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수업 내용

선형 제어 시스템을 학습하기 위한 기초 및 기본

개념을 제공하는 강좌로, system model에 대한
기본 개념을 상태변수 공간에서 학습하고,
선형대수학의 기초를 다시 살펴 본 후, 상태공간
방정식의 해, 시스템의 안정도 (Lyapunov
stability), 제어 가능한 시스템 (controllability),
관측 가능한 시스템 (observability), controllable
and observable canonidal form, duality, 상태변수
궤환 제어기 설계, 상태변수 관측기 설계, 및
출력 궤환 제어 방법을 학습한다.



1. Systems and State
2. Vector Spaces

2.1 Vector Spaces
2.2 Linear Transformations and Matrices
2.3 Eigenvalues and Eigenvectors, Diagonalization
2.4 Cayley-Hamilton THM, Functions of a Square

Matrix
2.5 Inner Product Spaces, Normed Spaces

3. State Space
3.1 State Transition matrix

4. System Stability
4.1 Lyapunov Stability
4.2 External Stability
4.3 Lyapunov Theorem
4.4 Stable and Unstable Subspaces*



5. Controllability and Observability
5.1 Linear Independence of Time Functions
5.2 Controllability of Linear Systems
5.3 Controllability of Linear Time-Invariant Systems
5.4 Observability of Linear Systems
5.5 Observability of Linear Time-Invariant Systems
5.6 Controllable and Observable Canonical Forms
5.7 Duality
5.8 Structure of Uncontrollable and Unobservable Sys.
5.9 PBH(Popov-Belevitch-Hautus) Tests*

6. State Feedback and Observers
6.1 State Feedback
6.2 Observers
6.3 Feedback Control Systems Using Observers

7. Realization
7.1 Minimal Realizations
7.2 Controllable and Observable Canonical Forms
7.3 Realizability of Transfer Matrices



Textbook:
Lecture note written by Prof. Jin Heon Seo

References:
W. Brogan, Modern Control Theory, 3rd Edition,
Prentice-Hall, 1990.

C.T. Chen, Linear System Theory and Design, 4th
Edition, Oxford publishing, 2012.



Definition (Causality)
A system is called causal (or nonanticipative) if, for
any t, y(t) does not depend on any u(t1) for t1 > t.
A system is called noncausal (or anticipative) if it is
not causal.
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Definition (Dynamic Systems)
A system is called dynamic (or is said to have
memory) if, for some t0, y(t0) depends on u(t) for
t 6= t0. A system is called instantaneous (static,
memoryless or is said to have zero memory) if, for
any t0, y(t0) does not depend on u(t) for t 6= t0.
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A system is said to be relaxed (or at rest) at time t0
if the output y[t0,∞) is solely excited and uniquely
determined by the input u[t0,∞). We assume that
every system is relaxed at time t = −∞.
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Definition (State)
The state x(t) of a system at time t is the
information at time t that is sufficient to uniquely
specify the output y[t,∞) given the input u[t,∞).
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Definition (Linear State Space Systems)
A system is said to be linear if for every t0 and any
admissible two input-state-output pairs

{u1[t0,∞), x
1(t0)} −→ y1[t0,∞)

{u2[t0,∞), x
2(t0)} −→ y2[t0,∞)

and real (complex) scalar α, the property of additivity

{u1[t0,∞) + u2[t0,∞), x
1(t0) + x2(t0)} −→ y1[t0,∞) + y2[t0,∞)

and the property of homogeneity

{αu1[t0,∞), αx
1(t0)} −→ αy1[t0,∞)

hold. Otherwise, the system is said to be nonlinear.
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Definition (Time Invariance)
A system is said to be time-invariant if for every t0
and every admissible input-state-output pair on the
interval [t0,∞)

{u1[t0,∞), x
1(t0) = x0} −→ y1[t0,∞)

and any T , the input-state-output pair on the
interval [t0 + T,∞)

{u2[t0+T,∞), x
2(t0 + T ) = x0} −→ y2[t0+T,∞)

where

u2(t) = u1(t− T ), y2(t) = y1(t− T ), t ≥ t0 + T

is also admissible.
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Definition (Fields)
A field consists of a set, denoted by F , of elements
called scalars and two operations called addition “+”
and multiplication “·” which are defined over F such
that they satisfy the following conditions:
1. To every pair of elements α, β ∈ F , there is an
associated unique element α + β in F , called the
sum of α and β.
2. There exists an element, denoted by 0, such that
α + 0 = α for all α ∈ F .
3. Addition is commutative; α + β = β + α.
4. Addition is associative;
(α + β) + γ = α + (β + γ).



