %,
0.025 % and 0.0099 % for Case B, Case C and Case D. In Case A, the SEECROM
analysis fails to give solutions.

In practical case, the responses of the equivalent model cannot be computed in the
offline stage. Thus the indicator -y is useful, which can be easily computed without a
computational burden. In the demonstration of four cases in Fig. 7.6, Case B to Case C
have the indicator -y over 0.5. Although the value of indicator increases as the number
of training analyses become larger, it should be noted that the computation time also
increases by the number of analyses. The Case B is sufficient accuracy and efficiency, in
this section, the 16 training analyses of Case B are performed to construct the reduced

model.
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Test cases for efficiency check

Once the SEECROM model is constructed based on the sampling analyses, the offline
stage is completed. Based on the computation time for the offline stage, the validity of the
reduced order model for the optimization can be investigated in advance. The time
required for the optimization process can be predicted beforehand. Assume that one
iteration of optimization cycle consists of the nonlinear analysis at the current design state
and the sensitivity analyses. Then, the number of analyses required in an iteration step is
equal to the number of design parameters plus one.

To verify the SEECROM approach, the reduced model analysis based on POD method
and the full model analysis are conducted as references. If the computation time to solve

one set of nonlinear analysis is obtained for each method, the overall time for

optimization process can be predicted by the number of iteration step. Case I and

CaseIl which have different number of elements are tested. They are composed of 5,360

and 21,280 degrees of freedom, respectively. The number of reduced degrees of freedom
is 26 for two cases. The computation time is classified in Table 7.1 for each case and each
method.

Fig. 7.7 shows the predicted computation time by the iteration number in the
optimization process. Due to the offline computation, the full system analysis is favorable
in the beginning of the iteration over the analyses based on POD or SEECROM method.
In the results shown in Fig. 7.7, the efficiency of SEECROM method beats the full
analysis during the first iteration step for both cases. On the contrary, it can be seen that

the POD approach gain its efficiency gradually but still takes more time than the full
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analysis at the 10" iteration step. It is important to note that the efficiency of SEECROM
is maintained as the size of the structural system is multiplied by 4. Moreover, the time
for the offline computation can be easily shortened with the parallel computation, which

is also shown in Fig. 7.7 with the assumption of 8 workers.

The optimization process is conducted with the optimization toolbox in Matlab. The

solver of fmincon is used with the algorithm of ‘Sequential quadratic programming’.

Initially, the design has a mass of M =7.75 x 10* kg, and the design requirements are

satisfied.

The optimization problem is solved with three different approaches. First, the
optimization based on the full system analysis is performed for the reference. In addition,
the problem is solved with reduced order models; the conventional POD reduction
method and the proposed SEECROM method are applied, respectively. For the
verification of the effectiveness of the proposed method, the computation time is
compared for the three methods as well as the optimized designs and the convergence
histories.

The training analyses are conducted for the 16 sets of design parameters. The Case B in
Fig. 7.6 is used. While the magnitude of the load is fixed, the 16 compositions of design
parameters are imposed for full system analyses. The design parameters, the
displacements and the internal forces are saved as the solution set during the iterations.

The structure to be optimized is composed with 2,304 elements and 4,802 degrees of
freedom, which is reduced to have 26 degrees of freedom with the reduction rate 0.5 %.

Fig. 7.8 shows the convergence histories of the optimization process. The convergence
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is attained after 31~32 iterations. In addition, the evolution of design constraints is
depicted in Fig. 7.9. All three approaches have the similar tendencies for the progression
in the objectives and the constraints.

