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Abstract
The detection of an error in the motor output and the correction in the next movement are

critical components of any form of motor learning. Accordingly, a variety of iterative learning

models have assumed that a fraction of the error is adjusted in the next trial. This critical

fraction, the correction gain, learning rate, or feedback gain, has been frequently estimated

via least-square regression of the obtained data set. Such data contain not only the inevita-

ble noise from motor execution, but also noise from measurement. It is generally assumed

that this noise averages out with large data sets and does not affect the parameter estima-

tion. This study demonstrates that this is not the case and that in the presence of noise the

conventional estimate of the correction gain has a significant bias, even with the simplest

model. Furthermore, this bias does not decrease with increasing length of the data set. This

study reveals this limitation of current system identification methods and proposes a new

method that overcomes this limitation. We derive an analytical form of the bias from a simple

regression method (Yule-Walker) and develop an improved identification method. This bias

is discussed as one of other examples for how the dynamics of noise can introduce signifi-

cant distortions in data analysis.

Introduction
Error detection and correction is one of the most fundamental elements in motor learning, in
fact in almost every type of learning. In engineering, the notion that the error in the current
execution is used to improve the next execution is the essence of any controller design for sys-
tems that perform tasks repeatedly [1–3]. In human learning, it is universally agreed upon that
the perception and correction of errors plays a significant role in the process of motor learning
[4, 5], although the neural and cognitive mechanisms underlying error-based learning are not
yet fully understood [6, 7]. Feedback of error, and knowledge of results or performance have
long been shown to facilitate and accelerate acquisition of new motor skills [8]. Based on this
understanding, motor learning can be enhanced by magnifying the perceived error [9–12].
Errors are not only instrumental during early practice, but smaller corrections also continue
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into later stages of skilled performance. Prior studies highlighted the critical role of error cor-
rections during the repeated execution of goal-directed movements near the goal [13–15]. In
fact, expert performance at a highly skilled level implies that any small error is readily compen-
sated for.

While ubiquitous, it remains an open question to what degree each error is corrected for.
Should a learner completely compensate for each error in the subsequent attempt, or should
he/she be more conservative and only correct a smaller portion of the error? If random noise is
part of the observed fluctuations, then complete error cancellation may lead to an overshoot
and ultimately unstable performance. As errors become smaller with practice, should this pro-
portion or “gain” of the correction change? With these questions, the sensitivity of error correc-
tion, the gain or learning rate, has been a key variable in several areas of research.

With the goal to shed light on error-based learning, various mathematical models have been
used to quantify detection and correction of error. For example, Galea et al. used a simple
deterministic model to reveal differences in the learning rate under positive and negative
reward in a motor adaptation task [16]. Smith et al. introduced a learning model with error
feedback on two different time scales that reproduced several features of human motor adapta-
tion, including savings [17]. However, neither of the two models considered noise, which is
inevitable and, arguably, even beneficial to motor learning [18–21]. Heeding to the critical role
of random fluctuations, Scheidt et al. proposed an exponential model for learning of goal-
directed reaching under random perturbations [22]. Baddeley et al. compared a series of simple
models that included noise sources to find the best fit for human visuo-motor performance;
results suggested that exponential weighting of recent errors may best account for the high effi-
cacy of human performance [23]. Diedrichsen et al. also used a stochastic state-space model of
trial-by-trial adaptation and suggested a dissociation between errors that guide behavioral
goals and those that guide neural adaptation of internal models [24]. Several other studies used
stochastic iterative models to address how error corrections are associated with a structural
change of variability using skills ranging from simple reaching [13, 25] to throwing a ball [14].

The most critical parameter in all these learning models is the correction gain, learning rate
or feedback gain, which determines how much of the error in the current trial is corrected in
the following trial. The simplest form of an iterative learning model that includes a correction
gain and noise can be described by a set of three linear equations [13]:

xi ¼ mi þNi ð1Þ

ei ¼ xi � xtarget ð2Þ

miþ1 ¼ mi � Bei ð3Þ

Eq 1 defines the motor output, x at the ith trial as a sum of the planned executionm and
noiseN; the latter is a random vector drawn from a zero mean distribution with a known
covariance matrix. Most learning models assume that this noise comes from a Gaussian distri-
bution. Eq 2 defines the error as the difference between the output and the target. Eq 3 models
the learning process as an update of the planned execution based on the error information. The
constant B is the correction gain, which defines the fraction of the error that is adjusted in the
next trial.

