

Int. J. Naval Archit. Ocean Eng. (2013) 5:147~160 http://dx.doi.org/10.3744/JNAOE.2013.5.1.147

Development of data analysis tool for combat system integration

Seung-Chun Shin¹, Jong-Gye Shin¹ and Dae-Kyun Oh²

¹Department of Naval Architecture and Ocean Engineering, Seoul National University, Korea ²Division of Ocean System Engineering, Mokpo National Maritime University, Korea

ABSTRACT: System integration is an important element for the construction of naval combat ships. In particular, because impeccable combat system integration together with the sensors and weapons can ensure the combat capability and survivability of the ship, the integrated performance of the combat system should be verified and validated whether or not it fulfills the requirements of the end user. In order to conduct systematic verification and validation, a data analysis tool is requisite. This paper suggests the Data Extraction, Recording and Analysis Tool (DERAT) for the data analysis of the integrated performance of the combat system, including the functional definition, architecture and effectiveness of the DERAT by presenting the test results.

KEY WORDS: Combat system integration; Systems engineering; System integration; DERAT; Verification and validation; Integrated performance.

INTRODUCTION

ROK Navy has been building many kinds of combat ship together with a newly developed combat system for the last three decades. A combat system enables a commanding officer to make the right decision by providing the integrated capability. However, as system integration is an exceptionally complicated and complex process, a data analysis tool is required to confirm the integrated performance of the combat system, which should be verified and validated whether or not it fulfills the requirements of the end user. Kumaraswamy (2002) used Failure Reporting, Analysis and Corrective Action System (FRACAS) for the data analysis. However FRACAS was an effective analysis tool to keep track and eliminate failures identified during the prototype flight testing of the Advanced Light Helicopter, it seems to be restricted to prototype flight test. Thus, this paper suggests the DERAT which is developed to analyze the data for the combat system integration, and verify and validate its integrated performance at the system level of newly developed combat system. Furthermore, this paper attempts to confirm the effectiveness of the DERAT by presenting some test results.

COMBAT SYSTEM DEVELOPMENT PROCESS

The development of a combat system includes not only the combat system itself, but also its full integration with the sensors and weapons to create an integrated performance. Fig. 1 shows the typical Vee model (INCOSE, 2007) which was used to develop the Korean Destroyer Combat System (KDCOM). The stakeholders defined the system requirement based upon those of the Korea Navy. They then developed hardware and software reflecting the definition of the system requirement and the integrated performance was verified and validated through a hierarchical integration process. In general, an enormous amount of data analysis is required to integrate a combat system with various sensors and weapons. Thus, a specialized analysis tool is

Corresponding author: Seung-Chun Shin e-mail: scshin975@snu.ac.kr required to test and evaluate the integrated performance at the system level. This paper suggests the DERAT, which is a suitable solution for a developer who needs to develop a combat system and specialized analysis tool simultaneously.

Fig. 1 Vee model for the KDCOM development.

DERAT

Requirement

Capability of data extraction, recording and analysis

The data extraction needs to capture not only the individual equipment data, but also the interface data based upon the interface control document. During data extraction, care must be taken to avoid impedance mismatches to ensure that the original signal waveform is not disturbed, because when the DERAT connects to the original cable, the impedance might be changed and the original performance could be influenced. Besides, the DERAT should be compatible with the various interface requirements of the many sensors and weapons. The extracted data should be recorded in a computer for data analysis. In order to analyze the data, the programming of the message description language which identifies and describes the recorded data is essential. Furthermore, the DERAT should be able to convert the data types from one unit to another to allow an alignment of the data from the different subsystems.

Data display

The DERAT should provide the analyzed data to be output in different display formats, so that the test results can be easily understood by the stakeholders. The analyzed data should be easily translated to other formats for export to other tools.

ARCHITECTURE

The architecture of the DERAT is defined reflecting the design synthesis process (Min and Kwon, 2004). Fig. 2 shows the architecture of the DERAT.

Fig. 2 Architecture of the DERAT.

Fig. 3 shows the interface diagram between the DERAT and GFEs which explains the types of interface and the data that needs to be extracted and analyzed.

- Global Position System (GPS) data: RS422
- Gyro data: RS422
- Weapon's bearing/range/alignment data: NTDS A
- Sensor's bearing/range/alignment data: NTDS A or NTDS D
- Interface Data between the combat system and the GFEs: Ethernet

Fig. 3 Interface diagram between the DERAT and GFEs.

DEVELOPMENT OF THE DERAT

Message description language programming

A message description language is used for the data description and contains several message description include. It converts the raw data format into the interpreted data format used by the DERAT. An example of the message description language programming is given below.

* FILE :000.mdl * Archive : * * Project : 000 * Revision : 1.00 * Date : 04.01.2010 * * Description : * Comment : * __*/ #include 000 GPS.mdi #include 000 SAM.mdi #include 000 LRR.mdi block file header info [file info] ł const [start time] : "now" const _ [msg_time_type] _: "timeofday" const [msg_time_pos] : 1 } while(!eof) { channel nb [cnl nb] "hex" unit bend 8 *switch (\$channel nb)* { *case* 0x10 : block xxx xxx { const channel nb "hex"\$channel nb block ref [block ref] unit bend 24 reception time [time] "ms" unit bend 32 block length "word"unit bend 16 _jump__unit bend 0:16 msg_nb_"hex" unit bcross 16 *jump unit bend* 0:-32 table xxx xxx channel(\$msg nb) } *case* 0*x*11 : block yyy_yyy ł } *case* 0x12 : block zzz zzz

Configuration of the DERAT

The DERAT consists of 5 components, including a Data Recording Computer (DRC), a Portable Workstation (PWS), a Data Extraction Box (DEB), a Y-Cable Tap, and a Connector Panel. Fig. 4 shows the basic configuration of the DERAT. All of the sensors and weapons are connected to the CSDB through the Bus Terminal Server (BTS) and interfaced together through the CSDB. Consequently, the rational data extraction position is a certain point between the GFE and the BTS of the GFE. Regarding the characteristics of the interface, various methods of data extraction were implemented, i.e. the Y-Cable Tap for NTDS A, the DEB for NTDS D and RS 422. The DEBs were designed to reflect the characteristics of each interface and connected to the DRC through the connector panel. The DRCs, the DEBs and the connector panels were properly installed on the ship regarding the position of the GFE, and the PWS was connected to the DRC #1 for the data analysis.

BTS Bus Terminal Server

Fig. 4 Basic configuration of DERAT.

