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ABSTRACT 

Plasma Current and Pressure Profile Effects 

on Tearing Mode Onset 

in Steady-state Hybrid Scenarios 

on DIII-D Tokamak 

 

Kyungjin Kim 

Department of Energy System Engineering 

The Graduate School 

Seoul National University 
 

 

 

Tearing mode (TM) instability is a kind of resistive magnetohydrodynamic 

instability that limits the performance of the tokamak plasma. A correct 

understanding of this phenomenon is essential for high performance steady-state 

operation, especially the onset of TMs. Based on the steady-state hybrid 

experiments performed on the DIII-D device, the occurrence of TM is identified 

and analyzed, and the effect of the plasma current and the pressure profiles on the 

tearing stability is investigated in terms of the tearing stability index ∆". 

 The characteristics of the mode is mainly investigated using the system of 



 ii 

magnetic pick-up Mirnov probes. The FFT analysis and the phase-fitting method 

are applied to identify the mode onset, the mode amplitude, and the mode number 

in the experiments. The mode onset was defined for this thesis that the phase-

folding disappears in the phase-fitting results of poloidal probe array. 

 Since the tearing stability is sensitive to the equilibrium current and pressure 

profiles, the more accurate and tightly constrained equilibrium is reconstructed 

using the well-measured plasma profiles using various diagnostics for the 

discharges in the database. The characteristics of plasma current and pressure 

profiles at tearing mode onset in the database of DIII-D steady-state hybrid 

discharges seems to be more sensitive to the global feature of plasma profile 

through #
$

 and %
&

, and the effect of plasma resistivity at the mode surface through 

'

(

 than the local feature of plasma profile through )
*

 and )
&

. From the result of 

the best fit equation in the dimensionless form using +
,

 and '
-

, the global feature 

of profiles and the current profile can affect more than the local feature of profiles 

and the pressure profile, respectively. 

 The tearing stability index ∆" is calculated with the experimental equilibria in 

two ways, by MHD codes (PEST-III and resistive DCON) and by MRE. They are 

verified and validated in reasonable agreement. It is noteworthy that the determined 

∆′ can be positive regardless of the mode onset, so the conventional wisdom of 

∆

"

> 0 for tearing destabilization may not be the sufficient condition, rather a 

positive value greater than a certain threshold could replace this under the toroidal 

geometry. 
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 The analytical formula of the tearing stability threshold ∆
1

"  is reviewed for the 

semi-collisional regime and the collisionless banana regime. By comparing the 

analytical ∆
1

"  with the ∆" calculated from PEST-III code near the TM onset, it is 

found that the condition of ∆"> ∆

1

"  is required for the mode onset in the 

experiment. A preliminary study on the ∆
1

"  estimation from the normalized mode 

growth rate is performed by NIMROD code. The ∆
2

"  can be fitted for negative or 

marginal growth rate using the relation between the normalized mode growth rate 

3'

-

 from NIMROD and the ∆" from PEST-III. 

 Finally, a stability diagram of 4 = 1 tearing mode onset is suggested with 

local and global features of plasma profiles. Onset condition of 4 = 1 TM is 

analyzed by the difference between ∆" and ∆
1

" , and its stability diagram is derived 

in terms of the local (78
∥

 and 7:) and global (;
<

) variations for steady-state 

hybrid scenarios. To calculate ∆" − ∆
1

"  for the stability diagram, a novel modeling 

package has been developed by integrating IPS/FASTRAN for equilibrium 

reconstruction, PEST-III/DCON for linear stability ∆"  calculation, and the ∆
1

"  

solver for analytical ∆
1

"  calculation. The stability boundary at the mode onset, 

∆

"

= ∆

1

" , is mapped on )
&

-)
*

 diagram. Characteristics of this stability boundary 

show that the TM unstable area expands, then the stability boundary moves as ;
<

 

increases. This stability diagram can be used to design and control experiments to 

avoid 4 = 1 TM. 
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1.1.  Thermonuclear fusion in tokamak 
 

The atoms of which every element of matter is composed have a nucleus at the 

center and electrons whirling about this nucleus. The nuclei of atoms are composed 

of protons, which have a positive electrical charge, and neutrons, which are 

electrically neutral. Electrons are electrically negative and have a charge equal in 

magnitude to that of a proton. The nucleus of an atom is held together by the strong 

nuclear force that binds together protons and neutrons. The interplay of attractive 

and repulsive forces inside atomic nuclei leads to a non-monotonic dependence of 

the binding energy per nucleon on the atomic number as shown in Figure 1.1. The 

most stable nucleus is the medium-size iron isotope 56Fe. 

 

Figure 1.1 Binding energy per nucleon vs. mass number for all naturally-occurring 
isotopes. Fusion-relevant isotopes are highlighted. Note logarithmic scale on the 
abscissa. 
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 Basically, there are two distinct exothermic processes involving the nuclei of 

atoms for energy production: fission, heavy atomic nucleus (like uranium and 

plutonium) are broken apart into lighter nuclei, and fusion, light nuclei like 

hydrogen are combined to form heavier nucleus such as helium. During this 

process, considerable amount of energy is released because the total mass of the 

constituents is greater than the total mass of the products. The “missing” mass, ∆e, 

is converted into a certain amount of energy, p , given by the principle of 

Einstein’s mass-energy equivalence, p	 = 	∆evU [1]. 

 Fusion reactions are ubiquitous throughout the universe, occurring naturally in 

stars such as the Sun. Unlike the proton-proton chain dominates in the Sun, there 

are several possible fusion reactions [2-4] that are of interest for energy production 

on the Earth. It is important that the large amount of energy is released per reaction 

and the higher peak of cross section is at lower energies as shown in the Figure 1.2. 

w

L

U

+ w

L

U

→ z{

U
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C
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w
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L
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C
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w

L

U
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U
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→ z{

U

~
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L

L
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 To induce the fusion reaction, two light nuclei must come close enough 

together that the short-range, attractive, and strong nuclear force becomes larger 

than the electrostatic repulsion between their nuclei. To overcome the Coulomb 

barrier, the nuclei require high kinetic energies. Since fusion processes are still less 

probable than Coulomb scattering at each collision event, the plasma with 
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sufficient energy needs to be confined well enough to ensure that each particle 

performs many elastic collisions before it is lost. The ignition threshold to achieve 

the continuously stable fusion energy can be most commonly expressed in the form 

of the fusion triple product 4j'
^

. Here, 4 is the plasma density, j is the kinetic 

temperature, and '
^

 is the energy confinement time. 

 While the gravitational force can provide the confinement with high density 

for fusion in case of stars, it is not appropriate in fusion reactor on the Earth 

because of much weaker gravitation. There are two experimental approaches to 

design a fusion reactor: inertial and magnetic confinement. In inertial confinement, 

 

 

 

Figure 1.2 Fusion cross-section of various fusion reactions against the kinetic energy of 
the incident particle. Note logarithmic scale on the abscissa and the ordinate [5, 6]. 
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a small pellet containing fusion fuel is compressed and heated by the high-powered 

lasers or particle beams so quickly that it reaches the conditions required for the 

fusion reaction. In magnetic confinement, strong magnetic fields are used to 

confine the hot plasma to have sufficient nuclear reactions adequate to generate the 

required net energy gain. 

 As the most successful magnetic confinement scheme to date, tokamak is a 

toroidal machine designed to confine a plasma in the shape of a torus (see Figure 

1.3). Toroidal, poloidal and vertical magnetic fields are used to confine the plasma 

in a stable equilibrium. The toroidal and vertical fields are produced by magnetic  

 

 

 

Figure 1.3 A schematic view of a tokamak device with currents and magnetic fields [7]. 
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field coils, which are generally placed outside of the vessel, and the poloidal field 

is generated by the plasma current. The plasma current flows toroidally and can be 

generated by transformer action (inductive current drive) or by using non-inductive 

methods. The combination of the vertical, poloidal and toroidal fields produces a 

complex helical field that achieves a high level of plasma stability and longer 

confinement times at higher densities. 

 The DIII-D tokamak [8] is a medium size experimental purpose device with 

major radius � of 1.67	e, minor radius S up to 0.67	e, plasma current [
&

 up 

to 3.0	}Ä and toroidal magnetic field Å
Ç

 up to 2.2	j. The DIII-D was designed 

to achieve high plasma performance while maintaining the flexibility in the 

configuration by optimizing to allow plasma elongation É  up to 2.6  and 

triangularity Ñ up to 1.0. The actual configuration presents two divertor plates 

with the possibility of running discharges with one or two X points point in the 

upper part and/or lower part of the machine. A flexible set of heating and current 

drive systems are available including 20	}Ö of neutral beam heating (NBI; co- 

and counter-current injection, with 5	}Ö  of variable off-axis injection and 

current drive), and 6	}Ö  gyrotrons with steerable launchers for EC heating, 

current drive, and stability control. 
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1.2.  Advanced operation scenarios for fusion reactor 
 

The operation scenario in tokamak researches can be globally classified by the 

characteristics of the shape of the radial profiles of current and pressure: 

conventional scenario and advanced scenario. The typical pressure and safety 

factor profiles in these scenarios are shown schematically in Figure 1.4. 

 The conventional tokamak scenarios are characterized by inductive current 

drive and thus the current profile has the maximum of the current density in the 

plasma center, resulting in a monotonically increasing q-profile. The typical 

scenarios are the so-called low confinement (L-mode) or high confinement mode 

(H-mode), of which can be distinguished by the efficiency of energy confinement. 

 

 

 

Figure 1.4 Typical pressure (a) and safety factor (b) profiles of different tokamak 
operational scenarios [9, 11]. 

 

(a) (b)

L-mode
H-mode

Advanced
operation

Hybrid
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The latter is characterized by a steep edge pressure gradient (‘pedestal’). These 

operation scenarios are usually developed for pulsed operation and with a large 

fraction of ohmic current. 

 The advanced tokamak scenarios [10, 11] are characterized by non-inductive 

current drive with high bootstrap current fraction and the current and pressure 

profiles are optimized for maximum ; and '
^

. These operation scenarios usually 

tend to have flat or even reversed, elevated q-profiles in the radial region where ∇: 

is significant. The current profiles are peaked off-axis and broader than 

conventional scenarios. The pressure profile can also exhibit a transport barrier 

inside the plasma, internal transport barriers (ITBs) [12, 13], by the sheared p×Å 

rotation or magnetic shear for the turbulence suppression in the plasma. The hybrid 

scenarios are characterized by the presence of a wide central region with magnetic 

shear very close to zero and central ? values between 1 and 1.5 [14-16]. The main 

advantages of this mode of operation are improved energy confinement and 

improved MHD stability leading to a higher ; limit. These operation scenarios try 

to operate the fusion tokamak in steady-state. 

