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Abstract

Stride intervals of normal human walking exhibit long-range temporal correlations. Similar to the fractal-like behaviors
observed in brain and heart activity, long-range correlations in walking have commonly been interpreted to result from
chaotic dynamics and be a signature of health. Several mathematical models have reproduced this behavior by assuming a
dominant role of neural central pattern generators (CPGs) and/or nonlinear biomechanics to evoke chaos. In this study, we
show that a simple walking model without a CPG or biomechanics capable of chaos can reproduce long-range correlations.
Stride intervals of the model revealed long-range correlations observed in human walking when the model had moderate
orbital stability, which enabled the current stride to affect a future stride even after many steps. This provides a clear
counterexample to the common hypothesis that a CPG and/or chaotic dynamics is required to explain the long-range
correlations in healthy human walking. Instead, our results suggest that the long-range correlation may result from a
combination of noise that is ubiquitous in biological systems and orbital stability that is essential in general rhythmic
movements.
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Introduction

Though human walking is highly stereotyped, the stride

intervals fluctuate from one stride to the next with a measurable

variance. Interestingly, in healthy adult walking, the variations in

stride intervals exhibit long-range correlations [1,2]. This obser-

vation has supported the hypothesis that the step-to-step variation

exhibits fractal-like behavior rather than uncorrelated stochastic

noise simply superimposed on regular dynamics. The importance

of this long-range correlation has been further emphasized since

several studies reported that age and neurological disorders

decrease the correlations [3,4,5], suggesting that long-range

correlations may indicate a healthy locomotor system. Interesting

similarities are found in other rhythmic activities of normal neural

and cardiac systems; prior studies reported fractal-like behaviors in

normal heart beating and brain activity that alter due to diseases

such as heart attack or epileptic seizure [6,7,8,9].

Because of the deep connection between fractals and chaos, the

observed fractal-like behaviors have commonly been interpreted as

evidence of chaos in healthy biological systems. Pool proposed that

‘‘chaos may provide a healthy flexibility of the heart, brain, and

other parts of the body’’ [10]. Goldberger et al. mentioned that

many pathologies exhibit increasingly periodic behaviors and loss

of the chaotic variability that is observed in healthy biological

systems [6]. The proposal that chaos is ‘‘healthy’’ has motivated

studies to develop clinical measures of health based on methods of

nonlinear dynamics and time series analysis [7,8,9]. In the study

reported here, we question this appealing proposal, at least in the

context of normal human walking. We show that nonlinear

dynamics capable of chaos may not be necessary to explain the

phenomenon of long-range correlation. The ubiquitous neuro-

muscular noise combined with essential but non-chaotic biome-

chanics may be sufficient to explain the observed long-range

correlations in stride intervals.

In an attempt to address the origin of the potentially important

but counter-intuitive long-range correlations in stride intervals,

several mathematical models have been proposed [1,11,12,13,14].

The relation among long-range correlation, fractal-like behaviors

and chaos motivated most of the previous models to include

nonlinear oscillators such as neural central pattern generators

(CPGs) that can result in fractal-like behaviors. Hausdorff et al.

successfully reproduced the observed dynamics of stride intervals

by introducing ‘‘memory’’ into a CPG; when only certain

transitions from mode to mode were allowed inside a CPG, the

resulting stride intervals had long-range correlations [1]. An

extension of this model could encapsulate the difference in gait

dynamics between children and adults [11]. West et al. further

reproduced the pronounced long-range correlations of slow and

fast walking and the loss of long-range correlations in metronomic

walking by introducing a ‘‘super CPG model’’; they assumed that

impulses from correlated firing of neural centers regulated the

intrinsic frequency of a forced van der Pol oscillator whose actual

period coincided with the stride interval [12].

Unlike most of the models that attribute long-range correlations

to specific neural oscillator mechanisms, a model by Gates et al.

showed that long-range correlations in stride intervals may emerge
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from biomechanics [14]. They added noisy neural input to a

simplified passive dynamic walker presented by Garcia et al [15],

and argued that the long-range correlations may result from a

combination of noisy neural signals and highly nonlinear

biomechanics. However, the original model by Garcia et al. is

already able to produce chaotic and fractal behaviors which may

result in long-range correlations [15]. It is therefore still unclear

whether nonlinear biomechanics capable of chaotic dynamics is

essential to generate long-range correlations.

Here, we present a highly simplified walking model that can

reproduce the long-range correlations observed in stride intervals

without complex peripheral dynamics. The model is deliberately

formulated to be incapable of chaotic dynamics and does not

include a self-sustaining neural oscillator such as a CPG.