Conventionally, estimation of this critical parameter B in a given time series of data has
relied on a convenient and common mathematical tool—the method of least-squares regres-
sion. Different parameter optimization algorithms include the Gauss-Newton algorithm, gradi-
ent descent, and the Levenberg-Marquardt algorithm [26–29]. These model-based methods
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have been applied regardless of possible noise in the model or in the measured data. Implicitly
or explicitly, these approaches relied on the assumption that the effect of noise averages out. If
noise is explicitly taken into account using stochastic models, a widely-used method is the
Expectation-Maximization (EM) algorithm [30]. This algorithm estimates the model parame-
ters including the noise via maximum likelihood estimation [31, 32]. However, this method is
confined to models with independent noise sources and cannot be applied to auto-regressive
processes [33].

The present study closely examined the viability of least-square methods for estimating
model parameters, scrutinizing the common assumption that noise averages out. As we will
demonstrate, the subtle dynamics of noise significantly influence the estimates of the correction
gain and produce a bias. This bias may be relatively small when the difference between initial
and final motor output is by orders of magnitude larger than the noise variance, as is the case
at initial stages of learning. However, when the learning process approaches steady-state, or the
error is comparable with the variability of the motor output, the bias in the estimated correc-
tion gain can become significant.

We devise a new method that improves the accuracy of identification of the correction gain,
for the case when motor learning is close to steady state and the error is of similar magnitude
as the overall variability. Analytical approaches and numerical simulations show that the quan-
tified bias and the adjustment by the new method are robust and are insensitive to the magni-
tude and the distribution of the noise.

Methods

A Simple Iterative Model
To exemplify the problem of least-square estimation of the correction gain and demonstrate
the bias of the conventional estimate, we examined a simple model that represents the basic
structure of a large number of learning models [13, 14, 23–25]. For the simplest one-dimen-
sional case, the vector variables in Eqs 1 to 3 become scalars. Defining the origin of the coordi-
nate as the desired motor output, or the target state (xtarget = 0),

xi ¼ mi þ Ni; ð4Þ

ei ¼ xi; ð5Þ

miþ1 ¼ mi � Bei; ð6Þ

where Ni is a random variable from a distribution with zero mean and a standard deviation of
σN, and B is assumed to satisfy 0< B< 1. From Eqs 4, 5 and 6,

xiþ1 ¼ miþ1 þ Niþ1 ¼ mi � Bei þ Niþ1 ¼ mi � Bxi þ Niþ1 ¼ xi � Ni � Bxi þ Niþ1:

Therefore, the learning process can be described by a simple linear equation:

xiþ1 ¼ ð1� BÞxi þ Niþ1 � Ni: ð7Þ

In this auto-regressive form, least-square regression can be used to estimate B from a time
series of measured data.

Testing the Validity of the Conventional Least-Square Regression
To test whether the least-square estimation extracts the real parameters with sufficient accu-
racy, the first step was to generate a set of time series {xk} using the simple model of Eq 7 with a
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known value of B and random noise samples. The lengths of the time series n varied from 10 to
800. To extract the correction gain and the variance of the noise, Eq 7 was analyzed using the
standard regression approach. We opted to use the Levenberg-Marquardt algorithm [28]
among many other alternative least-square algorithms because this algorithm is an effective
numerical method for regression. It has therefore been a common choice for least-squares
problems in commercialized numerical computing environments including Matlab (Math-
works Inc., Natick, MA). The Levenberg-Marquardt algorithm has also been widely applied in
motor learning studies [34, 35] and for the training of neural networks [36–38].

We generated time series with three different B values of 0.25, 0.50, and 0.75. As little is
known about the origin and magnitude of the noise in actual data, we also investigated the
effect of the noise distribution with three types of distributions—normal, uniform, and asym-
metric lognormal. In addition, we simulated different magnitudes of the noise level σN. The
probability density functions of the added noise are demonstrated in Fig 1.

The simulation and subsequent parameter estimation were repeated 1000 times for each
parameter set and time series length n. The difference between the true B and the mean of the

1000 estimated values B̂ was evaluated for each noise distribution, noise level, and n. Numerical
simulations and analyses were implemented in Matlab (Mathworks Inc., Natick, MA).