5. For each α ∈ F , there exists an element β such
that α + β = 0, which is called the additive inverse
and denoted by −α.
6. To every pair of elements α, β ∈ F , there is
associated a unique element α · β in F , called the
product of α and β.
7. There exists an element, denoted by 1, such that
α · 1 = α for all α ∈ F .
8. Multiplication is commutative; α · β = β · α.
9. Multiplication is associative;
(α · β) · γ = α · (β · γ).
10. For each α ∈ F , α 6= 0, there exists an element
γ such that α · γ = 1 , which is called the
multiplicative inverse and denoted by α−1.



11. Multiplication is distributive with respect to
addition; (α + β) · γ = α · β + α · γ.



Definition (Vector Spaces)
A vector space over a field F , denoted by (X ,F),
consists of a set, denoted by X , of elements called
vectors, a field F , and two operations called vector
addition “+” and scalar multiplication “·”, which are
defined over X and F such that they satisfy the
following conditions:
1. To every pair of elements x1, x2 ∈ X , there is an
associated unique element x1 + x2 in X , called the
sum of x1 and x2.
2. Addition is commutative; x1 + x2 = x2 + x1.
3. Addition is associative;
(x1 + x2) + x3 = x1 + (x2 + x3).
4. There exists a vector, denoted by 0, such that
x+ 0 = x for all x ∈ X .



5. For each x ∈ X , there exists an element y ∈ X
such that x+ y = 0, which is denoted by −x.
6. To every scalar α ∈ F and vector x ∈ X , there is
associated a unique element α · x ∈ X , called the
scalar product of α and x.
7. Scalar multiplication is associative;
(αβ) · x = α · (β · x).
8. Scalar multiplication is distributive with respect to
vector addition; α · (x1 + x2) = α · x1 + α · x2.
9. Scalar multiplication is distributive with respect to
scalar addition; (α + β) · x = α · x+ β · x.
10. For 1 ∈ F and x ∈ X , 1 · x = x.



Definition (Subspaces)
Let (X ,F) be a vector space and Y ⊂ X . Then,
(Y ,F) is said to be a subspace of (X ,F) if under
the operations of (X ,F), Y forms a vector space
over F , that is, for each pair of elements x1, x2 ∈ Y ,
x1 + x2 ∈ Y , and for each scalar α ∈ F and vector
x ∈ Y , αx ∈ Y .



Definition (Sum of Subspaces)
Let (X ,F) be a vector space and Y ,Z ⊂ X be
subspaces of X . Then, the sum of two subspaces
Y ,Z ⊂ X is the set

Y + Z = {x : x = y + z, y ∈ Y , z ∈ Z}.



Definition (Intersection of Subspaces)
Let (X ,F) be a vector space and Y ,Z ⊂ X be
subspaces of X . Then, the intersection of two
subspaces Y ,Z ⊂ X is the set

Y ∩ Z = {x : x ∈ Y , x ∈ Z}.



Definition (Direct Sum of Subspaces)
Let (X ,F) be a vector space and Y ,Z ⊂ X be
subspaces of X such that

Y + Z = X
Y ∩ Z = {0}

In this case, X is said to be a direct sum of Y and
Z , and we write X = Y ⊕ Z.



Definition (Linear Combinations)
Let A be a set in a vector space (X ,F). A vector
x ∈ X is said to be a linear combination of elements
in A if there exist a finite set of vectors
{x1, x2, . . . , xn} in A and a finite set of scalars
{α1, α2, . . . , αn} such that

x = α1x1 + α2x2 + · · ·+ αnxn.



