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Abstract

Background: To verify oxidative stress as a possible mechanism that establishes a relationship between exposure
to bisphenol A (BPA) and adverse health outcomes in the elderly Korean population, we evaluated the relation
between visit-to-visit variations in urinary BPA and oxidative stress biomarker.

Methods: To assess the relation between BPA and urinary malondialdehyde (MDA) as an oxidative stress biomarker,
we used a mixed effect model after controlling for age, sex, BMI, drinking status, exercise, urinary cotinine level,
PM10 on lag day 2, and mean temperature and dew point on the day. The relation between exposure to BPA and
MDA level by sex of participants and polymorphisms of oxidative stress-related genes (COX2, EPHX1, HSP70-hom,
PON1, eNOS, CAT, DRD2, SOD2, and MPO) was also evaluated.

Results: A significant association was found for BPA with MDA in both male and female elderly participants
(male, β = 0.19 and p = 0.0003; female, β = 0.18 and p < .0001; and total, β = 0.18 and p < .0001). Furthermore,
the association of BPA with MDA was found regardless of any genotype of the nine oxidative stress-related
genes.

Conclusions: The results of our study suggest a strong association of BPA with oxidative stress, not related
with sex and oxidative stress-related gene polymorphisms.
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Background
Bisphenol A (BPA) is a chemical with highest levels
of production worldwide, with an annual increase of
6 to 10% [1]. The ubiquitous exposure to BPA [1]
and its toxic potential [2–4] raise concerns of its ad-
verse effects on both non-sexual and sexual organs
[5–7]. Recently, several studies have suggested that
oxidative stress is a possible mechanism that estab-
lishes the relation between exposure to BPA and ad-
verse health outcomes [8, 9]. However, there has
been a limited number of reports on the relation be-
tween BPA exposure and oxidative stress biomarkers
[10–17], particularly for malondialdehyde (MDA)
[10–13, 16]. Moreover, in previous studies, it has

been difficult to capture within-subject changes be-
cause of their cross-sectional nature of the associa-
tions [10–13, 16]. For this reason, a longitudinal
study with repeated measurements is required to ac-
count for within-subject changes in BPA exposure
and oxidative stress levels since each subject in the
panel study can be used as his or her own control
with repeated measurements of rapidly changing
covariates.
Therefore, in the present study, we repeatedly mea-

sured the urinary levels of BPA and MDA as a lipid
peroxidation marker in the Korean elderly popula-
tion, and estimated acute effect of BPA on MDA
level. Furthermore, we also estimated the effect of
BPA on MDA level by sex of participants and poly-
morphisms of oxidative stress-related genes (COX2,
EPHX1, HSP70-hom, PON1, eNOS, CAT, DRD2,
SOD2, and MPO).
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Methods
Study population and sampling
This study estimated the relation between BPA exposure
and urinary levels of MDA, an oxidative stress bio-
marker, in the elderly aged 60 or over recruited from the
Korean Elderly Environmental Panel (KEEP) study.
Briefly, among a total of 560 elderly people who visited a
community elderly welfare center as many as five times
for a medical examination (twice in 2008, once in 2009,
and twice in 2010) [9], 548 subjects were included in the
analysis after excluding 12 whose blood samples were
unavailable.

BPA measurement
We measured urinary levels of total BPA, including free
and conjugated BPA, using HPLC tandem mass spec-
trometry (HPLC: Agilent 1200, USA; MS/MS: Agilent
6410 Triple Quad LCMS, Agilent, USA) according to
previously reported procedures [9]. Shortly, five-hundred
microliters of urine were buffered with 30 μL of 2.0 M
sodium acetate (pH 5.0) and were then spiked with
25 μL internal standard BPA (RING-13C12, 99%; Cam-
bridge Isotope Lab, Inc., Andover, MA, USA) and 10 μL
(≥900 units) of glucuronidase/sulfatase (Sigma–Aldrich
G7770, St. Louis, MO, USA). The accuracy, coefficient
of precision variation, and coefficient of reproducibility
variation were 99.7%, 1.0–4.7, and 0.5–5.3, respectively,
based on the quality control method adopted from the
Clinical and Laboratory Standards Institute (CLSI)
guidelines. The limit of detection (LOD) of urinary BPA
was 0.01 μg /L.