Quantification of the Bias and Development of Improved Estimation:
Adjusted Yule-Walker (AYW) Method
Following the demonstration of a significant bias as reported in the results, we proceeded to
show that this bias can be removed if an analytical expression of the bias is obtained. To attain
a closed form of the bias, we considered one of the simplest estimators, the Yule-Walker algo-
rithm [39, 40]. Note that the Yule-Walker estimation method does not reduce the bias by itself.
However, it lends itself to obtain an analytical expression of the bias due to its simple structure.
The same analytical derivation might be done for the commonly used Levenberg-Marquardt
algorithm, but would be more challenging and less transparent. Using the derived correction
term, this bias can then be eliminated, which significantly improves the accuracy of the param-
eter estimation.

For any autoregressive (AR) process, the general Yule-Walker method calculates the AR
parameters. The algebraic expression of the simplest AR process of order one is

xiþ1 ¼ Axi þ Niþ1; ð8Þ

where Ni is a random variable. The Yule-Walker equation estimates the parameter A as

AYW ¼

Xn�1

i¼1

xixiþ1

Xn�1

i¼1

xi
2

; ð9Þ

which is identical to the least-square linear regression. Note that Eq 8, which is a first-order AR
process, has a similar structure as the simple learning model in Eq 7. The assumption that the
noise in each iteration is an independent random sample allowed to approximate the expected
bias of the Yule-Walker estimation in a simple closed form. Using the closed form of the bias,
we could then quantify the correction gain more accurately. We called the procedure the
Adjusted Yule-Walker method (AYW).

We verified the reliability of this AYWmethod in the same way as we tested the reliability
of the conventional least-square method: with a fixed value of the correction gain B, we
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constructed a set of time series {xk} with added noise; the length of the time series n varied
from 10 to 800. As above, the simulations and estimation were performed with three different
noise distributions and three different noise levels (Fig 1). The simulation was repeated 1000
times for each n and each parameter set. The correction gain B was estimated by the AYW
method, and the difference between the true B value and the mean of the 1000 estimated values

B̂ was evaluated for each noise distribution, noise level, and n. The entire procedure is over-
viewed in Fig 2.

Results

Demonstration of the Bias from Least-Square Estimation
The conventional Levenberg-Marquardt (LM) algorithm based on the least-square method
yielded a substantial bias. Fig 3 shows the B values for different time series length n estimated
with the LM-algorithm (red) and the AYWmethod (blue) against the real B value (green).

The estimated correction gains B̂ had higher values than the actual correction gains B. Table 1
summarizes and compares the magnitude of the biases when the correction gain was
estimated by the two methods. To facilitate comparison, a normalized error was calculated as

ðB̂avg � BÞ=B� 100 ð%Þ, where B̂avg is the mean of the 1000 estimates, and B is the actual cor-

rection gain. Depending on the true value of B, the bias from the LM estimates was at 16 ~
170% of B, even when the length of the time series n reached 800. The biases in the AYW
method became less than 5% as n reached 800. Further, in Fig 3, the panels A to C show that
the significant bias did not change much whether the noise came from a normal, uniform, or
asymmetric lognormal distribution. Panel D in Fig 3 also shows that the bias was largely unaf-
fected by the level of the noise.

The biases were calculated for each type of noise distribution (normal, uniform, or lognor-

mal) and each trial length in a normalized form of ðB̂avg � BÞ=B� 100 ð%Þ, where B̂avg is the

mean of the 1000 estimates, and B is the actual value of the correction gain. Note that the
conventional least-square method with the Levenberg-Marquardt algorithm yielded biases of
16 ~ 170%, even with a large trial number. The biases with the AYWmethod became less than
5% as n reached 800.

Fig 1. Probability density functions of the applied noise. Three types of noise distributions (normal, uniform and lognormal) with three different
standard deviations were considered. For each type of distribution, the expectation value of the noise is zero, whereas the standard deviation σN varies
from 0.5 to 2, resulting in different noise levels.

doi:10.1371/journal.pone.0158466.g001
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Fig 2. Illustration of the analysis method and a representative data set.

doi:10.1371/journal.pone.0158466.g002
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Fig 3. Actual and estimated correction gainB. Time series with actual correction gains B of 0.25, 0.5 and 0.75; different trial
length n (from 10 to 800); and three distributions of noise (normal, uniform, and lognormal) were generated using Eq 7. The
correction gain B was estimated for each time series using both the Levenberg-Marquardt least-square algorithm (red) and the
Adjusted Yule-Walker (AYW) method (blue), and then compared with the actual correction gain B (green). The simulations were
repeated 1000 times for each algorithm and each n. The estimation by the Levenberg-Marquardt algorithm yielded a substantial bias,
whereas the AYWmethod significantly reduced the bias for large enough n. These results remained unchanged for the noise
sampled from a Gaussian (A), a uniform (B), or an asymmetric lognomal (C) distribution. In addition, the bias from the Levenberg-
Marquardt algorithm and the improvement by the AYWmethod were not affected by the magnitude of the noise level σN (D).

