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Abstract

Stress and Strain Analysis of Rotating Annular Disks

Obeying a Pressure-Dependent Yield Criterion

Woncheol Jeong

Department of Materials Science and Engineering
The Graduate School

Seoul National University

The Drucker - Prager yield criterion is used in conjunction with its associated flow
rule to find the elastic/plastic stress and strain distributions within the rotating annular
disks under plane stress conditions. The main distinguished feature of the model, as
compared to typical models used for analysis of rotating disks, is that the material is
plastically compressible. Also, in contrast to many models used for analysis of
rotating disks, the constitutive equations involve strain rates rather than strains.
However, using an approach proposed elsewhere the solution for strain rates is
reduced to one non-linear ordinary differential equation and two linear ordinary
differential equations. These equations can be solved one by one, which significantly

simplifies the numerical treatment and increases the accuracy of numerical solution.



The strain solution requires a numerical technique to evaluate ordinary integrals. An
example is presented to illustrate the general solution. The primary objective of this
paper is to examine the effect of the parameter that controls the deviation of the
Drucker-Prager yield criterion from the von Mises yield criterion and the geometric
parameter that controls the profile of hyperbolic discs on the stress distribution at

loading and the residual stress distribution.

Keywords: rotating annular disc, plastic yielding, Drucker-Prager yield

criterion

Student Number: 2012-30919
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Chapter 1. Introduction

The Tresca yield criterion in conjunction with its associated flow rule has long been
associated with the solution to the stresses and strains in thin rotating disks under plane
stress conditions (Guven, 1992, 1998; Orchan and Eraslan, 2002; Eraslan and Orcan,
2002A, 2002B; Eraslan, 2002, 2003). A mathematical advantage of this model is that
the equations for strain rates can be integrated with respect to the time (or any time-like
parameter) giving the corresponding equations for strains. Therefore, the original flow
theory of plasticity reduces to the corresponding deformation theory of plasticity. A
number of solutions for the deformation theory of plasticity used in conjunction with
the von Mises yield criterion are also available (Eraslan, 2003; You et al., 2000;
Hojjati and Hassani, 2008). The stress distributions in rotating disks from von Mises
and Tresca yield criteria have been compared in Rees (1999). It has been shown that
the choice of the yield criterion may affect the final result. It is generally accepted that
the deformation theory of plasticity is valid only when dealing with proportional
loadings. On the other hand, it is known that the strain path is in general not
proportional in thin disks (Piruvmov et al., 2013). It is therefore of interest to find the
distribution of stresses and strains in thin rotating disks using the flow theory of
plasticity. Finite difference solutions for such material models have been given in
Alexandrova et al. (2004) and Alexandrova (2012). Recently, an approach to find a
semi-analytic solution for the von Mises yield criterion and its associated flow rule has
been proposed in Lomakin et al. (2016). An advantage of this approach is that the

original boundary value problems in two independent variables is reduced to solving



several ordinary differential equations (these equations can be solved one by one) and
to evaluating ordinary integrals. In the present paper, the approach developed in
Lomakin et al. (2016) is extended to the yield criterion proposed in Drucker and Prager
(1952). The flow rule associated with this yield criterion predicts that the material is
plastically compressible. This material model is appropriate for several metallic
materials (Wilson, 2002; Liu, 2006). The corresponding stress solution for a hyperbolic
disk has been given in Jeong and Chung (2016). The solution of the disk of constant
thickness can be found as a special case.

Rotating discs are widely used in mechanical engineering and a great number of
solutions for elastic/plastic disc are available in the literature. A review of solutions for
discs of constant thickness obeying the Tresca and von Mises yield criteria has been
provided in Rees (1999). But, discs of variable thickness are advantageous for many
applications. There are a great number of solutions for such discs as well; however,
most of analytic solutions are for the Tresca yield criterion and Hencky’s deformation

theory of plasticity. The latter is usually based on the von Mises yield criterion.

Many metallic materials reveal pressure-dependence of plastic yielding. Bend tests
under superimposed hydrostatic pressure on a low carbon steel containing globular
sulfide inclusions show that formability is improved by increasing pressure due to a
pressure-induced transition in fracture mechanism (Spitzig et al.,, 1976). The
consequences for maraging and HY-80 steels show a strong, but not perfect,
correlation between pressure dependence, yield stress, and volume expansion; but, the
volume expansion is strongly thought to be the primary result from the production of
new dislocations: this volume change is very small and does not seem to be essential
to the pressure dependence. Most of the pressure dependence is accountable for the
discrepancy with the normality flow rule and may has an effect on dislocation motion.

Therefore, appropriate plasticity model would be suggested to be one in which the



octahedral shear yield stress has a linear dependence on the mean pressure, but the
volume change is negligible in violation of the normality flow rule (Kao et al., 1990).
New experiments and nonlinear finite element analyses of 2024-T351 aluminum
notched round bars have measured the quantification of effect of hydrostatic tensile
stresses on yielding (Wilson, 2002). On the basis of a new simplified structural model
of three-dimensional isotropic reticulated foamed porous metals, a practical analytical
model is developed for these materials under biaxial loading. From this new
mechanical model, an effective correlation between biaxial nominal stresses and
porosity at the commencement of failure is derived for metallic foams under biaxial
tension (Liu, 2006).

It has been demonstrated in Alexandrov ef al. (2011) and Pirumov et al. (2013) that
this material property may have a significant effect on the distribution of stresses in
thin discs. However, available solutions for rotating discs do not account for pressure-
dependence of plastic yielding. The present paper provides such a solution for an
annular disc assuming that the yield criterion proposed in Drucker and Prager (1952)

1s valid.



