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Abstract

A compressed stiff film on a soft substrate may exhibit wrinkles and, under in-

creased compressive strain, post-buckling instabilities as well. We numerically

analyze wrinkling behaviors of graphene attached on a polydimethylsiloxane

(PDMS) substrate under lateral compression. The finite element method is

used to simulate the equilibrium shape of the wrinkles as a function of compres-

sive strain. Two-dimensional stretching and bending properties of graphene

are obtained by density functional theory analysis, which are then converted

to equivalent elastic properties of a continuum film with finite effective thick-

ness. The PDMS is described using an Ogden or a neo-Hookean material model.

Wrinkles first appear at extremely small strain. As the lateral compression in-

creases, due to the nonlinear elasticity of the PDMS, sequential period-doubling

bifurcations of the wrinkle mode are activated until the bifurcation stops and

the film folds. We show that the bifurcations are consequences of a delicate

balance between the deformations of the film and the substrate to minimize the

total energy.
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1. Introduction

Wrinkles on material surfaces have generated considerable research interest

these days. They are common in nature as exemplified by skin wrinkles and

geological folds [1, 2]. Wrinkles are also formed when a stiff film on a compli-

ant substrate is compressed laterally [3–6]. They have been used to fabricate5

stretchable electronics [7].

When the wrinkles are further compressed, post-buckling instability may

occur and complex patterns can arise. Suppose sinusoidal wrinkles originally

exist on a stiff film. For an increased compression, another mode of the sinu-

soidal wrinkle whose wavelength is twice the initial value couples to the original10

one. Such spatial period doubling has been found in experiment and attributed

to the quadratic and cubic nonlinear elasticity of the film and the substrate

[8–13]. Further compression leads to a period-quadrupling bifurcation [8, 14].

These phenomena suggest that continued increase in compression may lead to

repeated bifurcations and such sequential period-doubling bifurcations in some15

systems show a transition to chaos [15–17]. In the present work, we choose

graphene on a polydimethylsiloxane (PDMS) substrate as a model system [18–

20]. Sequential period-doubling bifurcations up to octupling will be shown to

occur in the Ogden model. We will further demonstrate that the wrinkles will be

folded, namely, two side walls of a valley will touch each other, the bifurcation20

will stop, and the system will not proceed to chaos.

2. Methods

Now, the behavior of wrinkles on a single-layer graphene attached on a

PDMS substrate was studied numerically using the finite element method (FEM).

Such a numerical approach was unavoidable because the governing equations of25

the finite deformation are nonlinear partial differential equations which do not

allow for analytic solutions. Our calculation was based on the method of Sun et

al. [11, 12]. One-dimensional wrinkles were considered, and the plane strain ap-

proximation was used. To perform the FEM calculations, some physical param-
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eters of the system were required. We carried out ab initio electronic structure30

calculations based on the density functional theory (DFT) with the Perdew-

Burke-Ernzerhof (PBE) exchange-correlation functional [21] using the Vienna

ab initio simulation package (vasp) [22]. We employed the projector-augmented

wave (PAW) pseudopotential [23]. From these calculations, we obtained bending

modulus D = 1.5 eV and in-plane 2-dimensional modulus E2D = 2000 eV/nm
2
.35

Graphene’s Poisson’s ratio, ν = 0.15, was chosen from the literature [24]. In or-

der to apply these pieces of information to the well-established formalism of the

wrinkle formation, [12] we needed to convert D and E2D into the 3-dimensional

E and the “effective” thickness of the film, h. From the relation E2D = Eh and

D = Eh3/12(1 − ν2), we obtained the “effective” thickness h = 0.094 nm and40

the “effective” Young’s modulus E = 3.4 TPa. The above procedure amounts

to converting the single-layer graphene to a continuum plate. Now, in extract-

ing the material properties of the substrate (PDMS), its elastic response was

approximated by two different models, the Ogden and the neo-Hookean models.

The Ogden model shows material stiffening at high strain compared to an al-45

most linear response in the neo-Hookean model in Fig. 1. In the Ogden model,

[25] the second order incompressible strain energy potential was defined as

U(λ1, λ2, λ3) =

2∑
i=1

2µi
α2
i

(λαi
1 + λαi

2 + λαi
3 − 3), (1)

where λi’s are the principal stretches, and µi’s and αi’s are material constants

related to the strain energy. The principal stretches λi’s are defined as the

eigenvalues of
√
FTF, where F is the deformation gradient defined as FiI =50

∂xi/∂XI (i, I = 1, 2, 3), where XI and xi are the coordinates of a point in

the material in the undeformed and deformed configuration, respectively. We

fitted the potential to the stress-strain curve of PDMS [26] and obtained µ1 =

0.7526 MPa, µ2 = 0.0388 MPa, α1 = 1.301, and α2 = 11.39 (Fig. 1). The

summation index i ran to 2 because two terms were necessary to fit the curve55

where the nominal strain ranged between 0 and 0.85. The compressive nominal

strain is defined as ε = (L0 − Lc)/L0 with the initial sample length L0 and the

compressed length Lc.
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Figure 1: Fitting of the measured stress-strain curve of the PDMS substrate with theoretical

models. The measured data were reprinted with permission from Choi et al., Exp. Mech. 50,

635 (2010). Copyright 2010 Springer.