Nevertheless, with uncorrelated stochastic actuation noise, this

simple one degree of freedom walking model can reproduce long-

range correlations in stride intervals. A physical interpretation of

long-range correlation is that the current stride can affect a future

stride even after many strides. In a limiting case where the effect of

the current stride is never forgotten, the stride intervals may

approach Brownian noise. Our premise is that this memory effect

may be related to orbital stability, which determines how fast a

perturbation can be forgotten. Based on this premise, we propose a

hypothesis that moderate orbital stability may permit long-range

correlations such as have been observed in human walking.

Model

General Description
The model presented here is an updated version of the model

presented in [16]. A schematic of the model defining its variables

and parameters is shown in Fig. 1. A point mass moves in a

vertical plane under the influence of gravity, restrained by rigid

massless legs. The swing leg can be moved instantaneously in front

of the mass. Scuffing (contact of the swing leg with the ground) is

ignored. Each leg has two joints—a hip and an ankle. Ankle

actuation provides propulsion whereas the hip joint is assumed to

be a frictionless pivot, which cannot apply any torque. However,

we assume that the angle between the legs is always reset as 2h0 at

the beginning of a step. Due to the assumption of massless legs,

resetting the angle between the legs does not consume any energy.

Sequential configurations of the model during one stride cycle

are depicted in Fig. 2. At the collision of the leading foot with the

ground (Frame 1), the velocity of the point mass changes

instantaneously; the direction changes by 2h0 and the magnitude

is reduced by cos2h0 by the angular momentum principle (Frame

2). Immediately after the collision, the model is in double stance

and the trailing ankle is actuated. During double stance the model

behaves as an actuated four-bar linkage (Frame 2 and 3). The

ankle of the leading leg acts as a hinged joint during double stance

and the following single stance phase (Frame 4). We assume that

the ankle torque during double stance is determined by a linear

torsional spring as

T~k(m{y) (
p

2
{aƒyƒm) ð1Þ

where T is plantar ankle torque at the trailing ankle, y is ankle

angle that is positive towards plantar flexion, and m is maximal

plantar flexion angle.

The modification in this study over that presented in [16] is to

add stochastic variability to the ankle torque constant, k. At every

step, k is updated as a random variable whose probability density

function has a normal distribution with mean of k0 and variance of

s2. The variance s2 represents the noise level added to the system.

The torque becomes zero when y reaches m. By virtue of the zero

mass of the feet, the trailing foot pushes on the ground only as long

as the actuation torque is positive; double stance ends at the

moment when the ankle torque becomes zero, or equivalently

when y reaches m. During the following single stance (Frame 4

and 8 in Fig. 2), there is no actuation torque, and the dynamics of

the swing leg is irrelevant because it has no mass; the model acts

like an inverted pendulum hinged at the ankle of the stance leg. A

step cycle ends when the hip angle h reaches -h0, its value at the

foot-ground collision, and the next step follows (Frame 1, 5, and 9);

a stride consists of two consecutive steps.

For the deterministic version of the model, the equations of

motion and the ground reaction forces are derived, and the

existence and stability of a periodic gait are analyzed in [16]. Here,

we briefly recapitulate the return map analysis in [16] to

emphasize the existence, uniqueness and asymptotic stability of a

limit cycle of the model. We used the concept of a step-to-step

function whose input and output are state variables at the

beginning of one step and at the beginning of the next step

respectively [17]. Mathematically this step-to-step function is a

return map. Using the work-energy principle, the step-to-step

function of the model is expressed as

_hhiz1~f ( _hhi)~{
cos 2h0

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(L _hhi)

2z
k

m
(h0zm{

p

2
)2

r
: ð2Þ

Where _hhi is the angular velocity of the leading leg right after the

ith foot-ground collision. This return map has a unique fixed

point that satisfies _hhiz1~ _hhi, and any initial condition converges

monotonically to this fixed point as the number of steps

increases. (Proof in Appendix S1.) Therefore, neither bifurcation

(period doubling) nor chaotic behavior is possible. The model

has a unique stable limit cycle and the stability is determined

solely by the parameter h0. The orbital stability of a limit cycle

can be quantified by Floquet multipliers [18,19,20]. In general,

Floquet multipliers are complex valued eigenvalues of a

linearized return map at its fixed point. If all the Floquet

multipliers are inside a unit circle on the complex plane, the

limit cycle is asymptotically stable. If there exists a Floquet

multiplier outside the unit circle, the limit cycle is unstable. This

specific model has only one Floquet multiplier which is cos22h0.

Therefore, the limit cycle is always asymptotically stable except

in the limit where h0 approaches zero.

