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Abstract

Heterogeneous Ensemble Learning

for Multi-class Classification

Seokho Kang

Department of Industrial Engineering

The Graduate School

Seoul National University

In data mining, classification is a type of supervised learning task that involves

predicting output variables consisting of a finite number of categories called

classes. When the number of classes is larger than two, a classification problem

is called a multi-class classification problem. Multi-class classification provides

more informative predictions, and is more related to real-world scenarios. In

practice, the performance for a multi-class classification problem is typically

measured according to the following three perspectives: accurate, reliable, and

fast classification. In order to achieve the better performance for the three per-

spectives, this dissertation proposes to use heterogeneous ensemble learning that

exploits multiple classifiers from various classification algorithms, where each

classifier plays a different role to accomplish the desired functionality. For ac-

curate multi-class classification, Diversified One-Against-One (DOAO) and Op-

timally Diversified One-Against-One (ODOAO) are proposed. Their main idea

is to decompose the original problem into several binary sub-problems based
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on the one-against-one approach. DOAO finds the best classification algorithm

for each class pair from the set of heterogeneous base classifiers, thereby makes

various classification algorithms to complement each other. Since the best clas-

sification algorithm for each class pair is different, DOAO enables better classifi-

cation accuracy. ODOAO, an extension of DOAO, construct an ensemble where a

meta-classifier effectively combines the outputs from all the heterogeneous base

classifiers. Heterogeneous Ensemble of One-class Classifiers (HEOC) is also pro-

posed for accurate classification based on decomposition of the original problem

into several one-class sub-problems. HEOC constructs an ensemble consisting

of one-class classifiers from various one-class classification algorithms. HEOC

addresses the normalization of heterogeneous base classifiers via stacking. For

reliable multi-class classification, a hybrid reject option is proposed to reject

ambiguous instances instead of predicting for all instances. The hybrid reject

option constructs a filter classifier and a predictor classifier separately, where

the filter decides whether to predict using the predictor based on the confi-

dence for an instance, and the predictor predicts the class of the instance. Each

component is trained using the best respective classification algorithm to max-

imize the capability of its role, thereby improve reject option performance as

providing better prediction accuracy for the same degree of rejection. For fast

multi-class classification, Neural Network Approximator (NNA) is proposed to

reduce computational time in the test phase. NNA approximates a classifier by

adopting a multiple-outputs artificial neural network as a function approxima-

tor, where each output node corresponds to a decision function in the classifier.

This approximator enables fast classification speed without compromising ac-

ii



curacy. The effectiveness of the proposed heterogeneous ensemble methods is

demonstrated through experiments on benchmark datasets and real-world ap-

plications.

Keywords: Data Mining, Machine Learning, Ensemble, Heterogeneous Ensem-

ble, Multi-class Classification

Student Number: 2011-21163
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Chapter 1

Introduction

1.1 Multi-class Classification

Supervised learning is a type of machine learning task of inferring a function of

certain variables in order to predict other variables. Classification is a type of

supervised learning task that involves predicting output variables consisting of

a finite number of categories called classes. In a classification task, a classifica-

tion algorithm A defines its hypothesis space HA. Classifier training is to find

the hypothesis h ∈ HA that approximates the true function f given a set of

instances called a training dataset, as illustrated in Figure 1.1. Thus, a classifier

corresponds to its hypothesis in the hypothesis space. Finding the hypothesis

that is closest to the true function f is crucial for obtaining high classification

accuracy.

When the number of classes is larger than two, a classification problem is

called a multi-class classification problem. Most real-world scenarios, such as

handwritten digit recognition, text categorization, and face recognition, corre-

spond to multi-class classification problems. A multi-class classification problem

is typically more difficult than a binary-class classification problem. Thus, find-

1



HA 

𝑓 

ℎ 

Figure 1.1 Concept of classifier training

ing an appropriate strategy to solve a multi-class classification problem is an

important research issue.

In order to solve a multi-class classification problem, three strategies can

be considered. The first strategy is to use classification algorithms that are

capable of dealing with multi-class classification directly. The second is to con-

struct an ensemble of binary classifiers. The third is to construct an ensemble

of one-class classifiers. The latter two can be implemented by decomposing the

original multi-class problem into several smaller sub-problems, as illustrated in

Figure 1.2.

The decomposition strategies relate to the concept of ensemble learning,

thereby treating a multi-class classification problem effectively. Since the de-

cision boundary for multi-class classification problems tends to more complex

than it is for one-class or binary classification problems, solving several smaller

sub-problems is more preferable (Galar et al., 2011). In addition, heterogeneous

ensemble learning can provide better competence because the best classification

2



(a) A subproblem for the second strategy (b) A subproblem for the third strategy

Class 1

Class 2

Class 3

Class 1

Class 2

Class 3

Figure 1.2 Decomposition strategies for multi-class classification

algorithm for each sub-problem is different.

1.2 Ensemble Learning

Ensemble learning aims at combining the outputs from multiple classifiers. It is

also known as multiple classifier system, committee learning, and so on. There

has been considerable research effort by a wide range of researchers in order to

develop ensemble learning methods for different purposes (L. Xu et al., 1992;

Ho et al., 1994; Kittler et al., 1998; Rokach, 2010; Woźniak et al., 2014). An

ensemble generally outperforms any individual classifiers by exploiting the di-

versity of different classifier. The diversity of the classifiers can be obtained

through a variety of strategies. For example, employing different classification

algorithms and manipulating datasets result in different classifiers.

Constructing an ensemble enables dealing with a classification problem more

3
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(a) Parallel ensemble structure
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Figure 1.3 Two basic ensemble structures

efficiently and effectively. Various types of ensembles have been designed to pur-

sue different purposes. The two basic structures are parallel and serial struc-

ture (Rokach, 2010), which are illustrated in Figure 1.3. A parallel structure

generally involves combination of classifiers with a same functionally in order

to obtain more accurate and stable classification performance (Kang, Cho, &

Kang, 2015a; Kang & Cho, 2015b; Kang, Cho, & Kang, 2015b). On the other

hand, a serial structure exploits classifiers with different functionalities (Kang,

Cho, Rhee, & Yu, 2015; Kang & Cho, 2014). This generally combines several

classifiers sequentially in order to improve the run-time speed of classification.

A hybrid structure is also available to take advantages of these two structures.

In general, an ensemble offers better classification accuracy and robustness

than any individual classifier. Dietterich (2000) explained three fundamental

reasons for why an ensemble successfully performs well. The first is a statisti-

4



cal reason. Given a finite number of training instances, many hypotheses are

equally good. Therefore, averaging these hypotheses may result in a more sta-

ble approximation of f . The second is a computational reason. Because the

hypothesis space is so large, a heuristic search is conducted to find the best

hypothesis. However, the search may get stuck at a local optimum. Repeating

the search with several random starts provides a better chance of finding the

global optimum. The third is a representational reason. The true function f

may not be represented by any of the hypotheses in the hypothesis space HA,

but may be better approximated by aggregating several hypotheses.

1.3 Heterogeneous Ensemble Learning

It is well-known that no single algorithm can always perform the best for every

classification problem (Sohn, 1999; Lim et al., 2000; Kiang, 2003), which is also

known as the no-free-lunch-theorem (Wolpert, 2001). Thus, the heterogeneous

ensemble allows us to obtain better classification accuracy by combining the

advantages of various algorithms.

Thus, heterogeneous ensemble learning, which employs various classifica-

tion algorithms to train base classifiers, can be taken into account for further

improvement of ensemble learning (Kang, Cho, & Kang, 2015a; Kang & Cho,

2015b; Kang, Cho, & Kang, 2015b; Kang, Cho, Rhee, & Yu, 2015; Kang &

Cho, 2014). A heterogeneous ensemble is more likely to obtain a better hypoth-

esis by searching the union of hypothesis spaces defined by different algorithms

as shown in Figure 1.4 (Dietterich, 2000), while this generally requires a large

5
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Figure 1.4 Hypothesis space of heterogeneous ensemble

computational burden in training and test because it involves numerous base

classifiers from various classification algorithms.

Heterogeneous ensemble learning for multi-class classification can be per-

formed by decomposing the original problem into several smaller sub-problems,

training base classifiers for the sub-problems using various classification algo-

rithms, and constructing an ensemble of those base classifiers with an appro-

priate combination method to form a multi-class classifier.

This dissertation proposes to use heterogeneous ensemble learning for im-

proving multi-class classification. A multi-class classification problem can be

more accurately solved by constructing a heterogeneous ensemble with a paral-

lel structure of base classifiers, while combining heterogeneous base classifiers is

a difficult issue. Thus, we propose methods for accurate classification by dealing

6



with the heterogeneity effectively when combining the base classifiers. Besides,

the reliability and speed of a multi-class classifier are also important for better

multi-class classification in practical deployments. Thus, add-on methods based

on heterogeneous ensembles with serial structures are proposed for reliable and

fast classification. These methods are effective for multi-class classification, but

also can be generally applied to any classifier.

1.4 Outlook of this Dissertation

In this dissertation, the following three criteria are addressed as the perfor-

mance of a multi-class classifier when the classifier is deployed to a multi-class

classification problem. The first is how accurately the classifier classifies unseen

instances. The second is how reliably the classifier avoids classifying uncertain

instances. The third is how fast the classifier classifies a number of instances.

With respect to the three criteria, several heterogeneous ensemble meth-

ods are proposed for accurate, reliable, and fast multi-class classification. The

heterogeneous ensemble methods utilize multiple classifiers from various classi-

fication algorithms by combining their outputs properly in order to pursue the

respective purposes. They are compared with homogeneous ensemble methods

on benchmark datasets and real-world applications to demonstrate the effective-

ness. The methods and applications covered in this dissertation are summarized

in Table 1.1.

The rest of this dissertation is organized as follows. In Chapter 2, classi-

fication algorithms used in this dissertation are briefly reviewed, and related

7



Table 1.1 Methods and applications covered in this dissertation

Objective Chapter Methods Applications

Accurate

Classification

Chapter 3 • Diversifed One-Against-One

• Optimally Diversified

One-Against-One

• Benchmark Datasets

Chapter 4 • Heterogeneous Ensemble of

One-class Classifiers

• Benchmark Datasets

• Text Categorization

Reliable

Classification

Chapter 5 • Hybrid Reject Option • Anti-diabetic Drug Failrue

Prediction

Fast

Classification

Chapter 6 • Neural Network Approximator • Benchmark Datasets

• Semiconductor Die Failrue

Prediction

work on ensemble learning for multi-class classification is introduced. Chap-

ter 3 and 4 focus on developing heterogeneous ensemble methods for accurate

multi-class classification. In Chapter 3, two one-against-one based methods uti-

lizing heterogeneous binary classifiers from various classification algorithms are

introduced to persue better classification accuracy. In Chapter 4, a heteroge-

neous ensemble based on one-class classifier approach is introduced, and the

effectiveness of this method is investigated for the text categorization problem.

In Chapter 5, a hybrid reject option is proposed to support reliable prediction

by improving the trade-off between accuracy and rejection, and is applied to the

anti-diabetic drug failure prediction problem. In Chapter 6, a classifier approxi-

mation method based on neural networks is proposed to accelerate the run-time

speed of a multi-class classifier, and its effectiveness is confirmed on the semi-

8



conductor die failure prediction problem. Finally, we discuss contributions and

future work of this dissertation in Chapter 7.
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Chapter 2

Literature Review

2.1 Classification Algorithms

Heterogeneous ensemble learning involves training of diverse classifiers using

various classification algorithms. In this section, classification algorithms and

one-class classification algorithms used in the dissertation are introduced.

Classification is a supervised learning task of predicting output variables

consisting of a finite number of categories called classes. A classifier trained by

a classification algorithm predicts the class of new instances according to the

posterior probability of each class. In this dissertation, a total of six well-known

and widely adopted classification algorithms are used in reference to (Bishop &

Nasrabadi, 2006; Wu et al., 2008; Hastie et al., 2009). The following are brief

descriptions of the algorithms.

For Artificial Neural Network (ANN), the most general architecture is the

Multi-layer Perceptron that consists of three layers of several processing units:

the input layer, the hidden layer, and the output layer. The layers are connected

with other layers through non-linear functions of linear combinations. ANN

seeks to find the best weights to minimize the sum of the squared error on the

11



validation dataset. Back propagation algorithms are generally used in order to

derive the weights.

Decision Tree (DT) induces sets of rules in the hierarchical structure of sev-

eral nodes via recursive partitioning of the data. Each partitioning is performed

by selecting the input variable that mostly separates the classes of the data.

This recursive process is continued until the termination condition is met. The

most popular DT algorithms are the CART and the C4.5. In this dissertation,

the CART is used for training of DTs. This algorithm employs the Gini index

as a splitting criterion to divide the data into two regions.

k -Nearest Neighbors (kNN) is an instance-based learning algorithm that

does not require any training of models. kNN finds the k instances within the

training dataset that are the closest in distance to the test instance. Classifica-

tion is done by a vote of the selected k instances.

Linear Discriminant Analysis (LDA) is based on the directions that are the

best discrimination of the data in different classes. LDA attempts to find a lin-

ear combination of input variables that maximizes the ratio of the between-class

scatter to the within-class scatter, and classifies based on the linear combina-

tion.

Logistic Regression (LR) forms a logistic function of a linear combination

of input variables whose output is in the range of [0, 1]. The best weights of the

combination can be estimated using the maximum likelihood methods.

Support Vector Machine (SVM) is originally designed for binary classifi-

cation, and seeks to find the maximum margin hyperplane that separates one

class from another class. It can deal with non-linear classification problems by

12



employing kernel functions that map an input space into a high-dimensional

feature space. SVM forms a convex optimization problem that can be solved

efficiently through sequential minimal optimization.

Among those algorithms, SVM, LR, and LDA are originally designed for

binary classification, while kNN, DT, and ANN can deal with multi-class clas-

sification directly.

On the other hand, one-class classification is an unsupervised learning task

where only one of the classes is utilized and other instances are ignored (Tax,

2001). A one-class classifier, trained by a one-class classification algorithm, de-

termines the score of belonging to the target class for new instances, and the

instances whose scores are out of the pre-defined threshold are rejected as out-

liers. In this dissertation, the eight well-known, widely used one-class classifi-

cation algorithms are utilized. Brief descriptions for the algorithms are given

below.

Density-based algorithms aim to estimate the underlying density function

of the data. In these algorithms, the instances that possess a density lower than

a given threshold will be rejected as outliers. Gaussian (GAUSS) assumes the

distribution of the data as a Gaussian distribution. Mixture of Gaussian (MOG)

models the data as a linear combination of several Gaussians. Parzen Window

(PARZEN) generates Gaussians for every individual instance in the data and

combines them to obtain the final density function.

Boundary-based algorithms aim to obtain the decision boundary in which

the data is contained, and the instances outside this boundary will be rejected

as outliers. In Nearest Neighbor Data Description (NNDD), a new instance is
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classified based on the distance to its nearest neighbor. Support Vector Data

Description (SVDD) observes the smallest hypersphere enclosing the data in

the feature space, and is capable of dealing with non-linear structures by intro-

ducing kernel functions.

Reconstruction-based algorithms aim to encode the structure of the data.

The instances having high reconstruction error will be rejected as outliers. k -

Means (KMEANS) describes the data by k clusters, and the reconstruction er-

ror is defined as the distance to the closest cluster center. Principal Component

Analysis (PCA) finds the directions of maximum variance for the data, which

is done by eigenvalue decomposition. Auto-encoder Network (AUTOENC) in-

volves training a neural network that reproduces the input layer at the output

layer. In the case of the latter two, the reconstruction error is the difference

between the original instance and its mapped version.

Note that, it is difficult to state that a classification algorithm is better

than another algorithm. The best classification algorithm can be different de-

pending on the conditions or characteristics of a classification problem. Firstly,

the best algorithm is different for each dataset (Sohn, 1999; Lim et al., 2000;

Kiang, 2003). The best algorithm also varies from instance to instance within

a dataset (Woods et al., 1997; Cavalin et al., 2013). In addition, giving variety

to a dataset, such as sampling, partitioning, and decomposition, also makes the

best algorithm to be different (Rokach, 2010). Thus, the heterogeneous ensem-

ble learning of employing different classification algorithms provides the great

opportunity to solve classification problems more effectively.
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2.2 Ensemble Learning for Multi-class Classification

2.2.1 Decomposition Strategies

When the number of classes in a classification problem is more than two, the

problem is called a multi-class classification problem. To solve a multi-class

classification problem, three strategies can be considered. The first is simply to

use the classification algorithms that solve the problem directly, such as DT,

kNN, and ANN.

The second strategy is to decompose the original problem into several bi-

nary sub-problems and to construct an ensemble of binary classifiers for the

sub-problems. This strategy permits the use of classification algorithms that

were originally designed for binary classification, such as SVM, LR, and LDA.

Two common approaches to this strategy are one-against-one and one-against-

rest (Rokach, 2010; Lorena et al., 2008). Supposing that a c-class classification

problem is given, the one-against-one approach builds c(c − 1)/2 different bi-

nary classifiers for all possible class pairs. Given the same problem, on the other

hand, the one-against-rest approach builds c different binary classifiers, where

each separates a single class from all the remaining classes. These approaches

can be generalized by Error-Correcting Output Coding (ECOC), which is a

general framework for decomposing a multi-class problem into several binary

problems by exploiting more diverse bipartitions of the classes (Dietterich &

Bakiri, 1995).

