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A model was developed for the location of rapid charging stations for elec-
tric vehicles (EVs) in urban areas, taking into account the batteries’ state 
of charge and users’ charging and traveling behaviors. EVs are one means 
of preparing for the energy crisis and of reducing greenhouse gas emis-
sions. To help relieve range anxiety, an adequate number of EV charging 
stations must be constructed. Rapid charging stations are needed in urban 
areas because there is inadequate space for slow-charging equipment. The 
objective function of the model is to minimize EVs’ travel fail distance and 
the total travel time of the entire network when the link flow is determined 
by a user equilibrium assignment. The remaining fuel range (RFR) at the 
origin node is assumed to follow a probabilistic distribution to reflect users’ 
charging behavior or technical development. The results indicate that the 
model described in this paper can identify locations for charging stations 
by using a probabilistic distribution function for the RFR. The location 
model, which was developed on the basis of user equilibrium assignment, 
is likely to consider the congested traffic conditions of urban areas, to 
avoid locating charging stations where they could cause additional traffic 
congestion. The proposed model can assist decision makers in developing 
policies that encourage the use of EVs, and it will be useful in developing 
an appropriate budget for implementing the plan.

The electric vehicle (EV) is one of the most popular alternative-
fuel vehicles (1). However, range anxiety has restricted the pace 
at which EVs have penetrated the market. The construction of an 
adequate number of EV charging stations can help relieve range 
anxiety (2). In view of budget constraints, choice of the locations of 
such stations is important. Access to EV charging stations will affect 
the use rates of EVs, decisions concerning their use, the percentage 
of miles attained with electricity, the demand for petroleum, and 
power consumption at various times during the day (3, 4). Thus, 
the proper location of EV charging stations is essential, and some 
important studies have been conducted in the past few years (5–10).

To formulate a practical model for determining the appropriate 
locations for EV charging stations, several variables must be con-

sidered, including the vehicle range (VR), batteries’ state of charge 
(SOC), users’ charging behavior, and travel preferences. In the early 
stages of EVs, the targeted consumers were people who traveled 
almost exclusively within the urban area (11). In current models for 
locating EV charging stations in urban areas, slow-charging equip-
ment was targeted, and the objectives of the studies were to optimize 
the total usage of electrical power, maximize profit, and minimize 
costs. The location of rapid charging stations in urban areas is also 
important because adequate space cannot be made available to accom-
modate the larger numbers of slow-charging locations that would be 
necessary. However, most studies are based on parking behavior, and 
research on en route charging is lacking. Rapid charging stations in 
urban areas can help increase accessibility to charging to a greater 
extent than such stations could in rural areas. Therefore, current plan-
ning involves establishment of charging stations first in urban areas 
and then expansion of their availability to intercity roads (12). How-
ever, rapid charging stations, at which EV users can recharge during 
their trips, have not been considered in most studies.

Flow-refueling location models (FRLMs) have been developed 
to find adequate locations for gasoline stations for vehicles that need 
to refuel during their trip. FRLMs for alternative-fuel vehicles are 
extended models of flow-capturing location models (FCLMs) that 
were developed for convenience stores (13, 14). An FCLM is a 
maximum covering model, and it cannot handle the multiple refuel-
ing stations needed for paths longer than the VR. The VR is the dis-
tance that a vehicle can travel when it is fully charged, and FRLMs 
can be extended by adding the VR constraint.

However, application of FRLMs to urban areas is difficult for two 
reasons. First, the travel paths used in these models were determined 
exogenously. In the existing models, all of the vehicles from the same 
origin–destination (O-D) pair must be assigned to one path. This is 
reasonable for intercity trips, but it would rarely occur in urban areas, 
because numerous alternative paths are available. In practice, drivers 
can detour to charge their vehicles if they so desire. Some studies have 
considered such detours, but only from the standpoint of the probabil-
ity of trip availability (15, 16). Second, the SOC level was assumed to 
be 0.5 because only the marginal case of alternative-fuel vehicles was 
considered in the studies of FRLMs (17). If each vehicle has a differ-
ent remaining fuel range (RFR), the path used by each vehicle may be 
different. RFR can be calculated by multiplying VR by the SOC level 
of the battery. When a constant RFR is used, the number of stations 
that should be constructed can be underestimated in urban areas.