Figure 1. A schematic of the walking model. A point mass is
restrained by rigid massless legs. The trailing ankle is actuated as a pre-
loaded spring released at the beginning of double stance. The hip joint
and the leading ankle do not exert any torque.
doi:10.1371/journal.pone.0073239.g001
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Parameter Values
Parameter values are summarized in Table 1. Mass, leg length,

foot length and maximal plantar extension angle were chosen to

approximate morphological data of human adults. Two values of

h0 were selected as p/12 and p/6 radian to investigate how the

model behavior changed when its orbital stability changed. For

each h0, the nominal ankle actuation constant k0 was chosen to

match the average speed of the model with that of normal human

walking, which is 1.35 m/s on average [21]. For each h0, the

variance of ankle actuation s2 was chosen to match the model’s

coefficient of variance (COV) of walking cadence with that of

normal human walking, which is 3% [1].

Methods

To compare results with the original study by Hausdorff et al.

[1], we faithfully followed the analysis method they used. Two

indices that distinguish between white noise, Brownian noise and

time series with long-range correlations were obtained from

detrended fluctuation analysis (DFA) and power spectral analysis.

Numerical simulation was implemented in Matlab using the

Simulink toolbox (Mathworks Inc.). Numerical integration by the

Runge-Kutta method was performed with a fixed step size of

1024. The validity of the numerical simulation was checked by

repeating simulations with a tenfold smaller step size. Every

statistical analysis was performed at a significance level of 5%.

Detrended Fluctuation Analysis (DFA)
DFA is a method to determine long-range correlations which

was introduced by Peng et al. [22]. A total number N of stride

intervals are integrated to generate a time series y as

y(q)~
Xq

i~1

½I(i){Iavg� (q~1,2,:::,N), ð3Þ

where I(i) is the ith stride interval and Iavg is the average of the

stride intervals. The time series y is divided into windows of length

n samples. For each window size n, a local least squares line fit is

calculated in every window. Let the fitted value be yn(q). The

average fluctuation of y with respect to the locally best-fit line is

calculated for each window size n as

F (n)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

q~1

½y(q){yn(q)�2
vuut : ð4Þ

The slope of the least square fit line relating log F(n) and log n is

the scaling exponent a, which becomes 0.5 for white noise, 1.5 for

Brownian noise, and a value between 0.5 and 1 for time series with

long-range correlations. To compare with the original experimen-

tal observation in [1], the model walked 500 strides. To further

investigate the fluctuation structure of stride intervals for longer

simulation, the model also walked 3,000 strides, which approxi-

mate the number of strides in one hour of walking. We

additionally simulated 100,000 strides to examine the structure

of the stride interval time series for even longer walking. In each

case, the window size n varied from 4 to half of the maximum

stride number so that log n had increments of 0.1. For 100,000

stride walking, window sizes larger than 1,000 strides

(1,000#n#50,000) were additionally considered to inspect any

change due to the significant increase of stride number. We ran 20

simulations of 500, 3,000, and 100,000 stride walking, and the

scaling exponent a was evaluated for each simulation.

Power Spectral Analysis
Another index of long-range correlations was calculated from

the power spectrum of the time series. Following the method

presented in [1], we obtained the power spectrum of the time

series, S(f) as the square of the amplitudes of the Fourier spectrum,

where f is the inverse of stride number. The slope of a regression

line relating log S(f) and log f was evaluated. This slope becomes 0

for white noise, 21 for 1/f noise and 22 for Brownian noise. It is

more common to use b (216the slope) as a metric that

characterizes the power spectrum. The index b was evaluated

for each of 20 simulations (500, 3,000, or 100,000 strides per

simulation). For simulations of 500 strides, f varied from 0.01 to

0.3 (stride number)21 following the method in [1]. For simulations

of 3,000 strides, f varied from 1/600 to 0.3 (stride number)21 to

account for the factor of 6 increase of stride number. For

simulations of 100,000 strides, f varied from 261025 to 0.3 (stride

number)21, and the interval from 261025 to 0.01 (stride

number)21 was additionally considered to investigate any change

due to the increase of stride number.

Extreme Cases and Shuffled Strides for Comparison
For comparison, the two indices a and b were investigated for

two extreme cases. First, we artificially generated a time series of

Figure 2. One stride of the walking model. The end and beginning of a step is the moment when the leading foot collides with ground (Frame
1, 5 and 9). During double stance the model moves as four linked bars (Frame 2, 3, 6 and 7). During single stance the model moves as an inverted
pendulum (Frame 4 and 8).
doi:10.1371/journal.pone.0073239.g002

Table 1. Parameter values for the model.