MDA measurement
We measured urinary levels of MDA as an oxidative
stress biomarker. Urinary MDA levels were deter-
mined by measuring thiobarbituric acid reactive sub-
stances [18]. Shortly, 50 μl of urine were mixed with
300 μl of 0.5 M phosphoric acid solution and 150 μl
of 23 mM TBA solution (Sigma-Aldrich T-5500,
Steinheim, Germany) and were heated at 95 °C for
1 h. After cooling on ice, the mixture was vortexed
with 500 μl of methanol and was centrifuged at 5000
× g. The absorbance of the supernatant was measured
at 532 nm using HPLC-UV with a mobile phase of
potassium phosphate (0.05 mol/L; pH 6.8) and metha-
nol (58:42, v/v).

Cotinine measurement
Urinary cotinine levels were measured to monitor
tobacco exposure. The cotinine level was analyzed using
an enzyme-linked immunosorbent assay [18].

Particulate matter less than 10 μm (PM10) concentration
and meteorological factors
In a previous study for the delayed effects of PM10 on
MDA level, significant associations of PM10 on lag day 2
and outdoor temperature and dew point on the day with
MDA level were found [18] and thus we adjusted for
these factors in our models. Data was acquired from the
Korea National Institute of Environmental Research for
PM10 on lag day 2 at the monitoring center nearest to
the residence of each participant [18]. The outdoor
temperature and dew point measured at the Songwol-
dong monitoring center nearest to the residence of the
study participants during the study period were obtained
from the Korea Meteorological Administration [18].

Genotyping of oxidative stress-related genes
Genomic DNA was extracted from peripheral blood
lymphocytes using a QIAamp DNA Blood Mini Kit
(Qiagen, Valencia, CA, USA), and twenty-one polymor-
phisms of nine oxidative stress-related genes – cyclooxy-
genase 2 (COX2), epoxidehydrolase 1 (EPHX1), heat
shock protein 70-hom (HSP70-hom), paraoxonase 1
(PON1), endothelial nitric oxide synthase (eNOS), cata-
lase (CAT), dopamine receptor D2 (DRD2), superoxide
dismutase 2 (SOD2), and myeloperoxidase (MPO) –
were determined using the TaqMan fluorogenic 5′
nuclease assay (rs5277 for COX2, rs3766934, rs1051740,
and rs2234922 for EPHX1, rs2227956 and rs2075800 for
HSP70-hom, rs854560, rs13306698, and rs662 for PON1,
rs1799983 for eNOS, rs769218 and rs769217 for CAT,
rs1800497 for DRD2, rs4880, rs2758331, and rs5746136
for SOD2, and rs7208693 for MPO) and a single base
primer extension assay (rs3218625 for COX2, rs2853796
and rs7830 for eNOS, and rs2071409 for MPO). Negative
controls were included to ensure genotyping accuracy.
For confirmation, five percent of the samples were ran-
domly chosen and genotyped again, producing identical
results.
For the TaqMan fluorogenic 5′ nuclease assay (ABI,

Foster City, CA, USA), the final volume of polymerase
chain reaction (PCR) was 5 μl, containing 10 ng of gen-
omic DNA and 2.5 μl TaqMan Universal PCR Master
Mix, with 0.25 μl of 20X or 0.125 μl of 40X Assay Mix
(Assay ID, AHVI68H for rs5277, C___2725995_20 for
rs3766934, C_____14938_30 for rs1051740,
C__11638783_30 for rs2234922, C__25630755_10 for
rs2227956, C___3052613_1_ for rs2075800, AHT9819
for rs854560, C__31373257_10 for rs13306698,
C___2548962_20 for rs662, C___3219460_20 for
rs1799983, C___3102900_10 for rs769218,
C___3102907_10 for rs769217, C___7486676_10 for
rs1800497, C___8709053_10 for rs4880,
C__16288770_10 for rs2758331, C__29322854_10 for
rs5746136, and C__25609936_10 for rs7208693). All
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polymerase chain reactions and endpoint fluorescent
readings were conducted according to previously reported
procedures [9]. For the single base primer extension assay,
SNaPShot assay kit (ABI, Foster City, CA, USA) was used
according to previously reported procedures [9].
The primers and probes designed for rs5277,