To summarize the literature, two variations are required to develop 
the location model for EV charging stations in an urban area. One 
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is determination of the travel path endogenously, and the other is 
assumption of probabilistic RFR. In this way, the model can simulate 
EV users’ behaviors reasonably and extend the results by enhancing 
batteries’ volume or charging performances. The summary of the 
 literature review and the contribution of this study are presented in 
Table 1.

The aim of the research reported in this paper is to develop a location 
model of rapid charging stations that considers vehicles’ ranges, batter-
ies’ SOC, and users’ charging and travel behaviors. A bilevel optimiza-
tion model was developed in which the main problem was formulated 
as determining the locations of the stations and the patterns of use by 
EVs. The subproblem was formulated as determining link flow on the 
basis of the user equilibrium principle. To solve the problem in a rea-
sonable time, a modified simulated annealing algorithm was proposed.  
The applicability of the model was tested in an example network.

Model ForMulation

The proposed model is an uncapacitated facility location prob-
lem to minimize travelers’ costs. The model is a modification of a 
P-median problem combined with a user equilibrium problem. The 
proposed model was based on the following considerations. First, 
the VR is assumed to be longer than the distance between the origin 
and the destination for all O-D pairs. This means that the EV’s bat-
tery will not have to be recharged more than once during the trip. 
Thus, the VR constraint can be eliminated from the FRLM.

Second, the RFR at the origin node was assumed to follow a 
probabilistic distribution. The state of technical development or the 
supply of slow-recharging equipment at the origin node could affect 
the SOC. An EV that has a long range must be charged for a longer 
time than an EV that has a shorter range. If charging time becomes 

shorter or more slow-recharging installations are offered, the SOC 
level can be higher. If the RFR is assumed to be constant, as Capar 
and Kuby did (24), the RFR function is a unit impulse function. 
The cumulative distribution function of RFR, which is used in the 
literature, can be written as shown in Equation 1. In this study, the 
RFR function was assumed to be a probabilistic distribution func-
tion, such as a uniform distribution, an increasing distribution, or a 
triangular distribution. The distribution functions that were assumed 
in this study are shown in Equations 2 through 4.
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where

 r = RFR,
 rV = VR, and
 G(r) = cumulative distribution function of r.

TABLE 1  Literature Review and Contribution of This Study (5–10, 14–24)

Study Objective Function Station Spatial Scope RFR Travel Path

Hodgson (14) Minimum failure CS — — —

Kuby and Lim (17) Minimum failure AFV INT D EXO

Kuby and Lim (18) Minimum failure AFV INT D EXO

Kuby et al. (19) Minimum failure AFV INT D EXO

Wang (10) Minimum number of stations AFV — D EXO

Upchurch et al. (20) Minimum failure cost AFV INT D EXO

Wang and Lin (21) Minimum number of stations AFV INT D EXO

Kim (15) Minimum failure AFV INT D EXO

Ip et al. (9) Minimum operational cost EV — — —

Wang and Wang (22) Minimum failure + construction cost AFV INT D EXO

Hanabusa and Horiguchi (8) Entropy maximization EV — — —

Ge et al. (7) Minimum users’ loss EV — — —

Wang et al. (23) Maximum net income BS — — —

Frade et al. (6) Maximum covering EV-S INN — —

Kim and Kuby (16) Minimum failure AFV INT D EXO

Capar and Kuby (24) Minimum failure AFV INT D EXO

Chen et al. (5) Minimum access cost EV-S INN — —

Proposed model Minimum failure cost + network cost EV-R INN P ENDO

Note: — = not considered; CS = convenience store; AFV = station for alternative-fuel vehicle; EV = station for electric vehicle; BS = battery 
switch station for EV; EV-S = slow-charging station for EV; EV-R = rapid charging station for EV; INT = intercity; INN = intra-city;  
D = deterministic; P = probabilistic; EXO = exogenously determined (all-or-nothing assignment); ENDO = endogenously determined  
(user equilibrium assignment).



