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1    Introduction

Administrated drugs affect the body by complex, dynam-
ic processes, including absorption, distribution, metabo-
lism, and elimination (ADME) [1]. The effects of drugs on 
the body can be characterized using pharmacokinetic 
(PK) and pharmacodynamic (PD) profiles [2, 3]. In the 
early phases of drug development, accurate prediction of 

PK-PD profiles reduces the probability of failure [4]. How-
ever, it is difficult to accurately predict the effect of a drug 
on the body, due to many unknown parameters, such as 
enzyme kinetics, transport parameters, and adsorption 
partition coefficients [5]. Incorrect prediction may cause 
toxicity or lack of efficacy of drugs, which is one of the 
main reasons for the high attrition rate in drug develop-
ment [5, 6]. Since failure of drug development in later 
phases can result in a large loss on investment, accurate 
evaluations of drugs are essential in early phases of drug 
development [4, 7].

To improve predictions of drug’s effect, mathematical 
PK-PD modeling has been developed and used widely [3, 
8]. Ideally, accurate modeling should be supported by 
large amounts of data for the concentration profile in tis-
sues (PK), as well as the pharmacological effect (PD) [4]. 
However, animal and human studies are not always 
available in the early phases of drug development owing 
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to economical and ethical issues. This imposes several 
limitations, including lack of knowledge about parame-
ters [2]. To overcome these limitations, PK-PD models 
can rely on parameters derived from in vitro assays [9]. 
However, predictions from PK-PD models are currently 
based on conventional cell-based assays and often do not 
correlate with in vivo results [9]. Therefore, improve-
ments in the in vitro assay systems are required to pro-
vide more accurate predictions for the effect of drugs on 
the body [2].

Microtechnology is a distinctive branch of science 
that manipulates fluids and fabricate structures at the 
submillimeter length scale. Since its inception, micro-
technology has been applied to a number of diverse 
research fields, including analytical chemistry and bio-
logical research [10]. This is owing to the unique capa-
bilities that microtechnology can offer compared to con-
ventional cell-based assays, such as reduction of sample 
consumption, low reagent costs, faster response times, 
and the possibility of high throughput analysis of more 
complex and continuous reactions [11]. Furthermore, it 
can be used in combination with cell culture techniques, 
resulting in cells-on-a-chip technologies [12]. Microtech-
nology offers the opportunity for reproduction of micro-
scale structures and environments in in vivo systems; 
therefore, the complex cell-to-cell and cell-to-extracellular 
matrix (ECM) interactions can be studied using small-
sized chips [13]. In addition, precise control of flow and 
mechanical movements in a microsystem can be used to 
reconstruct aspects of the dynamic environment of in vivo 
systems, such as blood flow and peristaltic movement 
[14]. In addition, since components representing each 
organ can be connected by microfluidic channels, studies 
of complex multiple organ interactions are possible, serv-
ing as a physical representation of a PK-PD model [2, 4, 9, 
15]. 

In this review, we summarize recent research aimed 
at reconstructing physiological microenvironments in 
vitro using microtechnology for improved prediction of 
drug toxicity and efficacy. First, we describe microtech-
nology that mimics the in vivo environment of the gut and 
the liver, which are associated with the absorption and 
metabolism of drugs. Secondly, we introduce microtech-
nology-based multi-organ models for monitoring organ 
interaction. Finally, we discss and suggest the direction 
of development towards whole body models.

2    Microscale gut models

The small intestine is an important organ for absorption 
and metabolism of drugs. The intestinal mucosa consists 
of three layers: the epithelial layer, lamina propria, and 
muscularis mucosae [16]. The epithelial layer functions as 
an effective barrier to absorption, influencing the effects 
of orally administrated drugs on the body. 

In the drug development process, in vitro models have 
been used to predict the physiological response of humans 
following the oral administration of drugs, and to evaluate 
the efficacy of drugs that pass through the intestinal bar-
rier [17]. There are two major in vitro models for predicting 
drug absorption through the intestinal epithelial layer that 
does not involve animals: the Caco-2 model and the paral-
lel artificial membrane permeability assay (PAMPA) [18, 
19]. These models are used to predict the permeability of 
drugs across the epithelial layer [15]. Although these mod-
els have been accepted widely by drug discovery organi-
zations, their limitations include occasional inaccurate 
predictions regarding the type of drug or a mechanism of 
transport, which results in failure of drug candidates [20].

