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Abstract

The paper “A Study of Disturbance Observers with Unknown Relative Degree of the Plant” [1] by the authors could not
include the proofs for Theorem 5 and Theorem 6 due to the page limit. We provide them in this supplementary document,
and an example is included with simulation results.

Proof of Theorem 5: We now consider the case where
mβ − mα < 0. From the Newton diagram of this case
(Fig. 1), it is seen that there are two groups of vanish-
ing roots of δ̄(s; τ). The first group consists of k roots of
the form s∗(τ) = γaτ

1 + o(τ1) where γa is the roots of

φa(γ) = bk + · · ·+ bk̄+1γ
k−k̄−1 + ak̄γ

k−k̄ + · · ·+ a0γ
k =

bk + · · ·+ b0γ
k = γkNQ(1/γ; 1). The condition (ii) guar-

antees that φa is Hurwitz. On the other hand, it is seen
from Fig. 1 that the second group has the roots of the
form s∗(τ) = γbτ

(l−k)/(l+mβ−mα−k), with γb being the
roots of φb(γ) = βmβ

+ bkαmα
γl+mβ−mα−k. Note that

1 ≤ l+mβ−mα−k = r.deg(Q)+r.deg(P )−r.deg(Pn) ≤
2 by (i) and by r.deg(Q) ≥ r.deg(Pn). If its value is

Fig. 1. Newton diagram for the case r.deg(P ) < r.deg(Pn).

1, then (iii) guarantees that φb is Hurwitz (of first or-
der). If its value is 2 (so that l − k > 2), then two roots
of the second group are s∗(τ) = (±iγ̄ + ŝ(τ))τ (l−k)/2

where γ̄ =
√
βmβ

/(bkαmα
) and ŝ is a continuous func-

tion to be found such that ŝ(0) = 0. Let τ̂ = τ1/2 and
A(τ̂) = iγ̄ + ŝ(τ̂2) so that s∗(τ̂2) = Aτ̂ l−k. From (4)
of [1], it is seen that the power of τ̂ in each τ̂2j q̄j(Aτ̂

l−k)
begins with (l−k)(l+mβ−mα−j)+2j if 0 ≤ j ≤ k, and
with (l− k)(l− j) + 2j if k+ 1 ≤ j ≤ l, and increases by
(l−k) in both cases. Since l−k > 2, the term of the sec-
ond lowest power in the polynomial δ̄(Aτ̂ l−k, τ̂2) comes
from the lowest power term of τ̂2(k−1)q̄k−1(Aτ̂ l−k) and
of τ̂2(l−1)q̄l−1(Aτ̂ l−k) but not from others. Writing δ̄ in
ascending power of τ̂ , we have

δ̄(s∗; τ̂2) = [bkαmα
A2 + βmβ

]τ̂2l

+ [bk−1αmαA
3 + al−1βmβ

A]τ̂2l−mβ+mα + · · · =
[2ibkαmα

γ̄ŝ+ (· · · )ŝ2]τ̂2l + [iγ̄(al−1βmβ
− bk−1αmα

γ̄2)

+ (· · · )ŝ+ (· · · )ŝ2 + (· · · )ŝ3]τ̂2l−mβ+mα + · · ·
=: δ̂(ŝ; τ̂).

The corresponding Newton diagram (Fig. 2) suggests
that it has one root ŝ∗(τ̂) of the form γ̂τ̂ c + o(τ̂ c) where
c = mα −mβ and γ̂ is the root of

φ̂(γ̂) = 2bkαmα
γ̂ + (al−1βmβ

− bk−1αmα
γ̄2)

= 2bkαmα

[
γ̂ +

βmβ

2b2kαmα

(al−1bk − bk−1)

]
.
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Fig. 2. Newton diagram for δ̂(ŝ; τ̂)/τ̂2l under the condition
r.deg(P ) < r.deg(Pn).

The condition (iv) implies that φ̂ is Hurwitz. The result
is the same with A(τ̂) = −iγ̄ + ŝ(τ̂2).

Proof of Theorem 6: Conclusions of Theorem 6 are
easily derived from the proof of Theorem 5. Indeed, the
condition (d) implies that φa(γ) is not Hurwitz. On the
other hand, if the condition (a) holds, then φb(γ) is
not Hurwitz because l + mβ −mα − k ≥ 3. Regarding
the condition (e), it implies that φb(γ) has at least one
RHP root. Finally, suppose that βmβ

/αmα
> 0 while

r.deg(Q) = r.deg(Pn) − r.deg(P ) + 2. Then, s∗(τ) is of
the form s∗(τ) = γ̂τmα−mβ + o(τmα−mβ ). But, γ̂ is pos-
itive because of the condition (f).