Definition (Span)
Let A be a nonempty subset in a vector space
(X ,F). The span of A, denoted by span(A), is the
set consisting of all linear combinations of elements
in A. For convenience, span(∅) = {0}.



Definition (Linear Independence)
A nonempty set A in a vector space (X ,F) is said to
be linearly dependent if there exists a finite set of
distinct elements {x1, x2, . . . , xn} in A and a finite
set of scalars {α1, α2, . . . , αn}, not all zero, such that

α1x1 + α2x2 + · · ·+ αnxn = 0.

A set A in a vector space (X ,F) is said to be linearly
independent if it is not linearly dependent. In other
words, a set A in a vector space (X ,F) is linearly
independent if for each nonempty finite subset of
distinct elements in A, say, {x1, x2, . . . , xn} in A,
the only n-tuple of scalars satisfying the equation

α1x1 + α2x2 + · · ·+ αnxn = 0

is the trivial solution α1 = α2 = · · · = αn = 0.



Definition (Basis)
A set B of linearly independent vectors in a vector
space (X ,F) is said to be a basis of X if every
vector in X can be expressed as a linear combination
of vectors in B, that is, span(B) = X .



Theorem
Let (X ,F) be a vector space and
V = {v1, v2, . . . , vn} be a subset of X . Then, V is a
basis for X if and only if each vector x in X can be
uniquely expressed as a linear combination of vectors
in V , that is, can be expressed in the form

x = α1v1 + α2v2 + · · ·+ αnvn

for unique scalars α1, α2, . . . , αn.



Theorem (Replacement Theorem)
Let (X ,F) be a vector space and
V = {v1, v2, . . . , vn} ⊂ X be a basis for X . Let
U = {u1, u2, . . . , um} ⊂ X be linearly independent.
Then, m ≤ n.



Theorem
Let (X ,F) be a vector space and
V = {v1, v2, . . . , vn} ⊂ X be a basis for X . Let
U = {u1, u2, . . . , um} ⊂ X be another basis for X .
Then, m = n.



Definition (Dimension)
A vector space (X ,F) is called finite-dimensional if
it has a basis B consisting of a finite number of
elements. The unique number of elements in each
basis for X is called the dimension of X and is
denoted by dim(X ). A vector space that is not
finite-dimensional is called infinite-dimensional.



Definition (Linear Transformation)
Let (X ,F) and (Y ,F) be vector spaces. A function
L which maps (X ,F) into (Y ,F) is called a linear
transformation if

L(αx) = αLx for all x ∈ X and all α ∈ F
L(x1 + x2) = Lx1 + Lx2 for all x1, x2 ∈ X



Definition (Range space)
The range space R(L) of a linear transformation L
from (X ,F) into (Y ,F) is a subset of (Y ,F)
defined by

R(L) = {y ∈ Y : y = Lx for some x ∈ X}.

Definition (Null space)
The null space N (L) of a linear transformation L
from (X ,F) into (Y ,F) is a subset of (X ,F)
defined by

N (L) = {x ∈ X : Lx = 0}.



Theorem
Consider a linear transformation L from (X ,F) into
(Y ,F). The following statements are equivalent.
1. The mapping L is one-to-one.
2. Null space of L is trivial, that is, N (L) = {0}.
3. L maps linearly independent vectors in X into a

linearly independent vectors in Y .



Definition (Nullity and rank)
Let L be a linear transformation from (X ,F) into
(Y ,F). If N (L) and R(L) are finite dimensional,
we define the nullity of L, denoted by nullity(L),
and rank of L, denoted by rank(L), to be the
dimensions of N (L) and R(L), respectively.



Theorem (Dimension Theorem)
Let L be a linear transformation from (X ,F) into
(Y ,F). If X is finite dimensional, then
nullity(L) + rank(L) = dim(X ).



Definition (Similarity transformation)
Two square matrices A and B are said to be similar if
a nonsingular matrix T exists such that A = T−1BT .
The matrix T is called a similarity transformation.



Definition (Invariant subspace)
Let L be a linear transformation of (X ,F) into itself.
A subspace Y of X is said to be an invariant
subspace of X under L, or an L-invariant subspace
of X , if L(Y) ⊂ Y , which implies that Ly ∈ Y for
all y ∈ Y .



