creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle


http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Heterogeneous Ensemble Learning

for Multi-class Classification

20159 8 ¢

........



2 A e

SECRIL WATIOMAL LIMINVERSTY



Heterogeneous Ensemble Learning

for Multi-class Classification

N

ToH

20159 5 ¢

Tor
Ho
oyl
7A

NE!

or

20159 6 ¢

—_—

N

0

Nd

=

_(?/]
_(?/]
‘(?/]

—_—

HA
0

—

o

—

0

T

)

%

p——



2 A e

SECRIL WATIOMAL LIMINVERSTY



Abstract

Heterogeneous Ensemble Learning
for Multi-class Classification

Seokho Kang

Department of Industrial Engineering
The Graduate School

Seoul National University

In data mining, classification is a type of supervised learning task that involves
predicting output variables consisting of a finite number of categories called
classes. When the number of classes is larger than two, a classification problem
is called a multi-class classification problem. Multi-class classification provides
more informative predictions, and is more related to real-world scenarios. In
practice, the performance for a multi-class classification problem is typically
measured according to the following three perspectives: accurate, reliable, and
fast classification. In order to achieve the better performance for the three per-
spectives, this dissertation proposes to use heterogeneous ensemble learning that
exploits multiple classifiers from various classification algorithms, where each
classifier plays a different role to accomplish the desired functionality. For ac-
curate multi-class classification, Diversified One-Against-One (DOAQO) and Op-
timally Diversified One-Against-One (ODOAO) are proposed. Their main idea

is to decompose the original problem into several binary sub-problems based



on the one-against-one approach. DOAO finds the best classification algorithm
for each class pair from the set of heterogeneous base classifiers, thereby makes
various classification algorithms to complement each other. Since the best clas-
sification algorithm for each class pair is different, DOAO enables better classifi-
cation accuracy. ODOAQ, an extension of DOAQ, construct an ensemble where a
meta-classifier effectively combines the outputs from all the heterogeneous base
classifiers. Heterogeneous Ensemble of One-class Classifiers (HEOC) is also pro-
posed for accurate classification based on decomposition of the original problem
into several one-class sub-problems. HEOC constructs an ensemble consisting
of one-class classifiers from various one-class classification algorithms. HEOC
addresses the normalization of heterogeneous base classifiers via stacking. For
reliable multi-class classification, a hybrid reject option is proposed to reject
ambiguous instances instead of predicting for all instances. The hybrid reject
option constructs a filter classifier and a predictor classifier separately, where
the filter decides whether to predict using the predictor based on the confi-
dence for an instance, and the predictor predicts the class of the instance. Each
component is trained using the best respective classification algorithm to max-
imize the capability of its role, thereby improve reject option performance as
providing better prediction accuracy for the same degree of rejection. For fast
multi-class classification, Neural Network Approximator (NNA) is proposed to
reduce computational time in the test phase. NNA approximates a classifier by
adopting a multiple-outputs artificial neural network as a function approxima-
tor, where each output node corresponds to a decision function in the classifier.

This approximator enables fast classification speed without compromising ac-

ii



curacy. The effectiveness of the proposed heterogeneous ensemble methods is
demonstrated through experiments on benchmark datasets and real-world ap-

plications.

Keywords: Data Mining, Machine Learning, Ensemble, Heterogeneous Ensem-
ble, Multi-class Classification

Student Number: 2011-21163
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Chapter 1

Introduction

1.1 Multi-class Classification

Supervised learning is a type of machine learning task of inferring a function of
certain variables in order to predict other variables. Classification is a type of
supervised learning task that involves predicting output variables consisting of
a finite number of categories called classes. In a classification task, a classifica-
tion algorithm A defines its hypothesis space H 4. Classifier training is to find
the hypothesis h € H 4 that approximates the true function f given a set of
instances called a training dataset, as illustrated in[Figure 1.1 Thus, a classifier
corresponds to its hypothesis in the hypothesis space. Finding the hypothesis
that is closest to the true function f is crucial for obtaining high classification
accuracy.

When the number of classes is larger than two, a classification problem is
called a multi-class classification problem. Most real-world scenarios, such as
handwritten digit recognition, text categorization, and face recognition, corre-
spond to multi-class classification problems. A multi-class classification problem

is typically more difficult than a binary-class classification problem. Thus, find-



Figure 1.1 Concept of classifier training

ing an appropriate strategy to solve a multi-class classification problem is an
important research issue.

In order to solve a multi-class classification problem, three strategies can
be considered. The first strategy is to use classification algorithms that are
capable of dealing with multi-class classification directly. The second is to con-
struct an ensemble of binary classifiers. The third is to construct an ensemble
of one-class classifiers. The latter two can be implemented by decomposing the
original multi-class problem into several smaller sub-problems, as illustrated in

The decomposition strategies relate to the concept of ensemble learning,
thereby treating a multi-class classification problem effectively. Since the de-
cision boundary for multi-class classification problems tends to more complex
than it is for one-class or binary classification problems, solving several smaller
sub-problems is more preferable (Galar et al.,|[2011). In addition, heterogeneous

ensemble learning can provide better competence because the best classification
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Figure 1.2 Decomposition strategies for multi-class classification

algorithm for each sub-problem is different.

1.2 Ensemble Learning

Ensemble learning aims at combining the outputs from multiple classifiers. It is
also known as multiple classifier system, committee learning, and so on. There

has been considerable research effort by a wide range of researchers in order to

develop ensemble learning methods for different purposes (L. Xu et al.l (1992}

Ho et al., [1994; Kittler et all [1998; Rokach) [2010; [Wozniak et all [2014)). An

ensemble generally outperforms any individual classifiers by exploiting the di-
versity of different classifier. The diversity of the classifiers can be obtained
through a variety of strategies. For example, employing different classification
algorithms and manipulating datasets result in different classifiers.

Constructing an ensemble enables dealing with a classification problem more

B e
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Figure 1.3 Two basic ensemble structures

efficiently and effectively. Various types of ensembles have been designed to pur-
sue different purposes. The two basic structures are parallel and serial struc-
ture (Rokachl |2010), which are illustrated in A parallel structure
generally involves combination of classifiers with a same functionally in order
to obtain more accurate and stable classification performance (Kang, Cho, &
Kang) 2015a; Kang & Cho, [2015b; Kang, Cho, & Kang, [2015b). On the other
hand, a serial structure exploits classifiers with different functionalities (Kang,
Cho, Rhee, & Yu, 2015; Kang & Cho, 2014). This generally combines several
classifiers sequentially in order to improve the run-time speed of classification.

A hybrid structure is also available to take advantages of these two structures.

In general, an ensemble offers better classification accuracy and robustness
than any individual classifier. Dietterich| (2000) explained three fundamental

reasons for why an ensemble successfully performs well. The first is a statisti-



cal reason. Given a finite number of training instances, many hypotheses are
equally good. Therefore, averaging these hypotheses may result in a more sta-
ble approximation of f. The second is a computational reason. Because the
hypothesis space is so large, a heuristic search is conducted to find the best
hypothesis. However, the search may get stuck at a local optimum. Repeating
the search with several random starts provides a better chance of finding the
global optimum. The third is a representational reason. The true function f
may not be represented by any of the hypotheses in the hypothesis space H 4,

but may be better approximated by aggregating several hypotheses.

1.3 Heterogeneous Ensemble Learning

It is well-known that no single algorithm can always perform the best for every
classification problem (Sohn, 1999; Lim et al., 2000; Kiang, [2003|), which is also
known as the no-free-lunch-theorem (Wolpert|, [2001)). Thus, the heterogeneous
ensemble allows us to obtain better classification accuracy by combining the
advantages of various algorithms.

Thus, heterogeneous ensemble learning, which employs various classifica-
tion algorithms to train base classifiers, can be taken into account for further
improvement of ensemble learning (Kang, Cho, & Kang, 2015a; Kang & Cho,
2015b}; [Kang, Cho, & Kang, 2015b; [Kang, Cho, Rhee, & Yu, [2015; [Kang &
Chol [2014). A heterogeneous ensemble is more likely to obtain a better hypoth-
esis by searching the union of hypothesis spaces defined by different algorithms

as shown in [Figure 1.4] (Dietterich|, [2000), while this generally requires a large



H‘Al HAIU HAz u HAg
(a) Hypothesis space of an algorithm (b) Extended hypothesis space by various algorithms

Figure 1.4 Hypothesis space of heterogeneous ensemble

computational burden in training and test because it involves numerous base

classifiers from various classification algorithms.

Heterogeneous ensemble learning for multi-class classification can be per-
formed by decomposing the original problem into several smaller sub-problems,
training base classifiers for the sub-problems using various classification algo-
rithms, and constructing an ensemble of those base classifiers with an appro-

priate combination method to form a multi-class classifier.

This dissertation proposes to use heterogeneous ensemble learning for im-
proving multi-class classification. A multi-class classification problem can be
more accurately solved by constructing a heterogeneous ensemble with a paral-
lel structure of base classifiers, while combining heterogeneous base classifiers is

a difficult issue. Thus, we propose methods for accurate classification by dealing



with the heterogeneity effectively when combining the base classifiers. Besides,
the reliability and speed of a multi-class classifier are also important for better
multi-class classification in practical deployments. Thus, add-on methods based
on heterogeneous ensembles with serial structures are proposed for reliable and
fast classification. These methods are effective for multi-class classification, but

also can be generally applied to any classifier.

1.4 Outlook of this Dissertation

In this dissertation, the following three criteria are addressed as the perfor-
mance of a multi-class classifier when the classifier is deployed to a multi-class
classification problem. The first is how accurately the classifier classifies unseen
instances. The second is how reliably the classifier avoids classifying uncertain
instances. The third is how fast the classifier classifies a number of instances.

With respect to the three criteria, several heterogeneous ensemble meth-
ods are proposed for accurate, reliable, and fast multi-class classification. The
heterogeneous ensemble methods utilize multiple classifiers from various classi-
fication algorithms by combining their outputs properly in order to pursue the
respective purposes. They are compared with homogeneous ensemble methods
on benchmark datasets and real-world applications to demonstrate the effective-
ness. The methods and applications covered in this dissertation are summarized
in [Table 111

The rest of this dissertation is organized as follows. In classi-

fication algorithms used in this dissertation are briefly reviewed, and related



Table 1.1 Methods and applications covered in this dissertation

Objective Chapter Methods Applications
Accurate Chapter 3| e Diversifed One-Against-One e Benchmark Datasets
Classification e Optimally Diversified

One-Against-One

Chapter 4| e Heterogeneous Ensemble of e Benchmark Datasets
One-class Classifiers e Text Categorization
Reliable Chapter 5| e Hybrid Reject Option e Anti-diabetic Drug Failrue
Classification Prediction
Fast Chapter 6| e Neural Network Approximator e Benchmark Datasets
Classification e Semiconductor Die Failrue
Prediction

work on ensemble learning for multi-class classification is introduced.
ter 3| and [4] focus on developing heterogeneous ensemble methods for accurate
multi-class classification. In two one-against-one based methods uti-
lizing heterogeneous binary classifiers from various classification algorithms are
introduced to persue better classification accuracy. In a heteroge-
neous ensemble based on one-class classifier approach is introduced, and the
effectiveness of this method is investigated for the text categorization problem.
In a hybrid reject option is proposed to support reliable prediction
by improving the trade-off between accuracy and rejection, and is applied to the
anti-diabetic drug failure prediction problem. In a classifier approxi-
mation method based on neural networks is proposed to accelerate the run-time

speed of a multi-class classifier, and its effectiveness is confirmed on the semi-



conductor die failure prediction problem. Finally, we discuss contributions and

future work of this dissertation in
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Chapter 2

Literature Review

2.1 Classification Algorithms

Heterogeneous ensemble learning involves training of diverse classifiers using
various classification algorithms. In this section, classification algorithms and
one-class classification algorithms used in the dissertation are introduced.

Classification is a supervised learning task of predicting output variables
consisting of a finite number of categories called classes. A classifier trained by
a classification algorithm predicts the class of new instances according to the
posterior probability of each class. In this dissertation, a total of six well-known
and widely adopted classification algorithms are used in reference to (Bishop &
Nasrabadi, 2006; Wu et al., [2008; Hastie et al., |2009)). The following are brief
descriptions of the algorithms.

For Artificial Neural Network (ANN), the most general architecture is the
Multi-layer Perceptron that consists of three layers of several processing units:
the input layer, the hidden layer, and the output layer. The layers are connected
with other layers through non-linear functions of linear combinations. ANN

seeks to find the best weights to minimize the sum of the squared error on the

11 :



validation dataset. Back propagation algorithms are generally used in order to
derive the weights.

Decision Tree (DT) induces sets of rules in the hierarchical structure of sev-
eral nodes via recursive partitioning of the data. Each partitioning is performed
by selecting the input variable that mostly separates the classes of the data.
This recursive process is continued until the termination condition is met. The
most popular DT algorithms are the CART and the C4.5. In this dissertation,
the CART is used for training of DTs. This algorithm employs the Gini index
as a splitting criterion to divide the data into two regions.

k-Nearest Neighbors (ENN) is an instance-based learning algorithm that
does not require any training of models. kNN finds the k instances within the
training dataset that are the closest in distance to the test instance. Classifica-
tion is done by a vote of the selected k instances.

Linear Discriminant Analysis (LDA) is based on the directions that are the
best discrimination of the data in different classes. LDA attempts to find a lin-
ear combination of input variables that maximizes the ratio of the between-class
scatter to the within-class scatter, and classifies based on the linear combina-
tion.

Logistic Regression (LR) forms a logistic function of a linear combination
of input variables whose output is in the range of [0, 1]. The best weights of the
combination can be estimated using the maximum likelihood methods.

Support Vector Machine (SVM) is originally designed for binary classifi-
cation, and seeks to find the maximum margin hyperplane that separates one

class from another class. It can deal with non-linear classification problems by

12 :



employing kernel functions that map an input space into a high-dimensional
feature space. SVM forms a convex optimization problem that can be solved
efficiently through sequential minimal optimization.

Among those algorithms, SVM, LR, and LDA are originally designed for
binary classification, while kNN, DT, and ANN can deal with multi-class clas-
sification directly.

On the other hand, one-class classification is an unsupervised learning task
where only one of the classes is utilized and other instances are ignored (Tax],
2001). A one-class classifier, trained by a one-class classification algorithm, de-
termines the score of belonging to the target class for new instances, and the
instances whose scores are out of the pre-defined threshold are rejected as out-
liers. In this dissertation, the eight well-known, widely used one-class classifi-
cation algorithms are utilized. Brief descriptions for the algorithms are given
below.

Density-based algorithms aim to estimate the underlying density function
of the data. In these algorithms, the instances that possess a density lower than
a given threshold will be rejected as outliers. Gaussian (GAUSS) assumes the
distribution of the data as a Gaussian distribution. Mixture of Gaussian (MOG)
models the data as a linear combination of several Gaussians. Parzen Window
(PARZEN) generates Gaussians for every individual instance in the data and
combines them to obtain the final density function.

Boundary-based algorithms aim to obtain the decision boundary in which
the data is contained, and the instances outside this boundary will be rejected

as outliers. In Nearest Neighbor Data Description (NNDD), a new instance is

13



classified based on the distance to its nearest neighbor. Support Vector Data
Description (SVDD) observes the smallest hypersphere enclosing the data in
the feature space, and is capable of dealing with non-linear structures by intro-

ducing kernel functions.

Reconstruction-based algorithms aim to encode the structure of the data.
The instances having high reconstruction error will be rejected as outliers. k-
Means (KMEANS) describes the data by k clusters, and the reconstruction er-
ror is defined as the distance to the closest cluster center. Principal Component
Analysis (PCA) finds the directions of maximum variance for the data, which
is done by eigenvalue decomposition. Auto-encoder Network (AUTOENC) in-
volves training a neural network that reproduces the input layer at the output
layer. In the case of the latter two, the reconstruction error is the difference

between the original instance and its mapped version.

Note that, it is difficult to state that a classification algorithm is better
than another algorithm. The best classification algorithm can be different de-
pending on the conditions or characteristics of a classification problem. Firstly,
the best algorithm is different for each dataset (Sohnl [1999; Lim et al., 2000;
Kiang) 2003). The best algorithm also varies from instance to instance within
a dataset (Woods et al., |1997; Cavalin et al., 2013)). In addition, giving variety
to a dataset, such as sampling, partitioning, and decomposition, also makes the
best algorithm to be different (Rokachl 2010). Thus, the heterogeneous ensem-
ble learning of employing different classification algorithms provides the great

opportunity to solve classification problems more effectively.
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2.2 Ensemble Learning for Multi-class Classification

2.2.1 Decomposition Strategies

When the number of classes in a classification problem is more than two, the
problem is called a multi-class classification problem. To solve a multi-class
classification problem, three strategies can be considered. The first is simply to
use the classification algorithms that solve the problem directly, such as DT,
kNN, and ANN.

The second strategy is to decompose the original problem into several bi-
nary sub-problems and to construct an ensemble of binary classifiers for the
sub-problems. This strategy permits the use of classification algorithms that
were originally designed for binary classification, such as SVM, LR, and LDA.
Two common approaches to this strategy are one-against-one and one-against-
rest (Rokach, [2010; [Lorena et al., [2008)). Supposing that a c-class classification
problem is given, the one-against-one approach builds ¢(¢ — 1)/2 different bi-
nary classifiers for all possible class pairs. Given the same problem, on the other
hand, the one-against-rest approach builds ¢ different binary classifiers, where
each separates a single class from all the remaining classes. These approaches
can be generalized by Error-Correcting Output Coding (ECOC), which is a
general framework for decomposing a multi-class problem into several binary
problems by exploiting more diverse bipartitions of the classes (Dietterich &
Bakiri, [1995).

The third strategy is to decompose the original problem into several one-

class sub-problems and to construct an ensemble of one-class classifiers for the
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sub-problems (Juszczak & Duin) 2004} Ban & Abe, 2006} Tax & Duin| [2008;

Krawczyk et all 2014; Cyganek, 2012; |Sharma et al., 2012). This strategy uti-

lizes one-class classification algorithms, such as PARZEN, SVDD, and PCA. For
a c-class classification problem, ¢ one-class classifiers are built, each of which
is trained on a single respective class. Each classifier evaluates the degree of
belonging to a class independently. Thus, an instance can be classified as be-
longing to a class simply by selecting the class label with the maximum score
value among the classifier.

Among these strategies, the second strategy is most popular and has been
widely used. Most studies on this strategy have been conducted by employing

SVM as base classifiers because of its superiority in binary classification prob-

lems (Lorena et al., 2008; Kang & Cho|, 2015a). For SVM, it is known that the

one-against-one approach generally performs better than the one-against-rest

and other SVM-based multi-class classification algorithms (Galar et al., 2011;

Hsu & Lin|, 2002; Duan & Keerthi, [2005).