Parameter Meaning Value

m mass 80 kg

L leg length 1 m

l foot length 0.2 m

g gravitational acceleration 9.81 m/s2

m maximal plantar extension of the ankle 2.576 rad

doi:10.1371/journal.pone.0073239.t001
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stride intervals as a normally distributed random process with

mean of 1.23 s and standard deviation of 0.0369 s. The mean and

the standard deviation were chosen to match the experimental

data in [1]. The random stride intervals were generated 500 times

and 3,000 times in each of 20 simulations. Second, we considered

the model behavior in the limit as h0 approaches zero. Physically, a

rimless spoked wheel model approaches a rolling disk as the

number of spokes approaches infinity and the angle between the

neighboring spokes approaches zero [23]. In the limit of

infinitesimal h0, our model likewise approaches a rolling disk with

mass m and zero moment of inertia. In this limit, to yield non-

diverging gait, the ankle actuation has to converge to zero. For this

case of infinitesimal h0, we re-defined a stride interval as a time

interval required for the disk to recover its orientation by rotating

2p radian. The initial velocity of the rolling disk was chosen to

match the nominal period with 1.23 s, the average stride interval

of human walking. The variability of ankle torque in the original

model was replaced with a normally distributed stochastic force

applied to the point mass. Considering that ankle actuation

provides propulsion only during double stance phase in the model,

and double stance occupies approximately 50% of the gait cycle in

human walking, the stochastic force vanished when the disk rolled

by p radian. The normally distributed stochastic force had zero

mean. In this limiting case, the effect of the current stride is never

forgotten. Therefore the stride intervals approach Brownian noise

whose variance increases as stride number increases. We chose the

variance of the stochastic force to be small enough so that the

COV of the re-defined stride intervals over 500 cycles matched

that of normal human walking, which is 3% [1]. This model of the

limit of zero h0 is depicted in Fig. 3. The indices a and b were

evaluated in 20 simulations each of which had 500 or 3,000 cycles.

To confirm that any difference in the scaling exponents (a and

b) resulted from the temporal structure rather than a specific

distribution of the noise, we applied the method of surrogate data

introduced by Theiler et al. [24]. Both a and b of shuffled time

series of each realization were evaluated and statistically compared

with those of original data.

Results

Hausdorff et al. reported that a = 0.7660.11 (SD) for 10

subjects, and b = 0.8360.23 for 8 subjects when each subject

walked 400 to 500 strides at preferred speed for 9 minutes [1].

These values of a and b showed that the time series of stride

intervals in human walking exhibits long-range correlations. Fig. 4

shows a and b obtained from representative data of 500 strides of

the model walking when h0 was p/6 and p/12 radian. When h0

was p/6, the two indices, a and b, were different from those of

uncorrelated white noise or the shuffled data, providing a slight

indication of a long-range correlation. Evidence of a long-range

correlation became more prominent when h0 was reduced to p/

12; the scaling exponents a and b were noticeably different from

those of uncorrelated white noise or the shuffled data and

approached those of human walking. As seen in the bottom panels

of Fig. 4 B, the structure of the stride interval time series changed

due to shuffling. Fig. 5 A shows the distribution of a and b for 20

simulations of 500 strides in each of four different cases –

infinitesimal h0, h0 = p/12, h0 = p/6, and normally distributed

randomized stride intervals. As h0 approached zero and the

walking model became a rolling disk, the time series of stride

intervals approached Brownian noise. With h0 = p/12, the

distributions of a and b reproduced those of normal human

walking with long range correlations, whereas the indication of

long-range correlations became less evident as h0 increased to p/6.

Fig. 5 B compares the distributions a and b for h0 = p/12 and

h0 = p/6 with those of the shuffled data. In both cases of h0 = p/12

and h0 = p/6, the scaling exponents were significantly different

from those of the shuffled data which were indistinguishable from

a and b of uncorrelated white noise. This confirms that sequential

ordering gave rise to the long-range correlation; a property of the

stride interval distribution is not the origin of long-range

correlations for this model.

Fig. 6 A shows distribution of a and b for 20 simulations of

3,000 strides. For the case of h0 = p/6, the indication of long-range

correlations disappeared due to the increased stride number;

statistical tests concluded that a and b were not significantly

different from 0.5 and 0, respectively. On the other hand, the

model with h0 = p/12 still showed clear evidence of long-range

correlations; a and b were similar to those of human walking with

long-range correlations with significant difference from those of

white noise. Fig. 6 B compares the scaling exponents of 3,000

strides with those of the shuffled counterparts when h0 = p/12. As

in the 500 strides walking, statistical analysis confirmed that the

persistent long-range correlation was due to sequential ordering

rather than a specific distribution of the stride intervals. Fig. 7

shows a and b of representative data of 3,000 strides when h0 was

p/12. The left panels in Fig. 7 additionally demonstrate that the

structure of the time series changed after shuffling.

