Linear Dynamic Systems and Control

최신 제어 기법

서울대학교 전기정보공학부

 $\dot{x}(t) = A(t)x(t) + B(t)u(t)$ y(t) = C(t)x(t) + D(t)u(t),

수업 내용

선형 제어 시스템을 학습하기 위한 기초 및 기본 개념을 제공하는 강좌로, system model에 대한 기본 개념을 상태변수 공간에서 학습하고. 선형대수학의 기초를 다시 살펴 본 후, 상태공간 방정식의 해, 시스템의 안정도 (Lyapunov stability), 제어 가능한 시스템 (controllability), 관측 가능한 시스템 (observability), controllable and observable canonidal form, duality, 상태변수 궤환 제어기 설계, 상태변수 관측기 설계, 및 출력 궤환 제어 방법을 학습한다.

- 1. Systems and State
- 2. Vector Spaces
 - 2.1 Vector Spaces
 - 2.2 Linear Transformations and Matrices
 - 2.3 Eigenvalues and Eigenvectors, Diagonalization
 - 2.4 Cayley-Hamilton THM, Functions of a Square Matrix
 - 2.5 Inner Product Spaces, Normed Spaces
- 3. State Space

3.1 State Transition matrix

- 4. System Stability
 - 4.1 Lyapunov Stability
 - 4.2 External Stability
 - 4.3 Lyapunov Theorem
 - 4.4 Stable and Unstable Subspaces*

- 5. Controllability and Observability
 - 5.1 Linear Independence of Time Functions
 - 5.2 Controllability of Linear Systems
 - 5.3 Controllability of Linear Time-Invariant Systems
 - 5.4 Observability of Linear Systems
 - 5.5 Observability of Linear Time-Invariant Systems
 - 5.6 Controllable and Observable Canonical Forms
 - 5.7 Duality
 - 5.8 Structure of Uncontrollable and Unobservable Sys.
 - 5.9 PBH(Popov-Belevitch-Hautus) Tests*
- 6. State Feedback and Observers
 - 6.1 State Feedback
 - 6.2 Observers
 - 6.3 Feedback Control Systems Using Observers
- 7. Realization
 - 7.1 Minimal Realizations
 - 7.2 Controllable and Observable Canonical Forms
 - 7.3 Realizability of Transfer Matrices

Textbook: Lecture note written by Prof. Jin Heon Seo

References:

W. Brogan, *Modern Control Theory*, 3rd Edition, Prentice-Hall, 1990.

C.T. Chen, *Linear System Theory and Design*, 4th Edition, Oxford publishing, 2012.

Definition (Causality)

A system is called *causal* (or *nonanticipative*) if, for any t, y(t) does not depend on any $u(t_1)$ for $t_1 > t$. A system is called *noncausal* (or *anticipative*) if it is not causal.

Definition (Dynamic Systems)

A system is called *dynamic* (or is said to *have memory*) if, for some t_0 , $y(t_0)$ depends on u(t) for $t \neq t_0$. A system is called *instantaneous* (*static*, *memoryless* or is said to *have zero memory*) if, for any t_0 , $y(t_0)$ does not depend on u(t) for $t \neq t_0$. A system is said to be *relaxed* (or at rest) at time t_0 if the output $y_{[t_0,\infty)}$ is solely excited and uniquely determined by the input $u_{[t_0,\infty)}$. We assume that every system is relaxed at time $t = -\infty$.

Definition (State)

The state x(t) of a system at time t is the information at time t that is sufficient to uniquely specify the output $y_{[t,\infty)}$ given the input $u_{[t,\infty)}$.

Definition (Linear State Space Systems) A system is said to be *linear* if for every t_0 and any admissible two input-state-output pairs

$$\begin{aligned} & \{u^1_{[t_0,\infty)}, x^1(t_0)\} \longrightarrow y^1_{[t_0,\infty)} \\ & \{u^2_{[t_0,\infty)}, x^2(t_0)\} \longrightarrow y^2_{[t_0,\infty)} \end{aligned}$$

and real (complex) scalar α , the property of additivity

$$\{u^{1}_{[t_{0},\infty)} + u^{2}_{[t_{0},\infty)}, x^{1}(t_{0}) + x^{2}(t_{0})\} \longrightarrow y^{1}_{[t_{0},\infty)} + y^{2}_{[t_{0},\infty)}$$

and the property of homogeneity

$$\{\alpha u^1_{[t_0,\infty)}, \alpha x^1(t_0)\} \longrightarrow \alpha y^1_{[t_0,\infty)}$$

hold. Otherwise, the system is said to be nonlinear.

Definition (Time Invariance)

A system is said to be *time-invariant* if for every t_0 and every admissible input-state-output pair on the interval $[t_0, \infty)$

$$\{u^1_{[t_0,\infty)}, x^1(t_0) = x^0\} \longrightarrow y^1_{[t_0,\infty)}$$

and any T, the input-state-output pair on the interval $[t_0+T,\infty)$

$$\{u^2_{[t_0+T,\infty)}, x^2(t_0+T) = x^0\} \longrightarrow y^2_{[t_0+T,\infty)}$$

where

$$u^{2}(t) = u^{1}(t-T), \quad y^{2}(t) = y^{1}(t-T), \quad t \ge t_{0} + T$$

is also admissible.

Definition (Fields)

A *field* consists of a set, denoted by \mathcal{F} , of elements called scalars and two operations called addition "+" and multiplication "·" which are defined over \mathcal{F} such that they satisfy the following conditions:

1. To every pair of elements $\alpha, \beta \in \mathcal{F}$, there is an associated unique element $\alpha + \beta$ in \mathcal{F} , called the sum of α and β .

