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Abstract

Stress and Strain Analysis of Rotating Annular Disks 

Obeying a Pressure-Dependent Yield Criterion

Woncheol Jeong

Department of Materials Science and Engineering

The Graduate School

Seoul National University

The Drucker - Prager yield criterion is used in conjunction with its associated flow 

rule to find the elastic/plastic stress and strain distributions within the rotating annular 

disks under plane stress conditions. The main distinguished feature of the model, as 

compared to typical models used for analysis of rotating disks, is that the material is 

plastically compressible. Also, in contrast to many models used for analysis of 

rotating disks, the constitutive equations involve strain rates rather than strains. 

However, using an approach proposed elsewhere the solution for strain rates is 

reduced to one non-linear ordinary differential equation and two linear ordinary 

differential equations. These equations can be solved one by one, which significantly 

simplifies the numerical treatment and increases the accuracy of numerical solution. 
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The strain solution requires a numerical technique to evaluate ordinary integrals. An 

example is presented to illustrate the general solution. The primary objective of this 

paper is to examine the effect of the parameter that controls the deviation of the 

Drucker-Prager yield criterion from the von Mises yield criterion and the geometric 

parameter that controls the profile of hyperbolic discs on the stress distribution at 

loading and the residual stress distribution.

Keywords: rotating annular disc, plastic yielding, Drucker-Prager yield 

criterion

Student Number: 2012-30919
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Chapter 1. Introduction

The Tresca yield criterion in conjunction with its associated flow rule has long been 

associated with the solution to the stresses and strains in thin rotating disks under plane 

stress conditions (Guven, 1992, 1998; Orchan and Eraslan, 2002; Eraslan and Orcan, 

2002A, 2002B; Eraslan, 2002, 2003).  A mathematical advantage of this model is that 

the equations for strain rates can be integrated with respect to the time (or any time-like 

parameter) giving the corresponding equations for strains. Therefore, the original flow 

theory of plasticity reduces to the corresponding deformation theory of plasticity. A 

number of solutions for the deformation theory of plasticity used in conjunction with 

the von Mises yield criterion are also available (Eraslan, 2003; You et al., 2000;   

Hojjati and Hassani, 2008). The stress distributions in rotating disks from von Mises 

and Tresca yield criteria have been compared in Rees (1999). It has been shown that 

the choice of the yield criterion may affect the final result. It is generally accepted that 

the deformation theory of plasticity is valid only when dealing with proportional 

loadings. On the other hand, it is known that the strain path is in general not 

proportional in thin disks (Piruvmov et al., 2013). It is therefore of interest to find the 

distribution of stresses and strains in thin rotating disks using the flow theory of 

plasticity. Finite difference solutions for such material models have been given in 

Alexandrova et al. (2004) and Alexandrova (2012). Recently, an approach to find a 

semi-analytic solution for the von Mises yield criterion and its associated flow rule has 

been proposed in Lomakin et al. (2016). An advantage of this approach is that the 

original boundary value problems in two independent variables is reduced to solving 
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several ordinary differential equations (these equations can be solved one by one) and 

to evaluating ordinary integrals. In the present paper, the approach developed in 

Lomakin et al. (2016) is extended to the yield criterion proposed in Drucker and Prager 

(1952). The flow rule associated with this yield criterion predicts that the material is 

plastically compressible. This material model is appropriate for several metallic 

materials (Wilson, 2002; Liu, 2006). The corresponding stress solution for a hyperbolic 

disk has been given in Jeong and Chung (2016). The solution of the disk of constant 

thickness can be found as a special case. 

Rotating discs are widely used in mechanical engineering and a great number of 

solutions for elastic/plastic disc are available in the literature. A review of solutions for 

discs of constant thickness obeying the Tresca and von Mises yield criteria has been 

provided in Rees (1999). But, discs of variable thickness are advantageous for many 

applications. There are a great number of solutions for such discs as well; however, 

most of analytic solutions are for the Tresca yield criterion and Hencky’s deformation 

theory of plasticity. The latter is usually based on the von Mises yield criterion. 

Many metallic materials reveal pressure-dependence of plastic yielding. Bend tests 

under superimposed hydrostatic pressure on a low carbon steel containing globular 

sulfide inclusions show that formability is improved by increasing pressure due to a 

pressure-induced transition in fracture mechanism (Spitzig et al., 1976). The 

consequences for maraging and HY-80 steels show a strong, but not perfect, 

correlation between pressure dependence, yield stress, and volume expansion; but, the 

volume expansion is strongly thought to be the primary result from the production of 

new dislocations: this volume change is very small and does not seem to be essential 

to the pressure dependence. Most of the pressure dependence is accountable for the 

discrepancy with the normality flow rule and may has an effect on dislocation motion. 

Therefore, appropriate plasticity model would be suggested to be one in which the 
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octahedral shear yield stress has a linear dependence on the mean pressure, but the 

volume change is negligible in violation of the normality flow rule (Kao et al., 1990).

New experiments and nonlinear finite element analyses of 2024-T351 aluminum

notched round bars have measured the quantification of effect of hydrostatic tensile 

stresses on yielding (Wilson, 2002). On the basis of a new simplified structural model 

of three-dimensional isotropic reticulated foamed porous metals, a practical analytical 

model is developed for these materials under biaxial loading. From this new 

mechanical model, an effective correlation between biaxial nominal stresses and 

porosity at the commencement of failure is derived for metallic foams under biaxial 

tension (Liu, 2006).

It has been demonstrated in Alexandrov et al. (2011) and Pirumov et al. (2013) that 

this material property may have a significant effect on the distribution of stresses in 

thin discs. However, available solutions for rotating discs do not account for pressure-

dependence of plastic yielding. The present paper provides such a solution for an 

annular disc assuming that the yield criterion proposed in Drucker and Prager (1952) 

is valid.
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Chapter 2. Disk of constant thickness

2.1 Statement of the problem

Consider a thin annular disk of outer radius 0b and inner radius 0a rotating with an 

angular velocity w about its axis. The thickness of the dick is constant. Strains are 

supposed to be infinitesimal. The disk has no stress at 0w = . It is natural to introduce 

a cylindrical coordinate system ( ), ,r zq with the z-axis coinciding with the axis of 

symmetry of the disk. 

Figure 1 Disk configuration
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Let rs , qs and zs be the normal stresses relative to this coordinate system. These 

stresses are the principal stresses. The boundary value problem is axisymmetric, and its 

solution is independent of s. The circumferential displacement vanishes everywhere. 