 Various advanced tokamak scenarios have been investigated on DIII-D [17-

22]. These approaches can be distinguished by their respective ?  profiles as 

shown in Figure 1.5. The first approach, ‘high ?
oàâ

’ scenario (typically the safety 

factor minimum ?
oàâ

> 2) exploit broad current and pressure profiles to raise the 

wall-stabilized ideal MHD ;
<

 limit and to maximize the bootstrap current fraction 

%

äã

. For this scenario, very good alignment of the bootstrap current profile and the 
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desired plasma current profile is required, and about 10 − 40	% of the plasma 

current needs to be externally driven by either NBI or EC near the plasma 

periphery (ç~0.5 − 0.9, where ç is the normalized toroidal flux coordinate) to 

achieve steady-state operation. The second approach, ‘high #
$

’ scenario exploit the 

combination of broad pressure profile and a peaked current profile to operate near 

the no-wall ;
<

 limit. Since an increase in the bootstrap current 8
äã

 located off-

axis reduces #
$

, the maintaining an elevated value of #
$

 as %
äã

 increases with ;
<

 

is required and the remaining of the current would be provided by external current  

 

 

 

 

Figure 1.5 The current density (a) and the safety factor (b) profiles of the potential 
steady-state scenarios investigated on DIII-D: ‘high #

$

’ scenario (purple), ‘high ?
oàâ

’ 
scenario (black), ‘elevated ?

oàâ

’ scenario (orange) and ‘steady-state hybrid’ scenario 
(green). 

 

3 C.T. Holcomb/APS-DPP/Nov. 2013 084-13/CTH/rs 

A Range of q-Profile Scenarios  
are Being Investigated on DIII-D 

3 C.T. Holcomb/APS-DPP/Nov. 2013 084-13/CTH/rs 

A Range of q-Profile Scenarios  
are Being Investigated on DIII-D 

(a)

3 C.T. Holcomb/APS-DPP/Nov. 2013 084-13/CTH/rs 

A Range of q-Profile Scenarios  
are Being Investigated on DIII-D 

(b)
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drive near the plasma center. Although the total amount of externally-driven 

current would be larger than in ‘high ?
oàâ

’ scenario, the required external current 

drive power could be comparable because of the high current drive efficiency at the 

center. The third approach, ‘steady-state hybrid’ scenario [23-26] exploit broad and 

moderate shear current profile with ?
oàâ

≥ 1 . As the poloidal magnetic flux 

pumping out near ç~0.35 self-organizes the current profile due to the presence of 

a benign (e, 4) = (3,2)  or (4,3)  modes, the external current drive can be 

located near the plasma center without the alignment problem as well as significant 

sawtooth activity. Note that the (e, 4) notation describes the poloidal and the 

toroidal mode number, respectively. 
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1.3.  Tearing instability in the steady-state hybrid scenarios 
 

The tearing mode produces magnetic islands in magnetized plasmas that can 

significantly degrade confinement and angular momentum and even lead to plasma 

disruption, which is that the plasma confinement is suddenly destroyed in a high 

beta plasma. For example, the (3,2) mode is generally found to limit performance 

by causing a moderate degradation in energy confinement by up to 20	% as soft-; 

limit, while the (2,1) mode lead to an even greater loss and sometimes forms a 

locked mode resulting in a major disruption as hard-; limit [27]. 

 The hybrid regime can be empirically obtained reliable access and maintained 

with following conditions typically in DIII-D [23]: (i) the establishment of a broad, 

moderate shear current profile with ?
C

> 1  at the end of current ramp; (ii) 

increasing ;
<

 sufficiently early to trigger a small (3,2) tearing mode prior to the 

onset of sawteeth or fishbones and (iii) feedback control of ;
<

 throughout the 

high performance phase. The importance of each of these is demonstrated in Figure 

1.6 [23] where various waveforms from three discharges that are similar except for 

the early neutral beam injection (NBI) timing are compared. In the hybrid case 

(Figure 1.6 (a)), the subsequent increase in ;
<

 as a result of an L-H transition and 

increase in NBI power and a small (3,2) mode is triggered that persists for the 

remainder of the discharges before the onset of sawteeth. This (3,2) mode acts to 

prevent the current profile penetration such that ?
C

> 1 is maintained in stationary  
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Figure 1.6 Temporal evolution of ;
<

 (black), amplitude of 4 = 1 (green) and 4 = 2 
(red) magnitude fluctuations and ?

C

 (blue dashed) for discharges with different heating 
scenarios: (a) early NBI heating and ;

<

&D,EFG

= 2.65, (b) no early NBI heating and 

;

<

&D,EFG

= 2.65, and (c) no early NBI heating, and ;
<

&D,EFG

= 2.6. 

 

 

conditions, resulting in elimination of sawteeth (for ?
êë

> 4) or reduction of the 

sawteeth amplitude to an inconsequential level (for ?
êë

~4). In cases where early 

NBI timing is not used (Figure 1.6 (b) and (c)), sawteeth occur near the end of the 

current ramp. The sawteeth can trigger (2,1) mode at ;
<

= 2.65 as shown in 

Figure 1.6 (b), but cannot trigger (2,1) mode at ;
<

= 2.6 as shown in Figure 1.6 

(c). It is interesting to note the sawteeth behavior after the triggering and growth of 

Recent experiments on DIII-D
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N

 H
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Figure 1. Normalized fusion performance G = βNH89/q
2
95 versus

normalized duration NτR = tdur/τR for a series of DIII-D hybrid
discharges with q95 < 4 (black squares) and q95 > 4 (grey
diamonds). The range of performance for the ITER baseline
scenario is shown.

dedicated scans of q95 and plasma density. Details of the
physics basis focusing on key elements that differentiate the
hybrid regime from the conventional regime or those that
improve the access to the hybrid regime are discussed in
section 3. Projections to ITER based on the obtained data are
presented in section 4. Finally, a discussion of the ramifications
of ITER is presented in section 5.

2. Hybrid regime operating characteristics

2.1. General characteristics

Empirically, the key ingredients for obtaining reliable access
to and maintenance of this regime are: (1) the establishment of
a broad, moderate shear current profile with q0 > 1 at the end
of current ramp; (2) increasing βN sufficiently early to trigger
a small m = 3, n = 2 NTM prior to the onset of sawteeth
or fishbones and (3) feedback control of βN throughout the
high performance phase. The importance of each of these
is demonstrated in figure 2 where various waveforms from
three discharges that are similar except for the early neutral
beam injection (NBI) timing are compared. In the hybrid
case (figure 2(a)), sufficient NBI power is applied during the
current ramp to slow down the current penetration such that a
broad current profile with q0 > 1 at the end of current ramp
is obtained. This must be done without producing a highly
reversed q profile, which inevitably leads to the formation
of an internal ion energy transport barrier and problems with
resistive interchange modes [27] and early NTMs.

The subsequent increase in β (as a result of an L–H
transition and increase in NBI power) occurs before the onset of
sawteeth. As βN approaches 2.5, a small m = 3, n = 2 NTM
is triggered that persists for the remainder of the discharge.
Studies suggest that the triggering of this mode prior to the
onset of sawteeth is important in avoiding sawteeth for the
duration of the discharge. Detailed studies, to be discussed
in section 3, indicate that the m = 3, n = 2 NTM then acts
to prevent the current profile penetration such that q0 > 1
is maintained in stationary conditions. Additional assistance
in maintaining the broad current profile is provided by the

n = 1 B rms (G/2)~ ~
βN

0
1

2

3 Hybrid

0
1

2

3 Conventional

1.00.0 2.0 3.0
Time (s)

4.0

2/1 NTM
Triggered

5.00
1
2
3 Conventional → Hybrid

No Early
Heating

No Early
Heating

Early Heating

n = 2 B rms (G/2)

     

     

Sawteeth

Sawteeth

q0

(a)

(b)

(c)

Figure 2. Temporal evolution of βN (black), amplitude of n = 1
(green) and n = 2 (red) magnitude fluctuations and q0 (blue dashed)
for discharges with different heating scenarios: (a) early NBI
heating, β

postLH
N = 2.65; (b) no early NBI heating, β

postLH
N = 2.65;

(c) no early NBI heating, β
postLH
N = 2.6.

bootstrap current associated with the elevated values of βN.
While the bootstrap current is modest (∼35% of the total
current in the best cases), the majority of this current is
located near the edge, naturally producing a broader current
profile. In the case shown in (figure 2(a)), the lack of sawteeth
and the broad current profile allow a subsequent increase in
βN to above 3.0, which is near the free-boundary, n = 1
stability limit. In cases in which early NBI timing is not
used (figures 2(b) and (c)), sawteeth occur near the end of
the current ramp. In these cases, there is a critical βN above
which the sawteeth will trigger an m = 2, n = 1 NTM, which
occurs in the case shown in figure 2(b). In this case, βN at
the time of the m = 2, n = 1 NTM destabilization is ∼20%
below the sustained βN in the ‘hybrid’ case in figure 2(a).
If the βN request is lowered slightly (figure 2(c)), the m = 2,
n = 1 NTM is not triggered and βN = 2.6 can be maintained
for the duration of the discharge. It is interesting to note the
sawteeth behaviour after the triggering and growth of m = 3,
n = 2 NTM around 3.0 s in this discharge. As the m = 3,
n = 2 mode amplitude increases, the sawteeth become smaller
and the discharge begins to take on the basic MHD (i.e. has
modest amplitude m = 3, n = 2 tearing mode with minimal
sawteeth activity) and transport (i.e. slightly improved from
conventional H-mode) characteristics of the ‘hybrid’ discharge
in figure 2(a). At present, no attempt has been made to establish
the βN limit in this type of discharge. Nevertheless, this is
suggestive that a continuum exists between the conventional
and ‘hybrid’ regimes. More work is necessary to explore and
exploit this continuum. Feedback control of βN was used in
all the cases shown in figure 2. Studies have shown that the βN

limit is optimized when feedback control is utilized. Efforts
to preprogramme the NBI power have invariably resulted in
markedly lower βN limits. In particular, feedback control has
been found to be essential to operate close to the free-boundary,
n = 1 stability limit.

409
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the (3,2) mode. As the (3,2) mode amplitude increases, the sawteeth become 

smaller and the discharge begins to take on the characteristics of the hybrid 

discharge in Figure 1.6 (a). 

