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Abstract Optimal user selection is important in increasing

the capacity of Multi-User Multi-Input Multi-Output Wi-Fi

networks, yet it faces a significant challenge; the multi-user

diversity gain can be overwhelmed by the formidable

Channel State Information (CSI) acquisition overhead. To

lessen the overhead, existing schemes adopt the greedy

user selection which generally takes the projected norm as

the user selection metric, since it considers both the

channel power gain and the orthogonality. However, the

projected norm suffers from occasional poor user selection,

since it does not take the optimal sum capacity gain into

account. This paper proposes a new distributed user

selection protocol called DiFuse. To employ the sum

capacity gain as the user selection metric in DiFuse, each

user cleverly computes its own estimated capacity gain by

overhearing the CSI feedback from others. The users then

simultaneously transmit their feedbacks at the frequency

domain via the distributed feedback contention, which

effectively reduces the feedback overhead. Then the AP

collectively utilizes them for user selection that achieves

the maximum positive increment to the sum capacity gain.

We implemented the prototype of DiFuse on the USRP

N210, and evaluated its performance via both testbed

experiments and trace-driven emulations. The results

showed that DiFuse outperforms the throughput of the

existing scheme called OPUS by 1.8� on average, while

maintaining better fairness.

Keywords MU-MIMO � User selection � Scalability � CSI
feedback overhead

1 Introduction

Multi-User Multi-Input Multi-Output (MU-MIMO) tech-

nologies have emerged as a key component to increase the

capacity of wireless networks. The MU-MIMO scheme ei-

ther simultaneously transmits to multiple users at the same

time or focuses energy towards a single user to enhance the

data rate. Cellular technologies such as LTE systems adopted

the MU-MIMO technology, and due to its advantages, MU-

MIMO has recently been incorporated to the 802.11ac and

802.11ax Wi-Fi standard, as an optional feature [1–3]. The

main reason that it is selected as an option is because multi-

streaming to multiple users inherently requires large control

overheads in the 802.11 based MAC.

Optimal user selection is essential for increasing the

capacity of MU-MIMO Wi-Fi networks. However, deter-

mining an optimal user set is difficult and impractical since

it requires an exhaustive search over all possible user and

antenna sets, and its search space is
PM

m¼1

K

m

� �

, where

K and M are the number of users and the number of Access

Point (AP) antennas, respectively. Many researchers have

developed greedy user selection algorithms aimed to pro-

vide sub-optimal performance while reducing the feedback

& Joon Yoo

joon.yoo@gachon.ac.kr

& Chong-kwon Kim

ckim@snu.ac.kr

Kyu-haeng Lee

khlee@popeye.snu.ac.kr

1 Samsung Electronics, Seoul, South Korea

2 Department of Software Design and Management, Gachon

University, Seongnam, South Korea

3 Department of CSE, Seoul National University, Seoul,

South Korea

123

Wireless Netw

DOI 10.1007/s11276-016-1328-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s11276-016-1328-6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11276-016-1328-6&amp;domain=pdf


overhead as well as computational burden [4–9]. The main

idea behind the most prior schemes is to incrementally

select a user in each iteration by some selection criteria

instead of conducting exhaustive search for all user and

antenna set combinations. For example, one user is selected

in each iteration such that the new user minimizes inter-

ference to previously selected streams.

To accomplish the benefit of the MU-MIMO user

selection in the aforementioned algorithms, we need to

exploit the multi-user diversity gain; at a given time, the

AP can select the best user (e.g., a user with favorable

channel conditions) among candidates to improve the

system throughput. To leverage multi-user diversity, two

key challenges should be addressed: reducing the Channel

State Information (CSI) feedback overhead and employing

the proper scheduling policy for user selection.

First, the downlink CSI of the candidate users must be

efficiently fed back to the AP. Different from cellular

systems [10] where separate control channels are used to

report the CSI, current 802.11ac Wi-Fi systems use a series

of poll-based CSI feedbacks for each user [1], as shown in

Fig. 1. Furthermore, the CSI feedback is transmitted at the

low basic rate (e.g., 6.5 Mbps), and also grows as the

number of transmitter/receiver antennas, quantization level

and subcarrier group size increase. The CSI feedback

overhead can reach up to 25� compared to the data

transmission time in case of 160 MHz of bandwidth and

4� 1 MIMO [11]. Such excessive overhead could easily

overwhelm the multi-user diversity gain even under opti-

mal user selection.

Second, it is vital to select the best user in every user

selection step to leverage the MU-MIMO capability by

employing the appropriate user selection metric. The pro-

jected norm, which is defined as the norm of the user

channel projected to the orthogonal subspace of the pre-

viously selected user channels [6], is widely used, since it

considers both the channel power gain and the orthogo-

nality. However, in some cases, the projected norm based

scheme may result in undesirable user selection, due to the

fact that it does not consider how the newly joined user

channel impacts the already selected ones, if there are any.

This may fail to maximize the sum-capacity in each iter-

ation, and occasionally cannot guarantee a positive incre-

ment in the sum-capacity. To handle this issue, the AP that

employs the norm-based scheme must additionally com-

pute the sum-capacity to assure that it gives positive

increment. Here, the feedback report may have induced

unnecessary overhead, since the user may not be selected.

In this paper, we present a new user selection protocol

called DiFuse (Distributed frequency domain user selec-

tion) that uses the capacity gain as a scheduling metric in

user selection. The key mechanism of DiFuse is to greedily

select a user at each iteration which yields maximum

positive increment to the sum-capacity of the network.

Given a user set, the capacity gain of a new user is defined

as the increment in network capacity achieved by including

the new user to the user set. DiFuse, as its name suggests,

makes the scheduling decisions in a distributed manner.

Each user cleverly computes its expected sum-capacity

gain by overhearing the CSI feedback transmissions from

other users. Then each user sends its sum-capacity gain in a

simplified format called a Selection REQuest (SREQ); the

user marks on one particular subcarrier of an OFDM

symbol depending on the value of sum-capacity gain. The

users concurrently transmit the SREQs via distributed

feedback contention, which is devised to effectively reduce

feedback contention via dynamic threshold design and

frequency domain contention [12–14]. The AP receives the

SREQs and collectively uses them to select the user that

gives the maximum positive increment to the sum-capacity

of the network, then polls the user for the actual CSI

transmission.