2. There exists an element, denoted by 0, such that $\alpha + 0 = \alpha$ for all $\alpha \in \mathcal{F}$.

- 3. Addition is commutative; $\alpha + \beta = \beta + \alpha$.
- 4. Addition is associative; $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma).$

5. For each $\alpha \in \mathcal{F}$, there exists an element β such that $\alpha + \beta = 0$, which is called the additive inverse and denoted by $-\alpha$.

6. To every pair of elements $\alpha, \beta \in \mathcal{F}$, there is associated a unique element $\alpha \cdot \beta$ in \mathcal{F} , called the product of α and β .

7. There exists an element, denoted by 1, such that $\alpha \cdot 1 = \alpha$ for all $\alpha \in \mathcal{F}$.

8. Multiplication is commutative; $\alpha \cdot \beta = \beta \cdot \alpha$. 9. Multiplication is associative:

 $(\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma).$

10. For each $\alpha \in \mathcal{F}, \alpha \neq 0$, there exists an element γ such that $\alpha \cdot \gamma = 1$, which is called the multiplicative inverse and denoted by α^{-1} .

11. Multiplication is distributive with respect to addition; $(\alpha + \beta) \cdot \gamma = \alpha \cdot \beta + \alpha \cdot \gamma$.

Definition (Vector Spaces)

A vector space over a field \mathcal{F} , denoted by $(\mathcal{X}, \mathcal{F})$, consists of a set, denoted by \mathcal{X} , of elements called vectors, a field \mathcal{F} , and two operations called vector addition "+" and scalar multiplication "·", which are defined over \mathcal{X} and \mathcal{F} such that they satisfy the following conditions:

1. To every pair of elements $x_1, x_2 \in \mathcal{X}$, there is an associated unique element $x_1 + x_2$ in \mathcal{X} , called the sum of x_1 and x_2 .

2. Addition is commutative; $x_1 + x_2 = x_2 + x_1$. 3. Addition is associative:

 $(x_1 + x_2) + x_3 = x_1 + (x_2 + x_3).$ 4. There exists a vector, denoted by 0, such that x + 0 = x for all $x \in \mathcal{X}$. 5. For each $x \in \mathcal{X}$, there exists an element $y \in \mathcal{X}$ such that x + y = 0, which is denoted by -x. 6. To every scalar $\alpha \in \mathcal{F}$ and vector $x \in \mathcal{X}$, there is associated a unique element $\alpha \cdot x \in \mathcal{X}$, called the scalar product of α and x.

7. Scalar multiplication is associative;

$$(\alpha\beta)\cdot x = \alpha\cdot(\beta\cdot x).$$

8. Scalar multiplication is distributive with respect to vector addition; $\alpha \cdot (x_1 + x_2) = \alpha \cdot x_1 + \alpha \cdot x_2$.

9. Scalar multiplication is distributive with respect to scalar addition; $(\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$. 10. For $1 \in \mathcal{F}$ and $x \in \mathcal{X}$, $1 \cdot x = x$.

Definition (Subspaces)

Let $(\mathcal{X}, \mathcal{F})$ be a vector space and $\mathcal{Y} \subset \mathcal{X}$. Then, $(\mathcal{Y}, \mathcal{F})$ is said to be a *subspace* of $(\mathcal{X}, \mathcal{F})$ if under the operations of $(\mathcal{X}, \mathcal{F})$, \mathcal{Y} forms a vector space over \mathcal{F} , that is, for each pair of elements $x_1, x_2 \in \mathcal{Y}$, $x_1 + x_2 \in \mathcal{Y}$, and for each scalar $\alpha \in \mathcal{F}$ and vector $x \in \mathcal{Y}, \alpha x \in \mathcal{Y}$.

Definition (Sum of Subspaces)

Let $(\mathcal{X}, \mathcal{F})$ be a vector space and $\mathcal{Y}, \mathcal{Z} \subset \mathcal{X}$ be subspaces of \mathcal{X} . Then, the *sum* of two subspaces $\mathcal{Y}, \mathcal{Z} \subset \mathcal{X}$ is the set

$$\mathcal{Y} + \mathcal{Z} = \{ x : x = y + z, y \in \mathcal{Y}, z \in \mathcal{Z} \}.$$

Definition (Intersection of Subspaces) Let $(\mathcal{X}, \mathcal{F})$ be a vector space and $\mathcal{Y}, \mathcal{Z} \subset \mathcal{X}$ be subspaces of \mathcal{X} . Then, the *intersection* of two subspaces $\mathcal{Y}, \mathcal{Z} \subset \mathcal{X}$ is the set

$$\mathcal{Y} \cap \mathcal{Z} = \{ x : x \in \mathcal{Y}, x \in \mathcal{Z} \}.$$

Definition (Direct Sum of Subspaces) Let $(\mathcal{X}, \mathcal{F})$ be a vector space and $\mathcal{Y}, \mathcal{Z} \subset \mathcal{X}$ be subspaces of \mathcal{X} such that

$$\mathcal{Y} + \mathcal{Z} = \mathcal{X}$$
$$\mathcal{Y} \cap \mathcal{Z} = \{0\}$$

In this case, \mathcal{X} is said to be a *direct sum* of \mathcal{Y} and \mathcal{Z} , and we write $\mathcal{X} = \mathcal{Y} \oplus \mathcal{Z}$.