 The steady-state hybrid plasmas on DIII-D feature strong on-axis current drive 

with ?
oàâ

 slightly above 1; therefore, the anomalous broadening of the current 

profile by the (3,2) mode is an important characteristic. While the (3,2) island 

gives rise to a ~10	% reduction in global confinement [22], this is outweighed by 

the benefits to stability. However, the addition of localized central ECCD can cause 

sawteeth to appear since the intense ECCD overwhelms the flux pumping 

mechanism. The (2,1) TM appears more readily at high normalized pressure and, 

despite not causing disruptions, it degrades the confinement significantly, causing 

the loss of 20 to 50	% of the plasma stored energy. The tearing stability of a 

high ;
<

 plasma is strongly correlated with its proximity to the ideal MHD with-

wall limit [26, 28-30]. However, the physics needed to properly describe the onset 

threshold of the tearing mode has, until now, been unclear. 
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1.4.  Physics of tearing mode 
 

Classical tearing modes can grow spontaneously as the result of unfavorable 

current and pressure profiles. Magnetic reconnection can only occur in regions 

where the resistive and ideal parts of Ohm’s law become comparable. There is a 

thin resistive layer of width Ñ around a rational surface, within which ideal MHD 

becomes invalid and resistive MHD must be used [31]. Whether the region is stable 

or unstable depends on global profiles and this is usually determined for a large 

aspect ratio tokamak by solving the cylindrical tearing mode equation for the 

resultant perturbed flux, X(+). 

W

U

X

W+

U

+

1

+

WX

W+

−

e

U

+

U

+

í

C

WM

W+

Å

ì

+ 1 − ? +

4

e

X = 0 

 Outside the resistive layer, ideal MHD can be used with appropriate boundary 

conditions far from the rational surface. Inside the resistive layer, resistive MHD is 

used. The solutions must then be matched at either side of the layer but this cannot, 

in general, happen without a discontinuity in the first radial derivative, WX/W+ 

[32]. This discontinuity is characterized by the Δ′ parameter, given by: 

Δ′ =

1

X

WX

W+

bîb

ï

ñó

−

WX

W+

bîb

ï

òó

 

For positive Δ′, the current will reinforce the initial perturbation and hence the 

stability of criterion for the tearing mode is unstable. Figure 1.7 [9] shows an 

example of the approximate analytic solution of the tearing mode equation, which 

assumes an equilibrium current profile of the form M
N

(+) ∝ (1 − (+/S)

U

)

V for the 
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unstable (2,1) mode and for the stable (3,1) mode. 

 It is important to note that the peak of the perturbed flux is typically inside the 

rational surface (+ < +

,

) for the cylindrical geometry. This means that there is a 

gradient in X either side of the rational surface and demonstrates that use of the 

constant-X approximation does not allow for a realistic island geometry. However, 

the constant-X approximation is assumed in this thesis for a simple description of 

the essential physics of each mechanism. 

 

 

Figure 1.7 The perturbed helical flux function X
L

, calculated using the tearing mode 
equation based on the current profile M

N

∝ (1 − (+/S)

U

)

V . The discontinuity in 
WX

L

/W+ at +
,

 determines stability against tearing. (a) for the (2,1) mode and (b) for 
the (3,1) mode. 
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 According to the linear tearing mode theory with the constant-	X assumption 

that the magnetic flux inside the resistive layer is constant, the mode growth rate 

and the resistive layer width can be obtained as 3 ∝ ô

V/ë

ö

" ~/ë  and Ñ ∝

ô

U/ë

ö

" L/ë, respectively [31]. The tearing mode grows on the intermediate time 

scale, which is much more slowly than ideal MHD instabilities (characterized by 

the Alfvén time, '
-

), but much faster than the resistive diffusion of the equilibrium 

configuration (characterized by the resistive time '
(

). As expected, the resistive 

layer becomes thinner as the resistivity ô decreases. Theoretically the solutions of 

the fields inside the resistive layer cannot be used explicitly, when δ is so small. 

However, the linear approximation remains valid as long as the island width stays 

smaller than this resistive layer width. 

 A highly localized jump in WX/W+ also means a spike in WUX/W+U, which, 

by Ampère’s Law, gives a parallel current perturbation. This can either stabilize or 

destabilize a tearing mode depending on the sign of the discontinuity. The time 

evolution of such a mode can be evaluated by considering the resistive diffusion of 

the perturbed radial field in Ohm’s law: 

õÅ

b

õd

=

ô

í

C

∇

U

Å

b

 

Integrating this equation across the resistive layer with the approximation of ∇U≈

W

U

/W+

U, 

WÅ

b

Wd

ñù/U

òù/U

W+ ≈

ô

í

C

W

U

Å

b

W+

U

ñù/U

òù/U

W+ 

Assuming the constant X approximation and using Å
b

 is independent of +, 
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û

WÅ

b

Wd

≈

ô

í

C

WÅ

b

W+

òù/U

ñù/U

 

Since Å
b

∝ û

U and Å
b

= eX/+, 

2í

C

ô

Wû

Wd

≈

1

X

WX

W+

òù/U

ñù/U

 

Assuming the island width û is about the same as the resistive layer and using the 

equations for Δ′, the Rutherford equation for the time evolution of the classical 

tearing mode width can be obtained [33], 

1.22

òL

'

(

+

,

U

Wû

Wd

= Δ′ 

where the resistive diffusion time scale '
(

= í

C

+

,

U

/ô  and the constant 1.22 

comes from flux surface averaging in a large aspect ratio, circular cross section 

geometry. The island is expected to grow linearly with time if ∆′ > 0. However, 

additional effects which arises from the island region itself can also influence the 

island growth (recall that ∆′ is a property of the global equilibrium). 
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1.5.  Objective and outline of this dissertation 
 

 In Chapter 2, the identification of tearing mode characteristics and its onset are 

investigated based on the DIII-D steady-state hybrid scenario operations. The 

dependency of tearing mode onset on the characteristics of plasma current and 

pressure profiles are investigated with accurate equilibrium reconstruction with 

well-measured plasma profiles. In Chapter 3, the tearing stability index ∆′ is 

calculated from the reconstructed equilibria using the MHD code and from the 

MRE with the experimental data. The validation and verification is presented using 

hybrid and steady-state hybrid discharges. In Chapter 4, the analytical formula for 

∆

1

"  is introduced and compared with the ∆′ to identify the mode onset. The critical 

∆

1

"  tried to be estimate through the extended MHD simulation. In Chapter 5, new 

equilibria reconstruction with parametric variation of reference plasma profiles are 

performed. The dependence of mode onset stability on the profile variations was 

investigated. In Chapter 6, a summary and an outline of potential future work in 

this area are presented. 

 

 

 



 
 

Chapter 2. 

 

Experimental observations of 

tearing mode 

in DIII-D steady-state hybrid discharges 
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The experiments based on the ‘hybrid’ scenario has been recently performed on the 

DIII-D tokamak for steady-state operation by applying the electron cyclotron 

heating and current drive closed to the axis to achieve high efficiency. These 

“steady-state hybrid” experiments show the surface loop voltage decreased to zero 

indicating steady-state operation as well as the typical characteristics of hybrid 

plasma, i.e. self-organized current profile with q
oàâ

~1 , no sawtooth, flux 

pumping out near ç~0.35  due to the existence of dominant (3,2)  or (4,3) 

modes and improved confinement than standard H-mode operation. Figure 2.1 

shows a comparison of the main plasma parameters for typical hybrid discharge 

and steady-state hybrid discharge. Likely most hybrid plasmas, the discharges in 

Figure 2.1 develops a small (3,2) mode during the high ;
<

 phase, which can 

broaden the current profile and keep q
oàâ

 from dropping below 1. The steady-

state operation based on the hybrid regime has been demonstrated by adding 

central current drive from EC and NBI. 

 All the steady-state hybrid discharges considered in this paper have the plasma 

current [
&

= 1.0	}Ä , the toroidal magnetic field Å

Ç

= 1.95	j , ?
êë

~6 , and 

;

<

~3 − 3.2. At high ;
<

 flattop, the (2,1) TM can sometimes appear and often 

lock to the wall while continuing to grow. It causes the loss of ;
<

 up to 50	% 

and can even cause disruptions. Figure 2.2 shows a comparison of the main plasma 

parameters for two different steady-state hybrid discharges, with and without the 

4 = 1  mode. The slightly different timing of EC injection in Figure 2.2 (b) 

affected the shape of total current profile represented by #
$

 as shown in Figure 2.2  
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Figure 2.1 Time trace of typical hybrid discharge, #125469 (black) and steady-state 
hybrid discharge, #161170 (blue): (a) the plasma current [

&

, (b) the NBI power \
$A]

 
and the EC power \

^_

, (c) the normalized beta ;
<

, (d) the surface loop voltage `
,abc

, 
(e) the minimum of q profile ?

oàâ

, (f) 4 = 1 rms amplitude and (g) 4 = 2 rms 
amplitude. 

 

(a)

(b)

(c)

(d)

(e)

(f)

(g)
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Figure 2.2 Time trace of steady-state hybrid discharges with 4 = 1 tearing mode, 
#161172 (red) and without 4 = 1 tearing mode, #161170 (blue): (a) the plasma current 
[

&

, (b) the NBI power \
$A]

 and the EC power \
^_

, (c) the internal inductance #
$

, (d) 
the normalized beta ;

<

, (e) 4 = 1 rms amplitude and (f) 4 = 2 rms amplitude. 
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(c), and then it may affect to make the n = 1 mode unstable. 

 

2.1.  Identification of the tearing mode and its onset 
 

For detailed analysis of the tearing mode, the diagnostics must satisfy three basic 

requirements for analysis [34]: 

� The measurement must be sensitive to a quantity that oscillates with the 

instability, i.e., the magnetic field structure, e.g., temperature, density, 

radiation or magnetic field component. 

� The spatial distribution of observed signals from the same diagnostic must 

be suited for determination of the spatial mode structure. 

� The sampling frequency, %
,

, must be high enough. 

 

 A key ingredient for understanding the tearing mode stability is how to 

estimate or investigate the characteristics of the mode using available diagnostics 

such as magnetic probe, electron cyclotron emission (ECE) and charge exchange 

recombination spectroscopy (CER). The system of magnetic pick-up Mirnov 

probes, with acquisition frequency of 0.2	}z† in DIII-D, has been mainly used to 

identify the mode onset, the mode amplitude and the mode number based on the 

fast Fourier transform (FFT) analysis [35, 36] and the phase-fitting method [37]. 