The state of stress in the rotating disk is two-dimensional ( 0zs = ). The angular 

velocity w slowly increases from zero to some prescribed value. Therefore, the 

component of the acceleration vector in the circumferential direction is neglected. The 

boundary conditions are

0rs =                                    (2.1.1)

for 0r a= and 0r b= . In general, the disk consists of two regions, elastic and plastic. 

The elastic strains are related by Hooke’s law to the stresses. In the case under 

consideration this law in the cylindrical coordinate system reads 

( )
, , .re e er r

r z
E E E

qq q
q

n s ss ns s ns
e e e

+- -
= = = -          (2.1.2)

Here n is Poisson’s ratio and E is Young’s modulus. The superscript e denotes the 

elastic part of the strain and will denote the elastic part of the strain rate as well. In the 

elastic region, the whole strain is elastic. The superscript e is employed in equation 

(2.1.2) as the same equations are satisfied by the elastic part of the strain in the plastic 

region. The superscript can be dropped in the elastic region. It is assumed that the yield 
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criterion proposed in Drucker and Prager (1952) and its associated flow rule are valid 

in the plastic region. This yield criterion is written in plane stress as

( ) ( )
2 2

2 2 2
0 0

2 2
1 1

9 9 3
r r rq q q

a a a
s s s s s s s s

æ ö æ ö
- + - + + + =ç ÷ ç ÷

è ø è ø
.       (2.1.3)

The constitutive parameters, a and 0s , are constant. The yield criterion (2.1.3)

reduces to the von Mises yield criterion at 0a = . In this case, s is the tensile yield 

stress. Let p
re& , p

qe& and p
ze& be the plastic strain rates. The associated flow rule under 

plane stress conditions can be written as Alexanddrov (2015).

( ) ( )

( ) ( )

( )( )

2 2
0

2 2
0

2
0

6 2 9 2 9 ,

6 2 9 2 9 ,

6 9 2 .

p
r r

p
r

p
z r

q

q q

q

e l as a s a s

e l as a s a s

e l as a s s

é ù= + - - +ë û

é ù= + - - +ë û

é ù= - + +ë û

&

&

&

              (2.1.4)

where l is a non-negative multiplier. The superimposed dot denotes the time 

derivative at fixed r and the superscript p denotes the plastic part of the strain rate and 

will denote the plastic part of the strain. It is seen from (2.1.4) that 0p p p
r zqe e e+ + ¹& & & . 

Therefore, the material is plastically compressible. The total strains and strain rates in 

the plastic region are
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, , ,

, , .

e p e p e p
r r r z z z

e p e p e p
r r r z z z

q q q

q q q

e e e e e e e e e

e e e e e e e e e

= + = + = +

= + = + = +& & & & & & & & &
               (2.1.5)

The constitutive equations should be supplemented with the equilibrium equation of 

the form

2r r r
r r

qs s s
Vw

¶ -
+ = -

¶
.                         (2.1.6)

Here V is the density of the material. 

It is convenient to introduce the following dimensionless quantities

2 2
0 0 0

0 0 0

3
, , , .

r b a
a k

b b E

Vw s
r

s
= W = = =              (2.1.7)

The material model adopted is rate-independent. Therefore, the time derivative can be 

replaced with the derivative with respect to any monotonically increasing parameter. In 

particular, it is convenient to introduce the following quantities

, , ,

, , ,

, , .

r z
r z

e e e
e e er z
r z

p p p
p p pr z

r z

q
q

q
q

q
q

e e e
x x x

e e e
x x x

e e e
x x x

¶ ¶ ¶
= = =
¶W ¶W ¶W

¶ ¶ ¶
= = =
¶W ¶W ¶W

¶ ¶ ¶
= = =
¶W ¶W ¶W

                 (2.1.8)
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The equation of strain rate compatibility is equivalent to

r
q

q

x
r x x

r

¶
= -

¶
.                            (2.1.9)

Using (2.1.7) equation (2.1.6) can be transformed to

0 0 3
r r qs s s r

s r s r

¶ - W
+ = -

¶
.                      (2.1.10)

2.2 Solution

2.2.1 Purely elastic solution

The purely elastic solution of the boundary value problem under consideration is well 

known (see, for example, Timoshenko and Goodier, 1970). Using (2.1.7) the solution 

satisfying the boundary condition (2.1.1) at 1r = can be written as
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( ) ( )

( )

( ) ( ) ( )

( ) ( ) ( )

( ){ }

2

2
0

2

2
0

2 2 2

2

2 2 2

2

2

31
1 1 ,

8 3

1 31 3
1 ,

1 38 3

24 1 1 3 1 3 3 1
,

24

24 1 1 3 1 3 1
,

24

24 3 3 2 1 .
12

r

r

z

A

A

A

k

A

k

A
k

q

q

ns
r

s r

ns n
r

s r n

n n r n n n r re

r

n n r n n n r re

r

e n
n n r

W +æ ö
= - + -ç ÷

è ø

W +æ ö +æ ö
= - + + -ç ÷ ç ÷

+è øè ø

é ù é ù+ - - + W - + - +ë û ë û=

é ù é ù- + + - + W - + - +ë û ë û=

é ù= - W + - +ë û

    (2.2.1)

Here A is a constant of integration. Using the boundary condition (2.1.1) at ar =

this constant is determined as

( ) 23
.

8 3

a
A

nW +
= -                              (2.2.2)

Substituting  (2.2.2) into (2.2.1) supplies the distribution of the stresses and strains 

in the purely elastic disk. In particular, 

( )2

0 0

3 1
0,

4 3
r

a
q

n ns s

s s

é ùW + + -ë û= =                  (2.2.3)

at ar = . Substituting (2.2.3) into the yield criterion (2.1.3) shows that 
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( ) ( )2

12 3

3 3 1
e

aa n n
W =

é ù+ + + -ë û
                   (2.2.4)

where eW is the value of W at which the plastic region starts to develop from the 

inner radius of the disk. In what follows, it is assumed that eW > W . 

The solution (2.2.1) is also valid in the elastic region of the elastic/plastic disk. 

However, A is not given by (2.2.2). 