Definition (Linear Combinations)

Let A be a set in a vector space $(\mathcal{X}, \mathcal{F})$. A vector $x \in \mathcal{X}$ is said to be a *linear combination* of elements in A if there exist a finite set of vectors $\{x_1, x_2, \ldots, x_n\}$ in A and a finite set of scalars $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ such that

$$x = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n.$$

Definition (Span)

Let A be a nonempty subset in a vector space $(\mathcal{X}, \mathcal{F})$. The *span* of A, denoted by $\operatorname{span}(A)$, is the set consisting of all linear combinations of elements in A. For convenience, $\operatorname{span}(\emptyset) = \{0\}$.

Definition (Linear Independence)

A nonempty set A in a vector space $(\mathcal{X}, \mathcal{F})$ is said to be *linearly dependent* if there exists a finite set of distinct elements $\{x_1, x_2, \ldots, x_n\}$ in A and a finite set of scalars $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$, not all zero, such that

$$\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n = 0.$$

A set A in a vector space $(\mathcal{X}, \mathcal{F})$ is said to be *linearly independent* if it is not linearly dependent. In other words, a set A in a vector space $(\mathcal{X}, \mathcal{F})$ is linearly independent if for each nonempty finite subset of distinct elements in A, say, $\{x_1, x_2, \ldots, x_n\}$ in A, the only n-tuple of scalars satisfying the equation

$$\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n = 0$$

is the trivial solution $\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0$.

Definition (Basis)

A set B of linearly independent vectors in a vector space $(\mathcal{X}, \mathcal{F})$ is said to be a *basis* of \mathcal{X} if every vector in \mathcal{X} can be expressed as a linear combination of vectors in B, that is, $\operatorname{span}(B) = \mathcal{X}$.

Theorem

Let $(\mathcal{X}, \mathcal{F})$ be a vector space and $V = \{v_1, v_2, \dots, v_n\}$ be a subset of \mathcal{X} . Then, V is a basis for \mathcal{X} if and only if each vector x in \mathcal{X} can be uniquely expressed as a linear combination of vectors in V, that is, can be expressed in the form

$$x = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$$

for unique scalars $\alpha_1, \alpha_2, \ldots, \alpha_n$.

Theorem (Replacement Theorem) Let $(\mathcal{X}, \mathcal{F})$ be a vector space and $V = \{v_1, v_2, \dots, v_n\} \subset \mathcal{X}$ be a basis for \mathcal{X} . Let $U = \{u_1, u_2, \dots, u_m\} \subset \mathcal{X}$ be linearly independent. Then, $m \leq n$.

Theorem Let $(\mathcal{X}, \mathcal{F})$ be a vector space and $V = \{v_1, v_2, \ldots, v_n\} \subset \mathcal{X}$ be a basis for \mathcal{X} . Let $U = \{u_1, u_2, \ldots, u_m\} \subset \mathcal{X}$ be another basis for \mathcal{X} . Then, m = n.

Definition (Dimension)

A vector space $(\mathcal{X}, \mathcal{F})$ is called *finite-dimensional* if it has a basis B consisting of a finite number of elements. The unique number of elements in each basis for \mathcal{X} is called the *dimension* of \mathcal{X} and is denoted by dim (\mathcal{X}) . A vector space that is not finite-dimensional is called *infinite-dimensional*. **Definition** (Linear Transformation) Let $(\mathcal{X}, \mathcal{F})$ and $(\mathcal{Y}, \mathcal{F})$ be vector spaces. A function L which maps $(\mathcal{X}, \mathcal{F})$ into $(\mathcal{Y}, \mathcal{F})$ is called a *linear transformation* if

$$L(\alpha x) = \alpha L x \quad \text{for all } x \in \mathcal{X} \text{ and all } \alpha \in \mathcal{F}$$

$$L(x_1 + x_2) = L x_1 + L x_2 \quad \text{for all } x_1, x_2 \in \mathcal{X}$$

Definition (Range space)

The range space $\mathcal{R}(L)$ of a linear transformation L from $(\mathcal{X}, \mathcal{F})$ into $(\mathcal{Y}, \mathcal{F})$ is a subset of $(\mathcal{Y}, \mathcal{F})$ defined by

$$\mathcal{R}(L) = \{ y \in \mathcal{Y} : y = Lx \text{ for some } x \in \mathcal{X} \}.$$

Definition (Null space)

The null space $\mathcal{N}(L)$ of a linear transformation L from $(\mathcal{X}, \mathcal{F})$ into $(\mathcal{Y}, \mathcal{F})$ is a subset of $(\mathcal{X}, \mathcal{F})$ defined by

$$\mathcal{N}(L) = \{ x \in \mathcal{X} : Lx = 0 \}.$$

Theorem

Consider a linear transformation L from $(\mathcal{X}, \mathcal{F})$ into $(\mathcal{Y}, \mathcal{F})$. The following statements are equivalent.

- 1. The mapping L is one-to-one.
- 2. Null space of L is trivial, that is, $\mathcal{N}(L) = \{0\}$.
- 3. L maps linearly independent vectors in X into a linearly independent vectors in Y.

Definition (Nullity and rank)

Let L be a linear transformation from $(\mathcal{X}, \mathcal{F})$ into $(\mathcal{Y}, \mathcal{F})$. If $\mathcal{N}(L)$ and $\mathcal{R}(L)$ are finite dimensional, we define the *nullity* of L, denoted by nullity(L), and *rank* of L, denoted by rank(L), to be the dimensions of $\mathcal{N}(L)$ and $\mathcal{R}(L)$, respectively.

Theorem (Dimension Theorem)

Let L be a linear transformation from $(\mathcal{X}, \mathcal{F})$ into $(\mathcal{Y}, \mathcal{F})$. If \mathcal{X} is finite dimensional, then $\operatorname{nullity}(L) + \operatorname{rank}(L) = \dim(\mathcal{X})$.