NTDS A data extraction

The US DoD (1998) defined the NTDS A interface as a parallel data transfer. The normal NTDS A interface consists of two channels, an input channel and an output channel. Therefore, the NTDS A interfaces were tapped by Y-cable taps. One line of

Fig. 5 NTDS-A data extraction.

the Y-cable was connected to the GFE and the other line was connected to the DRC to provide the data for recording, as illustrated in Fig. 5.

NTDS D data extraction

The US DoD (1998) defined the NTDS D interface as an asynchronous serial data transfer. For two-way communication, two lines of communication are necessary. One line is the source line which is from the main equipment to the external function, and the other line is the sink line which is from the external function to the main equipment. Fig. 6 shows the DEB installation for the NTDS D data extraction.

Fig. 6 NTDS-D data extraction.

Because no commercial-off-the-shelf components exist for passive tapping of a serial NTDS interface, the design of a dedicated Peripheral component interface Mezzanine Card (PMC) was necessary. In order to extract the serial NTDS D data without disturbing the original signal waveform, impedance matching is essential. Fig. 7 shows the PMC NTDS D cabling for connecting the tap to the original cable. Cables A and B are the original cables and Cable C is for tapping. In order to maintain constant impedance from the source to the sink, the tap should have a high impedance and the length of Cable C should be as short as possible.

Fig. 7 PMC NTDS-D cabling.

As illustrated in Fig. 8, when a wave travels from the source along the line, it hits a boundary and some of the wave reflects back, while some of it continues to move forward. Assuming that the impedance of the source side is Z_1 and that of the load side is Z_2 at the boundary, Hayt (1989) defined the reflection coefficient Γ as follows:

$$\Gamma = \frac{Z_2 - Z_1}{Z_1 + Z_2}$$
(1)

To obtain the original signal waveform without any disturbance at the end of the line, the reflection coefficient Γ should be as small as possible. Thus, regarding Fig. 6, in order to obtain the original signal waveform without any disturbance, the reflection coefficient Γ induced by the Tap should be as small as possible.

$$\Gamma = \frac{Z_0 - Z}{Z + Z_0} \tag{2}$$

In order to calculate the reflection coefficient Γ induced by the Tap, the impedance Z at the tap point has to be calculated.

$$Z = \frac{Z_1 Z_2}{Z_1 + Z_2}$$
(3)

Regarding Fig. 6, Z_1 is Z_0 which is 75 *ohms* for the NTDS D interface, and Z_2 is the impedance of the input circuit itself, which has a resulting input impedance of 20 *kohms*. Thus, substituting $Z_0 = 75$ *ohms* and $Z_{input circuit} = 20$ *kohms* into Eqn (3), the impedance Z at the tap point is as follows.

$$Z = \frac{Z_0 Z_{input circuit}}{Z_0 + Z_{input circuit}} = \frac{75 \times 20000}{75 + 20000} = 74.72 ohms$$

Substituting $Z_0 = 75$ ohms and Z = 74.72 ohms into Eqn (2), the reflection coefficient Γ induced by the Tap is as follows.

$$\Gamma = \frac{Z_0 - Z}{Z + Z_0} = \frac{75 - 74.72}{74.72 + 75} = 0.18\%$$

Thus, it is negligible and no signal influence was observed.

RS 422 data extraction

EIA (1994) defined the RS 422 as a full duplex serial data transfer. Fig. 9 shows the DEB installation for the RS 422 data extraction. In order to extract the RS 422 data, the DEB was connected to the RS 422 data channel. The DEB has three connectors for the data-input, data-output and data-output to the DRC. The input and output for each data channel were directly connected inside the DEB. Parallel to the data line were galvanic couplers transmitting the data to the RS 422 amplifier. The galvanic couplers isolate the operational and recording data.

Fig. 9 RS 422 data extraction.

Ethernet data extraction

IEEE (1990) standardized the Ethernet as IEEE 802.3. In order to extract the Ethernet data, the DEB was connected to the CSDB using the existing BTS tap which was used for the GFE connection to the CSDB. Fig. 10 shows the DEB installation for the Ethernet data extraction. The original configuration of the KDCOM adopted two CSDBs for the sake of system redundancy. Therefore, the DEB connection to the CSDB was made through two existing bus taps. The data was extracted using the Network Interface Card installed in the DEB. Some of the equipment used a 10Base2 signal and the others used a 10Base T signal. For the analysis, the 10Base2 signal was converted to the 10BaseT signal using the Attachment Unit Interface Transceiver, which was installed in the Network Interface Card in accordance with IEEE 802.3.

Fig. 10 Ethernet data extraction.

TEST RESULT OF THE DERAT

Land Based Test Site (LBTS) test

Fig. 11 shows the simulated environment used for the LBTS test. A simulated environment was established reflecting the basic configuration of the KDCOM. Simulators were used for the test instead of real sensors and weapons.

Fig. 12 shows the block diagram of the message test environment used to verify the functionality of the DERAT. The basic functions of the DERAT including MDL validation, Non-Interference, Power-On & Initialization, On-line Display, DRC Control, Data Extraction, Data Recording, and Data Analysis were fully tested and demonstrated. In particular, the Non-Interference Test was performed for each interface type in order to confirm that the extraction of data from the external interfaces did not interfere with the interfaces tapped by the DERAT. The test results showed that no interference was observed due to the DERAT. After the completion of the LBTS test, the DERAT was installed on a Korean Destroyer to conduct the Onboard test, in accordance with Fig. 13. The result of the On-board test is described below.

Fig. 11 Simulated environment for the LBTS test.

Fig. 12 Block diagram of message test environment.

ON-BOARD TEST

Installation of the DERAT

Fig. 13 shows an example of the installation of the DERAT for the data analysis of the AAW scenarios. Although a number of scenarios concerned with Anti Air Warfare, Anti Surface Warfare, and Anti Sub-Surface Warfare were con-

ducted, only some of the analysis results of the Anti Air Warfare scenario will be presented as an example of the tests performed in this study.

Fig. 13 Example of installation of the DERAT for AAW analysis.

Test procedure

The required operational capabilities were defined and the test scenarios were validated and conducted. During the test, the individual equipment data and interface data were extracted and analyzed. The operational authorities and technical authorities were provided with the analyzed data for review. If shortfalls or errors were identified, they were sent back to find a solution as illustrated in Fig. 14.

Fig. 14 Test procedure.