The decomposition strategy has proved successful not only for SVM but
also for other classification algorithms. Moreover, this strategy is often effective
for classification algorithms that can deal with multi-class classification prob-
lems directly. Since the decision boundary for multi-class classification problems

tends to more complex than it is for one-class or binary classification problems,

solving several smaller sub-problems is more preferable. |Galar et al| (2011)

reviewed the effectiveness of the decomposition strategy for various classifica-
tion algorithms, and confirmed that the one-against-one approach yields better

classification accuracy compared to the one-against-rest approach in most cases.
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Knerr et al.| (1990)) adopted the one-against-one approach for ANN in order to
solve multi-class classification problems. Fiirnkranz (2002) and |Polat and Gunes
(2009) applied the one-against-one and one-against-rest approach, respectively,

to DT algorithms.

2.2.2 Combination Strategies

An ensemble is composed of diverse base classifiers by offering diversity to the
classifiers. The classification results are different depending on the combination
strategy, despite having the same set of base classifiers. Therefore, choosing the
most appropriate combination strategy for an ensemble is an important issue.
There have been various combination methods proposed (Rokach, 2010; Lorena
et al.l 2008), and the two basic strategies are known as classifier selection and
classifier fusion (Tsoumakas et al., 2005} Kuncheva, [2002).

Classifier selection finds the best classifier from among a set of base classi-
fiers. The assumption in classifier selection is that each classifier is an expert in
some conditions. Classifier selection generally works well if some classifiers are
superior or inferior to others, particularly with heterogeneous base classifiers
that are come from different classification algorithms.

Classifier fusion, by contrast, utilizes the group consensus of the whole base
classifiers, and therefore it depends on the comparable success of the base clas-
sifiers. Classifier fusion is generally used for combining homogeneous base clas-
sifiers. Majority voting is a simple but the most popular method, which finds
the largest selected class from the base classifiers. However, this method may

fail when the majority of base classifiers provide incorrect classification results
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(Kuncheva et al.l 2003)). Instead, weighted voting puts more weights for more
superior base classifiers (Wozniak & Jackowski, |2009).

The abovementioned strategies use linear combination of the outputs from
the base classifiers to make final decision. On the other hand, meta-learning en-
ables exploiting non-linear combination of base classifiers. Meta-learning (Vilalta
& Drissi, [2002)) is to induce which classifiers are reliable and which are not,
and is usually employed to combine classifiers from different classification al-
gorithms. The basic idea of meta-learning is to build a meta-classifier that
predicts target labels by combining the predictions of base classifiers (Wolpert,
1992)). Suppose that a set of base classifiers Cy,...,Cr and a set of instances
D = {:Bt,yt}{\;l is given, the predictions for the N instances of each base
classifiers are i = Cij(x), t = 1,...,N, i = 1,...,L, and they constitutes
a meta-dataset M = {(9},97,...,9F), y: Y, (Dzeroski & Zenko, 2004). This
meta-dataset is used to train the meta-classifier. During the test phase, a test
instance is first classified with the base classifiers, and the meta-classifier then
gives the final classification result by combining the predictions from the re-
spective base classifiers.

Note that, the instances used to train the base classifiers should not be used
during the training of the meta-classifier in order to avoid overfitting. Parti-
tioning the original dataset into a training dataset and a validation dataset is
recommended. This ensures that the base classifiers are only trained exclusively
with the training dataset and that the meta-classifier is trained based on the
validation dataset (Ting & Witten), 1999 Rokachl 2010)).

There have been proposed many studies related to meta-learning, and they
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generally aim at combining heterogeneous classifiers. (1999) proposed a

method called SCANN based on correspondence analysis and nearest neigh-

bor. Todorovski and Dzeroski (2003) used DT to train the meta-classifier.

and Witten| (1999) introduced stacking with Multi-response Linear Regression

(MLR), and Dzeroski and Zenko| (2004) and extended this

method. Kim et al.| (2003) used an SVM as a meta-classifier to combine the

bagging of SVMs. Some researchers exploited stacking to combine binary base

classifiers of class pairs that are based on the one-against-one approach.

and Firnkranz| (2003) used Ripper, DT, and nearest neighbor as meta classifiers

to combine binary Rippers, Lézoray and Cardot| (2008) used DT to combine bi-

nary ANNs. Menahem et al.| (2009) proposed a three-layer architecture based

on LR.
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Chapter 3

Heterogeneous Ensemble for Accurate
Classification: Binary Classifier
Approach

3.1 Binary Classifier Approach for Multi-class Classi-

fication

The concept of ensemble learning has been successfully applied to multi-class
classification problems. This is typically accomplished by decomposing the orig-
inal problem into several binary sub-problems. The base classifiers for the
sub-problems constitute an ensemble. Regarding this decomposition strategy,
the two commonly used approaches are one-against-one and one-against-rest
(Rokach, [2010; |Lorena et al.,|2008)). For the one-against-one approach, c¢(c—1)/2
different binary classifiers are built for all possible pairs of classes, whereas the
one-against-rest approach builds c¢ different classifiers, each of which distin-
guishes a single class from all the remaining classes. Once the binary classifiers
are built for each approach, various combination methods can be used for ag-

gregating their outputs (Rokach, 2010).
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Several experimental studies argued that the one-against-one approach out-
performs the one-against-rest approach (Galar et al [2011; Hsu & Lin, 2002),
and that such decomposition strategy is also effective for classification algo-
rithms that are capable of dealing with multi-class classification problems di-

rectly (Furnkranz, [2002; Knerr et al., [1990; Polat & Gunes, [2009).

Focusing on the one-against-one approach, it is essential for each binary
classifier of sub-problems to be reasonably well performing; otherwise, non-
competent classifiers could negatively affect the entire classification results
(Galar et al., 2013; Lorena et al. [2008). Another important point is that the
best classification algorithm for each sub-problem can be different, because the
sub-problems consist of different instances. Employing a variety of classification
algorithms takes the advantages of different inductive biases of the algorithms,
thereby yielding better classification accuracy. Such effectiveness can be also
explained as the extension of the hypothesis space. A heterogeneous ensemble
with various classification algorithms is more likely to obtain a better hypothesis

by searching the union of hypothesis spaces defined by different algorithms.

In this respect, the two heterogeneous ensemble methods called Diversified
One-Against-One (DOAO) (Kang, Cho, & Kang, |2015a) and Optimally Diver-
sified One-Against-One (ODOAQO) (Kang & Cho, 2015b) are proposed in this
chapter. In we propose DOAO method that seeks to find the best
classification algorithm for each class pair when applying the one-against-one
approach. For a multi-class classification problem, an ensemble is constructed
based on the one-against-one approach by using classifiers derived by differ-

ent classification algorithms. Given a training dataset of a c-class classification
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problem, DOAO first builds a number of candidate classifiers for each class pair
using candidate classification algorithms. The best candidate classifier for each
class pair is chosen based on its validation error rate. As a result, a total of
c(c—1)/2 classifiers are chosen, and they construct a one-against-one classifier.
Through this process, DOAO can yield better classification results compared
to other one-against-one classifiers that are based on single classification algo-
rithms.

In we propose ODOAO, an extension of DOAO, in order to
achieve better classification accuracy. ODOAO seeks to find the optimal com-
bination of base classifiers that are built for every class pair and candidate
classification algorithm according to the concept of DOAQO. To do this, a meta-
classifier is trained based on meta-learning, where the input variables are the
predicted labels from the base classifiers on the validation dataset, and the
output variable is the target label. ODOAO is further enhanced by applying
a classification algorithm that can effectively deal with high dimensionality
and non-linear relationship between the predictions of the base classifiers when
training the meta-classifier. The effectiveness of the proposed methods is inves-

tigated through experiments on multi-class benchmark datasets.

3.2 Diversified One-Against-One

The fact that a classification algorithm has the highest classification accuracy
for a multi-class classification problem does not mean that it performs best for

every sub-problem derived from decomposing the original problem. To address
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the problem, DOAO seeks to find the best classification algorithm for each class
pair when applying the one-against-one approach to multi-class classification
problems.

Suppose that a training dataset of Nj instances D = {wt,yt}ivzll for a c-
class classification problem is given, where x; € R? is an input vector and
yi € {1,...,c} is its target label. DOAO first decomposes the dataset D into
subsets D;; for every class pair (7,7). For each subset D;;, candidate classifiers
CAyDij5 -, CAp,p;; are trained using a pre-defined set of candidate classification
algorithms A, ..., Ay. Of the candidate classifiers, the best candidate classifier
CApese,D;; for each class pair is selected to minimize validation errors. Conse-
quently, a total of ¢(c — 1)/2 classifiers are selected, each of which is the most
competent for distinguishing its corresponding class pair. presents
the pseudocode of DOAO. Given these ¢(c — 1)/2 classifiers, the classification
of a test instance is performed by a majority vote of them.

shows an illustrative example of DOAQO for a three-class toy
dataset. In this figure, circles, rectangles, and triangles represent class 1, 2, and
3, respectively. The decision boundaries of class pairs are represented by bold
lines. [Figure 3.1j(a), [3.1](b), and [3.1)(c) depict the decision boundaries obtained
using one-against-one classifiers based on single classification algorithms. In this
example, the classification algorithms A;, Ay, and A3z perform the best for the
class pair (1, 2), (2,3), and (1, 3), respectively. DOAO selects the most competent
decision boundary for each class pair, as shown in (d) Therefore, each
of the decision boundaries corresponds to a different classification algorithm.

Therefore, DOAO can yield better classification accuracy compared to other
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Algorithm 1 Diversified One-Against-One (DOAO)

Input: training dataset D = {azt,yt}iill, validation dataset D' =

{4, yt}i\gﬁf\fl, v € {1,...,c}, candidate classification algorithms Ay, ..., Ar

Output: set of base classifiers C

1: procedure DOAO

2: C<+ ¢

3: for each class pair (i,7) do

4: Dij < {(x1,yt) € DIy € {i,j}}

5 Dj; « {(ze,yt) € D'lye € {i,j}}

6: Ca,,p;; ¢ candidate classifier trained from D;; using Ag, k=1 to L
T Apest <— argmin 4, N% Z(wt,yt)eng 1C~Akaij (z0) vt

8: C + CU{Cap, Dy

9: end for

10: end procedure

one-against-one classifiers that are based on single classification algorithms.

DOAO makes the various classification algorithms to complement each other.
However, this method is differentiated from the vote method, which obtains
classification results via a vote of classifiers of various classification algorithms.
The vote method aims to achieve a group consensus under the assumption
that each classifier has similar competence. Therefore, this method becomes
worse when only a few classifiers provide correct classification results and other
classifiers do not. On the other hand, DOAO does not encounter this problem

because it simply selects the most competent classifier for each sub-problem.
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Figure 3.1 Construction of a classifier based on DOAO

Moreover, if this method selects the best classifier accurately for every sub-

problem, it can unquestionably outperform all the other methods, including

the vote method.

The major drawbacks to DOAQO are twofold. Firstly, a lower validation error

does not always result in a lower test error. This occurs prominently when

heterogeneous classifiers are compared. A low-bias, high-variance classifier tends

to have a higher test error even when the validation error remains the same.

Therefore, classifier selection based on validation errors can lead to overfitting
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(Cawley & Talbot, [2010). Secondly, selecting the single best classifier is not
always optimal, although it is significantly better than voting. It is known that
selective fusion provides better results than either classifier selection or fusion
by taking advantage of both (Giacinto & Roli, 2001; Tsoumakas et al., 2005).
Considering these two drawbacks, there is room for further improvement. To
this end, we propose another method that is an improvement of DOAO in the

next section.

3.3 Optimally Diversified One-Against-One

This section introduces ODOAO that aims at the optimal construction of a one-
against-one classifier for better classification accuracy. The basic idea in ODOAO
is that a meta-classifier discovers the optimal combination of the outputs from
a diverse of base classifiers that are trained for every class pair and candidate

classification algorithm. This idea is related to meta-learning which is described

in [Subsection 2.2.2.

shows the framework of ODOAOQ, which consists of two phases.
The first phase is to train candidate classifiers from each class pair in the train-
ing dataset, which is identical in the original DOAOQO. This phase results in a set
of base classifiers C.

The second phase is to construct a meta-dataset based on the base classi-
fiers and the validation dataset, and to train a meta-classifier using this meta-
dataset. Given the classifier set C consisting of the L x ¢(c—1)/2 base classifiers

from the first phase, the predicted label §j} is computed for each classifier C; and
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of predictions of base classifiers on validation dataset

Figure 3.2 Framework of ODOAO

each instance x; in the validation dataset D’, and the predicted label vector

v; is constituted as (Q}Vl +1,Q§Vl 4o 7%{1 +n,) for each C;. Then, m clusters

T1, T2, -

. Tm are generated from the set of vectors {v;};c,cc using a clustering
algorithm. For each clusters, one base classifier is randomly selected. The re-
sulting m base classifiers are used only in order to construct the meta-dataset

M. Using the predicted labels of the selected base classifiers as inputs and the

~Lxc(c—1)/2

target labels as outputs, M is defined by {(9},92,...,9;

)a yt}(ﬂ:t,yt)ED"

Finally, the meta-classifier Cy4 is trained with the dataset M. The overall pro-

cedure is described in
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In ODOAO, selecting the base classifiers aims at reducing the redundancies
of base classifiers. Therefore, this step should generate clusters where each con-
tains redundant base classifiers. Note that the result of the selection depends on
the configuration of a clustering algorithm. Thus, the agglomerative hierarchical
clustering algorithm with complete linkage are employed in ODOAO. To eval-
uate the redundancy, the distance measure between the two vectors v; and v; is
defined as d(v;, v;) = min (32, . yep 1%:&10@?:1)1, > (@ey)eD’ 1@;’:a1mg{:b2)/N2’
with assuming that § € {a;, a0} and §/ € {b1,bs} for all t. The values of this
distance measure range from 0 (most redundant) to 0.5 (least redundant). The

distance threshold as stopping criterion of the clustering is set to 0.05.

ODOAQO is differentiated from the original DOAO by the second phase. The
original DOAO selects the single best classifier for each class pair, and its clas-
sification is done by voting on the ¢(c — 1)/2 selected classifiers. This method,
however, exploits the entire base classifiers trained in the first phase by combin-
ing their outputs using the meta-classifier. The meta-classifier decides how to

combine the base classifiers. By doing so, ODOAOQO can overcome the drawbacks

in the original DOAO.

In order to ensure that ODOAO performs well, it is important to train the
meta-classifier suitably. Two issues should be addressed: high dimensionality
and non-linear structure. Regarding the high dimensionality issue, the number
of base classifiers obtained in the first phase is L x ¢(c — 1)/2, which is propor-
tional to the square of the number of classes. The dimensionality becomes too
large when the number of classes increases, which may lead to degradation of

the meta-classifier performance. ODOAO resolves this issue by the base classi-
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Algorithm 2 Optimally Diversified One-Against-One (ODOAO)

Input: training dataset D = {azt,yt}iill, validation dataset D' =

{4, yt}i\gﬁf\fl, v € {1,...,c}, candidate classification algorithms Ay, ..., Ar
Output: set of base classifiers C, meta classifier Caq
1: procedure ODOAO

2: » phase 1

3: C+ o

4: for each class pair (i,7) do

5: Dyj  {(@+, yt) € Dlyr € {3, j}}

6: Ca,,p;; < candidate classifier trained from D;; using Ag, k=1 to L
7: C+ CU{Cuy,pij>--->CaALD; }

8: end for

9: » phase 2

10: for each classifier C; € C do

11: Gt + Ci(e), V(e y) € D'

12: Vi (m\hﬂv g§V1+27 e 7:g§vl+N2)

13: end for

14: T1, T2, - - T + clusters generated from {v;};ic,ec

15: s(1),s(2),...,8(m) « index of a randomly chosen vector in each of
Ti, 72, . T

~s(1) ~s(2 ~s(m
16: M {(yt( )7yt( )7--'ayt( ))7yt}(xt,yt)€73’
17: Ca + meta-classifier trained from M

18: end procedure
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Table 3.1 The number of classifiers used for training and test for each method

Method N. classifiers trained N. classifiers used for test
Single Algorithm-OAO  ¢(c —1)/2 c(c—1)/2

VOTE-OAO Lxc(c—1)/2 Lxc(c—1)/2

DOAO Lxc(c—1)/2 c(e—1)/2

ODOAO Lxcle—1)/2+1 O0xLxclc—1)/2+1

fier selection step in the second phase. For the non-linear structure issue, the
predicted label of a base classifier for a class pair (i,7) is only i or j because
the decomposition in ODOAO is based on the one-against-one approach. Thus,
the relationship between the predictions of the base classifiers and the target
labels are not linear. To train the meta-classifier, classification algorithms that
can deal with non-linear structure effectively, and are also robust to high input

dimensionality should be employed.

The training and test time should be taken into account for practical de-
ployment of a classification algorithm (Kang & Chol 2014)). Thus, we analyze
the relative time of training and test for ODOAO and other methods in terms
of the number of classifiers involved. [Table 3.1] shows the number of classifiers
trained in the training phase and used for classifying a test instance. Note that 6
of ODOAO is the fraction of base classifiers used as inputs of the meta-classifier,

and the actual value of 6 for each benchmark dataset is reported in

Regarding the training phase, a single algorithm-OAO involves training of
base classifiers for all possible class pairs using a single classification algorithm.

VOTE-OAO and DOAO train base classifiers using every candidate classification
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algorithm, so L x ¢(c — 1)/2 classifiers are trained. Added to these, ODOAO
additionally requires training of one more classifier as a meta-classifier. As a
simple comparison, VOTE-OAQO, DOAO, and ODOAO involve more classifier
training in their training phase than single algorithm-OAQOs. However, since we
usually have no certain knowledge that which algorithm performs best for a
dataset (Sohn, 1999; Lim et al., [2000; Kiang, [2003), we should compare the
classification performance of several single algorithm-OAOs that are trained
using different classification algorithms and choose the best one. Therefore, the
practical difference in the training phase is not so significant.

For the test phase, single algorithm-OAOs and DOAO use c¢(c — 1)/2 base
classifiers, each of which corresponds to a class pair, to classify a test instance.
On the other hand, ODOAO involves 6 x L x ¢(c —1)/2 + 1 classifiers for test,
which depends on 6 but generally larger than other methods. This would be a
drawback for real-time applications that requires fast classification speed.

Retraining issue is also a main concern if new data is added continuously and
the classifier needs to be updated accordingly. Fast re-training speed is required
for such a streaming data environment. We can consider two cases. The first
case is that new instances of existing classes are added into the training data.
We can cope with this case by using only candidate classification algorithm that
can be trained incrementally (Giraud-Carrier} 2000).

The second is about the instances of a novel class. The proposed meth-
ods are effective for this case because of the property of the one-against-one
approach. The one-against-one approach does not require retraining of any ex-

isting classifiers and only requires training of classifiers that correspond to the

32 :



novel class, whereas all the existing base classifiers have to be retrained for the

one-against-rest approach.