Chapter 2. Disk of constant thickness

2.1 Statement of the problem

Consider a thin annular disk of outer radius 5, and inner radius @, rotating with an

angular velocity @ about its axis. The thickness of the dick is constant. Strains are

supposed to be infinitesimal. The disk has no stress at @ = 0. It is natural to introduce
a cylindrical coordinate system (V, 0,z ) with the z-axis coinciding with the axis of

symmetry of the disk.

\

v
%'

Plastic
region

Elastic
region

Figure 1 Disk configuration
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Let o,, 0, and o, be the normal stresses relative to this coordinate system. These

stresses are the principal stresses. The boundary value problem is axisymmetric, and its

solution is independent of s. The circumferential displacement vanishes everywhere.
The state of stress in the rotating disk is two-dimensional (o, =0). The angular

velocity @ slowly increases from zero to some prescribed value. Therefore, the
component of the acceleration vector in the circumferential direction is neglected. The

boundary conditions are

o, =0 (2.1.1)

for r=a, and r =Db,. In general, the disk consists of two regions, elastic and plastic.

The elastic strains are related by Hooke’s law to the stresses. In the case under

consideration this law in the cylindrical coordinate system reads

g =—t—%, g =—"r—7—L, &= —M. (21.2)
E E E

Here v is Poisson’s ratio and £ is Young’s modulus. The superscript e denotes the

elastic part of the strain and will denote the elastic part of the strain rate as well. In the

elastic region, the whole strain is elastic. The superscript e is employed in equation

(2.1.2) as the same equations are satisfied by the elastic part of the strain in the plastic

region. The superscript can be dropped in the elastic region. It is assumed that the yield



criterion proposed in Drucker and Prager (1952) and its associated flow rule are valid

in the plastic region. This yield criterion is written in plane stress as

o’ 20° 2a
(I_FJ(G’z + 092) —(l+ 5 jarae +TG°(Gr +0,)=0,. (2.1.3)

The constitutive parameters, & and o, are constant. The yield criterion (2.1.3)
reduces to the von Mises yield criterion at o« =0. In this case, s is the tensile yield
stress. Let &7, &7 and &7 be the plastic strain rates. The associated flow rule under

plane stress conditions can be written as Alexanddrov (2015).

& =2 6ao,+2(9-a’)o, - (20" +9)o, |,
&5 =2 6ao, +2(9-a’)o, -(20* +9)o, |, (2.1.4)

& =2 6ao,~(9+2a’)(0, +0,) |

where A is a non-negative multiplier. The superimposed dot denotes the time

derivative at fixed » and the superscript p denotes the plastic part of the strain rate and
will denote the plastic part of the strain. It is seen from (2.1.4) that &” +&) + &/ #0.

Therefore, the material is plastically compressible. The total strains and strain rates in

the plastic region are



(2.1.5)

The constitutive equations should be supplemented with the equilibrium equation of

the form

+2:7% — ey (2.1.6)
or

Here ¢ is the density of the material.

It is convenient to introduce the following dimensionless quantities

21.2
=L, Q:m, a=% =20 2.1.7)
p
0 60 bO E

The material model adopted is rate-independent. Therefore, the time derivative can be
replaced with the derivative with respect to any monotonically increasing parameter. In

particular, it is convenient to introduce the following quantities

_ Og, _ Og, _ Og,
5’_69’ S = oQ’ 52_@9’
. Oe&: . Og, . 0g’
G pe _C8 e COF: 2.1.8
oe? oe? oe?
p_ % p_ %0 P22z
g oQ’ o o’ ¢ o0
7



The equation of strain rate compatibility is equivalent to

p%0 g g (2.1.9)
op

Using (2.1.7) equation (2.1.6) can be transformed to

oo, L 0,70 _Qp.

(2.1.10)
eptele Oyp NE

2.2 Solution

2.2.1 Purely elastic solution

The purely elastic solution of the boundary value problem under consideration is well
known (see, for example, Timoshenko and Goodier, 1970). Using (2.1.7) the solution

satisfying the boundary condition (2.1.1) at p =1 can be written as



o (L) 202

Oy P 83

o, 1 Q(l+3v)(3+v 2)

20— gl —+1 _

o [p2+ j+ 53 i+ P )

i, 2041y =(1=v)p [ A1) [3+v =31 v) ]

T 7 . 22.0)
k 24p

& _ _24A[1+V+(1_V)P2]+\/§Q(l—v)[3+v—(1+V)p2]p2

k 24p° :

&

: :1‘/—2{24A—\/§Q[3+V_2(1+V)p2]}'

Here A is a constant of integration. Using the boundary condition (2.1.1) at p=a

this constant is determined as
(2.2.2)

Substituting (2.2.2) into (2.2.1) supplies the distribution of the stresses and strains

in the purely elastic disk. In particular,

Q3+v+a’(1-
9 _o, Zo_ Brvra(i-v)) (2.2.3)
o, o, NE]

at o =a. Substituting (2.2.3) into the yield criterion (2.1.3) shows that



1243

Q = 2.24
¢ (3+a)[3+v+a2(l—v)} (224)

where Q) is the value of €2 at which the plastic region starts to develop from the

e

inner radius of the disk. In what follows, it is assumed that Q> € .

The solution (2.2.1) is also valid in the elastic region of the elastic/plastic disk.

However, 4 is not given by (2.2.2).