We implement the DiFuse prototype on the USRP N210

and GNURadio [15], and conduct testbed experiments and

trace-driven emulations. The results show that DiFuse

obtains higher throughput compared to conventional

schemes such as SUS [6] and OPUS [9], as well as

802.11ac [1]. Further, DiFuse gives a better degree of

Fig. 1 MU-MIMO transmission

in 802.11ac. The AP randomly

polls a set of users for MU-

MIMO transmission
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proportional fairness over other schemes, especially when

users experience different channel qualities.

The remainder of the paper is organized as follows.

Section 2 provides the related work and we give some

background of MU-MIMO and user selection in Sect. 3.

We discuss the DiFuse mechanism in Sect. refs4. Section 5

shows the performance evaluation and we finally conclude

our paper in Sect. 6.

2 Related work

In this section, we review the recent related work on the

user selection schemes and channel feedback overhead

reduction techniques.

2.1 User selection schemes

In user selection, it is challenging and often impractical to

determine the optimal user set due to the large search

space. Therefore, some protocols based on heuristics have

been proposed. The basic idea of these proposals is to

reduce the computation and feedback overhead by incre-

mentally selecting a user in every selection round. ZFS [4]

chooses a user that maximizes the sum-capacity. In GWC-

ZFBF [5], the AP chooses a user with the largest channel

power gain. SUS [6] finds a user with the largest norm of

the projected channel to the orthogonal subspace of the

previously selected users. Jin et al. [7] propose a volume

metric as the product of the diagonal elements of an upper-

triangular matrix by performing QR factorization to the

selected user channels. The authors try to achieve less

computational effort compared to SUS. GUSS [8] consid-

ers delete and swap operations to guarantee positive

increment of channel capacity in each selecting round. The

aforementioned proposals, however, are impractical in a

sense that they simply assume that full CSI feedback from

all users is just given prior to the user selection.

OPUS [9] is a user selection scheme for MU-MIMO Wi-

Fi systems that bears the most similarity to our work. In

OPUS, users estimate their potentials (e.g., SINR) in each

round to boost the capacity and initiate a distributed

feedback contention. The potential measurement

scheme closely follows the main idea of the SUS (i.e., the

largest projection power). However, the result based on the

projected norm may not satisfy the maximum sum-capac-

ity. Also, the time domain contention employed in OPUS

may cause non-negligibly high overhead.

MIMOMate [16] and Signpost [17] are user grouping

protocols for uplink MU-MIMO. The main idea of

MIMOMate is to compute proper user transmission groups

that the authors call ‘‘MIMO-Mate’’ and to let users join

the concurrent transmission according to their MIMO-Mate

relation. To do this, a MIMOMate AP should config-

ure MIMO-Mate relations and it needs to announce the

result to its users. In Signpost, users use angles between

their channel and some predetermined orthogonal direc-

tions to contend for the uplink transmission opportunity. In

particular, the authors propose a contention scheme utiliz-

ing both frequency and time domain resources which they

call 2-D contention. Though these schemes are designed

for the uplink case, we additionally compare their

throughput performance with DiFuse, as will be shown

later.

2.2 CSI overhead reduction techniques

We should carefully consider the impact of CSI feedback

overhead, or else, we may fail to realize the multi-user

diversity gain in MU-MIMO scheduling. One way of

reducing the CSI overhead is to use compression based on

the codebook and quantization techniques [1, 10, 18],

which reduces the number of bits in the CSI feedback

frame. In Wi-Fi systems, the CSI feedback can be com-

pressed in three dimensions: at the time, frequency, and

quantization level. However, it is not easy to select the

optimal compression level and also the compression may

result in throughput loss since fewer CSI feedback may

offer diminishing returns.

We can further reduce the overhead by decreasing the

number of feedbacks. One way is to employ threshold

based techniques using S(I)NR [19, 20] or CNR (Carrier-

to-Noise Ratio) [21]. Otherwise, we can exploit the sta-

tistical model of channel coherence time for the similar

purposes [11]. Although, these schemes reduce the num-

ber of feedbacks, the performance may be degraded due

to the reduced CSI feedback. Furthermore, the instanta-

neous CSI must be updated as a mandatory feature in

802.11ac [1] frame aggregation to successfully decode all

the frames.

3 Background and motivation

3.1 System model

In this paper, we consider a single Basic Service Set (BSS)

Wi-Fi network, where an M-antenna AP and K single-an-

tenna user stations communicate with each other, as shown

in Fig. 2. Assume that the users experience independent

Rayleigh fading. In particular, the channel gain from the

mth antenna of the AP to the kth user, denoted by hkm, is

assumed to be an independent zero mean complex Gaus-

sian random variable with unitary variance. Then, we can

characterize the downlink channel of user k, i.e., hk, as a

zero mean complex Gaussian channel vector.
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In MU-MIMO, the multi-antenna transmitter, e.g., AP,

uses precoding to send multiple data streams between

several users at a given instant. Similar to most recent

schemes, we incorporate Zero-Forcing Beamforming

(ZFBF) as the precoding strategy, since it effectively

removes the mutual interference among concurrent trans-

missions by using a low-complexity precoding matrix

computation. In ZFBF, the precoding vector of one user is

selected to be orthogonal to the channel vector of the other

user. In particular, the precoding matrix for the transmis-

sion group S, denoted by W(S), is obtained as:

WðSÞ ¼ HðSÞy ¼ HðSÞ�ðHðSÞHðSÞ�Þ�1; ð1Þ

where ð�Þy, H(S), and H� stand for a pseudo-inverse, the

channel matrix of S, and the conjugate transpose of H.

Let X(S) be the signal vector to be transmitted for S.

Then, the precoded signal vector, denoted by

XðSÞ0 ¼ WðSÞXðSÞ, has an average power constraint of

E½XðSÞ0�XðSÞ0� �P, where P and E½�� are the maximum

transmitting power of the AP and the expectation operator,

respectively. The sum-capacity for S, denoted by C(S), is

modeled as:

CðSÞ ¼ max
Pj:
P

j2S c
�1
j
Pj �P

X

j2S
logð1þ PjÞ; ð2Þ

where cj ¼ 1

wjk k2 is the effective channel gain of jth user in

S and wj is an element of W(S).