An Illustrative Example: A numerical example is
given to illustrate the method presented in Section 3.1.
Let h.gain(P ) denote the high-frequency gain of P (s)
and define sets of transfer functions (having finite coef-
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Fig. 3. Simulation results for P1,a, P1,b, P1,c (plants hav-
ing relative degree 1) in the presence of disturbance
d(t) = sin(2πt).

ficients and of minimum phase)

P12 = {P (s)| 1 ≤ r.deg(P ) ≤ 2, 0.1 ≤ h.gain ≤ 8}
P3 = {P (s)| r.deg(P ) = 3, 0.1 ≤ h.gain ≤ 8}
P4 = {P (s)| r.deg(P ) = 4, 0.1 ≤ h.gain ≤ 8, µ(P ) ≥ 8}.

It is assumed that the primary control goal is to achieve
zero steady-state error (to step response) with overshoot
less than 15% and settling time less than 6 seconds. We
will show that, for any plant P (s) ∈ P := P12∪P3∪P4, a
robust controller can be designed in order to achieve the
control goal. As discussed in Section 3.1, we first choose

Pn(s) =
1

s(s+ 2)(s+ 3)
,

Q(s) =
1

(τs)3 + 3(τs)2 + 3(τs) + 1
,

(1)

which guarantees that, for P ∈ P4,

µ(P )− µ(Pn) ≥ 8− 5 >
8

3
=
K̄p

Kn

a0a2

a2
1

. (2)

Next, select
C(s) = 5 (3)

so that the unity feedback control system composed of
Pn(s) and C(s) achieves the primary control goal. Then,
according to Theorems 3 and 5, the DOB control system
(with small τ) will be stable for any P ∈ P.

To verify the stability as well as the performance, the
computer simulations are carried out using the DOB
controller with (1), (3), and τ = 0.01. In addition, the
disturbance and the reference inputs are chosen as d(t) =
sin(2πt) and r(t) = 1. For simulation purpose, we con-
sider the following plants of variation:

P1,a =
2

s+ 6
, P1,b =

0.2

s+ 4
, P1,c =

5

s− 1
,

P2,a =
2

(s+ 2)(s+ 4)
, P2,b =

0.2

(s+ 1)(s+ 3)
,

P2,c =
5

(s+ 2)(s− 1)
,

P3,a =
1

s
P2,a, P3,b =

1

s
P2,b, P3,c =

1

s
P2,c,

P4,a =
1

s
P3,a, P4,b =

1

s
P3,b, P4,c =

s+ 1

s(s+ 8)
P3,c.

It is observed that (a) all the plants except P4,b belong to
P, (b) all the plants have different high-frequency gains
from Pn(s), (c) (2) is satisfied by P1,a, P2,a, P3,a, P4,a and
P4,c but not by the others, and (d) P1,c, P2,c and P3,c are
unstable.

Fig. 3 and Fig. 4 show the simulation results for P1,a,
P1,b, P1,c and P2,a, P2,b, P2,c, respectively. Although
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Fig. 4. Simulation results for P2,a, P2,b, P2,c (plants hav-
ing relative degree 2) in the presence of disturbance
d(t) = sin(2πt).

there is the disturbance signal d(t), it seems that plant
outputs are not affected by d(t). In addition, it is seen
that the performance of each plant can be recovered to
that of nominal one so that the primary control goal
is achieved for any plant belonging to P12. The simu-
lation results for P3,a, P3,b, P3,c are depicted in Fig. 5.
It is also seen that the recovery of the nominal closed-
loop system performance is achieved. From Figs. 3–5,
it is verified that, when r.deg(P ) = r.deg(Pn) or 1 ≤
r.deg(P ) ≤ 2, the control system can be stabilized re-
gardless of whether or not the condition (2) (i.e., (iii) of
Theorem 3) is satisfied.

Fig. 6 shows the simulation results for P4,a, P4,b, P4,c. It
is seen that P4,a and P4,c can by stabilized by the DOB
controller and the nominal performance is recovered. On
the other hand, the instability occurs for P4,b /∈ P, which
indicates that the condition (2) is very critical when

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

[sec]

Output, y

 

 

0 1 2 3 4 5 6 7 8 9 10
−5

0

5

10

15

20

[sec]

Control, u

 

 

P3a

P3b

P3c

P3a

P3b

P3c

Fig. 5. Simulation results for P3,a, P3,b, P3,c (plants hav-
ing relative degree 3) in the presence of disturbance
d(t) = sin(2πt).
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Fig. 6. Simulation results for P4,a, P4,b, P4,c (plants hav-
ing relative degree 4) in the presence of disturbance
d(t) = sin(2πt).

r.deg(P ) = r.deg(Pn) + 1.

Finally, it should be remarked that, with the help of
the DOB controller, plant output of any P (s) ∈ P is
almost indistinguishable from that of nominal plant in
the absence of disturbance input.
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