2.2.2 Elastic/Plastic stress solution

The elastic/plastic stress solution is available in Jeong and Chung (2016). For
completeness, this solution is outlined below. The yield criterion (2.1.3) is satisfied by

the following substitution (Alexandrov et al., 2014)

Sy +ﬁ(1 +3\3p, )siny —gﬁl (1-v38 )cosy,

o, 2
&=3ﬁ0—&(1—3\/§ﬁ])siny/ +£ﬁ](l+\/§ﬁl)cosy/, (2.2.5)
o, 2 2
20 3
Po=fig B “osan



where W is a new function of p and €. Substituting (2.2.5) into (2.1.10) gives

[(ﬁ—Sﬂl)sinw +(1+3\/§ﬂ1)c0sw}66_:/;+ 2(siny —pﬁcosw) _ %251 2.26)

Let y, be the value of ¥ at p =a. It follows from the boundary condition (2.1.1)

at p=a and (2.2.5) that the value of Y/ is determined from the equations

3B, +%(1 +3\/§ﬁ1)siny/a —?ﬁl(l —x/gﬁl)cosy/a =0,

3B, —%(1—3\/§ﬁ1)sinwa +§ﬁl (1+\/§ﬁ1)cosy/a > 0.

These equations should be solved numerically. Then, the boundary condition to

equation (2.2.6) is
v=v, (22.7)

for p=a.Let p, bethe dimensionless radius of the elastic/plastic boundary and v,

be the value of ¥ at p=p. . The radial and circumferential stresses should be

11



continuous across the elastic/plastic boundary. Therefore, it follows from (2.2.1) and

(2.2.5) that

1 Q(3+v ) ] ) 3
A[E —1]4—%(1 —p;) =34, +%(1+3\/§ﬂl)sm% —7ﬂ1(1—\/§ﬂl)coswc, (2_2_8)

1 QU+3)(3+v L) B ) NE)
_A[E+1j+ 3 (W—pc)—SﬂU—3(1—3\/§ﬂ1)smwc+7ﬂ1(1+\/§ﬂl)cosy/c.

Eliminating 4 between these equations results in
68, + B, [(3/3[ —\/gpf)cosv/(, + (3\/313[ + pf)sinl//(] —%(1 - pf)[3 +v+(1 —v)pf} _o. (229

This equation and the solution of equation (2.2.6) constitute the set of equations to

find p, and y_ at a given value of €. Then, 4 can be determined from any of
equations (2.2.8). The distribution of the stresses in the elastic region, p < p <1,

follows from (2.2.1). The distribution of the stresses in the plastic region, a< p < p_,

can be found from (2.2.5) and the solution of equation (2.2.6) in parametric form

with Y being the parameter. The entire disk becomes plastic when p, =1. The
corresponding value of (2 is denoted by Q , - This value can be calculated

numerically since the dependence of p, on €2 has been already found from (2.2.9)

and the solution of equation (2.2.6).

12



2.2.3 Elastic/Plastic strain solution

The strain solution in the elastic region follows from (2.2.1) where 4 should be
expressed in terms of €2 by means of the solution of equations (2.2.8) and (2.2.9).
Eliminating A in (2.1.4), replacing the time derivative with the derivative with

respect to (2 and using (2.1.8) lead to

6a00+2(9—a2)0r—(2a2+9)09} y gp[ 6ac, (9+20%)(0, +0,)
> 6, T 6

b =% [6aao +2(9-a?)o, - (227 +9)a, 6ac, +2(9-a*)o, - (2a* +9)o, |

Eliminating the stresses in these equations by means of (2.2.5) yields

,31(\/3 —,BI)COSI// —,31(1 +\/§,Bl)sin(// +2p,
/31(1—J§ﬂ1)sinw -p(V3 +,Bl)cosl// +28, |
ﬂlz(cosy/+\/§sin(//)—2,30
A1 —ﬁﬁl)smw -B(V3 +,Bl)cosl// +28, |

&' =&
(2.2.10)

&7 =289

The elastic strains in the plastic region are found from (2.1.2), (2.1.7) and (2.2.5)

as
%f:3ﬂ0(1_V)+@[\/§ﬂl(1_v)—1—v}osw +%[3J§ﬂl(l—v)+l+v}inw,

: (2.211)
875:3ﬂ0(1_V)+@[\/§ﬂl(1—v)+l+dcosw +%[3\/§ﬂ1(1—v)—1—vJsinl//,
%::—3v[2ﬂ0 +ﬂlz(c0st// +\/§sim//)}

Then,

13



%’E =%{[3«/§ﬂl(l—v)+l+v]cosw—«/g[ﬁﬂl(l—v)—l—v]sint//}g—g,
¢ 2.2.12
é_]:=%{[3\/§ﬂ1(1_‘/)_1_"}05'//—\/g[\/gﬁl(l—v)+l+vJsim//}Z—z;, ( )
7; =3vp; (sinl// —\/gcosy/)g—z;,
Taking into account (2.1.5) equation (2.1.9) can be rewritten as
0
R A
op .
Using (2.2.10) this equation can be transformed to
o0&, 4B.&Y cos(y +7/6) L
p a N . + ér - é@
P [2,30 + ,31(1 —\/gﬁl)smy/ -5, (\/5 + ,BI)COSI//J
This equation and (2.1.5) combine to give the following equation for &,
, o0&, 4B,&, cos(y +/6) .
op [2,6’0 + B, (1 —\/gﬁl)sinl// —,6’1(\/5 + ,BI)COSI//J
. (2.2.13)
[2,6’0 - B (1 +\/§,6’1)sml// +p, (\/5 —ﬁl)COSl//:| o
. é@ - gr = 0
[2,30 + P (1 —\/gﬁl)sml// - B (\/5 + ,Bl)cosl//J