rs3218625, rs854560, rs2853796, rs7830, and rs2071409
were as follows:

rs5277-forward, 5′-TCCCTTCCTTCGAAATGCAAT
TATGA-3′,
rs5277-reverse, 5′-GCTAAAAACCTTAGAAAGACA
CTTGT-3′,
rs5277-VIC, 5′-CTTACATGTCAACACATAAC-3′,
rs5277-FAM, 5′-ACATGTCAAGACATAAC-3′,
rs3218625-forward, 5′-ATTCAGTGTTCCAGATCCA
GAG-3′,
rs3218625-reverse, 5′-AAATAAATATGATCATTAG
ACTTCTACAGTTC-3′,
rs3218625-SNP, 5′-CATCAATGCAAGTTCTTCCCG
MTCC-3′,
rs854560-forward, 5′-ACAACCTGTACTTTCTGTT
CTCTTTTCTG-3′,
rs854560-reverse, 5′-GAAAACACTCACAGAGCTA
ATGAAAGC-3′,
rs854560-VIC, 5′-CAGTATCTCCAAGTCTTC-3′,
rs854560-FAM, 5′-CAGTATCTCCATGTCTTC-3′,
rs2853796-forward, 5′-TTCCTGTSCCAGAGGC
AG-3′,
rs2853796-reverse, 5′-GACAAGGTTGTCACAGG
GC-3′,
rs2853796-SNP, 5′- CCYTGAAGCCGTCCCTGGGG
CTGGG-3′,
rs7830-forward, 5′- ATTCTGGCAGGAGCGGCT-3′,
rs7830-reverse, 5′-TCTGTCCCTAGATTGTGTGA
CTC-3′,
rs7830-SNP, 5′-ACTCCCTTCAGGCAGTCCTTTAG
TC-3′,
rs2071409-forward, 5′- TGCCAGCCCAGAATAT
CC-3′,
rs2071409-reverse, 5′-GCTGCATGCTGAACAC
AC-3′,
rs2071409-SNP, 5′-CACAGTGTCCATGGGTGTTC
CCC-3′.

The probes for rs1051740, rs2234922, rs13306698, and
rs662 were DME, and those for rs3766934, rs2227956,
rs2075800, rs1799983, rs769218, rs769217, rs1800497,
rs4880, rs2758331, rs5746136, and rs7208693 were pre-
designed.

Statistical analysis
The BPA concentrations under the LOD were assigned
as a default value of LOD concentration divided by 2.

Since the detection range for cotinine was 1–
10,000 mg/L, the cotinine level was assigned as
0.5 mg/L for values less than 1 mg/L and 15,000 mg/
L for values greater than 10,000 mg/L. Because the
present panel study conducted repeated measure-
ments of urinary BPA and MDA at several time
points for each individual (five measurements at max-
imum for both exposure and outcome), we used a
mixed effect model with repeated values of BPA and
MDA levels to assess the relation of visit-to-visit vari-
ations in BPA exposure with MDA levels in order to
evaluate the short-term effects of the changes in BPA
exposure levels over time. In the model, we adjusted
for age, sex, body mass index (BMI), drinking status,
exercise, urinary cotinine level, PM10 on lag day 2,
and mean temperature and dew point on the day be-
cause these factors affected the MDA level signifi-
cantly. Age, BMI (weight (kg)/ height2 (m2)), cotinine
levels, PM10 on lag day 2, and mean temperature and
dew point on the day were treated as continuous var-
iables, and sex, drinking status, and exercise were
treated as categorical variables in the models. We also
estimated the relation between BPA and MDA levels
by sex and by the genetic polymorphisms of COX2,
EPHX1, HSP70-hom, PON1, eNOS, CAT, DRD2,
SOD2, and MPO. Furthermore, we calculated intra-
class correlation coefficients (ICCs) - defined as the
ratio of inter-individual variance to total variance - of
BPA and MDA to evaluate the intra- and inter-
individual variations of repeated BPA and MDA mea-
sures. SAS version 9.3 (SAS Institute Inc., Cary, NC,
USA) was used for statistical analyses with a signifi-
cance level of p < 0.05.