The third strategy is to decompose the original problem into several one-

class sub-problems and to construct an ensemble of one-class classifiers for the
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sub-problems (Juszczak & Duin, 2004; Ban & Abe, 2006; Tax & Duin, 2008;

Krawczyk et al., 2014; Cyganek, 2012; Sharma et al., 2012). This strategy uti-

lizes one-class classification algorithms, such as PARZEN, SVDD, and PCA. For

a c-class classification problem, c one-class classifiers are built, each of which

is trained on a single respective class. Each classifier evaluates the degree of

belonging to a class independently. Thus, an instance can be classified as be-

longing to a class simply by selecting the class label with the maximum score

value among the classifier.

Among these strategies, the second strategy is most popular and has been

widely used. Most studies on this strategy have been conducted by employing

SVM as base classifiers because of its superiority in binary classification prob-

lems (Lorena et al., 2008; Kang & Cho, 2015a). For SVM, it is known that the

one-against-one approach generally performs better than the one-against-rest

and other SVM-based multi-class classification algorithms (Galar et al., 2011;

Hsu & Lin, 2002; Duan & Keerthi, 2005).

The decomposition strategy has proved successful not only for SVM but

also for other classification algorithms. Moreover, this strategy is often effective

for classification algorithms that can deal with multi-class classification prob-

lems directly. Since the decision boundary for multi-class classification problems

tends to more complex than it is for one-class or binary classification problems,

solving several smaller sub-problems is more preferable. Galar et al. (2011)

reviewed the effectiveness of the decomposition strategy for various classifica-

tion algorithms, and confirmed that the one-against-one approach yields better

classification accuracy compared to the one-against-rest approach in most cases.
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Knerr et al. (1990) adopted the one-against-one approach for ANN in order to

solve multi-class classification problems. Fürnkranz (2002) and Polat and Güneş

(2009) applied the one-against-one and one-against-rest approach, respectively,

to DT algorithms.

2.2.2 Combination Strategies

An ensemble is composed of diverse base classifiers by offering diversity to the

classifiers. The classification results are different depending on the combination

strategy, despite having the same set of base classifiers. Therefore, choosing the

most appropriate combination strategy for an ensemble is an important issue.

There have been various combination methods proposed (Rokach, 2010; Lorena

et al., 2008), and the two basic strategies are known as classifier selection and

classifier fusion (Tsoumakas et al., 2005; Kuncheva, 2002).

Classifier selection finds the best classifier from among a set of base classi-

fiers. The assumption in classifier selection is that each classifier is an expert in

some conditions. Classifier selection generally works well if some classifiers are

superior or inferior to others, particularly with heterogeneous base classifiers

that are come from different classification algorithms.

Classifier fusion, by contrast, utilizes the group consensus of the whole base

classifiers, and therefore it depends on the comparable success of the base clas-

sifiers. Classifier fusion is generally used for combining homogeneous base clas-

sifiers. Majority voting is a simple but the most popular method, which finds

the largest selected class from the base classifiers. However, this method may

fail when the majority of base classifiers provide incorrect classification results
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(Kuncheva et al., 2003). Instead, weighted voting puts more weights for more

superior base classifiers (Wozniak & Jackowski, 2009).

The abovementioned strategies use linear combination of the outputs from

the base classifiers to make final decision. On the other hand, meta-learning en-

ables exploiting non-linear combination of base classifiers. Meta-learning (Vilalta

& Drissi, 2002) is to induce which classifiers are reliable and which are not,

and is usually employed to combine classifiers from different classification al-

gorithms. The basic idea of meta-learning is to build a meta-classifier that

predicts target labels by combining the predictions of base classifiers (Wolpert,

1992). Suppose that a set of base classifiers C1, . . . , CL and a set of instances

D = {xt, yt}Nt=1 is given, the predictions for the N instances of each base

classifiers are ŷit = Ci(xt), t = 1, . . . , N , i = 1, . . . , L, and they constitutes

a meta-dataset M = {(ŷ1t , ŷ2t , . . . , ŷLt ), yt}Nt=1 (Džeroski & Ženko, 2004). This

meta-dataset is used to train the meta-classifier. During the test phase, a test

instance is first classified with the base classifiers, and the meta-classifier then

gives the final classification result by combining the predictions from the re-

spective base classifiers.

Note that, the instances used to train the base classifiers should not be used

during the training of the meta-classifier in order to avoid overfitting. Parti-

tioning the original dataset into a training dataset and a validation dataset is

recommended. This ensures that the base classifiers are only trained exclusively

with the training dataset and that the meta-classifier is trained based on the

validation dataset (Ting & Witten, 1999; Rokach, 2010).

There have been proposed many studies related to meta-learning, and they
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generally aim at combining heterogeneous classifiers. Merz (1999) proposed a

method called SCANN based on correspondence analysis and nearest neigh-

bor. Todorovski and Džeroski (2003) used DT to train the meta-classifier. Ting

and Witten (1999) introduced stacking with Multi-response Linear Regression

(MLR), and Džeroski and Ženko (2004) and Seewald (2002) extended this

method. Kim et al. (2003) used an SVM as a meta-classifier to combine the

bagging of SVMs. Some researchers exploited stacking to combine binary base

classifiers of class pairs that are based on the one-against-one approach. Savicky

and Fürnkranz (2003) used Ripper, DT, and nearest neighbor as meta classifiers

to combine binary Rippers, Lézoray and Cardot (2008) used DT to combine bi-

nary ANNs. Menahem et al. (2009) proposed a three-layer architecture based

on LR.
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Chapter 3

Heterogeneous Ensemble for Accurate

Classification: Binary Classifier

Approach

3.1 Binary Classifier Approach for Multi-class Classi-

fication

The concept of ensemble learning has been successfully applied to multi-class

classification problems. This is typically accomplished by decomposing the orig-

inal problem into several binary sub-problems. The base classifiers for the

sub-problems constitute an ensemble. Regarding this decomposition strategy,

the two commonly used approaches are one-against-one and one-against-rest

(Rokach, 2010; Lorena et al., 2008). For the one-against-one approach, c(c−1)/2

different binary classifiers are built for all possible pairs of classes, whereas the

one-against-rest approach builds c different classifiers, each of which distin-

guishes a single class from all the remaining classes. Once the binary classifiers

are built for each approach, various combination methods can be used for ag-

gregating their outputs (Rokach, 2010).
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Several experimental studies argued that the one-against-one approach out-

performs the one-against-rest approach (Galar et al., 2011; Hsu & Lin, 2002),

and that such decomposition strategy is also effective for classification algo-

rithms that are capable of dealing with multi-class classification problems di-

rectly (Fürnkranz, 2002; Knerr et al., 1990; Polat & Güneş, 2009).

Focusing on the one-against-one approach, it is essential for each binary

classifier of sub-problems to be reasonably well performing; otherwise, non-

competent classifiers could negatively affect the entire classification results

(Galar et al., 2013; Lorena et al., 2008). Another important point is that the

best classification algorithm for each sub-problem can be different, because the

sub-problems consist of different instances. Employing a variety of classification

algorithms takes the advantages of different inductive biases of the algorithms,

thereby yielding better classification accuracy. Such effectiveness can be also

explained as the extension of the hypothesis space. A heterogeneous ensemble

with various classification algorithms is more likely to obtain a better hypothesis

by searching the union of hypothesis spaces defined by different algorithms.

In this respect, the two heterogeneous ensemble methods called Diversified

One-Against-One (DOAO) (Kang, Cho, & Kang, 2015a) and Optimally Diver-

sified One-Against-One (ODOAO) (Kang & Cho, 2015b) are proposed in this

chapter. In Section 3.2, we propose DOAO method that seeks to find the best

classification algorithm for each class pair when applying the one-against-one

approach. For a multi-class classification problem, an ensemble is constructed

based on the one-against-one approach by using classifiers derived by differ-

ent classification algorithms. Given a training dataset of a c-class classification

22



problem, DOAO first builds a number of candidate classifiers for each class pair

using candidate classification algorithms. The best candidate classifier for each

class pair is chosen based on its validation error rate. As a result, a total of

c(c− 1)/2 classifiers are chosen, and they construct a one-against-one classifier.

Through this process, DOAO can yield better classification results compared

to other one-against-one classifiers that are based on single classification algo-

rithms.

In Section 3.3, we propose ODOAO, an extension of DOAO, in order to

achieve better classification accuracy. ODOAO seeks to find the optimal com-

bination of base classifiers that are built for every class pair and candidate

classification algorithm according to the concept of DOAO. To do this, a meta-

classifier is trained based on meta-learning, where the input variables are the

predicted labels from the base classifiers on the validation dataset, and the

output variable is the target label. ODOAO is further enhanced by applying

a classification algorithm that can effectively deal with high dimensionality

and non-linear relationship between the predictions of the base classifiers when

training the meta-classifier. The effectiveness of the proposed methods is inves-

tigated through experiments on multi-class benchmark datasets.

3.2 Diversified One-Against-One

The fact that a classification algorithm has the highest classification accuracy

for a multi-class classification problem does not mean that it performs best for

every sub-problem derived from decomposing the original problem. To address
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the problem, DOAO seeks to find the best classification algorithm for each class

pair when applying the one-against-one approach to multi-class classification

problems.

Suppose that a training dataset of N1 instances D = {xt, yt}N1
t=1 for a c-

class classification problem is given, where xi ∈ Rd is an input vector and

yi ∈ {1, . . . , c} is its target label. DOAO first decomposes the dataset D into

subsets Dij for every class pair (i, j). For each subset Dij , candidate classifiers

CA1,Dij , . . . , CAL,Dij are trained using a pre-defined set of candidate classification

algorithms A1, . . . ,AL. Of the candidate classifiers, the best candidate classifier

CAbest,Dij for each class pair is selected to minimize validation errors. Conse-

quently, a total of c(c − 1)/2 classifiers are selected, each of which is the most

competent for distinguishing its corresponding class pair. Algorithm 1 presents

the pseudocode of DOAO. Given these c(c − 1)/2 classifiers, the classification

of a test instance is performed by a majority vote of them.

Figure 3.1 shows an illustrative example of DOAO for a three-class toy

dataset. In this figure, circles, rectangles, and triangles represent class 1, 2, and

3, respectively. The decision boundaries of class pairs are represented by bold

lines. Figure 3.1(a), 3.1(b), and 3.1(c) depict the decision boundaries obtained

using one-against-one classifiers based on single classification algorithms. In this

example, the classification algorithms A1, A2, and A3 perform the best for the

class pair (1, 2), (2, 3), and (1, 3), respectively. DOAO selects the most competent

decision boundary for each class pair, as shown in Figure 3.1(d). Therefore, each

of the decision boundaries corresponds to a different classification algorithm.

Therefore, DOAO can yield better classification accuracy compared to other
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Algorithm 1 Diversified One-Against-One (DOAO)

Input: training dataset D = {xt, yt}N1
t=1, validation dataset D′ =

{xt, yt}N1+N2
t=N1+1, yt ∈ {1, . . . , c}, candidate classification algorithms A1, . . . ,AL

Output: set of base classifiers C

1: procedure DOAO

2: C← φ

3: for each class pair (i, j) do

4: Dij ← {(xt, yt) ∈ D|yt ∈ {i, j}}

5: D′ij ← {(xt, yt) ∈ D′|yt ∈ {i, j}}

6: CAk,Dij ← candidate classifier trained from Dij using Ak, k = 1 to L

7: Abest ← arg minAk
1
N2

∑
(xt,yt)∈D′

ij
1CAk,Dij

(xt) 6=yt

8: C← C ∪ {CAbest,Dij}

9: end for

10: end procedure

one-against-one classifiers that are based on single classification algorithms.

DOAO makes the various classification algorithms to complement each other.

However, this method is differentiated from the vote method, which obtains

classification results via a vote of classifiers of various classification algorithms.

The vote method aims to achieve a group consensus under the assumption

that each classifier has similar competence. Therefore, this method becomes

worse when only a few classifiers provide correct classification results and other

classifiers do not. On the other hand, DOAO does not encounter this problem

because it simply selects the most competent classifier for each sub-problem.
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Figure 3.1 Construction of a classifier based on DOAO

Moreover, if this method selects the best classifier accurately for every sub-

problem, it can unquestionably outperform all the other methods, including

the vote method.

The major drawbacks to DOAO are twofold. Firstly, a lower validation error

does not always result in a lower test error. This occurs prominently when

heterogeneous classifiers are compared. A low-bias, high-variance classifier tends

to have a higher test error even when the validation error remains the same.

Therefore, classifier selection based on validation errors can lead to overfitting
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(Cawley & Talbot, 2010). Secondly, selecting the single best classifier is not

always optimal, although it is significantly better than voting. It is known that

selective fusion provides better results than either classifier selection or fusion

by taking advantage of both (Giacinto & Roli, 2001; Tsoumakas et al., 2005).

Considering these two drawbacks, there is room for further improvement. To

this end, we propose another method that is an improvement of DOAO in the

next section.

3.3 Optimally Diversified One-Against-One

This section introduces ODOAO that aims at the optimal construction of a one-

against-one classifier for better classification accuracy. The basic idea in ODOAO

is that a meta-classifier discovers the optimal combination of the outputs from

a diverse of base classifiers that are trained for every class pair and candidate

classification algorithm. This idea is related to meta-learning which is described

in Subsection 2.2.2.

Figure 3.2 shows the framework of ODOAO, which consists of two phases.

The first phase is to train candidate classifiers from each class pair in the train-

ing dataset, which is identical in the original DOAO. This phase results in a set

of base classifiers C.

The second phase is to construct a meta-dataset based on the base classi-

fiers and the validation dataset, and to train a meta-classifier using this meta-

dataset. Given the classifier set C consisting of the L×c(c−1)/2 base classifiers

from the first phase, the predicted label ŷit is computed for each classifier Ci and
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Figure 3.2 Framework of ODOAO

each instance xt in the validation dataset D′, and the predicted label vector

vi is constituted as (ŷiN1+1, ŷ
i
N1+2, . . . , ŷ

i
N1+N2

) for each Ci. Then, m clusters

T1, T2, . . . Tm are generated from the set of vectors {vi}i|Ci∈C using a clustering

algorithm. For each clusters, one base classifier is randomly selected. The re-

sulting m base classifiers are used only in order to construct the meta-dataset

M. Using the predicted labels of the selected base classifiers as inputs and the

target labels as outputs,M is defined by {(ŷ1t , ŷ2t , . . . , ŷ
L×c(c−1)/2
t ), yt}(xt,yt)∈D′ .

Finally, the meta-classifier CM is trained with the dataset M. The overall pro-

cedure is described in Algorithm 2.
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In ODOAO, selecting the base classifiers aims at reducing the redundancies

of base classifiers. Therefore, this step should generate clusters where each con-

tains redundant base classifiers. Note that the result of the selection depends on

the configuration of a clustering algorithm. Thus, the agglomerative hierarchical

clustering algorithm with complete linkage are employed in ODOAO. To eval-

uate the redundancy, the distance measure between the two vectors vi and vj is

defined as d(vi,vj) = min (
∑

(xt,yt)∈D′ 1ŷit=a1∩ŷjt=b1
,
∑

(xt,yt)∈D′ 1ŷit=a1∩ŷjt=b2
)/N2,

with assuming that ŷit ∈ {a1, a2} and ŷjt ∈ {b1, b2} for all t. The values of this

distance measure range from 0 (most redundant) to 0.5 (least redundant). The

distance threshold as stopping criterion of the clustering is set to 0.05.

ODOAO is differentiated from the original DOAO by the second phase. The

original DOAO selects the single best classifier for each class pair, and its clas-

sification is done by voting on the c(c− 1)/2 selected classifiers. This method,

however, exploits the entire base classifiers trained in the first phase by combin-

ing their outputs using the meta-classifier. The meta-classifier decides how to

combine the base classifiers. By doing so, ODOAO can overcome the drawbacks

in the original DOAO.

In order to ensure that ODOAO performs well, it is important to train the

meta-classifier suitably. Two issues should be addressed: high dimensionality

and non-linear structure. Regarding the high dimensionality issue, the number

of base classifiers obtained in the first phase is L× c(c− 1)/2, which is propor-

tional to the square of the number of classes. The dimensionality becomes too

large when the number of classes increases, which may lead to degradation of

the meta-classifier performance. ODOAO resolves this issue by the base classi-
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Algorithm 2 Optimally Diversified One-Against-One (ODOAO)

Input: training dataset D = {xt, yt}N1
t=1, validation dataset D′ =

{xt, yt}N1+N2
t=N1+1, yt ∈ {1, . . . , c}, candidate classification algorithms A1, . . . ,AL

Output: set of base classifiers C, meta classifier CM

1: procedure ODOAO

2: I phase 1

3: C← φ

4: for each class pair (i, j) do

5: Dij ← {(xt, yt) ∈ D|yt ∈ {i, j}}

6: CAk,Dij ← candidate classifier trained from Dij using Ak, k = 1 to L

7: C← C ∪ {CA1,Dij , . . . , CAL,Dij}

8: end for

9: I phase 2

10: for each classifier Ci ∈ C do

11: ŷit ← Ci(xt), ∀(xt, yt) ∈ D′

12: vi ← (ŷiN1+1, ŷ
i
N1+2, . . . , ŷ

i
N1+N2

)

13: end for

14: T1, T2, . . . Tm ← clusters generated from {vi}i|Ci∈C

15: s(1), s(2), . . . , s(m) ← index of a randomly chosen vector in each of

T1, T2, . . . Tm

16: M← {(ŷs(1)t , ŷ
s(2)
t , . . . , ŷ

s(m)
t ), yt}(xt,yt)∈D′

17: CM ← meta-classifier trained from M

18: end procedure
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Table 3.1 The number of classifiers used for training and test for each method

Method N. classifiers trained N. classifiers used for test

Single Algorithm-OAO c(c− 1)/2 c(c− 1)/2

VOTE-OAO L× c(c− 1)/2 L× c(c− 1)/2

DOAO L× c(c− 1)/2 c(c− 1)/2

ODOAO L× c(c− 1)/2 + 1 θ × L× c(c− 1)/2 + 1

fier selection step in the second phase. For the non-linear structure issue, the

predicted label of a base classifier for a class pair (i, j) is only i or j because

the decomposition in ODOAO is based on the one-against-one approach. Thus,

the relationship between the predictions of the base classifiers and the target

labels are not linear. To train the meta-classifier, classification algorithms that

can deal with non-linear structure effectively, and are also robust to high input

dimensionality should be employed.