 These magnetic probes placed on the vacuum vessel inner surface can measure 

the magnetic fluctuations generated by the magnetohydrodynamic (MHD) modes, 
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WÅ

ì

/Wd. The full radial island width [38], û = v

^_^
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*

�
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Ç
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=
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− �
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Å

ì
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 at the mode frequency filtered by Fourier and scaled to fit the island size 

from ECE when the island is saturated or just before locked. The mode number, 

(e, 4) can be identified from the probe signals distributed in the poloidal and 

toroidal configurations and from the matching between the mode frequency and the 

plasma rotation frequency from CER. Figure 2.3 shows the example analysis for 

discharge with tearing mode onset. The 4 = 1 mode starts and begins to grow at 

around 2100	ef in FFT spectrum of Figure 2.3 (a). 

 Determining that 4 = 1 mode is a TM requires careful analysis, however. 

Since the magnetic perturbation is detected by the probes outside the plasma, it is 

difficult to identify the perturbation as only a TM. Because the signal can often 

appear as a mixture of many modes such as ideal kink and ballooning on top of the 

TM, until a TM become dominant, especially with the same toroidal mode number 

and similar mode frequencies. The presence or absence of ‘phase folding’ [37, 39], 

reversal of W£/W§ slope on the high field side during poloidal mode analysis, is 

used to determine the tearing mode onset because the phase folding is a typical 

feature of the internal kink mode due to the toroidicity and plasma shaping. In 

Figure 2.3 (b), there is another 4 = 1 mode before the mode onset, which is 

represented by yellow scatters. As shown in Figure 2.4 (a), this yellow n=1 mode  
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Figure 2.3 Mirnov analysis overview for DIII-D experiment #161172 in the timeframe 
d = 1500	ef to d = 3000	ef. (a) The FFT frequency spectrum, (b) 4 = 1 (yellow 
and red) and 4 = 2 (blue) mode amplitude, (c) the island width calculated from 
(e, 4) = (2,1) amplitude. The grey dashed line in (b) indicates the defined (2,1) TM 
onset and the orange shade region in (b) and (c) represents the time range within 
100	ef for the growth rate evaluation. 
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Figure 2.4 Phase-fitting results of poloidal array with toroidal mode number 4 = 1 for 
#161172 (a) at d = 2450	ef, (b) at d = 2460	ef. 
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makes the ‘phase folding’ when the mode number analysis using the Mirnov array. 

The ‘phase folding’ is disappeared slowly just after the time pointed out as “TM 

onset” at around ~2460	ef in Figure 2.3 (b). 

 

2.2.  Equilibrium reconstruction with kinetic measurements 

constraints – Kinetic EFIT 
 

The equilibrium is formed by the balance of three spatially varying parameters; the 

magnetic flux due to the poloidal field X �, • ≡ −�Ä

N

(�, •), the toroidal filed 

function %(X) = �Å

N

, and the total plasma pressure : = :(X). Here, � and • 

are the radial and the vertical coordinate respectively, and Ä
N

 and Å
N

 are the 

toroidal component of the electromagnetic vector potential and the magnetic field 

respectively. The equilibrium force balance equation, ∇: = 8×Å , can be 

determined as known as the Grad-Shafranov equation. 

∆

∗

X = �

õ

õ�

1

�
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õ�

+

õ
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õ

U

•

= −í

C
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U

õ:
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− %
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The EFIT code [40, 41] solves this equation to fully reconstruct the equilibrium 

magnetic field, current and pressure profiles, usually assumed with two steam 

functions :"(X) = ®

A

©

A

 and %%"(X) = ;

A

©

A

. The basis function ©
A

 could be 

polynomial or tension spline functions [42] and the coefficients ®
A

 and ;
A

 are 

determined by the Picard’s method to minimize the error quality function [41]. 

 There are three kinds of the equilibrium reconstruction depending on the 
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diagnostics and constraints (see Table 2.1). The magnetic equilibrium 

reconstruction could get the plasma shape and some global plasma information 

such as the total plasma current [
&

= W#

™

/�

U

Å

&

, the internal inductance #
$

=

W`	Å

&

U

/(Å

&°

U

Ω)

¨

, and the poloidal beta ;
&

= 2í

C

W`	:/(Å

&°

U

Ω)

¨

, where Ω is 

 

 

 

Table 2.1 Three kinds of the equailibrium reconstrudtions according to the diagnostics and 
the corresponding constraints. 

 Diagnostics Constraints 

Magnetic Magnetic loops and probes [

&

,  

poloidal flux,  

external magnetic field 

Current Motional stark effect (MSE),  

Soft X-ray reflectometry (SXR), 

etc. 

Internal magnetic field  

or flux surface 

Kinetic Thomson scattering (TS),  

Electron cyclotron emission 

(ECE),  

Charge Exchange Recombination 

spectroscopy (CER),  

X-ray imaging crystal 

spectrometer (XCS), etc. 

Pressure profile  

(from the measured 4
h

, j
h

, 

j

$

, •
hcc

, and calculated \
c

 

profiles), 

Rotation profile 
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the total plasma volume, Γ denotes the plasma surface bounding Ω, Å
&

 is the 

poloidal component of the magnetic field, and Å
&°

= í

C

[

&

/ W#

™

 is an average 

poloidal magnetic field for normalization. The current equilibrium reconstruction 

could get the current density profile 8(X) and the safety factor profile ?(X) in 

the plasma core using the local magnetic pitch angle Å
&

/Å

Ç

	 measured by the 

motional Stark effect (MSE) diagnostic. Here, X is the radial flux coordinate and 

Å

Ç

 is the toroidal component of the magnetic field. 

 The kinetic equilibrium reconstruction with the available magnetic and kinetic 

measurements, as called as “kinetic EFIT” is one of the most important process for 

studying the MHD stabilities. It is essential to obtain detailed information on the 

plasma profiles, such as the current density profile 8(X), the safety factor profile 

?(X) and the total pressure profile :(X). To use the kinetic data to constrain the 

MHD pressure profile : in the kinetic EFIT, the measured profiles of electron 

density 4
h

, electron temperature j
h

, main ion density 4
$

, main ion temperature j
$

, 

impurity density 4
Æ

 and pressure contributed from the fast ion :
c

 are required. 

Since these measured data are all discrete points in different spatial locations and in 

different temporal resolutions, they should be mapped into the flux surface 

coordinates using the magnetic geometry from the current equilibrium 

reconstruction or from the previous iteration, then fitted with smooth functions. 

Figure 2.5 shows the measured data and the fitted profiles at the time of (2,1) 

tearing mode onset for unstable discharge #161172 and at similar time stable 



 30 

discharge #161170 (shown in Figure 2.2). With the hypothesis of constant 

temperature and density on a flux surface the total plasma pressure can be written 

as : X = 4

h

j

h

+ 4

$

+ 4

Æ

j

$

+ :

c

. The quantity 4
$

 and 4
Æ

 can be inferred 

from 4
h

 by the quasi-neutrality condition and the •
hcc

 from the visible 

bremsstrahlung diagnostic. The pressure and density related to the fast ions are 

computed by the numerical code such as NUBEAM module [43] in ONETWO 

transport code [44]. The current profile in the edge pedestal is used as a constraint 

that is deduced from a time-dependent simulation of poloidal flux evolution using 

the ONETWO transport code. 

 The tearing mode stability should be analyzed with more accurate and tightly 

constrained equilibrium because the island that occurs at rational surface ? = e/4 

can be due to either free energy from the current profile or from the pressure 

profile. The reconstructed current profile, pressure profile, safety factor profile and 

the plasma configuration are shown in Figure 2.6. As shown in Figure 2.6 (d), these 

discharges have slightly different plasma shape by changing the outer squareness. 

The shape change might affect the peakness of the current and pressure profile as 

well as the pedestal property as shown in Figure 2.6. Prior to starting the detailed 

analysis of tearing stability, first observation shows that the local current density 

gradient at ? = 2  surface for unstable discharge is greater than for stable 

discharge while the local pressure gradient is similar for two discharges. These 

observations indicate that the TM stability at the mode onset depends on the 

current profile, rather than on the pressure profile for this specific case. 
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Figure 2.5 Measured and fitted profiles at the time of (2,1) TM onset for unstable 
discharge, #161172 (red) and at similar time for the stable discharge, #161170 (blue): (a) 
the electron density 4

h

, (b) the toroidal rotation Ω, (c) the electron temperature j
h

, and 
(d) the ion temperature j

$

. 
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Figure 2.6 Profiles reconstructed by kinetic EFITs at the time of (2,1) TM onset for 
unstable discharge, #161172 (red) and at similar time for the stable discharge, #161170 
(blue): (a) the toroidal current profile 8

∥

, (b) the plasma pressure profile :, and (c) the 
safety factor ?, and (d) the cross-sectional shape of the equilibria. The grey dashed line 
in (a)-(c) represents ? = 2 (horizontal) and the radial location r at ? = 2 (vertical). 
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2.3.  Characteristics of plasma current and pressure profiles 

at tearing mode onset 
 

With the constraints of magnetic diagnostics, the magnetic pitch angles from MSE 

polarimeter, pressure profile, and edge current profile, the kinetic EFIT 

reconstructions are performed for a database of DIII-D steady-state hybrid 

discharges. This database has been constructed by examining ~80 discharges, 

retaining only those discharges that reach plasma current ‘flat top’, splitting the 

discharge time history into 20	ef slices, and retaining only those time slices 

which occur during the plasma current ‘flat top’ stage of the discharge. 

 To evaluate the effects of plasma equilibrium profiles at tearing mode onset, 

datamining of the global and local features of plasma current and pressure profiles 

(Table 2.2) has been conducted; the internal inductance #
$

, the plasma pressure 

peaking factor %
&

= :

C

/ : , the magnetic shear length )
*

= ?/(W?/W+), and the 

pressure gradient length )
&

= −:/(W:/W+). 

 

Table 2.2 The global and local features of the current density and pressure profile used for 
the empirical estimation of the typical ;

<

 at (2,1) mode onset. 

 
Global effect 

Local effect 
at the mode surface 

Current density profile Ø(∞) #

$

 
)

*

òL

=

W?

W+

? 