3.4 Performance Evaluation on Benchmark Datasets

3.4.1 Data Description

The effectiveness of the proposed methods was investigated through exper-
iments on the benchmark datasets. The following 15 multi-class benchmark
datasets, each with more than two classes, were collected from the UCI ma-
chine learning repository (Bache & Lichman, [2014): Zoo, Iris, Wine, Seed,
Glass, Ecoli, Movement, Balance, Landcover, Vehicle, Annealing, Vowel, Yeast,
CarFEvaluation, and Segment. Since the proposed methods have no effect on bi-
nary classification problems, the number of classes of every collected dataset is

larger than two. A detailed description for each dataset is provided in

3.4.2 Experimental Settings

In the experiment, the effectiveness of the proposed methods DOAO and ODOAO
was investigated. For training of base classifiers, six well-known and widely used
classification algorithms that are introduced in were employed in
order to train the base classifiers: ANN, DT, kNN, LDA, LR, and SVM. For
meta-classifiers of ODOAO, we used ANN, DT, and SVM to investigate the
respective suitability.

Regarding the proposed methods, ODOAO was implemented in three forms
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Table 3.2 Data summary

Dataset N. instances N. features N. classes
Zoo 101 16 7
Iris 150 4 3
Wine 178 13 3
Seed 210 7 3
Glass 214 9 6
Ecoli 336 7 8
Movement 360 90 15
Balance 625 4 3
Landcover 675 147 9
Vehicle 846 18 4
Annealing 898 38 6
Vowel 990 10 11
Yeast 1484 8 10
CarEvaluation 1728 6 4
Segment 2310 19 7

(ODOAO NN, ODOAOpT, and ODOAOgvMm), each employed ANN, DT, and
SVM, respectively, as the meta-classifier. As one-against-one benchmarks, the
six one-against-one classifiers (ANN-OAO, DT-OAO, £NN-OAO, LDA-OAO,
LR-OAO, and SVM-OAQ) were used, each is based on an individual classifi-
cation algorithm. They were also compared with a vote-based method (VOTE-
OAO), that votes on the candidate classifiers for each class pair, rather than
selecting the best classifier. In addition, the two typical homogeneous ensemble

methods, ANN-Bagging (Breiman) (1996) and Random Forest (RF) (Breiman,
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2001), were employed as benchmark methods. In Bagging, each base classifier
is trained with a bootstrap sample drawn randomly from a given training set.
RF is an extension of Bagging for DT that randomizes the choice of features
when splitting each node of the DT. When training all the classifiers, numeric
variables were scaled to be in the range of [—1,1]. All the algorithms used in
the experiments were implemented using MATLAB.

To compare the proposed methods with the benchmark methods, the clas-
sification performance was evaluated using the misclassification error rate (%)
on the test dataset, which is defined by (1/N) Zi\;l 1y, 4, X 100, where N is
the number of test instances, y; is the target label of the ¢-th instance, g is the
predicted label of the ¢-th instance, and 1,4, is an indicator function that has
a value of 1 when y; # ¥.

A ten-fold cross test procedure was conducted for each method, involved
partitioning the original dataset into ten disjointed and equally sized subsets.
Then, nine subsets were used as the training dataset, and the test error was cal-
culated for the remaining. This process was independently repeated ten times,
using each of the ten subsets exactly once as the test dataset.

In each run, the best parameters of each classification algorithm for a class
pair were explored through ten-fold cross validation with a grid search mecha-
nism in the training set. The parameter search spaces used in the experiments
are given in For DOAQ, the best classifier for each class pair was
selected based on the cross validation error. For ODOAO, the predicted labels
for the base classifiers resulting from the cross validation procedure were used

to construct the meta-dataset to build meta-classifiers. For ANN-Bagging, the
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Table 3.3 Parameter settings for each algorithm

Algorithm

Parameter Setting

ANN

N. hidden nodes=3,4,5,...,20

Max. iterations=300

DT

Min. instances in a leaf node=1,2,3,5
Min. instances in a parent nodes=>5, 10

Prune=true

kNN

k=1,3,5,7,10,20, 30

Distance type=Euclidean

LDA

No parameter

LR

No parameter

SVM

Cc=2"3,...,210
Kernel type=RBF kernel

=

0=2"5...,2

number of base classifiers, the number of hidden nodes, and the bootstrap sam-
ple size were set as 10, 10, and 80% of the training set, respectively. For RF, the
number of base classifiers, the bootstrap sample size and the minimum number

of instances in a leaf node were set as 100, 80% and 1% of the training set,

respectively.

3.4.3 Experimental Results

shows the results from comparing the proposed methods with the

benchmark methods in terms of the error rate (%). The numbers in bold indicate

the lowest error rate obtained over all the methods tested.
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Overall, DOAO and ODOAO yielded better classification results when some
single algorithm-OAOs are superior to others, and even outperformed the best
of the six single algorithm-OAQOs. That is, the classification accuracy can be
improved further, even though a sufficiently superior classification algorithm
currently exists. Otherwise, VOTE-OAOQO showed relatively suitable results when
the classification accuracy of the six single algorithm-OAOs was similar, but it
performed worse than the best of them. DOAO and ODOAO performed bet-
ter than VOTE-OAO, even though they commonly exploit several candidate
classifiers. This is because it is more likely that some classifiers were more
competent than others when different classification algorithms are employed to
train candidate classifiers. The proposed methods also yielded lower error rate
than typical homogeneous ensemble methods, ANN-Bagging and RF, for entire
datasets except Glass dataset.

Considering DOAO, DOAO was worse than one of the single algorithm-OAOs
in some datasets, which indicates that DOAO does not always select the best
classifier for each class pair. This is because DOAO simply selects classifiers
for each class pair based on the validation error, and a lower validation error
does not always leads to a lower test error. The comparison results show that
ODOAO NN and ODOAOgyy outperform DOAO on most datasets, indicating
that the meta-classifiers based on ANN and SVM effectively find better com-
binations of the base classifiers. However, ODOAOpT perform relatively worse

than both DOAO and VOTE-OAO.

lists the average selection number for each classification algorithm

in DOAO. The selection number indicates that DOAO selected the algorithm for
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Table 3.5 Average selection number of each candidate classification algorithm

for DOAO on benchmark datasets

Dataset N. classes N. class pairs ANN DT EiNN LDA LR SVM
Z00 7 21 7.9 2.7 3.9 1.0 24 3.1
Iris 3 3 1.2 04 0.2 0.2 04 06
Wine 3 3 1.2 0.0 0.2 04 03 09
Seed 3 3 1.1 03 0.3 0.2 09 0.2
Glass 6 15 9.0 1.5 1.1 0.6 03 25
Ecoli 8 28 182 1.2 19 2.2 1.9 26
Movement 15 105 50.7 5.0 173 29 0.7 284
Balance 3 3 0.0 0.0 0.0 0.0 0.0 3.0
Landcover 9 36 253 26 25 0.7 0.0 4.9
Vehicle 4 6 1.8 0.0 0.0 0.0 0.0 4.2
Annealing 6 15 2.9 1.3 0.7 0.3 2.8 2.0
Vowel 11 55 13.7 05 149 20 3.9 20.0
Yeast 10 45 329 19 3.0 0.5 1.3 54
CarEvaluation 4 6 2.3 0.3 0.0 0.0 0.5 29
Segment 7 21 7.4 2.7 28 1.2 1.6 5.3

the corresponding number of class pairs. As shown in this table, SVM and ANN

are dominantly selected, but are not entirely selected on most datasets. Other al-

gorithms are selected instead for particular class pairs, and consequently DOAO

yields more desirable classification results. The selection of classifiers is varied

by datasets. Some classification algorithms, such as LR and LDA, are not often

selected compared to other algorithms, but took a large part of some datasets.

In the case of the Balance dataset, only SVM is selected for every class pair;
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Table 3.6 Average selection number of base classifiers for ODOAO on benchmark

datasets
Datasets N. classes N. base classifiers N. base classifiers : Frac.
total selected selected (%)
Z00 7 126 91.2 72.4
Iris 3 18 2.5 13.9
Wine 3 18 9.3 51.7
Seed 3 18 8.0 44.4
Glass 6 90 62.3 69.2
Ecoli 8 168 92.3 54.9
Movement 15 630 575.4 91.3
Balance 3 18 12.2 67.8
Landcover 9 216 186.0 86.1
Vehicle 4 36 33.1 91.9
Annealing 6 60 33.8 56.3
Vowel 11 330 284.2 86.1
Yeast 10 270 136.0 50.4
CarEvaluation 4 36 18.2 50.6
Segment 7 126 7.7 61.7

hence, there is no difference between DOAO and SVM-OAO.

shows the average number of classifiers selected by the base clas-
sifier selection step of ODOAOQ for each dataset. The results show that input
dimensionality of the meta-classifier is reduced by the selection step. On av-
erage, 63.3% of the base classifiers are selected across the datasets. In case of
the Iris dataset, only 13.9% of the base classifiers are used. On the other hand,

over 90% of the classifiers are used for the Movement and Vehicle datasets.
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Figure 3.3 The relationship between the error rate (%) of DOAO and that

decrease by ODOAO

Considering the relationship between ODOAO and DOAQ, the former yields
a lower, or at least equal, error rate in 12 out of the 15 datasets. plots
the error rate difference between ODOAOAnN and DOAQO against the error rate
of DOAO. ODOAO yields a much lower error rate than DOAO for the Glass,
Movement, and Landcover datasets. On the other hand, ODOAOQ performs worse
than DOAO when the error rate is close to 0%, as is the case for the Zoo, Balance,

and Vowel datasets. That is, the meta-classifier of ODOAO itself may lead to
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Table 3.7 Results of the Holm post-hoc test

Method Average Rank Holm APV Hypothesis (a=0.05)

ODOAOANN 2.3 - -

ODOAOsyvMm 2.63 0.783 Not rejected
DOAO 3.63 0.542 Not rejected
ODOAOpT 4.67 0.152 Not rejected
SVM-0OAO 5.93 0.0123 Rejected
VOTE-OAO  5.97 0.0123 Rejected
ANN-OAO 7.23 2.78 x 10™*  Rejected
LR-OAQO 8.13 1.02 x 107®  Rejected
ENN-OAO 8.2 8.85 x 1079  Rejected
LDA-OAO 8.3 6.53 x 107%  Rejected
DT-OAO 9 3.16 x 107 Rejected

misclassification errors when there is no room for improving the classification
accuracy.

We conducted non-parametric statistical tests in order to determine the sta-
tistical significance of the comparison results (Demsar, 2006; Garcia & Herrera,
2008; (Garcia et al., [2009, [2010)). The Friedman test was executed to find out
the statistical difference between the one-aganst-one methods used in the ex-
periments. Since the p-value returned by the Friedman test is 8.2838 x 10711,
the null hypothesis of equivalence between the methods is rejected with a high
level of confidence. Therefore it can be concluded that there are significant
differences between the methods. Subsequently, the Holm post-hoc test was
carried out to compare the best method with the others, and the results from

this test are provided in These results show that ODOAOANN sig-
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Table 3.8 Results of the Wilcoxon signed-rank test comparing ODOAO NN,
ODOAOSVM, and DOAO

Comparison RT™ R~ p-value Hypothesis («=0.05)

ODOAOANN vs. ODOAOsyM 47 19  0.107 Not rejected
ODOAO snN vs. DOAO 94 26  0.0267 Rejected
ODOAOgsvM vs. DOAO 62 16 0.0356  Rejected

nificantly outperforms most other methods, with the exception of ODOAOgyM
and DOAO.

The Holm test did not provide sufficiently significant differences between
ODOAOANN, ODOAOgyMm, and DOAO. Therefore, the Wilcoxon signed-rank
test was ultimately conducted for a pairwise comparison among these meth-
ods. The p-values obtained by the Wilcoxon test are presented in As
shown in there is no significant difference between ODOAOsnN and
ODOAOgsv1, whereas DOAQ is significantly worse than either method. Con-
sequently, we confirm that ODOAO statistically outperforms DOAQO and the
other methods. According to the statistical test results, we can conclude that

the proposed methods statistically outperform the other methods.

3.5 Summary

In this chapter, we introduced a method called DOAO to solve multi-class classi-
fication problems by constructing a multi-class classifier using the one-against-

one approach with different classification algorithms. This method aims to ob-
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tain improved classification results by selecting the best classification algorithm
for each class pair. Thus, it constructs a one-against-one classifier by selecting
the best classifiers among several heterogeneous candidate classifiers. Applying
DOAO makes various classification algorithms to complement each other. Since
the best classification algorithm for each class pair is different, it was founded
to yield better classification accuracy than other one-against-one classifiers that
are based on individual classification algorithms.

DOAO is not only easy and intuitive, but also very effective for multi-class
classification problems. Applying this method to multi-class classification prob-
lems provides better classification results. However, there are two major limita-
tions in DOAO. The first is that the minimum validation error does not guaran-
tee the minimum test error. The second is that a selective fusion of the best set
of classifiers would better than the single best classifier. Thus, we determined
that DOAOQO can be improved further by addressing these limitations.

Next, we introduced another method, ODOAO, as an improvement to DOAO
based on meta-learning. ODOAO constructs a heterogeneous ensemble where a
meta-classifier effectively combines the outputs from all the heterogeneous base
classifiers that are trained using various classification algorithms for every class
pair. Base classifiers are trained according to the one-against-one approach using
various candidate classification algorithms, and a meta-classifier is trained to
optimally combine the outputs of the base classifiers. In addition, we take into
account the issues of high dimensionality and non-linear structure when training
the meta-classifier.

Our experimental results showed that the proposed methods outperform
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other one-against-one classifiers that are based on single classification algo-
rithms, and also outperforms the vote-based one-against-one classifier, on most
benchmark datasets. The experimental results also showed that ODOAO out-
performs DOAO and the other one-against-one classifiers on most datasets. The
statistical significance of the results was confirmed through non-parametric sta-
tistical tests.

Regarding practical deployment of the proposed methods, the training of a
number of candidate classifiers can be time consuming. However, such burden
does not represent a problem if the training of classifiers is not subjected to
a time limit. One legitimate concern is that the heterogeneous ensemble con-
structed by the proposed methods may require a large amount of computation
when classifying new instances because all of the base classifiers as well as the
meta-classifier are used for classification. This would be a drawback when fast
classification speed is required, as with real-time applications (Kang & Cho,
2014). In this drawback is addressed by approximating the ensem-

ble with a single model in order to increase the classification speed.
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Chapter 4

Heterogeneous Ensemble for Accurate
Classification: One-class Classifier
Approach

4.1 One-class Classifier Approach for Multi-class Clas-

sification

In heterogeneous ensemble methods involving construction of an
ensemble of binary classifiers are proposed. Although the binary classifier ap-
proach has received more attention and has been more often used, the strategy
that involves construction of an ensemble of one-class classifiers has also been
successfully applied to multi-class classification problems (Juszczak & Duin),
2004; Ban & Abe| 2006; Tax & Duinl 2008} |D. Lee & Lee, 2007; Hao et al.l,
2009), because of some merits. This strategy only requires training of one clas-
sifier and does not require re-training of any existing classifiers when another
class is added into the training data (Juszczak & Duinl |2004]). Moreover, this

strategy may be effective when class imbalance is severe (H.-j. Lee & Chol 2006)).

In general, this is achieved by decomposing the original multi-class classifi-
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cation problem into ¢ one-class sub-problems. For each of the sub-problems, a
one-class classifier is trained to determine if an instance belongs to a class. The
resulting ¢ base classifiers constitute an ensemble to make predictions for the
original problem.

With respect to the third strategy, the existing methods proposed in previ-
ous work were based on homogeneous ensembles, which means that they have
only used single one-class classification algorithms to construct the ensembles.
For further improvement on classification accuracy, heterogeneous ensembles,
which employ various classification algorithms to train base classifiers, can be
advantageous (Kang, Cho, & Kang, 2015a)). The heterogeneous ensemble al-
lows us to obtain better classification accuracy by combining the advantages
of various algorithms, while this ensemble generally requires a large computa-
tional burden in training and test because it involves many base classifiers from
various algorithms.

When constructing a heterogeneous ensemble of one-class base classifiers,
the major issue is about the normalization of the prediction scores from the
base classifiers. Since each classifier is independently trained, their scores may
be on different scales (Bishop & Nasrabadi, [2006). The problem of different
scales becomes more serious when base classifiers from different algorithms are
considered. Moreover, if some base classifiers are inadequately trained, they
may provide incorrect scores as predictions for new instances, and consequently,
the classification results provided by an ensemble might be invalid (Galar et
al., 2013)). Therefore, the scores should be appropriately normalized, and some

invalid base classifiers should be filtered out when combining the multiple base
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classifiers.

There have been several efforts to address this problem. Some researchers
proposed algorithm-specific normalization methods. Ban and Abe| (2006)) pro-
posed normalization methods for each of the kernel PCA and SVDD algorithms.
In particular, there are a number of methods for SVDD (Hao et al., 2009).
On the other hand, general normalization methods have also been developed.
D. Lee and Lee| (2007) utilized Bayesian decision theory for combining base clas-
sifiers. Tax and Duin| (2008)) proposed two normalization methods based on the
Bayesian decision theory: outlier normalization (O-norm) and target normaliza-
tion (T-norm). The methods proposed in previous work focused on combining
homogeneous base classifiers on the basis of heuristics. In addition, some meth-
ods were only valid for a specific algorithm. On the other hand, we focus on
learning-based normalization for combining heterogeneous base classifiers as an
improvement over previous work.

To this end, we propose a heterogeneous ensemble method with addressing
the aforementioned issues for multi-class classification. The proposed method
is based on stacking in order to combine heterogeneous one-class base classi-
fiers trained from various algorithms effectively. MLR (Ting & Witten), |1999)
is employed for learning-based normalization. That is, the proposed method
builds an MLR model that combines the base classifiers trained by various al-
gorithms. Since an MLR is scale independent, the proposed method can success-
fully normalize the scores from the heterogeneous base classifiers. In addition,
to minimize the risk of invalid base classifiers in the ensemble, we propose se-

lective stacking, which is a variant of stacking, to achieve better classification
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accuracy. Selective stacking utilizes variable selection methods when training
the meta-classifier in order to exclude invalid and superfluous base classifiers.
Experiments were conducted using benchmark datasets to investigate the effec-

tiveness of the proposed method.

4.2 Heterogeneous Ensemble of One-class Classifiers

Multi-class classification problems can be solved by an ensemble of one-class
classifiers. The use of various algorithms to train the base classifiers of the
ensemble leads to better classification accuracy. However, the normalization of
the scores obtained from the heterogeneous base classifiers is a difficult problem
because each algorithm has a different type of scores (Tax, 2001). Density-based
algorithms provide probability densities as scores. The score type of boundary-
based and reconstruction-based algorithms is the distance from the boundary
and the reconstruction error, respectively. The scales of the scores may also be
different even though the same algorithm is used.