Definition (Eigenvalue and eigenvector)
Let A be a linear transformation from (Cn,C) into
(Cn,C). A scalar λ in C is called an eigenvalue of A
if there exists a nonzero vector x in Cn such that
Ax = λx. Any nonzero vector x satisfying Ax = λx
is called an eigenvector of A associated with the
eigenvalue λ.



Theorem
Let λ1, λ2, . . . , λd be distinct eigenvalues of A and
let vi be an eigenvector of A associated with λi.
Then, the set {v1, v2, . . . , vd} is linearly independent.

Theorem
Let λ1, λ2, . . . , λd be distinct eigenvalues of A and
let {vi1, vi2, . . . , vigi} be a set of linearly independent
eigenvectors of A associated with λi. Then, the set

{v11, . . . , v1g1, v21, . . . , v2g2, . . . , vd1, . . . , vdgd}

is linearly independent.



Theorem
A is diagonalizable if and only if it has n linearly
independent eigenvectors, that is, gi = mi,
i = 1, 2, . . . , d.



Definition (Generalized eigenspace)
The generalized eigenspace of A corresponding to the
eigenvalue λ is the subset defined by

{x : (λI − A)kx = 0 for some k ≥ 1}.



Theorem
The dimension of the generalized eigenspace of A
corresponding to the eigenvalue λi is equal to mi.



Definition (Generalized eigenvector)
A vector v is called a generalized eigenvector of grade
k (k ≥ 1) of A associated with eigenvalue λ if

(A− λI)kv = 0

(A− λI)k−1v 6= 0.



Theorem
The union over all the eigenvalues of the set of
generalized eigenvectors associated with each
different eigenvalue is linearly independent.



A =


1 0 −1 1 0
−4 1 −3 2 1
−2 −1 0 1 1
−3 −1 −3 4 1
−8 −2 −7 5 4

 , det(λI−A) = (λ−2)5

dim(N (A− 2I)) = 2, dim(N (A− 2I)2) = 4,
dim(N (A− 2I)3) = 5

u11 =


0
−1
1
1
0

 , u12 =

0
1
0
0
1

 , u21 =

0
1
0
0
0

 , u22 =

−1
0
1
0
0





u31 =


0
0
0
1
0

 = v31, v21 = (A− 2I)v31 =


1
2
1
2
5


Choose v22 s.t. {u11, u12, v21, v22} is a basis of
N (A− 2I)2:

v22 =


−1
0
1
0
0


v11 = (A− 2I)v21, v12 = (A− 2I)v22



A =

 5 19 9
0 0 1
−1 −4 −2

 , det(λI − A) = (λ− 1)3

dim(N (A− I)) = 1



v1 = [7,−1,−1]T

(A− I)v2 = v1

v2 = [−3, 1, 0]T

(A− I)v3 = v2

v3 = [−3, 0, 1]T



A =

 −2 −9 −121 4 4
0 0 1

 , det(λI − A) = (λ− 1)3

dim(N (A− I)) = 2



v11 = [3,−1, 0]T , v12 = [4, 0,−1]T

(A− I)v2 = ?



Theorem (Cayley-Hamilton THM)
Let
γ(λ) = det(λI−A) = λn+cn−1λ

n−1+ · · ·+c1λ+c0
be the characteristic polynomial of A. Then,

γ(A) = An + cn−1A
n−1 + · · ·+ c1A+ c0I = 0.



Definition (Minimal Polynomial)
The minimal polynomial of a matrix A is the monic
polynomial µ(λ) of the least degree such that
µ(A) = 0.



Theorem
The minimal polynomial µ(λ) of J is given as

µ(λ) =
d∏
i=1

(λ− λi)
ηi

where ηi is the index of λi in J .



Definition (Function of a matrix)
Let f(λ) be a function that is defined on the
spectrum of A. If p(λ) is a polynomial that has the
same values as f(λ) on the spectrum of A, then
f(A) is defined as f(A) = p(A).