2.1    Three-dimensional mimetic gut models

Most conventional in vitro models have relied on two-
dimensional (2D) monolayer cell culture. In vivo, cells rest 
on complicated physiological environments and elicit 
their functions, which are induced by various stimuli. 
These stimuli include cell-to-cell and cell-to-ECM interac-
tions in a three-dimensional (3D) environment [21]. It is 
known that cellular behavior and physiological functions 
are affected by the 3D tissue structure [13, 22]. Therefore, 
the development of a 3D in vitro model may help over-
come the limitations of 2D models by replicating in vivo 
conditions. For this purpose, 3D hydrogel cell cultures 
have been used in biomedical and tissue engineering [13, 
23]. 

Hydrogel-based 3D cell cultures can reproduce the 
physiological environment for cell-to-cell and cell-to-ECM 
interactions [23]. Many synthetic and naturally derived 
hydrogels have been developed and used for culturing 
cells in a 3D ECM-based environment [24]. Hydrogels are 
hydrophilic polymers and can serve as a mechanical scaf-
fold for cellular proliferation and differentiation. Cells can 
be cultured on the surface of hydrogel or mixed and 
encapsulated within the hydrogel [25]; depending on the 
tissue type, both culture methods have been reported to 
replicate tissue architecture [26].

The effect of the 3D environment on the physiological 
function of the cells is also important for the intestine 
models. In particular, the small intestine has a unique 3D 
structure, which includes villi on the intestinal wall [27]. 
Therefore, 3D models that provide a topographically real-
istic environment are necessary. Recently, microfabrica-
tion technology has been applied to hydrogels to allow for 
precise control in the creation of topographical features 
[28]. There are several examples of hydrogel-based in 
vitro intestinal models that focus on the unique topogra-
phy of villi. Intestinal villi are finger-like projections with 
a height of 500–1000 μm [20, 29]. Using microfabrication 
technology, March’s group produced a hydrogel-based 
3D scaffold mimicking the size and shape of the human 
intestinal villi (Fig.  1A) [25, 30]. Caco-2 cells were cul-
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tured on the 3D structure for three weeks, after which the 
3D topology was still maintained. Subsequently, Yu et al. 
[30] examined the cellular behavior and drug permeabil-
ity of Caco-2 cells on collagen-based 3D villi scaffolds. 
The cells were more polarized at the top of scaffolds than 
at the bottom of villous structure. The permeability coef-
ficients of drugs measured using 3D villi scaffold was 
higher than that of a Caco-2 monolayer cultured on a 2D 
intestine model. Recently, Kim et al. examined the genet-
ic and physiological properties of the 3D villi model [31]. 
The expression of mucin protein, MUC17, increased in a 
collagen-based 3D model compared to the expression of 
the protein in a 2D model. The enhanced expression of 
mucin on the 3D villi scaffold enhanced the barrier func-
tion of the gut epithelium and inhibited bacterial inva-
sion.

2.2    Improvement of gut model using co-culture

To replicate the mucus layer, including the interaction 
between the epithelium and the stroma in intestinal 
mucosa, many researchers have tried to co-culture Caco-
2 cells with other types of cells such as HT-29-MTX cells, 
nerve cells, and B lymphoma Raji B cells [32]. The results 
of these studies show that co-culturing Caco-2 cells with 
other types of cells improves gut functions. However, 
these systems have inherent limitations, such as lack of 
interactions between cell-to-cell and cell-to-ECM in a 3D 
environment. To address this issue, Li et al. [16] devel-
oped a 3D model of intestinal mucosa to predict drug 
absorption, in which human intestinal epithelial cells 
(Caco-2 cells and HT29-MTX cells) and stromal cells 
(fibroblasts and immunocytes) were co-cultured. Leonard 
et al. described in vitro models of an inflamed intestinal 
barrier [33]. The authors characterized a co-culture model 
of Caco-2 and immunocompetent cells (macrophages and 
dendritic cells). 