Test Result

Data display & analysis

The following 3 figures show the analysis results of one of the AAW scenarios. As illustrated in Fig. 15, the PPI displays that the Air Search Radar tracks a red colored hostile target designated with the track number 65, which is also designated with identification number 52 in Fig. 16, and the Combat System assigns the Surface-to-Air missile to engage with track number 65.

Fig. 15 AAW engagement status.

Fig. 16 shows the track list from the data file sorted by identification. This list shows that the Surface-to-Air missile is assigned to engage with track number 65 which is designated with identification number 52.

Flags Id Cat Starttime Endtime Lifetime Count n 12 Air_Track_Report_Buffer_LRR_CSDB 07:27:41.767 07:28:57.776 17 n 13 Air_Track_Report_Buffer_LRR_CSDB 07:27:41.767 07:28:59.748 17 n 13 Air_Track_Report_Buffer_LRR_CSDB 07:28:45.25 07:29:09.453 44 n 17 Air_Track_Report_Buffer_LRR_CSDB 07:27:44.622 07:29:00.453 14 n 17 Air_Track_Report_ANSys2 07:27:40.636 07:09:00.456 14 n 22 Air_Track_Report_ANSys2 07:27:40.636 07:09:00.326 07:09:00.020 0 n 24 Air_Track_Report_ANSys2 07:27:30.356 07:29:00.923 17 n 33 Air_Track_Report_ANSys2 07:27:29.356 07:29:00.923 17 n 33 Air_Track_Report_ANSys2 07:29:01.536 17 n <td< th=""><th></th><th>A</th><th>le</th><th>Visib</th><th>Selected</th><th>icks</th><th>m Tra</th><th>Syste</th></td<>		A	le	Visib	Selected	icks	m Tra	Syste
n 12 Air_Track_Report_Buffer_LRR_CSDB 07:27:41.767 07:28:57.776 17 n 12 Air_Track_Report_BNSg2 07:27:42.738 07:28:59.776 17 n 13 Air_Track_Report_BNSg2 07:22:42.738 07:28:59.486 14 n 13 Air_Track_Report_BNSg2 07:22:44.535 07:29:02.155 14 n 17 Air_Track_Report_BNSg2 07:27:44.567 07:29:02.155 18 n 17 Air_Track_Report_BNSg2 07:27:44.563 07:09:59.388 17 n 22 Air_Track_Report_BNSg2 07:27:44.626 07:27:44.626 0.000000 0 n 24 Air_Track_Report_BNSg2 07:28:30.356 07:28:59.323 7 n 31 Air_Track_Report_BNSg2 07:27:39.866 07:29:00.526 17 n 33 Air_Track_Report_BNSg2 07:28:30.366 07:28:59.323 17 n	21	ifetime Cou	Lifeti	ndtime	Starttime Er	Cat	Id	Flags
n 12 Rir_Track_Report_MNSus2 07:27:42.738 07:28:59.748 147 n 13 Air_Track_Report_Buffer_LRR_CSDB 07:28:45.235 07:28:59.486 4 n 13 Air_Track_Report_Buffer_LRR_CSDB 07:28:46.222 07:29:00.453 44 n 17 Air_Track_Report_Buffer_LRR_CSDB 07:27:41.667 07:29:00.453 48 n 17 Air_Track_Report_Buffer_LRR_CSDB 07:27:41.661 07:27:41.661 0.000000 0 n 22 Air_Track_Report_Buffer_LRR_CSDB 07:28:19.362 07:28:19.362 77 n 24 Air_Track_Report_ANSys2 07:27:30.866 07:28:50.923 17 n 31 Air_Track_Report_Buffer_LRR_CSDB 07:27:14.611 07:28:50.923 17 n 33 Air_Track_Report_Buffer_LRR_CSDB 07:28:50.956 15 n 33 Air_Track_Report_ANSys2 07:28:04.150 07:28:05.9656 15	F		-	7:28:57.776	07:27:41.767 07	Air_Track_Report_Buffer_LRR_CSDB	12	n
n 13 Air_Track_Report_Buffer_LRR_CSDB 07:28:45.235 07:28:59.486 44 n 13 Air_Track_Report_BNSys2 07:28:45.235 07:28:90.455 44 n 17 Air_Track_Report_BNSys2 07:27:44.563 07:28:59.388 48 n 17 Air_Track_Report_Buffer_LRR_CSDB 07:27:41.563 07:27:40.526 0.000000 0 n 22 Air_Track_Report_Buffer_LRR_CSDB 07:27:41.611 0.000000 0 n 24 Air_Track_Report_Buffer_LRR_CSDB 07:28:03.56 07:28:59.338 77 n 31 Air_Track_Report_Buffer_LRR_CSDB 07:28:30.356 07:28:59.335 77 n 31 Air_Track_Report_Buffer_LRR_CSDB 07:27:43.627 07:28:59.335 175 n 33 Air_Track_Report_Buffer_LRR_CSDB 07:27:43.627 07:28:59.336 175 n 40 Air_Track_Report_ANSys2 07:27:43.627 07:28:59.436 125 n 40 Air_Track_Report_ANSys2 07:27:43.627	<u>, i</u>		-	7:28:58.748	07:27:42.738 07	Air_Track_Report_ANSys2	12	n
n 13 Air_Track_Report_AMSys2 07:23:46.222 07:23:00.453 44 n 17 Air_Track_Report_Buffer_LRR_CSDB 07:27:41.587 07:29:00.453 18 n 17 Air_Track_Report_Buffer_LRR_CSDB 07:27:44.563 07:29:02.156 18 n 22 Air_Track_Report_Buffer_LRR_CSDB 07:27:44.611 07:02:744.611 0.000000 0 n 22 Air_Track_Report_Buffer_LRR_CSDB 07:22:43.611 0.000000 0 n 24 Air_Track_Report_Buffer_LRR_CSDB 07:22:30.326 07:28:59.323 77 n 31 Air_Track_Report_Buffer_LRR_CSDB 07:27:31.326 07:28:59.326 17 n 33 Air_Track_Report_Buffer_LRR_CSDB 07:27:51.226 07:28:59.636 15 n 40 Air_Track_Report_Buffer_LRR_CSDB 07:28:59.636 12 n 41 Air_Track_Report_Buffer_LRR_CSDB 07:28:09.356 07:29:00.356 12 <t< td=""><td>£ </td><td></td><td>-</td><td>7:28:59.486</td><td>07:28:45.235 07</td><td>Air_Track_Report_Buffer_LRR_CSDB</td><td>13</td><td>n</td></t<>	£		-	7:28:59.486	07:28:45.235 07	Air_Track_Report_Buffer_LRR_CSDB	13	n