Lemma
Given distinct numbers λ1, λ2, . . . , λd, positive
integers η1, η2, . . . , ηd with η =

∑d
i=1 ηi, and a set of

numbers

fi,0, fi,1, . . . , fi,ηi−1, i = 1, 2, . . . , d

there exists a polynomial p(λ) of degree less than η
such that

p(λi) = fi,0, p
(1)(λi) = fi,1, . . . , p

(ηi−1)(λi) = fi,ηi−1, i = 1, 2, . . . , d

Furthermore, such a polynomial p(λ) is unique.



a1 =
1
4(e

−t − e−5t) and a0 = 5
4e

−t − 1
4e

−5t

eAt = (
5

4
e−t − 1

4
e−5t)I +

1

4
(e−t − e−5t)A

=

[
2e−t − e−5t e−t − e−5t

1
2(e

−t − e−5t) 3
2e

−t − 1
2e

−5t

]



f(1) = p(1) et = a0 + a1 + a2

f (1)(1) = p(1)(1) tet = a1 + 2a2

f(2) = p(2) e2t = a0 + 2a1 + 4a2

eAt = (−2tet+e2t)I+(3tet+2et−2e2t)A+(e2t−et−tet)A2



et = a0 + a1

e2t = a0 + 2a1

eAt = (2et − e2t)I + (e2t − et)A

cf.

eAt = (−2tet+e2t)I+(3tet+2et−2e2t)A+(e2t−et−tet)A2



A =

 1 1 2
0 1 3
0 0 2

 = PJP−1 = P

 1 1 0
0 1 0
0 0 2

P−1

P =

 1 0 5
0 1 3
0 0 1


f(λ) = eλt, f (1)(λ) = teλt

f(J) = eJt =

 et tet 0
0 et 0
0 0 e2t


f(A) = eAt = PeJtP−1 = P

 et tet 0
0 et 0
0 0 e2t

P−1



Definition (Inner Product)
Let (X ,F) be a vector space. The inner product of
two vectors x and y in X denoted by < x, y > takes
the value in F and satisfies the following properties
for all a, b ∈ F :
1. < x, y >= < y, x >

2. < x, ay + bz >= a < x, y > +b < x, z >

3. < x, x > ≥ 0 for all x, and < x, x >= 0 if and
only if x = 0.



Definition (Orthogonality)
Two vectors x and y in an inner product space X are
said to be orthogonal if their inner product is zero,
that is, < x, y >= 0. If x and y are orthogonal, this
is denoted by x ⊥ y.
Two subsets A and B in an inner product space X
are said to be orthogonal if x ⊥ y for all x in A and
y in B. If A and B are orthogonal, this is denoted by
A ⊥ B.



Definition (Orthogonal Complement)
Let X be an inner product space and Y be any
subspace of X . The set

Y⊥ = {x :< x, y >= 0 for all y ∈ Y}

is called the orthogonal complement of Y .



Definition (Norm)
A real-valued function ‖x‖ defined on a vector space
(X ,F), where x ∈ X , is called a norm if for all
x, y ∈ X and α ∈ F

(i) ‖x‖ ≥ 0 for all x ∈ X , and ‖x‖ = 0

if and only if x = 0

(ii) ‖αx‖ = |α|‖x‖ for all x ∈ X and α ∈ F
(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X .



Theorem (Schwarz Inequality)
If, on an inner product space, ‖x‖ is defined by
‖x‖ =< x, x >1/2, then

| < x, y > | ≤ ‖x‖‖y‖.



Definition (Orthonormal Basis)
Let X be an inner product space. A subset B is an
orthonormal basis if it is a basis that is orthonormal.



Theorem (Gram-Schmidt
Orthonormalization Process)
Let X be an inner product space, and
W = {w1, w2, . . . , wn} be a linearly independent
subset of X . Then, there exists an orthonormal set
V = {v1, v2, . . . , vn} such that vk =

∑k
i=1 aikwi,

k = 1, 2, . . . , n.