However, these hydrogel-based 3D models did not 
replicate the actual tissue architecture. The integration of 
topographical features can improve the correlation 
between in vitro and in vivo data [22, 30, 31, 34, 35]. Cos-
tello et al. microfabricated a 3D scaffold using poly-lactic-
glycolic acid (PLGA) hydrogels; the resulting scaffold had 
the same shape, size, and distribution of villi as the small 
intestine [35]. Caco-2 cells and HT29-MTX cells were then 
co-cultured on the 3D villi scaffold, resulting in a similar 
morphology and differentiation patterns of in vivo intes-
tine. 

Several research groups have studied the host-patho-
gen interactions of intestinal epithelium using in vitro 
models. The interactions between small intestinal epithe-
lial cells and intestinal pathogens can cause intestinal 
disorders and diseases such as Crohn’s disease [36], 
colitis [37], chronic diarrhea [38], and gastroenteritis [39]. 
The pathogens colonize and invade the intestinal mucosa 
by adhering to and penetrating the epithelial layer. In 2D 
models, the epithelial-pathogen interactions can be mon-
itored over the short term, but these models cannot show 
the full process of host-pathogen interaction [40]. The 
Nickerson group developed rotating wall vessels (RWV) 
[41]. By using an RWV bioreactor, suspension-cultured 
cells formed aggregates and were grown in a 3D structure 
while being gently rotated in a culture medium; these 
cells were used to study enteric infection by co-culturing 
with bacteria. 

The previously mentioned 3D models did not capture 
the topology of the intestine. Intestinal epithelial cells in 
vivo differentiate and polarize along the crypt-villus axis. 
Depending on the stage of cell differentiation, many 
stains of bacterial pathogens adhere to epithelial cells. 
Therefore, there are limitations involved in the replication 
of interactions between bacterial pathogens and intesti-
nal epithelial cells for investigation of probiotic therapies 
[40]. Costello et al. used the previously described PLGA-

Figure 1.  Gut models developed using 
microtechnology: (A) Hydrogel-based 
intestinal villi model. Image reprinted 
from [25] with permission of The Royal 
Society of Chemistry. (B) Microfluidic 
model for recapitulating the peristaltic 
motions and intraluminal fluid flow of 
the intestine. Reproduced with permis-
sion [44]. Copyright 2012, The Royal 
Society of Chemistry.
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based 3D scaffold intestinal model to mimic invasion of 
intestinal pathogens and to evaluate the therapeutic 
potential of intestinal probiotics [40]. Caco-2 cells were 
cultured on the 3D scaffold, and their differentiations and 
polarizations were confirmed. The locations of the patho-
gens and probiotics were dependent on the differentia-
tion status of Caco-2 cells. The adhesion and invasion of 
the pathogens were monitored, with the results showing 
the effects of the probiotics by various mechanisms in 3D 
PLGA villi scaffolds.

2.3    Microfluidic system-based gut models

Most conventional models for mimicking small intestines, 
such as the Transwell® system, are based on static condi-
tions. However, the in vivo microenvironment is dynamic 
with the presence of flow and mechanical movement [42]. 
The mechanical stresses can affect physiological charac-
teristics of cells. For example, fluid flow of dynamic condi-
tions results in decreased thickness of the unstirred diffu-
sion layer and improved permeability compared with 
static conditions [43]. As a result, researchers have 
focused on the integration of these physiological param-
eters with microsystems.

In an effort to mimic the gut-blood barrier of the small 
intestine, Pusch et al. developed a dynamic microsystem 
that consisted of two separate flow chambers that resem-
ble apical and basolateral compartments [26]. Caco-2 cells 
and human microvascular endothelial cells (hMECs) were 
co-cultured to simulate the absorption of nutrients and 
drugs via the gut and blood in the system. When Caco-2 
cells were exposed to dynamic flow conditions, the cells 
exhibited a higher prismatic cellular morphology, and the 
efflux transport p-glycoprotein was highly expressed, as 
compared to cells exposed to static culture conditions. 
Kim et al. [44] developed a microfluidic system that was 
composed of a porous membrane between two microflu-
idic channel layers (Fig. 1B). Caco-2 were exposed to the 
perfused culture medium to mimic fluid flow and shear 
stresses of the human intestine. In addition, cyclic suc-
tion was applied to the vacuum channel of the device to 
mimic peristaltic motion of the human intestine, which 
resulted in repeated stretching and relaxing of the porous 
membrane. The function of the intestinal barrier and the 
catalytic activity of epithelial aminopeptidases improved 
on the microchip compared to those assessed using the 
static Transwell® system. A normal intestinal microbe 
(Lactobacillus rhamnosus GG) was co-cultured on the 
luminal surface of the cultured epithelium, with the 
results indicating that the epithelial cell viability was 
maintained.