In this section, we propose a multi-class classification method, which com-
bines heterogeneous one-class classifiers based on stacking. In the proposed
method, a meta-classifier is trained using stacking with MLR (Ting & Witten),
1999) for learning-based normalization of the scores obtained from the base
classifiers. MLR is a multi-class classification algorithm that separates each
class from all other classes by linear regression models. Owing to the scale
independent characteristic of MLR, the normalization issue can be effectively

addressed.
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Figure 4.1 Framework of HEOC

MLR has been successfully employed for training of a meta-classifier (Ting

& Witten, [1999; Dzeroski & Zenko, [2004; Seewald, 2002). MLR is a multi-class

classification algorithm that separates each class from the other classes by linear
regression models, according to the one-against-rest approach. This algorithm
formulates ¢ regression problems for a c-class classification problem. Given a
meta-dataset M = {(s},s?,...,sL), v}, the linear regression model for the
i-th class is trained from {(s},s?,...,sF),1,,—;} . After ¢ linear regression

models are trained, classification for a new meta instance is done by choosing

the class label with the maximum score from the linear regression models.
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shows the framework of the proposed method that consists of two
phases. In the first phase, one-class base classifiers are trained using candidate
classification algorithms Ay, ..., Ar. Suppose a training dataset D = {xy, yt}i\;ll
of a c-class classification problem is given, where ; € R? is an input vector, and
y; € {1,...,c} denotes its target label. The dataset D is partitioned into ¢ sub-
sets D; for each class. For every D;, base classifiers C4, p,,Ca, D, - --,CA, D, are
trained using the candidate one-class classification algorithms, thereby resulting
in L x ¢ base classifiers.

In the second phase, a meta-classifier is trained using MLR in order to com-
bine the base classifiers. Given a validation dataset D’ = {mt,yt}gﬁf\fl, yr €
{1,..., ¢}, the prediction scores sf " are computed for every validation instance
(x¢,y1) € D' using the algorithm Ay. The meta-dataset M; of the i-th class is
defined as {(s;',... ,stL’l, spP, stL’Q, s stL’c), 1y=i} (@y,y.)ep’» Such
that the scores of all base classifiers are input variables and the output variable
is a binary variable indicating whether the target label is the ¢-th class. Finally,
a linear regression model Cp4, is trained from each meta-dataset M;. The re-
sulting ¢ linear regression models form the meta-classifier. The pseudocode of
the proposed method is described in

The ensemble that consists of the base classifiers and meta-classifier is used
to classify a new instance. Given an instance, the prediction scores are computed
using the base classifiers. These scores are input for the meta-classifier, and the
meta-classifier provides the final classification result as § = arg max; Cy, (),
by choosing the label with the maximum score among the ¢ linear regression

models Cy,.
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Algorithm 3 Heterogeneous Ensemble One-class Classifiers (HEOC)

Input: training dataset D = {azt,yt}iill, validation dataset D' =
{4, yt}i\gﬁf\fl, candidate classification algorithms Ay, ..., Af

Output: base classifiers C4, p,, meta classifiers Caq,, V&, %

1: procedure HEOC

2: » phase 1

3: for i =1tocdo

4: D; « {(x,yt) € Dlyy = i}}

5: Ca, D, < base classifier trained from D; using Ay, k=1 to L
6: sf’i — Cua,.p;(ze), V(zt,1¢) €D, k=1to L

7: end for

8: » phase 2

9: for i=1tocdo
1,1 L1 1,2 L2 1,c Lc
10: Mi—{(sy ooy s sy sy s sy ),1yt:i}(wt’yt)€'p/
~~ —
) class 1 . class 2 . class ¢
11: Cm; <+ linear regression model trained from M;
12: end for

13: end procedure

As an alternative to the standard stacking, stackingC (Seewald, 2002) can
be employed for the proposed method. StackingC differs from the standard
stacking in the construction of the meta-dataset. For the construction of the
meta-dataset M, stacking uses the prediction scores of all the base classifiers
as the input variables, whereas stackingC uses only those scores that have been

computed using base classifiers with the i-th class. Thus, can rep-
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resent the pseudocode for the proposed method with stackingC if the 10-th line

is changed to the following:

14 L
Mi «— {(St Z,.--,St Z),]-yt:i}(wt,yt)ED" (41)
—_——

class @

In the proposed method, however, if some base classifiers are invalid or
superfluous, the performance of the MLR model may be degraded. Therefore,
to prevent performance degradation of the MLR model, only significant base
classifiers should be used to train the MLR model. As a further improvement,
we propose to use selective stacking, which aids in filtering out invalid base
classifiers based on variable selection methods when training the meta-classifier.
For each meta-dataset M;, the linear regression model Cp4, is trained with a
variable selection method. As a result, only a subset of variables among the
L x ¢ input variables of M; is selected, which indicates that only selected base
classifiers are used as inputs of the meta-classifier. This is differentiated from
the standard stacking, because the standard stacking uses all the base classifiers
regardless of significance of each base classifier.

For selective stacking, stepwise selection is employed, which is a wrapper
method that enters and removes input variables in a stepwise manner, as a
variable selection method. In each step of linear regression model training, each
input variable is either selected or removed according to the statistical test.
The repetition of the steps is terminated when neither the entrance of a new
variable or removal of an existing variable improves the model. Consequently,
only significant variables are included in the model, which indicates that only

the significant base classifiers are used for prediction in the model. The base
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classifiers selected for each class may be different because the linear regression
models for each class are independently trained.

Note that, the resulting model after stepwise selection does not guarantee
a global optimum, because stepwise selection is based on a greedy search. In
addition, other variable selection methods can also be employed in selective
stacking. Forward selection and backward selection require less time for training
the model, but may provide worse performance. Meta-heuristic optimization
methods, such as genetic algorithm and particle swarm optimization, are more

likely to find the global optimum, but are computationally expensive.

4.3 Performance Evaluation on Benchmark Datasets

4.3.1 Data Description

The effectiveness of the proposed method was investigated through experiments
on benchmark datasets. The following 20 datasets from the UCI repository
(Bache & Lichmanl [2014) are used in the experiments: Zoo, Iris, Wine, Parkin-
son, Sonar, Seed, Glass, Heart, Ecoli, lonosphere, Movement, Balance, Land-
cover, BreastCancer, Vehicle, Annealing, Vowel, Yeast, CarEvaluation, and Seg-

ment. Detailed descriptions for these datasets are listed in

4.3.2 Experimental Settings

Eight well-known, widely used one-class classification algorithms were employed

for the experiments: GAUSS, MOG, PARZEN, NNDD, SVDD, KMEANS,
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Table 4.1 Data summary

Dataset N. instances N. features N. classes
Zoo 101 16 7
Iris 150 4 3
Wine 178 13 3
Parkinson 195 22 2
Sonar 208 60 2
Seed 210 7 3
Glass 214 9 6
Heart 303 13 2
Ecoli 336 7 8
Tonosphere 351 34 2
Movement 360 90 15
Balance 625 4 3
Landcover 675 147 9
BreastCancer 683 9 2
Vehicle 846 18 4
Annealing 898 38 6
Vowel 990 10 11
Yeast 1484 8 10
CarEvaluation 1728 6 4
Segment 2310 19 7

PCA, and AUTOENC. All the aforementioned algorithms were implemented

in the Data Description Toolbox for MATLAB (Tax, 2014). Brief descriptions

for the algorithms are provided in

Depending on how to construct meta-classifiers, Three versions of the pro-
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posed method (Stacking, StackingC, SelectiveStacking) were investigated in the
experiments. For SelectiveStacking, stepwise selection was used as a variable
selection method, and the p-value threshold to enter and remove variables was
set to 0.1 and 0.2, respectively. The proposed method was compared with the
eight benchmarks (GAUSS, MOG, PARZEN, NNDD, SVDD, KMEANS, PCA,
AUTOENC), each of which constructs an ensemble of one-class classifiers us-
ing a single respective algorithm. For each benchmark, T-norm was used for
normalizing the base classifiers of the ensembles because it showed better per-
formance than other methods according to the literature (Tax & Duin} 2008). In
addition, the majority vote of the classification results obtained from the eight
benchmarks (VOTE) was used for comparison. All numeric input variables were
scaled to [—1, 1] for the implementation of each method. All experiments were
performed on MATLAB.

As a performance measure for the methods, the misclassification error rate
on the test dataset was used, which is defined by (1/N) Zi\il 1y, 4, x 100, where
N is the number of test instances, y; is the target label of the ¢-th instance, ¥
is the predicted label of the t¢-th instance, and 1,,.4, is an indicator function
that has the value of 1 when 1y # ;.

The performance of each method was computed based on the ten-fold cross
test procedure. In this procedure, the original dataset is partitioned into ten
disjoint, equal-sized subsets, nine of which are used as the training and valida-
tion datasets, and the test error is calculated for the remaining set. This process
is repeated for ten runs independently such that all the ten subsets are used

exactly once for test.
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Table 4.2 Parameter settings for each algorithm

Algorithm Abbreviation Parameter Setting
Density-based Gaussian GAUSS -
Mixture of Gaussians MOG N. Gaussians=2,3,...,7
Parzen Window PARZEN Kernel type=Gaussian
Kernel width=275,...,2°
Boundary-based Nearest Neighbor NNDD Distance type=Euclidean
Support Vector Data Description SVDD Kernel type=Gaussian
Kernel width=2"5,...,2°
Reconstruction-based K-Means KMEANS N. clusters=2,3,...,7
Principal Component Analysis PCA Frac. variance=0.5,0.6,...,0.9

Auto-encoder Network

AUTOENC

N. hidden nodes=2,4,...,10
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With regard to training and validation, the ratio of the training to the
validation dataset was set as 1 : 1. The base classifiers were trained using the
training set exclusively, where the parameters of each classifier were chosen such
that the classification error on the validation set is minimized. The parameter
search spaces used in the experiments are listed in For the bench-
mark methods, the fraction of rejection, which is the parameter of T-norm, was
explored from {0.01,0.02,0.05,0.1}. For the proposed method, meta-classifiers

were trained based on the predictions of base classifiers on the validation set.

4.3.3 Experimental Results

lists the comparison results of the benchmark and proposed meth-
ods in terms of error rate (%). The results show that the proposed method
outperforms the benchmarks in 14 out of 20 datasets. Regarding the bench-
mark methods, VOTE performs better than the other methods in most cases.
In general, Stacking and SelectiveStacking outperform VOTE, whereas StackingC
does not. For the Glass, Landcover, and Vowel datasets, the proposed method
outperforms the benchmark methods with at least 5% lower error rate. In con-
trast, the proposed method is relatively worse for the BreastCancer, Vehicle,
and Annealing datasets.

shows the average selection number of each candidate algorithm
for SelectiveStacking. Although classifiers of SVDD and PARZEN were selected
slightly more, classifiers of all the algorithms were evenly selected on most
datasets. It means that the heterogeneous ensembles constructed by SelectiveS-

tacking exploits a diverse of classifiers from various one-class classification al-
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Table 4.3 Error rate (%) comparison results on benchmark datasets

Dataset Benchmark Proposed 0 LM _
GAUSS MOG PARZEN NNDD SVDD KMEANS PCA AUTOENC VOTE Stacking  StackingC  SelectiveStacking .|_...|
Zoo 27.723  39.604 24.752 53.465  34.653 23.762 24.752  25.743 23.762 33.663 23.762 24.752 3
Iris 4.667 12.000 7.333 16.667 8.000  7.333 6.667  6.000 4.667 5.333 5.333 4.667 3
Wine 9.551 38.764 5.618 28.652 6.180  8.989 4494 4494 5.618 3.933 3.371 2.247
Parkinson 18.974  21.026 16.923 23.077  16.410 16.410 19.487 15.897 14.359 11.282 15.897 10.256
Sonar 40.865  49.519 26.923 26.442  23.558 23.558 22.596 27.885 16.827 20.673 25.962 19.712
Seed 6.667 9.048  10.000 28.095 8.095  8.571 20.000 8.571 6.667 7.619 9.524 8.095
Glass 52.336  51.402 42.991 59.346  52.804 46.262 50.000 48.598 46.262 42.056 42.991 35.514
Heart 23.490 25.168 18.456 48.322  20.134 19.463 25.839 24.161 20.134 19.463 19.463 18.456 o
Ecoli 24.405  21.131 21.131 37.202  19.643 20.536 31.548 22.024 20.536 18.750 16.667 15.476 ©
Ionosphere 31.909 19.088  21.083 21.652  20.228 16.809 8.262  9.402 6.838 5.128 12.251 5.698
Movement 64.167  88.333 35.556 70.000  62.500 34.444 35.000 42.222 29.444 32.778 30.000 26.944
Balance 9.598 9.923  13.126 21.614  16.798 15.361 12.003 14.231 11.515 8.166 10.083 8.318
Landcover 69.037  82.815 28.000 74.963  29.037 27.852 34.815 32.741 27.852 18.667  23.407 18.963
BreastCancer — 4.255 12.441 2.788 17.148 3,518  3.081 6.158  3.960 2.935 3.081 2.935 2.935
Vehicle 17.612 22459 38.771 45.272  50.000 41.608 31.087 23.168 21.631 22.459 31.087 26.123
Annealing 3.008 6.683  16.385 23.615 23.049 15.938 14.598 13.818 13.929 3.124 9.466 3.238
Vowel 19.192  25.960 21.515 33.636  47.576 24.444 31.818 22.626 15.051 6.162 19.293 8.687
Yeast 51.954  46.294 46.024 67.251  66.173 51.348 55.458  56.469 49.057 42.251 47.372 41.375
CarEvaluation  7.347 9.376  13.198 30.214  17.999 13.888 16.956 17.421 11.919 6.078 8.162 6.541
Segment 9.481 8.398  11. 24.848  56.061 11.948 14.459 12.814 7.446 6.277 9.004 6.190
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Table 4.5 Results of the Holm post-hoc test

Method Average Rank Holm APV~ Hypothesis («=0.05)

SelectiveStacking 2.2 - -

Stacking 2.875 0.554 Not rejected
VOTE 3.95 0.250 Not rejected
StackingC 4.5 0.131 Not rejected
PARZEN 6.675 3.47 x107*  Rejected
KMEANS 6.75 3.30 x 107%  Rejected
GAUSS 6.825 2.99 x 107%  Rejected
AUTOENC 7.425 3.21 x 107°  Rejected
PCA 8.05 2.31 x 1075 Rejected
MOG 8.4 4.86 x 1077 Rejected
SVDD 8.9 4.20 x 1078 Rejected
NNDD 11.45 5.44 x 1071%  Rejected

gorithms effectively. The ensembles selected averagely about 27.5% of the total
classifiers. In the case of Segment, CarEvaluation, and BreastCancer, almost half
of total were selected, whereas only a small number of classifiers were selected

for some datasets such as Ecoli.

The statistical significance of the comparison results was investigated via
non-parametric statistical tests (Demsar], 2006} (Garcia & Herrera, 2008; |Garcia.
et al., 2009} 2010). Firstly, the Friedman test was performed to find out the
statistical difference of the performance among the compared methods. The
Friedman test returned the p-value as 1.0263 x 107!, which indicates that the
null hypothesis of equivalence is rejected with a high confidence. Therefore, the

performances of those methods are statistically different. In particular, Selec-
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Table 4.6 Results of the Wilcoxon signed-rank test comparing SelectiveStacking,

Stacking, and VOTE

Comparison RT™ R~ pvalue Hypothesis (a=0.05)
SelectiveStacking vs. Stacking 152 19  0.00189 Rejected
SelectiveStacking vs. VOTE 148 23 0.00325 Rejected

SelectiveStacking vs. StackingC 188 2 9.11 x 107  Rejected

Stacking vs. VOTE 155 55  0.0310 Rejected
Stacking vs. StackingC 136 35 0.0139 Rejected
VOTE vs. StackingC 87 84  0.474 Not rejected

tiveStacking performed best with an average rank of 2.2, followed by Stacking
and VOTE. Accordingly, the Holm post-hoc test was conducted to compare the
method that was adjudged as having the best performance as per the Friedman
test, SelectiveStacking, with the other methods. The results, which are listed in
show that SelectiveStacking statistically outperforms the benchmark
methods.

The Holm post-hoc test, however, did not report the difference between
SelectiveStacking, Stacking, VOTE, and StackingC. Hence, the Wilcoxon signed-
rank test was conducted for pairwise comparison of these methods. The results
obtained from the Wilcoxon signed-rank test are listed in The results
show that Selective Stacking outperforms all the other methods, and Stack-
ing outperforms VOTE and StackingC, with a significance level of 0.05. There
were no significant differences between VOTE and StackingC. In conclusion, Se-
lectiveStacking shows the best performance with statistical significance, while

Stacking also statistically outperforms all the benchmark methods.
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Table 4.7 Data summary

Dataset N. categories N. terms N. documents N. training N. test
Reuters-21578 (topl0) 10 18,993 7,285 5,228 2,057
20Newsgroups 20 26,214 18,846 11,314 7,532

4.4 Application to Text Categorization

4.4.1 Problem Definition

Text categorization is to classify documents into a pre-defined set of categories
according to their contents. Each document can be included in single or multi-
ple categories, or not be included in any category. As the number of documents
in internet rapidly grows, organizing the documents becomes an important is-
sue. Machine learning enables automatic categorization of the documents by
training a classifier with a set of documents that has their category labels and
classifying new documents using the classifier. Since the number of categories
is usually large, this task is defined as a typical multi-class classification prob-
lem. In general, periodic retraining of the classifier is required for this problem
because a novel category is often added and the characteristics of categories
changes gradually with time. Therefore, one-class classifier approach may be
advantageous because of its merits. In this section, the effectiveness of HEOC is
compared with other multi-class classification algorithms for text categorization

problems.
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4.4.2 Data Description

The two most popular datasets, Reuters-21578 and 20Newsgroups, were em-
ployed. The Reuters-21578E| dataset contains 21,578 news articles of 135 cate-
gories collected from the Reuters Newswire in 1987. In this dataset, the distri-
bution of the number of articles in the categories is highly unbalanced. Only the
top ten categories were used for this experiment. The 20Newsgroup5E| dataset
is a collection of articles from the Usenet Newsgroup. It includes 19,997 articles

that are evenly distributed across 20 categories.

For each dataset, several preprocessing steps such as tokenization, stem-
ming, and stopword removal are required. In the experiments, the preprocessed
versions of the datasets used in|Cai et al.| (2009)’s study were adopted. |[Table 4.7

shows the detail.

The documents have to be transformed into suitable representations in order
to train a classifier. The top 1,000 important terms were selected for each dataset
using information gain (Yang & Pedersenl, [1997). After selecting the term subset

T, each document was represented by the term vector d; as below:

dj = (wi,j7 W2 5y, w|T‘,j) (42)

where w; j is the weight of the term ¢ in the document j, and |T'| is the cardinality

of T. Each weight w;; was calculated using the normalized #f-idf, which is

"http://www.daviddlewis.com /resources/testcollections/reuters21578/
http://qwone.com/~jason/20Newsgroups/

65



Table 4.8 Parameter settings for each algorithm

Algorithm  Parameter Setting

SVM C=273,...,210
Kernel type=Gaussian kernel

o=2"5...,2°

kNN k=1,3,5,7,10,20, 30

Distance type=cosine

DT Min. instances in a leaf node=1,2, 3,5
Min. instances in a parent nodes=>5, 10

Prune=true

generally used for text categorization (Joachims, [2002):

tfm‘ X log%

27
T
S (s < 10g'2))

where tf; ; is the number of occurrences of the term ¢ in the document j, df; is

(4.3)

wivj =

the number of documents containing the term 4, |D| is the cardinality of the

document set D.