2.2.2 Elastic/Plastic stress solution

The elastic/plastic stress solution is available in Jeong and Chung (2016). For 

completeness, this solution is outlined below. The yield criterion (2.1.3) is satisfied by 

the following substitution (Alexandrov et al., 2014)

( ) ( )

( ) ( )

1
0 1 1 1

0

1
0 1 1 1

0

0 12 2

3
3 1 3 3 sin 1 3 cos ,

2 2

3
3 1 3 3 sin 1 3 cos ,

2 2

2 3
,

4 9 9 4

r

q

s b
b b y b b y

s

s b
b b y b b y

s

a
b b

a a

= + + - -

= - - + +

= =
- -

      (2.2.5)
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where y is a new function of r and W . Substituting (2.2.5) into (2.1.10) gives

( ) ( )
( )

1 1

1

2 sin 3cos 2
3 3 sin 1 3 3 cos .

3

y yy r
b y b y

r r b

-¶ Wé ù- + + + = -
ë û ¶

(2.2.6)

Let ay be the value of y at ar = . It follows from the boundary condition (2.1.1)

at ar = and (2.2.5) that the value of ay is determined from the equations

( ) ( )

( ) ( )

1
0 1 1 1

1
0 1 1 1

3
3 1 3 3 sin 1 3 cos 0,

2 2

3
3 1 3 3 sin 1 3 cos 0.

2 2

a a

a a

b
b b y b b y

b
b b y b b y

+ + - - =

- - + + >

These equations should be solved numerically. Then, the boundary condition to 

equation (2.2.6) is

ay y=                            (2.2.7)

for ar = . Let cr be the dimensionless radius of the elastic/plastic boundary and cy

be the value of y at cr r= . The radial and circumferential stresses should be 
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continuous across the elastic/plastic boundary. Therefore, it follows from (2.2.1) and 

(2.2.5) that

( ) ( ) ( ) ( )

( ) ( ) ( )

2 1
0 1 1 12

2 1
0 1 1 12

31 3
1 1 3 1 3 3 sin 1 3 cos ,

2 28 3

1 31 3 3
1 3 1 3 3 sin 1 3 cos .

1 3 2 28 3

c c c

c

c c c

c

A

A

n b
r b b y b b y

r

n n b
r b b y b b y

r n

W +æ ö
- + - = + + - -ç ÷

è ø

W +æ ö +æ ö
- + + - = - - + +ç ÷ ç ÷+è øè ø

(2.2.8)

Eliminating A between these equations results in

( ) ( ) ( ) ( )2 2 2 2
0 1 1 16 3 3 cos 3 3 sin 1 3 1 0.

4 3
c c c c c cb b b r y b r y r n n r

Wé ù é ù+ - + + - - + + - =ë ûë û
   (2.2.9)

This equation and the solution of equation (2.2.6) constitute the set of equations to 

find cr and cy at a given value of W . Then, A can be determined from any of 

equations (2.2.8). The distribution of the stresses in the elastic region, 1cr r£ £ , 

follows from (2.2.1). The distribution of the stresses in the plastic region, ca r r£ £ , 

can be found from (2.2.5) and the solution of equation (2.2.6) in parametric form 

with y being the parameter. The entire disk becomes plastic when 1cr = . The 

corresponding value of W is denoted by pW . This value can be calculated 

numerically since the dependence of cr on W has been already found from (2.2.9)

and the solution of equation (2.2.6).
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2.2.3 Elastic/Plastic strain solution

The strain solution in the elastic region follows from (2.2.1) where A should be 

expressed in terms of W by means of the solution of equations (2.2.8) and (2.2.9). 

Eliminating l in (2.1.4), replacing the time derivative with the derivative with 

respect to W and using (2.1.8) lead to

( ) ( )
( ) ( )

( )( )

( ) ( )

2 2 2
0 0

2 2 2 2
0 0

6 2 9 2 9 6 9 2
, .

6 2 9 2 9 6 2 9 2 9

r rp p p p
r z

r r

q q

q q

q q

as a s a s as a s s
x x x x

as a s a s as a s a s

é ù é ù+ - - + - + +
ê ú ê ú= =

+ - - + + - - +ê ú ê úë û ë û

Eliminating the stresses in these equations by means of (2.2.5) yields

( ) ( )
( ) ( )

( )
( ) ( )

1 1 1 1 0

1 1 1 1 0

2
1 0

1 1 1 1 0

3 cos 1 3 sin 2
,

1 3 sin 3 cos 2

cos 3sin 2
2 .

1 3 sin 3 cos 2

p p
r

p p
z

q

q

b b y b b y b
x x

b b y b b y b

b y y b
x x

b b y b b y b

é ù- - + +
ê ú=
ê ú- - + +
ë û

é ù+ -
ê ú=
ê ú- - + +
ë û

    (2.2.10)

The elastic strains in the plastic region are found from (2.1.2), (2.1.7) and (2.2.5)

as

( ) ( ) ( )

( ) ( ) ( )

( )

1 1
0 1 1

1 1
0 1 1

2
0 1

3
3 1 3 1 1 cos 3 3 1 1 sin ,

2 2

3
3 1 3 1 1 cos 3 3 1 1 sin ,

2 2

3 2 cos 3sin .

e
r

e

e
z

k

k

k

q

e b b
b n b n n y b n n y

e b b
b n b n n y b n n y

e
n b b y y

é ù é ù= - + - - - + - + +ë û ë û

é ù é ù= - + - + + + - - -ë û ë û

é ù= - + +
ë û

(2.2.11)

Then,
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( ) ( ){ }

( ) ( ){ }

( )

1
1 1

1
1 1

2
1

3 3 1 1 cos 3 3 1 1 sin ,
2

3 3 1 1 cos 3 3 1 1 sin ,
2

3 sin 3cos .

e
r

e

e
z

k

k

k

q

x b y
b n n y b n n y

x b y
b n n y b n n y

x y
nb y y

¶
é ù é ù= - + + - - - -ë û ë û ¶W

¶
é ù é ù= - - - - - + +ë û ë û ¶W

¶
= -

¶W

  (2.2.12)

Taking into account (2.1.5) equation (2.1.9) can be rewritten as

p e p e
r r

q
q q

x
r x x x x

r

¶
= + - -

¶ .

Using (2.2.10) this equation can be transformed to

( )

( ) ( )
1

0 1 1 1 1

4 cos 6

2 1 3 sin 3 cos

p
e e
r

qq
q

b x y px
r x x

r b b b y b b y

+¶
= + -

¶ é ù+ - - +
ë û .

