Addendum for
 "A Study of Disturbance Observers with Unknown Relative Degree of the Plant"

Nam H. Jo ${ }^{\text {a }}$, Youngjun Joo ${ }^{\text {b }}$, and Hyungbo Shim ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Electrical Engineering, Soongsil University, Seoul, Korea
${ }^{\mathrm{b}}$ ASRI, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea

Abstract

The paper "A Study of Disturbance Observers with Unknown Relative Degree of the Plant" [1] by the authors could not include the proofs for Theorem 5 and Theorem 6 due to the page limit. We provide them in this supplementary document, and an example is included with simulation results.

Proof of Theorem 5: We now consider the case where $m_{\beta}-m_{\alpha}<0$. From the Newton diagram of this case (Fig. 1), it is seen that there are two groups of vanishing roots of $\bar{\delta}(s ; \tau)$. The first group consists of k roots of the form $s^{*}(\tau)=\gamma_{a} \tau^{1}+o\left(\tau^{1}\right)$ where γ_{a} is the roots of $\phi_{a}(\gamma)=b_{k}+\cdots+b_{\bar{k}+1} \gamma^{k-\bar{k}-1}+a_{\bar{k}} \gamma^{k-\bar{k}}+\cdots+a_{0} \gamma^{k}=$ $b_{k}+\cdots+b_{0} \gamma^{k}=\gamma^{k} N_{Q}(1 / \gamma ; 1)$. The condition (ii) guarantees that ϕ_{a} is Hurwitz. On the other hand, it is seen from Fig. 1 that the second group has the roots of the form $s^{*}(\tau)=\gamma_{b} \tau^{(l-k) /\left(l+m_{\beta}-m_{\alpha}-k\right)}$, with γ_{b} being the roots of $\phi_{b}(\gamma)=\beta_{m_{\beta}}+b_{k} \alpha_{m_{\alpha}} \gamma^{l+m_{\beta}-m_{\alpha}-k}$. Note that $1 \leq l+m_{\beta}-m_{\alpha}-k=\operatorname{r.deg}(Q)+\mathrm{r} \cdot \operatorname{deg}(P)-\mathrm{r} \cdot \operatorname{deg}\left(P_{\mathrm{n}}\right) \leq$ 2 by (i) and by r.deg $(Q) \geq \mathrm{r} \cdot \operatorname{deg}\left(P_{\mathrm{n}}\right)$. If its value is

Fig. 1. Newton diagram for the case r.deg $(P)<\operatorname{r} \cdot \operatorname{deg}\left(P_{\mathrm{n}}\right)$.

1, then (iii) guarantees that ϕ_{b} is Hurwitz (of first order). If its value is 2 (so that $l-k>2$), then two roots of the second group are $s^{*}(\tau)=(\pm i \bar{\gamma}+\hat{s}(\tau)) \tau^{(l-k) / 2}$ where $\bar{\gamma}=\sqrt{\beta_{m_{\beta}} /\left(b_{k} \alpha_{m_{\alpha}}\right)}$ and \hat{s} is a continuous function to be found such that $\hat{s}(0)=0$. Let $\hat{\tau}=\tau^{1 / 2}$ and $A(\hat{\tau})=i \bar{\gamma}+\hat{s}\left(\hat{\tau}^{2}\right)$ so that $s^{*}\left(\hat{\tau}^{2}\right)=A \hat{\tau}^{l-k}$. From (4) of [1], it is seen that the power of $\hat{\tau}$ in each $\hat{\tau}^{2 j} \bar{q}_{j}\left(A \hat{\tau}^{l-k}\right)$ begins with $(l-k)\left(l+m_{\beta}-m_{\alpha}-j\right)+2 j$ if $0 \leq j \leq k$, and with $(l-k)(l-j)+2 j$ if $k+1 \leq j \leq l$, and increases by $(l-k)$ in both cases. Since $l-k>2$, the term of the second lowest power in the polynomial $\bar{\delta}\left(A \hat{\tau}^{l-k}, \hat{\tau}^{2}\right)$ comes from the lowest power term of $\hat{\tau}^{2(k-1)} \bar{q}_{k-1}\left(A \hat{\tau}^{l-k}\right)$ and of $\hat{\tau}^{2(l-1)} \bar{q}_{l-1}\left(A \hat{\tau}^{l-k}\right)$ but not from others. Writing $\bar{\delta}$ in ascending power of $\hat{\tau}$, we have