Results
The participants in our study were a total of 548 elderly
people, 142 males and 406 females (Table 1). At baseline,
the mean age of the participants was 70.8 years, and the
number of obese participants with BMI ≥ 25 was 242
(44.2%). Current smokers, drinkers, and exercisers were
5.5, 22.1, and 61.5%, respectively, and male participants
smoked and consumed alcohol more than female partici-
pants (both p < .0001). The mean number of visits of the
participants was 3.3, and females participated more
actively compared to males (p = 0.0847).
BPA, MDA, and cotinine were measured in a total of

1625, 1637, and 1632 urine samples, respectively
(Table 2). The mean levels (inter-quartile ranges) of
urinary BPA, MDA, and cotinine were 1.2 μg/L (0.4–
1.2 μg /L), 1.9 μmol/L (1.1–2.4 μmol/L), and 274.7 mg/L
(0.5–4.5 mg/L), respectively. In particular, 95 percentile
and maximum levels of urinary BPA were 3.7 μg/L and
67.6 μg/L, respectively, and number of urine samples
with BPA concentrations under the LOD was 32. In the
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evaluation for intra- and inter-individual variations of
BPA and MDA levels, ICC of BPA was 0.11 and that of
MDA was 0.07. The means for PM10 on lag day 2 of the
health examination and temperature and dew point on
the day were 41.3 μg/m3, 16.8 °C, and 6.0 °C,
respectively.
Twenty-one genotyped polymorphisms of COX2,

EPHX1, HSP70-hom, PON1, eNOS, CAT, DRD2, SOD2,
and MPO are listed in Table 3. The call rate of twenty
polymorphisms, except rs662, was high with a minimum
of 98.7% (93.5% for rs662), and all replicated genotyping
showed identical results with an accuracy of 100%
(Table 3). When we tested for the Hardy-Weinberg equi-
librium (HWE) of each polymorphism with genotype
frequency, the study participants were in HWE for
twenty polymorphisms, except rs2227956 (p < 0.05 for
rs2227956 and p > 0.05 for the other twenty polymor-
phisms using a χ2 test).
The evaluation of the relation between BPA and MDA

levels indicated a strong association for BPA exposure
with an increase in MDA level (β = 0.18, 95% confidence
interval (CI): 0.14, 0.23, and p < .0001) regardless of sex
(male, β = 0.19, 95% CI: 0.09, 0.29, and p = 0.0003; and
female, β = 0.18, 95% CI: 0.12, 0.23, and p < .0001)

(Table 4). To evaluate the relation of BPA with MDA
according to the genotype of oxidative stress-related
genes, the relation between BPA and MDA was esti-
mated for each genetic polymorphism and was found to
be consistent regardless of any genotype of COX2,
EPHX1, HSP70-hom, PON1, eNOS, CAT, DRD2, SOD2,
and MPO (Table 4). Furthermore, we explored the pat-
tern of dose–response relationship between BPA and
MDA levels, but did not find any trend for non-linear
relationship between the two.