Chi et al. [45] cultured the intestinal epithelial cells 
(Caco-2) on a microfluidic cell culture device (μFCCD) in 
which the cells grow three-dimensionally on a porous 
membrane between two polydimethylsiloxane (PDMS) 
layers. Under microfluidic conditions, Caco-2 cells formed 

villi-like structures within three days. The increased pro-
duction of MUC-2 provided a physical barrier for protect-
ing host cells from adherent and invading bacteria. For-
mation of tight junctions was demonstrated based on the 
TEER value, expression of occludin, and inhibition of 
paracellular transport of large molecules (FITC-dextran). 

3    Microscale liver models

The liver is an important organ in the metabolism associ-
ated with detoxification, bioactivation, and drug-drug 
interactions [15]. Since the liver biotransformation is an 
important process that affects drug’s action, various in 
vivo and in vitro systems have been developed to assess 
the biotransformation of xenobiotics, drugs, chemicals, or 
molecules. The field of microtechnology has recently 
expanded with the addition of several diverse areas, 
including microfabrication, microfluidics, and the design 
of reactors, all of which have allowed in vitro systems to 
mimic hepatic functions more closely than conventional 
in vitro systems [46, 47]. Following sections describe 
recent advances in developing more physiologically real-
istic liver models.

3.1     Microfluidic liver models that mimic liver 
environment and structure

Several groups attempted to mimic the in vivo liver envi-
ronment by utilizing microfluidic devices. One interesting 
characteristic of the liver is zonation. Allen at al. [48] 
developed a perfusion-based flat-plate bioreactor to repro-
duce liver zonation. The cultured cells were exposed to 
the physiologic oxygen gradient, with the results showing 
different levels of induced CYP that were observed along 
the oxygen gradient. In addition, perfusion with acetami-
nophen caused maximal cell death at the low-oxygen 
outlet, which was correlated with the up-regulated CYP 
activity at the outlet.

It is known that mechanical stimulation, especially 
shear stress, plays an important role in hepatic functions. 
Tanaka et al. [49] investigated the effect of shear stress on 
hepatocytes using a microchip. Human liver carcinoma 
(HepG2) cells were cultured on a microchip under shear 
stress conditions (0.14 to 6  Pa). The results show that 
higher flow rates may supply oxygen and nutrients to 
cells, but could cause damage to cells owing to shear 
stress, in a microchip perfusion system.

Lee et al. [50] developed a microfluidic system based 
on the structure of liver tissues for primary hepatocyte 
cultures (Fig. 2A). The system consisted of a hepatic cord, 
an endothelial-like barrier, and a sinusoid. The hepato-
cytes were efficiently loaded in the hepatic cord area that 
was surrounded by the endothelial-like barrier. The cells 
could be cultured under a low shear stress environment 
and provided with continuous nutrient exchange by mass 
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transport. Under this environment, primary hepatocytes 
were maintained over seven days. The hepatotoxicity of 
diclofenac on the hepatocytes was demonstrated in a 
microfluidic system. 

Although integration of microfluidic systems has 
improved the studies of hepatocyte functions and viabil-
ity of cells compared with conventional monolayer culture 
systems, 2D systems have limitations, such as cell-to-cell 
and cell-to-ECM interactions. Because cells reside in a 3D 
configuration in vivo, the microfluidic culture systems 
were extended to the microfluidic 3D cell culture systems 
[13]. 

Toh et al. [51, 52] developed a 3D microfluidic cell cul-
ture system (3D-μFCCS) based on the perfusion cell cul-
ture system (Fig. 2B). An array of micropillars was fabri-
cated and used to immobilize and support the HepG2 or 
primary hepatocyte cells in order to maximize cell-cell 
interactions. Complex coacervation of polyelectrolytes for 
cell-to-ECM interactions was achieved by laminar flow. 
The cells formed aggregates after 72 h of perfusion cul-
ture, and resulted in in vivo-like cyto-architecture. UDP-
glucuronyltransferase (UGT) activity was evaluated to 
assess metabolic functions. The enzyme activity was 
more than two times higher in the hepatocyte aggregates 
than in 2D monolayer culture. Goral et al. [53] modified 
this perfusion-based device by adding a patterned micro-
channel at the bottom of the cell culture chamber; this 
design allowed the hepatocytes to be surrounded by the 
culture medium. The hepatocyte formed 3D tissue-like 
cellular architecture without addition of matrices or coag-
ulants. The cell membrane polarity and bile canalicular 
structure were demonstrated by the expression of a bile 
canalicular marker and a gap junction protein.