$$
\begin{aligned}
& \bar{\delta}\left(s^{*} ; \hat{\tau}^{2}\right)=\left[b_{k} \alpha_{m_{\alpha}} A^{2}+\beta_{m_{\beta}}\right] \hat{\tau}^{2 l} \\
& \quad+\left[b_{k-1} \alpha_{m_{\alpha}} A^{3}+a_{l-1} \beta_{m_{\beta}} A\right] \hat{\tau}^{2 l-m_{\beta}+m_{\alpha}}+\cdots= \\
& {\left[2 i b_{k} \alpha_{m_{\alpha}} \bar{\gamma} \hat{s}+(\cdots) \hat{s}^{2}\right] \hat{\tau}^{2 l}+\left[i \bar{\gamma}\left(a_{l-1} \beta_{m_{\beta}}-b_{k-1} \alpha_{m_{\alpha}} \bar{\gamma}^{2}\right)\right.} \\
& \left.\quad+(\cdots) \hat{s}+(\cdots) \hat{s}^{2}+(\cdots) \hat{s}^{3}\right] \hat{\tau}^{2 l-m_{\beta}+m_{\alpha}}+\cdots \\
& =: \hat{\delta}(\hat{s} ; \hat{\tau}) .
\end{aligned}
$$

The corresponding Newton diagram (Fig. 2) suggests that it has one root $\hat{s}^{*}(\hat{\tau})$ of the form $\hat{\gamma} \hat{\tau}^{c}+o\left(\hat{\tau}^{c}\right)$ where $c=m_{\alpha}-m_{\beta}$ and $\hat{\gamma}$ is the root of

$$
\begin{aligned}
\hat{\phi}(\hat{\gamma}) & =2 b_{k} \alpha_{m_{\alpha}} \hat{\gamma}+\left(a_{l-1} \beta_{m_{\beta}}-b_{k-1} \alpha_{m_{\alpha}} \bar{\gamma}^{2}\right) \\
& =2 b_{k} \alpha_{m_{\alpha}}\left[\hat{\gamma}+\frac{\beta_{m_{\beta}}}{2 b_{k}^{2} \alpha_{m_{\alpha}}}\left(a_{l-1} b_{k}-b_{k-1}\right)\right] .
\end{aligned}
$$

Fig. 2. Newton diagram for $\hat{\delta}(\hat{s} ; \hat{\tau}) / \hat{\tau}^{2 l}$ under the condition r.deg $(P)<\operatorname{r.deg}\left(P_{\mathrm{n}}\right)$.

The condition (iv) implies that $\hat{\phi}$ is Hurwitz. The result is the same with $A(\hat{\tau})=-i \bar{\gamma}+\hat{s}\left(\hat{\tau}^{2}\right)$.

Proof of Theorem 6: Conclusions of Theorem 6 are easily derived from the proof of Theorem 5. Indeed, the condition (d) implies that $\phi_{a}(\gamma)$ is not Hurwitz. On the other hand, if the condition (a) holds, then $\phi_{b}(\gamma)$ is not Hurwitz because $l+m_{\beta}-m_{\alpha}-k \geq 3$. Regarding the condition (e), it implies that $\phi_{b}(\gamma)$ has at least one RHP root. Finally, suppose that $\beta_{m_{\beta}} / \alpha_{m_{\alpha}}>0$ while r.deg $(Q)=\operatorname{r} . \operatorname{deg}\left(P_{\mathrm{n}}\right)-\operatorname{r} . \operatorname{deg}(P)+2$. Then, $s^{*}(\tau)$ is of the form $s^{*}(\tau)=\hat{\gamma} \tau^{m_{\alpha}-m_{\beta}}+o\left(\tau^{m_{\alpha}-m_{\beta}}\right)$. But, $\hat{\gamma}$ is positive because of the condition (f).

An Illustrative Example: A numerical example is given to illustrate the method presented in Section 3.1. Let h.gain (P) denote the high-frequency gain of $P(s)$ and define sets of transfer functions (having finite coef-

Fig. 3. Simulation results for $P_{1, a}, P_{1, b}, P_{1, c}$ (plants having relative degree 1) in the presence of disturbance $d(t)=\sin (2 \pi t)$.
ficients and of minimum phase)

$$
\begin{aligned}
\mathcal{P}_{12} & =\{P(s) \mid 1 \leq \operatorname{r} \cdot \operatorname{deg}(P) \leq 2,0.1 \leq \text { h.gain } \leq 8\} \\
\mathcal{P}_{3} & =\{P(s) \mid \operatorname{r.deg}(P)=3,0.1 \leq \text { h.gain } \leq 8\} \\
\mathcal{P}_{4} & =\{P(s) \mid \operatorname{r} \cdot \operatorname{deg}(P)=4,0.1 \leq \text { h.gain } \leq 8, \mu(P) \geq 8\} .
\end{aligned}
$$

It is assumed that the primary control goal is to achieve zero steady-state error (to step response) with overshoot less than 15% and settling time less than 6 seconds. We will show that, for any plant $P(s) \in \mathcal{P}:=\mathcal{P}_{12} \cup \mathcal{P}_{3} \cup \mathcal{P}_{4}$, a robust controller can be designed in order to achieve the control goal. As discussed in Section 3.1, we first choose

$$
\begin{align*}
P_{\mathrm{n}}(s) & =\frac{1}{s(s+2)(s+3)} \\
Q(s) & =\frac{1}{(\tau s)^{3}+3(\tau s)^{2}+3(\tau s)+1} \tag{1}
\end{align*}
$$

which guarantees that, for $P \in \mathcal{P}_{4}$,

$$
\begin{equation*}
\mu(P)-\mu\left(P_{\mathrm{n}}\right) \geq 8-5>\frac{8}{3}=\frac{\bar{K}_{\mathrm{p}}}{K_{\mathrm{n}}} \frac{a_{0} a_{2}}{a_{1}^{2}} \tag{2}
\end{equation*}
$$