The main objective of the user selection problem is to

maximize the sum-capacity for a user group S:

maximize
S� 1;...;Kf g: Sj j �M

CðSÞ: ð3Þ

Generally, (3) is accomplished by taking two steps: optimal

user selection and power allocation. Note that the water

filling is well known for the optimal power allocation

approach [22]. In this paper, we assume the equal power

distribution scheme for simplicity.

In OFDM systems the subcarriers may have different

capacities due to frequency diversity, so it is hard to

directly adopt (2) in the practical system. To handle this,

we use a single metric to integrate all capacity values over

the subcarriers. There are several ways to do this. One may

simply average out the SNRs of the subcarriers as in OPUS

[9] and Signpost [17]. Instead, we use ESNR (Effective

SNR) [23] which can account for all the SNR values of the

subcarriers. To elaborate on how ESNR works and evaluate

its performance is out of scope of this paper, but we briefly

explain how we adopt it for the capacity estimation.

Let P
½n�
j be the SNR on the nð2 NÞth subcarrier of the jth

user channel. Then, the effective SNR of this user (Pj) is

defined as the follows:

Pj ¼ B�1 1

N

X

n

B P
½n�
j

� �
 !

; ð4Þ

where Bð�Þ and Bð�Þ�1
denote BER function of SNR and its

inverse function, respectively [23].

Now, we compute the desired capacity under the OFDM

based system by using (2) and (4). Note that the ESNR can

also be used for rate adaptation.

3.2 Motivation

For optimal user selection, we should consider all possible

user groups, compare their capacities, and choose one

group which gives the highest capacity. However, such a

naı̈ve and exhaustive search over the entire user set [i.e.,

PM
m¼1

K

m

� �

] obviously results in very high feedback

overhead as well as computation, especially when K is very

large. To reduce the overhead, many schemes adopt the

incremental user selection approach: the AP or BS (Base

Station) incrementally chooses a user by employing a use

selection metric in each iteration, e.g., channel strength,

Fig. 2 MU-MIMO downlink system with an M-antenna AP and K single-antenna user stations
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orthogonality (angle)1, (projected) norm and capacity gain.

Figure 3 compares the normalized capacity gain of the

four selection metrics (random, maximum power, maxi-

mum angle, maximum projected norm), computed over

that of the optimal selection. We select one user randomly

as the first user and then, choose the other users according

to the selection metric. The same first user is chosen for

each metric, for fair comparison. We set M as 2 and K as

20. For the optimal selection, we consider the capacity gain

among all possible user groups. We use two types of traces

as input: real trace (‘R’) and synthetic trace (‘N’), where

the real trace is obtained from the USRP testbed while the

synthetic trace consists of Gaussian random channel gains

(Fig. 4).

As shown in the result, in random and max-power

selection schemes, only about 15 and 20 % result the same

as the optimal, respectively. The max-angle metric is better

by showing 27–46 % of the optimal. Although the pro-

jected norm delivers the best performance (80 % result the

same as the optimal), it gives around 20 % of non-optimal

sum capacity. Such a performance loss happens because

sometimes a user with a high power gain but small

orthogonality could be selected. Such a small orthogonality

may induce significant power loss to the previously

selected user channels, as shown in the example in Fig. 5.

Though for a given user when M ¼ 2, the capacity gain

always selects the optimal user, but when M[ 2 the ben-

efit may decrease due to the nature of incremental user

selection. Figure 4 shows the average capacity gain of the

capacity gain metric against other metrics according to M.

In the case of norm [Fig. 4(a)], the gain first increases

drastically until M ¼ 4, and after that begins to decrease.

This is because when M is small, the impact of the power

loss incurred by improper users selected by norm is rela-

tively bigger than the case of large M. For the other metrics

[Fig. 4(b)], the capacity gain metric shows much better

performances as M increases.

Unfortunately, exploiting the capacity gain as a selec-

tion metric is a challenging task. First, to compute the

capacity gain, all CSI feedbacks from users should be sent

prior to the selection, which significantly increases a MAC

overhead. One alternative is to compute them in a dis-

tributed manner. In other words, we can let each user

estimate its own capacity gain. To realize this, users should

know the CSI of the previously selected users, and thus the

AP may need to send them back to the remaining users,

which brings a large amount of frame exchanges. Instead of

explicitly sending the CSI feedbacks, the OPUS [9]

performs orthogonality probing to realize distributed user

selection. However, since the users do not have the CSI of

others, the OPUS has no choice but to use the projected

norm. Second, an effective contention mechanism should

be supported for distributed user selection. A time-domain

contention scheme adopted in OPUS [9] is simple and

intuitive, but the contention overhead is non-negligible, as

mentioned earlier.

In summary, the main goal of this paper is to propose a

protocol that enables the capacity gain metric for user

selection in a scalable manner and at the same time

addresses the time-domain contention overhead issue. Our

proposed scheme, DiFuse, meets both requirements by

using overhearing-based CSI acquisition and frequency

domain signaling. We elaborate the details of our

scheme in the next section.

4 Distributed frequency domain user selection

4.1 Protocol overview

Figure 6 illustrates the operation of DiFuse. Let us assume

User 1 was first selected (we will explain the first user

selection in the later subsection.). User 1 sends its CSI

report2 to the AP, and all remaining users (k ¼ 2; . . .;K)

overhear3 it and compute the capacity gain by comparing

the sum capacities of two possible user groups: with and

without itself. Then, the users concurrently send the gain

value via SREQ to the AP, only if the gain is above 1. This

implies that a user can become a candidate only if it gives a

positive increment to the sum-capacity. Furthermore, since

the users with gain values under 1 do not transmit the

SREQ, the contention can be reduced. Say that User K has

the highest capacity gain among all remaining users, i.e.,
Cðf1;KgÞ
Cðf1gÞ [ Cðf1;kgÞ

Cðf1gÞ , k 2 f1; 2; . . .;Kg n f1;Kg. Then, in the

second polling round, the AP polls User K via Selection

REPly (SREP) as the next user, and in turn, User K trans-

mits the actual CSI feedback. DiFuse exploits the fre-

quency domain contention to efficiently integrate the

concurrent SREQ transmissions from the users. This

1 Note that the angle (h) between the channels of users is computed

by sin h ¼ jh?�hj
kh?kkhk, where h is the channel vector of the target user and

h? is the vector that is orthogonal to the subspace spanned by the

already selected user channels.