4.4.3 Experimental Settings

For the proposed method, heterogeneous ensemble of one-class classifiers based
on SelectiveStacking is used. The proposed method was compared with the three

popular classification algorithms: SVM, kNN, and DT. Parameter settings used
for those algorithms are given in [Table 4.8

The effectiveness of the methods was measured using the micro- and macro-
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F1. The F1 score is the harmonic mean of recall and precision. The micro-F1
score is the global calculation of F1 score regardless of categories, and the
macro-F1 score is the average of F1 scores of all the categories. Other settings

were the same as in

4.4.4 Experimental Results

shows the mean and standard deviation of classification performance
over ten independent run for each method in terms of micro- and macro-F1.
The best among homogeneous ensembles of one-class classifiers showed rela-
tively worse performance for text categorization problems, whereas the classifi-
cation performance of the proposed method, homogeneous ensemble of one-class
classifiers, was similar to that of one-against-one SVM. Although one-against-
rest SVM yielded the best performance, it is shown that the proposed method
achieves comparable performance for text categorization problems, compared

with the state-of-the-art multi-class classifiers.

4.5 Summary

Constructing a multi-class classifier based on an ensemble of one-class classi-
fiers has proven to be a promising strategy to solve multi-class classification
problems. Previous work on this strategy only used a single one-class classifica-
tion algorithm to construct the ensemble; however, the classification accuracy
of the ensemble can be improved by using various classification algorithms to

train base classifiers. Moreover, an appropriate normalization of the prediction
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Table 4.9 Micro- and macro-F1 comparison results on text categorization problems

Dataset

SVM-OAO

SVM-OAR

ENN

DT

Homogeneous
Ensemble of

OCs (best)

Heterogeneous
Ensemble of

0OCs

Reuters-21578 (topl0)

95.727(0.198)
90.134(0.701)

96.422(0.241)
91.941(0.867)

94.560(0.286)
87.245(0.675)

89.694(1.046)
79.213(2.010)

94.088(0.675)
86.132(2.277)

95.737(0.230)
90.257(0.792)

20Newsgroups

72.553(0.302)
71.906(0.326)

74.385(0.609)
73.226(0.540)

59.765(1.546)
59.142(1.380)

53.968(0.516)
53.458(0.581)

70.762(0.382)
69.744(0.367)

72.570(0.240)
71.133(0.235)
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scores obtained from the base classifiers allows improving this strategy further.

This chapter aimed to construct a heterogeneous ensemble of one-class clas-
sifiers using various one-class classification algorithms to address the problem
of multi-class classification. We proposed a multi-class classification method
that utilized stacking with MLR to combine the heterogeneous base classifiers.
The proposed method used an MLR model as a meta-classifier to successfully
address the normalization issue of the heterogeneous ensemble. In addition,
we proposed selective stacking to exclude the base classifiers that degrade the
overall performance when training the MLR model. In experimental results,
the proposed method yielded higher classification accuracy than other methods
with statistical significance.

The main contribution of this chapter is two-fold. First, the proposed method
solved a multi-class classification problem using a heterogeneous ensemble of
one-class classifiers trained by various classification algorithms. Second, the
proposed method successfully normalized the scores from those heterogeneous
base classifiers through stacking with MLR. These two points distinguish the
proposed method from the existing work. Experimental results confirmed the
effectiveness of stacking in combination with heterogeneous one-class classifiers

for multi-class classification.
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Chapter 5

Heterogeneous Ensemble for Reliable
Classification

5.1 Multi-class Classification with a Reject Option

Solving a classification problem involves training a classifier using a set of given
instances in order to find the relationship between input and output variables
to predict the class of new instances using the trained classifier. In most cases,
prediction error is inevitable because of the imperfection of the classifier. As
a solution, a reject option can support improving classification reliability by
rejecting instances that are difficult to classify (Kang & Cho, 2015a). This
is beneficial to various real-world applications that have high misclassification
costs and require high prediction accuracy, such as medical prediction, user

authentication and equipment fault detection.

The reject option has been actively studied by researchers, mostly focusing
on binary classification problems. In particular, many researchers have dealt
with the optimal trade-off between accuracy and rejection for a given mis-

classification cost (Landgrebe et al. [2006; Tortorella, 2005). Embedded reject
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options for specific classification algorithms have also been studied (Fumera &

Roli, 2002} Simeone et al., 2012; Kang & Cho, 2015a).

Existing research on reject options has mostly focused on binary classifica-

tion (Chow, 1970; Landgrebe et al., 2006} [Tortorella, [2005; Herbei & Wegkamp),

20006)), whereas relatively few of these researchers are related to multi-class clas-

sification (Cecotti & Vajdal 2013} [Tax & Duin, 2008)). However, multi-class

classification, which predicts that an output variable consists of more than two
categories, is advantageous because these prediction results are more informa-
tive than those of binary classification. For example on anti-diabetic drug failure
prediction, predicting treatment results in the multiple categories of the degree
of glycemic control offers better applicability in practice. Glycated hemoglobin

(HbA.) is widely adopted as an indicator of glycemic status to measure ef-

ficacy (Bennett et al) 2007; Lu et al. 2010), and the American Diabetes As-

sociation (ADA) recommends HbAj. < 7.0% as a general glycemic goal and

HbA;. < 8.0% as a less stringent goal (American Diabetes Association, [2014).

Considering a reject option for multi-class classification, a typical approach

is to reject instances that have low posteriors for any class (Cecotti & Va-

2013; |Tax & Duin, [2008). Suppose that € R is an input vector, y €

{1,2,...,c} is the corresponding target class, and p(y = j|x) is the posterior
of the instance « belonging to the j-th class. This approach can be represented

by the following rule:

argmax p(y = jlx), if maxp(y = jlz) > 0
J J

<
Il

(5.1)

reject, otherwise.
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The maximum posterior, max; p(y = j|x), is used as the confidence of the
prediction, and the instance is rejected when the confidence is below the pre-
defined threshold 6. Otherwise, classification is performed by choosing the class
with the maximum posterior. The rejection rule in can be divided
into two steps. The first step is to decide whether to classify, and the second
step is to classify. The main idea of this chapter is that the best classifier of
each step may differ.

In this chapter, we propose a hybrid reject option (Kang, Cho, Rhee, &
Yu, 2015) based on heterogeneous ensemble learning to achieve better trade-
off between accuracy and rejection for multi-class classification problems. The
proposed method is based on a serial ensemble structure, aiming at designing a
reject option with a sequence of two classifiers. The proposed method constructs
a filter (a classifier for rejection) and a predictor (a classifier for prediction) sep-
arately, by employing different classification algorithms. Thus, we can classify
with the reject option for a new instance by estimating confidence using the

filter and making a prediction using the predictor if the confidence is above a

pre-defined threshold.

The proposed method is promising in that it is applicable to solving multi-
class classification problems effectively and can be used regardless of the clas-
sification algorithms. Moreover, the trade-off between accuracy and rejection
can be controlled easily. We examine the effectiveness of the proposed method
through experiments on the anti-diabetic drug failure prediction problem using
EMR data from the Seoul National University Hospital (SNUH) in the Republic

of Korea.
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“Reject”

An Instance —> Filter “Predict” Predictor [——> Classification Result
redic

Figure 5.1 Classification with reject option

5.2 Hybrid Reject Option

In this section, we introduce our proposed hybrid reject option. Before begin-
ning, can be transformed as[Equation 5.2 by dividing the posterior
p into py and p,. The py is the posterior obtained by the filter classifier that
estimates the confidence of an instance for prediction as max; ps(y = jlz) > 0,
and decides whether to predict using the predictor classifier on the basis of the
confidence. The predictor classifier provides the posterior p, that finally pre-
dicts the class of those that the filter does not reject, as arg max; p,(y = jl|x).

represents a reject option based on consisting of the

filter and predictor.

arg max pp(y = jlz), if maxpy(y = jlx) > 6
J ! (5.2)

<
Il

reject, otherwise.

A classifier generally plays the roles of filter and predictor for a reject option,
where p¢(y = jlx) = pp(y = jlx). In contrast, the main idea of this work is
the separate use of filter classifier C; and predictor classifier C,, which are
used to obtain the respective values of p¢(y = jlx) and p,(y = j|z). Each

classifier is trained using the best respective classification algorithm to maximize
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Algorithm 4 Training phase of the hybrid reject option

Input: training dataset D = {x;,y;}Y ,, classification algorithms Ay, A,
Output: filter Cy, predictor C,

1: procedure TRAINING

2: Cy « filter classifier trained from D using Ay

3: Cp < predictor classifier trained from D using A,

4: end procedure

the capability of the classifier’s role. Thus, we aim to improve reject option

performance as the accuracy increases for the same degree of rejection.

The training phase for the proposed method involves training of the filter
and predictor. Suppose that a training dataset D = {«;, yi}ij\il, where z; € R?
is an input vector and y; € {1,2,...,c} is the corresponding target value,
the classification algorithm for filter Ay, and the classification algorithm for
predictor A,, are given. Regarding the classification algorithms, we assume
that classifiers from them provides a posterior for each class when classifying
an instance. First, the filter classifier Cy is trained with D using the classification
algorithm A¢. Then, the predictor classifier C, is also trained with D using A,,.
The resulting two classifiers, Cy and C,, constitute a hybrid classifier system for

the proposed method. represents the pseudocode for the training

phase.

In the test phase, classification for a new instance x is performed as fol-
lows. First the posterior pf(y = jl&) is computed using the filter C¢ for each

class, and the confidence becomes max; p¢(y = j|x). When the confidence value
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Algorithm 5 Test phase of the hybrid reject option

Input: new instance x, filter Cy, predictor C,, threshold ¢

Output: predicted label g

1: procedure TEST

2:

3:

8:

9:

{pr(y = jlz)}5—; < Cy(x)
confidence(x) + max; p¢(y = j|x)
if confidence(x)< 6 then

§ <-NULL
else

{pp(y = jl)}5=1 < Co(x)

§ < argmax; py(y = jlx)

end if

10: end procedure

is smaller than the pre-defiend threshold 6, we reject classification for the in-
stance . Otherwise, the posterior p,(y = j|x) is computed using the predictor
Cp, and the instance is classified according to the class with the maximum pos-

terior, arg max; py(y = j|x). The pseudocode of this procedure is described in

can be applied to multi-class classification directly, regardless of classification
algorithms. We can easily control the trade-off between accuracy and rejection

by changing the rejection threshold. In addition, several classifiers can constitute

a hybrid filter by aggregating confidences obtained from the classifiers.
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5.3 Application to Anti-diabetic Drug Failure Predic-

tion

5.3.1 Problem Definition

In recent times, diabetes is one of the most prevalent diseases, with the num-
ber of patients increasing continuously. Among these patients, type 2 diabetes
accounts for 85~90% (Bennett et all 2007), and therewith, research on the
treatment of those patients has been actively conducted. Most patients with
type 2 diabetes are under treatment by ingesting oral hypoglycemic agents and
insulin in order to achieve the desired glucose level.

When a patient with type 2 diabetes receives a prescription for treatment,
he or she can get check the results after 2~6 months on the medication. Predict-
ing the prescription results in advance is an important issue. It is much more
important to predict the results for those whose treatment fail. However, this is
difficult because the treatment results of type 2 diabetes are highly related to
multiple factors such as patient characteristics, type of treatment, and presence
of complications. Moreover, the efficacy can also be affected by the interaction
of various drugs. In order to deal with the complex relationship of these vari-
ous factors, a machine learning approach based on Electronic Medical Records
(EMR) data is being considered to predict the treatment results (Huang et al.,
2007; Kang, Kang, et al., 2015).

In particular, this prediction problem can be defined as a typical classifica-
tion problem in machine learning. For the classification problem, a classifier is

trained using a set of instances in which an instance consists of such factors,
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with the prescription as input variables and the results as output variables.
This classifier predicts results caused by an instance for a current prescription.
However, real-world deployment of this approach is limited due to high misclas-
sification costs, especially misclassification for treatment failure, in the medical
domain. To cope with this limitation, it is much better for human experts to
examine those for whom results are difficult to predict than for the classifier to
predict fully.

Therefore, we must consider a reject option, which rejects ambiguous in-
stances instead of predicting for all instances. Thus, the rejected instances can
be conveyed to human experts for careful investigation. The reject option sup-
ports reliable prediction for a classification problem when the classifier is im-
perfect because of fundamental reasons, such as noisy data, inductive bias of
the classifier, and lack of input variables.

Considering the anti-diabetic drug failure prediction problem, the reject
option would be effective because some factors, such as personal efforts and
patient life styles, are hard to quantify as input variables despite their significant
importance. The desired prediction accuracy can be obtained by using only
prediction results with high confidence. By doing so, patients can be managed
efficiently by concentrating more on those who result in low confidence or are

predicted as treatment failure with high confidence.

5.3.2 Data Description

The effectiveness of the proposed hybrid reject option was demonstrated through

experiments on the anti-diabetic drug failure prediction. The EMR data for
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patients with type 2 diabetes, which was collected from the SNUH during
2008~2012, was used in the experiments (Kang, Kang, et al., [2015). Data col-
lection was conducted after the protocol had been approved by the Institutional
Review Board of the SNUH. A patient who received the physical examination
and the HbA;. test received a prescription within a week. After 2~6 months,
the patient received the test again to check the prescription efficacy. The data
were reconstructed so that an instance consists of a prescription record, the pa-
tient characteristics at this moment, and the corresponding before/after HbA .
test results. Instances with missing values were excluded. As a result of the

preprocessing, we obtained a total of 27,836 instances of 2,995 patients.

The input and output variables used in the experiments are summarized in
The input variables include patient characteristics, prescriptions for
diabetes and others, and the HbA;. test record, so that a patient’s condition
and presence of complications were also considered. Regarding a prescription
for diabetes, we used a daily dose of each hypoglycemic agent, except that
insulin is binary. Regarding prescriptions for others, we used variables in which
each variable indicates whether a drug category is prescribed. All continuous
input variables were normalized to be in the scale of [0, 1]. The output variable
was divided into three categories based on the HbAj. test record after 2~6
months of the prescription: Cl(general goal, < 7.0), C2(less stringent goal,
> 7.0 and < 8.0), and C3(failure, > 8.0). describes the distribution
of the output variable. Note that, the ratio of C1 increases, whereas that of C2

and C3 decreases with time.
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Table 5.1 Variable description L}
ol
Category N. Variables Variable Names Variable Type il L
. . . . . I
Input Patient 7 Gender, Age, Height, Weight, BMI (Body Mass Index), SBP (Systolic Blood Continuous -
Variables  characteristics Pressure), DBP (Diastolic Blood Pressure)
Prescription 18 Acarbose, Exenatide, Glibenclamide, Gliclazide, Glimepiride, Gliquidone, In-  Continuous
for diabetes sulin (injection), Linagliptin, Metformin, Mitiglinide, Nateglinide, Pioglitazone, (daily dose)
Repaglinide, Rosiglitazone, Saxagliptin, Sitagliptin, Vildagliptin, Voglibose
Prescription 16 Non-steroidal anti-inflammatory drugs, Endocrine agents, Anesthetics, Binary
for others Immunosuppressant & Electrolyte supplements, Alimentary tract and (1: prescribed, o
ee]
metabolism, Cardiovascular system, Nervous system, Mineral supplements, 0: not prescribed)
Amino acid, Sensory organs, Contrast media, Dermatologicals & Genito-
urinary system and sex hormones, Antiinfectives for systemic use, Antineo-
plastic agents, Antihistamines, Respiratory system
Test record 1 HbA ;¢ (within a week before prescription) Continuous
Output 1 Anti-diabetic drug failure Categorical
Variable (2-6 months after prescription, C1 when HbA;. <7.0, C2 when >7.0 and <8.0, (CI: general goal,

C3 when >8.0)

C2: less stringent goal,

C3: failure)




Table 5.2 Data summary

Year N. instances C1(general goal) C2(less stringent goal) C3(failure)

2008 5,009 1,747 (34.9%) 2,121 (42.3%) 1,141 (22.8%)
2009 5,340 1,982 (37.1%) 2,190 (41.0%) 1,168 (21.9%)
2010 5,590 2,306 (41.3%) 2,204 (39.4%) 1,080 (19.3%)
2011 5,829 2,382 (40.9%) 2,314 (39.7%) 1,133 (19.4%)
2012 6,068 2,614 (43.1%) 2,279 (37.6%) 1,175 (19.4%)
Total 27,836 11,031 (39.6%) 11,108 (39.9%) 5,697 (20.5%)

5.3.3 Experimental Settings

For training classifiers as a filter or a predictor, the three classification algo-
rithms evaluated their respective suitability: SVM, RF, and ANN. These algo-
rithms can deal with non-linear relationships and are known to provide high
prediction accuracy. RF and ANN provide the posterior of each class for multi-
class classification directly, whereas SVM was originally designed for binary
classification. Thus, [H.-T. Lin et al. (2007)’s method was adopted to estimate
the posterior of the SVM based on one-against-rest approach. In addition, we
designed two hybrid filters, HYB+ and HYB X, that fuse the confidences of the
SVM, RF, and ANN filters. HYB+ and HYB x compute the confidence as sum-
mation and multiplication of the confidences from those filters, respectively. All

algorithms were implemented in MATLAB.

The sliding window test procedure was conducted to assess each classifier.
The basic idea of this procedure is to use past data for training and future data

for test; thereby it is appropriate for prediction problems. In our experiments,
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Table 5.3 Parameter settings for each algorithm

Algorithm  Parameter Setting

SVM C=273,...,2%0
Kernel type=RBF kernel

0=2"5,...,2°

RF N. Trees=100
Bootstrap sample size=80%

Min. instances in a leaf node=1, 2, 5, 10, 20, 50, 100

ANN N. hidden nodes=3,4,5,...,20

Max. iterations=300

the classifiers using the data of year ¢t —2 and ¢ — 1 predicted the data of year ¢,
t = 2010, 2011, and 2012, respectively. For each classifier, the best parameters
were chosen from the parameter search space in[Table 5.3 to maximize validation
accuracy. All experiments were performed through ten independent runs by
randomizing the index of training and validation, and the results were averaged

over those runs for confidence.