Next, select

$$
\begin{equation*}
C(s)=5 \tag{3}
\end{equation*}
$$

so that the unity feedback control system composed of $P_{\mathrm{n}}(s)$ and $C(s)$ achieves the primary control goal. Then, according to Theorems 3 and 5, the DOB control system (with small τ) will be stable for any $P \in \mathcal{P}$.

To verify the stability as well as the performance, the computer simulations are carried out using the DOB controller with (1), (3), and $\tau=0.01$. In addition, the disturbance and the reference inputs are chosen as $d(t)=$ $\sin (2 \pi t)$ and $r(t)=1$. For simulation purpose, we consider the following plants of variation:

$$
\begin{aligned}
P_{1, a} & =\frac{2}{s+6}, P_{1, b}=\frac{0.2}{s+4}, P_{1, c}=\frac{5}{s-1} \\
P_{2, a} & =\frac{2}{(s+2)(s+4)}, P_{2, b}=\frac{0.2}{(s+1)(s+3)} \\
P_{2, c} & =\frac{5}{(s+2)(s-1)} \\
P_{3, a} & =\frac{1}{s} P_{2, a}, P_{3, b}=\frac{1}{s} P_{2, b}, P_{3, c}=\frac{1}{s} P_{2, c} \\
P_{4, a} & =\frac{1}{s} P_{3, a}, P_{4, b}=\frac{1}{s} P_{3, b}, P_{4, c}=\frac{s+1}{s(s+8)} P_{3, c} .
\end{aligned}
$$

It is observed that (a) all the plants except $P_{4, b}$ belong to \mathcal{P}, (b) all the plants have different high-frequency gains from $P_{\mathrm{n}}(s)$, (c) (2) is satisfied by $P_{1, a}, P_{2, a}, P_{3, a}, P_{4, a}$ and $P_{4, c}$ but not by the others, and (d) $P_{1, c}, P_{2, c}$ and $P_{3, c}$ are unstable.

Fig. 3 and Fig. 4 show the simulation results for $P_{1, a}$, $P_{1, b}, P_{1, c}$ and $P_{2, a}, P_{2, b}, P_{2, c}$, respectively. Although

Fig. 4. Simulation results for $P_{2, a}, P_{2, b}, P_{2, c}$ (plants having relative degree 2) in the presence of disturbance $d(t)=\sin (2 \pi t)$.
there is the disturbance signal $d(t)$, it seems that plant outputs are not affected by $d(t)$. In addition, it is seen that the performance of each plant can be recovered to that of nominal one so that the primary control goal is achieved for any plant belonging to \mathcal{P}_{12}. The simulation results for $P_{3, a}, P_{3, b}, P_{3, c}$ are depicted in Fig. 5. It is also seen that the recovery of the nominal closedloop system performance is achieved. From Figs. 3-5, it is verified that, when $\operatorname{r} \cdot \operatorname{deg}(P)=\operatorname{r} \cdot \operatorname{deg}\left(P_{\mathrm{n}}\right)$ or $1 \leq$ r.deg $(P) \leq 2$, the control system can be stabilized regardless of whether or not the condition (2) (i.e., (iii) of Theorem 3) is satisfied.

Fig. 6 shows the simulation results for $P_{4, a}, P_{4, b}, P_{4, c}$. It is seen that $P_{4, a}$ and $P_{4, c}$ can by stabilized by the DOB controller and the nominal performance is recovered. On the other hand, the instability occurs for $P_{4, b} \notin \mathcal{P}$, which indicates that the condition (2) is very critical when

Fig. 5. Simulation results for $P_{3, a}, P_{3, b}, P_{3, c}$ (plants having relative degree 3) in the presence of disturbance $d(t)=\sin (2 \pi t)$.

Fig. 6. Simulation results for $P_{4, a}, P_{4, b}, P_{4, c}$ (plants having relative degree 4) in the presence of disturbance $d(t)=\sin (2 \pi t)$.
r.deg $(P)=\operatorname{r} \cdot \operatorname{deg}\left(P_{\mathrm{n}}\right)+1$.

Finally, it should be remarked that, with the help of the DOB controller, plant output of any $P(s) \in \mathcal{P}$ is almost indistinguishable from that of nominal plant in the absence of disturbance input.

References

[1] N.H. Jo, Y. Joo, and H. Shim, "A Study of Disturbance Observers with Unknown Relative Degree of the Plant," to appear at Automatica.