Pressure profile ±(∞) %

&

=

:

C

:

 
)

&

òL

= −

W:

W+

: 
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Figure 2.7 Time traces of representative parameters for the plasma current and pressure profiles of the steady-state hybrid discharges 
on DIII-D with (2,1) TM onset (red). Red dashed line in the figures indicates the (2,1) mode onset for each discharges. (a) the 
internal inductance &', (b) the plasma pressure peaking factor (), (c) the magnetic shear length *+, and (d) the pressure gradient 

length *). 
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Figure 2.8 Time traces of representative parameters for the plasma current and pressure profiles of the steady-state hybrid discharges 
on DIII-D without (2,1) TM onset (blue). (a) the internal inductance &', (b) the plasma pressure peaking factor (), (c) the magnetic 

shear length *+, and (d) the pressure gradient length *). 
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Figure 2.9 Parameter space of the stady-state hybrid discharges on DIII-D at (2,1) TM 
onset. (a) the internal inductance !", (b) the magnetic shear length #$, (c) the plasma 
pressure peaking factor %& , (d) the pressure gradient length #&  and (e) the local 
resistive diffusion time '(.  
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 Figure 2.7 and Figure 2.8 shows the time traces of these representative 

parameters for the plasma current and pressure profiles of the steady-state hybrid 

discharges on DIII-D with and without (2,1)  TM onset, respectively. The 

difference of parameter ranges between stable and unstable discharges cannot be 

distinguished clearly, and each parameter is within a certain broad operation range. 

 The normalized ./ at (2,1) TM onset in steady-state hybrid experiments are 

represented by a best fit in terms of five plasma parameters related with the 

characteristics of plasma current and pressure profiles (shown in Table 2.2) and the 

effect of plasma resistivity at the mode surface as '( = 1234
5
/7. Here, 34 is the 

minor radius of the mode surface. The figures of ./ against each parameter at (2,1) 

TM onset are shown in Figure 2.9. The (2,1) TM onset seems to be more sensitive 

to the global feature of plasma profile through !" and %& than the local feature of 

plasma profile through #$ and #&. However, the local feature of plasma profile 

cannot be ignored when the change ratio of the parameter space was considered. 

The trend of best fit equation shows that (2,1) tearing mode stability is correlated 

with these parameters.  

./ 89: = 0.41!"
>?.2@

%&
>2.5A

#$
>?

2.@?

#&
>?

2.BA

'(
2.5? 

 

This best fit equation can be written in the dimensionless form using 34 and 'C, 

./ 89: = 0.05!"
>?.?E

%&
>2.B?

34#$
>?

2.EF

34#&
>?

2.?@

('(/'C)
2.5G
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 This empirical scaling based on the database shown in Figure 2.10, indicates 

that broad global current profile, strong magnetic shear at the mode surface, strong 

pressure gradient at the mode surface, broad global pressure profile, and long 

resistive diffusion time at the mode surface are good to achieve high ./ without 

(2,1) TM. 

 

 

 

 

Figure 2.10 Normalized beta ./ for (2,1) tearing mode onset versus the best fit to a 
power of !", I2 I , #$, #&, and '(. 
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Chapter 3. 

 

Determination of tearing mode stability 

in terms of ∆K 
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Tearing stability is determined by the classical tearing index Δ′, which defined by 

the difference of N gradient at mode surface. The change in the plasma magnetic 

energy due to the TM is OPQRS ∝ −Δ′ [45]. Thus, the TM is linearly unstable as 

there is free energy available for reconnection when Δ′ > 0. The computation of 

Δ′ can be made from the MHD equilibrium provided it is accurately measured or 

reconstructed. 

 In this chapter, the Δ′ can be obtained by two approaches; global and local 

approach. The first one is performed by MHD code using the outer solution from  

 

 

 

Figure 3.1 Schematic diagram to explain the approaches to calculate the tearing index 
Δ′.  

 

rational surface

Local approach

Global
approach
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the Δ′  definition. The second one is inferred from the modified Rutherford 

equation using the local characteristics at the rational surface measured by 

diagnostics. 

 

3.1.  Numerical evaluation of tearing mode stability ∆′ from 

the MHD codes 
 

A resistive stability code, PEST-III [46, 47] can calculate the ∆′ from the ratio of 

the lowest order in the Frobenius expansion coefficients of the small and large 

solution of the MHD stability equation for finite pressure with an arbitrary 

geometry. It is used to analyze a time series of experimental equilibria in this thesis. 

 To study linear resistive MHD in the asymptotic matching approach by PEST-

III, the problem separates naturally into three parts: the inner layer within resistive 

layer, the outer region considered as ideal MHD, and a matching problem between 

them. For the outer region in cylindrical geometry, #W = X

XY
%
XZ

XY
− [W = 0 where 

W is the displacement, N is the normalized poloidal flux variable and % and [ 

are scalar functions of the equilibrium profiles, while in toroidal geometry, # is 

the analogous second-order operator [46, 48]. This equation has two independent 

solutions; a regular solution and a singular solution at resonant surfaces. The “non-

resonant” or “small” solution associated with ideal MHD instability and the 

“resonant” or “large” solution associated with resistive instability are obtained by 

the Frobenius expansion of the regular solution and a singular solution, 
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respectively. The combination of these two solutions across rational surfaces gives 

rise to two related types of singular modes, i.e., tearing (or reconnecting) and 

interchange modes, distinguished by a local variation with either an odd or even 

parity across the rational surface, respectively. In general, in a torus some mixture 

of the two parities exists at a given rational surface. 

 For a given toroidal eigenvalue \, the 2]×2] matrix relating the singular 

coefficients of the two parities that describe the ideal MHD outer region solution 

for a torus with ] resonant surfaces _ = `/\ in the plasma: ` = 1,2, … , ]. 

b
K
≡
1

2

d′ e′

f′ g′
 

Here, g′  couples the two negative parity “tearing” components, d′  the two 

positive parity “interchange” components, and f′ and e′ the negative to positive 

and positive to negative parities, respectively. The resistive mode growth rate can 

be determined by matching the outer region matrix to an independently determined 

matrix describing the corresponding coefficients of the inner layer solution at each 

_ = `/\ to determine the growth rates of instabilities at the different surfaces. 

The stability is then determined by solving the matching condition, 

det b
K
− b k = 0 

where b k  is the solution vector inside of the resonant layer and k  is the 

normalized growth rate. 

 As another approach, the DCON code [49] for the ideal MHD stability has 

been recently extended to compute the outer region solution based on the precise 
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asymptotic matching method including full mode coupling and multiple singular 

surfaces. The robust solution for resistive instability as well as ∆′ can be obtained 

with more reliable convergence by improving a Galerkin method using advanced 

basis function and the flexible packing algorithm. 

 There is a Hilbert space of finite ideal MHD energy solutions, OP < ∞. In 

each singular surface, there are large and small resonant solutions for ` = \_, as 

well as nonresonant solutions for the Fourier components ` ≠ \_ . The large 

resonant solutions are not elements of the Hilbert space, but they drive finite-

energy responses. Treating the large solutions as inhomogeneities, we compute the 

response in the Hilbert space by solving an inhomogeneous linear equation, the 

Euler-Lagrange equation for minimizing OP, which is also the equation of motion 

for zero-frequency modes. The Euler-Lagrange equation has the form  

#o	 ≡ (8o + qo)′ − (q
r
o′ + so) = 0 

where N is a flux coordinate; o(N) is a complex t column vector of Fourier 

coefficients of the normal plasma displacement; and the Hermitian matrices 8 and 

s and the non- Hermitian matrix q are t×t complex matrices derived from 

equilibrium quantities. The inhomogeneous equation is #ou"vwxyz 	= 	−#ovRySx 

with matrix form by expanding o in a set of Galerkin basis functions. The choice 

of basis functions determines the rate of convergence. To improve the radial basis 

functions, {? Hermite cubics to resolve the nonresonant solutions and Frobenius 

power series to resolve the large and small resonant solutions were used on a more 

flexible packed grid in N. The best convergence of the poloidal Fourier series in a 
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variety of straight-fieldline coordinates is obtained with Hamada coordinates. 

Equilibrium quantities are fit to bicubic splines in N and |, which allows us to 

compute convergent Frobenius expansions to arbitrarily high order. 

 The matching matrix ∆′ is constructed from the coefficients of the small 

resonant solutions driven by the large resonant solutions. For ] singular surfaces, 

there are 2] large solutions, on the left and right of each singular surface, each of 

which drives 2] small solutions, making ∆′ a 2]×2] matrix. The ideal and 

outer region solutions are completely determined by DCON, leaving only the 

coupling matrix for the inner region, which can be considered independently by 

MATCH module. 

 These codes were calculated with the same inverse equilibria refined by the 

TEQ inverse equilibrium solver [50] in the CORSICA code [51] to get the higher 

grid resolution and to check the ideal MHD stability. A conformal conducting wall 

was considered for the DIII-D vacuum vessel located at 1.4 times minor radius. In 

this thesis, ∆′ calculations for (2,1) mode was only considered but the other 

modes at _ = 3 , 4 , and 5  with \ = 1  were also included to determine the 

matching matrix from the outer ideal MHD solutions. It is noteworthy that the 

equilibria must be ideal MHD stable and the rational surface should not be located 

at the very near magnetic axis, separatrix, or extremum of safety factor to perform 

a valid calculation of ∆′. 
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3.2.  Experimental estimation of tearing mode stability ∆′ 

from the modified Rutherford equation 
 

In addition to the Ohmic current, there are a number of currents which contribute to 

the perturbed parallel current (~∥) on tokamaks, influencing island stability and 

growth. These include the bootstrap current (~w4), the ion polarization current by 

inertia effects such as the diamagnetic drift, the finite perpendicular transport, the 

finite Larmor radius, etc., the equilibrium pressure gradient and the favorable 

curvature in a toroidal geometry (~&Äv), and the EC driven current (~ÅÇ). If the 

effects of these currents are included in the classical Rutherford equation, we 

obtain the modified Rutherford equation (MRE) which more accurately describes 

the evolution of an island more accurately: 

'(

3y
5

ÉÑ

ÉÖ
= ∆2

K
+ ∆wÜ

K
+ ∆&Äv

K
+ ∆ÅÇ

K  

The MRE encapsulates the stability of neoclassical tearing mode (NTM) although 

the governing physics of the equation is not yet conclusive. According to physical 

assumptions adopted in the analysis and the target plasma condition, the detailed 

representation of the terms in the MRE can be different although it represents the 

same effect.  