Fig. 8 shows the simulation results of even longer walking series:

20 realizations of 100,000 stride walking with h0 = p/12. Statistical

analysis concluded that the scaling exponents were still signifi-

cantly different from those of uncorrelated noise, but the evidence

of long-range correlations became less prominent (Fig. 8 A);

though b was similar to that of human walking a became much

closer to that of white noise. When we evaluated a and b with

window sizes larger than 1,000 strides (1,000#n#100,000/2, and

2/100,000#f#0.01), the exponents approached those of uncorre-

lated white noise (Fig. 8 B). Fig. 8 C shows representative data of

100,000 strides. Overall, the curve relating log F(n) and log n

appears to be slightly convex upward, which explains the decrease

of a with large window size n.

To summarize, the time series of stride intervals of the model

showed long-range correlations up to thousands of strides when its

orbital stability was moderate though the evidence of long-range

correlations became less noticeable when the stride number

became much larger up to 100,000. On the other hand, the time

Figure 3. One stride of the model in the limit of zero h0. L, F, vi

and Ti are the radius of the disk, the stochastic force with zero mean
applied to the center of mass while the disk is rolling from 0 to p radian,
the velocity of the disk at the end of ith cycle, duration of ith cycle,
respectively. The velocity vi+1 is determined right after the disk rolls by p
radian because the stochastic force is no longer applied to the disk
hence momentum is conserved.
doi:10.1371/journal.pone.0073239.g003
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series of stride intervals approached uncorrelated random process

much more quickly when the increased h0 resulted in faster

convergence to the nominal limit cycle, making the memory of the

dynamics shorter.

Discussion

The long-range correlations observed in the stride intervals of

human walking have received attention because they may quantify

locomotor deficits as well as healthy human walking [3,4,5].

Though various models have been developed to account for the

origin of these long-range correlations, their essential underlying

neuro-mechanical origin has not been established. Generally,

long-range correlation implies fractal-like behavior that may

emerge from chaos, and nonlinear oscillators like CPGs can result

in chaos. This explains why most of the previous models involved

nonlinear neural oscillators or nonlinear biomechanics that can

generate chaos to reproduce the long-range correlations

[1,11,12,13,14]. Here, in contrast to the previous studies, we

reproduced the long-range correlations in a walking model that

was deliberately simplified so that it could not exhibit chaos. We

believe it provides a plausible explanation of the physical origin of

long-range correlations.

To reproduce the long-range correlations, we added stochastic

noise to a simple walking model described in [16]. As proven in

Appendix S1, the model cannot exhibit chaotic behavior. This is

an important distinction from the model by Garcia et al. [15].

Gates et al. added stochastic noise to the model presented by

Garcia et al. [15] and showed that the model could exhibit long-

range correlations, suggesting that nonlinear biomechanics may

contribute to the long-range correlations [14]. In fact, Garcia et al.

already showed that their original model could exhibit chaotic and

Figure 4. Scaling exponents a and b for 500 strides of walking with two different values of h0. The leading leg angle h0 defines the
Floquet multiplier as cos22h0, and determines how fast the perturbed dynamics converges to the nominal limit cycle. Small h0 makes the Floquet
multiplier close to unity yielding slow convergence, and large h0 makes the Floquet multiplier close to zero yielding fast convergence. Both a and b
are slightly different from those of the shuffled data with no correlation when h0 is p/6 and the model yields relatively strong orbital stability (Floquet
multiplier = 0.25). The difference in the scaling exponents between the original time series and their shuffled counterparts becomes much more
prominent when h0 is p/12 and the attraction to the limit cycle becomes relatively weak (Floquet multiplier = 0.75); a and b become similar to those of
human walking with long-range correlations with clear difference from those of the shuffled data. The bottom panels show time series of the
normalized stride intervals (stride intervals divided by their mean value). The structure of the time series changed due to shuffling particularly when
h0 is p/12.
doi:10.1371/journal.pone.0073239.g004
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fractal behaviors [15], which may result in long-range correlations.

In contrast, the work presented here clearly shows that even a

highly simplified peripheral mechanism that cannot produce any

chaotic or fractal behavior may exhibit long-range correlations

when combined with stochastic noise.

Noise exists in various levels of biological systems [25,26,27],

and has been used to explain experimental observations in some

human motor tasks [28,29]. In fact, it has also been suggested that

specific structures of noise may provide explanations of long-range

correlations. For example, autoregressive fractionally integrated

moving average (ARFIMA) models and Markov models with

specific distributions may reveal long-range correlations [30,31].

However, any physiological origin of those specific distributions of

variability in human rhythmic movements has not been proposed.