This equation and (2.1.5) combine to give the following equation for qx

( )

( ) ( )

( ) ( )
( ) ( )

1

0 1 1 1 1

0 1 1 1 1

0 1 1 1 1

4 cos 6

2 1 3 sin 3 cos

2 1 3 sin 3 cos
0

2 1 3 sin 3 cos

e e
r

qq

q

b x y px
r

r b b b y b b y

b b b y b b y
x x

b b b y b b y

+¶
- +

¶ é ù+ - - +
ë û

é ù- + + -
ë û - =
é ù+ - - +
ë û

        (2.2.13)

Using (2.2.12) it is possible to eliminate e
rx and e

qx in (2.2.13). It is therefore 
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evident that (2.2.13) is a linear ordinary differential equation. However, to solve this 

equation it is necessary to determine the derivative y¶ ¶W involved in (2.2.12) in 

terms of y or/and r . To this end, equation (2.2.6) is differentiated with respect to 

W . As a result,

( ) ( )

( )
( ) ( )

1 1

1 1

1

3 3 sin 1 3 3 cos

2 cos 3 sin 2
3 3 cos 1 3 3 sin 0

3

c
b y b y

r

y y y r
b y b y c

r r b

¶é ù- + + +
ë û ¶

ì ü+ ¶ï ïé ù+ - - + + =í ýë û ¶ï ïî þ

  (2.2.14)

where c y= ¶ ¶W . The derivative y r¶ ¶ in equation (2.2.14) can be 

eliminated by means of equation (2.2.6). Then, equation (2.2.14) becomes

( ) ( )

( )

( ) ( ) ( )
( ) ( )

1 1

2
1 1 1 1

1 1 1

3 3 sin 1 3 3 cos

2 cos 3 sin

2
0.

2 3 3 cos sin 3 3 cos 1 3 3 sin 3

3 3 3 sin 1 3 3 cos

c
b y b y

r

y y

r r
c

b y y r b y b y b

b r b y b y

¶é ù- + + +
ë û ¶

ì ü+
ï ï+
ï ï
ï ï

+ =í ýé ù é ù- -W - - +ï ïë û ë û
ï ïé ù- + +ï ïë ûî þ

(2.2.15)

It is seen from the boundary condition (2.2.7) that 0y¶ ¶W = at ar = . 

Therefore, the boundary condition to equation (2.2.15) is

0c =                                 (2.2.16)

for ar = . It is evident that (2.2.15) is a linear ordinary differential equation for c . 

This equation should be solved numerically since its coefficients are numerical 

functions of r and are determined from the solution of equation (2.2.6). Once 

equation (2.2.15) has been solved for c , it is possible to express e
rx and e

qx
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involved in (2.2.13) as functions of y and r by means of (2.2.12). Since y is 

a known function of r due to the solution of equation (2.2.6), the coefficients of 

equation (2.2.13) are functions of r and this ordinary differential equation can be 

solved numerically with no difficulty.

The boundary condition to equation (2.2.13) is derived from the condition 

that [ ] 0qx = at cr r= .  Here [ ]... denotes the amount of jump in the quantity 

enclosed in the brackets. The value of qx on the elastic side of the elastic/plastic 

boundary is determined from (2.2.1) as

( ) ( ) ( )2 2

2

3 1 3 1 1 1
.

24

c cc

c

dA

k d

n n n r n n rx

r

é ù é ù- + - + + + -ë û ë û= -
W

       (2.2.17)

Therefore, the boundary condition to equation (2.2.13) is

cqx x=                                (2.2.18)

for cr r= . Once equation (2.2.13) has been be solved numerically, the total 

circumferential strain in the plastic region is found by integration of qx with respect 

to W at a given value of tr r= . Let fW be the value of W at which the radial 

distribution of the circumferential strain should be calculated. The value of cr

corresponding to fW = W is denoted by fr . It is evident that t fa r r£ < . The 
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value of W at c tr r= is denoted by tW . Then,

.
f

c

td Eq q qe x

W

W

= W +ò                         (2.2.19)

Here tEq is the circumferential strain on the elastic side of the elastic/plastic 

boundary at c tr r= .

This strain is found from (2.2.1) as

( ) ( ) ( )2 2 2

2

24 1 1 3 1 3 1

24

t
t t t t t

t

AE

k
q

n n r n n n r r

r

é ù é ù- + + - + W - + - +ë û ë û= . (2.2.20)

Here tA is the value of A at c tr r= . This value is determined from (2.2.8) and 

(2.2.9). It follows from equations (2.1.5) and (2.2.12) that

( ) ( ){ }1
1 13 3 1 1 cos 3 3 1 1 sin

2

p k
q q

b
x x b n n y b n n y cé ù é ù= - - - - - - + +ë û ë û

. (2.2.21)

Substituting equation (2.2.21) into equation (2.2.10) yields
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( ) ( ){ }

( ) ( )
( ) ( )

( ) ( ){ }

( )
( )

1
1 1

1 1 1 1 0

1 1 1 1 0

1
1 1

2
1 0

1 1 1

3 3 1 1 cos 3 3 1 1 sin
2

3 cos 1 3 sin 2
,

1 3 sin 3 cos 2

2 3 3 1 1 cos 3 3 1 1 sin
2

cos 3 sin 2

1 3 sin 3

p
r

p
z

k k

k k

q

q

x x b
b n n y b n n y c

b b y b b y b

b b y b b y b

x x b
b n n y b n n y c

b y y b

b b y b

é ù é ù= - - - - - - + + ´ë û ë û

é ù- - + +
ê ú
ê ú- - + +
ë û

é ù é ù= - - - - - - + + ´ë û ë û

+ -

- - ( )1 0

.
cos 2b y b

é ù
ê ú
ê ú+ +
ë û

  (2.2.22)

Then,

, .
f f

t t

p p p p
r r z zd d
k k k k

e x e x
W W

W W

= W = Wò ò                     (2.2.23)

Here the integrands are known functions of W due to the solution to equations 

(2.2.6), (2.2.13) and (2.2.15) and equation (2.2.22). Therefore, the integrals 

involved in (2.2.23) can be evaluated numerically. The total radial and axial strains 

in the plastic zone are found by summing the plastic parts given by (2.2.23) and the 

elastic parts given by (2.2.11).
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2.3 Illustrative example

Equations (2.2.6), (2.2.14) and (2.2.13) have been solved numerically in the range 

e pW £ W £ W at 0.3a = and 0.5a = for 0.3n = and several typical values of 

a . The variation of the radial and circumferential stresses with r in an 0.3a =

disk at the value of the angular velocity corresponding to 0.6cr = is depicted in 

Figures 2 and 3, respectively. The associated strain distributions have been found 

from equations (2.1.2), (2.1.5), (2.2.19), and (2.2.23) at the same values of W . 