doi:10.1371/journal.pone.0158466.g003
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Analytical Derivation of the Bias from the Yule-Walker Equation
We analytically derived the bias in the estimates of the correction gain using the Yule-Walker
equation [39, 40], one of the simplest regression methods. The notation of the one-dimensional
learning process of Eq 7 is simplified by substituting (1 –B) with C,

xiþ1 ¼ Cxi þ Niþ1 � Ni; ð10Þ

where Ni is a random variable from a distribution with zero mean and the standard deviation
of σN, and C is between 0 and 1 because 0< B< 1.

To illustrate,

x1 ¼ N1

x2 ¼ CN1 þ N2 � N1 ¼ ðC � 1ÞN1 þ N2

x3 ¼ CðC � 1ÞN1 þ CN2 þ N3 � N2 ¼ CðC � 1ÞN1 þ ðC � 1ÞN2 þ N3

..

. . .
.

xn ¼ Cn�2ðC � 1ÞN1 þ Cn�3ðC � 1ÞN2 þ Cn�4ðC � 1ÞN3 þ � � � þ ðC � 1ÞNn�1 þ Nn

ð11Þ

Table 1. Normalized biases in the estimates of the correction gain B using the least-square methods and the Adjusted Yule-walker method.

Noise from normal distribution

Trial length, n

B Method 10 30 50 100 200 300 400 500 600 700 800

0.25 Least-square 220 250 250 260 230 220 200 200 190 180 170

0.25 AYW -160 -80 -50 -22 -53 -42 -7.5 -5.1 -4.3 -3.2 -4.3

0.50 Least-square 84 91 84 77 66 60 59 56 52 51 51

0.50 AYW -50 -21 -13 -6 -15 -10 -1.1 -2.1 -0.34 -0.69 -0.81

0.75 Least-square 36 35 35 31 25 22 21 19 18 17 17

0.75 AYW -21 -11 -6.7 -3.9 -6.2 -3.4 -0.63 -0.69 -0.53 -0.25 0.031

Noise from uniform distribution

Trial length, n

B Method 10 30 50 100 200 300 400 500 600 700 800

0.25 Least-square 200 240 250 260 240 220 210 200 190 180 170

0.25 AYW -140 -68 -53 -23 -13 -8.7 -6.1 -6.3 -5.9 -5.9 -4.5

0.50 Least-square 82 87 88 82 67 61 58 54 52 51 50

0.50 AYW -43 -17 -12 -5.5 -3.8 -2.1 -2.1 -1.3 -1.3 -0.78 -0.48

0.75 Least-square 35 37 36 33 26 23 21 19 18 17 17

0.75 AYW -24 -7.7 -4.8 -1.3 -1.5 -0.50 -0.97 -0.92 -0.82 -1.1 -0.34

Noise from lognormal distribution

Trial length, n
B Method 10 30 50 100 200 300 400 500 600 700 800

0.25 Least-square 200 230 250 260 250 220 200 180 170 160 160

0.25 AYW -120 -50 -33 -16 -6.6 -5.9 -4.5 -3.4 -4.7 -1.8 -4.7

0.50 Least-square 76 86 87 79 65 56 53 51 51 50 50

0.50 AYW -38 -14 -8.0 -1.8 -1.8 -1.3 -0.61 -0.85 -0.44 -0.92 -0.16

0.75 Least-square 32 37 36 32 24 20 18 17 17 17 16

0.75 AYW -22 -6.7 -4.8 -2.1 -1.4 -0.47 -0.61 -0.85 -0.56 0.0085 -0.083

doi:10.1371/journal.pone.0158466.t001
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To warrant using the Yule-Walker equation, or Eq 9, we regard Ni+1 –Ni in Eq 8 as another
single noise term, such that the coefficient C can be estimated as

CYW ¼

Xn�1

i¼1

xixiþ1

Xn�1

i¼1

xi
2

: ð12Þ

From Eq 11, the expectation of xn is a weighted sum of the expectation of Ni, each of which
is zero. Therefore,