Using (2.2.12) it is possible to eliminate & and &, in (2.2.13). It is therefore

14



evident that (2.2.13) is a linear ordinary differential equation. However, to solve this
equation it is necessary to determine the derivative Oy /0Q involved in (2.2.12) in

terms of Y or/and p. To this end, equation (2.2.6) is differentiated with respect to
Q. As aresult,

[(\/5—3ﬁ1)s1nq/ +(1+3\/§ﬁ1)005‘l’}%+ (2.2.14)

2(c0st// +x/§sinq/)
- +

|:(\/§ - 3,61)c0sq/ —(1 + 3x/§ﬁ1)siny/Ja—W

2p
1+——=0
op |” 3B,

where y =0y /0Q . The derivative Oy /0p in equation (2.2.14) can be

eliminated by means of equation (2.2.6). Then, equation (2.2.14) becomes

[(\/5 - 3ﬁl)siny/ + (1 + 3\/§ﬂ1)cosw}g—ﬁ +

2(cost// +\/§siny/) (2.2.15)
+
g ;5+2—p=0
2|:\/§ﬂ1(\/§COSl//—Sinl//)—sz:||:(\/§—3ﬂl)COSl//—(1+3\/§ﬂ1)siny/:| \/gﬁl '
\/gﬂlp[(\/g - 3ﬁl)siny/ + (1 + 3\/§ﬁl)cosy/}

It is seen from the boundary condition (2.2.7) that Oy /0Q =0 at p=a.
Therefore, the boundary condition to equation (2.2.15) is

x=0 (2.2.16)

for p=a. Itis evident that (2.2.15) is a linear ordinary differential equation for Y.

This equation should be solved numerically since its coefficients are numerical

functions of p and are determined from the solution of equation (2.2.6). Once

equation (2.2.15) has been solved for Y, it is possible to express & and &,

15



involved in (2.2.13) as functions of ¥ and p by means of (2.2.12). Since ¥ is
a known function of p due to the solution of equation (2.2.6), the coefficients of
equation (2.2.13) are functions of o and this ordinary differential equation can be
solved numerically with no difficulty.

The boundary condition to equation (2.2.13) is derived from the condition

that [fg] =0 at p=p,. Here [] denotes the amount of jump in the quantity

enclosed in the brackets. The value of &, on the elastic side of the elastic/plastic
boundary is determined from (2.2.1) as
\/g(l—v)[3+v—(1+v)pf] [l+v+(1—v)p3] dA

S _ — - : (2.2.17)
k 24 P dQ

Therefore, the boundary condition to equation (2.2.13) is

So =6, (2.2.18)

for p=p.. Once equation (2.2.13) has been be solved numerically, the total
circumferential strain in the plastic region is found by integration of &, with respect
to ) ata given value of p=p,.Let Q, be the value of € at which the radial
distribution of the circumferential strain should be calculated. The value of p,

corresponding to €2 =€) is denoted by p,. It is evident that a < p, <p,. The

16



value of Q at p =p, isdenoted by €2, .Then,
Q,
&= [ £dQ+E),. (2.2.19)
Q,
Here E, is the circumferential strain on the elastic side of the elastic/plastic

boundary at p, = p, .

This strain is found from (2.2.1) as

o 244 [1+v+(1-v)p? [+3Q,(1-v)[3+v = (1+v) p* | p
%= Al1+v+(1-v)pl | = 12( v)[3+v-(t+v)el el 220)
P,

Here A, is the value of 4 at p_ = p,. This value is determined from (2.2.8) and

(2.2.9). It follows from equations (2.1.5) and (2.2.12) that
Er=¢, —%{[Sﬁﬁl (1-v)-1 —v}cost// —\/5[\/5,31 (I-v)+1 +v}sim//};( - (22.21)

Substituting equation (2.2.21) into equation (2.2.10) yields
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% =<§—kg —%{[%ﬁﬂl(l—v)—l—v}cosv/ —\/g[ﬁﬂl(l_")*l +V}Sin‘//}l>x
B
B

& 2<%—%{[%ﬁﬂl(l—v)—l—v}cosv/ —ﬁ[ﬁﬂl(l—v) +1 +v}sinv/}l>x

k
ﬂlz(cosv/ +x/§sin|//) -2B,
ﬂl(l _\/gﬂl)sm‘// _ﬂl (\/5 +ﬂl)cos‘// + zﬂo .

l(ﬁ—ﬂl)cosv/—ﬂ1(1+\/§ﬂl)sinv/+2ﬂ0 (2.2.22)
(1—\/§ﬂl)sinv/ —ﬂl(\/g +/31)cosv/ +2p, ’

Then,

kel
<

p p p p
& | & g0, o | c 40 (2.2.23)
Kk Kk

Here the integrands are known functions of €2 due to the solution to equations
(2.2.6), (2.2.13) and (2.2.15) and equation (2.2.22). Therefore, the integrals
involved in (2.2.23) can be evaluated numerically. The total radial and axial strains
in the plastic zone are found by summing the plastic parts given by (2.2.23) and the
elastic parts given by (2.2.11).
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2.3 Illustrative example

Equations (2.2.6), (2.2.14) and (2.2.13) have been solved numerically in the range