n 17 Air_Track_Report_Buffer_LRR_CSDB 07:27:41.587 07:29:02.156 18 n 17 Air_Track_Report_BNSg2 07:27:42.563 07:29:02.156 17 n 22 Air_Track_Report_BNSg2 07:27:42.563 07:29:02.156 0.00000 0 n 22 Air_Track_Report_Buffer_LRR_CSDB 07:27:41.611 07:27:41.611 0.00000 0 n 24 Air_Track_Report_Buffer_LRR_CSDB 07:29:03.826 07:28:59.936 77 n 31 Air_Track_Report_BNSg2 07:27:33.866 07:28:59.936 15 n 33 Air_Track_Report_BNSg2 07:27:31.827 07:28:59.936 15 n 40 Air_Track_Report_BNSg2 07:27:29.156 07:29:00.936 12 n 40 Air_Track_Report_BNSg2 07:27:30.756 07:29:00.936 12 n 40 Air_Track_Report_BNSg2 07:27:40.756 07:29:00.935 12			-	7:29:00.453	07:28:46.222 07	Air_Track_Report_ANSys2	13	n
n 17 Air_Track_Report_AMSys2 07:27:42.563 07:28:58.388 17 n 22 Air_Track_Report_Buffer_LRR_CSDB 07:27:40.626 07:27:41.611 0.000000 00 n 22 Air_Track_Report_MSys2 07:27:41.611 07:27:41.611 0.000000 00 n 24 Air_Track_Report_MSys2 07:22:41.611 07:27:41.611 0.000000 00 n 24 Air_Track_Report_AMSys2 07:22:30.386 07:28:59.325 77 n 31 Air_Track_Report_AMSys2 07:27:43.627 07:28:59.636 17 n 33 Air_Track_Report_Buffer_LRR_CSDB 07:27:43.627 07:28:59.636 15 n 33 Air_Track_Report_AMSys2 07:27:51.928 07:28:09.335 15 n 40 Air_Track_Report_AMSys2 07:27:39.756 12 n 41 Air_Track_Report_MSys2 07:27:39.756 07:29:10.503 12 n <	3		-	7:29:02.156	07:27:41.587 07	Air_Track_Report_Buffer_LRR_CSDB	17	n
n • 22 Air_Track_Report_Buffer_LRR_CSDB 07:27:40.626 07:27:40.626 0.000000 0 n • 22 Air_Track_Report_BNSp2 07:27:41.611 07:27:41.611 0.000000 0 n • 24 Air_Track_Report_BNSp2 07:27:41.611 07:27:41.611 0.000000 0 n • 24 Air_Track_Report_BNSp2 07:28:30.356 07:28:59.323 77 n • 31 Air_Track_Report_BNSp2 07:27:39.856 07:29:09.528 17 n • 33 Air_Track_Report_Buffer_LRR_CSDB 07:27:51.228 07:28:59.325 15 n • 33 Air_Track_Report_Buffer_LRR_CSDB 07:29:01.530 07:28:09.336 12 n • 40 Air_Track_Report_BNSp2 07:28:09.133 07:29:00.536 12 n • 41 Air_Track_Report_BNSp2 07:27:39.756 07:29:00.536 12 n • 41 Air_Track_Report_BNSp2 07:27:39.756 07:29:00.536			-	7:28:58.398	07:27:42.563 07	Air_Track_Report_ANSys2	17	n
n • 22 Air_Track_Report_MNSys2 07:27:41.611 07:27:41.611 0.000000 0 n 24 Air_Track_Report_MNSys2 07:28:23.382 07:28:57.956 7 n 31 Air_Track_Report_MNSys2 07:28:23.382 07:28:57.956 18 n 33 Air_Track_Report_MNSys2 07:27:39.856 07:28:59.953 18 n 33 Air_Track_Report_MNSys2 07:27:39.856 07:28:59.956 18 n 33 Air_Track_Report_MNSys2 07:27:51.28 07:28:59.956 15 n 34 Air_Track_Report_LREPCIDE 07:27:51.215 07:28:59.925 15 n 40 Air_Track_Report_MNSys2 07:27:30.956 07:29:00.356 12 n 41 Air_Track_Report_LREPCIDE 07:29:01.333 07:29:00.356 12 n 41 Air_Track_Report_MNSys2 07:27:40.756 07:29:00.956 18 n 47 Air_Track_Report_MNSys2 07:27:40.756 07:29:00.953 18 n 54 Air_Track_Report_MNSys2 07:27:40.750 07:29:00.953 </td <td>5</td> <td>000000.</td> <td>0,000</td> <td>7:27:40.626</td> <td>07:27:40.626 07</td> <td>Air_Track_Report_Buffer_LRR_CSDB</td> <td>22</td> <td>n •</td>	5	000000.	0,000	7:27:40.626	07:27:40.626 07	Air_Track_Report_Buffer_LRR_CSDB	22	n •
n 24 Air_Track_Report_Buffer_LRR_CSDB 07:28:29,362 07:28:57,956 77 n 24 Air_Track_Report_BNSg2 07:28:39,362 07:28:59,052 78 n 31 Air_Track_Report_BNSg2 07:27:39,056 07:28:59,052 18 n 31 Air_Track_Report_Buffer_LRR_CSDB 07:27:51,228 07:28:59,058 15 n 33 Air_Track_Report_Buffer_LRR_CSDB 07:27:51,228 07:28:59,038 15 n 33 Air_Track_Report_Buffer_LRR_CSDB 07:27:51,228 07:29:00,556 15 n 40 Air_Track_Report_Buffer_LRR_CSDB 07:27:30,756 07:29:00,556 18 n 41 Air_Track_Report_Buffer_LRR_CSDB 07:27:30,756 07:29:00,503 18 n 47 Air_Track_Report_Buffer_LRR_CSDB 07:27:43,627 07:29:00,903 19 n 41 Air_Track_Report_Buffer_LRR_CSDB 07:29:01,905 19	5	0.000000	0.000	7:27:41.611	07:27:41.611 07	Air_Track_Report_ANSys2	22	n •
n 24 Air_Track_Report_MNSys2 07:28:30,356 07:28:58,923 77 n 31 Air_Track_Report_MNSys2 07:27:39,856 07:29:09,828 18 n 31 Air_Track_Report_MNSys2 07:27:39,856 07:29:09,828 18 n 31 Air_Track_Report_Buffer_LRR_CSDB 07:27:151,228 07:28:59,325 15 n 33 Air_Track_Report_Buffer_LRR_CSDB 07:29:10,328 12 n 40 Air_Track_Report_Buffer_LRR_CSDB 07:29:10,336 12 n 41 Air_Track_Report_ANSys2 07:29:10,336 18 n 41 Air_Track_Report_ANSys2 07:29:10,356 18 n 47 Air_Track_Report_ANSys2 07:29:10,356 07:29:10,503 18 n 47 Air_Track_Report_ANSys2 07:29:17,936 07:29:10,9316 17 n 58 Besignation_ASHICSB 07:29:17,932 <t< td=""><td>7</td><td></td><td>-</td><td>7:28:57.956</td><td>07:28:29.362 07</td><td>Air_Track_Report_Buffer_LRR_CSDB</td><td>24</td><td>n</td></t<>	7		-	7:28:57.956	07:28:29.362 07	Air_Track_Report_Buffer_LRR_CSDB	24	n