The optimized designs are illustrated with Fig. 7.10 and Fig. 7.11. The results from the
reduction methods exhibit good agreement with the results from the full analysis. The
E11 and E12 strain distributions at the optimal state are also illustrated in Fig. 7.12. The
distribution satisfies the design requirement for the allowable strain. In Fig. 7.13, the
computation time for the three approaches are compared. The proposed method exhibits
significantly faster results than the optimization based on the full system analysis. It is
25.2 times faster than POD based reduction method and 24.6 times faster than the full

analysis. POD method is slower than the full system analysis

7.3.2.2. Application to multibody dynamics

The optimization problem concerns the mass minimization of a four-bar mechanism
shown in Fig. 7.14. The three flexible links have a constant solid circular cross-section.
The material properties including Young’s modulus and the density of each link are listed
in Table 7.2. The gravity is imposed in the opposite y-direction. The crankshaft is driven
by the moment M below

M =180cos(2.57t) (7.6)

The simulation is performed based on ANCF elements presented in Sect. 6. The time
marching analysis is conducted with Newmark method with the time step of 0.001 s over
the total time of T =0.2 s.

The design parameters ), are the diameters of three flexible links, which are initially
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set to 0.075 m. The optimization problem is to find the link diameters which minimize the
total mass of the system m(a) under axial stress constraints ;. (L) at each time step
j for each beam element €, which is stated as

minikmize m(2)

subjectto o, <20 MPa, j=1..,200, e=1,..40 (7.7)

j.e

0.05m<A<01lm, i=1.,3

The initial design has a mass of 19.39 kg. The optimization process is conducted with
the optimization toobox in Matlab. The solver of fmincon is used with the algorithm of
‘Sequential quadratic programming’.

The optimization problem is solved with two different approaches. SEECROM method
is used against the full order analysis. For the verification of the effectiveness of the
proposed method, the computation time is compared as well as the optimized designs and
the convergence histories.

In the offline stage to construct the equivalent model, the sampling analyses are trained
by the design parameter values. The sampling diameters of 3 sections are subjected with
the combinations from the 3 different values (0.05 m / 0.075 m / 0.1 m) which are
determined from the lower and upper bounds of the design parameters. Then the number
of sampling analyses conducted becomes 3%, which yield the sufficient number of
solution sets to identify the stiffness coefficients. On the other hand, there is an important
issue to be considered; the diameter in ANCF elements has the nonlinear relation with the
internal forces. It was stated in Sect. 7.3.1.1 where the instructions are given with Eq.
(7.3). Thus, the stiffness evaluation should be carried out as instructed in the previous

section with the particular care on the design variables.
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The cost function and the constraint history are illustrated in Fig. 7.15 and Fig. 7.16. The
results from the full system analysis and SEECROM approach was depicted, which
shows the similar tendency over the iteration process. The optimized designs are depicted
in Fig. 7.17 and Fig. 7.18. It can be seen that the nearly identical designs are obtained
from the two approaches. The computation time for the two approaches are compared in
Fig. 7.19 and Fig. 7.20, which illustrate the total time of the optimization and the
calculation time per iteration, respectively. In both representations, it can be seen that

SEECROM is significantly faster than the full analysis.
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Table 7.1

Computation time of the test cases for efficiency check (s)

Case I Case II
Full POD SEECROM  Full POD SEECROM
Offline stage ‘ 0 3,281 3,572 0 15,301 16,707
Per nonlinear
) 163.3 1564 2.69 832 763.9 10.06
analysis
Table 7.2
Material properties of four-bar mechanism
Crankshaft Coupler Follower
Number of 10 20 10
elements
length (m) 0.2 0.9 0.52
Density (kg/m®) 2,709 2,709 2,709
E (GPa) 73 73 73
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Figure 7.1. General process of optimization problem
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Figure 7.2. General process of optimization problem with nonlinear system
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Figure 7.5. Nonlinear structure subjected to the optimization problem
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Figure 7.7. Test cases for efficiency check: prediction of computation time
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Figure 7.14. Four-bar mechanism subjected to the optimization problem
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8. CONCLUSIONS

This research was conducted to present a new nonlinear model reduction method that
has both sufficient efficiency and accuracy to be applied to structural dynamic analyses or
design optimization problems. To this end, the stiffness evaluation method, which is one
of the nonlinear model reduction approaches, was modified to enlarge its potential
applications. First, a new stiffness evaluation method that has less dependency on the size
of the problem was proposed for applications to large-scale problems. In addition, a
parameterization technique was adapted to the proposed method for applications to design
problems.