Definition (Similarity transformation)

Two square matrices A and B are said to be *similar* if a nonsingular matrix T exists such that $A = T^{-1}BT$. The matrix T is called a *similarity transformation*.

Definition (Invariant subspace)

Let L be a linear transformation of $(\mathcal{X}, \mathcal{F})$ into itself. A subspace \mathcal{Y} of \mathcal{X} is said to be an *invariant* subspace of \mathcal{X} under L, or an *L*-invariant subspace of \mathcal{X} , if $L(\mathcal{Y}) \subset \mathcal{Y}$, which implies that $Ly \in \mathcal{Y}$ for all $y \in \mathcal{Y}$.
Definition (Eigenvalue and eigenvector)

Let A be a linear transformation from (C^n, C) into (C^n, C) . A scalar λ in C is called an *eigenvalue* of A if there exists a nonzero vector x in C^n such that $Ax = \lambda x$. Any nonzero vector x satisfying $Ax = \lambda x$ is called an *eigenvector* of A associated with the eigenvalue λ .

Let $\lambda_1, \lambda_2, \ldots, \lambda_d$ be distinct eigenvalues of A and let v_i be an eigenvector of A associated with λ_i . Then, the set $\{v_1, v_2, \ldots, v_d\}$ is linearly independent.

Theorem

Let $\lambda_1, \lambda_2, \ldots, \lambda_d$ be distinct eigenvalues of A and let $\{v_{i1}, v_{i2}, \ldots, v_{ig_i}\}$ be a set of linearly independent eigenvectors of A associated with λ_i . Then, the set

 $\{v_{11},\ldots,v_{1g_1},v_{21},\ldots,v_{2g_2},\ldots,v_{d1},\ldots,v_{dg_d}\}$

is linearly independent.

A is diagonalizable if and only if it has n linearly independent eigenvectors, that is, $g_i = m_i$, i = 1, 2, ..., d.

Definition (Generalized eigenspace)

The generalized eigenspace of A corresponding to the eigenvalue λ is the subset defined by

$$\{x: (\lambda I - A)^k x = 0 \text{ for some } k \ge 1\}.$$

The dimension of the generalized eigenspace of A corresponding to the eigenvalue λ_i is equal to m_i .

Definition (Generalized eigenvector) A vector v is called a *generalized eigenvector* of *grade* $k \ (k \ge 1)$ of A associated with eigenvalue λ if

$$(A - \lambda I)^k v = 0$$
$$(A - \lambda I)^{k-1} v \neq 0.$$

The union over all the eigenvalues of the set of generalized eigenvectors associated with each different eigenvalue is linearly independent.

$$A = \begin{bmatrix} 1 & 0 & -1 & 1 & 0 \\ -4 & 1 & -3 & 2 & 1 \\ -2 & -1 & 0 & 1 & 1 \\ -3 & -1 & -3 & 4 & 1 \\ -8 & -2 & -7 & 5 & 4 \end{bmatrix}, \quad \det(\lambda I - A) = (\lambda - 2)^5$$

 $\dim(\mathcal{N}(A - 2I)) = 2, \dim(\mathcal{N}(A - 2I)^2) = 4, \\ \dim(\mathcal{N}(A - 2I)^3) = 5$

$$u_{11} = \begin{bmatrix} 0\\ -1\\ 1\\ 1\\ 0 \end{bmatrix}, u_{12} = \begin{bmatrix} 0\\ 1\\ 0\\ 0\\ 1 \end{bmatrix}, u_{21} = \begin{bmatrix} 0\\ 1\\ 0\\ 0\\ 0 \\ 0 \end{bmatrix}, u_{22} = \begin{bmatrix} -1\\ 0\\ 1\\ 0\\ 0\\ 0 \end{bmatrix}$$

$$u_{31} = \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} = v_{31}, \ v_{21} = (A - 2I)v_{31} = \begin{bmatrix} 1\\2\\1\\2\\5 \end{bmatrix}$$

Choose v_{22} s.t. $\{u_{11}, u_{12}, v_{21}, v_{22}\}$ is a basis of $\mathcal{N}(A - 2I)^2$:

$$v_{22} = \begin{bmatrix} -1\\0\\1\\0\\0\end{bmatrix}$$
$$v_{11} = (A - 2I)v_{21}, \quad v_{12} = (A - 2I)v_{22}$$

$$A = \begin{bmatrix} 5 & 19 & 9\\ 0 & 0 & 1\\ -1 & -4 & -2 \end{bmatrix}, \ \det(\lambda I - A) = (\lambda - 1)^3$$
$$\dim(\mathcal{N}(A - I)) = 1$$

$$v_{1} = [7, -1, -1]^{T}$$

$$(A - I)v_{2} = v_{1}$$

$$v_{2} = [-3, 1, 0]^{T}$$

$$(A - I)v_{3} = v_{2}$$

$$v_{3} = [-3, 0, 1]^{T}$$

$$A = \begin{bmatrix} -2 & -9 & -12\\ 1 & 4 & 4\\ 0 & 0 & 1 \end{bmatrix}, \ \det(\lambda I - A) = (\lambda - 1)^3$$
$$\dim(\mathcal{N}(A - I)) = 2$$

$$v_{11} = [3, -1, 0]^T$$
, $v_{12} = [4, 0, -1]^T$
 $(A - I)v_2 = ?$

Theorem (Cayley-Hamilton THM) Let $\gamma(\lambda) = \det(\lambda I - A) = \lambda^n + c_{n-1}\lambda^{n-1} + \dots + c_1\lambda + c_0$ be the characteristic polynomial of A. Then,

$$\gamma(A) = A^n + c_{n-1}A^{n-1} + \dots + c_1A + c_0I = 0.$$

Definition (Minimal Polynomial)

The minimal polynomial of a matrix A is the monic polynomial $\mu(\lambda)$ of the least degree such that $\mu(A)=0.$

Theorem The minimal polynomial $\mu(\lambda)$ of J is given as

$$\mu(\lambda) = \prod_{i=1}^{d} (\lambda - \lambda_i)^{\eta_i}$$

where η_i is the index of λ_i in J.