Discussion
This study showed a strong association of BPA with
MDA, not related with sex or with the genetic polymor-
phisms of nine oxidative stress-related genes (COX2,
EPHX1, HSP70-hom, PON1, eNOS, CAT, DRD2, SOD2,
and MPO).
Previous reports on the relation between BPA expos-

ure and oxidative stress have supported the possibility of
BPA exposure having an effect on adverse health
outcomes through oxidative stress. Previous research
reported the in vitro induction of reactive oxygen
species by BPA in mouse Neuro2a and GC1 cells [14]
and a positive correlation of BPA exposure with urinary
level of DNA oxidation marker, 8-hydoxydeoxyguanosine
(8-OHdG), in residents living in and around e-waste dis-
mantling facilities of China [17]. Furthermore, a longitu-
dinal panel study for pregnant women found positive
associations of BPA exposure with urinary oxidative stress
markers, 8-OHdG and isoprostane [15]. However, evi-
dence of the relation between BPA exposure and MDA
level was inconclusive. Animal studies for BPA ob-
served an increase in MDA level in the heart, liver,
ovary, and renal tissues of Wistar albino rats that had
been orally administered a high dose of BPA (10 mg/
kg/day or 25 mg/kg/day for durations between 30 days
and 60 days) [10, 11, 13]. An increase in oxidative

Table 1 Demographic characteristics of the participants

Characteristic Total Male Female p-Value

No. of participants (%) 548 (100) 142 (25.9) 406 (74.1)

Visit number [mean ± SE] 3.3 ± 0.1 3.2 ± 0.1 3.4 ± 0.1 0.0847

Mean age (min-max), year 70.8 (60–87) 71.4 (62–84) 70.5 (60–87) 0.0653

Height [mean ± SE (cm)] 154.7 ± 0.3 164.3 ± 0.4 151.3 ± 0.3 <.0001

Weight [mean ± SE (Kg)] 59.4 ± 0.4 65.8 ± 0.8 57.1 ± 0.4 <.0001

BMI (kg/m2), no. (%)

≥ 25 242 (44.2) 56 (39.4) 186 (45.8) 0.1485

23 ~ <25 169 (30.8) 42 (29.6) 127 (31.3)

< 23 137 (25.0) 44 (31.0) 93 (22.9)

No. of current smokers (%) 30 (5.5) 29 (20.4) 1 (0.2) <.0001

No. of drinker (%) 121 (22.1) 78 (54.9) 43 (10.6) <.0001

Exercise, no. of yes (%) 337 (61.5) 88 (62.0) 249 (61.3) 0.9260

Table 2 Distribution of repeated BPA, MDA, cotinine, PM10,
temperature, and dew point

Selected percentiles

Chemicals n Mean (SD) 25th 50th 75th

BPA (μg/L) 1625 1.2 (2.6) 0.4 0.7 1.2

MDA (μmol/L) 1637 1.9 (1.2) 1.1 1.7 2.4

Cotinine (mg/L) 1632 274.7 (1564.1) 0.5 2.1 4.5

PM10 on lag day 2 (μg/m3) 1762 41.3 (23.6) 26.4 36.4 52.5

Temperature on the day (°C) 1818 16.8 (9.0) 9.8 18.0 24.9

Dew point on the day (°C) 1818 6.0 (10.8) −2.0 7.7 15.3
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stress biomarkers due to BPA exposure was observed
in several epidemiologic studies as well. Oxidative
stress markers, such as 8-OHdG, white blood cell
count, and C-reactive protein, as well as MDA in-
creased in postmenopausal women exposed to BPA,
even though the phenomenon was not shown in men
and in premenopausal women [16]. However, in a
cross-sectional study for adults, BPA was not associ-
ated with MDA and 8-OHdG levels after adjusting
for covariates affecting oxidative stress [12]. Although
BPA was found to affect oxidative stress levels in ani-
mals and in older females, a longitudinal panel study
found no evidence of a change in lipid peroxidation
by BPA exposure. Therefore, the present study esti-
mated the effect of real-time BPA exposure on MDA
level, and the results indicate a statistically significant
increase in the MDA level related to the BPA expos-
ure, indicating that exposure to BPA at low levels in
the environment might be able to cause oxidative
damage in elderly individuals, resulting in the devel-
opment of oxidative stress-related diseases.
In the present study, we tried to estimate the differ-