To be specific, the proposed method, referred to as SEECROM, was developed to
enhance the conventional stiffness evaluation methods. First, the element connectivity of
the finite elements was used to reduce the number of unknown stiffness coefficients.
SEECROM relies on the characteristics of the finite element itself rather than on the
complexity or the size of the problem. The application sequence of ROM was reversed to
guarantee both accuracy and efficiency. The parameterization of SEECROM was also
developed directly based on the characteristics from the element connectivity. The design
parameters were simply added to the input parameters of the SEECROM model by using
the element-wise nature of the proposed algorithm.

SEECROM and its parameterization technique were directly applied to the reduced-
order modeling of flexible multibody dynamics. Various numerical examples with ANCF

beam elements successfully demonstrated the efficiency and accuracy of the proposed
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method. In future investigations, plate and solid elements based on ANCF will be
implemented with the SEECROM method. Applications can be expanded to numerical
examples with more constraints, including contact problems. Overall, SEECROM gives
more possibilities to ANCF methods, which could contribute to the study of multibody
dynamics for highly flexible structures.

The extension of the SEECROM-Parameterization to the optimization problems was
also achieved. Since the nonlinear reduced order modeling has recently became an active
research field, its application to optimization problems is in the beginning stage.
Although the proposed method was successfully solved the problem concerning structural
nonlinearities as well as multibody dynamics, further extensions are required. In future
investigations, large-scale optimization problems will be solved for various applications.
The applications can be expanded to multi-physics problems, and this can be accelerated

with the aid of commercial programs.
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APPENDIX A

VALIDITY OF 3 DEGREE POLYNOMIAL APPROXIMATION

Using the first Piola-Kirchhoff stress Pji, the total Lagrangian form of internal nodal

forces at node | are integrated over the initial configuration , which is given by

int aN|
W= ax it (A1)

where N, is the shape function and XJ- is the initial position.

In this equation, it should be noted that only the stress term is dependent on the
displacements. Therefore, the compositions of the first Piola-Kirchhoff stress determine
the approximation order of the polynomial description in the stiffness evaluation methods.

For the simplest nonlinear material model, a St. Venant-Kirchhoff material that exhibits
large deformations can be considered. The first Piola-Kirchhoff stress tensor of the
material is defined as

P(F) = F[2uE + Atr(E)1] (A2)
where Green strain tensor is E = %(FT F—1) (A3)

From the above equations, it can be seen that the stress is a 3rd degree polynomial

function of the deformation gradient tensor F . Moreover, by the definition of F in
Eq. (A4) and the interpretation of the displacements with nodal quantities in Eq. (AD), it
can be derived that the nodal force is discretized as cubic polynomials of nodal

deformations.
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ox.  O(X +u) ou.
== =0 +—— Ad
! oX; OX . YoX j (A4)

]

where X; is the current position and U; indicates the deformation.
ne
U = Zun N, (AS5)
1=1

where U is the nodal displacement and N, is the number of nodes of the element.

Hence the use of a 3rd order polynomial from the components of the nodal displacements
is adequate for the representation of the internal nodal force of the nonlinear model given

above.

Alternatively, the updated Lagrangian form using the Cauchy stress 0 gives

in BN
fi' =] WU’ dQ (A6)

where {2 indicates the integration over the current configuration.
0;=J"F,P; where J = det(F) (A7)

As described below, by the relation between the first Piola-Kirchhoff stress and the

Cauchy stress in Eq. (A7), Eq. (A6) is easily transformed into (Al).

o N, OX, - 4 ON,
_f CAP R 3R, P, 0, f PdQ (A8)

This implies that the stiffness evaluation method can be applied regardless of the type of

the formulations since the method only uses nodal deformations U; and the
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corresponding internal forces fiI . They are invariant to the stresses or the reference

coordinates used in the computation process.