Lee, Kim, Kho, and Lee 99

The probabilities concerning how many EVs can travel with or 
without charging can be calculated by the RFR distribution func-
tion. Figure 1 shows the relationship between the type of RFR dis-
tribution function and the trip ratio. An increasing distribution may 
be found when people can easily charge their parked EVs. However, 
a uniform or a triangular distribution may be found when the slow-
charging equipment installed is not sufficient to accommodate the 
requirements of the EVs.

Third, trips are classified by users’ recharging behaviors. A fossil-
fuel vehicle can be refueled easily because many gasoline stations 
are available. There are far fewer charging stations for EVs than there 
are gasoline stations for fossil-fuel vehicles, so it was assumed that, 
before departure, the drivers of EVs chose where they would recharge 
their EVs. A user’s behavior is determined on the basis of the RFR 
displayed in the vehicle’s instrument panel. If the RFR is greater than 
the distance between the origin of the trip and its destination, the trav-
elers can go to their destination without recharging, while they must 
locate a charging station or travel by using gasoline when the RFR is 
less than the distance to the destination. Here, two new decision vari-
ables, ŷijk and ỹij, are proposed to divide the trips into three groups. The 
decision variable ŷijk is the proportion of trips via station k between 
origin i and destination j. The decision variable ỹij is the proportion 
that cannot travel by EV. Travelers who can no longer travel in their 

EVs may travel by public transportation or by taxi, or they may incur 
the cost of emergency service to recharge their EVs. In the FRLM, 
travel paths are given as input data. As shown in Figure 2, three paths 
are available with the same distance from Node 1 to Node 8: 1-2-4-8, 
1-5-4-8, and 1-5-7-8. In the existing model, just one path is available 
among the three paths. Here, the consumption of the battery’s charge 
is assumed to be proportional to the distance traveled because the 
RFR is displayed in kilometers, and users usually use this information 
to decide whether their EVs must be charged on their routes.

Finally, a traveler’s trip follows the user equilibrium principle 
in terms of mean travel time, while the purpose of locating rapid 
charging stations is to minimize social costs, including travel time 
cost and the penalty associated with EV travel failure. The notation 
for formulating the model is as follows.

Model notation

Sets

 N = node set, indexed by n (N ∋ n);
 A = link set, indexed by a (A ∋ a);
 I = set of origin nodes, indexed by i (I ⊆ N, I ∋ i);

 

Flow from i to j : 100 7 9

15

k

i j
Path used for trip without recharging: i → j
Path used for trip with recharging: i → j (station) → j

Distribution 
Constant 

distribution 
Uniform 

distribution 
Triangular 
distribution 

Increasing 
distribution 

rv = 20

rv = 40

Trip failure 0 35 25 13 
Trip success 100 65 75 87 

Without recharging 0 25 12 43 
With recharging 100 40 63 44 

Trip failure 0 18 7 4 
Trip success 100 82 93 96 

Without recharging 100 62 71 85 
With recharging 0 20 22 11 

FIGURE 1  RFR distribution functions and travel path by RFR.

FIGURE 2  Travel paths by location of charging station. (RFR distribution function is assumed to be a uniform function. Link 
travel time is assumed to be constant.)

Travel path FRLM (17, 18, 24) Proposed model 

Path used when the
station is located at

Node 2

  

Path used when the
station is located at

Node 5
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 J = set of destination nodes, indexed by j (J ⊆ N, J ∋ j);
 H =  set of paths connecting O-D pair i, j, indexed by h (H ∋ h); and
 K = set of candidate nodes, indexed by k or k′ (K ⊆ N, K ∋ k, k′).

Number of Locations

P is the number of charging stations.

Weights

 γ = additional penalty of failed travel and
 ω = weight of γ; ω = γ/(1 + γ).

Variables Concerning RFR

 r = RFR,
 gi(r) = probability distribution function of RFR on origin node i,
 Gi(r) = cumulative distribution function of gi(r), and
 G̃ij = failure ratio for travel between O-D pair i, j; G̃ij = Gi(cij).