ence of the effect that BPA exposure had on MDA level
by sex and genetic polymorphisms of oxidative stress-
related genes (COX2, EPHX1, HSP70-hom, PON1, eNOS,
CAT, DRD2, SOD2, and MPO) because the effect of BPA

exposure on adverse health outcomes related to oxida-
tive stress was found to be different depending on sex or
genetic polymorphisms of oxidative stress-related genes
[9, 16]. However, we did not find any difference on the
effect of BPA exposure on MDA level by sex and by the
genetic polymorphisms stated above. BPA is a non-
persistent chemical with a short biological half-life < 6 h,
and the oxidative stress that increases due to BPA expos-
ure might be quickly repaired by defense systems in the
body [14]. We evaluated the short-term effects of the
changes in BPA exposure on MDA level and found no
difference on the effect of BPA exposure on MDA level
by sex and the tested genetic polymorphisms, which
may be due to a momentary effect of BPA on the MDA
level made before the defense system of the body be-
comes active. However, humans are ubiquitously ex-
posed to BPA, and chronic exposure might have an
effect on various adverse health outcomes through the
continuous accumulation of oxidative stress. Therefore,
improving antioxidant defenses, such as with antioxidant
supplementation, and regulating BPA exposure in the
elderly population could potentially prevent oxidative
stress resulting in oxidative stress-related diseases.
In the present study, ICC of BPA was 0.11 while that

of MDA was 0.07, indicating that MDA was more
changeable than BPA for each individual even though

Table 3 Genotyped polymorphisms

Gene rs no. HGVS name Chromosome no. Position Amino acid change Call rate (%) Accuracy (%)

COX2 rs5277 c.306G > C 1 Codon102 Val102= 99.8 100

rs3218625 c.1759G > A 1 Codon587 Gly587Arg 100 100

EPHX1 rs3766934 c.-5-1409G > T 1 Intron - 99.4 100

rs1051740 c.337 T > C 1 Codon113 Tyr113His 99.6 100

rs2234922 c.416A > G 1 Codon139 His139Arg 98.7 100

HSP70-hom rs2227956 c.1478C > T 6 Codon493 Met493Thr 99.1 100

rs2075800 c.1804G > A 6 Codon602 Glu602Lys 99.5 100

PON1 rs854560 c.163 T > A 7 Codon55 Leu55Met 99.5 100

rs13306698 c.478A > G 7 Codon160 Arg160Gly 99.8 100

rs662 c.575A > G 7 Codon192 Gln192Arg 93.5 100

eNOS rs1799983 c.894 T > G, 7 Codon298 Asp298Glu 99.5 100

rs2853796 c.1821-62G > T 7 Intron - 99.5 100

rs7830 c.3106 + 11G > T 7 Intron - 99.5 100

CAT rs769218 c.67-60G > A 11 Intron - 100 100

rs769217 c.1167C > T 11 Codon389 Asp389= 98.7 100

DRD2 rs1800497 c.2137G > A 11 Codon713 Glu713Lys 99.6 100

SOD2 rs4880 c.47 T > C 16 Codon16 Val16Ala 99.2 100

rs2758331 c.523 + 816G > T 16 Intron - 99.6 100

rs5746136 c.*441G > A 16 Downstream - 99.8 100

MPO rs7208693 c.157G > T 17 Codon53 Val53Phe 99.3 100

rs2071409 c.2031-6A > C 17 Intron - 99.5 100
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Table 4 The relation of BPA with oxidative stress by genotypes of oxidative stress-related genes