The distributions of the total strains are shown in Figure 4 (radial strain), Figure 5 

(circumferential strain) and Figure 6 (axial strain). The variation of the plastic strains 

with r is depicted in Figure 7 (radial strain), Figure 8 (circumferential strain) and 

Figure 9 (axial strain). The variation of the radial and circumferential stresses with r

in an 0.5a = disk at the value of the angular velocity corresponding to 0.75cr = is 

depicted in Figures 10 and 11, respectively. The associated strain distributions have 

been found from equations (2.1.2), (2.1.5), (2.2.19), and (2.2.23) at the same 

values of W . The distributions of the total strains are shown in Figure 12 (radial 

strain), Figure 13 (circumferential strain) and Figure 14 (axial strain). The variation of 

the plastic strains with r is depicted in Figure 15 (radial strain), Figure 16 

(circumferential strain) and Figure 17 (axial strain).

It is seen from Figs. 3 and 11 that the value of a has a significant effect of the 

distribution of the circumferential stress. The effect of a - value of the total strains 

is pronounced for the axial strain in the vicinity of the inner radius (Figs. 6 and 14). 

The effect of this value on the distribution of the plastic strain is in general more 

significant than on the total strains (Figs. 4 – 9 and 12 – 17).
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Figure 2 Variation of the radial stress with r in an a = 0.3 disk at the angular velocity 

corresponding to 0.6cr = for several a - values

Figure 3 Variation of the circumferential stress with r in an a = 0.3 disk at the angular 

velocity corresponding to 0.6cr = for several a - values



21

Figure 4 Variation of the total radial strain with r in an a = 0.3 disk at the angular 

velocity corresponding to 0.6cr = for several a - values

Figure 5 Variation of the total circumferential strain with r in an a = 0.3 disk at the 

angular velocity corresponding to 0.6cr = for several a - values
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Figure 6 Variation of the total axial strain with r in an a = 0.3 disk at the angular 

velocity corresponding to 0.6cr = for several a - values

Figure 7 Variation of the radial plastic strain with r in an a = 0.3 disk at the angular 

velocity corresponding to 0.6cr = for several a - values
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Figure 8 Variation of the circumferential plastic strain with r in an a = 0.3 disk at the 

angular velocity corresponding to 0.6cr = for several a - values

Figure 9 Variation of the axial plastic strain with r in an a = 0.3 disk at the angular 

velocity corresponding to 0.6cr = for several a - values
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Figure 10 Variation of the radial stress with r in an a = 0.5 disk at the angular 

velocity corresponding to 0.75cr = for several a - values

Figure 11 Variation of the circumferential stress with r in an a = 0.5 disk at the 

angular velocity corresponding to 0.75cr = for several a - values
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Figure 12 Variation of the total radial strain with r in an a = 0.5 disk at the angular 

velocity corresponding to 0.75cr = for several a - values

Figure 13 Variation of the total circumferential strain with r in an a = 0.5 disk at the 

angular velocity corresponding to 0.75cr = for several a - values
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Figure 14 Variation of the total axial strain with r in an a = 0.5 disk at the angular 

velocity corresponding to 0.75cr = for several a - values

Figure 15 Variation of the radial plastic strain with r in an a = 0.5 disk at the angular 

velocity corresponding to 0.75cr = for several a - values
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Figure 16 Variation of the circumferential plastic strain with r in an a = 0.5 disk at 

the angular velocity corresponding to 0.75cr = for several a - values

Figure 17 Variation of the axial plastic strain with r in an a = 0.5 disk at the angular 

velocity corresponding to 0.75cr = for several a - values
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Chapter 3. Disk of variable thickness

3.1 Statement of the problem

Consider a thin annual rotating disc of variable thickness. It is assumed that the outer 

and inner radii of the disc are stress free. These radii are denoted by 0a and 0b , 

respectively (Fig.18). It is convenient to introduce a cylindrical coordinate system 

( ), ,r zq whose z - axis coincides with the axis of symmetry of the disc. Let rs , qs

and zs be the normal stresses in this coordinate system. Symmetry of the problem 

dictates that these stresses are the principal stresses. Moreover, 0zs = under plane 

stress conditions. In the cylindrical coordinate system the boundary conditions are 

written as

0rs =                         (3.1.1)

for 0r a= and 0r b= . The only non-trivial equilibrium equation is (Timoshenko and 

Goodier, 1970)
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( ) 2 2 0r

d
hr h h r

dr
qs s Vw- + =                 (3.1.2)

where V is the material density, andw is the angular velocity of the disc about the 

z - axis. The thickness of the disc is assumed to vary according to the equation

0

0

m

r
h h

a

æ ö
= ç ÷

è ø
                        (3.1.3)

where 0h is the thickness at the edge of the disc and m is a constant. This 

dependence of the thickness on the radius is of practical importance (Guven 1998, You 

et al. 2000, Hojjati and Hassani 2008). Substituting Eq. (3.1.3) into Eq. (3.1.2)

yields

( ) 21
0rr

md
r

dr r
qs ss

Vw
+ -

+ + = .               (3.1.4)

Since 0zs = , the Hooke’s law in the cylindrical coordinate system reads

( )
, ,e e e rr r

r z
E E E

qq q
q

n s ss ns s ns
e e e

+- -
= = = - .     (3.1.5)

Here n is Poisson’s ratio and E is Young’s modulus. The superscript e denotes the 

elastic part of the strain. Since the boundary value problem is statically determinate, no 
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relation between stress and plastic strain (or plastic strain rate) is required for stress 

analysis. Under plane stress conditions the yield criterion proposed in Drucker and 

Prager (1952) becomes    

( ) 2 2
0

3
r r rq q q

a
s s s s s s s+ + + - =                  (3.1.6)

where a and 0s are material constants. It is worthy of note that this yield 

criterion adequately describes yielding of many metallic materials (Spitzig et al. 1976, 