Esch et al. [54] developed a cell culture device in 
which primary hepatocytes and non-parenchymal cells 

(fibroblasts, stellate cells, and Kupffer cells) were cultured 
under recirculating fluid flow. By placing the device on a 
rocking platform that tilted back and forth, the direction 
of fluid flow was changed direction periodically due to the 
height difference in the liquid levels. Based on the low 
levels of cytosolic enzymes (aspartate aminotransferase, 
(AST) and lactate dehydrogenase (LDH)) released from 
the cells, high viability was demonstrated throughout 14 
days of culture on the device. Non-parenchymal cells pro-
duced interleukin 8 when treated with bacterial lipopro-
tein (LPS).

3.2    Spheroid-based 3D culture for liver models

Several research groups have focused on development of 
spheroid-based 3D culture systems. Griffith and cowork-
ers developed a bioreactor in which primary hepatocytes 
formed a 3D tissue structure under perfusion conditions 
[55]. The spheroid-based seeding showed better forma-
tion and maintenance of tissue-like structure than single 
cell-based seeding [56]. The 3D perfusion system demon-
strated superior hepatic function compared to a conven-
tional static culture system. Subsequently, the authors 
developed a multiwell plate format bioreactor in which 
scaffolds were adapted for high throughput 3D tissue 
culture [57]. The oxygen transport gradient was predicted 
and controlled by an integrated pneumatic diaphragm 
pump, which controlled the flow rate and the consump-
tion of oxygen. By using this platform, the long-term co-
culture of differentiated hepatocytes and liver sinusoidal 
endothelial cells was demonstrated. 

Lee and coworkers developed a PDMS-based concave 
microwell array that controls size of spheroids. The sys-
tem was used for mono-culturing spheroids using primary 
hepatocytes, and co-culturing primary hepatocyte and 

Figure 2.  Liver models developed using 
microtechnology: (A) Sinusoid model of 
an artificial liver with a microfluidic 
endothelial-like barrier. Image reprinted 
from [50] with permission of John Wiley 
& Sons. (B) 3D microfluidic cell culture 
system (3D-μFCCS). Image reprinted 
from [51] with permission of The Royal 
Society of Chemistry. (C) Microfluidic 
3D liver model to assess interaction 
between hepatocyte spheroids and 
hepatic stellate cells. Image reprinted 
from [59] with permission of The Royal 
Society of Chemistry. (D) Microfluidic 
device for liver slice-based assays. 
Reproduced with permission [64]. 
 Copyright 2010, John Wiley & Sons.
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hepatic stellate cells (HSCs) [58]. The co-cultured sphe-
roids resulted in higher metabolic function and enzyme 
activity than mono-cultured spheroids. In a subsequent 
study, the system was combined with a microfluidic sys-
tem [59]. To investigate the paracrine effect of HSCs on 
hepatocytes, a 3D spheroid-based artificial liver micro-
chip was developed, where hepatocyte cells and HSCs 
were co-cultured without direct cell-cell interactions 
(Fig. 2C). The paracrine from HSCs assisted the mainte-
nance of hepatocyte spheroids through tight formation of 
cell-cell contacts. The hepatic function in co-cultured 
spheroids was higher than that of mono-cultured sphe-
roids.