 For the plasmas considered in this thesis, the ∆ÅÇK  term can be ignored 

because no electron cyclotron current drive (ECCD) is used to directly suppress the 

(2,1) TM or the (3,2) TM. The MRE for tearing stability and the evolution of an 

island width Ñ [52] employed in this thesis is given by 
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1.22
>?
'(

34

ÉÑ

ÉÖ
= ∆

K
34 + á

?/5
34#$

#&x

.àx

1

Ñ
−
ÑQRyS
5

3ÑB
 

where 34 is the minor radius of the mode and '( = 12âä34
5
:x
B 5

ã is the local 

resistive diffusion time from Spitzer resistivity. Here, ä is the elongation of the 

resonant surface, ã is the effective charge number, and â is the Spitzer factor. 

á = 34/å is the inverse aspect ratio for the major radius å, #$ = _/(É_/É3) and 

#&x = −Ix/(ÉIx/É3) are the magnetic shear length and the electron pressure 

gradient length, respectively, and .àx = 212çé\x:x/eà
5 is the electron poloidal 

beta. The effective marginal island width ÑQRyS ≈ 2á
?/5
êà" is typically assumed 

about twice of the trapped ion banana width, á?/5êà", with the ion poloidal Larmor 

radius êà" = (2`":"/ëeà
5
)
?/5. 

 The classical tearing index ∆′, defined as the discontinuity at the rational 

surface in the logarithmic derivative of the perturbed magnetic potential [33] as 

described in the previous chapter, can be inferred experimentally from the MRE 

using kinetic EFIT and the measured plasma profiles at onset. However, it can be 

applied only for discharges with TM because the island width and its growth rate 

are required. Since the TM can initially grows exponentially in time when the 

island is small and then grow linearly in time [53], the growth rate can be evaluated 

by the linear fit to the calculated island width within 100	`í from the mode onset 

defined in section 2.1, generally linear fit because of the larger initial island size. 
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3.3.  Validation and verification of determined ∆′ 
 

A comparison of the tearing stability index Δ′ from the outer region between 

PEST-III and resistive DCON for the (2,1) rational surface in hybrid discharges is 

performed to benchmark as shown in Figure 3.2. Here, the set of equilibria are 

reconstructed regardless the TM existence. These codes have different coordinate 

system to calculate the Δ′, but the calculated Δ′ show a good agreement as shown 

in Figure 3.2. 

 

 

Figure 3.2 Comparison of the normalized Δ′  values caldulated by PEST-III and 
resistive DCON.  
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 Unstable discharges for (2,1) TM during the ./  flattop in the analyzed 

database were used to calculate the normalized ∆′ from the stability codes, PEST-

III and resistive DCON and the ∆′ values from MRE. Figure 3.3 and Figure 3.4 

shows the comparison where a reasonable qualitative agreement is observed 

between the ∆′  values. The red points refer to the ∆′  calculated with the 

equilibrium at (2,1) mode onset while the blue ones without TM in Figure 3.3. If 

there’s no available equilibrium at the precise point at mode onset, the equilibrium 

close to the mode onset is used. Note that the stability codes can calculate ∆′ in 

any discharges, but the discharges with (2,1) TM onset were only selected for 

comparison with MRE. 

 It is worth to give a few remarks as follows: First, the determined ∆′ in the 

Figure 3.3 can be positive regardless of the mode onset, but ∆′  for stable 

discharges are relatively smaller. It would suggest that the conventional wisdom of 

∆
K
> 0 for tearing destabilization may not be the sufficient condition, rather a 

positive value greater than a certain threshold could replace this under the toroidal 

geometry. Second, the PEST-III results show lower ∆′ than the MRE results for 

some cases in Figure 3.4. It is possible due to the overestimation of the island 

growth rate in MRE calculations or the uncertainty of equilibrium at the mode 

onset in PEST-III calculations. 
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Figure 3.3 Comparison of the normalized Δ′  values caldulated by PEST-III and 
resistive DCON at the time of 2,1  mode onset for unstable discharges (red) and for 
stable discharges (blue) in the database. The black circle shows the Δ′ values fot other 
hybrid discharges to benchmark in Figure 3.2. 

  

Normalized	Δ’	from	PEST-III

No
rm

al
ize

d	
Δ’
	fr
om

	re
sis

tiv
e	
DC

ON

With	TM	at	onset
Without	TM



 50 

 

 

 

 

 

Figure 3.4 Comparison of the normalized Δ′ values calculated from MRE against Δ′ 
values calculated from PEST-III at the time of (2,1)  mode onset for unstable 
discharges (red) for validation. 
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Chapter 4. 

 

Determination of the onset condition for 

tearing mode in terms of ∆ìK  
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In the pioneering work based on the resistive MHD description [32], it has been 

shown that tearing instabilities occur when the classical tearing index ∆K  is 

positive. This usual tearing instability criterion ∆K> 0 can be modified to ∆K>

∆î
K
> 0, where ∆îK∝ η

∥

>?/B
b(

G/A [54], η∥ is the parallel resistivity and b( is the 

resistive interchange driving term as a results of good average curvature in a 

toroidal plasma. There have been various follow-up studies of this tearing stability 

threshold ∆ñK  analytically. 

 In this chapter, the analytical tearing stability threshold ∆ñK  in the semi-

collisional regime [55] and the collisionless banana regime [56] is reviewed, 

including their basic descriptions and the properties for a range of plasma 

parameters. These analytical ∆îK  will be calculated with the experimental 

equilibrium and profiles to evaluate the tearing stability by comparing with the ∆K 

calculated from PEST-III code near the TM onset. As the numerical approach to 

obtain ∆ñK , the mode growth rate calculated by the extended MHD code is fitted 

with the calculated Δ′. 
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4.1.  Analysis of tearing instability threshold ∆ìK  
 

In high-temperature tokamak plasmas, additional kinetic and geometrical effect on 

the tearing stability become very important such as the finite ion gyroradius effects 

and the effects associated with the parallel gradient of the electron pressure. The 

effects associated with the predominantly electrostatic perpendicular electric field 

lead to a significant reduction of the mode growth rate. When the tearing mode 

growth rate calculated from the resistive MHD is smaller than the electron 

diamagnetic frequency, the mode becomes a so-called drift-tearing mode with real 

frequency near ó∗x = :xçô/ëe#ö, where #ö = −[(É/É3) ln \2]
>? is the density 

gradient scale length and çô  is the poloidal wavenumber. In the drift-tearing 

regime, with resistivity as the only dissipative effect, the unstable mode structure 

ceases to be spatially localized. Further, when the resistivity becomes so small that 

the effective ion-Larmor radius at the electron temperature, ê4 = :x/t"(t"/ëe), 

is greater than the resistive layer width, the mode becomes the so-called 

semicollisional tearing mode. Similarly to the electron diamagnetic frequency 

effects, the semicollisional effects are introduced by the electron density gradient in 

the generalized Ohm’s law. 

 Analysis of the dispersion relation shows that semicollisional drift-tearing 

modes can be stabilized by plasma compression and good average curvature [54]. 

The instability threshold in terms of physical parameters when #ö/#4 > ./|b(| is 

given by [55] 
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34∆ñ
K
≅ 0.35 −b(.

?/5
(34/ê4) 

as the results of the good average curvature effects when the perpendicular 

resistivity is large. Meanwhile, the instability threshold with the opposite limit 

#ö/#4 < ./|b(| is given by 

34∆ñ
K
≅ 0.37.(34/ê4)(#4/#ö)

?/5
(1 + 2_

5
)
?/E 

as the results of the plasma compression effects including ion sound waves when 

the perpendicular resistivity is negligible. It is interesting to note that ∆ñK  is 

independent of the resistivity in both cases. 

 In the collisionless banana regime, the primary destabilization mechanism is 

the equilibrium bootstrap current density modified by the presence of the island [57] 

while the finite value of the heat conductivity parallel to the magnetic field line has 

a stabilizing effect on islands with small width as well as the polarization current 

density. As the island induced bootstrap current density is included in the 

derivation of the island evolution equation, there is a lower limit on the absolute 

value of ∆K  for the island to be unstable: 

34∆
K
> 34∆ñ

K
= 1.2.& á¢∗x

>?
8 á, ¢∗x #$/#& 

, where .& is the poloidal beta, ¢∗x is the electron collisionality parameter, and 

the form factor 8 á, ¢∗x  is used to take into account the effects of finite aspect 

ratio and ¢∗x on the equilibrium bootstrap current density. This ∆ñK  depends on 

the local value of .&. If .& is high enough, namely, the inequality sign is reversed, 

the magnetic island can be stabilized. This points to alternative routes to stabilize 
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the islands by increasing local .&, or by tailoring the current density profile to 

modify ∆K. 

 

4.2.  Comparison of ∆′  with ∆ìK  for stable and unstable 

discharges of tearing mode 
 

Even though the calculated ∆′ only for the ideal outer region is insufficient to get 

the mode growth rate [58], it is still useful to evaluate the tearing stability. As the 

larger ∆′, it’s easier to cause the TM instability in theoretical predictions. Here, 

first two unstable discharges with small ∆′ in Figure 3.4 and a stable discharge 

with a similar ∆′ are chosen in the steady-state hybrid discharges for comparison. 

Another example of stable discharge, #125469 is a typical hybrid discharge at 

relatively low ./ to check the applicability. 

 In Figure 4.1 for discharges with the (2,1) TM and Figure 4.2 for stable 

discharges without the (2,1) TM, the ∆′ evolutions are represented for a time 

series of equilibria to show the relative trend and the difference between the 

unstable and the stable discharges. Both stable and unstable discharges show the 

analytical ∆îK  in similar range.  

 As shown in Figure 4.1, the ∆′ calculated from PEST-III increases for the 

unstable discharges and this ∆′ can exceed these ∆îK  for tearing destabilization 

before the mode onset. Here, it is interesting to note that the mode onset didn’t 

coincide with the condition of ∆K> ∆î
K . When the modes appear experimentally, the 
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calculated ∆′  slowly decays after the TM are set towards marginality. This 

apparently indicates some degree of self-stabilization (consistent with the 

saturation) by the mode itself as the island modifies the local current density profile. 

For the stable discharges in Figure 4.2, the calculated ∆′ stays below ∆îK .  

 The analysis for the mode growth rate by matching the solution from the inner 

resistive layer and the outer ideal region is left for a future work. 
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Figure 4.1 Evolution of the calculated ΔñK 34 from analytical formula by Hahm’s (green) 
and by Shaing’s (blue), and ΔK34 from PEST-III (black) and from MRE (red) on time 
series of equilibria for unstable discharges. (a) #161172 and (b) #161169. The vertical 
grey dashed line indicates the defined (2,1) TM onset. 
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Figure 4.2 Evolution of the calculated ΔñK 34 from analytical formula by Hahm’s (green) 
and by Shaing’s (blue), and ΔK34 from PEST-III (black) on time series of equilibria for 
stable discharges. (a) #161170 and (b) #125469. 