In order to evaluate the performance of the reject option, we used the Area
under Accuracy-Rejection Curve (AuARC) which plots the accuracy against the
rejection rate with a change of the rejection threshold (Nadeem et al., 2010)).
Thus, it measures the trade-off between accuracy and rejection in a threshold-

independent manner.
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Table 5.4 AuARC comparison results on anti-diabetic drug failure prediction

problem
Year  Predictor Filter
(test) SVM RF ANN HYB+ HYBx
2010 SVM 77.70£0.72 80.83+0.26* 80.81+0.38* 81.16£0.21%* 81.2540.20*
RF 78.77+£0.38  81.18+0.25 80.86+0.33 81.484+0.16* 81.544+0.16*
ANN 78.8440.46 80.99+0.20 81.03+0.34 81.5440.15* 81.60+0.16*
2011 SVM 80.8040.30 80.94+0.29 81.36+0.26* 81.82+0.18* 81.824+0.17*
RF 80.74+0.39 @ 81.5540.28 81.46+0.23 82.054+0.20* 82.06+0.19*
ANN 80.84+0.30 81.0940.21 81.4540.32 81.884+0.17* 81.8940.15*
2012 SVM 81.874£0.20 81.69+0.18 82.214+0.30*  82.7240.19%* 82.734+0.19*
RF 81.79+£0.20 & 82.07£0.19 82.13+0.24 82.774+0.17* 82.7940.17*
ANN 81.84+0.20 81.8140.22 82.2140.29 82.744+0.18* 82.754+0.18*
5.3.4 Experimental Results

The reject option performance was measured for the 15 combinations of filters

and predictors in terms of AuARC. shows the mean and standard

deviation of AuARC values over ten independent runs. A gray-shaded value

indicates the baseline reject option, in which the filter is identical to the pre-

dictor. The numbers in bold indicate the best AuARC obtained over the filters,

and an AuARC marked with an asterisk indicates that the corresponding hy-

brid reject option is significantly better than the single reject option at the 0.01

level of confidence according to the paired t-test. Overall results show that the

hybrid reject options with a hybrid filter outperform the baselines with a statis-
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Table 5.5 Accuracy (%) by varying rejection rate for the baseline and hybrid

reject options

Year  Method Filter/Predictor ~Rejection Rate (%)
(test) 0 20 40 60 80 100
2010  Best Baseline RF/RF 68.12 7212 76.33 8237 91.72 100

Best Hybrid ~ HYBx/ANN 68.03 7246 76.62 83.13 92.15 100

2011  Best Baseline RF/RF 68.92 73.12 7775 83.21 90.79 100
Best Hybrid ~ HYBX/RF 68.92 73.08 7739 83.32 91.66 100
2012  Best Baseline ANN/ANN 67.76  72.27 7751 84.44 93.78 100
Best Hybrid ~ HYBX/RF 68.15 72.75 78.04 84.95 94.74 100

tical significance. Regarding the hybrid filter, HYB x was slightly better than
HYB+. According to the results, the proposed hybrid reject option improves

the trade-off between accuracy and rejection.

We compared the best hybrid reject option with the best baseline for each
year with respect to the accuracy corresponding to rejection rate change.
shows the comparison results. The accuracy improved as the rejection
rate increased. The hybrid reject option mostly yielded a better accuracy than
the baseline for the same rejection rate. In particular, the gap was greater when
the rejection rate was large. Overall, rejection of 50% and 80% provided approx-
imately 80% and over 90% of accuracy, respectively. Considering the dataset
does not reflect the individual habits and efforts that were not available for this

study, this classification accuracy can be said to be a meaningful result.

The comparison was also performed in terms of the miss rate, which is
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Table 5.6 Miss rate (%) by varying rejection rate for the baseline and hybrid

reject options

Year  Method Filter /Predictor ~Rejection Rate (%)

(test) 0 20 40 60 80 100

2010  Best Baseline RF/RF 31.76 26.05 1840 9.14 1.02 0
Best Hybrid ~ HYBx/ANN 26.12 2096 15.16 6.39 0.70 0

2011  Best Baseline RF/RF 25.38 19.87 1210 425 025 O
Best Hybrid HYBx/RF 25.38 18.04 10.26 273 0.15 O

2012  Best Baseline ANN/ANN 21.83 1585 9.12 1.73 048 O
Best Hybrid ~ HYBXx/RF 26.16 1825 937 155 022 0

defined as the ratio of C3 instances that are predicted as C1 or C2. Thus, the

miss rate looks for misclassification for the failure, which is the major interest

for this prediction problem. As shown in we found that the miss rate

decrease when more instances were rejected, and the hybrid reject option is

superior to the baseline. The miss rate of the hybrid reject option was reduced

by 50% and less than 1% for 40% and 80% rejection, respectively.

5.4 Summary

For medical prediction, such as anti-diabetic drug failure prediction, it is essen-

tial to ensure high prediction accuracy, but achieving this is difficult in practice.

A reject option can be considered to avoid prediction for uncertain instances

to address the problem. In this chapter, we proposed a hybrid reject option for
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multi-class classification to achieve the better trade-off between accuracy and
rejection.

The proposed method utilizes the two components, filter and predictor, for
a reject option. Each component is trained separately using the best respec-
tive algorithm, thereby improving the reject option performance. This method
can be applied to multi-class classification directly regardless of classification
algorithms. The proposed method was applied to the anti-diabetic drug failure
prediction problem for type 2 diabetes. We conducted experiments on the EMR
data for patients with type 2 diabetes to predict drug failure in the three cate-
gories. As a result, the proposed method was found to be effective for achieving
a better trade-off of accuracy and rejection. In particular, the hybrid filter,
which fuses confidences from different classifiers, yielded the best performance
for every case.

The desired prediction accuracy can be obtained by controlling the rejection
threshold. By ensuring the desired accuracy in practice, treatment efficacy can
be predicted at the moment of prescription, which offers an in-depth analysis
to those prescriptions that are predicted as failure or rejected. Furthermore, it
is expected to provide clues to discovering additional input variables that are
not considered currently, by analyzing prescription cases with results that are
difficult to predict. Thus, the prediction can be enhanced by adopting those

additional input variables.
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Chapter 6

Heterogeneous Ensemble for Fast
Classification

6.1 Run-time Speed on Multi-class Classification

The main concern of classification problems is to achieve a high classification
accuracy. Besides, there are several issues in deployment of classifiers to real-
world problems. One is the training and test speed of a classifier. The majority of
studies focus on accelerating the training speed of the classifier. The test speed
of the classifier, however, is much more important in real-world deployments.
In most cases, training is carried out before applying the classifier, and often
not subject to a time limit. On the other hand, the classifier works under time
constraints when deployed to make predictions on new instances, hence, fast
test speed is demanding. This issue can be interpreted as acceleration of the

run-time speed of the classifier.

The issue becomes more serious when solving a multi-class classification
problem because it generally involves construction of an ensemble based on

decomposition strategies. The ensemble requires a large computational burden

87 :



in its test phase because it is constituted by multiple classifiers. Taking into
account of SVM, an ensemble have to be constructed to solve a multi-class
classification problem because SVM is originally designed for binary classifi-
cation. In addition, SVM requires more computational burden to classify an
instance, while it usually yields better classification accuracy than other classi-
fication algorithms. Thus, it is important to reduce the computational burden
for practical deployments.

In the test phase, SVM takes O(Ngy) of its computational complexity,
where Ngy is the number of support vectors. By alleviating its complexity, the
usability of SVM for real-time applications would be enhanced. To lessen the
computational burden of SVM in the test phase, many researchers have focused
on reducing the number of support vectors directly (Burges, 1996; Downs et al.|
2002; Y. Li et al., [2006; |Q. Li et al., [2007}; |[Liang et al.l 2013} [H.-J. Lin & Yeh,
2009), and approximating kernel functions (Maji et al., [2008, 2013; |Vedaldi &
Zisserman, 2012). These efforts just tried to modify an SVM partially, where-
upon they were limited to the structural characteristics of the SVM. In order
to obtain better results, heterogeneous ensemble learning, which put together
with different models, can be taken into account.

There are two major types of heterogeneous ensemble methods to increase
the test speed for complex algorithms. The first approach is to use a simple,
fast model that roughly processes the test instances. Only uncertain or crucial
instances are processed by a complex, high-performance model. This approach
reduces the number of test instances directly processed by the complex model

to lessen its test complexity. Several studies employed an SVM as the complex
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model. |X. Xu et al. (2005) employed a Rocchio classifier as a simple model for
text categorization problems. M. A. Kumar and Gopal (2010) and Ji and Zhao
(2013) used DT and kNN, respectively, for binary classification problems. The
second approach is to have a simple, fast model that replicates a complex model.
This approach can be thought of as a function approximation problem. [Schmitz
et al.| (1999) presented a DT-based approximation of an ANN to yield fast
test speed and high interpretability with little prediction loss. |[Chen and Chen
(2004) used multiple simple classifiers to approximate an SVM for classification
problems. Applying these approaches would be beneficial to improve the test

speed.

In this chapter, we propose a heterogeneous ensemble method called Neural
Network Approximator (NNA) (Kang & Cho, 2014) that is an ANN regression-
based method for approximation of a complex classifier. The proposed method
follows the second approach and seeks to approximate the classifier using an
ANN approximator to achieve a high test speed without sacrificing classifica-
tion accuracy. For a multi-class classification problem, NNA adopts a multiple-
outputs ANN whose output nodes correspond to the several decision functions
of the classifier. Only a few number of decision function should be approximated
regardless of the number of base classifiers involved. Thus, we can yield similar
prediction results with less computational burden by employing the ANN as
an approximator of the classifier. Several experiments are conducted on bench-
mark datasets in order to verify the effectiveness of the proposed method for

approximation of SVM ensembles.
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6.2 Neural Network Approximator

It is well-known that ANN, on its own, shows good fitting performance for
regression problems. In addition, the fitting performance of the regression al-
gorithm for a function is better than that for a noisy dataset. Paying attention
to this point, we introduce a method, named NNA, to approximate a classifier
using an ANN. The proposed method solves multiple regression problems to
predict the function values of the decision functions. The decision functions
in the classifier are approximated with nodes of a multiple-outputs ANN. By
doing so, the classifier plays a role in removing noise from the dataset, and the
ANN just approximates the refined dataset generated by the classifier. The aim
of the proposed method is to obtain the ANN approximator that has the same

classification accuracy and requires less test time compared to the classifiers.

To demonstrate the appromiation performance of the ANN, il-
lustrates the functions obtained by SVM, ANN, and NNA, respectively, on the
Motorcycle dataset (Silverman, [1985). In this figure, an ANN and an SVM are
trained with the original training instances, while NNA refers to another ANN
trained with the function values of the SVM. As shown, the regression function
of NNA almost completely fits that of the SVM, and is different from that of
the ANN, which indicates that NNA approximates the SVM with maintaining

the similar prediction results.

The approximation process is as follows. Given a set of decision functions
in a classifier F = {f1,..., fjr} and the training dataset D = {z, yt}ivzll where

x; € R? is an input vector, and y; € {1,...,¢} is its corresponding target
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Figure 6.1 Estimated regression function of ANN, SVM and NNA on Motorcycle

dataset

value, the function values si € R of each decision function f;, i = 1,...,|F],
are computed for all instances in D. Then, the dataset D’ is constructed using
the input vectors and obtained function values as {x;, (s, 57, .. ., SLF|)}(wt7yt)e’D.
Finally, an multiple-outputs ANN is trained as a function approximator to fit

the function values in the dataset D’. The resulting ANN, as an approximation

of the classifier, can be used for testing new instances instead of the classifier.

The pseudocode of NNA is described in

NNA is more effective for approximation of an ensemble. Although the en-
semble generally consists of numerous base classifiers, classification for an in-

stance is performed only by a few number of decision functions. Considering an
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Algorithm 6 Neural Network Approximator (NNA)

Input: training dataset D = {x;, 1}, set of decision functions in classifier

F={fi,-- fic;}

Output: approximator fg

1: procedure NNA

2: for i =1 to |F| do

3: st fi(xy), Y(xg, 1) €D

4: end for

5 D {xe (sh 5P 5t ) Mergen

6: fr + multiple-outputs ANN trained from D’

7: end procedure

hidden nodes

decision function
(class 1 —class 2)

decision function
(class 2 — class 3)

decision function
(class 1 —class 3)

Figure 6.2 Neural network diagram of NNA for 3-class classification problem

based on one-against-one approach
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ensemble based on the one-against-one approach for a multi-class classification
problem, only ¢(c—1)/2 decision functions should be approximated regardless of
the number of base classifiers involved in the ensemble. The decision functions
in the ensemble are integrated into the ANN. shows the example
network diagram of NNA for a three-class classification problem based on the
one-against-one approach. Each output node in the network corresponds to a
decision function in the ensemble.

The proposed method can be applied to most types of ensembles such as
of and [4, while it is more effective for SVM ensembles. The major
operations of SVM and ANN in the test phase are the kernel and sigmoidal
functions computation, respectively. Considering the RBF kernel as the kernel
function for SVM and logistic sigmoid function as the sigmoidal function for
ANN, these two computations are similar. and [6.2] are the typical
form of the RBF kernel function and the logistic sigmoid function, respectively.
The decision function of SVM or the regression function of ANN is computed by

linear aggregation of the RBF kernel function or the logistic sigmoid function.

k(z,z') = exp ("”_“"”2) (6.1)

202

1
 1+exp(c+wlx)

h(x) (6.2)

In the test phase, SVM takes O(Ngy ) of its computational complexity. The

support vectors are chosen among training instances in the training process.

93
I

] 2-t) &) 3

'||



For an SVM, a set of support vectors determines the decision boundary in the
feature space. Thus, the set of support vectors tends to grow as the size of the
dataset increases. In some cases, almost the whole training instances can be
the support vectors. The computational complexity of ANN in the test phase is
O(Ngn), where Ny is the number of hidden nodes. Unlike SVM, the number
of hidden nodes of an ANN highly depends on the nature of the dataset. For
this reason, the number of support vectors of an SVM is generally larger than
that of hidden nodes of an ANN for a dataset, and moreover, more gaps appear
as the dataset grows. Consequently, ANN is more advantageous than SVM in
terms of the amount of computation. Furthermore, the proposed method is more
advantageous for the SVM ensemble. This is because each decision function is
associated with a different set of support vectors for an SVM ensemble, whereas
the regression functions of the ANN are determined by a common set of hidden

nodes with different weights.

6.3 Performance Evaluation on Benchmark Datasets

6.3.1 Data Description

To validate the approximation performance of the proposed method, the fol-
lowing ten benchmark datasets were chosen from the UCI repository (Bache &
Lichmanl 2014): Iris, Wine, Sonar, Glass, lonosphere, BreastCancer, Vechicle,
Vowel, Yeast, and Segment. shows the descriptions for the datasets.
All datasets were partitioned into 70% for the training set and 30% for the test

set. Additionally, all numerical features were normalized to be in [-1, 1].

94



Table 6.1 Data summary

Dataset N. instances N. features N. classes N. training N. test
Iris 150 4 3 105 45
Wine 178 13 3 125 53
Sonar 208 60 2 146 62
Glass 214 9 6 150 64
Tonosphere 351 34 2 246 105
BreastCancer 683 9 2 478 205
Vehicle 846 18 4 592 254
Vowel 990 10 11 693 297
Yeast 1484 8 10 1039 445
Segment 2310 19 7 1617 693

6.3.2 Experimental Settings

The effectiveness of the proposed method was evaluated for the SVM ensemble
approximation problem. For SVM, the one-against-one approach, which has
been reported to show higher accuracy than other approaches (Hsu & Lin)
2002), was adopted to extend SVM for multi-class classification problems. Thus,
the decision functions of the binary SVMs for each class pair were replaced with
¢(c — 1)/2 output nodes of an ANN for NNA. In addition, we employed ANN
trained on training set as a baseline.

The RBF kernel function was adopted as a kernel function for SVM. For
ANN, the Levenberg-Marquardt back propagation algorithm, which performs
better for regression problems (Hagan & Menhaj, [1994), was employed. The

number of hidden layers was set to 1. In addition, the logistic sigmoid function
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was used as the sigmoidal function. For all algorithms, the best parameters were
found using ten-fold cross validation on the training dataset with a grid search
mechanism. The best parameters for the SVM were explored on a two dimen-
sional grid search with C' = {273,272, ... 210} and o0 = {275,274, ...,2%}. All
experiments were performed in MATLAB.

The classification performance was evaluated using the misclassification er-
ror rate (%) which is defined by (1/N) SN Ly, 4, % 100, where N is the num-
ber of test instances, y; is actual class of the t-th instance, g; is predicted class
of the ¢-th instance, and 1,,y, is an indicator function that has value 1 when
Yyt # Y In addition, test time and the number of support vectors or hidden

nodes were measured to validate the effectiveness of the proposed method.

6.3.3 Experimental Results

presents the classification results that compare the proposed NNA
with a conventional SVM. NNA, the proposed method, has a similar error rate
to the SVM, but shows significantly lower test time on every dataset. ANN,
the baseline, has worse prediction accuracy than NNA on most datasets. On
average, the proposed method achieved approximately 89.6% reduction in test
time. Moreover, the test time was further reduced for large-scale datasets. For
example for the Yeast dataset, the number of support vectors for SVM was 752
while there were only 12 hidden nodes for NNA. Therefore, the test time was
reduced by 96.5%.

plots the number of support vectors and hidden nodes against

dataset size for each dataset. As shown in this figure, as the dataset size grows,
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Figure 6.3 Comparison between the number of support vectors for SVM and

the number of hidden nodes for NNA

the number of support vectors of SVM greatly increases while the number of

hidden nodes of NNA does not.

6.4 Application to Semiconductor Die Failure Predic-

tion

6.4.1 Problem Definition

In recent years, semiconductor manufacturing has become more lengthened and

complex owing to technological advances. Accordingly, a large amount of data is

being generated in real-time during each step of the manufacturing process. This
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data has received considerable attention from researchers for yield management
and enhancement (N. Kumar et al., [2006; |Shin & Park, 2000; Chien et al., [2007)

The semiconductor manufacturing process can be divided into four basic
steps: wafer fabrication, wafer test, assembly, and final test (Uzsoy et al., 1992).
The first step is wafer fabrication, which involves building different layers on a
wafer with a number of operations in order to produce the required circuitry
for the dies of the wafer. After wafer fabrication, wafer test is conducted to
analyze and evaluate the electrical properties of the dies in a wafer. Defective
dies are filtered out based on the results of this step. Only dies that are not
defective proceed to the assembly step in order to obtain packaged chips as final
products. The chips are graded as success or failure through a functional test
called final test. The final test involves hot test and cold test to evaluate the
functionality of a chip in hot and cold environments, respectively.

During wafer test, defective dies with a high probability of failing the final
test are filtered out, and only repairable dies proceed to the subsequent steps
(Y. Park et al., 2015)). However, some faulty dies pass the wafer test, which then
ultimately fail the final test (An et al., [2009; [S. H. Park et al. 2013)). There
are a variety of possible reasons to explain this. The wafer test is performed
with a finite number of test items due to constraints in time and cost, thus the
quality of the dies are underdetermined. Another possibility is that progressive
failures may occur after the wafer test. In any case, this problem degrades the
final yield and hinders the manufacturing process.

A machine learning approach is worth considering in order to exploit the

wafer test data to predict the die-level results of the final test before assembly.
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Figure 6.4 Application of a prediction model to final yield management

This approach is data-driven that does not require domain knowledge or as-
sumptions. The final yield could be managed as suggested in when
it is possible to predict the results of the final test accurately. The final test
could be omitted for dies that are certain to pass, whereas no further steps
would be required for those certain to fail. Only uncertain dies would proceed
to the subsequent steps. Thus, the final test, which leads to time and cost, is
unnecessary for dies that are predicted either to pass or fail. Additionally, the
final yield can be enhanced by investigating the causes of those predicted to fail
the final test, and rejecting them in advance at the wafer test.