The training and test time should be taken into account for practical de-

ployment of a classification algorithm (Kang & Cho, 2014). Thus, we analyze

the relative time of training and test for ODOAO and other methods in terms

of the number of classifiers involved. Table 3.1 shows the number of classifiers

trained in the training phase and used for classifying a test instance. Note that θ

of ODOAO is the fraction of base classifiers used as inputs of the meta-classifier,

and the actual value of θ for each benchmark dataset is reported in Table 3.5.

Regarding the training phase, a single algorithm-OAO involves training of

base classifiers for all possible class pairs using a single classification algorithm.

VOTE-OAO and DOAO train base classifiers using every candidate classification
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algorithm, so L × c(c − 1)/2 classifiers are trained. Added to these, ODOAO

additionally requires training of one more classifier as a meta-classifier. As a

simple comparison, VOTE-OAO, DOAO, and ODOAO involve more classifier

training in their training phase than single algorithm-OAOs. However, since we

usually have no certain knowledge that which algorithm performs best for a

dataset (Sohn, 1999; Lim et al., 2000; Kiang, 2003), we should compare the

classification performance of several single algorithm-OAOs that are trained

using different classification algorithms and choose the best one. Therefore, the

practical difference in the training phase is not so significant.

For the test phase, single algorithm-OAOs and DOAO use c(c − 1)/2 base

classifiers, each of which corresponds to a class pair, to classify a test instance.

On the other hand, ODOAO involves θ × L× c(c− 1)/2 + 1 classifiers for test,

which depends on θ but generally larger than other methods. This would be a

drawback for real-time applications that requires fast classification speed.

Retraining issue is also a main concern if new data is added continuously and

the classifier needs to be updated accordingly. Fast re-training speed is required

for such a streaming data environment. We can consider two cases. The first

case is that new instances of existing classes are added into the training data.

We can cope with this case by using only candidate classification algorithm that

can be trained incrementally (Giraud-Carrier, 2000).

The second is about the instances of a novel class. The proposed meth-

ods are effective for this case because of the property of the one-against-one

approach. The one-against-one approach does not require retraining of any ex-

isting classifiers and only requires training of classifiers that correspond to the
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novel class, whereas all the existing base classifiers have to be retrained for the

one-against-rest approach.

3.4 Performance Evaluation on Benchmark Datasets

3.4.1 Data Description

The effectiveness of the proposed methods was investigated through exper-

iments on the benchmark datasets. The following 15 multi-class benchmark

datasets, each with more than two classes, were collected from the UCI ma-

chine learning repository (Bache & Lichman, 2014): Zoo, Iris, Wine, Seed,

Glass, Ecoli, Movement, Balance, Landcover, Vehicle, Annealing, Vowel, Yeast,

CarEvaluation, and Segment. Since the proposed methods have no effect on bi-

nary classification problems, the number of classes of every collected dataset is

larger than two. A detailed description for each dataset is provided in Table 3.2.

3.4.2 Experimental Settings

In the experiment, the effectiveness of the proposed methods DOAO and ODOAO

was investigated. For training of base classifiers, six well-known and widely used

classification algorithms that are introduced in Section 2.1 were employed in

order to train the base classifiers: ANN, DT, kNN, LDA, LR, and SVM. For

meta-classifiers of ODOAO, we used ANN, DT, and SVM to investigate the

respective suitability.

Regarding the proposed methods, ODOAO was implemented in three forms
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Table 3.2 Data summary

Dataset N. instances N. features N. classes

Zoo 101 16 7

Iris 150 4 3

Wine 178 13 3

Seed 210 7 3

Glass 214 9 6

Ecoli 336 7 8

Movement 360 90 15

Balance 625 4 3

Landcover 675 147 9

Vehicle 846 18 4

Annealing 898 38 6

Vowel 990 10 11

Yeast 1484 8 10

CarEvaluation 1728 6 4

Segment 2310 19 7

(ODOAOANN, ODOAODT, and ODOAOSVM), each employed ANN, DT, and

SVM, respectively, as the meta-classifier. As one-against-one benchmarks, the

six one-against-one classifiers (ANN-OAO, DT-OAO, kNN-OAO, LDA-OAO,

LR-OAO, and SVM-OAO) were used, each is based on an individual classifi-

cation algorithm. They were also compared with a vote-based method (VOTE-

OAO), that votes on the candidate classifiers for each class pair, rather than

selecting the best classifier. In addition, the two typical homogeneous ensemble

methods, ANN-Bagging (Breiman, 1996) and Random Forest (RF) (Breiman,
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2001), were employed as benchmark methods. In Bagging, each base classifier

is trained with a bootstrap sample drawn randomly from a given training set.

RF is an extension of Bagging for DT that randomizes the choice of features

when splitting each node of the DT. When training all the classifiers, numeric

variables were scaled to be in the range of [−1, 1]. All the algorithms used in

the experiments were implemented using MATLAB.

To compare the proposed methods with the benchmark methods, the clas-

sification performance was evaluated using the misclassification error rate (%)

on the test dataset, which is defined by (1/N)
∑N

t=1 1yt 6=ŷt × 100, where N is

the number of test instances, yt is the target label of the t-th instance, ŷt is the

predicted label of the t-th instance, and 1yt 6=ŷt is an indicator function that has

a value of 1 when yt 6= ŷt.

A ten-fold cross test procedure was conducted for each method, involved

partitioning the original dataset into ten disjointed and equally sized subsets.

Then, nine subsets were used as the training dataset, and the test error was cal-

culated for the remaining. This process was independently repeated ten times,

using each of the ten subsets exactly once as the test dataset.

In each run, the best parameters of each classification algorithm for a class

pair were explored through ten-fold cross validation with a grid search mecha-

nism in the training set. The parameter search spaces used in the experiments

are given in Table 3.3. For DOAO, the best classifier for each class pair was

selected based on the cross validation error. For ODOAO, the predicted labels

for the base classifiers resulting from the cross validation procedure were used

to construct the meta-dataset to build meta-classifiers. For ANN-Bagging, the
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Table 3.3 Parameter settings for each algorithm

Algorithm Parameter Setting

ANN N. hidden nodes=3, 4, 5, . . . , 20

Max. iterations=300

DT Min. instances in a leaf node=1, 2, 3, 5

Min. instances in a parent nodes=5, 10

Prune=true

kNN k=1, 3, 5, 7, 10, 20, 30

Distance type=Euclidean

LDA No parameter

LR No parameter

SVM C=2−3, . . . , 210

Kernel type=RBF kernel

σ=2−5, . . . , 25

number of base classifiers, the number of hidden nodes, and the bootstrap sam-

ple size were set as 10, 10, and 80% of the training set, respectively. For RF, the

number of base classifiers, the bootstrap sample size and the minimum number

of instances in a leaf node were set as 100, 80% and 1% of the training set,

respectively.

3.4.3 Experimental Results

Table 3.4 shows the results from comparing the proposed methods with the

benchmark methods in terms of the error rate (%). The numbers in bold indicate

the lowest error rate obtained over all the methods tested.
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Overall, DOAO and ODOAO yielded better classification results when some

single algorithm-OAOs are superior to others, and even outperformed the best

of the six single algorithm-OAOs. That is, the classification accuracy can be

improved further, even though a sufficiently superior classification algorithm

currently exists. Otherwise, VOTE-OAO showed relatively suitable results when

the classification accuracy of the six single algorithm-OAOs was similar, but it

performed worse than the best of them. DOAO and ODOAO performed bet-

ter than VOTE-OAO, even though they commonly exploit several candidate

classifiers. This is because it is more likely that some classifiers were more

competent than others when different classification algorithms are employed to

train candidate classifiers. The proposed methods also yielded lower error rate

than typical homogeneous ensemble methods, ANN-Bagging and RF, for entire

datasets except Glass dataset.

Considering DOAO, DOAO was worse than one of the single algorithm-OAOs

in some datasets, which indicates that DOAO does not always select the best

classifier for each class pair. This is because DOAO simply selects classifiers

for each class pair based on the validation error, and a lower validation error

does not always leads to a lower test error. The comparison results show that

ODOAOANN and ODOAOSVM outperform DOAO on most datasets, indicating

that the meta-classifiers based on ANN and SVM effectively find better com-

binations of the base classifiers. However, ODOAODT perform relatively worse

than both DOAO and VOTE-OAO.

Table 3.5 lists the average selection number for each classification algorithm

in DOAO. The selection number indicates that DOAO selected the algorithm for
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Table 3.5 Average selection number of each candidate classification algorithm

for DOAO on benchmark datasets

Dataset N. classes N. class pairs ANN DT kNN LDA LR SVM

Zoo 7 21 7.9 2.7 3.9 1.0 2.4 3.1

Iris 3 3 1.2 0.4 0.2 0.2 0.4 0.6

Wine 3 3 1.2 0.0 0.2 0.4 0.3 0.9

Seed 3 3 1.1 0.3 0.3 0.2 0.9 0.2

Glass 6 15 9.0 1.5 1.1 0.6 0.3 2.5

Ecoli 8 28 18.2 1.2 1.9 2.2 1.9 2.6

Movement 15 105 50.7 5.0 17.3 2.9 0.7 28.4

Balance 3 3 0.0 0.0 0.0 0.0 0.0 3.0

Landcover 9 36 25.3 2.6 2.5 0.7 0.0 4.9

Vehicle 4 6 1.8 0.0 0.0 0.0 0.0 4.2

Annealing 6 15 2.9 1.3 0.7 0.3 2.8 2.0

Vowel 11 55 13.7 0.5 14.9 2.0 3.9 20.0

Yeast 10 45 32.9 1.9 3.0 0.5 1.3 5.4

CarEvaluation 4 6 2.3 0.3 0.0 0.0 0.5 2.9

Segment 7 21 7.4 2.7 2.8 1.2 1.6 5.3

the corresponding number of class pairs. As shown in this table, SVM and ANN

are dominantly selected, but are not entirely selected on most datasets. Other al-

gorithms are selected instead for particular class pairs, and consequently DOAO

yields more desirable classification results. The selection of classifiers is varied

by datasets. Some classification algorithms, such as LR and LDA, are not often

selected compared to other algorithms, but took a large part of some datasets.

In the case of the Balance dataset, only SVM is selected for every class pair;
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Table 3.6 Average selection number of base classifiers for ODOAO on benchmark

datasets

Datasets N. classes N. base classifiers

total

N. base classifiers

selected

θ: Frac.

selected (%)

Zoo 7 126 91.2 72.4

Iris 3 18 2.5 13.9

Wine 3 18 9.3 51.7

Seed 3 18 8.0 44.4

Glass 6 90 62.3 69.2

Ecoli 8 168 92.3 54.9

Movement 15 630 575.4 91.3

Balance 3 18 12.2 67.8

Landcover 9 216 186.0 86.1

Vehicle 4 36 33.1 91.9

Annealing 6 60 33.8 56.3

Vowel 11 330 284.2 86.1

Yeast 10 270 136.0 50.4

CarEvaluation 4 36 18.2 50.6

Segment 7 126 77.7 61.7

hence, there is no difference between DOAO and SVM-OAO.

Table 3.6 shows the average number of classifiers selected by the base clas-

sifier selection step of ODOAO for each dataset. The results show that input

dimensionality of the meta-classifier is reduced by the selection step. On av-

erage, 63.3% of the base classifiers are selected across the datasets. In case of

the Iris dataset, only 13.9% of the base classifiers are used. On the other hand,

over 90% of the classifiers are used for the Movement and Vehicle datasets.

40



Data Table

Marking:
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Error Rate (%) Decrease by ODOAO vs. Error Rate (%) of DOAO

Error Rate (%) of DOAO

E
rr

o
r

R
a
te

(%
)

D
e
c
re

a
s
e

b
y

O
D

O
A

O

0 5 10 15 20 25 30 35 40

7

6

5

4

3

2

1

0

-1

-2

Glass

Yeast

Vehicle

Movement

Landcover

Zoo

Wine

Iris

Seed

Segment

Ecoli

CarEvaluation

Annealing

Vowel

Balance

Marking:

Marking

Marker by

(Row Number)

All values

All values

Figure 3.3 The relationship between the error rate (%) of DOAO and that

decrease by ODOAO

Considering the relationship between ODOAO and DOAO, the former yields

a lower, or at least equal, error rate in 12 out of the 15 datasets. Figure 3.3 plots

the error rate difference between ODOAOANN and DOAO against the error rate

of DOAO. ODOAO yields a much lower error rate than DOAO for the Glass,

Movement, and Landcover datasets. On the other hand, ODOAO performs worse

than DOAO when the error rate is close to 0%, as is the case for the Zoo, Balance,

and Vowel datasets. That is, the meta-classifier of ODOAO itself may lead to
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Table 3.7 Results of the Holm post-hoc test

Method Average Rank Holm APV Hypothesis (α=0.05)

ODOAOANN 2.3 - -

ODOAOSVM 2.63 0.783 Not rejected

DOAO 3.63 0.542 Not rejected

ODOAODT 4.67 0.152 Not rejected

SVM-OAO 5.93 0.0123 Rejected

VOTE-OAO 5.97 0.0123 Rejected

ANN-OAO 7.23 2.78× 10−4 Rejected

LR-OAO 8.13 1.02× 10−5 Rejected

kNN-OAO 8.2 8.85× 10−6 Rejected

LDA-OAO 8.3 6.53× 10−6 Rejected

DT-OAO 9 3.16× 10−7 Rejected

misclassification errors when there is no room for improving the classification

accuracy.

We conducted non-parametric statistical tests in order to determine the sta-

tistical significance of the comparison results (Demšar, 2006; Garćıa & Herrera,

2008; Garćıa et al., 2009, 2010). The Friedman test was executed to find out

the statistical difference between the one-aganst-one methods used in the ex-

periments. Since the p-value returned by the Friedman test is 8.2838 × 10−11,

the null hypothesis of equivalence between the methods is rejected with a high

level of confidence. Therefore it can be concluded that there are significant

differences between the methods. Subsequently, the Holm post-hoc test was

carried out to compare the best method with the others, and the results from

this test are provided in Table 3.7. These results show that ODOAOANN sig-
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Table 3.8 Results of the Wilcoxon signed-rank test comparing ODOAOANN,

ODOAOSVM, and DOAO

Comparison R+ R− p-value Hypothesis (α=0.05)

ODOAOANN vs. ODOAOSVM 47 19 0.107 Not rejected

ODOAOANN vs. DOAO 94 26 0.0267 Rejected

ODOAOSVM vs. DOAO 62 16 0.0356 Rejected

nificantly outperforms most other methods, with the exception of ODOAOSVM

and DOAO.

The Holm test did not provide sufficiently significant differences between

ODOAOANN, ODOAOSVM, and DOAO. Therefore, the Wilcoxon signed-rank

test was ultimately conducted for a pairwise comparison among these meth-

ods. The p-values obtained by the Wilcoxon test are presented in Table 3.8. As

shown in Table 3.8, there is no significant difference between ODOAOANN and

ODOAOSVM, whereas DOAO is significantly worse than either method. Con-

sequently, we confirm that ODOAO statistically outperforms DOAO and the

other methods. According to the statistical test results, we can conclude that

the proposed methods statistically outperform the other methods.

3.5 Summary

In this chapter, we introduced a method called DOAO to solve multi-class classi-

fication problems by constructing a multi-class classifier using the one-against-

one approach with different classification algorithms. This method aims to ob-
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tain improved classification results by selecting the best classification algorithm

for each class pair. Thus, it constructs a one-against-one classifier by selecting

the best classifiers among several heterogeneous candidate classifiers. Applying

DOAO makes various classification algorithms to complement each other. Since

the best classification algorithm for each class pair is different, it was founded

to yield better classification accuracy than other one-against-one classifiers that

are based on individual classification algorithms.

DOAO is not only easy and intuitive, but also very effective for multi-class

classification problems. Applying this method to multi-class classification prob-

lems provides better classification results. However, there are two major limita-

tions in DOAO. The first is that the minimum validation error does not guaran-

tee the minimum test error. The second is that a selective fusion of the best set

of classifiers would better than the single best classifier. Thus, we determined

that DOAO can be improved further by addressing these limitations.

Next, we introduced another method, ODOAO, as an improvement to DOAO

based on meta-learning. ODOAO constructs a heterogeneous ensemble where a

meta-classifier effectively combines the outputs from all the heterogeneous base

classifiers that are trained using various classification algorithms for every class

pair. Base classifiers are trained according to the one-against-one approach using

various candidate classification algorithms, and a meta-classifier is trained to

optimally combine the outputs of the base classifiers. In addition, we take into

account the issues of high dimensionality and non-linear structure when training

the meta-classifier.

Our experimental results showed that the proposed methods outperform
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other one-against-one classifiers that are based on single classification algo-

rithms, and also outperforms the vote-based one-against-one classifier, on most

benchmark datasets. The experimental results also showed that ODOAO out-

performs DOAO and the other one-against-one classifiers on most datasets. The

statistical significance of the results was confirmed through non-parametric sta-

tistical tests.