Kao et al. 1990, Wilson 2002, Liu 2006). It is seen from Eq. (3.1.6) that the value of 

a controls the deviation of the pressure-dependent yield criterion adopted from the 

von Mises yield criterion and that the yield criterion (3.1.6) becomes the von Mises 

yield criterion at 0a = . It is convenient to rewrite (3.1.6) in the form

( )
2 2 2

2 2 2
0 0

2 2
1 1 1

9 9 9 3
r r rq q q

a a a a
s s s s s s s s

æ ö æ ö æ ö
- + - - + + + =ç ÷ ç ÷ ç ÷

è ø è ø è ø
   (3.1.7)

and to introduce the following dimensionless quantities

2 2
0 0

0 0 0

, , .
b a r

a
b b

Vw
r

s
W = = =                    (3.1.8)
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Fig. 18 Disc configuration

3.2 Solution

3.2.1 Purely elastic solution

The entire disc is elastic if W is small enough. The general solution of Eqs. (3.1.4)

and (3.1.5) supplemented with the equation of strain compatibility is well known 

(see, for example, Timoshenko and Goodier 1970). In particular, the radial 

distribution of stress is given by 

1 2 2
1

0

n nr A B D
s

r r r
s

= + +W , ( ) ( )1 2 2
1 2 2

0

1 1n nA m n B m n Dqs r r r
s

= + + + + + + W   (3.1.9)

where  ( ) ( ) ( )
2

1

2 2 4 1

2

m m m
n

n- + + + - +
= , ( ) ( ) ( )

2

2

2 2 4 1

2

m m m
n

n- + - + - +
= ,

( )( )1

3

1 3 3 3
D

m

n

n n

+
=

+ - + +
, 

( ) ( )2

3 1

1 3 3 3
D

m

n

n n

+
=

+ - + +
.
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Here A and B are constants of integration. In the case of purely elastic discs the 

solution (3.1.9) should satisfy the boundary conditions (3.1.1). Therefore, 

2 1

1 2 1 2

2 2

1 1,
n n

e en n n n

a a a a
A A D B B D

a a a a

- -
= = W = = - W

- -
.       (3.1.10)

Substitution of Eq. (3.1.10) into Eq. (3.1.9) provides the stress distribution in the 

purely elastic disc in the form 

( ) ( )

2 1

1 2

1 2 1 2

2 1

1 2

1 2 1 2

2 2
2

1

0

2 2
2

1 1 1 2 2

0

,

1 1 .

n n
n nr

n n n n

n n
n n

n n n n

a a a a
D

a a a a

a a a a
D m n D m n D

a a a a
q

s
r r r

s

s
r r r

s

é ùæ ö æ ö- -
= - + Wê úç ÷ ç ÷

- -è ø è øë û

é ùæ ö æ ö- -
= + + - + + + Wê úç ÷ ç ÷

- -è ø è øë û

   (3.1.11)

The plastic yielding is assumed to begin at ar = and this assumption should be 

verified a posteriori. Since 0rs = at ar = , it follows from Eq. (3.1.7) that

0

3

3
qs

s a
=

+
(3.1.12)

at ar = on the initiation of plastic yielding. Replacing r in Eq. (3.1.11) with a

and eliminating 0qs s with the use of Eq. (3.1.12) yield

( )
( ) ( )

2 1

1 2

1 2 1 2

1
2 2

2
1 1 1 2 2

3
1 1

3

n n
n n

e n n n n

a a a a
D m n a D m n a D a

a a a aa

-
é ùæ ö æ ö- -

W = + + - + + +ê úç ÷ ç ÷
+ - -è ø è øë û

(3.1.13)

where eW is the value of W corresponding to the initiation of plastic yielding.
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3.2.2 Elastic/Plastic stress solution

Plastic yielding occurs in the disc if eW £W . Let pW be the angular velocity at 

which the whole disc plastic. If e pW < W < W then the disc has an inner plastic part, 

ca r r£ £ (or 0 0a r c£ £ ), and an outer elastic part, 1cr r£ £ (or 0 0c r b£ £ ).  

Here 0c is the radius of the plastic/elastic boundary and 0 0c c br = is its 

dimensionless representation (Fig. 18). The general solution (3.1.9) is valid in the 

elastic region. However, A and B are not given by Eq. (3.1.10). This solution should 

satisfy the boundary condition (3.1.1) at 1r = . Therefore,

1 0A B D+ +W = .                      (3.1.14)

In the plastic region, it is necessary to solve Eqs. (3.1.4) and (3.1.7). The yield 

criterion (3.1.7) is satisfied by the following substitution (Alexandrov et al., 2011)

( ) ( )

( ) ( )

1
0 1 1 1

0

1
0 1 1 1

0

0 12 2

3
3 1 3 3 sin 1 3 cos ,

2 2

3
3 1 3 3 sin 1 3 cos ,

2 2

2 3
, .

4 9 9 4

r

q

s b
b b y b b y

s

s b
b b y b b y

s

a
b b

a a

= - + + -

= + - - +

= =
- -

     (3.1.15)
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Here y is a new function of r . Eliminating rs and qs in Eq. (3.1.4) by means 

of Eq. (3.1.15) leads to 

( ) ( )

( ) ( )

1 1 1

2
0 1 1 1 1

1 3 3 cos 3 1 3 sin

6 3 3 2 cos 2 3 3 sin 2 .m m m m m

y
b r b y b y

r

b b b y b b y r

¶é ù+ + - =
ë û ¶

é ù+ - + + - + + + Wë û

(3.1.16)

This equation should be solved numerically. Let ay be the value of y at ar = . 

Then, the boundary condition for Eq. (3.1.16) is 

ay y=                             (3.1.17)

for ar = . The solution of Eq. (3.1.16) satisfying the boundary condition (3.1.17)

is denoted as

( ),y r= Y W .                           (3.1.18)

The second argument of the function ( ),rY W emphasizes that the solution depends 

on W . It follows from Eqs. (3.1.15) that

( )2 22
0 0

2 3 12 18
sin , sin .

3 4 9 64 99 4

r rq qs s p s s a p
y y

s s a aa

- +æ ö æ ö
= - = + +ç ÷ ç ÷

- -è ø è ø-
(3.1.19)
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It is reasonable to assume that rqs s> .  Then, it is seen from Eq. (3.1.19) that 

4

3 3

p p
y< < .                        (3.1.20)

The boundary condition (3.1.1) at ar = and Eq. (3.1.15) for rs combine to give

( )

24 3 9 4
arcsin , .