Node-Based Variables

 Qij = total demand between O-D pair i, j;
 ŷijk =  charging ratio at station k for travel between O-D pair i, j 

(0 ≤ ŷijk ≤ 1);
 ỹij = failure ratio of travel between O-D pair i, j;
 zk = 1 for location at candidate node k, 0 otherwise;
 vik = 1, if station k is the nearest from origin node i, 0 otherwise;
 cij = minimum fuel consumption between O-D pair i, j; and
 ξikk′ = 1, if cik ≤ cik′ (∀i, k, k′), 0 otherwise.

Link-Based Variables

 xa = flow on link a,
 ta = travel time on link a,
 ca = fuel consumption on link a,
 αa, βa = parameters of link a,
 capa = capacity of link a, and
 ta

0 = free-flow link travel time on link a.

Variables Based on Node, Link, and Path

 f ij
h = flow on path h between O-D pair i, j; and

 δ ij
ah =  indicator variable; δah

ij = 1, if link a is on path h between 
O-D pair i, j, and 0 otherwise.

Main Problem and Subproblem

A bilevel optimization model is proposed. The main problem is one 
of location allocation to minimize the social cost, while the sub-
problem is one of trip assignment based on the user equilibrium 
principle. In the main problem, the EV trip failure ratio, the trip 
ratio via each station for each O-D pair, and the location of charging 
stations are determined. The equations were formulated on the basis 
of the general facility location problem (25). In the subproblem, 

link flow was determined. The equations in the subproblem are the 
modification of Beckmann’s mathematical programming (26). The 
mathematical model is as follows.

Main problem:
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The objective function (Equation 5) of the main problem is to min-
imize the weighted average of the network travel time and the EV 
trip failure penalty. Equation 6 stipulates that P stations be located. 
Equation 7 states that any user traveling from origin i to destination j  
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cannot be charged at station k unless a charging station is located 
at node k. Equation 8 establishes constraints for finding the nearest  
station k from origin node i. If station k is the nearest station from 
origin i, the number of stations that are at the same distance or farther 
from node i is P. Thus, if the value of the expression Σk′ξikk′ zk′ + zk is 
P + 1, station k is the nearest station from origin i, and vik becomes 1.  
Equation 9 defines the travel failure ratio ỹij. If the nearest station 
from the origin is at the same distance as or closer than the destination, 
the travel failure ratio is the probability that RFR is shorter than the 
distance between the origin and the nearest station. If the nearest 
station from the origin is farther than the destination, the travel failure 
ratio is the probability that RFR is shorter than the distance between 
the origin and the destination. Equation 10 states that the sum of the 
travel failure ratio and the travel success ratio with charging at any 
of the stations is the same as G̃ij, which is the proportion of EVs that 
cannot travel without charging from the origin to the destination. 
Equation 11 states that the probability of being unable to go from 
origin i to station k is equal to or smaller than the sum of the travel 
failure ratio and the travel success ratio with charging at any closer 
stations. Equation 12 states that the travel ratio has a nonnegative 
value. The constraints of Equation 13 are the integrality constraints. 
Link flows are determined in the subproblem.

The subproblem is the traffic assignment model with user equi-
librium (Equations 15 through 20). To simulate the charging behav-
ior, O-D flow is split into two groups; one group consists of those 
who travel from origin to destination directly (Equation 16), and the 
other group consists of those who travel and use charging stations 
(Equations 17 and 18). A trip with charging can be divided into two 
individual trips: one from origin to station (Equation 17) and another 
from station to destination (Equation 18). As a result, O-D flow with 
charging is double counted. The split ratio is determined at the level 

of the main problem. It is related to the user’s charging behavior. If 
link travel time is not a function of link flow but instead is a constant, 
all the decision variables can be determined without the subproblem.

The objective function is formulated as a multiobjective func-
tion on the basis of the EV trip failure penalty and total travel time. 
Two objective functions are combined with weighting factor ω. EV 
travelers tend to give up their trip with the EV if the detour cost is 
greater than the trip failure penalty. When ω approaches 0, EV travel-
ers decide their trip on the basis of travel cost. When ω approaches 1, 
more travelers travel with their EV. If ω is 1, the objective functions 
become the same as the performance indices of Upchurch et al. (20). 
 Figure 3 shows the assignment results by varying ω.