2 There are two feedback mechanisms, explicit and implicit, but we

do not consider the implicit CSI feedback scheme in this paper, since

in recent standards and systems only explicit feedback is used. In fact,

while in 802.11n, both implicit and explicit CSI feedback are allowed,

in 802.11ac, transmit beamforming is limited to only the explicit

feedback mechanism [1, 3] (implicit feedback is dropped.)
3 Recent MIMO researches use the overhearing scheme [16, 24, 25];

in MIMOMate [16] and TurboRate [24], overhearing is used for users

to join uplink concurrent transmissions; in CoaCa [25] users should

decode other users channel information to realize coordinated

interference cancellation.
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process repeats while the remaining Degree of Freedoms

(DoFs) are available.

4.2 Distributed feedback contention

We conduct the distributed feedback contention at the

frequency domain. The capacity gain of each user is first

mapped to a particular subcarrier of an OFDM symbol

(setting a bit ‘‘1’’), and then the users concurrently

transmit the symbols via SREQ. The AP can detect these

combined multiple SREQs by using the typical FFT. An

SREQ lasts only for a few OFDM symbols, and so its

overhead is much smaller than that of the time-domain

contention [9]. Note that multiple OFDM symbols could

be misaligned due to several reasons such as different

propagation delay or switching delay, but the total

misalignment has been shown to be tightly bounded

[12–14]. As long as the misalignment is less than the

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3 Normalized capacity gain of each selection metric. We set

M ¼ 2;K ¼ 20 and use two types of traces: real trace (‘R’) and

synthetic trace (‘N’). a Cran=Copt, ‘R’. b Cpow=Copt, ‘R’. c Cang=Copt,

‘R’. d Cnorm=Copt, ‘R’. e Cran=Copt, ‘N’. f Cpow=Copt, ‘N’. g Cang=Copt,

‘N’. h Cnorm=Copt, ‘N’

(a) (b) 

Fig. 4 Average capacity gain of the capacity gain metric against other metrics according toM. Zero-capacity cases are excluded from computing

the average. a Norm case. b Other cases
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Cyclic Prefix (CP), the AP can decode misaligned

signals.

In making an SREQ, DiFuse uses a simple threshold

based mapping scheme. We assume that for each polling

round i, each data subcarrier n 2 N has its virtual threshold

Ei;n (we call this a slot threshold). For all i and n, all slot

thresholds satisfy the following condition:

1�Emin
i �Ei;n �Emax

i ð5Þ

Ei;n\Ei;nþ1; ð6Þ

where Emin
i and Emax

i are the minimum and maximum slot

threshold of round i, respectively. Recall that Emin
i cannot

be\1.

We illustrate an example of slot thresholds in Fig. 7.

There are several slot thresholds for each selecting round i,

and when making SREQ, DiFuse users use one of them. In

particular, at the beginning, users use slot thresholds with

d ¼ 0:99, and according to SREQ transmission results,

users can use other threshold with the decreased d. The
detailed description of d and the slot threshold is given in

the next subsection. Given slot thresholds, a channel gain

of User k ðki;kÞ is mapped to nth subcarrier, if it satisfies the

following condition:

Ei;n � ki;k\Ei;nþ1; ð7Þ

where Ei; Nj jþ1 ¼ 1.

Since the slot thresholds of round i are monotonically

increasing with n, as shown in (5) and (6), a user with a

higher capacity gain will activate a higher subcarrier index

on SREQ. When users send SREQs, according to the

capacity gain status of users, one of following cases may

occur.

– Success case A success case happens only when a

single user is associated with the highest activated

subcarrier index of the combined SREQ. The DiFuse

AP extracts the SREQ of the selected user from the

combined SREQ, which we call SREP-I, which is then

broadcast to all remaining users. The user checks if

SREP-I matches the previously sent SREQ, if so, then

it transmits the actual CSI feedback.

Example Let us assume that the capacity gain of User 2

and User 3 are 1.750 and 1.703, respectively. Then,

with slot thresholds of d ¼ 0:99 and i ¼ 2, users will

send their SREQs to the AP as shown in Fig. 8(a).

Since only User 2 is associated with the highest

activated subcarrier index, the contention is success-

fully resolved.

– Collision case A collision case happens when more

than one users are associated with the highest activated

subcarrier index of the combined SREQ. Since the

SREQs do not include any user information such as

user ID or address, the SREP-I will invoke multiple

users to send their CSI feedbacks at the same time. If

the AP fails to apprehend the received CSI due to the

collision, it just quits the user selection procedure and

starts the data transmission for the already selected

users.

Fig. 5 An illustrative example of the projected norm based

scheme when M=2 and K=3. We assume that User 1 was already

selected. cða;bÞ denotes the channel of user a projected to the

orthogonal subspace of channel of user b. User 2 will be selected if

we select the user with the largest projected norm, i.e., cð2;1Þ [ cð3;1Þ.
However, the actual sum-capacity becomes bigger when User 3 is

selected instead of User 2, i.e., log cð1;2Þ þ log cð2;1Þ\ log cð1;3Þ
þ log cð3;1Þ

Fig. 6 Overview of DiFuse

operation. The poll and CSI

feedback exchanges between

the AP and users are conducted

via SREQ/SREP based on

frequency domain contention.

DiFuse requires up to M polling

and feedback frames to achieve

the user selection gain

Wireless Netw

123



Example Let us assume that the capacity gains of User

2 and User 3 are 1.75. Then, their SREQs will be the

same and finally CSI collision will occur, as shown in

Fig. 8(b).