3 2 3
a q q

p a
y

a

-
= - =

+
             (3.1.21)

The inequality (3.1.20) has been here taken into account. The disc becomes fully 

plastic when 1cr = . It follows from the boundary condition (3.1.1) at 0r b= (or 

1r = ) that c ay y= at this instant. Therefore, pW is determined by the condition 

( )4
arcsin 1,

3
pq

p
- = Y W .         (3.1.22)

Let cy be the value of y at cr r= . The radial and circumferential stresses must 

be continuous across the plastic/elastic boundary. Then, it follows from Eqs. (3.1.9), 

(3.1.14), (3.1.18) and (3.1.19) that
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( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( )

2 1 1

2 1 1

2
2 1 2 1 1 1

2

2
2 1 2 1 1 1

2 2

2 3
sin , ,

39 4

2 2 2

12 18
sin , .

4 9 4 9 6

n n n
c c c c

c

n n n
c c c c

c

B m n m n D D D m n

B m n m n D D D m n

r r r r

p
r

a

r r r r

a p
r

a a

é ù é ù+ - + + - - + W =ë û ë û

æ ö
Y W -ç ÷
è ø-

é ù é ù+ + - + + + + - + + W =ë û ë û

æ ö
= + Y W +ç ÷

- - è ø

  (3.1.23)

Eliminating B between these two equations yields 

( ) ( )
( )

( ) ( )

( ) ( )
( )

( ) ( )

2 1

1

2 1

1

2 2

2 1

2
2 1 1 1

2
2 1

2
2 1 1 1

12 18
sin ,

4 9 4 9 6

2

2 3
sin ,

32 2 .9 4

cn n
c c

n
c c

cn n
c c

n
c c

m n m n

D D D m n

m n m n

D D D m n

a p
r

a ar r

r r

p
r

r r a

r r

ì üæ ö
+ Y W + -ç ÷ï ï- - è øé ù+ - + =í ýë û

ï ïé ù+ - + + Wë ûî þ

ì üæ ö
Y W - -ï ïç ÷
è øé ù+ + - + + -í ýë û

ï ïé ù- - + Wë ûî þ

(3.1.24)

This equation supplies the dependence of cr on W in implicit form. The variation 

of cy with W is determined by substituting this dependence into Eq. (3.1.18). Then, 

the dependence of B on W can be found from any of Eqs. (3.1.23). Finally, the 

variation of A with W is given by Eq. (3.1.14).

Let fW be the maximum angular velocity. It is assumed that e f pW < W < W where 

pW is determined from Eq. (3.1.22). Having found A, B, cr and cy as functions 

of W it is possible to calculate the values of these functions at fW = W . Then, the 

distribution of rs and qs is determined from Eq. (3.1.9) in the range 1cr r£ £
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and from Eqs. (3.1.15) and (3.1.18) in the range ca r r£ £ . The latter is in 

parametric form with y being the parameter.

Typical values of m are 0.5m = - (Guven 1992) and 0.25m = - (Guven 1998). 

Using these values of m and 0m = (constant thickness) calculation has been 

performed assuming that 0.3cr = and 0.5cr = in an 0.2a = disc.  In order to 

illustrate the effect of pressure-dependency of the yield criterion, two values of a

have been chosen, 0a = (pressure-independent material) and 0.3a = (Liu 2006). It 

is assumed that 0.3n = . Table 1 shows the corresponding values of fW . The effect 

of m - value on the distribution of the radial stress with r at 0.3cr = is illustrated 

in Fig.19 for 0a = and in Fig. 20 for 0.3a = . It is seen from these figures that the 

radial stress increases as the value of m decreases. The same effect is seen for 

0.5cr = in Fig. 21 for 0a = and in Fig. 22 for 0.3a = . The effect of m - value on 

the circumferential stress is not so significant. In particular, the distribution of this 

stress component with r for 0.3cr = is depicted in Fig. 23 for 0a = and in Fig. 

24 for 0.3a = . In the case of 0.5cr = the variation of the circumferential stress with 

r is shown in Fig. 25 for 0a = and in Fig. 26 for 0.3a = .

3.3 Residual stresses

It is assumed that unloading is purely elastic. This assumption should be verified a 

posteriori. The stress increments, rsD and qsD , are calculated by Eqs. (3.1.9)

and (3.1.10) where W should be replaced with f-W , A with AD , and B

with BD when the angular velocity decreases from fW to zero. As a result, 
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Then, the residual stresses are

0 0 0 0 0 0

, .
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r r r q q qs s s s s s

s s s s s s

D D
= + = +             (3.1.26)

Here rs and qs are found from the solution given in Section 3.2.1 at fW = W

(Figs. 19 – 26). Using Eq. (3.1.7) the condition of the validity of the purely elastic 

solution at unloading can be written as
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(3.1.27)

Using Eqs. (3.1.25) and (3.1.26) the distribution of the residual stress has been 

calculated. The effect of m - value on the distribution of the radial residual stress with 

r at 0.3cr = is illustrated in Fig.27 for 0a = and in Fig. 28 for 0.3a = . It is seen 

from these figures that the effect is negligible at this value of cr . A larger effect is 



39

revealed at 0.5cr = . It is seen from Fig. 29 for 0a = and in Fig. 30 for 0.3a = . In 

both cases res
rs increases as the value of m increases. The effect of m - value on the 

circumferential residual stress is also insignificant for 0.3cr = . It is seen in Fig.31 

for 0a = and in Fig. 32 for 0.3a = .  In the case of 0.5cr = the variation of the 

circumferential residual stress with r is shown in Fig. 33 for 0a = and in Fig. 34 

for 0.3a = . It is seen from these figures that the effect of m-value of the 

circumferential residual stress is more pronounced in the plastic region. It is also seen 

that the dependence of res
qs on m at a given value of r is not monotonic. 