N Observation β Lower 95% CI Upper 95% CI p-Value

Total 517 1528 0.18 0.14 0.23 <.0001

Male 134 365 0.19 0.09 0.29 0.0003

Female 383 1163 0.18 0.12 0.23 <.0001

COX2 rs5277 GG 468 1392 0.17 0.12 0.22 <.0001

GC 47 131 0.26 0.13 0.38 0.0001

CC 1 3 - - - -

GC + CC 48 134 0.26 0.13 0.38 0.0001

rs3218625 GG 500 1480 0.18 0.14 0.23 <.0001

GA 17 48 0.19 −0.04 0.42 0.1031

AA 0 0 - - - -

GA + AA 17 48 0.19 −0.04 0.42 0.1031

EPHX1 rs3766934 GG 329 996 0.17 0.12 0.23 <.0001

GT 164 472 0.20 0.11 0.29 <.0001

TT 22 53 0.22 −0.02 0.46 0.0667

GT + TT 186 525 0.20 0.12 0.28 <.0001

rs1051740 TT 172 501 0.16 0.08 0.24 0.0001

TC 258 768 0.19 0.12 0.25 <.0001

CC 83 250 0.22 0.10 0.33 0.0003

rs2234922 AA 380 1129 0.18 0.13 0.24 <.0001

AG 125 365 0.20 0.12 0.29 <.0001

GG 4 12 0.93 −3.41 5.27 0.4539

AG + GG 129 377 0.20 0.12 0.29 <.0001

HSP70-hom rs2227956 TT 408 1202 0.18 0.13 0.23 <.0001

TC 103 310 0.18 0.05 0.31 0.0084

CC 1 2 - - - -

TC + CC 104 312 0.18 0.05 0.31 0.0061

rs2075800 GG 181 541 0.20 0.12 0.28 <.0001

GA 242 718 0.14 0.07 0.21 <.0001

AA 91 261 0.22 0.12 0.33 <.0001

PON1 rs854560 TT 455 1342 0.19 0.14 0.23 <.0001

TA 57 174 0.13 −0.02 0.28 0.0783

AA 2 4 - - - -

TA + AA 59 178 0.14 −0.01 0.29 0.0669

rs13306698 AA 451 1328 0.19 0.15 0.24 <.0001

AG 62 187 0.17 −0.01 0.35 0.0687

GG 3 9 - - - -

AG + GG 65 196 0.16 −0.01 0.34 0.0662

rs662 GG 211 636 0.16 0.09 0.23 <.0001

GA 209 597 0.20 0.11 0.28 <.0001

AA 64 193 0.24 0.13 0.36 <.0001

eNOS rs1799983 GG 441 1309 0.18 0.13 0.23 <.0001

GT 71 206 0.15 0.01 0.28 0.0308

TT 2 7 - - - -

GT + TT 73 213 0.15 0.01 0.28 0.0299
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intra-individual variation was larger than inter-individual
variation for both BPA and MDA. It is explainable based
on several points. First, although temporal BPA exposure
levels in the same individual were correlated each other
in our study because lifestyle habit of each individual is
not changed a bit, intra-individual variation of BPA ex-
posure can be still high because half-life of BPA is less
than 6 h and participants may be exposed to BPA
through various exposure sources every day. Second,
given that MDA is a nonspecific proxy variable, the
covariates controlled in our model, such as age, sex,

BMI, drinking status, exercise, urinary cotinine level,
PM10 on lag day 2, and mean temperature and dew
point on the day, can easily affect MDA level. In fact, all
these factors significantly affected MDA level in our ana-
lysis. For this reason, we adjusted for these covariates
affecting MDA level in the model and found a strong
and consistent association of BPA level with MDA level
even after adjustment for these covariates.
The major sources of human exposures to BPA are

thought to be food and beverage consumption, be-
cause BPA is employed to make polycarbonate

Table 4 The relation of BPA with oxidative stress by genotypes of oxidative stress-related genes (Continued)