– Idle case An idle case happens if there are no

associated users for SREQ, which means ki;k\Emin
i ,

for all users [Fig. 8(c)]. Therefore, in this case, the

SREQ transmissions do not occur. Instead, after

timeout (2 SIFS), the AP transmits the pre-defined

OFDM symbols (we call this SREP-II) to inform the

users of the idle case. Compared to the collision case,

the idle case hardly affects the system performance,

since the transmission times of SREQ and SREP are

very short (a few microseconds per each). Based on this

fact, we allow users to perform re-mapping and re-

transmission of SREQs again, when a idle case

happens. Specifically, in each retry, users make SREQs

with different slot thresholds. Note that the number of

retries is limited by the pre-defined threshold. The

SREP-I and SREP-II may require some modifications

to the legacy standard, but we note that this change can

reduce up to 3 OFDM symbol transmissions, compared

to the legacy polling frame.

Example Let us assume that the capacity gains of User

2 and User 3 are 1.690 and 1.691, respectively. With

slot thresholds of d ¼ 0:99 and i ¼ 2, each user cannot

generate SREQ because their capacity gains are too

low. After receiving SREP-II, users regenerate SREQs

with a decreased d (e.g., 0.95). Here, users can

successfully generate SREQs and User 3 will be

selected as the ith user, as shown in Fig. 8(c).

4.3 Slot threshold design

To maximize the number of success cases, we devise an

empirical method to dynamically set the slot thresholds of

DiFuse. We address several challenges to accomplish this.

First, it is not easy to know the exact channel status of users

before the user selection. For this reason, we set slot

thresholds empirically from the channel status statistics. To

do this, the AP collects the channel status of the users and

computes the capacity gain distribution. We provide an

example of the capacity gain distribution in Fig. 9. Note

that the capacity gain distribution is computed offline.

Second, it is difficult to reduce both collision and idle cases

since we could not estimate the dynamics of user channels.

Thus, we aim to avoid only collision cases, in that the penalty

of the idle case is far smaller than that of the collision case. To

accomplish this, we let the distance between Emin
i and Emax

i be

relatively short. However, if the two values are too close

together, it decreases the multi-user diversity gain because it

is likely to have very few or even no associated users between

the two values (i.e., idle case). On the other hand, if the two

values are too far apart, it increases the probability that more

than one users are associated with the same activated sub-

carrier (i.e., collision case).

Based on the above insight, we allow multiple slot

thresholds for one selection round. In particular, we first fix

Emax
i (Emax

i is set to F�1
i ð1Þ, since it reflects the expected

gain that the system can obtain) and make several Emin
i

values according to d (seed parameter) as follows:

Emin
i ¼ F�1

i ðdÞ; ð8Þ

where Fi is the CDF of capacity gain distribution for

selection round i.

Since the collision probability decreases with d, we set

the initial d as 0.99. After that, if an idle case happens, d is

decreased and users retry SREQ transmission with slot

thresholds of the new d. In our case the minimum available

value of d (denoted by dthr) is 70 % (F�1
4 ð0:7Þ ’ 1 (see

Fig. 9).)

Once Emin
i and Emax

i are given, other remaining thresh-

olds can be determined in various ways. For example, the

gap between the thresholds may increase or decrease

according to some functions (e.g., ‘linear’, ‘exponential’),

or we can make it by reflecting the capacity gain distri-

bution itself (we call this ‘dist’ design). Figure 10 shows

the examples of slot thresholds according to different

mapping designs. As we will show later in Fig. 18, the

performance of ‘dist’ design is better than that of ‘linear’

design. After determining a set of slot thresholds, the

DiFuse AP periodically broadcasts them to all users. Note

that we do not need to broadcast slot thresholds for every

packet transmission.

Fig. 7 The main concept of slot thresholds of DiFuse. We generate

several slot thresholds for idle case. Here d presents a seed parameter
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4.4 Proportional fair selection

The fairness among users is an important factor in com-

munication systems. We introduce DiFuse-PF which con-

siders the proportional fairness based on DiFuse. DiFuse-

PF uses the following utility to select users:

Uk ¼
T k

Rk

; ð9Þ

where T k, Rk are the current available data rate and

average data rate of user k, respectively.

The main difficulty of implementing the proportional

fair selection lies in the fact that the AP does not know the

instantaneous data rates of the users (T k) when the decision

has to be made. However, in DiFuse-PF, each user can

easily estimate T k from the sum-capacity computation in

the polling phase. Moreover, the DiFuse-PF users must use

(a)

(b)

(c)

Fig. 8 Three cases of SREQ

transmissions. a Success case.

b Collision case. c Idle case
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the gain of (9) to mark the subcarrier in their SREQs.

Figure 11 shows the utility gain distribution. From the

result, we see that the utility gain distribution has a similar

pattern with the capacity gain distribution in Fig. 9, but it

has a different scale. The remaining procedure is essen-

tially the same with the technique described in 4.3.

4.5 First user selection

The aforementioned user selection of DiFuse actually starts

from the second user, but the performance of DiFuse may

also depend on how the first user is selected. Unfortunately,

optimally selecting the first user is difficult since no CSI is

available at the time of user selection. In other words, the

AP, without any instantaneous channel information, must

select a first user to send the CSI feedback.

To handle this issue, DiFuse and DiFuse-PF refer to the

statistics of the previous channel status of the users, for the

first user selection. More specifically, to maximize the

sum-capacity, the user with the largest channel gain will be

selected as the first user, similar to SUS [6], while in

DiFuse-PF, the user with maximum utility (9) will be

chosen to achieve proportional fairness. This method

should work well when transmissions of the AP happen in

channel coherent time which typically ranges from 15 to

100 ms [9, 11, 26]. We summarize the metric comparison

of several user selection protocols stated so far in Table 1.

4.6 Discussions

4.6.1 Gain reduction compared to the optimum

DiFuse may not give the optimal result due to the nature of

the incremental selection procedure. To obtain better

capacities, we may need an additional procedure to switch

the existing selected users with new users, similar to GUSS

[8]. However, this may lead to more interactions between

the users and an AP, thus resulting in higher overhead and

diminishing the achieved gain.