E½xn� ¼ 0: ð13Þ

By definition, Np and Nq are independent when p 6¼ q. Therefore,

EðNpNqÞ ¼ 0 if p 6¼ q ð14Þ

because

ð1
�1

ð1
�1

NpNqf ðNpÞf ðNqÞdNpdNq ¼
ð1
�1

Nq

ð1
�1

Npf ðNpÞdNp

0
@

1
AdNq ¼ 0;

where f is the probability density function of the noise. Note that the validity of Eq 14 does not
depend on the specific property of the distribution. Eq 14 remains valid, regardless of whether
the probability density function f is symmetric like a normal and a uniform distribution, or
asymmetric like a lognormal distribution. From Eq 11, it follows that

E xn
2½ � ¼ E½ðCn�2ðC � 1ÞN1 þ Cn�3ðC � 1ÞN2 þ Cn�4ðC � 1ÞN3 þ � � � þ ðC � 1ÞNn�1 þ NnÞ2�

¼ E C2ðn�2ÞðC � 1Þ2N1
2 þ � � � þ ðC � 1Þ2Nn�1

2 þ Nn
2 þ terms with NpNq ðp 6¼ qÞ

h i
:

By Eq 14, terms with Np Nq (p 6¼ q) do not contribute to the expectation. In addition, by the
definition of Ni, the expectation of Ni

2 is σN
2. Therefore,

E½xn2� ¼ C2ðn�2ÞðC � 1Þ2sN
2 þ C2ðn�3ÞðC � 1Þ2sN

2 þ � � � þ ðC � 1Þ2sN
2 þ sN

2 :

The common ratio of C2 is between 0 and 1. Therefore, as n goes to infinity,

E½x2� � lim
n!1

E½xn2� ¼
ðC � 1Þ2
1� C2

þ 1

� �
sN

2 ¼ 2� 2C
1� C2

sN
2 ¼ 2

ð1þ CÞsN
2:

Therefore, using Eq 13,

var½x� ¼ sx
2 ¼ E½x2� � ðE½x�Þ2 ¼ E½x2� ¼ 2

ð1þ CÞ sN
2: ð15Þ
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Assuming large enough n, the denominator of Eq 12 approximately becomes the variance of
x, or σx

2 multiplied by (n– 1), or

Xn�1

i¼1

xi
2 ffi ðn� 1Þsx

2 ¼ 2ðn� 1ÞsN
2

ð1þ CÞ : ð16Þ

The variance of x can also be simply obtained as a stable solution of

E½xiþ1
2� ¼ E½ðCxi þ Niþ1 � NiÞ2� ¼ E½xi2�;

or

E½C2xi
2 þ Niþ1

2 þ Ni
2 þ 2CxiNiþ1 � 2Niþ1Ni � 2CxiNi� ¼ E½xi2�: ð17Þ

From Eq 11, xi is a weighted sum of N1, N2, . . ., and Ni. Therefore, using Eq 14, the terms
with Ni+1 Ni and xi Ni+1 do not contribute to the expectation E[.] in Eq 17. In addition, as only
Ni

2 in the xi Ni contributes to the expectation, Eq 17 becomes

E½C2xi
2 þ Niþ1

2 þ Ni
2 � 2CNi

2� ¼ E½xi2�: ð18Þ

By definition, the expectation of Ni
2 is σN

2. Therefore, the expectation of x2, or σx
2 satisfies

C2sx
2 þ 2sN

2 � 2CsN
2 ¼ sx

2;

or

sx
2 ¼ 2� 2C

1� C2
sN

2 ¼ 2

1þ C
sN

2;

which is same as Eq 16. Then, the expectation of CYW becomes

E½CYW � ¼ E

Xn�1

i¼1

xixiþ1

Xn�1

i¼1

xi
2

2
66664

3
77775 ffi

E
Xn�1

i¼1

xixiþ1

" #

2ðn�1ÞsN 2

1þC

� � ð19Þ

The numerator of Eq 19 becomes

E
Xn�1

i¼1

xixiþ1

" #
¼ E x1x2 þ x2x3 þ x3x4 þ � � � xn�1xn½ �: ð20Þ

From Eq 11,

x1x2 ¼ ðC � 1ÞN1
2 þ N1N2

x2x3 ¼ ðC � 1Þ2CN1
2 þ ðC � 1ÞN2

2 þ aN1N2 þ bN2N3 þ cN1N3

..