Let w1 = [1, 1, 0]T , w2 = [2, 0, 1]T , w3 = [2, 2, 1]T .
Then,

v1 =
1

‖w1‖
w1 =

[
1√
2
,

1√
2
, 0

]T
u2 = w2− < v1, w2 > v1 = [2, 0, 1]T − [1, 1, 0]T

= [1,−1, 1]T

v2 =

[
1√
3
,− 1√

3
,

1√
3

]T
u3 = w3− < v1, w3 > v1− < v2, w3 > v2

v3 =
1

‖u3‖
u3 =

[
− 1√

6
,

1√
6
,

2√
6

]T



Corollary
Let X be an inner product space and Y be a finite
dimensional subspace of X . For each x ∈ X , there
exist unique vectors y ∈ Y and z ∈ Y⊥ such that
x = y + z. Furthermore, if {v1, v2, . . . , vk} is an
orthonormal basis of Y , then

y =
k∑

i=1

< vi, x > vi.

The vector y is the unique vector such that
‖x− y‖ < ‖x− u‖ for any u ∈ Y such that u 6= y.



Theorem (Properties of induced
norm)
For m× n matrices A and B mapping normed space
Rn into normed space Rm, and n× l matrix C
mapping normed space Rl into normed space Rn,
the following hold:
1. ‖A‖ ≥ 0, and ‖A‖ = 0 if and only if A = 0,
2. ‖αA‖ = |α|‖A‖,
3. ‖A+B‖ ≤ ‖A‖+ ‖B‖,
4. ‖AC‖ ≤ ‖A‖‖C‖.



Theorem
Let A be an m× n matrix mapping Rn into Rm

defined by y = Ax with the adjoint transformation
given by x = ATy.
1. N (AT ) is an orthogonal complement of R(A),

that is, N (AT ) = R(A)⊥.
2. R(A) is an orthogonal complement of N (AT ),

that is, R(A) = N (AT )⊥.



Theorem
For a Hermitian matrix H,
1. all the eigenvalues are real,
2. there are n linearly independent eigenvectors,
3. the eigenvectors corresponding to different

eigenvalues are orthogonal,
4. ∃ a unitary matrix Q such that

H = QΛQ−1 = QΛQ̄T

where Λ is a diagonal matrix.



Definition (Positive definiteness)
A quadratic form xTMx is said to be
1. positive definite if xTMx > 0 for all x 6= 0,
2. positive semidefinite if xTMx ≥ 0 for all x,
3. negative definite if xTMx < 0 for all x 6= 0,
4. negative semidefinite if xTMx ≤ 0 for all x.

A symmetric matrix M is said to be positive definite
(positive semidefinite, negative definite, negative
semidefinite, respectively) if the quadratic form
xTMx is so.



Theorem
A symmetric matrix M is positive definite (positive
semidefinite) if and only if all the eigenvalues of M
are positive (nonnegative).

Theorem
If a symmetric matrix M is positive definite (positive
semidefinite), then det(M) > 0 (det(M) ≥ 0).

Theorem
A symmetric matrix M is positive definite (positive
semidefinite) if and only if all the leading principal
minors (all the principal minors) of M are positive
(nonnegative).



(M +m)ẍ+ml(θ̈ cos θ − θ̇2 sin θ) = u

m
(
ẍ cos θ + lθ̈ − g sin θ

)
= 0

⇓
(M +m)ẍ+mlθ̈ = u

ẍ+ lθ̈ − gθ = 0



(M +m)ẍ+ml(θ̈ cos θ − θ̇2 sin θ) = u

m
(
ẍ cos θ + lθ̈ − g sin θ

)
= 0

⇓[
M +m ml

1 l

] [
ẍ

θ̈

]
=

[
u
gθ

]
⇓[

ẍ

θ̈

]
=

1

Ml

[
l −ml
−1 M +m

] [
u
gθ

]



Theorem
If A is an n× n matrix function whose entries are
continuous functions of time on the interval
I = [tl, tu], then there exists the unique solution to
the initial value problem

ẋ(t) = A(t)x(t), x(t0) = x0, t0 ∈ I = [tl, tu].



d

dt
x(t) =

[
1 0
t 1

]
x(t) = A(t)x(t)

Show

Φ(t, t0) =

[
e(t−t0) 0

1
2(t2 − t20)e(t−t0) e(t−t0)