3.3     Microfluidic systems for tissue-based perfusion 
culture

Precision-cut liver slices were obtained from the rat liver 
tissue through surgical procedures or from pieces of 
human liver tissue that is redundant donor tissue consid-
ered as surgical waste from patients. Since precision-cut 
liver slices contain all cell types of the liver, particularly 
the liver sinusoidal endothelial cells that are present in 
their natural architecture, it allows prediction of drug-
induced multi-cellular toxicity [60]. Groothuis and cow-
orkers used precision-cut liver slices as a model system in 
a series of papers. Elferink et al. [61] demonstrated that a 
precision-cut liver slice could reflect the toxicity and 
pathology observed in vivo by using microarray technol-
ogy. Hadi et al. [62] used a precision-cut liver slice model 
to study drug-induced liver injury mechanisms related to 
inflammatory stress and to find potential biomarkers. 
However, cultured liver tissues lose their function and 
morphology rapidly within 5 h after separation from the 
blood flow [63]. To overcome this problem, Schumacher et 
al. [63] introduced a perfusion culture for culturing liver 
slices. The perfusion culture was superior to conventional 
cultures in terms of maintenance of the protein that 
expresses hepatocyte nuclear factor 4α, vimentin, and 
collagen type IV. Van Midwoud et al. [64] incorporate 
precision-cut liver slices within a microfluidic device 
(Fig. 2D). Cells of the liver slices were not damaged by the 
flow, and showed high viability for at least 24  h. The 
metabolic rate of 7-ethoxycoumarin in the microdevice 
was comparable to that of the well plate. 

4    Multi-organ models

4.1     Gut-liver models that mimic first-pass 
metabolism

In several organ-on-a-chip studies, the intestine has been 
coupled with the liver to investigate the inter-organ 
effects based on blood circulation of the human body. 
Chambers that simulated the intestine and liver were 

integrated on a microchip, and were connected by a flu-
idic network [65, 66]. This allowed the system to mimic 
the first-pass metabolism, and serves as a representative 
example for monitoring inter-organ effects [15]. 

Several examples of this intestine-liver microfluidic 
system have been published. Van Midwoud et al. [67] 
developed a microfluidic, two-compartment, co-culture 
perfusion system to study the inter-organ effects between 
precision-cut intestinal and liver slices taken from rats 
(Fig. 3A). Although these models accurately demonstrate 
inter-organ effects, they require rat donors and surgical 
processes to obtain organ samples. In addition, cell viabil-
ity and functionality are maintained for only a relatively 
short amount of time. Therefore, high-throughput experi-
ments using these models are difficult to perform [15]. 

Various groups have used cells to mimic the first-pass 
metabolism. The Shuler group developed in vitro micro-
scale cell culture analogs (μCCA) to study the metabolism 
and toxicity of drugs based on cell-cell interactions [68]. 
A gastrointestinal (GI) tract μCCA was coupled with multi-
chamber silicon μCCA containing chambers for liver, lung, 
and other tissues to mimic oral drug absorption and first-
pass metabolism. Acetaminophen was absorbed through 
a Caco-2 cell layer; it then migrated to liver (HepG2) and 
lung (L2) compartments, and caused damage to the cells. 
Since lung cells express fewer phase II enzymes, the dam-
age to these cells was more pronounced than damage to 
the liver cells. Similar microfluidic systems based on inter-
action between the gut and liver were used to assess the 
uptake of nanoparticles and oral medicines (Fig. 3B). The 
authors investigated the effects of oral uptake of 50-nm 
carboxylated polystyrene nanoparticles in a μCCA system 
containing the GI tract, liver, and other tissues [69]. The 
results showed that a Caco-2/HT29-MTX system worked 
as a barrier to nanoparticles, allowing only a fraction of NP 
to be absorbed. HepG2 cells were exposed to the fraction 
of NP that crossed the intestinal barrier. HepG2 cell-based 
liver injury was demonstrated through the detection of 
released AST. In the μCCA system, liver injury was more 
prevalent than that in single tissue systems, which was 
caused by the compounding effects of tissue-tissue inter-
actions between the GI tract and the liver. 

Imura et al. [70] developed a micro total bioassay sys-
tem to evaluate the effect of oral medicines, food constitu-
ents, and environmental endocrine disrupters on the tar-
get cells by mimicking intestinal absorption and hepatic 
metabolism (Fig.  3C). Caco-2, HepG2, and MCF-7 cell 
lines were used as intestine, liver, and breast cancer tar-
get components, respectively. The viability of MCF-7 cells 
was affected by anticancer agents and estrogen-like sub-
stances, including cyclophosphamide (CPA), epirubicin 
(EPI), 17-β estradiol (E2), and soy isoflavone (IF). High 
anticancer activity was observed with CPA in the pres-
ence of HepG2 cells. Since E2 and IF were metabolized by 
liver cells, they affected the proliferation of MCF-7 cells in 
the absence of HepG2 cells.
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4.2     Multi-organ models with more than  
two components

Several organ-on-a-chip systems that mimic the environ-
ment and function of a specific organ, such as the liver, 
intestine, or lungs, have been developed. In addition, 
multi-organ-chips (MOC) have been developed based on 
the achievement of organ-on-a chip, in which more than 
two types of cells are co-cultured on a chip, to confirm the 
interactions between these cells. 