  

161170

Time	[ms]

r sΔ
’

0
1
2
3
4
5
6

2000 2100 2200 2300 2400 2500

1
2
3

125469

Time	[ms]

r sΔ
’

0

1

2

3

4

5

6

3000 3200 3400 3600 3800 4000

1

2

Hahm’s Shaing’s	PEST-III

Shaing’s	PEST-III

(a)

(b)



 59 

4.3.  Estimation of ∆ìK  from the extended MHD simulation 
 

Instead of the analysis for the mode growth rate by matching the solution from the 

inner resistive layer and the outer ideal region, simulations with the NIMROD code 

(Non-Ideal Magnetohydrodynamics with Rotation, Open Discussion) [59] are 

performed for a preliminary study on the ∆îK  estimation from normalized mode 

growth rate £'C where the linearized mode grows as ë§z in this thesis. The code 

maintains a certain degree of flexibility designed to study a variety of issues related 

to magnetic confinement. 

 NIMROD evolves the extended MHD fluid equations and the pre-Maxwell’s 

equations (neglecting the displacement current) in 3D for fusion-relevant plasma 

parameters. The poloidal plane is represented using 2D spectral elements and the 

toroidal plane or out-of-plane is assumed to be periodic and is represented using 

finite Fourier series. This spatial representation is designed to efficiently model the 

complex poloidal cross-sections of modern day experiments, and it takes advantage 

of the toroidal symmetry present in many experiments. Mesh packing in the 

poloidal plane is used to ensure that regions of strong gradients are sufficiently 

resolved and the computing power is not wasted unnecessarily in regions with 

weak gradients. The convergence properties of the spectral elements aid in 

resolving extreme anisotropies that arise in magnetically confined plasmas and help 

enforce the magnetic divergence constraint. A leap-frog scheme advances the fields 

in time, and a semi-implicit operator is used in the velocity advance permitting 
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large time steps. NIMROD uses two coordinate systems based on the problem of 

interest: (•, ¶, ã) for linear periodic systems and (å, ã, ß) for toroidal systems. 

 NIMROD decomposes the physical fields into steady-state components and 

time varying perturbed components. The steady-state components do not vary in 

the periodic direction and are assumed to be in force balance. This decomposition 

allows both time-dependent linear and nonlinear calculations. Linear calculations 

neglect terms that are the product of two or more perturbed quantities. The 

decomposition also improves numerical accuracy, especially when the perturbed 

quantities are smaller than the steady-state components. 

 To study for tearing stability by NIMROD, the simulation is performed with 

the experimental equilibrium reconstruction for the Lunquist number ® ≡

'( 'C ~1ë
™ with (2,1) tear-type initial perturbation. The mode growth rate from 

NIMROD can be computed by plotting the slope of the natural logarithm of the 

magnetic energy, ln ´Q and dividing this slope by 2 [60]. The (2,1) tear-type 

initial perturbation has a positive growth rate for the unstable steady-state hybrid 

discharge in Figure 4.3 (a) and a negative growth rate for stable discharge in Figure 

4.3 (b). At larger island size the island enters the Rutherford regime, where the 

island width increases algebraically, and the islands are visible with field line 

tracing as seen in Figure 4.4. 
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Figure 4.3 The natural logarithm of the magnetic energy mode ln #$ from NIMROD for the mode growth rate. (a) the discharge 
with (2,1) TM (#161396) and (b) the discharge without (2,1) TM (#161599). 
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Figure 4.4 Poincaré plots of magnetic field lines traced during a simulation with (2,1) 
tear-type initial perturbation. 

 

 

 

Poincaré plot
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 NIMROD simulations for the mode growth rate are performed using the 

various equilibria with the different Δ′ as shown in Figure 4.5. The ∆)*  can be 

fitted for negative growth rate using the relation between the normalized mode 

growth rate +,- from NIMROD and the Δ′ from PEST-III. For the equilibria 

used in Figure 4.5, the ∆)*  is estimated as 3.5 by the linear fit between the 

normalized mode growth rate +,- and the Δ′ in Figure 4.6. 

 

 

 

 

 

 

Figure 4.5 The natural logarithm of the magnetic energy mode ln 01 from NIMROD 
for the mode growth rate with various plasma equilibrium and profiles with different Δ*. 
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Figure 4.6 The ∆2*  estimation from the relation between the normalized mode growth 
rate +,- and the Δ*. 
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Chapter 5. 

 

Development of tearing mode onset model 
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Deleterious (2,1) TM appears in some steady-state hybrid scenario DIII-D 

discharges. The unstable discharge for (2,1) TM as shown as the example in this 

thesis is interpreted as due to an initially positive (destabilizing) classical tearing 

index ∆′  calculated by PEST-III with the high quality of the equilibrium 

reconstruction in Chapter 2. However, the stable discharge with similar operation 

has also positive classical tearing index ∆′, but smaller value than the unstable 

discharge. Since the good average curvature in a toroidal plasma and the 

polarization current can provide additional stabilizing influence on the stability of 

the tearing mode, the conventional wisdom of tearing instability criterion ∆*> 0 

can be modified ∆*> ∆2*> 0. The critical parameter ∆2*  has been determined in 

various approaches with the different assumptions in Chapter 4. 

 In this chapter, the tearing mode onset model was introduced using the 

difference between ∆*  and ∆5* . Further, the plasma profile effects on tearing 

stability can be evaluated through the modeled equilibria. 

 

5.1.  Descriptions of tearing mode onset model 
 

It is well known that the tearing instability in a tokamak is driven by the radial 

gradient of the equilibrium current density, and determined as the β limit. As 

shown in Figure 5.1, an integrated modeling package has been established to 

enable analysis of equilibria with parametric variations of the pressure or current 

profiles at the mode rational surface for determining the onset dependency on the 
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tearing stability index ∆′. The detailed procedure is as following. The reference 

profile was selected from an experiment at mode onset. A series of equilibria is 

constructed with 77′ and 8′ from the given current or pressure profiles after 

varying parametrically by IPS/FASTRAN module. These modeled equilibria were 

analyzed via the asymptotic matching method using the PEST-III for ∆′ and 

theoretical formula for ∆2*  [56]. Finally, the stability boundary for tearing mode 

onset is determined with 9:-9; diagram using the difference between ∆′ and ∆2* . 

 

 

 

Figure 5.1 The overview of the procedure of the integrated modeling package for 
determining the tearing mode onset with current and pressure profile variations. 
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5.2.  Construction of modeled equilibrium with the 

parametric variations 
 

A series of equilibria was constructed that varied the gradient of the current or the 

pressure profile at the mode surface parametrically while minimizing the change of 

the global features such as <=, the pressure peakness 7: = 8?/ 8 , and AB based 

on the kinetic EFIT for the (2,1) unstable discharge at the onset as the reference. 

 Proper choice of the functions and boundary conditions to vary the current or 

the pressure profile is crucial to accurately analyze the dependence of ∆′ on these 

profile variations, as well as to reconstruct the equilibrium with reasonable 

convergences. In this thesis, the sine function was considered to apply the local 

variation at the mode surface within [DE − G, DE + G] as the domain. Here, DE is 

the mode surface and G is the distance between the mode surface and the edge 

bootstrap boundary for equilibrium reconstruction. The perturbed profile and its 

first derivative should be continuous at the boundary of the domain and the total 

plasma current were kept a constant. Figure 5.2 shows the variations of the current 

density profile and the pressure profile of the modeled equilibria. 

 Another set of equilibria as reference was generated that increased the pressure 

multiplicatively to evaluate the ∆′  dependence on 7: = 8?/ 8  and AB  while 

conserving the safety factor profile as shown in Figure 5.3. It is noteworthy that <= 

is not varied since the shape of current profile is similar in most hybrid scenarios 

and its variation easily makes the plasma ideally unstable.
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Figure 5.2 The plasma profiles of modeled equilibria based on the experiment with parametric variation at the mode surface, (a) the 
current density profile and (b) the pressure profile. 
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Figure 5.3 The plasma profiles of modeled equilibria with !" variations, (a) the pressure profile as the reference and (b) the 
corresponding safety factor profile. 
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5.3.  Stability boundary for tearing mode onset on !" -!# 

diagram 
 

The stability diagram for tearing mode mapped on $%-$& parameter space using 

the difference between the ∆( calculated from PEST-III and the analytical formula 

∆)( . Since the safety factor profile *(,) is correlated to the current density profile 

.(,), the tearing stability diagram is cast in terms of two local parameters, such as 

the magnetic shear length $& and the pressure scale length $%. 

 The stability diagram can be characterized by the calculated ∆( rather than the 

analytical ∆)(  since the analytical ∆)(  is proportional to $&/$% by the definition 

(see Figure 5.4). Figure 5.5 shows the stability diagram calculated using a series of 

modeled equilibria from the variated plasma current and pressure profiles in Figure 

5.2. Two experimental results are overlapped onto the stability diagram; one is with 

(2,1) TM at onset and the other is without (2,1) TM. It is shown that the (2,1) 

TM onset is near the stability boundary while the (2,1) stable discharge lies in the 

stable region in Figure 5.5. Both have similar $% but different $& which implies 

that the tearing instability is mainly driven by the radial gradient of the equilibrium 

current density. It is interesting to note that the tearing stability is more stable as 

the radial gradient of the pressure profile increases. 

 It is important to keep in mind, however, that the tearing stability is not local. 

In general, the shape of the profiles throughout the pedestal region and into the 

core impacts the tearing stability. 
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Figure 5.4 The stability diagram for tearing mode on $%-$& parameter space using (a) 

the tearing stability index Δ′ and (b) the critical tearing stability index Δ)(   
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Figure 5.5 The stability diagram for tearing mode on $%-$& parameter space using the 

difference between the ∆( and the ∆5( . The black dashed line pointed out the marginal 
condition as ∆(= ∆5( . The red point is the discharge with TM at onset (#161172) and the 
blue point is the discharge without TM (#161170). 
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 The stability diagrams for TM onset for various 78 are shown in Figure 5.6. 