The FEM calculation was done using the abaqus 6.12 standard code [27].

The film was described by quadratic beam elements with the hybrid formulation60

(B22H) and the substrate by the hybrid quadrilateral elements (CPE8RH) [11,

12]. To break the translational symmetry of the system and trigger wrinkling,

a small sinusoidal displacement with an anticipated wavelength on the film

was introduced. The amplitude of the sinusoidal displacement was as small

as 0.05h. The anticipated wavelength of the wrinkle was obtained from the65

following equation, [12]

L =
2πh

λ

(
E

6(1 + λ2)Q(1− ν2)

)1/3

≈ 2π

(
D

Q

)1/3

, (2)

where λ, the principal stretch in the direction of compression, was close to 1 in

practice, and Q was the shear modulus in the small strain limit (= 0.791 MPa

for PDMS [26]). To induce bifurcations, a numerical technique of introduc-

ing an artificial damping factor for computational stabilization was used. The70

artificial damping was applied to enhance convergence at bifurcations. The un-

desired artifact of the damping was minimized by optimizing it to the smallest

possible value so that it reproduced the experimentally observed and previously
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calculated period doubling and quadrupling [8, 11, 14]. We imposed additional

boundary conditions in which tangent lines of the film on each end were kept75

horizontal (cantilever beam conditions). The horizontal length and depth of the

substrate were 24 and 5 times of the wavelength of the wrinkle mode, respec-

tively. We checked and confirmed that the length and depth of the substrate

were sufficient to prevent artificial interactions between top and bottom parts

of the system.80

3. Results and Discussion

Development of the wrinkled surface morphology of monolayer graphene

on PDMS is shown as a function of the compressive strain in Fig. 2. The

contour plots display the maximum in-plane principal logarithmic strain, which

is defined as the largest eigenvalue of the logarithmic strain tensor El. This85

tensor is a measure of finite deformation which is defined as El = ln
√
FTF.

The wrinkle generally starts at a particular finite strain value. However, the

critical strain for the onset of wrinkle formation is so tiny [12] (4.9× 10−5) that

it is not noticeable in the figure. Initially, the wavelength of the wrinkle in

Fig. 2(a1) is 42.2 nm (Eq. (2)). After the wrinkle forms, the amplitude of the90

sinusoidal wrinkle increases as the magnitude of the compressive strain increases.

When the compressive strain exceeds 0.16, a bifurcation (known as pitchfork

bifurcation) sets in with a period doubling as described in Fig. 2(a2). The

critical ε for the onset of the period doubling agrees reasonably with previous

results (ε = 0.185) found in the literature [10, 11]. A further compression95

induces a period quadrupling (a3) with its shape also in good agreement with

previous results [8, 14]. A larger strain induces the period octupling. At a

slightly greater ε, the folding finally occurs. Here, the term “fold” is defined as

a wrinkle developed so deeply that two side walls of the sink touch each other.

The fold exhibits a concave valley whose depth in the vertical direction increases100

with compression. The maximum of the local strain E11 (= ∂u1/∂X1, where

u1 = x1 −X1) of graphene is estimated to be 0.031 at the bottom of the valley,
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which is still much less than the measured intrinsic fracture strain of graphene

(0.25) [28]. This value is also smaller than the failure strain (0.087) of a defected

carbon nanotube reported in the literature [29]. Therefore, the folded graphene105

is unlikely to be broken under the nominal compressive strain as large as 0.34.

Another instructive way of examining the repeated bifurcations is presented

in Fig. 2(b). Here, the development of the surface height (y-coordinate) varia-

tions at different positions (marked with arrows of different colors) is traced as

ε increases. At the period-doubling bifurcation (ε = 0.16), the y-coordinate of110

the valley at the red arrow position swells while the other three valleys (black,

blue, and green arrow positions) deepen [8]. When the strain increases beyond

0.24, a bifurcation takes place again and the valley at the black arrow position

goes up while those at blue and green arrow positions deepen. At ε = 0.27,

another bifurcation with period octupling is observed. Then at ε = 0.29, two115

side walls of a valley touch each other, namely, the film folds.

Now, we analyze various components of the energy at different stages of

conformation. The dimensionless substrate energy change relative to the flat

substrate, ∆U s = (U s
w − U s

0)(1 − ν2s )/ALEs, as a function of ε is plotted in

Fig. 2(c), where U s
w is the wrinkled substrate energy, U s is the energy of the flat120

substrate under the same ε, νs (≈ 0.5) is the Poisson’s ratio of the substrate, A

is the area of the film surface, and Es (= 3Q) is the modulus of the substrate.