]
is the state transition matrix. Answer: Φ(t0, t0) = I
and
d

dt
Φ(t, t0) =

[
e(t−t0) 0

1
2(t2 − t20)e(t−t0) + te(t−t0) e(t−t0)

]
=

[
1 0
t 1

] [
e(t−t0) 0

1
2(t2 − t20)e(t−t0) e(t−t0)

]
=

[
1 0
t 1

]
Φ(t, t0) = A(t)Φ(t, t0)



Definition (Stability)
For ẋ = f(t, x), the equilibrium point xe (i.e.,
f(t, xe) = 0, ∀t) is
1. stable i.s.L. (in the sense of Lyapunov) if for

each t0 and each ε > 0, there exists δ(ε, t0) > 0
s.t. if ‖x(t0)− xe‖ < δ then

‖x(t)− xe‖ < ε for all t ≥ t0

2. uniformly stable i.s.L. if, ∀ε > 0, ∃δ = δ(ε) > 0
s.t. if ‖x(t0)− xe‖ < δ then

‖x(t)− xe‖ < ε for all t ≥ t0

3. unstable if it is not stable



4. asymptotically stable if it is stable i.s.L. and for
each t0, there is a positive constant c such that
if ‖x(t0)− xe‖ < c, then x(t)→ xe as t→∞.

5. globally asymptotically stable if it is stable i.s.L.
and for each t0 and each x(t0), x(t)→ xe as
t→∞.



ẋ =

[
0 ω
−ω 0

]
x(t)

Φ(t, t0) =

[
cosω(t− t0) sinω(t− t0)
− sinω(t− t0) cosω(t− t0)

]

x1(t) = cosω(t− t0)x1(t0) + sinω(t− t0)x2(t0)
x2(t) = − sinω(t− t0)x1(t0) + cosω(t− t0)x2(t0)



Theorem
For linear continuous time system, the equilibrium
point at the origin is
1. stable if and only if for each t0, there exists a

constant κ(t0) such that

‖Φ(t, t0)‖ ≤ κ(t0) for all t ≥ t0,

2. asymptotically stable if and only if for each t0,
‖Φ(t, t0)‖ → 0 as t→∞.



ẋ =

[
−1 e2t

0 −1

]
x

Φ(t, t0) =

[
e−(t−t0) 1

2e
−(t−t0)(e2t − e2t0)

0 e−(t−t0)

]



Theorem
For the linear time invariant system with system
matrix A, the equilibrium point at the origin is
1. asymptotically stable if and only if all the

eigenvalues of A have negative real parts,
2. stable if and only if all the eigenvalues of A have

nonpositive real parts, and those eigenvalues
with zero real parts are distinct roots of the
minimal polynomial of A (or, equivalently, have
indices equal to 1),

3. unstable if there exist eigenvalues with positive
real parts or eigenvalues with zero real parts
which are not distinct roots of the minimal
polynomial of A (or equivalently, have indices
greater than 1).



Definition (BIBO stability)
The input-output system is said to be
bounded-input-bounded-output (BIBO) stable if for
any bounded input u(t), ‖u(t)‖ ≤M for all t, there
exists a finite constant N(M) such that ‖y(t)‖ ≤ N
for all t.



Theorem
For a linear time-invariant system, the zero-state
response is BIBO stable if and only if all the poles of
the transfer function are located in the open left-half
complex plane.

Theorem
For a linear time-invariant system, the zero-state
response is BIBO stable if for all the eigenvalues λi of
the system matrix A, Re λi < 0.



Theorem
The matrix A is Hurwitz, or equivalently, the zero
state of ẋ = Ax is asymptotically stable if and only if
for any given symmetric positive definite matrix Q,
the matrix equation

ATP + PA = −Q

has a unique symmetric positive definite solution P .



A =

[
−1 −2
1 −4

]
, Q = I

P =

[
23/60 −7/60
−7/60 11/60

]



Definition (Controllability)
A linear system (or the pair (A(t), B(t))) is said to
be controllable on the interval [t0, t1] if for any x0 in
the state space S and any x1 in S, there exists an
input u[t0,t1] which transfers the state x(t0) = x0 to
the state x(t1) = x1 at time t1.