. . .
.

xn�1xn ¼ ðC � 1Þ2C2n�5N1
2 þ ðC � 1Þ2C2n�7N2

2 þ � � � þ ðC � 1ÞNn�1
2 þ terms with NpNq ðp 6¼ qÞ:
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By Eq 14, only terms with Ni
2 contribute to the expectation E[.] in Eq 20, whereas terms

with Np Nq (p 6¼ q) do not contribute to the expectation. Therefore,

E
Xn�1

i¼1

xixiþ1

" #
¼ E½ðC � 1ÞN1

2�

þE½ðC � 1Þ2CN1
2 þ ðC � 1ÞN2

2�
..
. . .

.

þE½ðC � 1Þ2C2n�5N1
2 þ ðC � kÞ2C2n�7N2

2 þ � � � þ ðC � 1ÞNn�1
2�

ð21Þ

By definition of Ni, the expectation of Ni
2 is σN

2. Therefore, Eq 21 becomes

E
Xn�1

i¼1

xixiþ1

" #
¼ fðC � 1Þ

þðC � 1Þ2C þ ðC � 1Þ
þðC � 1Þ2C3 þ ðC � 1Þ2C þ ðC � 1Þ
..
. . .

.

þðC � 1Þ2C2n�5 þ ðC � 1Þ2C2n�7 þ � � � þ ðC � 1Þg � sN
2

ð22Þ

Eq 22 can be re-written as

E
Xn�1

i¼1

xixiþ1

" #

sN
2

¼ ðC � 1Þðn� 1Þ

þðC � 1Þ2C
þðC � 1Þ2C3 þ ðC � 1Þ2C
þðC � 1Þ2C5 þ ðC � 1Þ2C3 þ ðC � 1Þ2C
..
. . .

.

þðC � 1Þ2C2n�5 þ ðC � 1Þ2C2n�7 þ � � � þ ðC � 1Þ2C

ð23Þ

The sum of the geometric sequence becomes

C þ C3 þ C5 þ � � �C2m�5 ¼ 1� C2ðm�2Þ

1� C2
C:

Therefore, Eq 23 becomes

E
Xn�1

i¼1

xixiþ1

" #

sN
2

¼ ðC � 1Þðn� 1Þ þ ðC � 1Þ2 1� C2ðn�2Þ

1� C2
C þ 1� C2ðn�3Þ

1� C2
C þ � � � þ C

� �

¼ ðC � 1Þðn� 1Þ þ ðC � 1Þ2 C
1� C2

ðn� 2Þ � ðC2ðn�2Þ þ C2ðn�3Þ þ � � � þ C2Þ� 	
¼ ðC � 1Þðn� 1Þ þ ðC � 1Þ2 C

1� C2
ðn� 2Þ � C2

1� C2
ð1� C2ðn�2ÞÞ

� �
ð24Þ

Noise Induces Biased Estimation of the Correction Gain

PLOS ONE | DOI:10.1371/journal.pone.0158466 July 27, 2016 11 / 18



From Eqs 19 and 24,

E½CYW � ffi
E

Xn�1

i¼1

xixiþ1

" #

2ðn� 1ÞsN
2

1þ C

� �

¼ ðC2 � 1Þ
2

þ ð1� CÞC
2ðn� 1Þ ðn� 2Þ � C2

1� C2
ð1� C2ðn�2ÞÞ

� �
ð25Þ

This expression shows that the bias is hardly reduced, even when n is large. Assuming large
n,

E CYW½ � ffi C � 1

2
: ð26Þ

Note that the expectation of the estimate of C by the Yule-Walker method for large n is neg-
ative because 0< C< 1. This means that the estimation is severely biased, if we use the Yule-
Walker algorithm to measure the correction gain of the learning model. For a general autore-
gressive (AR) process, the Yule-Walker equation shows a finite bias [41, 42], but not to the
same extent. The substantial bias in this case originated from the anti-correlated noise added to
the linear relation between xi and xi+1. This contrasts with the added noise in the general AR
process that has no correlation.