Kang, Cho, An, and Rim| (2015) proposed to use a RF 2001)),

which involves training of several randomized decision trees, for this prediction

problem. The RF is suitable for our problem because of the following reasons.
It achieves accurate and reliable prediction by aggregating the predictions of
individual trees, is able to deal with the non-linear relationship between input
and output variables, is robust to outliers owing to the property of decision

trees, and runs effectively on large scale datasets. Two prediction models were
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built separately for each type of failure using the RF, because it is known that
the characteristics of hot and cold failures are different. Each prediction model
provides scores regarding whether a new die will fail, ranging from 0 to 1, for
a failure type. They found the effectiveness of the RF to predict the die-level
result in the final test via experiments on a real-world dataset.

An important consideration here is that the prediction must be performed
instantly, while the computing resources are limited in the manufacturing pro-
cess. However, the RF typically has low test speed because of its complexity
in the test phase. Thus, in this section, NNA is applied to raise the prediction
speed by approximating the RF. Experiments are conducted on a real-world

dataset to confirm the effectiveness of NNA for this problem.

6.4.2 Data Description

The data were collected during a week in 2014 from a semiconductor manufac-
turer in the Republic of Korea. Only repairable dies were used in the experi-
ments. The data originally contained 49 input variables, each of which corre-
sponds to a test item in the wafer test, and a single output variable for the final
test result. The final test result belongs to one of the following three categories:
success, hot failure (the dies that fail the hot test), and cold failure (the dies
that pass the hot test but fail the cold test). The fraction of failure in the data
was under 1%, meaning that there is a severe class imbalance.

In addition, five variables were derived to be used as input variables: the
distance of the die from the wafer center, previous final yield at the die po-

sition (hot and cold failure), wafer test success rate of the adjacent dies, and
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abnormalities of the wafer map pattern. We also tried to utilize interaction
variables of the proposed variables, but there was no significant improvement
in prediction performance. Thus, we did not use these interaction variables for
the sake of simplicity in description. The five derived variables were used to
predict whether a die pass or fail the final test more accurately, by employing
them as input variables for the prediction models. Thus, the prediction models

were trained with 54 input variables.

6.4.3 Experimental Settings

Regarding training of the original prediction models, the bootstrap sample size
and the minimum number of instances in a leaf node were set as 80% and
1% of the training set, respectively. Other settings were left as default settings
of the TreeBagger function in MATLAB. The two prediction models, each
corresponds to a failure type, were approximated by a single ANN model using
NNA. Thus, the ANN model has two output nodes. The number of hidden nodes
for the ANN model was set to 10.

Regarding model validation, the sliding window test procedure was con-
ducted. The basic idea of this procedure is that the present is tested by reference
to the near past, and the present predicts the near future. This is suitable when
the data characteristics change with time, such as in semiconductor manufac-
turing. In this experiments, the data were partitioned by day. Thus the model
that was trained at day t is used to predict the data for day t+1,¢t=0,1,...,6.
For each day’s training set, under-sampled data, including 100, 000 instances of

success dies and 1,000 instances of failure dies for each failure type, were used.
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The entire data for a day constitutes the test set.

Classification accuracy, a most popular criterion, is not appropriate for this
highly class-imbalanced data because just a simple guessing of predicting all
instances as the majority class provides the accuracy above 99%. Thus, the
Area under Receiver Operating Characteristics (AuROC) was employed as the
criterion for the performance. The AuROC is defined as the area under the
ROC curve, which plots the true positive rate against the false positive rate
with varying the decision threshold of pass/fail. Thus, the AuROC measures
the overall prediction performance in a threshold independent manner. This
values were computed for each failure category against success category, as
AuROChoT and AuROCcorp- Note that, a single threshold has to be used
in practice, and this threshold can be chosen according to the purpose of the

prediction modeling.

6.4.4 Experimental Results

shows the approximation results on the semiconductor die failure pre-
diction problem. The prediction results of the RF for a day was obtained using
the two prediction models, and that of NNA were obtained using a single ap-
proximator for the two prediction models. The prediction performance changed
with time, where the pattern of the change according to time differed depending
on the type of failure. For example, the AuROC of hot failures was the best on
the fifth day, whereas the performance of cold failures was the worst on that
day.

Overall, the test time was reduced by 99.118%, while the AuROC difference
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Table 6.3 Approximation results on semiconductor die failure prediction problem

Day (test) Random Forest NNA Comparison

AuROCgor AuROCcorLp Test time AuROCgor AuROCcorp Test time AuROCgor AuROCcoLp Test time

(s) (s) difference difference reduction rate (%)
1 71.918 68.960 231.620 71.931 68.753 1.948 0.013 0.206 99.159
2 75.599 71.158 120.564 75.276 70.774 1.068 0.323 0.384 99.114
3 74.883 72.046 109.882 74.862 71.726 0.981 0.021 0.319 99.108
4 75.555 69.240 124.056 75.605 69.053 1.122 0.051 0.187 99.096
5 76.449 66.006 130.454 76.623 65.570 1.148 0.173 0.436 99.120
6 71.435 69.721 102.865 71.850 69.690 0.917 0.415 0.032 99.109

Average - - - - - - 0.166 0.261 99.118
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for the hot and cold failures were 0.166 and 0.261, on average. This indicates
that NNA significantly improves the prediction speed without compromising
the prediction accuracy. Thus, the use of NNA provides the desired prediction
speed for practical deployment of the prediction models. However, the predic-
tion performance should be improved before deploying the prediction models
in practice.

When a prediction model is deployed, the prediction performance of the
model may decrease as time goes on due to the gradual change of the data
characteristics including the importance of each input variable. Thus, the pre-
diction performance of the model should be monitored and the model has to be

updated periodically to reflect the recent change of the data characteristics.

6.5 Summary

The major drawback of a multi-class classifier is its low speed in the test phase,
while relatively few studies have been focused on test phase of the classifier
in spite of the importance of run-time speed. In this chapter, NNA, an ANN
based heterogeneous ensemble method to achieve faster test speed of the clas-
sifier was proposed. The proposed method approximates the classifier using a
multi-outputs ANN where each node corresponds to the decision function in
the classifier. The distinguishing point of the proposed method over existing
work is that the approximation problem of the classifier is converted into the
regression-based function approximation problem. This can be explained as that

the classifier generates noise-filtered functions and the ANN just approximates
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these functions. Moreover, it is not strongly restricted by the structure of the
classifier. Instead, the structure of the ANN should be considered. Thus, if
higher run-time speed is required and some losses of classification accuracy are
allowable, we can manually employ the smaller number of hidden nodes rather

than choose the best number of hidden nodes through cross validation.

The proposed method was found to be effectively applied to an SVM en-
semble for multi-class classification, owing to the characteristics of SVM. The
regression functions of the ANN approximated the decision functions of binary
SVMs in the ensemble. Therefore, the application of the proposed method can
improve the practical usability of SVM, especially in real-time applications.
Experimental results on several benchmark datasets showed that the proposed
method achieved significant test time reductions compared to conventional SVM
without compromising prediction accuracy. Moreover, the proposed method was
much more effective for large-scale datasets. We explained this consequences by
the characteristics that the computation of the RBF kernel function for SVM
and the computation of the sigmoidal function for ANN are similar but the
number of hidden nodes of an ANN is generally smaller than the number of

support vectors of an SVM, for any dataset.

We examined the effectiveness of NNA to the semiconductor die failure
prediction problem using actual data from a semiconductor manufacturer. In
this application, the RF models were approximated to obtain faster prediction
speed. As a result, the test time of the prediction was reduced by 99% while
maintaining the prediction performance. This application is promising in that

accurate prediction of die fails in the final test enables the yield to be managed
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more effectively. The final test can be skipped for dies that will almost certainly
pass or fail, which leads to significant saving in time and cost. In addition, we
can conduct further investigation and take preemptive actions for those dies
that are predicted as fails, such as filtering out them at the wafer test step or
grading the quality of dies in advance. However, the prediction performance
should be improved before deploying the prediction models in practice. For
example, we can omit the final test for dies from the bottom 50% scores with
an acceptable tolerance when over 99% of the fail dies are included in the top
50% scores.

The proposed method can also be applied to various types of ensembles.
For meta-learning based ensembles such as ODOAO and HEOC, approximating
only a meta-classifier may be sufficient to achieve comparable classification
accuracy. In addition, the training speed can be enhanced by using any kinds
of regression algorithms that requires smaller test time than ANN. Thus, the

proposed method merits further investigation.
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Chapter 7

Conculsion

7.1 Contributions

Multi-class classification is a supervised learning task that is closely related
to various real-world applications. When deploying a multi-class classifier for a
multi-class classification problem, three issues are usually considered depending
on the characteristics of the problem. These issues are accurate, fast, and reli-
able classification, which determine the applicability of the classifier in practice.
This dissertation developed methods based on heterogeneous ensemble learning
to address the respective issues. These methods construct heterogeneous en-
sembles utilizing multiple classifiers that are trained using various classification
algorithms, where each classifier plays a different role to accomplish the desired
functionality.

For accurate classification, we proposed DOAO and ODOAO that construct
heterogeneous ensembles of binary classifiers. These methods are based on the
one-against-one approach, where base classifiers are trained for class pairs.
DOAO selects the best classification algorithm for each class pair as having

the minimum validation error, thereby yielded better classification accuracy
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than other one-against-one classifiers that are based on individual classification
algorithms. Besides, the effectiveness of DOAO is limited because the minimum
validation error does not always indicate the minimum test error, especially
when comparing heterogeneous classifiers, and proper fuse of the base classifier
can outperform the single best classifier. Thus, we proposed ODOAO to address
such limitations. ODOAQO constructs a heterogeneous ensemble where a meta-
classifier combines the outputs of the base classifiers for class pairs considering
non-linear relationship and high dimensionality. Through conducting statistical
test, we found that these heterogeneous methods achieved more accurate clas-
sification than homogeneous ones with statistical significance for benchmark
datasets.

In addition, we proposed HEOC utilizing diverse one-class classifiers. In this
method, the use of various one-class classification algorithms contributes to-
wards increasing the diversity of the ensemble, while stacking resolves the nor-
malization issues on different scales of outputs obtained from the base classifiers.
We also demonstrated the selective utilization of base classifiers by adopting a
stepwise variable selection procedure during stacking. The effectiveness of this
method was confirmed through experiments on benchmark datasets and text
categorization problems.

For fast classification, we proposed NNA to approximate a complex multi-
class classifier to reduce computational time in the test time. Since ANN, on its
own, has better fitting performance for a function than for a noisy dataset, NNA
utilizes ANN as a function approximator of the complex classifier. In detail, a

multiple-outputs ANN is employed to approximate the classifier, in which each
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output node correspond to a decision function in the classifier, thereby achieve
faster run-time speed without compromising prediction accuracy. NNA can be
applied effectively to an ensemble consisting of a number of base classifiers, be-
cause the ensemble only has a few decision functions. Moreover, NNA performs
very well as an SVM approximator because of their structural characteristics.
This method was found to be effective for benchmark datasets and semicon-
ductor die failure prediction problem.

For reliable classification, a hybrid reject option was proposed for better
trade-off between accuracy and rejection for multi-class classification. This
method is useful when high prediction accuracy of a classifier is essential due
to high misclassification costs. By applying a reject option, it is much better
for human experts to examine those for whom results are difficult to predict
than for the classifier to predict fully. The hybrid reject option utilizes the two
components, filter and predictor. Each component is trained separately using
the best respective algorithm to maximize the capability of its role. We con-
firmed the effectiveness of applying this method to anti-diabetic drug failure
prediction through experiments on real-world EMR data of type 2 diabetes, by
showing this method provided better prediction accuracy for the same degree
of rejection.

In conclusion, heterogeneous ensemble methods for each of accurate, fast,
and reliable multi-class classification were covered in this dissertation. Exper-
imental results showed that heterogeneous ensemble learning is a better way
to ensure desired performance for multi-class classification problems in prac-

tice. We also described three real-world applications that the proposed meth-
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ods are helpful: text categorization, semiconductor die failure prediction, and
anti-diabetic drug failure prediction.

Beside the effectiveness, heterogeneous ensemble learning also has its draw-
back on training time because a heterogeneous ensemble involves training of
numerous base classifiers. Thus, more training time is required for the het-
erogeneous ensemble. When the training phase is subjected to a time limit,
a homogeneous ensemble with individual superior algorithms, such as SVM,
is more preferable, while this compromises some prediction loss. However, we
usually have no certain knowledge that which algorithm performs best for a
dataset. In addition, training is carried out before applying the classifier in
most cases, therefore often is not subjected to a time limit. Under this cir-
cumstance, heterogeneous ensemble learning is a better way to obtain desired

performance.

7.2 Future Work

There are some limitations in this dissertation that should be addressed in
future work. First, the proposed methods exploit a broader hypothesis space
to achieve their goals, while an increase of complexity should be resolved. It
is known that the high complexity negatively affects to the classification per-
formance. Second, theoretical foundations of how each method works should
be studied. The effectiveness of the proposed methods was mainly confirmed
through experiments and statistical tests in this dissertation, while theoretical

analysis will support understanding this effectiveness. This includes analysis
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of the mechanism, bias-variance decomposition, and lower /upper bound of the
performance compared to homogeneous ensemble methods. Third, the effective-
ness should also be confirmed for unusual environments, such as very large scale
data and online learning with real-time data stream. The importance of these

environments is being emphasized as the era of big data arises.

113



2 A e

SECRIL WATIOMAL LIMINVERSTY



Bibliography

American Diabetes Association. (2014). Standards of medical care in diabetes—

2014. Diabetes Care, 37(Supplement 1), S14-S80.

An, D., Ko, H.-H., Gulambar, T., Kim, J., Baek, J.-G., & Kim, S.-S. (2009). A
semiconductor yields prediction using stepwise support vector machine.

In Proceedings of the 2009 IEEE International Symposium on Assembly

and Manufacturing (pp. 130-136).

Bache, K., & Lichman, M. (2014). UCI Machine Learning Repository. Retrieved

from http://archive.ics.uci.edu/ml

Ban, T., & Abe, S. (2006). Implementing multi-class classifiers by one-class
classification methods. In Proceedings of the International Joint Confer-

ence on Neural Networks (pp. 327-332).

Bennett, C. M., Guo, M., & Dharmage, S. C. (2007). HbAlc as a screening tool
for detection of type 2 diabetes: A systematic review. Diabetic Medicine,

2/ (4), 333-343.

Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern Recognition and Machine

Learning. Springer.

115 -


http://archive.ics.uci.edu/ml

Breiman, L. (1996). Bagging predictors. Machine Learning, 24 (2), 123-140.
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.

Burges, C. J. C. (1996). Simplified support vector decision rules. In Proceedings

of the 13th International Conference on Machine Learning (pp. 7T1-77).

Cai, D., Wang, X., & He, X. (2009). Probabilistic dyadic data analysis with
local and global consistency. In Proceedings of the 26th International

Conference on Machine Learning (pp. 105-112).

Cavalin, P. R., Sabourin, R., & Suen, C. Y. (2013). Dynamic selection ap-
proaches for multiple classifier systems. Neural Computing and Applica-

tions, 22(3-4), 673-688.

Cawley, G. C., & Talbot, N. L. C. (2010). On over-fitting in model selection and
subsequent selection bias in performance evaluation. Journal of Machine

Learning Research, 11, 2079-2107.

Cecotti, H., & Vajda, S. (2013). Rejection schemes in multi-class classification
— Application to handwritten character recognition. In Proceedings of

the 12th International Conference on Document Analysis and Recognition

(pp. 445-449).

Chen, J.-H., & Chen, C.-S. (2004). Reducing SVM classification time using
multiple mirror classifiers. IEFEE Transactions on Systems, Man, and

Cybernetics, Part B — Cybernetics, 34(2), 1173-1183.

116



Chien, C.-F., Wang, W.-C., & Cheng, J.-C. (2007). Data mining for yield
enhancement in semiconductor manufacturing and an empirical study.

Ezxpert Systems with Applications, 33(1), 192-198.

Chow, C. (1970). On optimum recognition error and reject tradeoff. IEEFE

Transactions on Information Theory, 16(1), 41-46.

Cyganek, B. (2012). One-class support vector ensembles for image segmentation
and classification. Journal of Mathematical Imaging and Vision, 42(2-3),

103-117.

Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets.

Journal of Machine Learning Research, 7, 1-30.

Dietterich, T. G. (2000). Ensemble methods in machine learning. In Multiple
Classifier Systems, Lecture Notes in Computer Science (Vol. 1857, pp.

1-15). Springer.

Dietterich, T. G., & Bakiri, G. (1995). Solving multiclass learning problems via
error-correcting output codes. Journal of Artificial Intelligence Research,

2, 263-286.

Downs, T., Gates, K. E., & Masters, A. (2002). Exact simplification of support

vector solutions. Journal of Machine Learning Research, 2, 293-297.

Duan, K.-B., & Keerthi, S. S. (2005). Which is the best multiclass SVM
method? an empirical study. In Multiple Classifier Systems, Lecture Notes

in Computer Science (Vol. 3541, pp. 278-285). Springer.

117



Dzeroski, S., & Zenko, B. (2004). Is combining classifiers with stacking better

than selecting the best one? Machine Learning, 54(3), 255-273.

Fumera, G., & Roli, F. (2002). Support vector machines with embedded reject
option. In Pattern Recognition with Support Vector Machines, Lecture

Notes in Computer Science (Vol. 2388, pp. 68-82). Springer.

Fiirnkranz, J. (2002). Round robin classification. Journal of Machine Learning

Research, 2, 721-747.

Galar, M., Ferndndez, A., Barrenechea, E., Bustince, H., & Herrera, F. (2011).
An overview of ensemble methods for binary classifiers in multi-class prob-

lems: Experimental study on one-vs-one and one-vs-all schemes. Pattern

Recognition, 44(8), 1761-1776.

Galar, M., Ferndndez, A., Barrenechea, E., Bustince, H., & Herrera, F.
(2013). Dynamic classifier selection for one-vs-one strategy: Avoiding

non-competent classifiers. Pattern Recognition, 46(12), 3412-3424.

Garcia, S., Fernandez, A., Luengo, J., & Herrera, F. (2009). A study of sta-
tistical techniques and performance measures for genetics-based machine

learning: Accuracy and interpretability. Soft Computing, 13(10), 959-977.

Garcia, S., Ferndndez, A., Luengo, J., & Herrera, F. (2010). Advanced non-
parametric tests for multiple comparisons in the design of experiments
in computational intelligence and data mining: Experimental analysis of

power. Information Sciences, 180(10), 2044-2064.

118



Garcia, S., & Herrera, F. (2008). An extension on ”Statistical comparisons of
classifiers over multiple data sets” for all pairwise comparisons. Journal

of Machine Learning Research, 9, 2677-2694.

Giacinto, G., & Roli, F. (2001). An approach to the automatic design of

multiple classifier systems. Pattern Recognition Letters, 22(1), 25-33.

Giraud-Carrier, C. (2000). A note on the utility of incremental learning. Al

Communications, 13(4), 215-223.

Hagan, M. T., & Menhaj, M. B. (1994). Training feedforward networks with
the marquardt algorithm. IEEE Transactions on Neural Networks, 5(6),

989-993.