4.6.2 Computational complexity

In computing the sum-capacity, the complexity mainly lies

on the channel inversion. For a subchannel, the complexity

for channel inversion is OðM3Þ, in the worst case where

Fig. 9 Capacity gain distribution for M ¼ 2 and 4. As the selection

round advances, the average capacity gain decreases. This result is

predictable, because the power allocated to each user is reduced as a

user group size increases

(a) (b)

Fig. 10 Examples of slot thresholds for different mapping configurations. In the ‘dist’ design, gaps between slot thresholds are determined by the

capacity gain distribution, while in the ‘linear’ design, gaps are determined to be equal. a 2nd selection round. b 4th selection round
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M=|S|. According to the recent result [26], the absolute

processing time is actually affordable when M is modest

(\50). For example,M=jSj\12, the channel inversion only

takes merely 10 ls.

4.6.3 Selfish user behavior

A selfish user could manipulate the SREQ to be selected

for the MU-MIMO transmission by setting a bit on the

highest subcarrier index. However, the DiFuse AP can

easily detect such selfish user behavior by comparing the

actual CSI feedback and the user’s SREQ value.

5 Performance evaluation

In this section, we first evaluate the frequency domain

contention scheme through the benchmark testbed. Then

we evaluate the system-level performance via the trace-

driven emulations.

5.1 Micro benchmark

5.1.1 Benchmark testbed setup

We implement the USRP/GNURadio testbed on OFDM

PHY of 64 FFT size and 48 data subcarriers [15]. All nodes

are equipped with USRP N210 on SBX daughterboard and

work on 10 MHz bandwidth4. The AP is equipped with

M ¼ 2; 4 antennas and the user nodes are randomly located

as shown in Fig. 12. In USRP/GNURadio testbeds, real-

time experiments generally have limitations; when the

software radios exchange signal samples between the host

and the RF front end, it incurs very high latency [27]. This

limitation exacerbates under larger number of K. For this

reason, we evaluate the performance of frequency domain

contention under the USRP testbed, and conduct remaining

parts as a trace-driven emulation approach similar to recent

experimental works [11, 12, 14, 23].

5.1.2 SREQ detection

To evaluate the feasibility of multiple users simultaneously

sending the SREQ, we measure the SREQ detection

probability by the AP. We let 8 users each transmit the

SREQ to the 4-antenna AP under two different circum-

stances. For similar case, the difference between the

maximum and minimum received signal power is less than

5 dB, and otherwise it is different case. To control the

dedicated power levels, we make gain adjustments using

the transmit power control before starting the real

4 In trace-driven emulations, the bandwidth is set to 20 MHz.

Fig. 11 The gain distribution of the proportional fair utility for

M ¼ 4

Table 1 Metric comparison between user selection protocols

First user selection ið[ 1Þth user selection

SUS [6] ckk k2 ckk k2

OPUS [9] Random SINR

OPUS-PF [9] 1
Rk

SINR

DiFuse hkk k2 kk

DiFuse-PF Uk Uk

Fig. 12 Experiment environment
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measurements. As for SREQ, we assign different subcarrier

indexes from {10,13,ldots,40} for each user. However, four

indexes (31,34,37,40) are assigned to the last user. Also all

8 users are connected to a central controller to achieve

transmission synchronization.

The FFT result examples regarding the two cases are

compared in Fig. 13. The threshold for detection is set to

10 dB over noise level. As expected, the result of the

similar case is more clear. In the different case, though the

noise level increases due to the power difference, we can

still accurately detect the signals at all 11 dedicated points.

Next, we measure the detection error probability

according to the received SNR synthesized from the mul-

tiple SREQs. We define the detection error as the event that

the AP mis-detects the SREQ of the largest subcarrier

index, i.e., 40. Recall that the SREQ of the largest sub-

carrier index, i.e., SREQ from the highest capacity gain

user, matters most in DiFuse. As shown in Fig. 14, in the

similar case, the detection error is only about 0.6 % at the

high SNR range. The detection error increases in the dif-

ferent case, but is always\5 % even in the low SNR range

(the majority of detection error is due to the false nega-

tive.). The signal mis-detection in subcarrier level comes

from two major sources, interference and misalignment.

For example, back2F [12] suffers from the strong self-

signal interference by the full-duplexing. In contrast, in

DiFuse, only the noise can affect the detection perfor-

mance, since control frames play a role of holding the

medium, like RTS/CTS. Also, as long as the misalignment

is less than CP, the AP can still detect all SREQs reliably,

as mentioned earlier.

5.1.3 Frequency domain contention

To evaluate the frequency domain contention of DiFuse,

we measure two probabilities of collision case (pcol) and

idle case (pidle) according to different dthr. Each value is

averaged over whole polling rounds. Based on the results,

we additionally compute the expected throughput accord-

ing to different transmission lengths (0.5, 3.0, 5.5 ms). For

comparison, we conduct an emulation for the case of

K ¼ 100, and illustrate both results in Fig. 15.

From the result, we can clearly observe the tradeoff

between pidle and pcol: pidle increases with dthr, while pcol
decreases. First, the initial pidle is quite high in both cases.

Specifically, in the case of K ¼ 8, the actual number of

contending users is very small (i.e., 7, 6, 5 for each

selection round, respectively), and thus pidle is much higher

than that of K ¼ 100. Actually this high pidle shows that our

slot threshold design fits well in the real scenario. Recall

that our design mainly aims to lower pcol, at the expense of

the increase of pidle. As a result, pcol of two cases are 2.5

and 2.9 %, respectively. And thus we can effectively limit

(a) (b)

Fig. 13 FFT results under two different transmit power cases. a Similar case. b Different case

Fig. 14 Detection error probability versus SNR. The SNR is

synthesized from the SNRs of multiple SREQs. Even in the worst

case, the detection error of DiFuse is still\5 %
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the impact of pcol on the system performance (e.g.,

throughput).

From the viewpoint of the throughput of different K,

we can see that their patterns are different from each

other. For small K, the throughput decreases with dthr.
This result indicates that the throughput of small K is

highly affected by the re-transmission overhead in the

frequency domain contention. In particular, the small K

increases pidle, and thus invokes more re-transmissions of

SREQs and SREPs. On the other hand, for large K, pidle
converges to 0 quickly, and thus it is very unlikely to go

into the re-mapping procedures. As a result, the

throughput seems to be not much affected by dthr. In

addition, we can see that there is an optimal dthr point to
maximize the throughput in each case. For small K,

except the case of transmission length of 0.5 ms, the

throughput is sightly increased before going down. For

large K, the results show the similar pattern to those of

small K, but the gap is very small because retries of

SREQ/SREP transmission rarely happen.