Q,<Q<Q at a=03 and a=0.5 for v=0.3 and several typical values of

o . The variation of the radial and circumferential stresses with p in an a=0.3
disk at the value of the angular velocity corresponding to p =0.6 is depicted in
Figures 2 and 3, respectively. The associated strain distributions have been found
from equations (2.1.2), (2.1.5), (2.2.19), and (2.2.23) at the same values of Q.
The distributions of the total strains are shown in Figure 4 (radial strain), Figure 5
(circumferential strain) and Figure 6 (axial strain). The variation of the plastic strains
with p is depicted in Figure 7 (radial strain), Figure 8 (circumferential strain) and
Figure 9 (axial strain). The variation of the radial and circumferential stresses with p
inan a=0.5 disk at the value of the angular velocity corresponding to p =0.75 is
depicted in Figures 10 and 11, respectively. The associated strain distributions have
been found from equations (2.1.2), (2.1.5), (2.2.19), and (2.2.23) at the same
values of €. The distributions of the total strains are shown in Figure 12 (radial
strain), Figure 13 (circumferential strain) and Figure 14 (axial strain). The variation of
the plastic strains with o is depicted in Figure 15 (radial strain), Figure 16
(circumferential strain) and Figure 17 (axial strain).

It is seen from Figs. 3 and 11 that the value of & has a significant effect of the
distribution of the circumferential stress. The effect of & — value of the total strains
is pronounced for the axial strain in the vicinity of the inner radius (Figs. 6 and 14).
The effect of this value on the distribution of the plastic strain is in general more

significant than on the total strains (Figs. 4 —9 and 12 — 17).
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Figure 2 Variation of the radial stress with p in an a = 0.3 disk at the angular velocity
corresponding to p. = 0.6 for several o — values
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Figure 3 Variation of the circumferential stress with o inana = 0.3 disk at the angular

velocity corresponding to p, = 0.6 for several o — values
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Figure 4 Variation of the total radial strain with o inana= 0.3 disk at the angular
velocity corresponding to p, = 0.6 for several o — values
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Figure 6 Variation of the total axial strain with © in ana = 0.3 disk at the angular
velocity corresponding to p, = 0.6 for several o — values

Figure 7 Variation of the radial plastic strain with p inana = 0.3 disk at the angular
velocity corresponding to p, = 0.6 for several o — values
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Figure 8 Variation of the circumferential plastic strain with © in ana = 0.3 disk at the
angular velocity corresponding to p, =0.6 for several o — values
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Figure 9 Variation of the axial plastic strain with 0 inana= 0.3 disk at the angular
velocity corresponding to p, = 0.6 for several o — values
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Figure 10 Variation of the radial stress with o inana=0.5 disk at the angular
velocity corresponding to p. =0.75 for several a — values
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Figure 11 Variation of the circumferential stress with o inana= 0.5 disk at the
angular velocity corresponding to p, =0.75 for several o — values
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Figure 12 Variation of the total radial strain with 0 inana= 0.5 disk at the angular
velocity corresponding to p. =0.75 for several o — values
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Figure 13 Variation of the total circumferential strain with p© inana= 0.5 disk at the
angular velocity corresponding to p, =0.75 for several o — values
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Figure 14 Variation of the total axial strain with p inana= 0.5 disk at the angular

velocity corresponding to p. =0.75 for several o — values
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Figure 15 Variation of the radial plastic strain with © inana=0.5 disk at the angular
velocity corresponding to p. =0.75 for several o — values

26



L L L 1L
g 055 0.60 0.65 0.70 s

Figure 16 Variation of the circumferential plastic strain with p inana=0.5 disk at
the angular velocity corresponding to o, =0.75 for several o — values
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Figure 17 Variation of the axial plastic strain with p inana= 0.5 disk at the angular
velocity corresponding to p. =0.75 for several o — values
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Chapter 3. Disk of variable thickness

3.1 Statement of the problem

Consider a thin annual rotating disc of variable thickness. It is assumed that the outer
and inner radii of the disc are stress free. These radii are denoted by a, and &,

respectively (Fig.18). It is convenient to introduce a cylindrical coordinate system

(r,0,z) whose z — axis coincides with the axis of symmetry of the disc. Let o,, 0,
and O, be the normal stresses in this coordinate system. Symmetry of the problem

dictates that these stresses are the principal stresses. Moreover, o, =0 under plane

stress conditions. In the cylindrical coordinate system the boundary conditions are

written as

o =0 (.1.1)

for r=a, and r =b,. The only non-trivial equilibrium equation is (Timoshenko and

Goodier, 1970)
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di(hrar)—hae +heo’r* =0 (3.1.2)
r

where ¢ is the material density, and® is the angular velocity of the disc about the

z — axis. The thickness of the disc is assumed to vary according to the equation

h=h, (LJ (3.1.3)
a,

where /i, is the thickness at the edge of the disc and m is a constant. This

dependence of the thickness on the radius is of practical importance (Guven 1998, You
et al. 2000, Hojjati and Hassani 2008). Substituting Eq. (3.1.3) into Eq. (3.1.2)

yields

do, . (m+1)o, -0,
dr r

+cw'r=0. (3.1.4)

Since o, =0, the Hooke’s law in the cylindrical coordinate system reads

ge=—t—r gf=_—r 6/ (3.1.5)

Here v is Poisson’s ratio and E is Young’s modulus. The superscript e denotes the

elastic part of the strain. Since the boundary value problem is statically determinate, no

29



relation between stress and plastic strain (or plastic strain rate) is required for stress
analysis. Under plane stress conditions the yield criterion proposed in Drucker and