n 31 Air_Track_Report_ANSys2 07:27:39.856 07:29:00.628 18 n 31 Air_Track_Report_Buffer_LRR_CSDB 07:27:43.627 07:28:59.836 17 n 33 Air_Track_Report_Buffer_LRR_CSDB 07:27:43.627 07:28:59.836 15 n 33 Air_Track_Report_Buffer_LRR_CSDB 07:28:19.030 07:28:59.923 15 n 40 Air_Track_Report_Buffer_LRR_CSDB 07:28:09.133 07:29:00.336 12 n 40 Air_Track_Report_Buffer_LRR_CSDB 07:28:09.133 07:29:00.336 12 n 41 Air_Track_Report_Buffer_LRR_CSDB 07:22:39.756 07:29:00.536 18 n 47 Air_Track_Report_ANSys2 07:27:23.856 07:29:00.903 18 n 47 Air_Track_Report_Buffer_LRR_CSDB 07:29:10.232 07:29:10.232 18 n 47 Air_Track_Report_Buffer_LRR_CSDB 07:29:10.232 17			-	7:28:58.923	07:28:30.356 07	Air_Track_Report_ANSys2	24	n
n 31 Air_Track_Report_Buffer_LRR_CSDB 07:27:43.627 07:28:59.636 17 n 33 Air_Track_Report_Buffer_LRR_CSDB 07:27:51.228 07:28:59.636 15 n 35 Air_Track_Report_Buffer_LRR_CSDB 07:27:51.228 07:28:59.636 15 n 40 Air_Track_Report_Buffer_LRR_CSDB 07:28:10.305 12 n 40 Air_Track_Report_Buffer_LRR_CSDB 07:28:09.133 07:29:00.356 12 n 41 Air_Track_Report_Buffer_LRR_CSDB 07:27:40.736 07:29:00.536 18 n 41 Air_Track_Report_Buffer_LRR_CSDB 07:27:40.736 07:29:00.903 18 n 47 Air_Track_Report_Buffer_LRR_CSDB 07:29:50.417 20 n 52 Destoration_BHI CSDB 07:29:57.993 07:29:00.448 20 n 54 Air_Track_Report_Buffer_LRCSDB 07:29:41.767 07:28:59.748 17	3		-	7:29:00.628	07:27:39.856 07	Air_Track_Report_ANSys2	31	n
n 33 Air_Track_Report_Buffer_LRR_CSDB 07:27:51,228 07:28:57,366 15 n 33 Air_Track_Report_ANSys2 07:27:52,155 07:28:59,325 15 n 40 Air_Track_Report_ANSys2 07:22:105 07:29:100,356 12 n 40 Air_Track_Report_ANSys2 07:29:00,133 07:29:00,356 12 n 40 Air_Track_Report_ANSys2 07:27:30,756 07:29:00,356 12 n 41 Air_Track_Report_ANSys2 07:27:30,756 07:29:00,503 18 n 47 Air_Track_Report_ANSys2 07:27:30,856 07:29:00,803 18 n 47 Air_Track_Report_Buffer_LRR_CSDB 07:29:00,736 07:29:00,403 18 n 47 Air_Track_Report_Buffer_LRR_CSDB 07:29:10,736 17 n 58 Besignation_RMI_CSDB 07:29:40,738 07:29:50,442 20 n 5	7		-	7:28:59.636	07:27:43.627 07	Air_Track_Report_Buffer_LRR_CSDB	31	n
n 33 Air_Track_Report_ANSys2 07:27:52,195 07:28:58.923 15 n 40 Air_Track_Report_Buffer_LRR_CSDB 07:28:08,150 07:28:00,356 12 n 40 Air_Track_Report_Buffer_LRR_CSDB 07:28:09,150 07:29:00,556 12 n 40 Air_Track_Report_BNSys2 07:29:01,536 12 n 41 Air_Track_Report_BNSys2 07:27:37,56 07:29:00,536 18 n 41 Air_Track_Report_BNSys2 07:27:37,56 07:29:00,536 18 n 47 Air_Track_Report_BNSys2 07:27:37,56 07:29:00,536 18 n 47 Air_Track_Report_BNSys2 07:27:37,56 07:29:00,432 17 n 54 Bir_Track_Report_Buffer_LRR_CSDB 07:29:57,935 07:29:00,442 17 n 54 Air_Track_Report_BNSys2 07:27:42,738 07:29:00,442 17 n A	5		-	7:28:57.956	07:27:51.228 07	Air_Track_Report_Buffer_LRR_CSDB	33	n
n 40 Air_Track_Report_Buffer_LRR_CSDB 07:28:08.150 07:29:00.356 12 n 40 Air_Track_Report_BNSys2 07:28:09.153 07:29:00.356 12 n 41 Air_Track_Report_BNSys2 07:29:01.756 07:29:00.556 12 n 41 Air_Track_Report_BNSys2 07:27:39.756 07:29:00.536 18 n 41 Air_Track_Report_BNSys2 07:27:40.756 07:29:00.903 18 n 47 Air_Track_Report_BNSys2 07:27:40.756 07:29:00.903 18 n 47 Air_Track_Report_BNSys2 07:27:40.756 07:29:00.903 18 n 47 Air_Track_Report_LRE_CSDB 07:29:57.932 07:29:00.417 20 n 58 Designation_RMI_CSDB 07:29:10.736 17 17 n 54 Air_Track_Report_RNSys2 07:27:40.786 07:29:59.746 17 n	5		-	7:28:58.923	07:27:52.195 07	Air_Track_Report_ANSys2	33	n
n 40 Air_Track_Report_ANSys2 07:28:09.133 07:29:01.328 12 n 44 Air_Track_Report_ANSys2 07:27:39.756 07:29:00.535 18 n 44 Air_Track_Report_ANSys2 07:27:39.756 07:29:00.535 18 n 44 Air_Track_Report_ANSys2 07:27:39.756 07:29:00.503 18 n 47 Air_Track_Report_ANSys2 07:27:39.856 07:29:00.903 18 n 47 Air_Track_Report_Buffer_LRR_CSDB 07:29:07.930 07:29:00.903 18 n 47 Air_Track_Report_Buffer_LRR_CSDB 07:29:07.942 20 n 54 Air_Track_Report_Buffer_LRR_CSDB 07:27:47.80 07:29:00.442 17 n 54 Air_Track_Report_ANSys2 07:27:47.80 07:29:50.776 18 n 104 Air_Track_Report_ANSys2 07:27:47.478 07:29:50.786 17 n <t< td=""><td>2</td><td></td><td>-</td><td>7:29:00.356</td><td>07:28:08.150 07</td><td>Air_Track_Report_Buffer_LRR_CSDB</td><td>40</td><td>n</td></t<>	2		-	7:29:00.356	07:28:08.150 07	Air_Track_Report_Buffer_LRR_CSDB	40	n