One prominent example from the Shuler group 
describes a μCCA device based on PK-PD modeling prin-
ciples. The functions of the liver and other organs in the 
human body were simulated, allowing for the evaluation 
of drug metabolism using hepatocyte cultures, and the 
subsequent prediction of organ-organ interactions [71]. 
Feasibility of the μCCA system was tested using naphtha-
lene as a model toxicant [72]. Subsequently, hydrogel-
based 3D cell culture was combined with a μCCA system, 
and used to analyze the cytotoxicity of anticancer drugs 
(Tegafur) based on multi-organ interactions [73]. Further-
more, a gravity-induced fluidic system was used to 
enhance the usability of the device by enabling pumpless 
operation and preventing bubble formation that not only 
distorts the flow through blocking the fluidic path, but also 
can cause damage to the cells at the liquid-gas interface 
[74, 75] (Fig. 4A). The toxicity of 5-FU was tested in the 
gravity-based dynamic system and analyzed with a PK-PD 
model. The combination of the PK-PD model and the 
μCCA system provides improved predictability and better 
insight for the mechanism of the drug effects in vivo.

Ahluwalia and coworkers have developed a multi-
compartmental modular bioreactor (MCmB) that is based 
on allometric scaling of cell numbers, and the mean resi-
dence time of molecules in metabolic tissues [76]. Hepat-
ocytes, endothelial cells, and adipose tissues were chosen 
as representative organs for metabolic homeostasis of 
glucose and lipids (Fig. 4B). HepG2 hepatocytes allowed 
maintenance of glucose and fatty acid homeostasis 
through inter-organ crosstalk. Furthermore, the metabolic 
profile of the system was investigated under hyperglyce-
mic and normoglycemic conditions [77]. Endothelial inju-
ry and proinflammatory responses were demonstrated by 
an increase of E-selectin levels under hyperglycemic 
conditions, and an increase in IL-6 concentrations under 
insulin-free hyperglycemic conditions.

Zhang et al. [78] developed a multi-channel 3D-μFCCS 
with compartmentalized environments, where four dif-
ferent cell types (C3A, A549, HK-2, and HPA) were cul-
tured to mimic multiple organ systems (liver, lung, kid-
ney, and adipose tissue) (Fig. 4C). Each type of cell was 
immobilized between micropillar arrays in the central 
compartment, and medium was perfused from two side 
channels to the central part by diffusion. Compartmental 
isolation and limited cross-talk between different cell 
types was demonstrated by mixing gelatin microspheres 
with cells. 

The Marx group designed a MOC for co-culture of 
artificial liver microtissues and skin biopsies [79]. This 
MOC consisted of on-chip peristaltic micropumps, tissue 
culture space, and microfluidic channels (Fig. 4D). Skin 
biopsies and a hepatocyte cell line (HepaRG) or primary 

Figure 3.  Microfludic devices for mim-
icking interactions between the intestine 
and liver (first-pass metabolism).  
(A) Microfluidic system for monitoring 
organ interaction using intestinal and 
 liver tissue slices. Image reprinted from 
[67] with permission of The Royal Society 
of Chemistry. (B) Body-on-a-chip con-
structed using mathematical modeling 
principles (PK-PD modeling). The oral 
uptake of nanoparticles was simulated 
with the device. Image reprinted from 
[69] with permission of The Royal Society 
of Chemistry. (C) A micro total bioassay 
system for evaluating the bioactivity of 
orally administered substances. Repro-
duced with permission [70]. Copyright 
2010, The American Chemical Society.
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hepatic stellate cells (HHSteC) were co-cultured on this 
chip. Artificial liver microtissues were generated via 
spheroid formation, supporting that this co-culture sys-
tem could provide a total fluid-to-tissue ratio similar to in 
vivo results. Transwell® insert-based system allowed 
epidermal differentiation in a manner similar to that 
observed in vivo. Metabolic activity of liver tissue and 
exhibition of the epidermis were demonstrated after 28 
days of culture based on the expression of P450 3A4 and 
7A1 in the liver tissue and cytokeratin 10 and 15 in the 
skin. Furthermore, the MOC platform was extended to 
mimic ADME processes [80]. For this purpose, a four-
organ-chip was manufactured to include tissues from 
intestine, liver, skin, and kidney. Through metabolic and 
gene analysis, reproducible homeostasis, physiological 
functions, and metabolic capacity were demonstrated in 
all four tissues over at least 28 days.