Prager (1952) becomes

%(Gr+69)+\/692+63—6r69 =0, (3.1.6)

where o and o, are material constants. It is worthy of note that this yield
criterion adequately describes yielding of many metallic materials (Spitzig ef al. 1976,
Kao et al. 1990, Wilson 2002, Liu 20006). It is seen from Eq. (3.1.6) that the value of
a controls the deviation of the pressure-dependent yield criterion adopted from the
von Mises yield criterion and that the yield criterion (3.1.6) becomes the von Mises

yield criterion at o = 0. It is convenient to rewrite (3.1.6) in the form

2 2 2
T i g s e S IR R

and to introduce the following dimensionless quantities

21.2
oYL . NN (3.1.8)
) b, b,
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Fig. 18 Disc configuration

3.2 Solution

3.2.1 Purely elastic solution

The entire disc is elastic if €2 is small enough. The general solution of Egs. (3.1.4)
and (3.1.5) supplemented with the equation of strain compatibility is well known
(see, for example, Timoshenko and Goodier 1970). In particular, the radial

distribution of stress is given by

o-r

- = Ap" + Bp"™ +QD,p* > 2-_9 = A(m+1+n)p" +B(m+1+n,)p" +QD,p*  (3.1.9)
0 0

where . _-(m+2)+f(m+2) ~am(iev) nz:—(m+2)—\/(m+2)2—4m(l+v)’

2 2

D - 3+v , D. = 3v+1 ]
" 14+3v—(3+v)(3+m) P 1+3v—(3+v)(3+m)
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Here 4 and B are constants of integration. In the case of purely elastic discs the

solution (3.1.9) should satisfy the boundary conditions (3.1.1). Therefore,

n 2 mo__ 2
A=4,="""2_DQ, B=B,=—""2_DO . (3.1.10)

n,

a —a a" —a™

Substitution of Eq. (3.1.10) into Eq. (3.1.9) provides the stress distribution in the

purely elastic disc in the form

m_ 2 mo_ 2
G’{[am an,]p”l—[anl an,]p“pz}DlQ,
% [\@ —a a —a (3.1.11)
o, a”-a’ 0 a"—da’ " 2
L =|D| —— |[(m+1+n)p" —D,| ——— |(m+1+n,) p" +D,p* |Q
o, a'—a” a'—a”

The plastic yielding is assumed to begin at p =a and this assumption should be

verified a posteriori. Since o, =0 at p =a, it follows from Eq. (3.1.7) that

Gy __3 (3.1.12)
o, a+3

at 0 =a on the initiation of plastic yielding. Replacing p in Eq. (3.1.11) with a
and eliminating o,/c, with the use of Eq. (3.1.12) yield

" 2 -

n 2 ~
Q = 3 |:D1(Cl Cln J(m+l+n1)a"1_Dl[anl an J(m+l+n2)an2+D2a2 (3113)

© (a+3) a—a" a" —a™

where €2, is the value of € corresponding to the initiation of plastic yielding.

e
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3.2.2 Elastic/Plastic stress solution

Plastic yielding occurs in the disc if €, <Q. Let Q , be the angular velocity at
which the whole disc plastic. If €, <€Q <€Q = then the disc has an inner plastic part,
a<p<p (or a,<r=c,),andan outer elastic part, p, <p =<1 (or ¢, <r<bh)).

Here ¢, is the radius of the plastic/elastic boundary and p, :CO/ b, is its

dimensionless representation (Fig. 18). The general solution (3.1.9) is valid in the
elastic region. However, 4 and B are not given by Eq. (3.1.10). This solution should

satisfy the boundary condition (3.1.1) at p =1. Therefore,

A+B+QD, =0. (3.1.14)

In the plastic region, it is necessary to solve Egs. (3.1.4) and (3.1.7). The yield

criterion (3.1.7) is satisfied by the following substitution (Alexandrov et al., 2011)

3

o-r _ ﬁl .
o —3,30—?(1+3\/§,31)s1ny/ +7,81(1—x/§,31)cos1//,
&=3ﬁ0+&(1—3\/§ﬁ1)siny/ —£ﬁ1(1+\/§ﬁl)cosy/, (3.1.15)
o, 2 2

2a 3
Po=gig B “ it
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Here w is a new function of p . Eliminating o, and o, in Eq. (3.1.4) by means

of Eq. (3.1.15) leads to

(143058 )eosy +3(1- 58 i 12 -

6mm+@[3@m+J&2+mﬂumw—A@+m+3ﬁmmﬁmw+2ﬁQ.

(3.1.16)

This equation should be solved numerically. Let y, be the value of ¥ at p=a.

Then, the boundary condition for Eq. (3.1.16) is

v =y, (3.1.17)

for p=a. The solution of Eq. (3.1.16) satisfying the boundary condition (3.1.17)

1s denoted as

v =¥(p.Q). (3.1.18)

The second argument of the function W (p, Q) emphasizes that the solution depends

on Q. It follows from Egs. (3.1.15) that

%9~0, _ 2\/5 sin([//—z} % *0, _ lza + 18 Sin(‘/"*'z)'(&l'lg)
3 o, 4a’-9 (4a’-9) 6
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It is reasonable to assume that &, >0,. Then, it is seen from Eq. (3.1.19) that
b4
— <y <— . (3.1.20)

The boundary condition (3.1.1) at p =a and Eq. (3.1.15) for 0, combine to give

NENCIPS |

3.1.21
2(3+a) (12D

dr .
v, :T—arcsmq, q=

The inequality (3.1.20) has been here taken into account. The disc becomes fully
plastic when p, =1. It follows from the boundary condition (3.1.1) at r=4, (or

p=1)that w, =y, atthis instant. Therefore, Q, is determined by the condition

4 .
?—arcsmq:‘l’(l, Qp), (3.1.22)