n 41 Air_Track_Report_Buffer_LRR_CSDB 07:27:39,756 07:29:00,536 18 n 41 Air_Track_Report_MNSys2 07:27:40,736 07:29:00,536 18 n 47 Air_Track_Report_MNSys2 07:27:40,736 07:29:00,503 18 n 47 Air_Track_Report_MNSys2 07:27:43,627 07:29:00,903 18 n 47 Air_Track_Report_LNSp2 07:27:43,627 07:29:00,903 18 n 52 Designation_RHLCSDB 07:29:10,939 07:29:00,2447 20 n 54 Air_Track_Report_Buffer_LRR_CSDB 07:29:10,2417 17 n 54 Air_Track_Report_Buffer_LRR_CSDB 07:29:10,726 17 n 104 Air_Track_Report_MNSgs2 07:27:40,786 07:29:50,748 17 n 104 Air_Track_Report_MNSgs2 07:27:40,786 07:29:50,966 17 n 104 Air_Tra	21			7:29:01.328	07:28:09.133 07	Air_Track_Report_ANSys2	40	n
n 41 Air_Track_Report_ANSys2 07:27:40.736 07:29:01.503 18 n 47 Air_Track_Report_ANSys2 07:27:39.856 07:29:00.803 18 n 47 Air_Track_Report_Buffer_LRR_CSDB 07:27:39.856 07:29:00.403 18 n 47 Air_Track_Report_Buffer_LRR_CSDB 07:29:17.935 07:29:00.417 20 n 52 Designation_RHLCSDB 07:29:17.935 07:29:00.442 20 n 54 Air_Track_Report_Buffer_LRR_CSDB 07:27:41.767 07:29:57.776 17 n 54 Air_Track_Report_Buffer_LRR_CSDB 07:27:40.786 07:29:59.748 17 n 104 Air_Track_Report_LNSps2 07:27:40.786 07:29:59.046 17 n 104 Air_Track_Report_LNSps2 07:27:40.789 07:29:59.046 17 n 104 Air_Track_Report_LRSCSDB 07:27:40.789 07:29:58.9825 17 </td <td>3</td> <td></td> <td>-</td> <td>7:29:00.536</td> <td>07:27:39.756 07</td> <td>Air_Track_Report_Buffer_LRR_CSDB</td> <td>41</td> <td>n</td>	3		-	7:29:00.536	07:27:39.756 07	Air_Track_Report_Buffer_LRR_CSDB	41	n
n 47 Air_Track_Report_ANSys2 07:27:39.856 07:29:00.903 18 n 47 Air_Track_Report_Buffer_LRR_CSDB 07:27:43.627 07:29:59.816 17 n 52 Destanation_BHI_CSDB 07:29:57.936 07:29:00.412 20 n 54 Berstanation_BHI_CSDB 07:29:457.932 07:29:00.442 20 n 54 Air_Track_Report_Buffer_LRR_CSDB 07:27:41.767 07:29:57.776 17 n 54 Air_Track_Report_Buffer_LRR_CSDB 07:27:42.738 07:29:50.748 17 n 104 Air_Track_Report_Buffer_LRR_CSDB 07:27:41.866 07:28:59.048 17 n 104 Air_Track_Report_Buffer_LRR_CSDB 07:27:41.786 07:28:59.048 17 n 104 Air_Track_Report_Buffer_LRR_CSDB 07:27:41.786 07:28:59.056 17 n 110 Air_Track_Report_Buffer_LRR_CSDB 07:27:42.738 07:28:59.036	<u>, I</u>		-	7:29:01.503	07:27:40.736 07	Air_Track_Report_ANSys2	41	n
n 47 Air_Track_Report_Buffer_LRR_CSDB 07:27:43.627 07:28:59.616 17 n 53 Designation_DMI_CSDB 07:28:57.996 07:28:57.996 20 n 55 Designation_DMI_CSDB 07:28:57.996 07:28:50.2442 20 n 54 Besignation_DMI_CSDB 07:28:57.996 07:28:50.2442 20 n 54 Air_Track_Report_Buffer_LRR_CSDB 07:27:41.767 07:28:57.776 107 n 54 Air_Track_Report_ANSgs2 07:27:41.767 07:28:59.048 107 n 104 Air_Track_Report_Buffer_LRR_CSDB 07:27:41.786 07:28:59.048 117 n 104 Air_Track_Report_Buffer_LRR_CSDB 07:27:41.786 07:28:59.048 127 n 110 Air_Track_Report_Buffer_LRR_CSDB 07:27:41.786 07:28:59.036 117 n 113 Air_Track_Report_Buffer_LRR_CSDB 07:27:42.780 07:28:59.036	5		-	7:29:00.803	07:27:39.856 07	Air_Track_Report_ANSys2	47	n
n 52 Designation_RAH_CSDB 07:28:57.993 07:29:02.417 20 n 53 Designation_RAH_CSDB 07:28:57.993 07:29:02.447 20 n 54 Air_Track_Report_Buffer_LRR_CSDB 07:28:17.993 07:29:02.447 20 n 54 Air_Track_Report_Buffer_LRR_CSDB 07:27:41.767 07:28:59.748 17 n 104 Air_Track_Report_Buffer_LRR_CSDB 07:27:41.866 07:29:01.796 18 n 104 Air_Track_Report_ANSys2 07:27:41.866 07:29:50.948 17 n 104 Air_Track_Report_Buffer_LRR_CSDB 07:27:41.866 07:28:59.936 17 n 110 Air_Track_Report_Buffer_LRR_CSDB 07:27:42.781 07:28:59.935 17 n 113 Air_Track_Report_Buffer_LRR_CSDB 07:27:42.817 07:28:59.936 17 n 113 Air_Track_Report_ANSys2 07:27:42.817 07:28:59.936 <t< td=""><td>7</td><td></td><td>-</td><td>7:28:59.816</td><td>07:27:43.627 07</td><td>Air_Track_Report_Buffer_LRR_CSDB</td><td>47</td><td>n</td></t<>	7		-	7:28:59.816	07:27:43.627 07	Air_Track_Report_Buffer_LRR_CSDB	47	n
n 53 Detrignation_RMLCSDB 07:29:57,332 07:29:02.442 20 n 54 Air_Track_Report_Buffer_LRR_CSDB 07:27:41,787 07:29:57,776 17 n 54 Air_Track_Report_Buffer_LRR_CSDB 07:27:42,738 07:29:50,748 17 n 104 Air_Track_Report_Buffer_LRR_CSDB 07:27:40,886 07:29:50,748 18 n 104 Air_Track_Report_Buffer_LRR_CSDB 07:27:41,866 07:29:59,048 17 n 104 Air_Track_Report_Buffer_LRR_CSDB 07:27:41,767 07:28:57,956 17 n 110 Air_Track_Report_Buffer_LRR_CSDB 07:27:42,738 07:28:59,936 17 n 113 Air_Track_Report_Buffer_LRR_CSDB 07:27:42,817 07:28:59,936 17 n 113 Air_Track_Report_Buffer_LRR_CSDB 07:27:42,810 07:29:00,035 17 n 113 Air_Track_Report_Buffer_LRR_CSDB 07:27:42,810 07:29:00,035	.		-	7:29:02.417	07:28:57.903 07	Designation_RAM_CSDB	52	n