Equation for the Improved Estimation
From Eq 25, for large enough n, the expectation of C can be written as

E½CYW � ffi
ðC2 � 1Þ

2
þ ð1� CÞC

2ðn� 1Þ ðn� 2Þ;

or

C2 þ ðn� 2ÞC � ðn� 1Þð1þ 2E½CYW �Þ ffi 0: ð27Þ

From Eq 26, the term 1 + 2E[CYW] is positive. Therefore, the quadratic equation (Eq 27) has
one positive root and one negative root. We are interested in the positive root, and the coeffi-
cient C is estimated as

C ffi
�ðn� 2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 2Þ2 þ 4ðn� 1Þð1þ 2CYWÞ

q
2

: ð28Þ

Accordingly, the true correction gain B can be approximated as

B ffi
n�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 2Þ2 þ 4ðn� 1Þð1þ 2CYWÞ

q
2

: ð29Þ

Simulation confirmed that Eq 29, the Adjusted Yule Walker or AYWmethod improves the
estimate. Fig 3 and Table 1 show that the bias was significantly reduced by the AYWmethod to
less than 5% as n increased. This improvement was neither affected by the type of the noise dis-
tribution, irrespective of whether the noise came from a normal, a uniform, or an asymmetric
lognormal distribution. It was also unaffected by the magnitude of the noise level σN.

If the actual noise variance is of interest, the time series of Ni can also be obtained in the fol-
lowing manner. The motor output xi is directly measured. After C is identified from Eq 28, the
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time series of (Ni+1 –Ni) can be computed from Eq 10. With an arbitrarily assumed value of N1,
Ni can be obtained. Then, N1 and Ni can be recomputed so that Ni has zero mean.

Discussion
A variety of studies on error-based adaptation and learning in computational neuroscience
have regarded the correction gains of the learning process as an essential piece of information.
These correction gains, feedback gains, or learning rates have been typically identified by least-
square curve fitting, frequently using the widely available Levenberg-Marquardt algorithm.
These methods were based on the premise that the effect of noise averages out by the regres-
sion. Indeed, the least-square curve fitting provides a reasonably accurate measure of the cor-
rection gain when the performance changes are considerably higher than the amplitude of
the noise processes. However, later in learning when performance approaches a plateau, we
showed that the noise in the system induces a substantial bias in the estimate of the correction
gain, when relying on conventional least-square regression. Using a simple autoregressive
learning model, we then devised an improved method that quantifies and corrects the bias.

Necessity of Improved Estimation Method
Our simulation results demonstrate that the conventional methods based on regression always
overestimate the correction gain. The noise induces uncertainty (i.e., non-zero variance in the
estimation) as well as a clear bias in the mean or expected value. As shown in Fig 3 and Table 1,
the bias can be substantial, even in the simplest case of a learning model. Furthermore, the bias
was not reduced by increasing the trial number n in the estimates by the Levenberg-Marquardt
least-square algorithm. The subsequent analytical derivation proved that the bias from a linear
regression method, such as the Yule-Walker equation, converges to a non-zero value as n
approaches infinity, as shown in Eq 26. The same behavior is the likely cause for the observed
bias in the Levenberg-Marquardt estimates, evidenced in our simulations. This robustness of
the bias against the data size highlights the serious limitation of the conventional estimation of
the correction gain.

A possible alternative to the least-square regression methods is the Expectation Maximiza-
tion (EM) algorithm that has been used to identify parameters of a stochastic model from the
observed data [43, 44]. The EM algorithm can reduce the bias due to noise with long enough
time series, but it cannot estimate model parameters that are assumed to be deterministic [33].
Consequently, for the simple iterative learning process as in Eq 7, which is a kind of Autore-
gressive Moving Average (ARMA) model, the parameter B cannot be estimated by the EM
algorithm [33]. Hence, other methods need to be identified.

Insensitivity of Bias to Noise Magnitude and Distribution
The results show that the bias due to conventional estimates does not depend on the magnitude
of the noise in the data. This robustness of the bias against the noise magnitude further under-
lines the importance of the bias reduction, suggesting that the bias needs to be adjusted, even if
the noise magnitude is relatively low.

Another important observation is that the bias is insensitive to the noise distribution. Most
of mathematical learning models have typically assumed white Gaussian noise, which is mathe-
matically well-defined and convenient to analyze. However, several studies convincingly sug-
gest that the noise distribution in biological systems is closer to an asymmetric lognormal
distribution rather than a Gaussian distribution [45–48]. The insensitivity of bias to the noise
distribution enables the AYWmethod to provide an improved estimation without relying on
the common but vulnerable assumption of most learning models.
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As the bias is induced by noise, it may appear necessary to identify the noise properties in
the data set to assess and eliminate the bias. However, our analytical analysis shows that we do
not need detailed knowledge of the noise properties to estimate the bias. Eq 25 demonstrates
that the bias does not depend on the noise level σN. In addition, we did not assume any specific
distribution of the noise to derive the closed form of the bias; we only assumed that the newly
added noise in the current trial is independent of the noise in the previous trial. This implies
that we can apply the same method for a variety of systems with different levels and distribu-
tions of noise. For example, we can use the same AYWmethod to estimate the correction gain
of young and healthy subjects or patients who may have different types and degrees of noise.