Definition (Function of a matrix) Let $f(\lambda)$ be a function that is defined on the spectrum of A. If $p(\lambda)$ is a polynomial that has the same values as $f(\lambda)$ on the spectrum of A, then f(A) is defined as f(A) = p(A).

Lemma

Given distinct numbers $\lambda_1, \lambda_2, \ldots, \lambda_d$, positive integers $\eta_1, \eta_2, \ldots, \eta_d$ with $\eta = \sum_{i=1}^d \eta_i$, and a set of numbers

$$f_{i,0}, f_{i,1}, \dots, f_{i,\eta_i-1}, \qquad i = 1, 2, \dots, d$$

there exists a polynomial $p(\lambda)$ of degree less than η such that

$$p(\lambda_i) = f_{i,0}, \ p^{(1)}(\lambda_i) = f_{i,1}, \ \dots, \ p^{(\eta_i - 1)}(\lambda_i) = f_{i,\eta_i - 1},$$

Furthermore, such a polynomial $p(\lambda)$ is unique.

$$a_1 = \frac{1}{4}(e^{-t} - e^{-5t})$$
 and $a_0 = \frac{5}{4}e^{-t} - \frac{1}{4}e^{-5t}$

$$f(1) = p(1) \qquad e^{t} = a_{0} + a_{1} + a_{2}$$

$$f^{(1)}(1) = p^{(1)}(1) \qquad te^{t} = a_{1} + 2a_{2}$$

$$f(2) = p(2) \qquad e^{2t} = a_{0} + 2a_{1} + 4a_{2}$$

$$e^{At} = (-2te^t + e^{2t})I + (3te^t + 2e^t - 2e^{2t})A + (e^{2t} - e^t - te^t)A^2$$

$$e^t = a_0 + a_1$$

 $e^{2t} = a_0 + 2a_1$

$$e^{At} = (2e^t - e^{2t})I + (e^{2t} - e^t)A \label{eq:electron}$$
 cf.

$$e^{At} = (-2te^t + e^{2t})I + (3te^t + 2e^t - 2e^{2t})A + (e^{2t} - e^t - te^t)A^2$$

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 2 \end{bmatrix} = PJP^{-1} = P \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} P^{-1}$$
$$P = \begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$
$$f(\lambda) = e^{\lambda t}, f^{(1)}(\lambda) = te^{\lambda t}$$
$$f(J) = e^{Jt} = \begin{bmatrix} e^{t} & te^{t} & 0 \\ 0 & e^{t} & 0 \\ 0 & 0 & e^{2t} \end{bmatrix}$$
$$f(A) = e^{At} = Pe^{Jt}P^{-1} = P \begin{bmatrix} e^{t} & te^{t} & 0 \\ 0 & e^{t} & 0 \\ 0 & 0 & e^{2t} \end{bmatrix} P^{-1}$$

Definition (Inner Product)

Let $(\mathcal{X}, \mathcal{F})$ be a vector space. The *inner product* of two vectors x and y in \mathcal{X} denoted by $\langle x, y \rangle$ takes the value in \mathcal{F} and satisfies the following properties for all $a, b \in \mathcal{F}$:

1.
$$\langle x, y \rangle = \overline{\langle y, x \rangle}$$

2. $\langle x, ay + bz \rangle = a \langle x, y \rangle + b \langle x, z \rangle$
3. $\langle x, x \rangle \ge 0$ for all x , and $\langle x, x \rangle = 0$ if and only if $x = 0$.

Definition (Orthogonality)

Two vectors x and y in an inner product space \mathcal{X} are said to be *orthogonal* if their inner product is zero, that is, $\langle x, y \rangle = 0$. If x and y are orthogonal, this is denoted by $x \perp y$.

Two subsets A and B in an inner product space \mathcal{X} are said to be *orthogonal* if $x \perp y$ for all x in A and y in B. If A and B are orthogonal, this is denoted by $A \perp B$.

Definition (Orthogonal Complement) Let \mathcal{X} be an inner product space and \mathcal{Y} be any subspace of \mathcal{X} . The set

$$\mathcal{Y}^{\perp} = \{ x : < x, y >= 0 \text{ for all } y \in \mathcal{Y} \}$$

is called the *orthogonal complement* of \mathcal{Y} .

Definition (Norm)

A real-valued function ||x|| defined on a vector space $(\mathcal{X}, \mathcal{F})$, where $x \in \mathcal{X}$, is called a *norm* if for all $x, y \in \mathcal{X}$ and $\alpha \in \mathcal{F}$

(i)
$$||x|| \ge 0$$
 for all $x \in \mathcal{X}$, and $||x|| = 0$
if and only if $x = 0$
(ii) $||\alpha x|| = |\alpha|||x||$ for all $x \in \mathcal{X}$ and $\alpha \in \mathcal{F}$
(iii) $||x + y|| \le ||x|| + ||y||$ for all $x, y \in \mathcal{X}$.