n 54 Air_Track_Report_Buffer_LRR_CSDB 07:27:41.767 07:28:57.776 17 n 54 Air_Track_Report_BNSg2 07:27:42.738 07:25:59.748 17 n 104 Air_Track_Report_BNSg2 07:27:42.738 07:28:59.048 18 n 104 Air_Track_Report_Buffer_LRR_CSDB 07:27:41.866 07:28:59.048 17 n 104 Air_Track_Report_Buffer_LRR_CSDB 07:27:41.787 07:28:59.048 17 n 100 Air_Track_Report_Buffer_LRR_CSDB 07:27:41.787 07:28:59.048 17 n 110 Air_Track_Report_Buffer_LRR_CSDB 07:27:42.780 07:28:59.036 17 n 113 Air_Track_Report_Buffer_LRR_CSDB 07:27:42.817 07:28:59.036 17 n 113 Air_Track_Report_Buffer_LRR_CSDB 07:27:42.817 07:28:09.036 17 n 113 Air_Track_Report_Buffer_LRR_CSDB 07:27:42.817 07:28:09.036	51		-	7:29:02.442	07:28:57.932 07	Designation_RAM_CSDB	53	n.
n 54 Air_Track_Report_ANSys2 07:27:42.738 07:28:59.748 17 n 104 Air_Track_Report_Buffer_LRR_CSDB 07:27:40.836 07:29:01.796 18 n 104 Air_Track_Report_Buffer_LRR_CSDB 07:27:41.866 07:28:59.048 17 n 104 Air_Track_Report_Buffer_LRR_CSDB 07:27:41.866 07:28:59.048 17 n 110 Air_Track_Report_Buffer_LRR_CSDB 07:27:42.788 07:28:59.036 17 n 113 Air_Track_Report_Buffer_LRR_CSDB 07:27:42.817 07:28:59.036 17 n 113 Air_Track_Report_ANSys2 07:27:42.817 07:28:59.036 17 n 113 Air_Track_Report_ANSys2 07:27:42.817 07:28:00.035 17 n 114 Air_Track_Report_ANSys2 07:27:42.818 07:29:00.035 17 n 114 Air_Track_Report_ANSys2 07:27:41.580 07:29:00.035 <t< td=""><td>7</td><td></td><td>-</td><td>7:28:57.776</td><td>07:27:41.767 07</td><td>Air_Track_Report_Buffer_LRR_CSDB</td><td>54</td><td>n</td></t<>	7		-	7:28:57.776	07:27:41.767 07	Air_Track_Report_Buffer_LRR_CSDB	54	n
n 104 Air_Track_Report_Buffer_LRR_CSDB 07:27:40.896 07:29:01.796 18 n 104 Air_Track_Report_BNSg2 07:27:41.886 07:28:59.048 17 n 110 Air_Track_Report_BNSg2 07:27:41.886 07:28:59.056 17 n 110 Air_Track_Report_BNSg2 07:27:41.780 07:28:59.356 17 n 113 Air_Track_Report_BNSg2 07:27:42.781 07:28:59.036 17 n 113 Air_Track_Report_BNSg2 07:27:42.817 07:28:59.036 17 n 113 Air_Track_Report_BNSg2 07:27:42.817 07:28:59.036 17 n 113 Air_Track_Report_BNSg2 07:27:42.810 07:29:00.030 17 n 114 Air_Track_Report_BNSg2 07:27:42.810 07:29:00.030 17 n 114 Air_Track_Report_BNSg2 07:29:00.200 17	21		-	7:28:58.748	07:27:42.738 07	Air_Track_Report_ANSys2	54	n
n 104 Air_Track_Report_ANSys2 07:27:41.866 07:28:59.048 17 n 110 Air_Track_Report_Buffer_LRR_CSDB 07:27:41.787 07:28:57.956 17 n 110 Air_Track_Report_Buffer_LRR_CSDB 07:27:42.738 07:28:59.958 17 n 113 Air_Track_Report_Buffer_LRR_CSDB 07:27:42.817 07:28:59.938 17 n 113 Air_Track_Report_Buffer_LRR_CSDB 07:27:42.817 07:28:59.938 17 n 113 Air_Track_Report_Buffer_LRR_CSDB 07:27:42.817 07:28:50.9036 17 n 114 Air_Track_Report_Buffer_LRR_CSDB 07:27:42.817 07:28:50.9036 17 n 114 Air_Track_Report_Buffer_LRR_CSDB 07:27:41.580 07:29:00.9035 17 n 114 Air_Track_Report_Buffer_LRR_CSDB 07:27:41.580 07:29:00.9035 17	3		-	7:29:01.796	07:27:40.896 07	Air_Track_Report_Buffer_LRR_CSDB	104	n
n 110 Air_Track_Report_Buffer_LRR_CSDB 07:27:41.767 07:28:57.956 17 n 110 Air_Track_Report_RNSys2 07:27:42.738 07:28:58.923 17 n 113 Air_Track_Report_Buffer_LRR_CSDB 07:27:42.837 07:28:59.036 17 n 113 Air_Track_Report_Buffer_LRR_CSDB 07:27:42.837 07:28:59.036 17 n 113 Air_Track_Report_ANSys2 07:27:43.808 07:29:00.003 17 n 114 Air_Track_Report_Buffer_LBR_CSDB 07:27:41.587 07:29:00.003 17			-	7:28:58.048	07:27:41.866 07	Air_Track_Report_ANSys2	104	n
n 110 Air_Track_Report_ANSys2 07:27:42.738 07:28:58.923 17 n 113 Air_Track_Report_Buffer_LRR_CSDB 07:27:42.817 07:28:59.036 17 n 113 Air_Track_Report_ANSys2 07:27:43.808 07:29:00.003 17 n 113 Air_Track_Report_ANSys2 07:27:43.808 07:29:00.003 17 n 114 Air_Track_Report_Report_BIFGRE_IDE 07:27:41.527 07:29:00.003 17	7		-	7:28:57.956	07:27:41.767 07	Air_Track_Report_Buffer_LRR_CSDB	110	n
n 113 Air_Track_Report_Buffer_LRR_CSDB 07:27:42.817 07:28:59.036 17 n 113 Air_Track_Report_ANSys2 07:27:43.808 07:23:00.003 17 n 114 Air_Track_Report_ANSys2 07:27:43.808 07:29:00.003 17 n 114 Air_Track_Report_BNSE 07:27:41.587 07:29:00.272 17	- I		-	7:28:58.923	07:27:42.738 07	Air_Track_Report_ANSys2	110	n
n 113 Rir_Track_Report_RNSys2 07:27:43,808 07:29:00.003 17	7		-	7:28:59.036	07:27:42.817 07	Air_Track_Report_Buffer_LRR_CSDB	113	n
p 114 Bin Track Percent Buffer LPR CSBR 07+27+41 587 07-29+02 770 19			-	7:29:00.003	07:27:43.808 07	Air_Track_Report_ANSys2	113	n
10 11 11 11 UNA_ 10 00 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0	3		-	7:29:02.336	07:27:41.587 07	Air_Track_Report_Buffer_LRR_CSDB	114	n