Regarding practical deployment of the proposed methods, the training of a

number of candidate classifiers can be time consuming. However, such burden

does not represent a problem if the training of classifiers is not subjected to

a time limit. One legitimate concern is that the heterogeneous ensemble con-

structed by the proposed methods may require a large amount of computation

when classifying new instances because all of the base classifiers as well as the

meta-classifier are used for classification. This would be a drawback when fast

classification speed is required, as with real-time applications (Kang & Cho,

2014). In Chapter 6, this drawback is addressed by approximating the ensem-

ble with a single model in order to increase the classification speed.
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Chapter 4

Heterogeneous Ensemble for Accurate

Classification: One-class Classifier

Approach

4.1 One-class Classifier Approach for Multi-class Clas-

sification

In Chapter 3, heterogeneous ensemble methods involving construction of an

ensemble of binary classifiers are proposed. Although the binary classifier ap-

proach has received more attention and has been more often used, the strategy

that involves construction of an ensemble of one-class classifiers has also been

successfully applied to multi-class classification problems (Juszczak & Duin,

2004; Ban & Abe, 2006; Tax & Duin, 2008; D. Lee & Lee, 2007; Hao et al.,

2009), because of some merits. This strategy only requires training of one clas-

sifier and does not require re-training of any existing classifiers when another

class is added into the training data (Juszczak & Duin, 2004). Moreover, this

strategy may be effective when class imbalance is severe (H.-j. Lee & Cho, 2006).

In general, this is achieved by decomposing the original multi-class classifi-
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cation problem into c one-class sub-problems. For each of the sub-problems, a

one-class classifier is trained to determine if an instance belongs to a class. The

resulting c base classifiers constitute an ensemble to make predictions for the

original problem.

With respect to the third strategy, the existing methods proposed in previ-

ous work were based on homogeneous ensembles, which means that they have

only used single one-class classification algorithms to construct the ensembles.

For further improvement on classification accuracy, heterogeneous ensembles,

which employ various classification algorithms to train base classifiers, can be

advantageous (Kang, Cho, & Kang, 2015a). The heterogeneous ensemble al-

lows us to obtain better classification accuracy by combining the advantages

of various algorithms, while this ensemble generally requires a large computa-

tional burden in training and test because it involves many base classifiers from

various algorithms.

When constructing a heterogeneous ensemble of one-class base classifiers,

the major issue is about the normalization of the prediction scores from the

base classifiers. Since each classifier is independently trained, their scores may

be on different scales (Bishop & Nasrabadi, 2006). The problem of different

scales becomes more serious when base classifiers from different algorithms are

considered. Moreover, if some base classifiers are inadequately trained, they

may provide incorrect scores as predictions for new instances, and consequently,

the classification results provided by an ensemble might be invalid (Galar et

al., 2013). Therefore, the scores should be appropriately normalized, and some

invalid base classifiers should be filtered out when combining the multiple base
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classifiers.

There have been several efforts to address this problem. Some researchers

proposed algorithm-specific normalization methods. Ban and Abe (2006) pro-

posed normalization methods for each of the kernel PCA and SVDD algorithms.

In particular, there are a number of methods for SVDD (Hao et al., 2009).

On the other hand, general normalization methods have also been developed.

D. Lee and Lee (2007) utilized Bayesian decision theory for combining base clas-

sifiers. Tax and Duin (2008) proposed two normalization methods based on the

Bayesian decision theory: outlier normalization (O-norm) and target normaliza-

tion (T-norm). The methods proposed in previous work focused on combining

homogeneous base classifiers on the basis of heuristics. In addition, some meth-

ods were only valid for a specific algorithm. On the other hand, we focus on

learning-based normalization for combining heterogeneous base classifiers as an

improvement over previous work.

To this end, we propose a heterogeneous ensemble method with addressing

the aforementioned issues for multi-class classification. The proposed method

is based on stacking in order to combine heterogeneous one-class base classi-

fiers trained from various algorithms effectively. MLR (Ting & Witten, 1999)

is employed for learning-based normalization. That is, the proposed method

builds an MLR model that combines the base classifiers trained by various al-

gorithms. Since an MLR is scale independent, the proposed method can success-

fully normalize the scores from the heterogeneous base classifiers. In addition,

to minimize the risk of invalid base classifiers in the ensemble, we propose se-

lective stacking, which is a variant of stacking, to achieve better classification
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accuracy. Selective stacking utilizes variable selection methods when training

the meta-classifier in order to exclude invalid and superfluous base classifiers.

Experiments were conducted using benchmark datasets to investigate the effec-

tiveness of the proposed method.

4.2 Heterogeneous Ensemble of One-class Classifiers

Multi-class classification problems can be solved by an ensemble of one-class

classifiers. The use of various algorithms to train the base classifiers of the

ensemble leads to better classification accuracy. However, the normalization of

the scores obtained from the heterogeneous base classifiers is a difficult problem

because each algorithm has a different type of scores (Tax, 2001). Density-based

algorithms provide probability densities as scores. The score type of boundary-

based and reconstruction-based algorithms is the distance from the boundary

and the reconstruction error, respectively. The scales of the scores may also be

different even though the same algorithm is used.

In this section, we propose a multi-class classification method, which com-

bines heterogeneous one-class classifiers based on stacking. In the proposed

method, a meta-classifier is trained using stacking with MLR (Ting & Witten,

1999) for learning-based normalization of the scores obtained from the base

classifiers. MLR is a multi-class classification algorithm that separates each

class from all other classes by linear regression models. Owing to the scale

independent characteristic of MLR, the normalization issue can be effectively

addressed.
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Phase 1: Training of Base Classifiers 

For each class, train base classifiers from training 

dataset using candidate classification algorithms 

Phase 2: Training of Meta-Classifier 

Train a meta-classifier from meta-dataset that consists 

of predictions of base classifiers on  validation dataset 

Figure 4.1 Framework of HEOC

MLR has been successfully employed for training of a meta-classifier (Ting

& Witten, 1999; Džeroski & Ženko, 2004; Seewald, 2002). MLR is a multi-class

classification algorithm that separates each class from the other classes by linear

regression models, according to the one-against-rest approach. This algorithm

formulates c regression problems for a c-class classification problem. Given a

meta-dataset M = {(s1t , s2t , . . . , sLt ), yt}Nt=1, the linear regression model for the

i-th class is trained from {(s1t , s2t , . . . , sLt ),1yt=i}Nt=1. After c linear regression

models are trained, classification for a new meta instance is done by choosing

the class label with the maximum score from the linear regression models.
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Figure 4.1 shows the framework of the proposed method that consists of two

phases. In the first phase, one-class base classifiers are trained using candidate

classification algorithmsA1, . . . ,AL. Suppose a training dataset D = {xt, yt}N1
t=1

of a c-class classification problem is given, where xi ∈ Rd is an input vector, and

yi ∈ {1, . . . , c} denotes its target label. The dataset D is partitioned into c sub-

sets Di for each class. For every Di, base classifiers CA1,Di , CA2,Di , . . . , CAL,Di are

trained using the candidate one-class classification algorithms, thereby resulting

in L× c base classifiers.

In the second phase, a meta-classifier is trained using MLR in order to com-

bine the base classifiers. Given a validation dataset D′ = {xt, yt}N1+N2
t=N1+1, yt ∈

{1, . . . , c}, the prediction scores sk,it are computed for every validation instance

(xt, yt) ∈ D′ using the algorithm Ak. The meta-dataset Mi of the i-th class is

defined as {(s1,1t , . . . , sL,1t , s1,2t , . . . , sL,2t , . . . , s1,ct , . . . , sL,ct ),1yt=i}(xt,yt)∈D′ , such

that the scores of all base classifiers are input variables and the output variable

is a binary variable indicating whether the target label is the i-th class. Finally,

a linear regression model CMi is trained from each meta-dataset Mi. The re-

sulting c linear regression models form the meta-classifier. The pseudocode of

the proposed method is described in Algorithm 3.

The ensemble that consists of the base classifiers and meta-classifier is used

to classify a new instance. Given an instance, the prediction scores are computed

using the base classifiers. These scores are input for the meta-classifier, and the

meta-classifier provides the final classification result as ŷ = arg maxi CMi(x),

by choosing the label with the maximum score among the c linear regression

models CMi .
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Algorithm 3 Heterogeneous Ensemble One-class Classifiers (HEOC)

Input: training dataset D = {xt, yt}N1
t=1, validation dataset D′ =

{xt, yt}N1+N2
t=N1+1, candidate classification algorithms A1, . . . ,AL

Output: base classifiers CAk,Di , meta classifiers CMi ,∀k, i

1: procedure HEOC

2: I phase 1

3: for i = 1 to c do

4: Di ← {(xt, yt) ∈ D|yt = i}}

5: CAk,Di ← base classifier trained from Di using Ak, k = 1 to L

6: sk,it ← CAk,Di(xt), ∀(xt, yt) ∈ D′, k = 1 to L

7: end for

8: I phase 2

9: for i = 1 to c do

10: Mi ← {(s1,1t , . . . , sL,1t︸ ︷︷ ︸
class 1

, s1,2t , . . . , sL,2t︸ ︷︷ ︸
class 2

, . . . , s1,ct , . . . , sL,ct︸ ︷︷ ︸
class c

),1yt=i}(xt,yt)∈D′

11: CMi ← linear regression model trained from Mi

12: end for

13: end procedure

As an alternative to the standard stacking, stackingC (Seewald, 2002) can

be employed for the proposed method. StackingC differs from the standard

stacking in the construction of the meta-dataset. For the construction of the

meta-dataset Mi, stacking uses the prediction scores of all the base classifiers

as the input variables, whereas stackingC uses only those scores that have been

computed using base classifiers with the i-th class. Thus, Algorithm 3 can rep-
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resent the pseudocode for the proposed method with stackingC if the 10-th line

is changed to the following:

Mi ← {(s1,it , . . . , sL,it︸ ︷︷ ︸
class i

),1yt=i}(xt,yt)∈D′ . (4.1)

In the proposed method, however, if some base classifiers are invalid or

superfluous, the performance of the MLR model may be degraded. Therefore,

to prevent performance degradation of the MLR model, only significant base

classifiers should be used to train the MLR model. As a further improvement,

we propose to use selective stacking, which aids in filtering out invalid base

classifiers based on variable selection methods when training the meta-classifier.

For each meta-dataset Mi, the linear regression model CMi is trained with a

variable selection method. As a result, only a subset of variables among the

L× c input variables of Mi is selected, which indicates that only selected base

classifiers are used as inputs of the meta-classifier. This is differentiated from

the standard stacking, because the standard stacking uses all the base classifiers

regardless of significance of each base classifier.

For selective stacking, stepwise selection is employed, which is a wrapper

method that enters and removes input variables in a stepwise manner, as a

variable selection method. In each step of linear regression model training, each

input variable is either selected or removed according to the statistical test.

The repetition of the steps is terminated when neither the entrance of a new

variable or removal of an existing variable improves the model. Consequently,

only significant variables are included in the model, which indicates that only

the significant base classifiers are used for prediction in the model. The base
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classifiers selected for each class may be different because the linear regression

models for each class are independently trained.

Note that, the resulting model after stepwise selection does not guarantee

a global optimum, because stepwise selection is based on a greedy search. In

addition, other variable selection methods can also be employed in selective

stacking. Forward selection and backward selection require less time for training

the model, but may provide worse performance. Meta-heuristic optimization

methods, such as genetic algorithm and particle swarm optimization, are more

likely to find the global optimum, but are computationally expensive.

4.3 Performance Evaluation on Benchmark Datasets

4.3.1 Data Description

The effectiveness of the proposed method was investigated through experiments

on benchmark datasets. The following 20 datasets from the UCI repository

(Bache & Lichman, 2014) are used in the experiments: Zoo, Iris, Wine, Parkin-

son, Sonar, Seed, Glass, Heart, Ecoli, Ionosphere, Movement, Balance, Land-

cover, BreastCancer, Vehicle, Annealing, Vowel, Yeast, CarEvaluation, and Seg-

ment. Detailed descriptions for these datasets are listed in Table 4.1.

4.3.2 Experimental Settings

Eight well-known, widely used one-class classification algorithms were employed

for the experiments: GAUSS, MOG, PARZEN, NNDD, SVDD, KMEANS,
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Table 4.1 Data summary

Dataset N. instances N. features N. classes

Zoo 101 16 7

Iris 150 4 3

Wine 178 13 3

Parkinson 195 22 2

Sonar 208 60 2

Seed 210 7 3

Glass 214 9 6

Heart 303 13 2

Ecoli 336 7 8

Ionosphere 351 34 2

Movement 360 90 15

Balance 625 4 3

Landcover 675 147 9

BreastCancer 683 9 2

Vehicle 846 18 4

Annealing 898 38 6

Vowel 990 10 11

Yeast 1484 8 10

CarEvaluation 1728 6 4

Segment 2310 19 7

PCA, and AUTOENC. All the aforementioned algorithms were implemented

in the Data Description Toolbox for MATLAB (Tax, 2014). Brief descriptions

for the algorithms are provided in Section 2.1.

Depending on how to construct meta-classifiers, Three versions of the pro-
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posed method (Stacking, StackingC, SelectiveStacking) were investigated in the

experiments. For SelectiveStacking, stepwise selection was used as a variable

selection method, and the p-value threshold to enter and remove variables was

set to 0.1 and 0.2, respectively. The proposed method was compared with the

eight benchmarks (GAUSS, MOG, PARZEN, NNDD, SVDD, KMEANS, PCA,

AUTOENC), each of which constructs an ensemble of one-class classifiers us-

ing a single respective algorithm. For each benchmark, T-norm was used for

normalizing the base classifiers of the ensembles because it showed better per-

formance than other methods according to the literature (Tax & Duin, 2008). In

addition, the majority vote of the classification results obtained from the eight

benchmarks (VOTE) was used for comparison. All numeric input variables were

scaled to [−1, 1] for the implementation of each method. All experiments were

performed on MATLAB.

As a performance measure for the methods, the misclassification error rate

on the test dataset was used, which is defined by (1/N)
∑N

t=1 1yt 6=ŷt × 100, where

N is the number of test instances, yt is the target label of the t-th instance, ŷt

is the predicted label of the t-th instance, and 1yt 6=ŷt is an indicator function

that has the value of 1 when yt 6= ŷt.

The performance of each method was computed based on the ten-fold cross

test procedure. In this procedure, the original dataset is partitioned into ten

disjoint, equal-sized subsets, nine of which are used as the training and valida-

tion datasets, and the test error is calculated for the remaining set. This process

is repeated for ten runs independently such that all the ten subsets are used

exactly once for test.
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With regard to training and validation, the ratio of the training to the

validation dataset was set as 1 : 1. The base classifiers were trained using the

training set exclusively, where the parameters of each classifier were chosen such

that the classification error on the validation set is minimized. The parameter

search spaces used in the experiments are listed in Table 4.2. For the bench-

mark methods, the fraction of rejection, which is the parameter of T-norm, was

explored from {0.01, 0.02, 0.05, 0.1}. For the proposed method, meta-classifiers

were trained based on the predictions of base classifiers on the validation set.

4.3.3 Experimental Results

Table 4.3 lists the comparison results of the benchmark and proposed meth-

ods in terms of error rate (%). The results show that the proposed method

outperforms the benchmarks in 14 out of 20 datasets. Regarding the bench-

mark methods, VOTE performs better than the other methods in most cases.

In general, Stacking and SelectiveStacking outperform VOTE, whereas StackingC

does not. For the Glass, Landcover, and Vowel datasets, the proposed method

outperforms the benchmark methods with at least 5% lower error rate. In con-

trast, the proposed method is relatively worse for the BreastCancer, Vehicle,

and Annealing datasets.