As 78 increases, the instability window of ∆(> ∆)(  becomes wider as well as the 

absolute value of ∆( − ∆)(  also increases. If 78 is further increased, whole region 

on the stability diagram becomes unstable. These results indicate that the tearing 

mode occurs easier at high 78 regardless of the profile features based on this 

reference shape. Although the safety factor profile is fixed, the ideal unstable 

region also tends to expand. The open circles indicate the experimental points at 

(2,1) TM onset for each 78 in the Figure 5.6. The (2,1) TM is observed to 

appear when the profiles reach near the marginal area, ∆(~∆)( . The stability 

boundary (∆(= ∆)( ) of Figure 5.6 are presented in Figure 5.7. 
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Figure 5.6 The stability diagram for tearing mode on !"-!# parameter space with various $%, (a) $%~1.5, (b) $%~2.4, (c) $%~3.0, 

and (d) $%~3.3. The blue indicates stable (∆/< ∆1/ ) and the red indicates unstable (∆/> ∆1/ ) for (2,1) TM stability. The black open 
circle indicates the experimental data at (2,1) TM onset. 
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Figure 5.6 The stability diagram for tearing mode on !"-!# parameter space with various $%, (a) $%~1.5, (b) $%~2.4, (c) $%~3.0, 

and (d) $%~3.3. The blue indicates stable (∆/< ∆1/ ) and the red indicates unstable (∆/> ∆1/ ) for (2,1) TM stability. The black open 
circle indicates the experimental data at (2,1) TM onset. (continued) 
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Figure 5.7 The stability boundary (∆/= ∆1/ ) for tearing mode onset on !"-!# parameter space according to $%, (a) $%~1.5 only 

(red), (b) $%~2.4 (orange), (c) $%~2.7 (green) and $%~3.0 (light blue shade), and (d) $%~3.3 (dark blue). 
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Figure 5.7 The stability boundary (∆/= ∆1/ ) for tearing mode onset on !"-!# parameter space according to $%, (a) $%~1.5 only 

(red), (b) $%~2.4 (orange), (c) $%~2.7 (green) and $%~3.0 (light blue shade), and (d) $%~3.3 (dark blue). (continued) 
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Chapter 6. 

 

Conclusions 
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6.1. Summary and concluding remarks 
 

Tearing modes (TMs) can significantly degrade confinement and set a limit on 

achievable plasma beta. It is important to understand the onset threshold and the 

evolution of TMs for developing a high-performance steady state fusion reactor. 

Based on the steady-state hybrid experiments performed on the DIII-D device, the 

occurrence of TM is identified and analyzed, and the relationship between the 

plasma current and the pressure profiles on the tearing stability in terms of the 

tearing stability index ∆" is investigated. 

 Firstly, the characteristics of the mode is mainly investigated using the system 

of magnetic pick-up Mirnov probes. The mode onset, the mode amplitude, and the 

mode number is identified by the FFT analysis and the phase-fitting method. 

Especially, the mode onset is defined at the time without the phase-folding of the 

magnetic signals for this thesis. 

 Secondly, a more accurate and tightly constrained equilibrium is reconstructed 

using the well-measured plasma profiles using various diagnostics. Since the 

tearing stability is sensitive to the equilibrium current and pressure profiles, it is 

performed iteratively until the convergence is reached. 

 The characteristics of plasma current and pressure profiles at tearing mode 

onset in the database of DIII-D steady-state hybrid discharges were determined by 

representative parameters such as the internal inductance #$, the plasma pressure 

peaking factor %& = ()/ ( , the magnetic shear length +, = -/(/-//0) , the 
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pressure gradient length +& = −(/(/(//0) and the local resistive diffusion time 

34. The (2,1) TM onset seems to be more sensitive to the global feature of plasma 

profile through #$ and %&, and the effect of plasma resistivity at the mode surface 

through 34 than the local feature of plasma profile through +, and +&. However, 

the local feature of plasma profile cannot be ignored when the normalized 56 at 

(2,1) TM onset is fitted in terms of these five plasma parameters. From the result of 

the best fit equation in the dimensionless form using 07 and 38, the global feature 

of profiles and the current profile can affect more than the local feature of profiles 

and the pressure profile, respectively. 

 Thirdly, the tearing stability index ∆"  is calculated with the experimental 

equilibria in two ways, by MHD codes (PEST3 and resistive DCON) and by MRE. 

Numerical ∆"  by MHD code is calculated as the outer solution from the ∆" 

definition and experimental estimation of ∆" by MRE included the effects of the 

bootstrap current and the ion polarization current in this thesis. They are verified 

and validated in reasonable agreement. It is noteworthy that the determined ∆′ can 

be positive regardless of the mode onset, so the conventional wisdom of ∆"> 0 for 

tearing destabilization may not be the sufficient condition, rather a positive value 

greater than a certain threshold could replace this under the toroidal geometry. 

 Fourthly, the analytical formula of the tearing stability threshold ∆<"  is 

reviewed for the semi-collisional regime and the collisionless banana regime. By 

comparing the analytical ∆<"  with the ∆" calculated from PEST-III code near the 



 82 

TM onset, it is found that the condition of ∆"> ∆<"  is required for the mode onset 

in the experiment. A preliminary study on the ∆<"  estimation from the normalized 

mode growth rate is performed by NIMROD code. The ∆="  can be fitted for 

negative or marginal growth rate using the relation between the normalized mode 

growth rate >38 from NIMROD and the ∆" from PEST-III. 

 Finally, a stability diagram of ? = 1 tearing mode onset is suggested with 

local and global features of plasma profiles. Onset condition of ? = 1 TM is 

analyzed by the difference between ∆" and ∆<" , and its stability diagram is derived 

in terms of the local (AB∥ and A() and global (56) variations for steady-state 

hybrid scenarios. To calculate ∆" − ∆<"  for the stability diagram, a novel modeling 

package has been developed by integrating IPS/FASTRAN for equilibrium 

reconstruction, PEST-III/DCON for linear stability ∆"  calculation, and the ∆<"  

solver for analytical ∆<"  calculation. The stability boundary at the mode onset, 

∆"= ∆<" , is mapped on +&-+, diagram. Characteristics of this stability boundary 

show that the TM unstable area expands, then the stability boundary moves as 56 

increases. This stability diagram can be used to design and control experiments to 

avoid ? = 1 TM. 

 

6.2. Recommendations for future work 
 

Future wok will be focused on further improvements of the method and the 

validation with the various experiments. 
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 The stability diagram for TM mapped in this thesis is firstly suggested for the 

onset prediction. More general stability diagram can be pursued by expanding the 

database of the reference equilibrium and by applying the various perturbed 

function. 

 This stability diagram can be validated systematically by conducting the 

dedicated experiments or datamining the experiments. It might be required to 

distinguish or separate the correlation between the local and global characteristics 

of profiles. 

 The stability boundary can be verified with zero growth rate boundary 

calculated by non-linear MHD code such as NIMROD and better formulas of 

which would be applicable to the future reactor can be explored on the stability 

diagram. 
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ABSTRACT IN KOREAN 
 

국 문 초 록 
 
토카막 플라즈마에서 찢어짐 모드 (Tearing mode, TM) 불안정성 현상은 

플라즈마의 성능을 제한하는 저항성 자기유체학적 불안정성의 한 종류이다. 

이 현상에 대한 올바른 이해, 특히 찢어짐 모드의 발생 조건은 고성능 

정상상태 운전을 위해 필수적이다. DIII-D 장치에서 수행된 정상상태 

하이브리드 실험에 기초하여, 찢어짐 모드의 발생을 측정하고 그 특성을 

분석하였으며, 찢어짐 모드 발생시의 플라즈마 전류 및 압력 분포와의 

관계를 찢어짐 안정성 지표의 관점에서 확인하였다. 

 실험에서의 찢어짐 모드 발생 초기의 구조, 크기, 크기 증가율은 

미르노프 자기 탐침 진단 (Mirnov probes)의 고속 푸리에 변환 (FFT) 분석과 

위상 맞춤 분석을 통해 확인할 수 있다. 본 논문에서는 찢어짐 모드의 

발생을 폴로이달 위상 맞춤 분석에서 위상 반전이 사라지는 순간으로 

정의하여 연구를 진행하였다. 

 찢어짐 모드 안정성은 평형 전류와 압력 분포에 민감하므로, 실험에서 

다양한 진단으로 측정된 플라즈마 분포를 이용하여 더 정확한 평형을 

재구성하는 것이 중요하다. DIII-D 정상상태 하이브리드 실험 

데이터베이스에서 찢어짐 모드 발생시의 플라즈마 전류 및 압력 분포의 

특성은 찢어짐 모드가 발생한 위치에서의 국부적인 특성보다는 전체적인 

분포 특성에 더 큰 영향을 받음을 확인할 수 있었다. 또한 찢어짐 모드가 

발생한 위치에서의 플라즈마 저항성의 영향도 무시할 수 없음을 확인할 수 

있었다. 

 찢어짐 안정성 지표 ∆" 는 재구성된 정확한 평형과 실험에서 측정한 
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플라즈마 분포를 이용하여 선형 고유값 해석 코드 (PEST-III, resistive 

DCON)를 통한 계산과 Rutherford 방정식을 이용한 추정으로 구해볼 수 

있었다. 이렇게 구한 찢어짐 안정성 지표는 합리적인 수준에서의 일치함을 

확인 및 검증할 수 있었다. 이때, 찢어짐 안정성 지표 ∆"의 값이 찢어짐 

모드의 발생과 상관없이 양의 값을 가지는 것으로 나타났으며, 이를 통해 

토로이달 장치에서 찢어짐 안정성의 임계 조건 ∆"> 0이 충분조건이 아닐 수 

있음을 추정해 볼 수 있었다. 

 선행연구에서 이론적으로 유도된 찢어짐 안정성 지표의 임계값을 

도입하여 비교함으로써, 실험 평형에서 계산을 통해 구한 안정성 지표가 

이론적인 찢어짐 안정성 지표의 임계값보다 클 때 (∆"> ∆<" ) 찢어짐 모드가 

불안정해지는 것을 확인할 수 있었다. 또한 NIMROD 코드를 이용한 찢어짐 

모드의 크기 증가율 계산과 찢어짐 안정성 지표의 관계를 이용하여 찢어짐 

안정성 지표의 임계값 ∆<"를 추정할 수 있었다. 

 마지막으로, 기준 평형의 플라즈마 전류나 압력 분포의 국부적인 기울기 

또는 플라즈마 특성을 대표하는 매개 변수를 합리적인 범위 내에서 

변화시켜 새로운 평형을 재구성하고 분석함으로써, 실험에서 찢어짐 모드의 

발생을 예측하기 위한 안정성 지표에의 의존성을 살펴보았다. 
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