Theorem (Schwarz Inequality) If, on an inner product space, ||x|| is defined by $||x|| = \langle x, x \rangle^{1/2}$, then

$$|\langle x, y \rangle| \le ||x|| ||y||.$$

Definition (Orthonormal Basis)

Let \mathcal{X} be an inner product space. A subset B is an *orthonormal basis* if it is a basis that is orthonormal.

Theorem (Gram-Schmidt Orthonormalization Process)

Let \mathcal{X} be an inner product space, and $W = \{w_1, w_2, \dots, w_n\}$ be a linearly independent subset of \mathcal{X} . Then, there exists an orthonormal set $V = \{v_1, v_2, \dots, v_n\}$ such that $v_k = \sum_{i=1}^k a_{ik} w_i$, $k = 1, 2, \dots, n$. Let $w_1 = [1, 1, 0]^T$, $w_2 = [2, 0, 1]^T$, $w_3 = [2, 2, 1]^T$. Then,

$$v_{1} = \frac{1}{\|w_{1}\|} w_{1} = \left[\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right]^{T}$$
$$u_{2} = w_{2} - \langle v_{1}, w_{2} \rangle v_{1} = [2, 0, 1]^{T} - [1, 1, 0]^{T}$$
$$= [1, -1, 1]^{T}$$
$$v_{2} = \left[\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right]^{T}$$
$$u_{3} = w_{3} - \langle v_{1}, w_{3} \rangle v_{1} - \langle v_{2}, w_{3} \rangle v_{2}$$
$$v_{3} = \frac{1}{\|u_{3}\|} u_{3} = \left[-\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right]^{T}$$

Corollary

Let \mathcal{X} be an inner product space and \mathcal{Y} be a finite dimensional subspace of \mathcal{X} . For each $x \in \mathcal{X}$, there exist unique vectors $y \in \mathcal{Y}$ and $z \in \mathcal{Y}^{\perp}$ such that x = y + z. Furthermore, if $\{v_1, v_2, \ldots, v_k\}$ is an orthonormal basis of \mathcal{Y} , then

$$y = \sum_{i=1}^k \langle v_i, x \rangle v_i.$$

The vector y is the unique vector such that ||x - y|| < ||x - u|| for any $u \in \mathcal{Y}$ such that $u \neq y$.

Theorem (Properties of induced norm)

For $m \times n$ matrices A and B mapping normed space \mathcal{R}^n into normed space \mathcal{R}^m , and $n \times l$ matrix C mapping normed space \mathcal{R}^l into normed space \mathcal{R}^n , the following hold:

1.
$$||A|| \ge 0$$
, and $||A|| = 0$ if and only if $A = 0$,

2.
$$\|\alpha A\| = |\alpha| \|A\|$$
,

3.
$$||A + B|| \le ||A|| + ||B||$$
,

4. $||AC|| \le ||A|| ||C||.$

Let A be an $m \times n$ matrix mapping \mathcal{R}^n into \mathcal{R}^m defined by y = Ax with the adjoint transformation given by $x = A^T y$.

- 1. $\mathcal{N}(A^T)$ is an orthogonal complement of $\mathcal{R}(A)$, that is, $\mathcal{N}(A^T) = \mathcal{R}(A)^{\perp}$.
- 2. $\mathcal{R}(A)$ is an orthogonal complement of $\mathcal{N}(A^T)$, that is, $\mathcal{R}(A) = \mathcal{N}(A^T)^{\perp}$.

For a Hermitian matrix H,

- 1. all the eigenvalues are real,
- 2. there are n linearly independent eigenvectors,
- 3. the eigenvectors corresponding to different eigenvalues are orthogonal,
- 4. \exists a unitary matrix Q such that

$$H = Q\Lambda Q^{-1} = Q\Lambda \bar{Q}^T$$

where Λ is a diagonal matrix.

Definition (Positive definiteness) A quadratic form $x^T M x$ is said to be

1. positive definite if $x^T M x > 0$ for all $x \neq 0$,

- 2. positive semidefinite if $x^T M x \ge 0$ for all x,
- 3. negative definite if $x^T M x < 0$ for all $x \neq 0$,

4. negative semidefinite if $x^T M x \leq 0$ for all x.

A symmetric matrix M is said to be *positive definite* (*positive semidefinite, negative definite, negative semidefinite, respectively*) if the quadratic form $x^T M x$ is so.

A symmetric matrix M is positive definite (positive semidefinite) if and only if all the eigenvalues of M are positive (nonnegative).

Theorem

If a symmetric matrix M is positive definite (positive semidefinite), then det(M) > 0 ($det(M) \ge 0$).

Theorem

A symmetric matrix M is positive definite (positive semidefinite) if and only if all the leading principal minors (all the principal minors) of M are positive (nonnegative).

$$(M+m)\ddot{x} + ml(\ddot{\theta}\cos\theta - \dot{\theta}^{2}\sin\theta) = u$$
$$m\left(\ddot{x}\cos\theta + l\ddot{\theta} - g\sin\theta\right) = 0$$
$$\Downarrow$$
$$(M+m)\ddot{x} + ml\ddot{\theta} = u$$
$$\ddot{x} + l\ddot{\theta} - g\theta = 0$$

$$(M+m)\ddot{x} + ml(\ddot{\theta}\cos\theta - \dot{\theta}^{2}\sin\theta) = u$$
$$m\left(\ddot{x}\cos\theta + l\ddot{\theta} - g\sin\theta\right) = 0$$
$$\Downarrow$$
$$\begin{bmatrix} M+m & ml \\ 1 & l \end{bmatrix} \begin{bmatrix} \ddot{x} \\ \ddot{\theta} \end{bmatrix} = \begin{bmatrix} u \\ g\theta \end{bmatrix}$$
$$\Downarrow$$
$$\begin{bmatrix} \ddot{x} \\ \ddot{\theta} \end{bmatrix} = \frac{1}{Ml} \begin{bmatrix} l & -ml \\ -1 & M+m \end{bmatrix} \begin{bmatrix} u \\ g\theta \end{bmatrix}$$