Hao, P.-Y., Chiang, J.-H., & Lin, Y.-H. (2009). A new maximal-margin
spherical-structured multi-class support vector machine. Applied Intel-

ligence, 30(2), 98-111.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical

Learning: Data mining, Inference, and Prediction. Springer.

Herbei, R., & Wegkamp, M. H. (2006). Classification with reject option. Cana-

dian Journal of Statistics, 34(4), 709-721.

Ho, T. K., Hull, J. J., & Srihari, S. N. (1994). Decision combination in multiple
classifier systems. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 16(1), 66-75.

119



Hsu, C.-W., & Lin, C.-J. (2002). A comparison of methods for multiclass
support vector machines. IEEE Transactions on Neural Networks, 13(2),

415-425.

Huang, Y., McCullagh, P., Black, N., & Harper, R. (2007). Feature selection
and classification model construction on type 2 diabetic patients’ data.

Artificial Intelligence in Medicine, 41(3), 251-262.

Ji, J., & Zhao, Q. (2013). A hybrid SVM based on nearest neighbor rule.
International Journal of Wavelets, Multiresolution and Information Pro-

cessing, 11(6), 1350048.

Joachims, T. (2002). Learning to Classify Text Using Support Vector Machines:

Methods, Theory, and Algorithms. Kluwer Academic Publishers.

Juszczak, P., & Duin, R. P. W. (2004). Combining one-class classifiers to
classify missing data. In Multiple Classifier Systems, Lecture Notes in

Computer Science (Vol. 3077, pp. 92-101). Springer.

Kang, S., & Cho, S. (2014). Approximating support vector machine with artifi-
cial neural network for fast prediction. Expert Systems with Applications,

41(10), 4989-4995.

Kang, S., & Cho, S. (2015a). A novel multi-class classification algorithm based
on one-class support vector machine. Intelligent Data Analysis, 19(4), in

press.

Kang, S., & Cho, S. (2015b). Optimal construction of one-against-one classifier

120



based on meta-learning. Neurocomputing, in press.

Kang, S., Cho, S., An, D., & Rim, J. (2015). Using wafer map features to
better predict die-level failures in final test. IEEE Transactions on Semi-

conductor Manufacturing, in press.

Kang, S., Cho, S., & Kang, P. (2015a). Constructing a multi-class classifier
using one-against-one approach with different binary classifiers. Neuro-

computing, 149, 677-682.

Kang, S., Cho, S., & Kang, P. (2015b). Multi-class classification via het-
erogeneous ensemble of one-class classifiers. Engineering Applications of

Artificial Intelligence, 43, 35-43.

Kang, S., Cho, S., Rhee, S.-j., & Yu, K.-S. (2015). Reliable prediction of anti-
diabetic drug failure with a reject option. IEEE Journal of Biomedical

and Health Informatics, submitted.

Kang, S., Kang, P., Ko, T., Cho, S., Rhee, S.-j., & Yu, K.-S. (2015). An efficient
and effective ensemble of support vector machines for anti-diabetic drug

failure prediction. Ezpert Systems with Applications, 42(9), 4265-4273.

Kiang, M. Y. (2003). A comparative assessment of classification methods.

Decision Support Systems, 35(4), 441-454.

Kim, H.-C., Pang, S., Je, H.-M., Kim, D., & Bang, S. Y. (2003). Constructing
support vector machine ensemble. Pattern Recognition, 36(12), 2757-

2767.

121



Kittler, J., Hatef, M., Duin, R. P. W., & Matas, J. (1998). On combining clas-
sifiers. IEFE Transactions on Pattern Analysis and Machine Intelligence,

20(3), 226-239.

Knerr, S., Personnaz, L., & Dreyfus, G. (1990). Single-layer learning revisited:
A stepwise procedure for building and training a neural network. In
Neurocomputing: Algorithms, Architectures and Applications, NATO ASI

Series (Vol. 68, pp. 41-50). Springer.

Krawczyk, B., WoZniak, M., & Cyganek, B. (2014). Clustering-based ensembles

for one-class classification. Information Sciences, 264, 182-195.

Kumar, M. A., & Gopal, M. (2010). A hybrid SVM based decision tree. Pattern

Recognition, 43(12), 3977-3987.

Kumar, N., Kennedy, K., Gildersleeve, K., Abelson, R., Mastrangelo, C. M.,
& Montgomery, D. C. (2006). A review of yield modelling techniques

for semiconductor manufacturing. International Journal of Production

Research, 44(23), 5019-5036.

Kuncheva, L. I. (2002). Switching between selection and fusion in combining
classifiers: An experiment. IFEFE Transactions on Systems, Man, and

Cybernetics Part B — Cybernetics, 32(2), 146-156.

Kuncheva, L. I., Whitaker, C. J., Shipp, C. A., & Duin, R. P. W. (2003).
Limits on the majority vote accuracy in classifier fusion. Pattern Analysis

Applications, 6(1), 22-31.

122



Landgrebe, T. C. W., Tax, D. M. J., Paclik, P., & Duin, R. P. W. (2006).
The interaction between classification and reject performance for distance-
based reject-option classifiers. Pattern Recognition Letters, 27(8), 908-

917.

Lee, D., & Lee, J. (2007). Domain described support vector classifier for multi-

classification problems. Pattern Recognition, 40(1), 41-51.

Lee, H.-j., & Cho, S. (2006). The novelty detection approach for different
degrees of class imbalance. In Neural Information Processing, Lecture

Notes in Computer Science (Vol. 4233, pp. 21-30). Springer.

Lézoray, O., & Cardot, H. (2008). Comparing combination rules of pairwise

neural networks classifiers. Neural Processing Letters, 27(1), 43-56.

Li, Q., Jiao, L., & Hao, Y. (2007). Adaptive simplification of solution for

support vector machine. Pattern Recognition, 40(3), 972-980.

Li, Y., Zhang, W., & Lin, C. (2006). Simplify support vector machines by
iterative learning. Neural Information Processing: Letters and Reviews,

10, 11-17.

Liang, X., Ma, Y., He, Y., Yu, L., Chen, R.-C., Liu, T., ... Chen, T.-S. (2013).
Fast pruning superfluous support vectors in SVMs. Pattern Recognition

Letters, 34(10), 1203 - 1209.

Lim, T.-S., Loh, W.-Y., & Shih, Y.-S. (2000). A comparison of prediction

accuracy, complexity, and training time of thirty-three old and new clas-

123



sification algorithms. Machine Learning, 40(3), 203-228.

Lin, H.-J., & Yeh, J. P. (2009). Optimal reduction of solutions for support vector

machines. Applied Mathematics and Computation, 214(2), 329-335.

Lin, H.-T., Lin, C.-J., & Weng, R. C. (2007). A note on Platt’s probabilistic

outputs for support vector machines. Machine Learning, 68(3), 267-276.

Lorena, A. C., de Carvalho, A. C. P. L. F., & Gama, J. M. P. (2008). A review
on the combination of binary classifiers in multiclass problems. Artificial

Intelligence Review, 30(1-4), 19-37.

Lu, Z. X., Walker, K. Z., O’'Dea, K., Sikaris, K. A., & Shaw, J. E. (2010). A1C
for screening and diagnosis of type 2 diabetes in routine clinical practice.

Diabetes Care, 33(4), 817-819.

Maji, S., Berg, A. C., & Malik, J. (2008). Classification using intersection kernel
support vector machines is efficient. In Proceedings of IEEE Conference

on Computer Vision and Pattern Recognition (pp. 1-8).

Maji, S., Berg, A. C., & Malik, J. (2013). Efficient classification for addi-
tive kernel SVMs. IEEFE Transactions on Pattern Analysis and Machine

Intelligence, 35(1), 66-77.

Menahem, E., Rokach, L., & Elovici, Y. (2009). Troika - An improved stacking

schema for classification tasks. Information Sciences, 179(24), 4097-4122.

Merz, C. J. (1999). Using correspondence analysis to combine classifiers. Ma-

124 :



chine Learning, 36(1-2), 33-58.

Nadeem, M. S. A., Zucker, J.-D., & Hanczar, B. (2010). Accuracy-rejection
curves (ARCs) for comparing classification methods with a reject option.
In Machine Learning in Systems Biology, Journal of Machine Learning

Research Workshop and Conference Proceedings (Vol. 8, pp. 65-81).

Park, S. H., Park, C.-S., Kim, J. S., Kim, S.-S., Baek, J.-G., & An, D.
(2013). Data mining approaches for packaging yield prediction in the
post-fabrication process. In Proceedings of the 2013 IEEE International

Congress on Big Data (pp. 363-368).

Park, Y., Kang, S., & Cho, S. (2015). Memory die clustering and matching
for optimal voltage window in semiconductor. IEEFE Transactions on

Semiconductor Manufacturing, 28(2), 180-187.

Polat, K., & Giineg, S. (2009). A novel hybrid intelligent method based on
C4.5 decision tree classifier and one-against-all approach for multi-class
classification problems. Fzpert Systems with Applications, 36(2), 1587-
1592.

Rokach, L. (2010). Ensemble-based classifiers. Artificial Intelligence Review,

33(1-2), 1-39.

Savicky, P., & Firnkranz, J. (2003). Combining pairwise classifiers with stack-
ing. In Advances in Intelligent Data Analysis, Lecture Notes in Computer

Science (Vol. 2810, pp. 219-229). Springer.

125



Schmitz, G. P. J., Aldrich, C., & Gouws, F. S. (1999). ANN-DT: An algorithm
for extraction of decision trees from artificial neural networks. I[EEE

Transactions on Neural Networks, 10(6), 1392-1401.

Seewald, A. K. (2002). How to make stacking better and faster while also taking
care of an unknown weakness. In Proceedings of the 19th International

Conference on Machine Learning (pp. 554-561).

Sharma, S., Bellinger, C., & Japkowicz, N. (2012). Clustering based one-class
classification for compliance verification of the comprehensive nuclear-
test-ban treaty. In Advances in Artificial Intelligence, Lecture Notes in

Computer Science (Vol. 7310, pp. 181-193). Springer.

Shin, C. K., & Park, S. C. (2000). A machine learning approach to yield
management in semiconductor manufacturing. International Journal of

Production Research, 38(17), 4261-4271.

Silverman, B. W. (1985). Some aspects of the spline smoothing approach to
non-parametric regression curve fitting. Journal of the Royal Statistical

Society. Series B (Methodological), 1-52.

Simeone, P., Marrocco, C., & Tortorella, F. (2012). Design of reject rules for

ECOC classification systems. Pattern Recognition, 45(2), 863-875.

Sohn, S. Y. (1999). Meta analysis of classification algorithms for pattern recog-
nition. IEEE Transactions on Pattern Analysis and Machine Intelligence,

21(11), 1137-1144.

126



Tax, D. M. J. (2001). One-class Classification: Concept-learning in the Absence
of Counter-ezamples (Unpublished doctoral dissertation). Delft Univer-

sity of Technology.

Tax, D. M. J. (2014). DDtools, the Data Description Toolbox for Matlab.

Retrieved from http://prlab.tudelft.nl/david-tax/dd _tools.html

Tax, D. M. J., & Duin, R. P. W. (2008). Growing a multi-class classifier with

a reject option. Pattern Recognition Letters, 29(10), 1565-1570.

Ting, K. M., & Witten, I. H. (1999). Issues in stacked generalization. Journal

of Artificial Intelligence Research, 10, 271-289.

Todorovski, L., & Dzeroski, S. (2003). Combining classifiers with meta decision

trees. Machine Learning, 50(3), 223-249.

Tortorella, F. (2005). A ROC-based reject rule for dichotomizers. Pattern

Recognition Letters, 26(2), 167-180.

Tsoumakas, G., Angelis, L., & Vlahavas, I. (2005). Selective fusion of hetero-

geneous classifiers. Intelligent Data Analysis, 9(6), 511-525.

Uzsoy, R., Lee, C.-Y., & Martin-Vega, L. A. (1992). A review of production
planning and scheduling models in the semiconductor industry part I:
System characteristics, performance evaluation and production planning.

IIE Transactions, 24(4), 47-60.

Vedaldi, A., & Zisserman, A. (2012). Efficient additive kernels via explicit

127 -


http://prlab.tudelft.nl/david-tax/dd_tools.html

feature maps. IEEFE Transactions on Pattern Analysis and Machine In-

telligence, 34 (3), 480-492.

Vilalta, R., & Drissi, Y. (2002). A perspective view and survey of meta-learning,.

Artificial Intelligence Review, 18(2), 77-95.
Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241-259.

Wolpert, D. H. (2001). The supervised learning no-free-lunch theorems. In
Proceedings of the 6th Online World Conference on Soft Computing in

Industrial Applications (pp. 25-42).

Woods, K., Kegelmeyer Jr., W. P.; & Bowyer, K. (1997). Combination of
multiple classifiers using local accuracy estimates. IEEFE Transactions on

Pattern Analysis and Machine Intelligence, 19(4), 405-410.

Wozniak, M., Grana, M., & Corchado, E. (2014). A survey of multiple classifier

systems as hybrid systems. Information Fusion, 16, 3-17.

Wozniak, M., & Jackowski, K. (2009). Some remarks on chosen methods of
classifier fusion based on weighted voting. In Hybrid Artificial Intelligence
Systems, Lecture Notes in Computer Science (Vol. 5572, pp. 541-548).

Springer.

Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., ...
Steinberg, D. (2008). Top 10 algorithms in data mining. Knowledge and

Information Systems, 14 (1), 1-37.

128



Xu, L., Krzyzak, A., & Suen, C. Y. (1992). Methods of combining multi-
ple classifiers and their applications to handwriting recognition. IEEE

Transactions on Systems, Man, and Cybernetics, 22(3), 418-435.

Xu, X., Zhang, B., & Zhong, Q. (2005). Text categorization using SVMs with
rocchio ensemble for internet information classification. In Proceedings of

the 3rd International Conference on Networking and Mobile Computing

(pp. 1022-1031).

Yang, Y., & Pedersen, J. O. (1997). A comparative study on feature selection in
text categorization. In Proceedings of the 14th International Conference

on Machine Learning (pp. 412—420).

129



2 A e

SECRIL WATIOMAL LIMINVERSTY



Ny
A

<|m
Tor
—_
E

o

oF

fife)
A

il

g
T

N
o7

mmo

NF
!
BN
nE

gloleutolid oA &

=ZH=2 g
q-—é_'ﬂ_—‘rl"ﬂ_—

=
=

FeAlel HE7E o8 7HAY B¢ #EE o A

pld

HE AEst] &8=7t

Al deEo] 2

S

7 og WY

A=

1 471

A
o

1

ol

olu
L]_o

o
Ul

oju
Hp

TH

Diversified One-Against-One (DOAO)¥} Optimally Diversified

Al

A Geol mEkA ol A o] ER{ FEEAR

One-Against-One (DOAO)

h= Zoltt. DOAO=

3l

1=]
gL

EEEEREE

=
—

AlE]Eo] th=th= o4, DOAO

(o33
=

S|
S

= DOAOE H ¢

t}. ODOAO

]

fol of 2] o]

B398 o g3

=
,_ﬁ
o
i

w

erelelct

Heterogeneous Ensemble of One-class Classifiers (HEOC): A

5

_(H

131



]
=

stol e 7]

235

s =

6

dE e}, ER7E

S

°

A5 274

A or W AT
ﬂol X0 ,UI E_n E_E 3
B W I = o
H_ﬂ = o oF W m_m
— B o gy !
R E ko S
il B B0
—_ _z_.a )
D o w_|a = G
2 E g T
< o X 5y
Lo = MR o
Z @ T T
o o M oy
B N X e o5
RCI A TR
ol = © B
= X — W g g
S 1s) O a 50
ou o A
piia i e
_ o
s 35 do I
S oo w4 ol
- ! =3
S du o
= P o o= oy M
E MY Eow X
I~ R
S mom XN om
e} il
S E 3 T}/
T = L7
m o o ! To oy
< N ® BT
z T A W A R

132

34 2011-21163



	1. Introduction
	1.1. Multi-class Classification
	1.2. Ensemble Learning
	1.3. Heterogeneous Ensemble Learning
	1.4. Outlook of this Dissertation

	2. Literature Review
	2.1. Classification Algorithms
	2.2. Ensemble learning for Multi-class Classification

	3. Heterogeneous Ensemble for Accurate Classification: Binary Classifier Approach
	3.1. Binary Classifier Approach for Multi-class Classification
	3.2. Diversified One-Against-One
	3.3. Optimally Diversified One-Against-One
	3.4. Performance Evaluation on Benchmark Datasets
	3.5. Summary

	4. Heterogeneous Ensemble for Accurate Classification: One-class Classifier Approach
	4.1. One-class Classifier Approach for Multi-class Classification
	4.2. Heterogeneous Ensemble of One-class Classifiers
	4.3. Performance Evaluation on Benchmark Datasets
	4.4. Application to Text Categorization
	4.5. Summary

	5. Heterogeneous Ensemble for Reliable Classification
	5.1. Multi-class Classification with a Reject Option
	5.2. Hybrid Reject Option
	5.3. Application to Anti-diabetic Drug Failure Prediction
	5.4. Summary

	6. Heterogeneous Ensemble for Fast Classification
	6.1. Run-time Speed on Multi-class Classification
	6.2. Neural Network Approximator
	6.3. Performance Evaluation on Benchmark Datasets
	6.4. Application to Semiconductor Die Failure Prediction
	6.5. Summary

	7. Conclusion
	7.1. Contributions
	7.2. Future Work

	Bibliography


<startpage>18
1. Introduction 17
 1.1. Multi-class Classification 17
 1.2. Ensemble Learning 19
 1.3. Heterogeneous Ensemble Learning 21
 1.4. Outlook of this Dissertation 23
2. Literature Review 27
 2.1. Classification Algorithms 27
 2.2. Ensemble learning for Multi-class Classification 31
3. Heterogeneous Ensemble for Accurate Classification: Binary Classifier Approach 37
 3.1. Binary Classifier Approach for Multi-class Classification 37
 3.2. Diversified One-Against-One 39
 3.3. Optimally Diversified One-Against-One 43
 3.4. Performance Evaluation on Benchmark Datasets 49
 3.5. Summary 59
4. Heterogeneous Ensemble for Accurate Classification: One-class Classifier Approach 63
 4.1. One-class Classifier Approach for Multi-class Classification 63
 4.2. Heterogeneous Ensemble of One-class Classifiers 66
 4.3. Performance Evaluation on Benchmark Datasets 71
 4.4. Application to Text Categorization 80
 4.5. Summary 83
5. Heterogeneous Ensemble for Reliable Classification 87
 5.1. Multi-class Classification with a Reject Option 87
 5.2. Hybrid Reject Option 90
 5.3. Application to Anti-diabetic Drug Failure Prediction 93
 5.4. Summary 101
6. Heterogeneous Ensemble for Fast Classification 103
 6.1. Run-time Speed on Multi-class Classification 103
 6.2. Neural Network Approximator 106
 6.3. Performance Evaluation on Benchmark Datasets 110
 6.4. Application to Semiconductor Die Failure Prediction 114
 6.5. Summary 121
7. Conclusion 125
 7.1. Contributions 125
 7.2. Future Work 128
Bibliography 131
</body>