5.2 System-level performance

5.2.1 Setting

As mentioned earlier, our USRP based testbed is limited by

the interface latency, so we cannot directly implement all

802.11 MAC functionalities. Furthermore, it is even more

challenging to implement distinct schemes of each protocol

like frequency domain contention, 2-D contention and

orthogonality probing in real-time, and there are far more

difficulties in a large scale network environment. For

example, in our case, among three main components nee-

ded to build DiFuse (frequency domain contention, user

selection and beamforming), user selection and beam-

forming could not be implemented in real-time since the

MAC overhead of implementation exceeds the channel

coherence time and thus causing beamforming failures.

Fortunately, the frequency domain contention can be

implemented because it is not that much affected by the

channel coherence time.

For this reason, we conduct a trace-driven evaluation for

system-level performance comparison. We have collected

CSI traces and contention results during the frequency

domain contention evaluation and used them for user

selection and beamforming emulation offline. Plus, for

MAC time-related intervals, only the capacity and

throughput computations are performed by the MATLAB.

Though our trace-driven emulation lacks some details, we

believe that it is enough to show and compare how the

proposed protocols work.

We emulate 802.11ac, SUS5, OPT, OPUS, OPUS-PF,

DiFuse and DiFuse-PF with the basic parameters defined in

the 802.11ac specification [1]. In addition, we also emulate

MIMOMate [16] and Signpost [17], but since they are

uplink user selection protocols, it is inevitable to make

some modifications on them. For these two protocols, we

evaluate the throughput performance only. P is set to 15 dB

and we use the ESNR based rate adaptation scheme [23].

(a) (b)

Fig. 15 Performance comparison on the frequency domain contention. The DiFuse can limit the collision probability to 3 % for 100 users.

a K ¼ 8. b K ¼ 100

5 We set the parameter a used in SUS as 1, and so it does not render

the early termination.
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Our traces basically contain 10,000 per-subcarrier CSI

traces for 20 users. For large K (e.g., 200), we extend the

trace by multiplying random complex numbers. Unless

otherwise stated, K, M and transmission length is set to 20,

4 and 0.5 ms, respectively.

5.2.2 The impact of selection metrics

In this section, to evaluate the impact of selection metrics,

we compare the sum-capacities of five different selection

metrics according to M, in Fig. 16. We add a result of the

optimal solution in the figure via exhaustive search. Except

for the optimal case, the first user is randomly selected for

all cases. Note that this result does not include the CSI

feedback overhead.

From the result, we observe that the capacity gain

metric consistently outperforms other metrics, while

closely approaching the optimal case by up to 95 %. The

capacity improvements of capacity gain metric which is

used in DiFuse are up to 2.0�, 1.9�, 1.6� and 1.1�
compared to random, max-power, max-angle and pro-

jected norm, respectively. As expected the random user

selection gives the worst performance. The performance

of max-power is better than the random selection, but its

gain is marginal. The orthogonality gives more capacity

gains than the channel strength, but using only this

metric alone limits the performance, especially when

M is large. On the other hand, the projected norm metric

shows a quite good performance, since it considers the

tradeoff between channel strength and orthogonality.

However, as discussed in Sect. 3.2, this metric cannot

guarantee the highest sum capacity gain in every selec-

tion round. In our result, 16 % of total cases suffer from

that problem.

5.2.3 CSI feedback overhead

In this section, we investigate the CSI feedback overhead

of each protocol. Figure 17 shows the average CSI feed-

back duration as a function of K. First, in 802.11ac the CSI

feedback overhead is fixed regardless of K because it

always gathers CSI of users as many as M. SUS conveys a

much larger overhead than other schemes, constantly

increasing with K. We observe that OPUS shows a higher

overhead than 802.11ac. Even though OPUS limits the CSI

overhead by terminating the selection earlier than

802.11ac, it suffers from the inefficient time-domain con-

tention. In the meantime, DiFuse has the lowest overhead

over all cases, thanks to the frequency domain contention

and quick termination. Such overhead reduction further

improves the throughput performance of DiFuse based on

the sum-capacity enhancement by the user selection

method.

5.2.4 Throughput

We compare the throughput of each protocol including

MIMOMate [16] and Signpost [17] in Fig. 18, under dif-

ferent network configurations. Recall that MIMOMate and

Signpost are originally designed for uplink MU-MIMO, so

we need to first modify them to match our evaluation

scenario as follows:

Fig. 16 Sum-capacity versus M. The capacity gain metric which is

used in DiFuse achieves the sum-capacity improvement of 2.0�,

1.9�, 1.6� and 1.1� over random (802.11ac), max-power, max-angle

and projected norm (SUS, OPUS), respectively

Fig. 17 CSI feedback duration versus K. The average feedback time

of DiFuse is lower than those of other protocols
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– MIMOMate We simply assume that the AP can

compute the optimal user group, instead of MIMO-

Mate relations, at the expense of receiving CSI

feedbacks from all users like SUS [6]. Also we omit

the result of the case of M ¼ 20, due to its excessive

large search space.

– Signpost The 2-D contention and angle based user

selection of original Signpost are unchanged, but we let

one of orthogonal probing directions made by the AP

include the channel direction of the first selected user.

Besides, instead of performing the collision recovery

by users, the AP stops the selection procedure right

after it senses any feedback collisions. The total

timeslots are set to 50 and 128 for K ¼ 20 and

K ¼ 200, respectively.

As shown in the result, DiFuse outperforms other protocols

in all cases. Except for the case of (c), DiFuse obtains the

maximum throughput gain of 4.8�, 2.8�, 1.8�, 4.5� and

2.1� on average, over 802.11ac, SUS, OPUS, MIMOMate

and Signpost, respectively, especially when DiFuse uses

the ‘dist’ slot thresholds design. Through the ‘dist’ design,

DiFuse can achieve the additional gain of maximum 5 %

than the ‘linear’ design. The gap between DiFuse and

OPUS becomes even larger with increasing M. First, the

frequency domain contention of DiFuse gives a much

smaller overhead than the contention scheme used in

OPUS. Second, the effective selection method of DiFuse

provides a higher capacity than that of OPUS.