Since it is a combinatorial optimization problem, the location 
problem can be solved only through an enumeration technique. 
The computation complexity of an enumeration technique tends to 
increase exponentially as the feasible regions become larger. Many 
heuristic methods have been developed for solving location prob-
lems effectively, but they cannot be applied directly to the proposed 
model. The reason is that the gradient function or descent direction 
of the objective function cannot be calculated easily because the 
proposed model contains a subproblem with an objective function 
that is different from that of the main problem.

The objective function for each solution of location can be evalu-
ated in polynomial time by the following steps. At the first time, 
the nearest station is calculated through use of the given zk and P 
by Equation 21.
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FIGURE 3  Assignment results by weight v.

ω 0.0 0.1 0.2~0.9 1.0

Assignment result

    

Flow

ratio

Failure (y~18)  0.65 0.40 0.35 0.35

Charging at Node 3

(ŷ183) 
0.00 0.00 0.05 0.30

Charging at Node 4

(ŷ184) 
0.00 0.20 0.25 0.00

Travel without  

charging (y–18)
0.35 0.35 0.35 0.35

Travel failure cost 549 338 296 296

Total travel cost 845 845 855 904
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Then trip ratios (ỹij, ŷijk) can be determined by solving a simple 
linear programming problem, as shown in Equations 22 through 27. 
The link flows, which are used for evaluating the objective function, 
can be derived from the subproblem (Equations 15 through 20). The 
user equilibrium assignment problem is a convex nonlinear pro-
gramming problem, and it can be solved by using the Frank–Wolfe 
algorithm (26).
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To find a suitable solution, the objective function should be eval-
uated for every solution set. To do this efficiently, the modified sim-
ulated annealing algorithm was used to solve the proposed model. 
The solution algorithm is shown in Figure 4. To make the algorithm 
function more efficiently, the cooling and annealing schedules were 
controlled on the basis of repetitive works.

aPPlication and reSultS

The validity and applicability of the proposed model were checked 
on the modified Sioux Falls, South Dakota, 24-node network, which 
was first used by LeBlanc et al. (27). This network is not considered 
to be realistic, but it has been used in many publications to debug 
code or examine the formats of data (28). The maximum distance 
between the origin and the destination was 12.1 km in the original 
network data, so the test network was enlarged to five times its 
original distance. Figure 5 summarizes the information on the base 
condition.

The main differences between the existing model and the pro-
posed model were the RFR assumption and the way in which the 
recharging station was chosen. In the existing model, every vehicle 

had the same SOC and can be recharged only at the station on the 
shortest path. Only a few studies have considered the possibility 
of taking a detour for recharging. The proposed model chooses the 
detour path for travel via the recharging station endogenously.

First, the solutions of the existing model and the proposed model 
were compared. Because the former’s objective function was to 
minimize trip failure and the total travel cost was included in the 
proposed model, the solutions can be different. However, it is dif-
ficult to determine whether one solution is significantly better than 
the other.

When the RFR was assumed to be half of the vehicle range, RFR 
was 50 km in this application, and the distances of most trips were 
shorter than the RFR (Figure 6). Thus, only one station should be 
constructed, and such an assumption cannot simulate the travel pat-
tern of daily trips in an urban area. This is why the probabilistic 
RFR distribution should be used. The proposed model was com-
pared with the existing model under the assumption that the RFR 
follows the uniform distribution function.

The problem was solved by using the proposed model and the 
existing model based on the probabilistic RFR distribution function, 
and their results were compared (Figure 7). Model I is the existing 
model, in which only the shortest paths were available. By adding 
constraints πijk • ŷijk = 0 for all i, j, k to the main problem, paths longer 
than the shortest paths must be used. If the reduced cost from origin 
node i to destination node j via station k is greater than 0 (πijk > 0), 
station k is not used (ŷijk = 0). If station k is chosen (ŷijk > 0), then 
station k is on the shortest path from i to j. Model II has a detour 
available for recharging.