Table 4.4 shows the average selection number of each candidate algorithm

for SelectiveStacking. Although classifiers of SVDD and PARZEN were selected

slightly more, classifiers of all the algorithms were evenly selected on most

datasets. It means that the heterogeneous ensembles constructed by SelectiveS-

tacking exploits a diverse of classifiers from various one-class classification al-

59



T
a
b

le
4
.3

E
rror

rate
(%

)
com

p
arison

resu
lts

on
b

en
ch

m
ark

d
atasets

D
ataset

B
en

ch
m

a
rk

P
rop

o
sed

G
A

U
S

S
M

O
G

P
A

R
Z

E
N

N
N

D
D

S
V

D
D

K
M

E
A

N
S

P
C

A
A

U
T

O
E

N
C

V
O
T
E

S
tackin

g
S
tackin

gC
S
electiveS

tackin
g

Z
oo

27
.72

3
39.604

24.7
52

53.4
65

3
4.65

3
2
3
.7

6
2

2
4
.75

2
2
5
.74

3
2
3
.7

6
2

33.6
63

2
3
.7

62
2
4.75

2

Iris
4
.6

6
7

12.00
0

7
.333

1
6.667

8
.00

0
7
.33

3
6
.6

67
6
.0

0
0

4
.6

6
7

5
.333

5
.3

3
3

4
.6

6
7

W
in

e
9.551

38.764
5.6

18
28.652

6
.1

8
0

8.9
8
9

4
.4

9
4

4
.49

4
5
.6

18
3
.93

3
3.37

1
2
.2

4
7

P
a
rkin

so
n

18.974
21.026

1
6.923

2
3.077

1
6
.4

1
0

16
.4

1
0

1
9.4

8
7

1
5.8

9
7

14
.359

1
1.2

82
1
5.89

7
1
0
.2

5
6

S
o
n

a
r

40.865
49.519

2
6.923

2
6.442

2
3
.5

5
8

23
.5

5
8

2
2.5

9
6

2
7.8

8
5

1
6
.8

2
7

2
0.67

3
2
5.9

62
1
9.71

2

S
eed

6
.6

6
7

9
.04

8
1
0.000

28.0
95

8
.0

95
8
.5

71
2
0
.0

00
8
.57

1
6
.6

6
7

7
.619

9
.5

2
4

8
.0

95

G
la

ss
52.336

51.402
4
2.991

5
9.346

5
2
.8

0
4

46
.2

6
2

5
0.0

0
0

4
8.5

9
8

46
.262

4
2.0

56
4
2.99

1
3
5
.5

1
4

H
ea

rt
23.490

25.168
1
8.456

4
8.322

2
0
.1

3
4

19
.4

6
3

2
5.8

3
9

2
4.1

6
1

20
.134

1
9.4

63
1
9.46

3
1
8
.4

5
6

E
co

li
24.405

21.131
2
1.131

3
7.202

1
9
.6

4
3

20
.5

3
6

3
1.5

4
8

2
2.0

2
4

20
.536

1
8.7

50
1
6.66

7
1
5
.4

7
6

Io
n

o
sp

h
ere

31.909
19.088

2
1.083

2
1.652

2
0
.2

2
8

16
.8

0
9

8
.2

6
2

9
.40

2
6
.8

38
5
.1

2
8

1
2
.2

51
5
.6

98

M
o
vem

en
t

64.167
88.333

3
5.556

7
0.000

6
2
.5

0
0

34
.4

4
4

3
5.0

0
0

4
2.2

2
2

29
.444

3
2.7

78
3
0.00

0
2
6
.9

4
4

B
a
la

n
ce

9.598
9.923

13
.126

21.614
16

.7
98

1
5
.3

61
1
2
.00

3
1
4
.23

1
1
1
.5

15
8
.1

6
6

1
0
.0

83
8
.3

18

L
a
n

d
co

ver
69.037

82.815
2
8.000

7
4.96

3
2
9
.0

3
7

27
.8

5
2

3
4.8

1
5

3
2.7

4
1

27
.852

1
8
.6

6
7

2
3
.4

07
1
8.96

3

B
rea

stC
a
n

cer
4.255

12.441
2
.7

8
8

17.148
3
.5

18
3
.0

81
6
.1

5
8

3
.96

0
2
.935

3.08
1

2
.93

5
2
.93

5

V
eh

icle
1
7
.6

1
2

2
2.4

59
38.7

71
45.2

72
5
0
.00

0
4
1
.60

8
3
1
.0

87
2
3
.1

68
2
1.63

1
2
2.45

9
3
1.08

7
26

.12
3

A
n

n
ea

lin
g

3
.0

0
8

6
.68

3
1
6.385

23.6
15

2
3
.04

9
1
5
.93

8
1
4
.5

98
1
3
.8

18
1
3.92

9
3
.124

9.46
6

3
.2

3
8

V
o
w

el
19.192

25.960
2
1.515

3
3.636

4
7
.5

7
6

24
.4

4
4

3
1.8

1
8

2
2.6

2
6

15
.051

6
.1

6
2

1
9
.2

93
8
.6

87

Y
ea

st
51.954

46.294
4
6.024

6
7.25

1
6
6
.1

7
3

51
.3

4
8

5
5.4

5
8

5
6.4

6
9

49
.057

4
2.2

51
4
7.37

2
4
1
.3

7
5

C
a
rE

va
lu

a
tio

n
7.347

9.376
13

.198
30.21

4
1
7
.9

9
9

13
.8

8
8

1
6.9

5
6

1
7.4

2
1

11
.919

6
.0

7
8

8
.16

2
6
.541

S
egm

en
t

9.481
8.398

11
.732

24.84
8

5
6
.0

6
1

11
.9

4
8

1
4.4

5
9

1
2.8

1
4

7.4
46

6
.2

7
7

9
.004

6
.1

9
0

60



T
ab

le
4
.4

A
ve

ra
ge

se
le

ct
io

n
n
u

m
b

er
of

ea
ch

ca
n

d
id

a
te

cl
as

si
fi

ca
ti

on
al

go
ri

th
m

fo
r
S
el
ec
ti
ve
S
ta
ck
in
g

on
b

en
ch

m
ar

k

d
at

a
se

ts

D
at

as
et

N
.

cl
as

se
s

G
A

U
S
S

M
O

G
P

A
R

Z
E

N
N

N
D

D
S
V

D
D

K
M

E
A

N
S

P
C

A
A

U
T

O
E

N
C

N
.

cl
as

si
fi
er

s

u
se

d

N
.

cl
as

si
fi
er

s

to
ta

l

R
at

io
u
se

d

(%
)

Z
oo

7
1.

2
1
.1

1.
1

1.
0

1.
0

1.
2

0.
9

1.
2

8.
6

5
6

15
.4

Ir
is

3
0.

7
0
.9

0.
7

0.
4

1.
2

0.
6

0.
5

0.
8

5.
8

2
4

24
.3

W
in

e
3

0.
6

0
.2

1.
1

0.
8

1.
1

0.
5

0.
5

0.
5

5.
3

2
4

22
.1

P
a
rk

in
so

n
2

0.
5

0
.7

1.
2

0.
6

1.
0

0.
6

0.
3

0.
3

5.
2

1
6

32
.5

S
o
n

a
r

2
0.

3
0
.1

1.
3

1.
2

1.
0

0.
6

0.
8

0.
6

5.
9

1
6

36
.9

S
ee

d
3

0.
7

0
.4

1.
2

0.
8

1.
0

0.
6

1.
2

0.
7

6.
5

2
4

27
.1

G
la

ss
6

0.
8

0
.9

1.
1

0.
7

1.
0

0.
8

0.
8

0.
9

7.
0

4
8

14
.6

H
ea

rt
2

0.
0

0
.0

1.
0

0.
3

0.
6

0.
4

0.
3

0.
2

2.
8

1
6

17
.5

E
co

li
8

0.
4

0
.9

1.
8

0.
8

0.
7

0.
8

0.
7

0.
8

6.
9

6
4

10
.8

Io
n

o
sp

h
er

e
2

0.
2

0
.2

0.
8

0.
3

1.
0

1.
6

0.
6

0.
5

5.
2

1
6

32
.5

M
o
ve

m
en

t
15

2.
3

1
.2

3.
3

2.
3

2.
0

2.
1

1.
9

2.
6

17
.8

12
0

1
4.

8

B
a
la

n
ce

3
1.

0
1
.4

1.
0

0.
9

1.
0

0.
8

0.
8

0.
6

7.
6

2
4

31
.5

L
a
n

d
co

ve
r

9
2.

0
0
.0

3.
2

1.
8

2.
5

1.
9

2.
0

2.
1

15
.5

72
2
1.

6

B
re

a
st

C
a
n

ce
r

2
0.

3
1
.3

1.
3

0.
9

0.
8

0.
9

0.
8

0.
6

6.
9

1
6

43
.1

V
eh

ic
le

4
1.

4
1
.5

2.
2

0.
8

1.
7

1.
1

1.
5

1.
2

11
.3

32
3
5.

2

A
n

n
ea

li
n

g
6

1.
9

1
.1

2.
3

1.
4

1.
3

1.
8

2.
1

2.
0

13
.9

48
2
8.

9

V
o
w

el
11

2.
7

2
.4

5.
1

2.
7

3.
4

3.
3

2.
9

3.
4

25
.8

88
2
9.

3

Y
ea

st
10

0.
6

1
.6

2.
6

0.
8

1.
7

1.
7

1.
4

1.
4

12
.0

80
1
5.

0

C
a
rE

va
lu

a
ti

o
n

4
1.

8
3
.7

1.
9

1.
5

1.
1

1.
6

1.
4

1.
1

14
.1

32
4
3.

9

S
eg

m
en

t
7

3.
9

2
.4

4.
4

2.
2

4.
3

4.
5

4.
1

4.
0

29
.7

56
5
3.

1

61



Table 4.5 Results of the Holm post-hoc test

Method Average Rank Holm APV Hypothesis (α=0.05)

SelectiveStacking 2.2 - -

Stacking 2.875 0.554 Not rejected

VOTE 3.95 0.250 Not rejected

StackingC 4.5 0.131 Not rejected

PARZEN 6.675 3.47× 10−4 Rejected

KMEANS 6.75 3.30× 10−4 Rejected

GAUSS 6.825 2.99× 10−4 Rejected

AUTOENC 7.425 3.21× 10−5 Rejected

PCA 8.05 2.31× 10−6 Rejected

MOG 8.4 4.86× 10−7 Rejected

SVDD 8.9 4.20× 10−8 Rejected

NNDD 11.45 5.44× 10−15 Rejected

gorithms effectively. The ensembles selected averagely about 27.5% of the total

classifiers. In the case of Segment, CarEvaluation, and BreastCancer, almost half

of total were selected, whereas only a small number of classifiers were selected

for some datasets such as Ecoli.

The statistical significance of the comparison results was investigated via

non-parametric statistical tests (Demšar, 2006; Garćıa & Herrera, 2008; Garćıa

et al., 2009, 2010). Firstly, the Friedman test was performed to find out the

statistical difference of the performance among the compared methods. The

Friedman test returned the p-value as 1.0263× 10−10, which indicates that the

null hypothesis of equivalence is rejected with a high confidence. Therefore, the

performances of those methods are statistically different. In particular, Selec-
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Table 4.6 Results of the Wilcoxon signed-rank test comparing SelectiveStacking,

Stacking, and VOTE

Comparison R+ R− p-value Hypothesis (α=0.05)

SelectiveStacking vs. Stacking 152 19 0.00189 Rejected

SelectiveStacking vs. VOTE 148 23 0.00325 Rejected

SelectiveStacking vs. StackingC 188 2 9.11× 10−5 Rejected

Stacking vs. VOTE 155 55 0.0310 Rejected

Stacking vs. StackingC 136 35 0.0139 Rejected

VOTE vs. StackingC 87 84 0.474 Not rejected

tiveStacking performed best with an average rank of 2.2, followed by Stacking

and VOTE. Accordingly, the Holm post-hoc test was conducted to compare the

method that was adjudged as having the best performance as per the Friedman

test, SelectiveStacking, with the other methods. The results, which are listed in

Table 4.5, show that SelectiveStacking statistically outperforms the benchmark

methods.

The Holm post-hoc test, however, did not report the difference between

SelectiveStacking, Stacking, VOTE, and StackingC. Hence, the Wilcoxon signed-

rank test was conducted for pairwise comparison of these methods. The results

obtained from the Wilcoxon signed-rank test are listed in Table 4.6. The results

show that Selective Stacking outperforms all the other methods, and Stack-

ing outperforms VOTE and StackingC, with a significance level of 0.05. There

were no significant differences between VOTE and StackingC. In conclusion, Se-

lectiveStacking shows the best performance with statistical significance, while

Stacking also statistically outperforms all the benchmark methods.
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Table 4.7 Data summary

Dataset N. categories N. terms N. documents N. training N. test

Reuters-21578 (top10) 10 18,993 7,285 5,228 2,057

20Newsgroups 20 26,214 18,846 11,314 7,532

4.4 Application to Text Categorization

4.4.1 Problem Definition

Text categorization is to classify documents into a pre-defined set of categories

according to their contents. Each document can be included in single or multi-

ple categories, or not be included in any category. As the number of documents

in internet rapidly grows, organizing the documents becomes an important is-

sue. Machine learning enables automatic categorization of the documents by

training a classifier with a set of documents that has their category labels and

classifying new documents using the classifier. Since the number of categories

is usually large, this task is defined as a typical multi-class classification prob-

lem. In general, periodic retraining of the classifier is required for this problem

because a novel category is often added and the characteristics of categories

changes gradually with time. Therefore, one-class classifier approach may be

advantageous because of its merits. In this section, the effectiveness of HEOC is

compared with other multi-class classification algorithms for text categorization

problems.
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4.4.2 Data Description

The two most popular datasets, Reuters-21578 and 20Newsgroups, were em-

ployed. The Reuters-21578 1 dataset contains 21,578 news articles of 135 cate-

gories collected from the Reuters Newswire in 1987. In this dataset, the distri-

bution of the number of articles in the categories is highly unbalanced. Only the

top ten categories were used for this experiment. The 20Newsgroups2 dataset

is a collection of articles from the Usenet Newsgroup. It includes 19,997 articles

that are evenly distributed across 20 categories.

For each dataset, several preprocessing steps such as tokenization, stem-

ming, and stopword removal are required. In the experiments, the preprocessed

versions of the datasets used in Cai et al. (2009)’s study were adopted. Table 4.7

shows the detail.

The documents have to be transformed into suitable representations in order

to train a classifier. The top 1,000 important terms were selected for each dataset

using information gain (Yang & Pedersen, 1997). After selecting the term subset

T , each document was represented by the term vector dj as below:

dj =
(
wi ,j ,w2 ,j , . . . ,w|T |,j

)
(4.2)

where wi ,j is the weight of the term i in the document j, and |T | is the cardinality

of T . Each weight wi ,j was calculated using the normalized tf -idf , which is

1http://www.daviddlewis.com/resources/testcollections/reuters21578/
2http://qwone.com/∼jason/20Newsgroups/
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Table 4.8 Parameter settings for each algorithm

Algorithm Parameter Setting

SVM C=2−3, . . . , 210

Kernel type=Gaussian kernel

σ=2−5, . . . , 25

kNN k=1, 3, 5, 7, 10, 20, 30

Distance type=cosine

DT Min. instances in a leaf node=1, 2, 3, 5

Min. instances in a parent nodes=5, 10

Prune=true

generally used for text categorization (Joachims, 2002):

wi ,j =
tfi ,j × log |D|dfi√∑|T |

k=1

(
tfk ,j × log |D|dfi

)2 , (4.3)

where tfi ,j is the number of occurrences of the term i in the document j, dfi is

the number of documents containing the term i, |D| is the cardinality of the

document set D.

4.4.3 Experimental Settings

For the proposed method, heterogeneous ensemble of one-class classifiers based

on SelectiveStacking is used. The proposed method was compared with the three

popular classification algorithms: SVM, kNN, and DT. Parameter settings used

for those algorithms are given in Table 4.8.

The effectiveness of the methods was measured using the micro- and macro-
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F1. The F1 score is the harmonic mean of recall and precision. The micro-F1

score is the global calculation of F1 score regardless of categories, and the

macro-F1 score is the average of F1 scores of all the categories. Other settings

were the same as in Section 4.3.

4.4.4 Experimental Results

Table 4.9 shows the mean and standard deviation of classification performance

over ten independent run for each method in terms of micro- and macro-F1.

The best among homogeneous ensembles of one-class classifiers showed rela-

tively worse performance for text categorization problems, whereas the classifi-

cation performance of the proposed method, homogeneous ensemble of one-class

classifiers, was similar to that of one-against-one SVM. Although one-against-

rest SVM yielded the best performance, it is shown that the proposed method

achieves comparable performance for text categorization problems, compared

with the state-of-the-art multi-class classifiers.

4.5 Summary

Constructing a multi-class classifier based on an ensemble of one-class classi-

fiers has proven to be a promising strategy to solve multi-class classification

problems. Previous work on this strategy only used a single one-class classifica-

tion algorithm to construct the ensemble; however, the classification accuracy

of the ensemble can be improved by using various classification algorithms to

train base classifiers. Moreover, an appropriate normalization of the prediction
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scores obtained from the base classifiers allows improving this strategy further.

This chapter aimed to construct a heterogeneous ensemble of one-class clas-

sifiers using various one-class classification algorithms to address the problem

of multi-class classification. We proposed a multi-class classification method

that utilized stacking with MLR to combine the heterogeneous base classifiers.

The proposed method used an MLR model as a meta-classifier to successfully

address the normalization issue of the heterogeneous ensemble. In addition,

we proposed selective stacking to exclude the base classifiers that degrade the

overall performance when training the MLR model. In experimental results,

the proposed method yielded higher classification accuracy than other methods

with statistical significance.

The main contribution of this chapter is two-fold. First, the proposed method

solved a multi-class classification problem using a heterogeneous ensemble of

one-class classifiers trained by various classification algorithms. Second, the

proposed method successfully normalized the scores from those heterogeneous

base classifiers through stacking with MLR. These two points distinguish the

proposed method from the existing work. Experimental results confirmed the

effectiveness of stacking in combination with heterogeneous one-class classifiers

for multi-class classification.

69





Chapter 5

Heterogeneous Ensemble for Reliable

Classification

5.1 Multi-class Classification with a Reject Option

Solving a classification problem involves training a classifier using a set of given

instances in order to find the relationship between input and output variables

to predict the class of new instances using the trained classifier. In most cases,

prediction error is inevitable because of the imperfection of the classifier. As

a solution, a reject option can support improving classification reliability by

rejecting instances that are difficult to classify (Kang & Cho, 2015a). This

is beneficial to various real-world applications that have high misclassification

costs and require high prediction accuracy, such as medical prediction, user

authentication and equipment fault detection.

The reject option has been actively studied by researchers, mostly focusing

on binary classification problems. In particular, many researchers have dealt

with the optimal trade-off between accuracy and rejection for a given mis-

classification cost (Landgrebe et al., 2006; Tortorella, 2005). Embedded reject
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options for specific classification algorithms have also been studied (Fumera &

Roli, 2002; Simeone et al., 2012; Kang & Cho, 2015a).

Existing research on reject options has mostly focused on binary classifica-

tion (Chow, 1970; Landgrebe et al., 2006; Tortorella, 2005; Herbei & Wegkamp,

2006), whereas relatively few of these researchers are related to multi-class clas-

sification (Cecotti & Vajda, 2013; Tax & Duin, 2008). However, multi-class

classification, which predicts that an output variable consists of more than two

categories, is advantageous because these prediction results are more informa-

tive than those of binary classification. For example on anti-diabetic drug failure

prediction, predicting treatment results in the multiple categories of the degree

of glycemic control offers better applicability in practice. Glycated hemoglobin

(HbA1c) is widely adopted as an indicator of glycemic status to measure ef-

ficacy (Bennett et al., 2007; Lu et al., 2010), and the American Diabetes As-

sociation (ADA) recommends HbA1c < 7.0% as a general glycemic goal and

HbA1c < 8.0% as a less stringent goal (American Diabetes Association, 2014).