At ε = 0.16, d∆U s/dε increases discontinuously indicating the onset of period

doubling. The energy derivative increases because the period doubling mode

causes more deformation of the substrate. The bifurcation is energetically un-125

favorable for the substrate. A similar phenomenon occurs at ε = 0.24 as the

period quadrupling starts. At ε = 0.27 or greater, the behavior of the energy

derivative is rather intricate. We conjecture that the simulation becomes nu-

merically less stable when the conformation gets complicated (period octupling

at ε ≈ 0.27 and folding at ε ≈ 0.29). The dimensionless film energy change130

U f = U f
w(1 − ν2s )/ALEs is also shown in Fig. 2(c), where U f

w is the wrinkled

film energy. The energy derivative dU f/dε decreases abruptly at the bifurcation

points implying that the bifurcations should be energetically favorable to the
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film. The sum of the two differentiated energies, d(∆U s +U f)/dε has kinks and

is almost continuous at the bifurcation points in line with a previous work [8]. In135

the literature, the period doubling bifurcation was attributed to non-negligible

second-order terms in the strain tensor (so-called geometric nonlinearity) for a

large deformation as well as the nonlinear elasticity in the constitutive equation

of the substrate [9, 10]. There, it was shown that the period doubling mode

reduced the total energy. In our analysis, we have shown in detail that period140

doubling and quadrupling bifurcations release the film energy more at the ex-

pense of smaller increase in the substrate energy. Parenthetically, we want to

note that the sequential period doubling bifurcations in nonlinear systems may

lead to chaos [3, 15, 16]. Before this happens, the ratio of successive bifurcation

intervals δn = (εn+1 − εn)/(εn+2 − εn+1) usually converges to the Feigenbaum145

constant δ = 4.66 . . . as n increases [17]. In our system, δ1 = 3.8. It is con-

ceivable that, if the contact between the wrinkles (folding) did not happen, a

further compression might lead to chaos in our system.

To separate out the effect of the stiffening of the PDMS substrate at large

strain, calculations with the neo-Hookean model (free of stiffening) were also150

carried out in place of the Ogden model. In the neo-Hookean model, the period

doubling and quadrupling were observed at ε = 0.19, and 0.26 (Fig. 3), similar

to the Ogden model. However, as the strain increased, a particular valley of

the wrinkle structure was deepened (the green dash-dot arrow) and neighboring

valleys were flattened (the blue solid and black dashed arrows) [30, 31]. This is155

because the material in the neo-Hookean model does not stiffen as much as in

the Ogden model at large strain, thereby admitting for a large deformation of

the deep wrinkle. The strain at the deep valleys calculated by the Ogden model

exceeds 0.5 (Fig. 2(a5)). At this large strain, the neo-Hookean model stiffens

less than the Ogden model does as shown in Fig. 1. In the neo-Hookean model,160

the bifurcations proceed to quadrupling followed by folding and subsequent

localization of the fold, without octupling.
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4. Conclusions

In summary, we have demonstrated numerically that consecutive period-

doubling bifurcations take place in the wrinkles of graphene (a stiff film) at-165

tached on the PDMS (a soft substrate). It is shown that the bifurcations arise

because they reduce the energy of the film more at the expense of a smaller

increase in the substrate energy. Eventually, folding of the wrinkles occurs, and

thus bifurcation stops. We expect that the result obtained here regarding the

folding of the wrinkled film can be applied to the fabrication of nano channels170

and externally controlling the conformation of such channels by changing the

strain.
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Figure 2: (a1–a4) Buckled surface configurations with the Ogden model substrate at com-

pressive strain ε = 0.13, 0.23, 0.26 and 0.34, respectively. At high strain of 0.34, a magnified

picture (a5) shows the graphene fold with two side walls contacting each other. LEMIPP

means the maximum in-plane principal logarithmic strain. The color code (a6) shows the

local strain E11 as defined in the text. (b) Calculated y-directional displacement of 4 differ-

ent points (indicated with 4 arrows) on the surface at the bottom of valleys as a function of

compressive strain ε from our calculation. Three different bifurcation points are identified at

the strain of 0.16, 0.25, and 0.27, respectively. (c) Nondimensionalized energy derivatives as

defined in the text as a function of compressive strain ε.
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Figure 3: y-directional displacement of 4 different points (indicated with 4 arrows) on the

surface at the bottom of valleys as a function of strain calculated with the neo-Hookean model

for the substrate. Two different bifurcation points are identified at the strain of 0.19, 0.26,

respectively. The last separation of lines at ε ≈ 0.28 corresponds to the deepening of one

valley (at the green dash-dot arrow) and the flattening of neighboring valleys.
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