Additionally,we observe zero-throughput cases in the case

of 802.11ac. This is the limitation of ZFBF. The AP wastes

most transmit power for interference cancellation and the

intended signal may have low power. This can lead to zero-

throughput. 802.11ac significantly suffers from the zero-

throughput, due to the random user selection. SUS achieves

better performance than 802.11ac, but the gain over 802.11ac

is not that large due to its long CSI feedback time. Also,

MIMOMate obtains only a little gain over SUS even though it

can exploit the optimal user set, since the CSI feedback

overhead overwhelms the capacity gain. Meanwhile, we see

that the throughput of Signpost is not as high as that of OPUS

though the 2-D contention is more effective than the con-

tention scheme of OPUS. This is because Signpost uses an

angle based user selection. In the original Signpost, angle

based user selection could work well since the AP decodes

uplink frames by using ZF-SIC, but in downlink scenario

where the AP uses ZFBF, norm is more effective than the

angle metric from the user selection perspective.

In massive MIMO [26, 28–30] or distributed MIMO sys-

tems [31, 32], we can exploit much more transmit antennas.

Figure 18(c) shows the result when M ¼ 20;K ¼ 200.

Recall that the size of each CSI report is approximately 10

times larger than that of the case (a). In 802.11ac and SUS, the

performance of ZFBF drops dramatically, due to the tightness

of the DoF. Recall that in both protocols, the number of

selected users isM. In result, almost zero-throughput happens

in both 802.11ac and SUS. In contrast, the results of DiFuse

and OPUS show that they are feasible under many-antenna

systems in practice. Also, DiFuse brings a higher throughput

than OPUS in this scenario.

Next, we measure the throughput of four protocols,

according to K in Fig. 19. The random selection of

802.11ac gives constant throughput regardless of K. We

can clearly see that the throughput of SUS decreases with

K. Meanwhile, OPUS and DiFuse persistently obtain

higher throughput over other two protocols, due to the

small number of CSI feedback transmissions, plus the

capacity enhancement by selection. Specifically, DiFuse

outperforms OPUS over all cases.

(a) (b) (c)

Fig. 18 Throughput versus M. DiFuse obtains the maximum

throughput gain of 4.8�, 2.8�, 1.8�, 4.5� and 2.1� on average,

over 802.11ac, SUS, OPUS, MIMOMate and Signpost, respectively.

In massive MIMO case (c), DiFuse still obtains modest throughput

even under significantly large CSI reports. a M ¼ 2;K ¼ 20.

b M ¼ 4;K ¼ 20. c M ¼ 20;K ¼ 200

Wireless Netw

123



5.2.5 Hidden terminal

Since DiFuse users exploit the CSI feedback overhearing, in

some cases, some users may not be able to participate in the

selection decision due to the hidden terminal problem. For

example, let us assume that user A and user B share the

same AP and both employ DiFuse, but cannot hear each

other’s transmissions, i.e., are hidden terminals. If user A

was first selected by the AP, then user A will transmit the

CSI to the AP, but user B will not be able to overhear this.

Thus, user B will be left out from the selection procedure.

Here, we evaluate the effect of the hidden terminal problem

on the performance of DiFuse. First, we set K and M as 20

and 4, respectively. To artificially generate hidden terminals,

we place three users (User ID 1	 User ID 3) apart from

others, so that they fail to overhear the other users’ trans-

missions, (i.e., User ID 4	 User ID 20), and vice versa.

Figure 20 shows that DiFuse still outperforms other

protocols even when the hidden terminal problem occurs.

Some of the users cannot join a certain user selection pro-

cess when a previously selected user is hidden to them. For

example, User 1 	 User 3 cannot join the selection process

if User 4 was previously selected and has sent its CSI report

to the AP. Even though such users cannot be selected, they

may have another opportunity in the later downlink trans-

missions, e.g., when non-hidden users are selected. On the

contrary, we find that in some cases, the hidden terminal

problem can even be a benefit to DiFuse since it may help to

limit the network size, reducing the contention for feedback.

For example, when User 1 is selected as the first user, the

only candidates become User 2 and User 3. In this case the

three users can achieve higher throughput via beamforming

with sufficient DoF(s) (e.g., 3\M).

5.2.6 Fairness

To evaluate the fairness performance of DiFuse-PF, we let

20 users experience diverse average SNRs ranging from 5

to 20 dB; the user with a larger ID number has a higher

SNR than the user with a lower ID number.

Fig. 19 Throughput versus K. DiFuse consistently outperforms other

protocols. DiFuse and OPUS benefit from the multi-user diversity

gain

Fig. 20 Throughput of 802.11ac, SUS, OPUS and DiFuse for hidden

terminal case. DiFuse still provides a higher throughput than other

protocols even when there exist some hidden terminals

Fig. 21 Throughput comparison of 802.11ac, SUS, OPUS-PF and

DiFuse-PF. DiFuse-PF achieves the best fairness even when the users

experience diverse channel qualities, while maintaining the

throughput
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Figure 21 shows the throughput that each user attains

under each protocol. 802.11ac severely suffers due to the

low SNR users, diminishing the MU-MIMO effectiveness.

Although SUS shows higher throughput than 802.11ac,

some users with low SNR suffer from the starvation. OPUS-

PF [9] is the proportional fair version of OPUS, where the

user with the lowest average throughput is likely to be

selected as the first user, so that users with low SNRs can

maintain throughput. However, just considering the first user

for user fairness is not enough, especially when users

experience diverse channel qualities. Users with high

channel gains will eventually join the MU-MIMO trans-

mission group in the following rounds. Recall that OPUS-PF

and OPUS both use the same selection metric to select users

except for the first user. Meanwhile, DiFuse-PF shows better

fairness than others since the probability that users with low

SNRs have a transmission chance is increased.

6 Conclusion

In this paper, we have proposed a new user selection pro-

tocol called DiFuse, which employs the sum-capacity gain

as the user selection metric and exploits the frequency

domain contention to reduce CSI feedback overhead. To

evaluate the performance of DiFuse, we conduct USRP/

GNURadio based experiments as well as the extensive

trace-driven emulations. The results show that DiFuse

consistently outperforms other schemes in terms of

throughput and proportional fairness.
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