Considering a reject option for multi-class classification, a typical approach

is to reject instances that have low posteriors for any class (Cecotti & Va-

jda, 2013; Tax & Duin, 2008). Suppose that x ∈ Rd is an input vector, y ∈

{1, 2, . . . , c} is the corresponding target class, and p(y = j|x) is the posterior

of the instance x belonging to the j-th class. This approach can be represented

by the following rule:

ŷ =


arg max

j
p(y = j|x), if max

j
p(y = j|x) ≥ θ

reject, otherwise.

(5.1)
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The maximum posterior, maxj p(y = j|x), is used as the confidence of the

prediction, and the instance is rejected when the confidence is below the pre-

defined threshold θ. Otherwise, classification is performed by choosing the class

with the maximum posterior. The rejection rule in Equation 5.1 can be divided

into two steps. The first step is to decide whether to classify, and the second

step is to classify. The main idea of this chapter is that the best classifier of

each step may differ.

In this chapter, we propose a hybrid reject option (Kang, Cho, Rhee, &

Yu, 2015) based on heterogeneous ensemble learning to achieve better trade-

off between accuracy and rejection for multi-class classification problems. The

proposed method is based on a serial ensemble structure, aiming at designing a

reject option with a sequence of two classifiers. The proposed method constructs

a filter (a classifier for rejection) and a predictor (a classifier for prediction) sep-

arately, by employing different classification algorithms. Thus, we can classify

with the reject option for a new instance by estimating confidence using the

filter and making a prediction using the predictor if the confidence is above a

pre-defined threshold.

The proposed method is promising in that it is applicable to solving multi-

class classification problems effectively and can be used regardless of the clas-

sification algorithms. Moreover, the trade-off between accuracy and rejection

can be controlled easily. We examine the effectiveness of the proposed method

through experiments on the anti-diabetic drug failure prediction problem using

EMR data from the Seoul National University Hospital (SNUH) in the Republic

of Korea.
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Filter Predictor An Instance Classification Result 

“Reject” 

“Predict” 

Figure 5.1 Classification with reject option

5.2 Hybrid Reject Option

In this section, we introduce our proposed hybrid reject option. Before begin-

ning, Equation 5.1 can be transformed as Equation 5.2 by dividing the posterior

p into pf and pp. The pf is the posterior obtained by the filter classifier that

estimates the confidence of an instance for prediction as maxj pf (y = j|x) ≥ θ,

and decides whether to predict using the predictor classifier on the basis of the

confidence. The predictor classifier provides the posterior pp that finally pre-

dicts the class of those that the filter does not reject, as arg maxj pp(y = j|x).

Figure 5.1 represents a reject option based on Equation 5.2, consisting of the

filter and predictor.

ŷ =


arg max

j
pp(y = j|x), if max

j
pf (y = j|x) ≥ θ

reject, otherwise.

(5.2)

A classifier generally plays the roles of filter and predictor for a reject option,

where pf (y = j|x) = pp(y = j|x). In contrast, the main idea of this work is

the separate use of filter classifier Cf and predictor classifier Cp, which are

used to obtain the respective values of pf (y = j|x) and pp(y = j|x). Each

classifier is trained using the best respective classification algorithm to maximize
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Algorithm 4 Training phase of the hybrid reject option

Input: training dataset D = {xi, yi}Ni=1, classification algorithms Af ,Ap

Output: filter Cf , predictor Cp

1: procedure Training

2: Cf ← filter classifier trained from D using Af

3: Cp ← predictor classifier trained from D using Ap

4: end procedure

the capability of the classifier’s role. Thus, we aim to improve reject option

performance as the accuracy increases for the same degree of rejection.

The training phase for the proposed method involves training of the filter

and predictor. Suppose that a training dataset D = {xi, yi}Ni=1, where xi ∈ Rd

is an input vector and yi ∈ {1, 2, . . . , c} is the corresponding target value,

the classification algorithm for filter Af , and the classification algorithm for

predictor Ap, are given. Regarding the classification algorithms, we assume

that classifiers from them provides a posterior for each class when classifying

an instance. First, the filter classifier Cf is trained with D using the classification

algorithm Af . Then, the predictor classifier Cp is also trained with D using Ap.

The resulting two classifiers, Cf and Cp, constitute a hybrid classifier system for

the proposed method. Algorithm 4 represents the pseudocode for the training

phase.

In the test phase, classification for a new instance x is performed as fol-

lows. First the posterior pf (y = j|x) is computed using the filter Cf for each

class, and the confidence becomes maxj pf (y = j|x). When the confidence value
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Algorithm 5 Test phase of the hybrid reject option

Input: new instance x, filter Cf , predictor Cp, threshold θ

Output: predicted label ŷ

1: procedure Test

2: {pf (y = j|x)}cj=1 ← Cf (x)

3: confidence(x) ← maxj pf (y = j|x)

4: if confidence(x)< θ then

5: ŷ ←NULL

6: else

7: {pp(y = j|x)}cj=1 ← Cp(x)

8: ŷ ← arg maxj pp(y = j|x)

9: end if

10: end procedure

is smaller than the pre-defiend threshold θ, we reject classification for the in-

stance x. Otherwise, the posterior pp(y = j|x) is computed using the predictor

Cp, and the instance is classified according to the class with the maximum pos-

terior, arg maxj pp(y = j|x). The pseudocode of this procedure is described in

Algorithm 5.

The merits of using the proposed hybrid reject option are as follows. It

can be applied to multi-class classification directly, regardless of classification

algorithms. We can easily control the trade-off between accuracy and rejection

by changing the rejection threshold. In addition, several classifiers can constitute

a hybrid filter by aggregating confidences obtained from the classifiers.
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5.3 Application to Anti-diabetic Drug Failure Predic-

tion

5.3.1 Problem Definition

In recent times, diabetes is one of the most prevalent diseases, with the num-

ber of patients increasing continuously. Among these patients, type 2 diabetes

accounts for 85∼90% (Bennett et al., 2007), and therewith, research on the

treatment of those patients has been actively conducted. Most patients with

type 2 diabetes are under treatment by ingesting oral hypoglycemic agents and

insulin in order to achieve the desired glucose level.

When a patient with type 2 diabetes receives a prescription for treatment,

he or she can get check the results after 2∼6 months on the medication. Predict-

ing the prescription results in advance is an important issue. It is much more

important to predict the results for those whose treatment fail. However, this is

difficult because the treatment results of type 2 diabetes are highly related to

multiple factors such as patient characteristics, type of treatment, and presence

of complications. Moreover, the efficacy can also be affected by the interaction

of various drugs. In order to deal with the complex relationship of these vari-

ous factors, a machine learning approach based on Electronic Medical Records

(EMR) data is being considered to predict the treatment results (Huang et al.,

2007; Kang, Kang, et al., 2015).

In particular, this prediction problem can be defined as a typical classifica-

tion problem in machine learning. For the classification problem, a classifier is

trained using a set of instances in which an instance consists of such factors,
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with the prescription as input variables and the results as output variables.

This classifier predicts results caused by an instance for a current prescription.

However, real-world deployment of this approach is limited due to high misclas-

sification costs, especially misclassification for treatment failure, in the medical

domain. To cope with this limitation, it is much better for human experts to

examine those for whom results are difficult to predict than for the classifier to

predict fully.

Therefore, we must consider a reject option, which rejects ambiguous in-

stances instead of predicting for all instances. Thus, the rejected instances can

be conveyed to human experts for careful investigation. The reject option sup-

ports reliable prediction for a classification problem when the classifier is im-

perfect because of fundamental reasons, such as noisy data, inductive bias of

the classifier, and lack of input variables.

Considering the anti-diabetic drug failure prediction problem, the reject

option would be effective because some factors, such as personal efforts and

patient life styles, are hard to quantify as input variables despite their significant

importance. The desired prediction accuracy can be obtained by using only

prediction results with high confidence. By doing so, patients can be managed

efficiently by concentrating more on those who result in low confidence or are

predicted as treatment failure with high confidence.

5.3.2 Data Description

The effectiveness of the proposed hybrid reject option was demonstrated through

experiments on the anti-diabetic drug failure prediction. The EMR data for
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patients with type 2 diabetes, which was collected from the SNUH during

2008∼2012, was used in the experiments (Kang, Kang, et al., 2015). Data col-

lection was conducted after the protocol had been approved by the Institutional

Review Board of the SNUH. A patient who received the physical examination

and the HbA1c test received a prescription within a week. After 2∼6 months,

the patient received the test again to check the prescription efficacy. The data

were reconstructed so that an instance consists of a prescription record, the pa-

tient characteristics at this moment, and the corresponding before/after HbA1c

test results. Instances with missing values were excluded. As a result of the

preprocessing, we obtained a total of 27,836 instances of 2,995 patients.

The input and output variables used in the experiments are summarized in

Table 5.1. The input variables include patient characteristics, prescriptions for

diabetes and others, and the HbA1c test record, so that a patient’s condition

and presence of complications were also considered. Regarding a prescription

for diabetes, we used a daily dose of each hypoglycemic agent, except that

insulin is binary. Regarding prescriptions for others, we used variables in which

each variable indicates whether a drug category is prescribed. All continuous

input variables were normalized to be in the scale of [0, 1]. The output variable

was divided into three categories based on the HbA1c test record after 2∼6

months of the prescription: C1(general goal, < 7.0), C2(less stringent goal,

≥ 7.0 and < 8.0), and C3(failure, ≥ 8.0). Table 5.2 describes the distribution

of the output variable. Note that, the ratio of C1 increases, whereas that of C2

and C3 decreases with time.
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Table 5.2 Data summary

Year N. instances C1(general goal) C2(less stringent goal) C3(failure)

2008 5,009 1,747 (34.9%) 2,121 (42.3%) 1,141 (22.8%)

2009 5,340 1,982 (37.1%) 2,190 (41.0%) 1,168 (21.9%)

2010 5,590 2,306 (41.3%) 2,204 (39.4%) 1,080 (19.3%)

2011 5,829 2,382 (40.9%) 2,314 (39.7%) 1,133 (19.4%)

2012 6,068 2,614 (43.1%) 2,279 (37.6%) 1,175 (19.4%)

Total 27,836 11,031 (39.6%) 11,108 (39.9%) 5,697 (20.5%)

5.3.3 Experimental Settings

For training classifiers as a filter or a predictor, the three classification algo-

rithms evaluated their respective suitability: SVM, RF, and ANN. These algo-

rithms can deal with non-linear relationships and are known to provide high

prediction accuracy. RF and ANN provide the posterior of each class for multi-

class classification directly, whereas SVM was originally designed for binary

classification. Thus, H.-T. Lin et al. (2007)’s method was adopted to estimate

the posterior of the SVM based on one-against-rest approach. In addition, we

designed two hybrid filters, HYB+ and HYB×, that fuse the confidences of the

SVM, RF, and ANN filters. HYB+ and HYB× compute the confidence as sum-

mation and multiplication of the confidences from those filters, respectively. All

algorithms were implemented in MATLAB.

The sliding window test procedure was conducted to assess each classifier.

The basic idea of this procedure is to use past data for training and future data

for test; thereby it is appropriate for prediction problems. In our experiments,
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Table 5.3 Parameter settings for each algorithm

Algorithm Parameter Setting

SVM C=2−3, . . . , 210

Kernel type=RBF kernel

σ=2−5, . . . , 25

RF N. Trees=100

Bootstrap sample size=80%

Min. instances in a leaf node=1, 2, 5, 10, 20, 50, 100

ANN N. hidden nodes=3, 4, 5, . . . , 20

Max. iterations=300

the classifiers using the data of year t−2 and t−1 predicted the data of year t,

t = 2010, 2011, and 2012, respectively. For each classifier, the best parameters

were chosen from the parameter search space in Table 5.3 to maximize validation

accuracy. All experiments were performed through ten independent runs by

randomizing the index of training and validation, and the results were averaged

over those runs for confidence.

In order to evaluate the performance of the reject option, we used the Area

under Accuracy-Rejection Curve (AuARC) which plots the accuracy against the

rejection rate with a change of the rejection threshold (Nadeem et al., 2010).

Thus, it measures the trade-off between accuracy and rejection in a threshold-

independent manner.
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Table 5.4 AuARC comparison results on anti-diabetic drug failure prediction

problem

Year Predictor Filter

(test) SVM RF ANN HYB+ HYB×

2010 SVM 77.70±0.72 80.83±0.26* 80.81±0.38* 81.16±0.21* 81.25±0.20*

RF 78.77±0.38 81.18±0.25 80.86±0.33 81.48±0.16* 81.54±0.16*

ANN 78.84±0.46 80.99±0.20 81.03±0.34 81.54±0.15* 81.60±0.16*

2011 SVM 80.80±0.30 80.94±0.29 81.36±0.26* 81.82±0.18* 81.82±0.17*

RF 80.74±0.39 81.55±0.28 81.46±0.23 82.05±0.20* 82.06±0.19*

ANN 80.84±0.30 81.09±0.21 81.45±0.32 81.88±0.17* 81.89±0.15*

2012 SVM 81.87±0.20 81.69±0.18 82.21±0.30* 82.72±0.19* 82.73±0.19*

RF 81.79±0.20 82.07±0.19 82.13±0.24 82.77±0.17* 82.79±0.17*

ANN 81.84±0.20 81.81±0.22 82.21±0.29 82.74±0.18* 82.75±0.18*

5.3.4 Experimental Results

The reject option performance was measured for the 15 combinations of filters

and predictors in terms of AuARC. Table 5.4 shows the mean and standard

deviation of AuARC values over ten independent runs. A gray-shaded value

indicates the baseline reject option, in which the filter is identical to the pre-

dictor. The numbers in bold indicate the best AuARC obtained over the filters,

and an AuARC marked with an asterisk indicates that the corresponding hy-

brid reject option is significantly better than the single reject option at the 0.01

level of confidence according to the paired t-test. Overall results show that the

hybrid reject options with a hybrid filter outperform the baselines with a statis-
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Table 5.5 Accuracy (%) by varying rejection rate for the baseline and hybrid

reject options

Year Method Filter/Predictor Rejection Rate (%)

(test) 0 20 40 60 80 100

2010 Best Baseline RF/RF 68.12 72.12 76.33 82.37 91.72 100

Best Hybrid HYB×/ANN 68.03 72.46 76.62 83.13 92.15 100

2011 Best Baseline RF/RF 68.92 73.12 77.75 83.21 90.79 100

Best Hybrid HYB×/RF 68.92 73.08 77.39 83.32 91.66 100

2012 Best Baseline ANN/ANN 67.76 72.27 77.51 84.44 93.78 100

Best Hybrid HYB×/RF 68.15 72.75 78.04 84.95 94.74 100

tical significance. Regarding the hybrid filter, HYB× was slightly better than

HYB+. According to the results, the proposed hybrid reject option improves

the trade-off between accuracy and rejection.

We compared the best hybrid reject option with the best baseline for each

year with respect to the accuracy corresponding to rejection rate change. Ta-

ble 5.5 shows the comparison results. The accuracy improved as the rejection

rate increased. The hybrid reject option mostly yielded a better accuracy than

the baseline for the same rejection rate. In particular, the gap was greater when

the rejection rate was large. Overall, rejection of 50% and 80% provided approx-

imately 80% and over 90% of accuracy, respectively. Considering the dataset

does not reflect the individual habits and efforts that were not available for this

study, this classification accuracy can be said to be a meaningful result.

The comparison was also performed in terms of the miss rate, which is
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Table 5.6 Miss rate (%) by varying rejection rate for the baseline and hybrid

reject options

Year Method Filter/Predictor Rejection Rate (%)

(test) 0 20 40 60 80 100

2010 Best Baseline RF/RF 31.76 26.05 18.40 9.14 1.02 0

Best Hybrid HYB×/ANN 26.12 20.96 15.16 6.39 0.70 0

2011 Best Baseline RF/RF 25.38 19.87 12.10 4.25 0.25 0

Best Hybrid HYB×/RF 25.38 18.04 10.26 2.73 0.15 0

2012 Best Baseline ANN/ANN 21.83 15.85 9.12 1.73 0.48 0

Best Hybrid HYB×/RF 26.16 18.25 9.37 1.55 0.22 0

defined as the ratio of C3 instances that are predicted as C1 or C2. Thus, the

miss rate looks for misclassification for the failure, which is the major interest

for this prediction problem. As shown in Table 5.6, we found that the miss rate

decrease when more instances were rejected, and the hybrid reject option is

superior to the baseline. The miss rate of the hybrid reject option was reduced

by 50% and less than 1% for 40% and 80% rejection, respectively.

5.4 Summary

For medical prediction, such as anti-diabetic drug failure prediction, it is essen-

tial to ensure high prediction accuracy, but achieving this is difficult in practice.

A reject option can be considered to avoid prediction for uncertain instances

to address the problem. In this chapter, we proposed a hybrid reject option for
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multi-class classification to achieve the better trade-off between accuracy and

rejection.

The proposed method utilizes the two components, filter and predictor, for

a reject option. Each component is trained separately using the best respec-

tive algorithm, thereby improving the reject option performance. This method

can be applied to multi-class classification directly regardless of classification

algorithms. The proposed method was applied to the anti-diabetic drug failure

prediction problem for type 2 diabetes. We conducted experiments on the EMR

data for patients with type 2 diabetes to predict drug failure in the three cate-

gories. As a result, the proposed method was found to be effective for achieving

a better trade-off of accuracy and rejection. In particular, the hybrid filter,

which fuses confidences from different classifiers, yielded the best performance

for every case.