If a material takes a more complex form than a St. Venant-Kirchhoff model, the
applicability of the stiffness evaluation method can be verified as follows. First, in the
total Lagrangian approach shown in Eq. (A1), where the relation between the first Piola-

Kirchhoff stress and the deformation gradient is the sole factor, the order of the

polynomial of U; used to express the stress P should be identified. If the relation

cannot be expressed in analytical form, the exact results and the approximate results from
the 3rd order polynomial representation can be compared. Likewise, in the updated
Lagrangian formulation in Eq. (A6), this can be achieved by the transformation into the
total Lagrangian form.

However, there are some cases when the updated form is preferred. For example, if the
stress is computed by update algorithms, including the hypoelastic material in which the
stress is provided in the rate form, the analyses are generally based on the updated

Lagrangian formulation. In these cases, one can examine the Cauchy stress representation

by the nodal deformation U; as follows. In Eq. (A9), the inverse of the matrix is
decomposed into its determinant and the adjugate. Using this expression, the internal

force in the updated form is represented as Eg. (A10) in which only the term A@-Uﬁ is
dependent on the nodal displacements U, .

F ' =det(F) 'adj(F)=J ‘A where A = adj(F) = adj(g—;(() (A9)
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gin ON
‘_f id ax'ijl JdQ, f 'AkjaJ,dQ (A10)

0

Then, the sufficiency of the 3" order polynomial of U; for Aoy can be evaluated

from the values of the stresses obtained in the sampling stage.

In this work, a Neo-Hookean material, which is one of the isotropic constitutive models,
was used for the demonstration of the proposed approach. The Piola-Kirchhoff stress of
an isotropic constitutive model and the Neo-Hookean elasticity are defined in Eq. (A11)

and Eq. (A12), respectively.

p(F)= L. or + M yrprp O
ol, al, ol,

21LFT (A11)
where W is the strain energy and |1, |2, and |3 are the invariants of the

deformation gradient F .
K A 2
vy, 1) = E{ll —log(l;) -3+ g{log(ls)} (A12)
Then, the Neo-Hookean stress is computed as
P(F) = puF — uF " +—A'°g('3)-FT (A13)

where |, — det(F) (Al14)
To verify the applicability of the stiffness evaluation methods to a Neo-Hookean
material, it should be checked in advance in the sampling stage that whether a 3rd degree

polynomial of F can approximate the stress P with sufficient accuracy, which is

shown as follows.

First, by the definition of F in Eg. (A4), F ' and log(det(F)) can be
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approximated with Neumann series and Tayler series, respectively. See Eq. (A15) and Eq.

(A16)
FTael—H +H)2—H) +--- (A15)
log(det(F)) ~ —tr(—H) —%tr((—H)z) —%tr((—H)s) —...  (Al6)
where H is given by
ou.  ON
F=I+H, H=—-=—-"u AL7
ij ax] 8XJ il ( )

Then, the exact stress and the result from the 3rd order approximation of can be
compared to assess the availability of the stiffness evaluation methods. For instance, in
the sampling analyses of the example in Sect. 5.2.1., the maximum percentage error of the

stress was computed as 4.74%. The values of the strain when the maximum error occurs
were - =0.064, ¢, =-0.499, ¢, =0.374. The approximation in the example was

considered sufficient since the maximum error is under 5% at the point of deformation
with near 50% strain, which was proved by the high accuracy of the complete SEECROM
model.

From the sampling data in the offline stage, as shown in the case above, one can predict
the validity of the given method and modify the target problems or the finite element
model to raise the accuracy of representative model. Since the error increases with the
magnitude of the strain, it is recommended that the strain as well as the stress
approximation error should be checked before the application of the stiffness evaluation

methods.
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