Here, we suggest that a physical mechanism that is fundamental in

general rhythmic movements may give rise to the long-range

correlation when combined with the ubiquitous noise. Orbital

stability is essential; practically, we cannot maintain or observe any

unstable periodic motion. Therefore, any model of rhythmic

movements that cannot exhibit orbital stability should be regarded

as over-simplified in this context. In fact, human walking has

moderate orbital stability; we recover our preferred walking

motion after any small and momentary perturbation, but we do

not recover immediately. Previous experimental studies quantita-

tively support this [19,32]. We showed that noise combined with

this moderate orbital stability can reproduce the observed long-

range correlation up to thousands of strides without any further

mechanism like a CPG, chaos or an exotic distribution of the

noise. The two minimal components – common noise and

essential orbital stability – may be sufficient.

The long-range correlations may be interpreted as evidence that

there exists a ‘‘memory’’ in the dynamic process of walking so that

the current stride can affect a future stride even after many strides

[1]. Based on this, we proposed a hypothesis that long-range

correlations in stride intervals are related to the orbital stability of

a limit cycle. A strongly stable limit cycle, by rapidly attracting a

perturbed system to the nominal limit cycle, allows the perturba-

tion to be forgotten quickly. In contrast, a weakly stable limit cycle

Figure 5. Distribution of scaling exponents a and b when the model walked 500 strides. In A, the scaling exponents a and b were
evaluated for each of 20 simulations in four different cases. In addition to cases with two different values of h0 (p/12 and p/6), two extreme cases were
investigated for comparison. When the stride intervals are artificially generated as a random variable from a normal distribution, they become white
noise. The stride intervals with h0 = p/6 show a slight indication of long-range correlations. When h0 = p/12, a similar leg angle to that of normal
human walking, the stride intervals present evident long-range correlations with similar a and b to those observed in human walking. When h0

approaches zero and the model becomes a rolling disk, the stride intervals approach Brownian noise. In B, the distributions of a and b for h0 = p/12
and h0 = p/6 are compared with those of their shuffled counterparts. The scaling exponents of the original time series are significantly different from
those of the shuffled data which approximate a and b of white noise. This confirms that temporal structure, rather than a specific distribution of
variability, gives rise to the long-range correlation in stride intervals of the walking model.
doi:10.1371/journal.pone.0073239.g005
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Figure 6. Distribution of scaling exponents a and b when the model walked 3,000 strides. In A, the scaling exponents a and b were
evaluated for each of 20 simulations. When h0 = p/6, a and b are no longer different from those of uncorrelated noise; the large stride number has
attenuated the long-range correlation. In contrast, when h0 = p/12, the stride intervals still present evident long-range correlations with similar a and
b to those observed in human walking. When h0 approaches zero and the model has marginal orbital stability, the scaling exponents remain close to
those of Brownian noise regardless of the large stride number. In B, the distributions of a and b for h0 = p/12 are compared with those of the shuffled
time series. (Note the change of plot scale.) As in 500 stride walking, the scaling exponents of the original time series are significantly different from
those of the shuffled data which are statistically indistinguishable from a and b of white noise.
doi:10.1371/journal.pone.0073239.g006

Figure 7. Scaling exponents a and b for 3,000 strides walking with h0 = p/12. Exponents a and b are still similar to those of human walking
with long-range correlations, and clearly different from those of the shuffled data. Also in the right panels, it is visible that shuffling changed the
structure of the time series of normalized stride intervals (stride intervals divided by the mean value).
doi:10.1371/journal.pone.0073239.g007
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allows an effect of perturbation to persist for a long time, resulting in

long-lasting memory or long-range correlations. In a limiting case

where the system has marginal stability, a random perturbation at

the current stride will persist forever. If successive perturbations are

uncorrelated, the stride intervals approach Brownian noise, the

time-integration of white noise. Our model validated these

proposals. Long-range correlations were evident up to thousands

of strides when the model had relatively weak orbital stability,

whereas the stride intervals approached uncorrelated white noise

more quickly when the stability was relatively strong. In the limit as

the model became a rolling disk with marginal stability, the history

of cycle durations approached Brownian noise.

The indices of long-range correlations of the model

quantitatively match those of human walking obtained in [1].

When h0 = p/12, a and b approach those of human walking

(Fig. 4 and 5). In normal human walking, the hip flexion angle

with respect to a vertical line at the leading foot contact

(represented by h0 in the model) is close to 15 degrees or p/12

[33]. The noise level of each model was also carefully chosen

to reproduce the variance of stride intervals observed in human

walking. Fig. 9 validates this. In both cases of h0 = p/12 and

h0 = p/6, the distribution of COV obtained from each

simulation was not significantly different from 3%, the COV

of stride intervals in normal human walking. This is another

contrast between our model and the model by Gates et al. [14].