If A is an $n \times n$ matrix function whose entries are continuous functions of time on the interval $I = [t_l, t_u]$, then there exists the unique solution to the initial value problem

$$\dot{x}(t) = A(t)x(t), \quad x(t_0) = x^0, \quad t_0 \in I = [t_l, t_u].$$

$$\frac{d}{dt}x(t) = \begin{bmatrix} 1 & 0\\ t & 1 \end{bmatrix} x(t) = A(t)x(t)$$

Show

$$\Phi(t,t_0) = \begin{bmatrix} e^{(t-t_0)} & 0\\ \frac{1}{2}(t^2 - t_0^2)e^{(t-t_0)} & e^{(t-t_0)} \end{bmatrix}$$

is the state transition matrix. Answer: $\Phi(t_0,t_0)=I$ and

$$\frac{d}{dt}\Phi(t,t_0) = \begin{bmatrix} e^{(t-t_0)} & 0\\ \frac{1}{2}(t^2 - t_0^2)e^{(t-t_0)} + te^{(t-t_0)} & e^{(t-t_0)} \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0\\ t & 1 \end{bmatrix} \begin{bmatrix} e^{(t-t_0)} & 0\\ \frac{1}{2}(t^2 - t_0^2)e^{(t-t_0)} & e^{(t-t_0)} \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0\\ t & 1 \end{bmatrix} \Phi(t,t_0) = A(t)\Phi(t,t_0)$$

Definition (Stability)

For $\dot{x} = f(t, x)$, the equilibrium point x_e (i.e., $f(t, x_e) = 0, \forall t$) is

1. stable i.s.L. (in the sense of Lyapunov) if for each t_0 and each $\epsilon > 0$, there exists $\delta(\epsilon, t_0) > 0$ s.t. if $||x(t_0) - x_e|| < \delta$ then

$$||x(t) - x_e|| < \epsilon$$
 for all $t \ge t_0$

2. uniformly stable i.s.L. if, $\forall \epsilon > 0$, $\exists \delta = \delta(\epsilon) > 0$ s.t. if $||x(t_0) - x_e|| < \delta$ then

$$\|x(t) - x_e\| < \epsilon$$
 for all $t \ge t_0$

3. *unstable* if it is not stable

- 4. asymptotically stable if it is stable i.s.L. and for each t_0 , there is a positive constant c such that if $||x(t_0) - x_e|| < c$, then $x(t) \to x_e$ as $t \to \infty$.
- 5. globally asymptotically stable if it is stable i.s.L. and for each t_0 and each $x(t_0)$, $x(t) \rightarrow x_e$ as $t \rightarrow \infty$.

$$\dot{x} = \begin{bmatrix} 0 & \omega \\ -\omega & 0 \end{bmatrix} x(t)$$

$$\Phi(t, t_0) = \begin{bmatrix} \cos \omega (t - t_0) & \sin \omega (t - t_0) \\ -\sin \omega (t - t_0) & \cos \omega (t - t_0) \end{bmatrix}$$

$$x_1(t) = \cos \omega (t - t_0) x_1(t_0) + \sin \omega (t - t_0) x_2(t_0)$$

$$x_2(t) = -\sin \omega (t - t_0) x_1(t_0) + \cos \omega (t - t_0) x_2(t_0)$$

For linear continuous time system, the equilibrium point at the origin is

1. stable if and only if for each t_0 , there exists a constant $\kappa(t_0)$ such that

$$\|\Phi(t,t_0)\| \le \kappa(t_0) \qquad \text{for all } t \ge t_0,$$

2. asymptotically stable if and only if for each t_0 , $\|\Phi(t, t_0)\| \to 0$ as $t \to \infty$.

$$\dot{x} = \left[\begin{array}{cc} -1 & e^{2t} \\ 0 & -1 \end{array} \right] x$$

$$\Phi(t,t_0) = \begin{bmatrix} e^{-(t-t_0)} & \frac{1}{2}e^{-(t-t_0)}(e^{2t} - e^{2t_0}) \\ 0 & e^{-(t-t_0)} \end{bmatrix}$$

For the linear time invariant system with system matrix A, the equilibrium point at the origin is

- 1. asymptotically stable if and only if all the eigenvalues of A have negative real parts,
- 2. stable if and only if all the eigenvalues of A have nonpositive real parts, and those eigenvalues with zero real parts are distinct roots of the minimal polynomial of A (or, equivalently, have indices equal to 1),
- 3. unstable if there exist eigenvalues with positive real parts or eigenvalues with zero real parts which are not distinct roots of the minimal polynomial of A (or equivalently, have indices greater than 1).

Definition (BIBO stability)

The input-output system is said to be bounded-input-bounded-output (BIBO) stable if for any bounded input $u(t), ||u(t)|| \le M$ for all t, there exists a finite constant N(M) such that $||y(t)|| \le N$ for all t.

For a linear time-invariant system, the zero-state response is BIBO stable if and only if all the poles of the transfer function are located in the open left-half complex plane.

Theorem

For a linear time-invariant system, the zero-state response is BIBO stable if for all the eigenvalues λ_i of the system matrix A, $\operatorname{Re} \lambda_i < 0$.