The distributions of the residual stresses shown in Figs. 27 to 34 have been 

substituted into Eq. (3.1.27) to verify that the yield criterion is not violated in the 

elastic region.
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Figure 19 Variation of the radial stress with r at 0.3cr = , 0a = , and several

m - values

Figure 20 Variation of the radial stress with r at 0.3cr = , 0.3a = , and several 

m - values
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Figure 21 Variation of the radial stress with r at 0.5cr = , 0a = , and several

m - values

Figure 22 Variation of the radial stress with r at 0.5cr = , 0.3a = , and several 

m - values
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Figure 23 Variation of the circumferential stress with r at 0.3cr = , 0a = , and 

several m - values

Figure 24 Variation of the circumferential stress with r at 0.3cr = , 0.3a = , and 

several m - values
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Figure 25 Variation of the circumferential stress with r at 0.5cr = , 0a = , and 

several m - values

Figure 26 Variation of the circumferential stress with r at 0.5cr = , 0.3a = , and 

several m - values
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Figure 27 Variation of the residual radial stress with r at 0.3cr = , 0a = , and 

several m - values

Figure 28 Variation of the residual radial stress with r at 0.3cr = , 0.3a = , and 

several m - values
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Figure 29 Variation of the residual radial stress with r at 0.5cr = , 0a = , and 

several m - values

Figure 30 Variation of the residual radial stress with r at 0.5cr = , 0.3a = , and 

several m - values
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Figure 31 Variation of the residual circumferential stress with r at 0.3cr = , 

0a = , and several m - values

Figure 32 Variation of the residual circumferential stress with r at 

0.3cr = , 0.3a = , and several m - values
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Figure 33 Variation of the residual circumferential stress with r at 0.5cr = , 

0a = and several m - values

Figure 34 Variation of the residual circumferential stress with r at 0.5cr = , 
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0.3a = , and several m - values

Chapter 4. Validation of model

The original system of equations is

0 0

,
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In addition, the equation of strain compatibility is

r
q

q

e
r e e

r

¶
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¶
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Eliminating l in (4.1.3) gives
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Equations (4.1.1), (4.1.2), (4.1.4), (4.1.5), (4.1.6), and (4.1.7) can be rewritten as
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Introduction of the notation leads
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Then, equation (4.1.8) becomes

( ), 0, 1 i 9.iR r W = £ £       

(4.1.10)

In order to verify the solution, it is necessary to show that

( ), , 1 i 9.iR r dW £ £ £     (4.1.11)
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where d is a small number.  

MATHEMATICA provides the solution in terms of interpolating functions. An 

interpolating function can be differentiated using the command D[]. This command 

returns another interpolating function. Thus each of ( ),iR r W at a given value of 

rW=W   is a combination of interpolating functions according to (4.1.9) and 

therefore is an interpolating function. This function can be evaluated at any number of 

points in the range 1a r£ £ . As a result, there is a set of value for each of 

( ),i rR r W . The maximum element of each set can be found using the command 

Max. Substituting these values into (4.1.11) yields d .

The above described procedure has been used at 

3 3
, , .

4 2 4

e p e p e p

r r r

W +W W +W W + W
W = W = W =

As a result, it has been found that 1010d -< .
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5. Conclusions

This article presents a semi-analytic solution for the stresses and strains within a 

rotating elastic/plastic annular disk. The yield criterion proposed in Drucker and Prager 

(1952) and its associated flow rule have been adopted. Therefore, in contrast to the 

solutions presented in Guven (1992), Guven (1998), Orchan and Eraslan (2002), 

Eraslan and Orcan (2002a, 2002b), Eraslan (2002, 2003), You et al. (2000) and Hojjati 

and Hassani (2008), the equations to be solved involve strain rates rather than strains. 

This greatly adds to the difficulties of the solution. The method proposed in Lomakin et 

al. (2016) has been used to facilitate numerical analysis. In particular, numerical 

techniques are only necessary to solve ordinary differential equations and evaluate 

ordinary integrals. It worthy of note here that the solution depends on two independent 

variables, W and r . It is evident from (2.2.11), (2.2.12), (2.2.17), (2.2.22), and 

(2.2.23) that simple scaling of a single solution for a disk of given geometry, Poisson’s 

ratio and a- value supplies the solutions for similar disks of material with the same 

Poisson’s ratio and a- value but any yield stress and Young’s modulus. For example, 

the numerical solution illustrated in Figures 2 to 9 supplies the solutions for 0.3a =

disks of material with 0.3n = , values of a shown in the figures but any yield stress 

and Young’s modulus.

For the variable thickness, a new semi-analytic solution for a thin rotating annular disc 

has been found. A numerical technique is only necessary to solve the ordinary 
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differential equation (3.1.16). The primary objective of the present paper is to reveal 

the effect of a involved in the yield criterion (3.1.6) and m involved in Eq. (3.1.3)

on the distribution of stress at loading and on the distribution of residual stresses. Note 

that 0a = corresponds to the von Mises yield criterion and 0m= corresponds to 

the disc of constant thickness. Therefore, the value of a is a measure of the 

deviation of the Drucker-Prager yield criterion from the von Mises yield criterion. 

Based on numerical results obtained the following conclusions can be drawn. The 

radial stress increases as m increases (Figs. 19 to 22 and the effect of m on the 

circumferential stress is not so significant as on the radial stress (Figs. 23 to 26). 

Furthermore, the effect of m on both the radial and circumferential residual stresses is 

negligible at 0.3cr = (Figs. 27, 28, 31, and 32) and more pronounced at 0.5cr =

(Figs. 29, 30, 33, and 34). Finally, the dependence of the circumferential residual stress 

on m at a given value of r is not monotonic (Figs.33 and 34).
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초    록

본 논문에서는 압력 의존적 항복 기준을 만족하는 회전 환상 원판의 응력과

변형율을 분석하였다. 드러커-프레이저 항복 기준은 평면 응력 조건하의

회전 환상 원판내의 탄성/소성 응력과 변형율을 구하기 위해 연관 흐름

이론과 연결되어 사용된다. 회전 원판의 분선을 위해 사용된 기존의

이론들과 비교했을 때 본 모델의 주요한 특징은 물질이 소성적으로

압축된다는 점이다. 또한, 다른 모델들과 대조적으로 구성 방정식이

변형율이 아니라 변형속도와 관련된다. 그러나, 제안된 방법을 적용하면

변형속도에 대한 해는 한 개의 비선형 상미분 방정식과 두 개의 선형

상미분 방정식으로 귀결된다. 이 방정식들은 하나씩 차례로 풀 수 있는 데, 

이 과정은 수치 처리를 간략히 하고 수치해의 정확도를 높여준다. 변형율

해를 구하기 위해서는 상적분을 위한 수치방법이 요구된다. 일반해를

구하기 위해 한 예가 제시되었다. 이 논문의 주요 목적은 드러커-프레이저

항복기준이 폰-미즈지 항복기준으로부터 벗어난 정도를 조절하는

인자효과와 응력과 잔류응력의 분포에 영향을 미치는 쌍곡선형을 통제하는

기하인자효과를 연구하는 것이다.

주요어: 회전 환상 원판, 소성 항복, 드러커-프레이저 항복 기준

학  번: 2012-30919
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