5     Remaining challenges  
and concluding remarks 

In studies using organ-on-a-chip technology, a number of 
challenges such as cell culture methods and scaling 
issues have been raised; a variety of solutions have been 
proposed. First, since several organ-on-a-chips are con-
nected in a MOC, different cell culture mediums have 
been used. Cells from each organ differ in their require-
ments for medium components. Therefore universal 
medium for all cell types need to be developed so they can 
be cultured together.

Scaling is another important issue, and a MOC has to 
be designed so that the relative size and flow rate of each 
organ reflects the physiological ratios within the human 
body. This is because cell activity or movement of a drug 
can be distorted when the relative size and flow rate of 
each organ are not in balance. For example, when a drug 
is metabolized in the liver after being absorbed, the con-
centration of metabolites can change depending on the 
metabolic rate. The metabolic reaction within the human 
body can be recreated only when the size of the liver rela-
tive to the total size of a human and the liver metabolic 
rate reflects the ratio in the actual human body. Several 
methods have been proposed to solve this scaling issue, 
including allometric scaling and matching the residence 
time of each organ [81]. Allometric scaling can be created 
by considering the relationship between the size or meta-
bolic rate of the body and the organs. Since it can be used 
to design the sizes of the organs on a chip, various MOCs 
can be designed using scaling variables [82]. In a method 
that matches the residence time of each organ, the mass 
and volume of an organ, and blood flow within the chip 
have been designed by considering the retention time of 
blood in vivo. Because the retention time of drugs or foods 
inside a human body can be predicted by measuring the 
retention time of drugs or foods inside the MOC, it can be 
useful in drug screening tests. In addition, to simulate the 
in vivo function or action of a drug, a functional scaling 
method based on metabolism can be used [81]. 

In this review article, we introduced currently report-
ed studies of microtechnology-based in vitro systems that 
addressed drug absorption and metabolism. Using micro-

Figure 4.  Models for multi-organ analy-
sis on a microchip: (A) Microscale cell 
culture analog (μCCA) device for integra-
tion of PK-PD models. Image reprinted 
from [74] with permission of The Royal 
Society of Chemistry. (B) Multi-compart-
mental modular bioreactor (MCmB) for 
mimicking glucose and lipid metabo-
lism. Image reprinted from [77] with per-
mission of John Wiley & Sons. (C) A 
multi-channel 3D microfluidic cell cul-
ture system (3D-μFCCS) with compart-
mentalized microenvironments. Image 
reprinted from [78] with permission of 
The Royal Society of Chemistry. (D) A 
multi-organ-chip (MOC) for co-cultures 
of human artificial liver spheroids and 
skin biopsies. Reproduced with permis-
sion [79]. Copyright 2013, The Royal 
Society of Chemistry.
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technology to design and fabricate systems that mimic 
the physiology of the gut and liver, improvements have 
been made to accurately predict the efficacy and response 
of drugs in vivo. In addition, several microfluidic systems 
that incorporated the gut and liver onto a single microchip 
were explored by several research groups to demonstrate 
first-pass metabolism. The multi-organ analysis on a 
microchip was introduced to investigate the dynamic 
interactions between diverse organs. Furthermore, these 
achievements have shown to permit more accurate pre-
dictions for drug efficacy and toxicity by studying multi-
organ interactions that complement PK-PD modeling. In 
Supporting information, Table S1 and S2, we summarized 
the gut, liver, and multi-organ models. Although these 
studies are in the initial stages of formation, and are lim-
ited to simple metabolic functions, advancements in this 
field offer a stepping stone towards a body-on-a-chip 
system, ultimately providing the ability to accurately pre-
dict a whole body response to drugs. Moreover, the work 
reviewed here has the potential to complement and/or 
replace animal and human studies for drug development 
and studying disease mechanisms.
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