Due to the limited size of its basin of attraction, the variability

exhibited by the model in [14] was much less than that

observed in human walking.

In this model, the memory causing the long-range correlation is

directly related to mechanics, the linear and angular momentum

principles. The original model in [16] conserved angular

momentum with respect to the leading ankle at the moment of

foot-ground collision. This reduced the speed of the model by a

factor of cos2h0, and therefore reduced the kinetic energy by

cos22h0, resulting in a Floquet multiplier of cos22h0. When h0 = p/

6 and p/12, the Floquet multiplier became 0.25 and 0.75

respectively. When h0 = p/6, 10 successive steps reduced a

perturbation with a magnitude of unity to (0.25)10,1026, meaning

that the perturbation was rapidly forgotten due to the ‘‘short

memory’’ of the system. When h0 = p/12, 10 successive steps

reduced the same perturbation to (0.75)10 = 0.056, meaning that

more than 5% of the perturbation effect persisted after 10

successive steps.

In the limit as h0 approaches zero, the model approaches a

rolling disk with mass m and zero moment of inertia. In this case,

the stability becomes marginal, and any effect of a perturbation

can never be forgotten. The current stride interval is determined

by the initial condition and the accumulated effects of the

perturbations up to the current stride. Therefore, if a perturbation

of uncorrelated white noise is added per stride, the time series of

stride intervals is expected to approach Brownian noise. Details

are in Appendix S1.

The other limiting case is when the model has no ‘‘memory’’ or

zero Floquet multiplier. If the attraction to the nominal limit cycle

is so strong that no previous stride can affect the current one, the

stride interval should be determined purely by the actuation of the

Figure 8. Scaling exponents a and b for 100,000 stride walking with h0 = p/12. The scaling exponents are significantly different from those of
the uncorrelated noise, but the evidence of long-range correlations is less prominent. In A, a is close to that of white noise though b is similar to that
of human walking with long-range correlations. In B, the exponents are evaluated with window sizes larger than 1,000 strides (1,000#n#100,000/2,
and 2/100,000#f#0.01); the exponents are not significantly different from those of white noise. C shows the representative data. On the whole, the
local slope of the curve relating log F(n) and log n decreases as window size n increases.
doi:10.1371/journal.pone.0073239.g008
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current stride. Therefore, uncorrelated variability in ankle actuation

will result in uncorrelated variability in stride intervals. As shown in

Fig. 6, h0 of p/6 already brings the stride intervals close to

uncorrelated noise in 3,000 strides; a and b are not significantly

different from those of randomized stride intervals or white noise.

Assuming that the dynamics of human locomotion is between

these two extremes – a limit cycle with marginal stability and a

limit cycle with zero Floquet multiplier – the long-range

correlations in stride intervals become understandable rather than

counter-intuitive. If the maximum Floquet multiplier has a

magnitude of unity and every stochastic fluctuation affects future

strides, indices a and b approach 1.5 and 2 respectively. If the

Floquet multiplier is close to zero and the current stride is affected

only by the current fluctuation, indices a and b approach 0.5 and 0

respectively. In fact, the indices a and b are between these two

extremes in human walking [1]. Experimental studies reported that

the maximum Floquet multiplier of human walking was also

between the two extremes of 0 and 1 [19,32]. Dingwell and Kang

reported that the average magnitude of the maximum Floquet

multiplier was between 0.7 and 0.8 for over-ground walking when

the multipliers were measured using hip, knee or ankle angles [19].

This value is comparable to the Floquet multiplier of our model with

h0 of p/12. Hurmuzlu and Basdogan originally measured Floquet

multipliers of human walking in 18 generalized coordinates; they

reported that all the 18 Floquet multipliers were inside a unit circle

on the complex plane, and the average magnitudes were between

0.337 and 0.395 [32]. This implies that the magnitude of the

maximum Floquet multiplier is less than unity but larger than the

reported average, which is consistent with moderate orbital stability.

It is noteworthy that the long-range correlation that our model

reproduces is different from the long-range correlation due to self-

similarity in infinite time series. Scale-free self-similarity that

frequently arises from chaos induces constant scaling exponents

regardless of the cycle number, whereas the long-range correlation

due to asymptotic orbital stability cannot persist for infinite stride

numbers. As shown in Fig. 8, the memory due to asymptotic

orbital stability cannot remain effective after a sufficiently large

number of strides. This leads to an open question whether the

long-range correlation of human walking may also be diluted after

a large number of strides. Unfortunately, it would be challenging

to test experimentally whether human stride intervals show

constant scaling exponents up to 100,000 strides that approxi-

mately correspond to 30 hours of walking. In this study, we show

that uncorrelated stochastic noise combined with human-like

orbital stability can induce scaling exponents similar to those

observed in human walking up to thousands of strides. It seems

highly plausible that the observed orbital stability of human

walking contributes to the observed values of scaling exponents in

our routine walking of hundreds or thousands of strides.