The desired prediction accuracy can be obtained by controlling the rejection

threshold. By ensuring the desired accuracy in practice, treatment efficacy can

be predicted at the moment of prescription, which offers an in-depth analysis

to those prescriptions that are predicted as failure or rejected. Furthermore, it

is expected to provide clues to discovering additional input variables that are

not considered currently, by analyzing prescription cases with results that are

difficult to predict. Thus, the prediction can be enhanced by adopting those

additional input variables.
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Chapter 6

Heterogeneous Ensemble for Fast

Classification

6.1 Run-time Speed on Multi-class Classification

The main concern of classification problems is to achieve a high classification

accuracy. Besides, there are several issues in deployment of classifiers to real-

world problems. One is the training and test speed of a classifier. The majority of

studies focus on accelerating the training speed of the classifier. The test speed

of the classifier, however, is much more important in real-world deployments.

In most cases, training is carried out before applying the classifier, and often

not subject to a time limit. On the other hand, the classifier works under time

constraints when deployed to make predictions on new instances, hence, fast

test speed is demanding. This issue can be interpreted as acceleration of the

run-time speed of the classifier.

The issue becomes more serious when solving a multi-class classification

problem because it generally involves construction of an ensemble based on

decomposition strategies. The ensemble requires a large computational burden
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in its test phase because it is constituted by multiple classifiers. Taking into

account of SVM, an ensemble have to be constructed to solve a multi-class

classification problem because SVM is originally designed for binary classifi-

cation. In addition, SVM requires more computational burden to classify an

instance, while it usually yields better classification accuracy than other classi-

fication algorithms. Thus, it is important to reduce the computational burden

for practical deployments.

In the test phase, SVM takes O(NSV ) of its computational complexity,

where NSV is the number of support vectors. By alleviating its complexity, the

usability of SVM for real-time applications would be enhanced. To lessen the

computational burden of SVM in the test phase, many researchers have focused

on reducing the number of support vectors directly (Burges, 1996; Downs et al.,

2002; Y. Li et al., 2006; Q. Li et al., 2007; Liang et al., 2013; H.-J. Lin & Yeh,

2009), and approximating kernel functions (Maji et al., 2008, 2013; Vedaldi &

Zisserman, 2012). These efforts just tried to modify an SVM partially, where-

upon they were limited to the structural characteristics of the SVM. In order

to obtain better results, heterogeneous ensemble learning, which put together

with different models, can be taken into account.

There are two major types of heterogeneous ensemble methods to increase

the test speed for complex algorithms. The first approach is to use a simple,

fast model that roughly processes the test instances. Only uncertain or crucial

instances are processed by a complex, high-performance model. This approach

reduces the number of test instances directly processed by the complex model

to lessen its test complexity. Several studies employed an SVM as the complex
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model. X. Xu et al. (2005) employed a Rocchio classifier as a simple model for

text categorization problems. M. A. Kumar and Gopal (2010) and Ji and Zhao

(2013) used DT and kNN, respectively, for binary classification problems. The

second approach is to have a simple, fast model that replicates a complex model.

This approach can be thought of as a function approximation problem. Schmitz

et al. (1999) presented a DT-based approximation of an ANN to yield fast

test speed and high interpretability with little prediction loss. Chen and Chen

(2004) used multiple simple classifiers to approximate an SVM for classification

problems. Applying these approaches would be beneficial to improve the test

speed.

In this chapter, we propose a heterogeneous ensemble method called Neural

Network Approximator (NNA) (Kang & Cho, 2014) that is an ANN regression-

based method for approximation of a complex classifier. The proposed method

follows the second approach and seeks to approximate the classifier using an

ANN approximator to achieve a high test speed without sacrificing classifica-

tion accuracy. For a multi-class classification problem, NNA adopts a multiple-

outputs ANN whose output nodes correspond to the several decision functions

of the classifier. Only a few number of decision function should be approximated

regardless of the number of base classifiers involved. Thus, we can yield similar

prediction results with less computational burden by employing the ANN as

an approximator of the classifier. Several experiments are conducted on bench-

mark datasets in order to verify the effectiveness of the proposed method for

approximation of SVM ensembles.
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6.2 Neural Network Approximator

It is well-known that ANN, on its own, shows good fitting performance for

regression problems. In addition, the fitting performance of the regression al-

gorithm for a function is better than that for a noisy dataset. Paying attention

to this point, we introduce a method, named NNA, to approximate a classifier

using an ANN. The proposed method solves multiple regression problems to

predict the function values of the decision functions. The decision functions

in the classifier are approximated with nodes of a multiple-outputs ANN. By

doing so, the classifier plays a role in removing noise from the dataset, and the

ANN just approximates the refined dataset generated by the classifier. The aim

of the proposed method is to obtain the ANN approximator that has the same

classification accuracy and requires less test time compared to the classifiers.

To demonstrate the appromiation performance of the ANN, Figure 6.1 il-

lustrates the functions obtained by SVM, ANN, and NNA, respectively, on the

Motorcycle dataset (Silverman, 1985). In this figure, an ANN and an SVM are

trained with the original training instances, while NNA refers to another ANN

trained with the function values of the SVM. As shown, the regression function

of NNA almost completely fits that of the SVM, and is different from that of

the ANN, which indicates that NNA approximates the SVM with maintaining

the similar prediction results.

The approximation process is as follows. Given a set of decision functions

in a classifier F = {f1, . . . , f|F|} and the training dataset D = {xt, yt}N1
t=1 where

xi ∈ Rd is an input vector, and yi ∈ {1, . . . , c} is its corresponding target
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Figure 6.1 Estimated regression function of ANN, SVM and NNA on Motorcycle

dataset

value, the function values sit ∈ R of each decision function fi, i = 1, . . . , |F|,

are computed for all instances in D. Then, the dataset D′ is constructed using

the input vectors and obtained function values as {xt, (s
1
t , s

2
t , . . . , s

|F|
t )}(xt,yt)∈D.

Finally, an multiple-outputs ANN is trained as a function approximator to fit

the function values in the dataset D′. The resulting ANN, as an approximation

of the classifier, can be used for testing new instances instead of the classifier.

The pseudocode of NNA is described in Algorithm 6.

NNA is more effective for approximation of an ensemble. Although the en-

semble generally consists of numerous base classifiers, classification for an in-

stance is performed only by a few number of decision functions. Considering an
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Algorithm 6 Neural Network Approximator (NNA)

Input: training dataset D = {xt, yt}Nt=1, set of decision functions in classifier

F = {f1, . . . , f|C|}

Output: approximator fF

1: procedure NNA

2: for i = 1 to |F| do

3: sit ← fi(xt), ∀(xt, yt) ∈ D

4: end for

5: D′ ← {xt, (s
1
t , s

2
t , . . . , s

|F|
t )}(xt,yt)∈D

6: fF ← multiple-outputs ANN trained from D′

7: end procedure

1 

input nodes 

hidden nodes 

output nodes 

decision function 
(class 1 – class 2) 

decision function 
(class 2 – class 3) 

decision function 
(class 1 – class 3) 

Figure 6.2 Neural network diagram of NNA for 3-class classification problem

based on one-against-one approach
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ensemble based on the one-against-one approach for a multi-class classification

problem, only c(c−1)/2 decision functions should be approximated regardless of

the number of base classifiers involved in the ensemble. The decision functions

in the ensemble are integrated into the ANN. Figure 6.2 shows the example

network diagram of NNA for a three-class classification problem based on the

one-against-one approach. Each output node in the network corresponds to a

decision function in the ensemble.

The proposed method can be applied to most types of ensembles such as

of Chapter 3 and 4, while it is more effective for SVM ensembles. The major

operations of SVM and ANN in the test phase are the kernel and sigmoidal

functions computation, respectively. Considering the RBF kernel as the kernel

function for SVM and logistic sigmoid function as the sigmoidal function for

ANN, these two computations are similar. Equation 6.1 and 6.2 are the typical

form of the RBF kernel function and the logistic sigmoid function, respectively.

The decision function of SVM or the regression function of ANN is computed by

linear aggregation of the RBF kernel function or the logistic sigmoid function.

k(x,x′) = exp

(
‖x− x′‖2

2σ2

)
(6.1)

h(x) =
1

1 + exp (c+ wTx)
(6.2)

In the test phase, SVM takes O(NSV ) of its computational complexity. The

support vectors are chosen among training instances in the training process.

93



For an SVM, a set of support vectors determines the decision boundary in the

feature space. Thus, the set of support vectors tends to grow as the size of the

dataset increases. In some cases, almost the whole training instances can be

the support vectors. The computational complexity of ANN in the test phase is

O(NHN ), where NHN is the number of hidden nodes. Unlike SVM, the number

of hidden nodes of an ANN highly depends on the nature of the dataset. For

this reason, the number of support vectors of an SVM is generally larger than

that of hidden nodes of an ANN for a dataset, and moreover, more gaps appear

as the dataset grows. Consequently, ANN is more advantageous than SVM in

terms of the amount of computation. Furthermore, the proposed method is more

advantageous for the SVM ensemble. This is because each decision function is

associated with a different set of support vectors for an SVM ensemble, whereas

the regression functions of the ANN are determined by a common set of hidden

nodes with different weights.

6.3 Performance Evaluation on Benchmark Datasets

6.3.1 Data Description

To validate the approximation performance of the proposed method, the fol-

lowing ten benchmark datasets were chosen from the UCI repository (Bache &

Lichman, 2014): Iris, Wine, Sonar, Glass, Ionosphere, BreastCancer, Vechicle,

Vowel, Yeast, and Segment. Table 6.1 shows the descriptions for the datasets.

All datasets were partitioned into 70% for the training set and 30% for the test

set. Additionally, all numerical features were normalized to be in [-1, 1].
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Table 6.1 Data summary

Dataset N. instances N. features N. classes N. training N. test

Iris 150 4 3 105 45

Wine 178 13 3 125 53

Sonar 208 60 2 146 62

Glass 214 9 6 150 64

Ionosphere 351 34 2 246 105

BreastCancer 683 9 2 478 205

Vehicle 846 18 4 592 254

Vowel 990 10 11 693 297

Yeast 1484 8 10 1039 445

Segment 2310 19 7 1617 693

6.3.2 Experimental Settings

The effectiveness of the proposed method was evaluated for the SVM ensemble

approximation problem. For SVM, the one-against-one approach, which has

been reported to show higher accuracy than other approaches (Hsu & Lin,

2002), was adopted to extend SVM for multi-class classification problems. Thus,

the decision functions of the binary SVMs for each class pair were replaced with

c(c − 1)/2 output nodes of an ANN for NNA. In addition, we employed ANN

trained on training set as a baseline.

The RBF kernel function was adopted as a kernel function for SVM. For

ANN, the Levenberg-Marquardt back propagation algorithm, which performs

better for regression problems (Hagan & Menhaj, 1994), was employed. The

number of hidden layers was set to 1. In addition, the logistic sigmoid function
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was used as the sigmoidal function. For all algorithms, the best parameters were

found using ten-fold cross validation on the training dataset with a grid search

mechanism. The best parameters for the SVM were explored on a two dimen-

sional grid search with C = {2−3, 2−2, . . . , 210} and σ = {2−5, 2−4, . . . , 25}. All

experiments were performed in MATLAB.

The classification performance was evaluated using the misclassification er-

ror rate (%) which is defined by (1/N)
∑N

t=1 1yt 6=ŷt × 100, where N is the num-

ber of test instances, yt is actual class of the t-th instance, ŷt is predicted class

of the t-th instance, and 1yt 6=ŷt is an indicator function that has value 1 when

yt 6= ŷt. In addition, test time and the number of support vectors or hidden

nodes were measured to validate the effectiveness of the proposed method.

6.3.3 Experimental Results

Table 6.2 presents the classification results that compare the proposed NNA

with a conventional SVM. NNA, the proposed method, has a similar error rate

to the SVM, but shows significantly lower test time on every dataset. ANN,

the baseline, has worse prediction accuracy than NNA on most datasets. On

average, the proposed method achieved approximately 89.6% reduction in test

time. Moreover, the test time was further reduced for large-scale datasets. For

example for the Yeast dataset, the number of support vectors for SVM was 752

while there were only 12 hidden nodes for NNA. Therefore, the test time was

reduced by 96.5%.

Figure 6.3 plots the number of support vectors and hidden nodes against

dataset size for each dataset. As shown in this figure, as the dataset size grows,
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Figure 6.3 Comparison between the number of support vectors for SVM and

the number of hidden nodes for NNA

the number of support vectors of SVM greatly increases while the number of

hidden nodes of NNA does not.

6.4 Application to Semiconductor Die Failure Predic-

tion

6.4.1 Problem Definition

In recent years, semiconductor manufacturing has become more lengthened and

complex owing to technological advances. Accordingly, a large amount of data is

being generated in real-time during each step of the manufacturing process. This
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data has received considerable attention from researchers for yield management

and enhancement (N. Kumar et al., 2006; Shin & Park, 2000; Chien et al., 2007)

The semiconductor manufacturing process can be divided into four basic

steps: wafer fabrication, wafer test, assembly, and final test (Uzsoy et al., 1992).

The first step is wafer fabrication, which involves building different layers on a

wafer with a number of operations in order to produce the required circuitry

for the dies of the wafer. After wafer fabrication, wafer test is conducted to

analyze and evaluate the electrical properties of the dies in a wafer. Defective

dies are filtered out based on the results of this step. Only dies that are not

defective proceed to the assembly step in order to obtain packaged chips as final

products. The chips are graded as success or failure through a functional test

called final test. The final test involves hot test and cold test to evaluate the

functionality of a chip in hot and cold environments, respectively.

During wafer test, defective dies with a high probability of failing the final

test are filtered out, and only repairable dies proceed to the subsequent steps

(Y. Park et al., 2015). However, some faulty dies pass the wafer test, which then

ultimately fail the final test (An et al., 2009; S. H. Park et al., 2013). There

are a variety of possible reasons to explain this. The wafer test is performed

with a finite number of test items due to constraints in time and cost, thus the

quality of the dies are underdetermined. Another possibility is that progressive

failures may occur after the wafer test. In any case, this problem degrades the

final yield and hinders the manufacturing process.

A machine learning approach is worth considering in order to exploit the

wafer test data to predict the die-level results of the final test before assembly.
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Figure 6.4 Application of a prediction model to final yield management

This approach is data-driven that does not require domain knowledge or as-

sumptions. The final yield could be managed as suggested in Figure 6.4 when

it is possible to predict the results of the final test accurately. The final test

could be omitted for dies that are certain to pass, whereas no further steps

would be required for those certain to fail. Only uncertain dies would proceed

to the subsequent steps. Thus, the final test, which leads to time and cost, is

unnecessary for dies that are predicted either to pass or fail. Additionally, the

final yield can be enhanced by investigating the causes of those predicted to fail

the final test, and rejecting them in advance at the wafer test.

Kang, Cho, An, and Rim (2015) proposed to use a RF (Breiman, 2001),

which involves training of several randomized decision trees, for this prediction

problem. The RF is suitable for our problem because of the following reasons.

It achieves accurate and reliable prediction by aggregating the predictions of

individual trees, is able to deal with the non-linear relationship between input

and output variables, is robust to outliers owing to the property of decision

trees, and runs effectively on large scale datasets. Two prediction models were

100



built separately for each type of failure using the RF, because it is known that

the characteristics of hot and cold failures are different. Each prediction model

provides scores regarding whether a new die will fail, ranging from 0 to 1, for

a failure type. They found the effectiveness of the RF to predict the die-level

result in the final test via experiments on a real-world dataset.

An important consideration here is that the prediction must be performed

instantly, while the computing resources are limited in the manufacturing pro-

cess. However, the RF typically has low test speed because of its complexity

in the test phase. Thus, in this section, NNA is applied to raise the prediction

speed by approximating the RF. Experiments are conducted on a real-world

dataset to confirm the effectiveness of NNA for this problem.

6.4.2 Data Description

The data were collected during a week in 2014 from a semiconductor manufac-

turer in the Republic of Korea. Only repairable dies were used in the experi-

ments. The data originally contained 49 input variables, each of which corre-

sponds to a test item in the wafer test, and a single output variable for the final

test result. The final test result belongs to one of the following three categories:

success, hot failure (the dies that fail the hot test), and cold failure (the dies

that pass the hot test but fail the cold test). The fraction of failure in the data

was under 1%, meaning that there is a severe class imbalance.

In addition, five variables were derived to be used as input variables: the

distance of the die from the wafer center, previous final yield at the die po-

sition (hot and cold failure), wafer test success rate of the adjacent dies, and
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abnormalities of the wafer map pattern. We also tried to utilize interaction

variables of the proposed variables, but there was no significant improvement

in prediction performance. Thus, we did not use these interaction variables for

the sake of simplicity in description. The five derived variables were used to

predict whether a die pass or fail the final test more accurately, by employing

them as input variables for the prediction models. Thus, the prediction models

were trained with 54 input variables.

6.4.3 Experimental Settings

Regarding training of the original prediction models, the bootstrap sample size

and the minimum number of instances in a leaf node were set as 80% and

1% of the training set, respectively. Other settings were left as default settings

of the TreeBagger function in MATLAB. The two prediction models, each

corresponds to a failure type, were approximated by a single ANN model using

NNA. Thus, the ANN model has two output nodes. The number of hidden nodes

for the ANN model was set to 10.

Regarding model validation, the sliding window test procedure was con-

ducted. The basic idea of this procedure is that the present is tested by reference

to the near past, and the present predicts the near future. This is suitable when

the data characteristics change with time, such as in semiconductor manufac-

turing. In this experiments, the data were partitioned by day. Thus the model

that was trained at day t is used to predict the data for day t+1, t = 0, 1, . . . , 6.