rs2853796 TT 202 589 0.20 0.13 0.27 <.0001

TG 241 720 0.17 0.10 0.24 <.0001

GG 71 210 0.15 0.02 0.28 0.0247

rs7830 GG 158 453 0.23 0.14 0.31 <.0001

GT 252 741 0.17 0.10 0.25 <.0001

TT 105 327 0.16 0.08 0.25 0.0001

CAT rs769218 GG 171 484 0.14 0.05 0.22 0.0016

GA 259 787 0.19 0.13 0.25 <.0001

AA 86 256 0.26 0.13 0.38 <.0001

rs769217 CC 172 485 0.14 0.05 0.22 0.0016

CT 254 772 0.19 0.13 0.26 <.0001

TT 82 246 0.25 0.12 0.38 0.0002

DRD2 rs1800497 GG 197 583 0.19 0.11 0.26 <.0001

GA 232 679 0.20 0.13 0.26 <.0001

AA 86 259 0.15 0.02 0.28 0.0276

SOD2 rs4880 TT 400 1189 0.20 0.14 0.25 <.0001

TC 106 306 0.12 0.00 0.23 0.0430

CC 6 20 0.66 −0.04 1.35 0.0624

TC + CC 112 326 0.15 0.04 0.26 0.0074

rs2758331 GG 406 1204 0.20 0.14 0.25 <.0001

GT 103 299 0.12 0.00 0.23 0.0500

TT 5 17 0.64 −0.29 1.56 0.1438

GT + TT 108 316 0.15 0.04 0.26 0.0094

rs5746136 GG 167 520 0.17 0.09 0.26 <.0001

GA 260 750 0.16 0.09 0.22 <.0001

AA 88 255 0.25 0.14 0.35 <.0001

MPO rs7208693 GG 408 1199 0.19 0.14 0.24 <.0001

GT 97 293 0.16 0.03 0.29 0.0197

TT 8 24 - - - -

GT + TT 105 317 0.15 0.02 0.27 0.0224

rs2071409 AA 442 1300 0.19 0.13 0.24 <.0001

AC 70 214 0.17 0.06 0.27 0.0016

CC 2 5 - - - -

AC + CC 72 219 0.17 0.07 0.27 0.0011

Adjusted for age, sex, BMI, drinking status, exercise, urinary cotinine level, PM10 on lag day 2, and mean temperature and dew point on the day
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plastics and epoxy resins used in a variety of common
consumer products including water pipes and bever-
age cans [19–21]. A recent study reported that urin-
ary BPA concentrations increased more than 1000%
in subjects who consumed one can of soup per day
for 5 days compared to subjects who ate fresh soup
[22]. These results indicated that BPA leaches out of
source materials in normal condition of use, which
can be accelerated if the materials are exposed to
high temperatures or acidic environments [23, 24].
Although data on daily BPA intake was not available
in the present study, the previous study showing a
significant increase of BPA by canned food consump-
tion supports a possibility that food and beverage
consumption may be major sources of BPA exposure
in Korean elderly frequently consuming canned food.
The strengths of the present study merit further dis-

cussion. First, to the best of our knowledge, this is the
first longitudinal panel study to investigate the effect of
BPA exposure on MDA levels with repeated measure-
ments for BPA and MDA levels for each participant.
The design of this panel study allows for the evaluation
of the short-term effects on MDA by temporal BPA ex-
posure level. Moreover, this longitudinal study served
the subjects as their own controls over the study period.
Since our study purpose was to evaluate the acute effect
of BPA, a non-persistent chemical with a biological half-
life < 6 h on the MDA level, we used a mixed effect
model to evaluate the short-term effects of the changes
in BPA exposure levels on MDA level. However, the ef-
fect of chronic BPA exposure on oxidative stress should
be further studied in the future.
Our study had limitations as well. We recruited subjects

aged 60 years or older. If age modifies the effect of BPA
on the MDA level, our results may not be generalized to a
younger population. In addition, we did not consider other
environmental exposure that the participants may be co-
exposed to during the present study, affecting MDA levels,
even though PM10 and meteorological factors were con-
trolled in the models. Since other forms of environmental
exposure could also be associated with oxidative stress,
the combined effect of multiple exposure factors inducing
oxidative stress should be further studied.

Conclusions
Overall, short-term exposure to BPA was significantly
associated with MDA, an oxidative stress biomarker in
the elderly. The association between BPA exposure and
MDA level was found regardless of sex and any geno-
type of nine tested oxidative stress-related genes, indi-
cating the strong association of BPA with MDA levels.
These findings shed new light to understand physio-
logical mechanism on the development of a variety of
diseases by BPA.
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