The model used in this study neglected numerous aspects of

human walking to maximize simplicity. Physiological and

anatomical realism was ignored by assuming a point mass and

massless legs. Complicated stabilizing mechanisms were simplified

to minimal afferent feedback regulating leg angle and state-

determined ankle actuation, making the orbital stability a function

of leg angle alone. In real human locomotion, various feedback

mechanisms with or without supra-spinal control may contribute

to stability. For example, human walking seems to require active

control to stabilize lateral motion, a factor that was deliberately

ignored in this study [34]. In addition, differences in orbital

stability between over-ground and treadmill walking suggest that

human walking stability may not be purely determined by the

mechanics of the periphery [19]. The several sources of variability

in human movement were simplified to variability of a single

parameter, k. Variability in human movement originates from

central nervous systems like the basal ganglia and premotor cortex

as well as from recruitment of motor units [25,26,27]. In this study

stochastic noise was added only to the ankle actuation constant. At

best it reflects the ubiquitous noise of the motor system but other

noise sources may be equally important.

Despite these limitations, this study identifies a physical

interpretation of the origin of long-range correlations in the stride

intervals of human walking. Stochastic noise is ubiquitous in the

central nervous system and the peripheral sensory-motor systems

participating in human movement [25,26,27]. When this stochas-

tic noise is ‘‘filtered’’ through a system that exhibits a finite orbital

stability – whether the stability results from mechanics of the

periphery, neural control or a combination of both – the stochastic

noise will be partly forgotten as stride number increases. This

imperfect but nonzero memory may contribute to the long-range

correlations observed in stride intervals of human walking.

Whether and how the orbital stability actually affects the long-

range correlations in stride intervals of human walking would be

an interesting topic for further experimental research.

Long-range correlation is commonly regarded as a signature of

fractal-like behavior, and chaotic behavior is frequently observed

in nonlinear oscillators. Due to the frequent concurrence of chaos

and fractals, the long-range correlations in stride intervals have

been considered as evidence that nonlinear oscillators like CPGs

play a prominent role in human walking. Consequently, most of

the previous models have assumed a dominant role of CPGs in

human walking; CPGs determine the stride intervals, and the

motor system exactly executes the command [1,11,12,13]. A

crucial deficiency in this argument is that there is no direct

evidence that a CPG plays a prominent role in upright human

walking. The locomotor-like movements evoked by spinal stimuli

have been observed only in a gravity-neutral position, rendering it

difficult to generalize the results to normal human walking [35,36].

On the contrary, some experimental evidence suggests that a CPG

in human spinal circuitry has been largely suppressed in adult

human locomotor control [37,38]. To reiterate, experimental

studies reported fractal-like variability in human walking; model-

ing studies proposed specific CPGs as the entire source of the

Figure 9. Distribution of coefficient of variance (COV). In both
cases of h0 = p/6 and h0 = p/12, the distribution of COV obtained from
each set of 500 or 3,000 strides is not significantly different from 3%, the
COV of stride intervals observed in normal human walking. The circle
and error bar indicate the mean and the standard deviation interval,
respectively.
doi:10.1371/journal.pone.0073239.g009
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specific structure of the variability; but there is no experimental

evidence that supports the assumption of the models.

Our results address this important deficiency. First, we showed

that even a non-chaotic walking model without a CPG may yield

long-range correlations in stride intervals. Second, the limit cycle

had to be weakly attracting for the model to reproduce the long-

range correlations observed in human walking. This suggests that

any CPG that may underlie human walking may be weakly

attracting or weakly coupled to other locomotor systems. Contrary

to common hypotheses, long-range correlations in stride intervals

may not imply a strongly attracting rhythmic primitive such as a

neural CPG; a weak attractor that allows long memory may give

rise to the long-range correlations in human stride intervals.

Supporting Information

Appendix S1 This appendix presents mathematical
proofs of the following two: 1) the model has a unique

and globally attracting periodic gait, and therefore, it
cannot exhibit a chaotic behavior; 2) the time series of
the cycle durations of the model approaches Brownian
noise with infinitesimal h0.
(DOCX)

Figure S1 A graphical illustration of monotonic conver-
gence to the fixed point. The intersection of y = x and y = g(x)

corresponds to the period-one gait or the fixed point, xfixed. Any

initial condition of x should converge to xfixed monotonically

following the green arrows. This precludes the model from

exhibiting period-n (n$2) gaits or chaos.

(TIF)
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