For each day’s training set, under-sampled data, including 100, 000 instances of

success dies and 1, 000 instances of failure dies for each failure type, were used.
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The entire data for a day constitutes the test set.

Classification accuracy, a most popular criterion, is not appropriate for this

highly class-imbalanced data because just a simple guessing of predicting all

instances as the majority class provides the accuracy above 99%. Thus, the

Area under Receiver Operating Characteristics (AuROC) was employed as the

criterion for the performance. The AuROC is defined as the area under the

ROC curve, which plots the true positive rate against the false positive rate

with varying the decision threshold of pass/fail. Thus, the AuROC measures

the overall prediction performance in a threshold independent manner. This

values were computed for each failure category against success category, as

AuROCHOT and AuROCCOLD. Note that, a single threshold has to be used

in practice, and this threshold can be chosen according to the purpose of the

prediction modeling.

6.4.4 Experimental Results

Table 6.3 shows the approximation results on the semiconductor die failure pre-

diction problem. The prediction results of the RF for a day was obtained using

the two prediction models, and that of NNA were obtained using a single ap-

proximator for the two prediction models. The prediction performance changed

with time, where the pattern of the change according to time differed depending

on the type of failure. For example, the AuROC of hot failures was the best on

the fifth day, whereas the performance of cold failures was the worst on that

day.

Overall, the test time was reduced by 99.118%, while the AuROC difference
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for the hot and cold failures were 0.166 and 0.261, on average. This indicates

that NNA significantly improves the prediction speed without compromising

the prediction accuracy. Thus, the use of NNA provides the desired prediction

speed for practical deployment of the prediction models. However, the predic-

tion performance should be improved before deploying the prediction models

in practice.

When a prediction model is deployed, the prediction performance of the

model may decrease as time goes on due to the gradual change of the data

characteristics including the importance of each input variable. Thus, the pre-

diction performance of the model should be monitored and the model has to be

updated periodically to reflect the recent change of the data characteristics.

6.5 Summary

The major drawback of a multi-class classifier is its low speed in the test phase,

while relatively few studies have been focused on test phase of the classifier

in spite of the importance of run-time speed. In this chapter, NNA, an ANN

based heterogeneous ensemble method to achieve faster test speed of the clas-

sifier was proposed. The proposed method approximates the classifier using a

multi-outputs ANN where each node corresponds to the decision function in

the classifier. The distinguishing point of the proposed method over existing

work is that the approximation problem of the classifier is converted into the

regression-based function approximation problem. This can be explained as that

the classifier generates noise-filtered functions and the ANN just approximates
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these functions. Moreover, it is not strongly restricted by the structure of the

classifier. Instead, the structure of the ANN should be considered. Thus, if

higher run-time speed is required and some losses of classification accuracy are

allowable, we can manually employ the smaller number of hidden nodes rather

than choose the best number of hidden nodes through cross validation.

The proposed method was found to be effectively applied to an SVM en-

semble for multi-class classification, owing to the characteristics of SVM. The

regression functions of the ANN approximated the decision functions of binary

SVMs in the ensemble. Therefore, the application of the proposed method can

improve the practical usability of SVM, especially in real-time applications.

Experimental results on several benchmark datasets showed that the proposed

method achieved significant test time reductions compared to conventional SVM

without compromising prediction accuracy. Moreover, the proposed method was

much more effective for large-scale datasets. We explained this consequences by

the characteristics that the computation of the RBF kernel function for SVM

and the computation of the sigmoidal function for ANN are similar but the

number of hidden nodes of an ANN is generally smaller than the number of

support vectors of an SVM, for any dataset.

We examined the effectiveness of NNA to the semiconductor die failure

prediction problem using actual data from a semiconductor manufacturer. In

this application, the RF models were approximated to obtain faster prediction

speed. As a result, the test time of the prediction was reduced by 99% while

maintaining the prediction performance. This application is promising in that

accurate prediction of die fails in the final test enables the yield to be managed
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more effectively. The final test can be skipped for dies that will almost certainly

pass or fail, which leads to significant saving in time and cost. In addition, we

can conduct further investigation and take preemptive actions for those dies

that are predicted as fails, such as filtering out them at the wafer test step or

grading the quality of dies in advance. However, the prediction performance

should be improved before deploying the prediction models in practice. For

example, we can omit the final test for dies from the bottom 50% scores with

an acceptable tolerance when over 99% of the fail dies are included in the top

50% scores.

The proposed method can also be applied to various types of ensembles.

For meta-learning based ensembles such as ODOAO and HEOC, approximating

only a meta-classifier may be sufficient to achieve comparable classification

accuracy. In addition, the training speed can be enhanced by using any kinds

of regression algorithms that requires smaller test time than ANN. Thus, the

proposed method merits further investigation.
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Chapter 7

Conculsion

7.1 Contributions

Multi-class classification is a supervised learning task that is closely related

to various real-world applications. When deploying a multi-class classifier for a

multi-class classification problem, three issues are usually considered depending

on the characteristics of the problem. These issues are accurate, fast, and reli-

able classification, which determine the applicability of the classifier in practice.

This dissertation developed methods based on heterogeneous ensemble learning

to address the respective issues. These methods construct heterogeneous en-

sembles utilizing multiple classifiers that are trained using various classification

algorithms, where each classifier plays a different role to accomplish the desired

functionality.

For accurate classification, we proposed DOAO and ODOAO that construct

heterogeneous ensembles of binary classifiers. These methods are based on the

one-against-one approach, where base classifiers are trained for class pairs.

DOAO selects the best classification algorithm for each class pair as having

the minimum validation error, thereby yielded better classification accuracy
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than other one-against-one classifiers that are based on individual classification

algorithms. Besides, the effectiveness of DOAO is limited because the minimum

validation error does not always indicate the minimum test error, especially

when comparing heterogeneous classifiers, and proper fuse of the base classifier

can outperform the single best classifier. Thus, we proposed ODOAO to address

such limitations. ODOAO constructs a heterogeneous ensemble where a meta-

classifier combines the outputs of the base classifiers for class pairs considering

non-linear relationship and high dimensionality. Through conducting statistical

test, we found that these heterogeneous methods achieved more accurate clas-

sification than homogeneous ones with statistical significance for benchmark

datasets.

In addition, we proposed HEOC utilizing diverse one-class classifiers. In this

method, the use of various one-class classification algorithms contributes to-

wards increasing the diversity of the ensemble, while stacking resolves the nor-

malization issues on different scales of outputs obtained from the base classifiers.

We also demonstrated the selective utilization of base classifiers by adopting a

stepwise variable selection procedure during stacking. The effectiveness of this

method was confirmed through experiments on benchmark datasets and text

categorization problems.

For fast classification, we proposed NNA to approximate a complex multi-

class classifier to reduce computational time in the test time. Since ANN, on its

own, has better fitting performance for a function than for a noisy dataset, NNA

utilizes ANN as a function approximator of the complex classifier. In detail, a

multiple-outputs ANN is employed to approximate the classifier, in which each
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output node correspond to a decision function in the classifier, thereby achieve

faster run-time speed without compromising prediction accuracy. NNA can be

applied effectively to an ensemble consisting of a number of base classifiers, be-

cause the ensemble only has a few decision functions. Moreover, NNA performs

very well as an SVM approximator because of their structural characteristics.

This method was found to be effective for benchmark datasets and semicon-

ductor die failure prediction problem.

For reliable classification, a hybrid reject option was proposed for better

trade-off between accuracy and rejection for multi-class classification. This

method is useful when high prediction accuracy of a classifier is essential due

to high misclassification costs. By applying a reject option, it is much better

for human experts to examine those for whom results are difficult to predict

than for the classifier to predict fully. The hybrid reject option utilizes the two

components, filter and predictor. Each component is trained separately using

the best respective algorithm to maximize the capability of its role. We con-

firmed the effectiveness of applying this method to anti-diabetic drug failure

prediction through experiments on real-world EMR data of type 2 diabetes, by

showing this method provided better prediction accuracy for the same degree

of rejection.

In conclusion, heterogeneous ensemble methods for each of accurate, fast,

and reliable multi-class classification were covered in this dissertation. Exper-

imental results showed that heterogeneous ensemble learning is a better way

to ensure desired performance for multi-class classification problems in prac-

tice. We also described three real-world applications that the proposed meth-
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ods are helpful: text categorization, semiconductor die failure prediction, and

anti-diabetic drug failure prediction.

Beside the effectiveness, heterogeneous ensemble learning also has its draw-

back on training time because a heterogeneous ensemble involves training of

numerous base classifiers. Thus, more training time is required for the het-

erogeneous ensemble. When the training phase is subjected to a time limit,

a homogeneous ensemble with individual superior algorithms, such as SVM,

is more preferable, while this compromises some prediction loss. However, we

usually have no certain knowledge that which algorithm performs best for a

dataset. In addition, training is carried out before applying the classifier in

most cases, therefore often is not subjected to a time limit. Under this cir-

cumstance, heterogeneous ensemble learning is a better way to obtain desired

performance.

7.2 Future Work

There are some limitations in this dissertation that should be addressed in

future work. First, the proposed methods exploit a broader hypothesis space

to achieve their goals, while an increase of complexity should be resolved. It

is known that the high complexity negatively affects to the classification per-

formance. Second, theoretical foundations of how each method works should

be studied. The effectiveness of the proposed methods was mainly confirmed

through experiments and statistical tests in this dissertation, while theoretical

analysis will support understanding this effectiveness. This includes analysis
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of the mechanism, bias-variance decomposition, and lower/upper bound of the

performance compared to homogeneous ensemble methods. Third, the effective-

ness should also be confirmed for unusual environments, such as very large scale

data and online learning with real-time data stream. The importance of these

environments is being emphasized as the era of big data arises.
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Garćıa, S., & Herrera, F. (2008). An extension on ”Statistical comparisons of

classifiers over multiple data sets” for all pairwise comparisons. Journal

of Machine Learning Research, 9 , 2677-2694.

Giacinto, G., & Roli, F. (2001). An approach to the automatic design of

multiple classifier systems. Pattern Recognition Letters, 22 (1), 25-33.

Giraud-Carrier, C. (2000). A note on the utility of incremental learning. AI

Communications, 13 (4), 215-223.

Hagan, M. T., & Menhaj, M. B. (1994). Training feedforward networks with

the marquardt algorithm. IEEE Transactions on Neural Networks, 5 (6),

989–993.

Hao, P.-Y., Chiang, J.-H., & Lin, Y.-H. (2009). A new maximal-margin

spherical-structured multi-class support vector machine. Applied Intel-

ligence, 30 (2), 98-111.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical

Learning: Data mining, Inference, and Prediction. Springer.

Herbei, R., & Wegkamp, M. H. (2006). Classification with reject option. Cana-

dian Journal of Statistics, 34 (4), 709–721.

Ho, T. K., Hull, J. J., & Srihari, S. N. (1994). Decision combination in multiple

classifier systems. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 16 (1), 66-75.

119



Hsu, C.-W., & Lin, C.-J. (2002). A comparison of methods for multiclass

support vector machines. IEEE Transactions on Neural Networks, 13 (2),

415-425.

Huang, Y., McCullagh, P., Black, N., & Harper, R. (2007). Feature selection

and classification model construction on type 2 diabetic patients’ data.

Artificial Intelligence in Medicine, 41 (3), 251-262.

Ji, J., & Zhao, Q. (2013). A hybrid SVM based on nearest neighbor rule.

International Journal of Wavelets, Multiresolution and Information Pro-

cessing , 11 (6), 1350048.

Joachims, T. (2002). Learning to Classify Text Using Support Vector Machines:

Methods, Theory, and Algorithms. Kluwer Academic Publishers.

Juszczak, P., & Duin, R. P. W. (2004). Combining one-class classifiers to

classify missing data. In Multiple Classifier Systems, Lecture Notes in

Computer Science (Vol. 3077, pp. 92–101). Springer.

Kang, S., & Cho, S. (2014). Approximating support vector machine with artifi-

cial neural network for fast prediction. Expert Systems with Applications,

41 (10), 4989-4995.

Kang, S., & Cho, S. (2015a). A novel multi-class classification algorithm based

on one-class support vector machine. Intelligent Data Analysis, 19 (4), in

press.

Kang, S., & Cho, S. (2015b). Optimal construction of one-against-one classifier

120



based on meta-learning. Neurocomputing , in press.

Kang, S., Cho, S., An, D., & Rim, J. (2015). Using wafer map features to

better predict die-level failures in final test. IEEE Transactions on Semi-

conductor Manufacturing , in press.

Kang, S., Cho, S., & Kang, P. (2015a). Constructing a multi-class classifier

using one-against-one approach with different binary classifiers. Neuro-

computing , 149 , 677-682.

Kang, S., Cho, S., & Kang, P. (2015b). Multi-class classification via het-

erogeneous ensemble of one-class classifiers. Engineering Applications of

Artificial Intelligence, 43 , 35-43.

Kang, S., Cho, S., Rhee, S.-j., & Yu, K.-S. (2015). Reliable prediction of anti-

diabetic drug failure with a reject option. IEEE Journal of Biomedical

and Health Informatics, submitted.

Kang, S., Kang, P., Ko, T., Cho, S., Rhee, S.-j., & Yu, K.-S. (2015). An efficient

and effective ensemble of support vector machines for anti-diabetic drug

failure prediction. Expert Systems with Applications, 42 (9), 4265-4273.

Kiang, M. Y. (2003). A comparative assessment of classification methods.

Decision Support Systems, 35 (4), 441-454.

Kim, H.-C., Pang, S., Je, H.-M., Kim, D., & Bang, S. Y. (2003). Constructing

support vector machine ensemble. Pattern Recognition, 36 (12), 2757-

2767.

121



Kittler, J., Hatef, M., Duin, R. P. W., & Matas, J. (1998). On combining clas-

sifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence,

20 (3), 226-239.

Knerr, S., Personnaz, L., & Dreyfus, G. (1990). Single-layer learning revisited:

A stepwise procedure for building and training a neural network. In

Neurocomputing: Algorithms, Architectures and Applications, NATO ASI

Series (Vol. 68, pp. 41–50). Springer.
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국문초록

데이터마이닝에서 분류는 범주 형태의 출력변수를 예측하기 위한 교사학습

방법론이다. 분류문제의 범주가 여러 가지인 경우 우리는 이 문제를 다중분류 문

제라고 한다. 다중분류는 이진분류에 비해서 더 많은 정보를 제공하여 활용도가

높으며, 실제 현실문제들과도 더욱 밀접하게 연관되어 있다. 다중분류의 성능은

일반적으로 정확성, 안정성, 그리고 신속성 세가지 측면으로 확인할 수 있다. 이

세가지 측면에 대해서 더 좋은 성능을 얻기 위해서, 본 논문에서는 이질적 앙상블

학습을 통한 방법론들을 제안한다. 이질적 앙상블은 다양한 분류 알고리즘으로

부터 얻어진 이질적인 기반 분류기들을 필요한 기능을 갖도록 조합하여 다중분류

문제에대해서목표하는분류성능을얻을수있다.분류의정확성을위한이질적앙

상블 방법으로는 Diversified One-Against-One (DOAO)과 Optimally Diversified

One-Against-One (DOAO)를제안하였다.이들의기본원리는원다중분류문제를

일대일 원리에 따라서 여러 개의 이진분류 부분문제로 분해하는 것이다. DOAO는

각 범주 짝에 대해서 최적의 분류 알고리즘을 찾음으로써 여러 알고리즘들을 상호

보완적으로사용한다.범주짝별로최적의알고리즘이다르다는점에서, DOAO는

다중분류 문제에 대해서 더 정확한 분류를 할 수 있다. ODOAO는 DOAO를 보완

한 방법으로, 메타 분류기를 이용하여 여러 이질적인 기반 분류기들로부터 얻어진

결과들을 효과적으로 조합하여 최종 분류결과를 제공한다. 또한, 분류의 정확성을

위한 Heterogeneous Ensemble of One-class Classifiers (HEOC)도 제안하였다.

HEOC는 여러 단일분류 알고리즘들로부터 얻어진 이질적인 기반 분류기들을 이

용하여 이질적 앙상블을 구축한다. 이 과정에서 스태킹을 활용하여 여러 이질적

분류기들을 정규화하여 분류기들 간 예측점수 범위의 차이를 조정하여 높은 분류
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정확도를 얻는다. 분류의 안정성을 위해서는, 분류가 모호한 경우에 대한 분류를

거절하기 위한 이질적 앙상블 기반 혼합 분류거절 방법을 제안하였다. 이 방법은

새로운 데이터에 대해 분류를 할지를 결정하는 필터와, 분류를 하기로 결정된 데

이터에 대해 실제 분류를 수행하는 예측기를 별도로 학습한다. 이 과정에 각각의

성능을 극대화하기 위해 각각에 대해 최적의 분류알고리즘을 적용하여 같은 거절

수준에 대해서 더 나은 정확도를 얻는다. 분류의 신속성을 위해서, 우리는 Neural

Network Approximator (NNA)을 제안하였다. NNA는 분류기가 분류를 수행하는

데 걸리는 계산 시간을 줄이기 위해서 다중출력 인공신경망을 분류기 내 결정함

수들에 대한 근사기로 활용한다. 이 인공신경망에서 하나의 출력마디는 하나의

결정함수와 연계되며, 따라서 우리는 분류기 대신 근사기만을 이용하여 분류를

수행하여 분류 정확도의 손실을 피하면서 기존 분류기에 비해 더 빠른 분류를 수

행한다. 본 논문에서는 다양한 검증용 데이터와 현실 문제에 대한 실험을 통해서

제안하는 이질적 앙상블 기반 방법들의 다중분류에 대한 효과를 확인하였다.

주요어: 데이터마이닝, 기계학습, 앙상블, 이질적 앙상블, 다중분류

학번: 2011-21163
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