Theorem
A linear system (or the pair (A(t), B(t))) is
controllable on the interval [t0, t1] if and only if the
controllability Gramian

Gc(t0, t1) =

∫ t1

t0

Φ(t0, t)B(t)BT (t)ΦT (t0, t)dt

is nonsingular.



Theorem
A linear system is controllable on the interval [t0, t1]
if there exists τ ∈ [t0, t1] such that

rank
([
M0(τ) M1(τ) · · · Mn−1(τ)

])
= n

where M0(τ) = B(τ) and

Mj(τ) = −A(τ)Mj−1(τ) +
d

dτ
Mj−1(τ)

where j = 1, 2, . . . , n− 1.



Theorem
A linear time-invariant system (or the pair (A,B)) is
controllable on the interval [t0, t1] if and only if the
controllability matrix

P =
[
B AB · · · An−1B

]
has rank n.

Lemma
The range space and null space of

Gc(t0, t1) =

∫ t1

t0

eA(t0−t)BBTeA
T (t0−t)dt

coincide with the range space and null space of PPT .



Definition (Observability)
A linear system (or the pair (C(t), A(t))) is said to
be observable on the interval [t0, t1] if for any initial
state x(t0) in the state space S, the knowledge of
the input u[t0,t1] and the output y[t0,t1] is sufficient to
uniquely solve for x(t0).



Theorem
A linear system is observable on the interval [t0, t1] if
there exists τ ∈ [t0, t1] such that

rank




N0(τ)
N1(τ)

...
Nn−1(τ)


 = n

where N0(τ) = C(τ) and

Nj(τ) = Nj−1(τ)A(τ) +
d

dτ
Nj−1(τ).



Theorem
For a single-input LTI system

ẋ = Ax+ bu

with det(sI −A) = sn + an−1s
n−1 + · · ·+ a1s+ a0,

there exists a change of coordinates xc = Tx s.t.

ẋc =


0 1 · · · 0
0 0 · · · 0
... ... . . . ...
0 0 · · · 1

−a0 −a1 · · · −an−1

xc +


0
0
...
0
1

u

if and only if the pair (A, b) is controllable.



Theorem
For a single-output LTI system

ẋ = Ax, y = cx

with det(sI −A) = sn + an−1s
n−1 + · · ·+ a1s+ a0,

there exists a change of coordinates xo = Tx s.t.

ẋo =


0 0 · · · 0 −a0
1 0 · · · 0 −a1
... ... . . . ... ...
0 0 · · · 0 −an−2

0 0 · · · 1 −an−1

xo

y =
[
0 0 · · · 0 1

]
xo

if and only if the pair (c, A) is observable.



Definition (Controllable subspace)
The set of the initial states that can be transferred to
the zero state in finite time is called the controllable
subspace and is denoted by C.



Definition (Stabilizability)
The linear time invariant system is said to be
stabilizable if its unstable subspace is contained in its
controllable subspace, that is, any vector x in the
unstable subspace is also in the controllable
subspace.



Definition (Unobservable subspace)
The set of the initial states that produce zero-input
responses ȳ(t) which are identically zero on any finite
time interval is called the unobservable subspace and
is denoted by O.



Definition (Detectability)
The linear time invariant system is said to be
detectable if its unobservable subspace is contained
in its stable subspace, that is, any vector x in the
unobservable subspace is also in the stable subspace.



Theorem
The pair (A,B) is controllable if and only if by the
state feedback u(t) = Kx(t) + r(t), the eigenvalues
of (A+BK) can be arbitrarily assigned provided
that complex conjugate eigenvalues appear in pair.



Theorem
The pair (C,A) is observable if and only if the
eigenvalues of A− LC can be arbitrarily assigned by
a proper choice of the matrix L provided that
complex conjugate eigenvalues appear in pair.



Definition (Realization)
A realization of a transfer matrix G(s) is any state
space model (A,B,C,D) such that
G(s) = C(sI − A)−1B +D. If such a state space
model exists, then G(s) is said to be realizable.



Definition (Minimal realization)
A realization (A,B,C,D) of a transfer matrix G(s)
is called a minimal realization if there exists no other
realization with state space of smaller dimension.
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