Let y. be the value of ¥ at p=p,. The radial and circumferential stresses must

be continuous across the plastic/elastic boundary. Then, it follows from Egs. (3.1.9),

(3.1.14), (3.1.18) and (3.1.19) that
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B[(m+n )l =(m+n)pl ] [(Dz—Dl)pf—Dl(m+nl)pf]Q:

(o)

[ 2+m,)p (m+2+nl)p:1]+[(D2+Dl)pf—Dl(m+2+nl)pfl]Q=

12a 18 T
= + sin| ¥(p.,Q)+—|.
407 -9 4o’ -9 ( (P ©2) 6)

(3.1.23)

Eliminating B between these two equations yields

12 18 . b1
+ sin| ¥(p,., Q2 +—j—
[(mtm) o~ ) ] 4094 =9 [¥io-m0-5

[(D,+D,)p} =D, (m+2+n)p" |Q (3.1.24)

W3 ( ﬂj
——=sin| ¥Y(p,,Q)—— |-
[(m+2+n2)pfz—(m+2+n1)pf1] V9-4a’ ( ) 3

[(D,-D,) p2 =D, (m+n)pl |

This equation supplies the dependence of p, on Q in implicit form. The variation
of ¥, with Q is determined by substituting this dependence into Eq. (3.1.18). Then,

the dependence of B on Q can be found from any of Egs. (3.1.23). Finally, the

variation of A with Q is given by Eq. (3.1.14).

Let Q, be the maximum angular velocity. It is assumed that Q, <Q, <Q = where

Q  is determined from Eq. (3.1.22). Having found A, B, p, and ¥, as functions

P

of Q it is possible to calculate the values of these functions at Q=Q . Then, the

distribution of o, and o, is determined from Eq. (3.1.9) in the range p, <p<1
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and from Egs. (3.1.15) and (3.1.18) in the range a<p<p, . The latter is in

parametric form with y being the parameter.

Typical values of m are m =-0.5 (Guven 1992) and m =-0.25 (Guven 1998).
Using these values of m and m =0 (constant thickness) calculation has been

performed assuming that p, =03 and p =05 in an ¢=02 disc. In order to
illustrate the effect of pressure-dependency of the yield criterion, two values of ¢

have been chosen, o =0 (pressure-independent material) and « =0.3 (Liu 2006). It

is assumed that v =0.3. Table 1 shows the corresponding values of Q, . The effect
of m - value on the distribution of the radial stress with p at p, =0.3 is illustrated
in Fig.19 for « =0 and in Fig. 20 for a=0.3. It is seen from these figures that the

radial stress increases as the value of m decreases. The same effect is seen for

p,=0.5 in Fig. 21 for =0 and in Fig. 22 for «=0.3. The effect of m - value on

the circumferential stress is not so significant. In particular, the distribution of this
stress component with p for p, =0.3 is depicted in Fig. 23 for ¢ =0 and in Fig.
24 for a=0.3. In the case of p, =0.5 the variation of the circumferential stress with

p is shown in Fig. 25 for ¢ =0 and in Fig. 26 for «=0.3.

3.3 Residual stresses

It is assumed that unloading is purely elastic. This assumption should be verified a

posteriori. The stress increments, Ao, and Ac,, are calculated by Egs. (3.1.9)
and (3.1.10) where €2 should be replaced with —Q ; » A with A4, and B

with AB when the angular velocity decreases from € to zero. As aresult,
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Ad = —(j__;z J[l+3v?fs(i:)v()3+m)]’

AB{“""“ZJ Q,(3+v)

a" —a" [1+3v—(3+v)(3+m):|’ (3.1.25)
Ac 0 " Q,(3+v) 2
rZAA 1 AB 2 __ E ,
o, prTAZp [1+3v—(3+v)(3+m):|p
Ao, i ., Q/(3v+1) 5
:AA 1 ! AB 1 7 — -
o, (ot ) p" + AB (m+1+,) p [1+3v—(3+v)(3+m):|p

Then, the residual stresses are

r 9,29 % _% 2% (3.1.26)

Here o, and 0, are found from the solution given in Section 3.2.1at Q=0

(Figs. 19 — 26). Using Eq. (3.1.7) the condition of the validity of the purely elastic

solution at unloading can be written as

(-5 (-]
1-= +1-— -
9 )\ o 9 )\ o (3.1.27)

2 res res res res
14200000 [ 20[07 Oy | 1o
9 Jo, o0, 3

Using Egs. (3.1.25) and (3.1.26) the distribution of the residual stress has been
calculated. The effect of m - value on the distribution of the radial residual stress with
p at p,=0.3 isillustrated in Fig.27 for ¢ =0 and in Fig. 28 for a=0.3. It is seen
from these figures that the effect is negligible at this value of p, . A larger effect is
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revealed at p, =0.5. It is seen from Fig. 29 for a=0 and in Fig. 30 for «=0.3. In

res

both cases |o/*| increases as the value of m increases. The effect of m - value on the

circumferential residual stress is also insignificant for p, =0.3. It is seen in Fig.31
for ¢=0 and in Fig. 32 for «=0.3. In the case of p, =0.5 the variation of the
circumferential residual stress with p is shown in Fig. 33 for =0 and in Fig. 34
for a¢=03. It is seen from these figures that the effect of m-value of the
circumferential residual stress is more pronounced in the plastic region. It is also seen
that the dependence of o, on m at a given value of p is not monotonic.