Considerations and Limitations
While the noise distribution is of no concern, our analysis assumes that the noise samples
added to each trial have no correlation. While the assumption of uncorrelated noise in human
movement has been generally accepted in learning models and is supported by some experi-
mental observations [45], other studies have also shown significant correlations, positive and
negative, in the variability of the motor output. For example, time series of stride intervals in
human walking and heart beats exhibit long-range correlations, suggesting that the variability
in those motor behaviors cannot be modeled as white noise [49, 50]. Hence, caution is neces-
sary when applying the AYWmethod to a system with correlated or anti-correlated noise.

However, we need to distinguish the variability of the observed motor output from the
assumed noise that causes the variability. In Eq 7, the variability of xmay exhibit correlation,
even if N has no correlation. Actually, a recent study showed that the long-range correlations
in stride intervals of human walking and other rhythmic motor behavior may be explained by
uncorrelated noise filtered by stable rhythmic dynamics of the sensorimotor system [51]. The
assumption that the original unfiltered source of variability is white noise is also common and
highly effective in control and signal processing theory as well as in computational biology. It is
also the basis of the widely-applicable Kalman filter [52]. Hence, the observed correlated vari-
ability in the motor output does not invalidate the AYWmethod, which assumes uncorrelated
noise.

The AYWmethod significantly reduces the bias when the length of the time series is suffi-
ciently long (n� 400). However, the accuracy of the AYWmethod is relatively low when the
length of the time series is short (n	 50), although the bias is always smaller than the bias in
the least-square method (see Table 1). This inaccuracy with insufficient data is due to the fact
that the bias reduction by the AYWmethod depends on Eq 16, which assumes large n. Future
work may resolve this inaccuracy when only insufficient data are available.

While the AYWmethod provides a less biased estimation, it shows higher variability than
the least-square method, particularly when the size of the data is small. This high variability
may limit the efficacy of the AYWmethod when a distinction between correction gains of two
groups is required and only a small data set is available. This trade-off between bias and vari-
ance has already been identified in other estimation methods and discussed in prior studies
[53, 54]. Development of a new method that optimizes the efficacy considering the trade-off
between bias and variance is deferred to future work.

Like many other studies, our approach assumed that the correction gain or the learning rate
is constant. This assumption, though widely used, may not be strictly accurate; the learning
rate is approximately constant for small errors, but may change when the errors become larger
[55, 56]. This study addresses the bias of the correction gain estimation when the learning pro-
cess approaches skilled levels or steady state, where small errors are prevalent. Therefore, the
assumption of a constant correction gain is sufficiently valid within the scope of this study.
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For initial study, our analysis used a highly simplified one-dimensional model of motor
learning, and therefore, generalization to other models and multi-dimensional cases will
require further considerations. For example, for rapid pointing movements, van Beers showed
that this simple model was insufficient to account for the observed structure of variability [13].
However, our chosen model contains the essential components of motor learning: feedback
through error information and unplanned variability due to noise. This basic simple learning
model was used to clearly demonstrate the influence of noise on estimation.

A Representative Problem for the Influence of Noise on Data Analysis
The observed bias is an example for how the dynamics of noise can introduce significant dis-
tortions in the analysis. It is widely assumed that noise is “neutral” if it has zero mean, as the
effect of noise averages out with a large amount of data. However, the accumulated effect of
noise may not always remain neutral, if the noise is processed by the analysis, such as in the
conventional least-square curve fitting. Another non-intuitive effect of noise on estimation was
highlighted in a recent study on Floquet multipliers, a method for assessing orbital stability of
rhythmic movements. Noise induces a bias in the estimation of orbital stability [57]. Another
example for the surprising effect of noise is the two-thirds power law that is widely observed in
human movements [58–61]. It has been shown that this subtle relation between velocity and
curvature can be generated by Gaussian noise alone [62]. Hence, experimental assessment and
interpretation of the power law as a fundamental principle of movement generation needs
caution.

Noise is ubiquitous and deserves more attention as its dynamics may influence the estima-
tion of the “deterministic” elements of the system. Our study is only one example to show that
the common belief that the accumulated effect of noise is neutral needs revision. More work is
needed to examine more complex learning models and the estimation of noise processes from
the data.
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