The number of trip failures and the cost of trip failures were 
decreased by increasing the number of charging stations in both 
models. However, no significant pattern of decreasing or increasing 
network costs was found. The comparison of the two models indi-
cated that, for the model that had a detour available, trip failure and 
trip failure cost were lower than they were for the other model, but 
the total travel time costs were worse. This means that the proposed 
model can reflect travelers’ behaviors with regard to making detours 
to recharge so they can finish their trips in EV mode.

Finally, the solution was analyzed by the objective function. 
When the objective function was to minimize the number of trip 
failures or trip failure costs, the total travel time of the network 
tended to be larger. If the facilities were located on the basis of the 
objective function, including only the trip failure term, they were 
likely to make the traffic condition worse.

concluSionS and Future reSearch

The development of a model for locating rapid charging stations in 
urban areas was reported in this paper. The assumption made for 
RFR distribution helped to reflect the technology development or 
demand variations. Use of an assignment model that was user-based 
allowed charging and traveling behaviors to be considered reason-
ably. The modified simulated annealing algorithm was proposed to 
solve the problem in polynomial time. According to the comparison 
with existing methods, the proposed model produced more stable 
solutions for various inputs, while the other methods produced dif-
ferent solutions when the number of stations or the vehicles’ ranges 
were changed.

The research has three significant implications. First, the present 
models for locating charging stations are only for slow-charging 



FIGURE 4  Flowchart of solution algorithm.
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(a) Network and O-D  

Number of nodes 24 

Demand on peak (trips/h) 360,600 

Number of candidates   24 

Maximum distance (km)   60 

(b) Input parameter  

Weight (ω) 0.5 

∀a

(c) Travel time function  

αa = 0.15, βa = 4.0 

(d) RFR assumption  

Vehicle range (km)  60 

Distribution function Probabilistic  
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FIGURE 6  EV travel failure by assumption of RFR distribution function.

FIGURE 7  Comparisons of performance indices by detour possibility:  
(a) EV trip failure (vehicles) and (b) EV trip failure cost (vehicle kilometers). 
 (continued)

(a)

(b)
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FIGURE 7 (continued)  Comparisons of performance indices by detour possibility: 
(c) total travel cost (vehicle hours).

(c)

equipment, which can be installed in parking lots. To enhance the 
penetration of EVs, rapid charging stations are needed so that they 
can be used during trips. Therefore, a location model for rapid 
charging stations was developed. Second, the location model with 
constant RFR can produce different solutions when the vehicles’ 
ranges are changed. This makes it difficult to determine definitively 
the best locations for EV charging stations when the technology is 
advancing rapidly. Therefore, the location model that was devel-
oped can contribute to determination of stable locations for charg-
ing stations by using a probabilistic RFR distribution function, even 
though the technology is advancing continuously. Third, the loca-
tion model without the user equilibrium–based assignment problem 
is not likely to consider the congested traffic condition of urban 
areas. When only a few charging stations were installed during the 
EVs’ introduction stage, many detours occurred for charging dur-
ing trips, which can make traffic worse. This implies that the user 
equilibrium–based assignment should be included in the charging 
station location problem.

The model developed in this study provides a suitable solution 
for the location of rapid charging stations in an urban area because 
it reflects the probabilistic RFR distribution and the users’ practical 
charging and traveling behaviors. To consider the viewpoint of deci-
sion makers, construction costs or operating costs can be included in 
the objective function. Therefore, the model provides a theoretical 
basis for determining suitable locations for rapid charging stations, 
and it can be applied directly to a real network by using the modified 
algorithm developed in this study.

The proposed model can be improved in further research and 
assessment work. If the RFR distribution function or battery con-
sumption profile is surveyed in practice or predicted more reason-
ably, the proposed model can provide a more accurate solution for 
the targeted area without any modifications. The optimal number of 
stations can be evaluated when the model is extended to include the 
capacity of each station, charging speed, and the construction cost 
and operating cost of each station. By combining this model with the 
location of slow-charging stations or by considering vehicle mixing, 
various types of stations can be optimized, which is a subject for 
future research.
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