The distributions of the residual stresses shown in Figs. 27 to 34 have been
substituted into Eq. (3.1.27) to verify that the yield criterion is not violated in the

elastic region.
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m — values
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Figure 26 Variation of the circumferential stress with p at p_=0.5, a=0.3, and
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o =0.3, and several m — values

Chapter 4. Validation of model

The original system of equations is

oo, L9, 70, _Qp

o,0p OopP V3

4.1.1)

(1—%}(03 +a§)—(l+%‘2jar09 +27a00(6, +0,)=0, , (4.1.2)
gl = 1[60560 +2(9—a2)ar —(2052 +9)69] ,

gy =l[6a60+2(9—a2)69—(2a2+9)6r], (4.1.3)

£r = 1[60560 —(9+ 2052)(@ +o, )] ,

., O —VO, . e
I R (4.1.4)

— o€ p — € 4 _ € )4
.= +e’, g, =¢,+¢), e =g +¢&.

(4.1.5)

In addition, the equation of strain compatibility is

Eliminating A in (4.1.3) gives

48



&P :60500 +2(9—O£2)Gr —(2052 +9)09
)o

ey :60500 +2(9—a2)09 —(2052 +9

r

&v [60500—(9+2a2)(6, +69)]

gy :60500 +2(9—a2)09 —(2052 +9)Gr

Equations (4.1.1), (4.1.2), (4.1.4), (4.1.5), (4.1.6), and (4.1.7) can be rewritten as

- Q
ao-r + o-r 0-9 + p

=0,
o,0p OypP V3

2 2
(1—%}(0‘3 +O'92)—(]+ 23 jarag +2Ta0'0(0'r +69)—0'§ =0,

o, —Vo,

g ———=2=0,
E
gg_ag—var:()’
E
v(o, +o
&+ (o, 9)=0,
E

p%—g +&, =
ap r [Z
(4.1.8)
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Introduction of the notation leads
— Q
e 2O SRR (p0),

oldp w3

2 2
(l—%j(af +(792)—(1+ 23 JGrGG +2Ta60(6r +69)—G§

:_Gr e =R3(p,Q) >
o~ R(p9).
e +V(Gr +(79) :R5(P,Q) ’
E
€ —& —¢&f _Re(p’Q) g

(4.1.9)

Then, equation (4.1.8) becomes

R(p,Q)=0, 1<i<09.

(4.1.10)

In order to verify the solution, it is necessary to show that

R (p.Q)| <5, 1<i<9.
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where O is a small number.
MATHEMATICA provides the solution in terms of interpolating functions. An

interpolating function can be differentiated using the command D[]. This command

returns another interpolating function. Thus each of R( p,Q) at a given value of

QZQ, is a combination of interpolating functions according to (4.1.9) and

therefore is an interpolating function. This function can be evaluated at any number of

points in the range a < p <1 . As a result, there is a set of value for each of

R (p.2,)

. The maximum element of each set can be found using the command

Max. Substituting these values into (4.1.11) yields O .

The above described procedure has been used at

30, +Q 0, +0Q Q, +3Q
Q=" =" = T

o4 7 T 2 T T4

As a result, it has been found that § <107 .
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5. Conclusions

This article presents a semi-analytic solution for the stresses and strains within a
rotating elastic/plastic annular disk. The yield criterion proposed in Drucker and Prager
(1952) and its associated flow rule have been adopted. Therefore, in contrast to the
solutions presented in Guven (1992), Guven (1998), Orchan and Eraslan (2002),
Eraslan and Orcan (2002°, 2002°), Eraslan (2002, 2003), You et al. (2000) and Hojjati
and Hassani (2008), the equations to be solved involve strain rates rather than strains.

This greatly adds to the difficulties of the solution. The method proposed in Lomakin et
al. (2016) has been used to facilitate numerical analysis. In particular, numerical
techniques are only necessary to solve ordinary differential equations and evaluate
ordinary integrals. It worthy of note here that the solution depends on two independent
variables, €2 and p . It is evident from (2.2.11), (2.2.12), (2.2.17), (2.2.22), and
(2.2.23) that simple scaling of a single solution for a disk of given geometry, Poisson’s
ratio and (X— value supplies the solutions for similar disks of material with the same
Poisson’s ratio and (X— value but any yield stress and Young’s modulus. For example,
the numerical solution illustrated in Figures 2 to 9 supplies the solutions for @ =0.3

disks of material with v =0.3, values of & shown in the figures but any yield stress
and Young’s modulus.

For the variable thickness, a new semi-analytic solution for a thin rotating annular disc

has been found. A numerical technique is only necessary to solve the ordinary
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differential equation (3.1.16). The primary objective of the present paper is to reveal
the effect of , involved in the yield criterion (3.1.6) and m involved in Eq. (3.1.3)
on the distribution of stress at loading and on the distribution of residual stresses. Note
that @ =0 corresponds to the von Mises yield criterion and m=0 corresponds to
the disc of constant thickness. Therefore, the value of , is a measure of the
deviation of the Drucker-Prager yield criterion from the von Mises yield criterion.
Based on numerical results obtained the following conclusions can be drawn. The
radial stress increases as , increases (Figs. 19 to 22 and the effect of m on the
circumferential stress is not so significant as on the radial stress (Figs. 23 to 26).
Furthermore, the effect of m on both the radial and circumferential residual stresses is
negligible at p =0.3 (Figs. 27, 28, 31, and 32) and more pronounced at p, =0.5
(Figs. 29, 30, 33, and 34). Finally, the dependence of the circumferential residual stress

on m at a given value of p is not monotonic (Figs.33 and 34).
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