The matrix A is Hurwitz, or equivalently, the zero state of $\dot{x} = Ax$ is asymptotically stable if and only if for any given symmetric positive definite matrix Q, the matrix equation

$$A^T P + P A = -Q$$

has a unique symmetric positive definite solution P.

$$A = \begin{bmatrix} -1 & -2\\ 1 & -4 \end{bmatrix}, \qquad Q = I$$

$$P = \begin{bmatrix} 23/60 & -7/60 \\ -7/60 & 11/60 \end{bmatrix}$$

Definition (Controllability)

A linear system (or the pair (A(t), B(t))) is said to be *controllable* on the interval $[t_0, t_1]$ if for any x^0 in the state space S and any x^1 in S, there exists an input $u_{[t_0,t_1]}$ which transfers the state $x(t_0) = x^0$ to the state $x(t_1) = x^1$ at time t_1 .

A linear system (or the pair (A(t), B(t))) is controllable on the interval $[t_0, t_1]$ if and only if the controllability Gramian

$$G_c(t_0, t_1) = \int_{t_0}^{t_1} \Phi(t_0, t) B(t) B^T(t) \Phi^T(t_0, t) dt$$

is nonsingular.

A linear system is controllable on the interval $[t_0, t_1]$ if there exists $\tau \in [t_0, t_1]$ such that

$$\operatorname{rank}\left(\left[\begin{array}{ccc}M_0(\tau) & M_1(\tau) & \cdots & M_{n-1}(\tau)\end{array}\right]\right) = n$$

where $M_0(\tau) = B(\tau)$ and

$$M_{j}(\tau) = -A(\tau)M_{j-1}(\tau) + \frac{d}{d\tau}M_{j-1}(\tau)$$

where j = 1, 2, ..., n - 1.

A linear time-invariant system (or the pair (A, B)) is controllable on the interval $[t_0, t_1]$ if and only if the controllability matrix

$$\mathcal{P} = \left[\begin{array}{ccc} B & AB & \cdots & A^{n-1}B \end{array} \right]$$

has rank n.

Lemma

The range space and null space of

$$G_c(t_0, t_1) = \int_{t_0}^{t_1} e^{A(t_0 - t)} B B^T e^{A^T(t_0 - t)} dt$$

coincide with the range space and null space of \mathcal{PP}^T .

Definition (Observability)

A linear system (or the pair (C(t), A(t))) is said to be *observable* on the interval $[t_0, t_1]$ if for any initial state $x(t_0)$ in the state space S, the knowledge of the input $u_{[t_0,t_1]}$ and the output $y_{[t_0,t_1]}$ is sufficient to uniquely solve for $x(t_0)$.

A linear system is observable on the interval $[t_0, t_1]$ if there exists $\tau \in [t_0, t_1]$ such that

$$\operatorname{rank}\left(\left[\begin{array}{c}N_{0}(\tau)\\N_{1}(\tau)\\\vdots\\N_{n-1}(\tau)\end{array}\right]\right)=n$$

where $N_0(\tau) = C(\tau)$ and

$$N_j(\tau) = N_{j-1}(\tau)A(\tau) + \frac{d}{d\tau}N_{j-1}(\tau).$$

Theorem For a single-input LTI system

$$\dot{x} = Ax + bu$$

with $det(sI - A) = s^n + a_{n-1}s^{n-1} + \cdots + a_1s + a_0$, there exists a change of coordinates $x_c = Tx$ s.t.

$$\dot{x}_{c} = \begin{bmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \\ -a_{0} & -a_{1} & \cdots & -a_{n-1} \end{bmatrix} x_{c} + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} u$$

if and only if the pair (A, b) is controllable.

Theorem For a single-output LTI system

$$\dot{x} = Ax, \qquad y = cx$$

with $det(sI - A) = s^n + a_{n-1}s^{n-1} + \cdots + a_1s + a_0$, there exists a change of coordinates $x_o = Tx$ s.t.

$$\dot{x}_{o} = \begin{bmatrix} 0 & 0 & \cdots & 0 & -a_{0} \\ 1 & 0 & \cdots & 0 & -a_{1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & -a_{n-2} \\ 0 & 0 & \cdots & 1 & -a_{n-1} \end{bmatrix} x_{o}$$
$$y = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \end{bmatrix} x_{o}$$

if and only if the pair (c, A) is observable.

Definition (Controllable subspace)

The set of the initial states that can be transferred to the zero state in finite time is called the *controllable subspace* and is denoted by C.

Definition (Stabilizability)

The linear time invariant system is said to be *stabilizable* if its unstable subspace is contained in its controllable subspace, that is, any vector x in the unstable subspace is also in the controllable subspace.

Definition (Unobservable subspace)

The set of the initial states that produce zero-input responses $\bar{y}(t)$ which are identically zero on any finite time interval is called the *unobservable subspace* and is denoted by \mathcal{O} .

Definition (Detectability)

The linear time invariant system is said to be *detectable* if its unobservable subspace is contained in its stable subspace, that is, any vector x in the unobservable subspace is also in the stable subspace.

The pair (A, B) is controllable if and only if by the state feedback u(t) = Kx(t) + r(t), the eigenvalues of (A + BK) can be arbitrarily assigned provided that complex conjugate eigenvalues appear in pair.

The pair (C, A) is observable if and only if the eigenvalues of A - LC can be arbitrarily assigned by a proper choice of the matrix L provided that complex conjugate eigenvalues appear in pair.

Definition (Realization)

A realization of a transfer matrix G(s) is any state space model (A, B, C, D) such that $G(s) = C(sI - A)^{-1}B + D$. If such a state space model exists, then G(s) is said to be *realizable*.

Definition (Minimal realization)

A realization (A, B, C, D) of a transfer matrix G(s) is called a *minimal realization* if there exists no other realization with state space of smaller dimension.