Fig. 16 Track list from data file sorted by ID.

Fig. 17 shows the multi sensor track data within the particular time frame. While the Long Range Air search Radar tracked the above track number 65, the initial contact was made by the Medium Range Air search Radar at 22.5 km.

Fig. 17 LRR track shown with first acquisition by MRR.

The above figures provide the data about the same target or in different formats. These data were very useful for the later analysis. For example, if the above engagement fails due to unknown faults, the technical authorities can review the analysis result of the individual equipment data and the interface data recorded at that time, identify the reason for the failure and then find the solution.

Alignment check

All of the sensors and weapons on-board should be aligned perfectly to ensure a precise engagement. In the case of misalignment, the failure of the engagement is inevitable due to the inaccurate data which causes the error. If the error is a bias error that remains constant in magnitude for all observations, it is relatively easy to correct it. If inherently unpredictable random errors are observed, the equipment should be radically corrected. Actually, a number of test runs were conducted to check the alignment status of the sensors and weapons. Figs. 18, 19 and 20 show examples of the analysis results of the ESM bearing data compared with the real target bearing data provided by the MW 08 Radar through the test run. According to the analysis result,

a bias error of the ESM bearing which was an average of 4.32° less than the real target bearing was observed, was corrected by the gyro supplier and no further errors were observed.

Fault detection

Fig. 21 shows an example of the fault detection. While one of the AAW test scenarios was conducted, the weapon direction system which controls the SM-II surface-to-air missile began to operate improperly. In order to find the reason for this, the DE-RAT analyzed all of the recorded data extracted from the sensors and the weapons concerned with the functional chain of the SM-II AAW engagement, and detected a gyro anomaly which occurred at a system time of 47 *seconds*. Fig. 21 clearly shows that the gyro anomaly influenced the SM-II AAW engagement. The DERAT found that the reason was the improper update rate of the gyro heading data. After the optimization of the gyro heading update rate, the gyro data and weapon direction system were stabilized. As mentioned above, the DERAT was tested and confirmed to be an effective analysis tool for system integration.

Fig. 21 Gyro anomaly.

CONCLUDING REMARKS

The intention of this paper is to suggest the DERAT as a data analysis tool for combat system integration and to prove the effectiveness of the DERAT by presenting the test results. The DERAT is believed to be helpful to develop a combat system which fulfills the end user's requirement and to timely deliver the combat system to the end user. Furthermore, the DERAT is expected to contribute to reduce the cost and time as well as the system engineering efforts significantly.

If an additional function is implemented, the DERAT will easily be used to support on-board team training, fleet exercise assessment, planned maintenance and repair of equipment regarding the equipment's failure history and trends, data base for future development, etc. Therefore, future study will be necessary to expand the availability of the DERAT as a life time support tool.

REFERENCES

- EIA, 1994. RS 422: Electrical characteristics of balanced digital interface circuits. Electronic Industries Association.
- Hayt, W.H., 1989. Engineering electromagnetics. 5th ed. McGraw-Hill.

IEEE, 1990. IEEE 802.3: Local Area Network. Institute of Electrical and Electronics Engineers.

- INCOSE, 2007. System engineering handbook : A guide for system life cycle processes and activities. International Council on Systems Engineering.
- Kumaraswamy, K.G., 2002. Reliability growth management during prototype development. *Defense Science Journal*, 52(4), p. 387.
- Min, S.K. and Kwon, Y.S., 2004. *Systems engineering: From awareness of need to retirement from use*. Institute of Systems Engineering.

US DoD, 1998. MIL-STD1397: Input/Output interfaces, standard digital data, navy systems. US Department of Defense.