Linear Dynamic Systems and Control

최신 제어 기법

서울대학교 전기정보공학부

$$
\begin{aligned}
\dot{x}(t) & =A(t) x(t)+B(t) u(t) \\
y(t) & =C(t) x(t)+D(t) u(t)
\end{aligned}
$$

선형 제어 시스템을 학습하기 위한 기초 및 기본 개념을 제공하는 강좌로, system model에 대한 기본 개념을 상태변수 공간에서 학습하고, 선형대수학의 기초를 다시 살펴 본 후, 상태공간 방정식의 해, 시스템의 안정도 (Lyapunov stability), 제어 가능한 시스템 (controllability), 관측 가능한 시스템 (observability), controllable and observable canonidal form, duality, 상태변수 궤환 제어기 설계, 상태변수 관측기 설계, 및 출력 궤환 제어 방법을 학습한다.

1. Systems and State
2. Vector Spaces
2.1 Vector Spaces
2.2 Linear Transformations and Matrices
2.3 Eigenvalues and Eigenvectors, Diagonalization
2.4 Cayley-Hamilton THM, Functions of a Square Matrix
2.5 Inner Product Spaces, Normed Spaces
3. State Space
3.1 State Transition matrix
4. System Stability
4.1 Lyapunov Stability
4.2 External Stability
4.3 Lyapunov Theorem
4.4 Stable and Unstable Subspaces*
5. Controllability and Observability
5.1 Linear Independence of Time Functions
5.2 Controllability of Linear Systems
5.3 Controllability of Linear Time-Invariant Systems
5.4 Observability of Linear Systems
5.5 Observability of Linear Time-Invariant Systems
5.6 Controllable and Observable Canonical Forms
5.7 Duality
5.8 Structure of Uncontrollable and Unobservable Sys.
5.9 PBH(Popov-Belevitch-Hautus) Tests*
6. State Feedback and Observers
6.1 State Feedback
6.2 Observers
6.3 Feedback Control Systems Using Observers
7. Realization
7.1 Minimal Realizations
7.2 Controllable and Observable Canonical Forms
7.3 Realizability of Transfer Matrices

Textbook:
Lecture note written by Prof. Jin Heon Seo
References:
W. Brogan, Modern Control Theory, 3rd Edition, Prentice-Hall, 1990.
C.T. Chen, Linear System Theory and Design, 4th Edition, Oxford publishing, 2012.

Definition (Causality)

A system is called causal (or nonanticipative) if, for any $t, y(t)$ does not depend on any $u\left(t_{1}\right)$ for $t_{1}>t$. A system is called noncausal (or anticipative) if it is not causal.

Definition (Dynamic Systems)

A system is called dynamic (or is said to have memory) if, for some $t_{0}, y\left(t_{0}\right)$ depends on $u(t)$ for $t \neq t_{0}$. A system is called instantaneous (static, memoryless or is said to have zero memory) if, for any $t_{0}, y\left(t_{0}\right)$ does not depend on $u(t)$ for $t \neq t_{0}$.

A system is said to be relaxed (or at rest) at time t_{0} if the output $y_{\left[t_{0}, \infty\right)}$ is solely excited and uniquely determined by the input $u_{\left[t_{0}, \infty\right)}$. We assume that every system is relaxed at time $t=-\infty$.

Definition (State)
The state $x(t)$ of a system at time t is the information at time t that is sufficient to uniquely specify the output $y_{[t, \infty)}$ given the input $u_{[t, \infty)}$.

Definition (Linear State Space Systems)
A system is said to be linear if for every t_{0} and any admissible two input-state-output pairs

$$
\begin{array}{r}
\left\{u_{\left[t_{0}, \infty\right)}^{1}, x^{1}\left(t_{0}\right)\right\} \longrightarrow y_{\left[t_{0}, \infty\right)}^{1} \\
\left\{u_{\left[t_{0}, \infty\right)}^{2}, x^{2}\left(t_{0}\right)\right\} \longrightarrow y_{\left[t_{0}, \infty\right)}^{2}
\end{array}
$$

and real (complex) scalar α, the property of additivity
$\left\{u_{\left[t_{0}, \infty\right)}^{1}+u_{\left[t_{0}, \infty\right)}^{2}, x^{1}\left(t_{0}\right)+x^{2}\left(t_{0}\right)\right\} \longrightarrow y_{\left[t_{0}, \infty\right)}^{1}+y_{\left[t_{0}, \infty\right)}^{2}$
and the property of homogeneity

$$
\left\{\alpha u_{\left[t_{0}, \infty\right)}^{1}, \alpha x^{1}\left(t_{0}\right)\right\} \longrightarrow \alpha y_{\left[t_{0}, \infty\right)}^{1}
$$

hold. Otherwise, the system is said to be nonlinear.

Definition (Time Invariance)
A system is said to be time-invariant if for every t_{0} and every admissible input-state-output pair on the interval $\left[t_{0}, \infty\right)$

$$
\left\{u_{\left[t_{0}, \infty\right)}^{1}, x^{1}\left(t_{0}\right)=x^{0}\right\} \longrightarrow y_{\left[t_{0}, \infty\right)}^{1}
$$

and any T, the input-state-output pair on the interval $\left[t_{0}+T, \infty\right)$

$$
\left\{u_{\left[t_{0}+T, \infty\right)}^{2}, x^{2}\left(t_{0}+T\right)=x^{0}\right\} \longrightarrow y_{\left[t_{0}+T, \infty\right)}^{2}
$$

where
$u^{2}(t)=u^{1}(t-T), \quad y^{2}(t)=y^{1}(t-T), \quad t \geq t_{0}+T$
is also admissible.

Definition (Fields)

A field consists of a set, denoted by \mathcal{F}, of elements called scalars and two operations called addition " + " and multiplication "." which are defined over \mathcal{F} such that they satisfy the following conditions:

1. To every pair of elements $\alpha, \beta \in \mathcal{F}$, there is an associated unique element $\alpha+\beta$ in \mathcal{F}, called the sum of α and β.
2. There exists an element, denoted by 0 , such that $\alpha+0=\alpha$ for all $\alpha \in \mathcal{F}$.
3. Addition is commutative; $\alpha+\beta=\beta+\alpha$.
4. Addition is associative;
$(\alpha+\beta)+\gamma=\alpha+(\beta+\gamma)$.
5. For each $\alpha \in \mathcal{F}$, there exists an element β such that $\alpha+\beta=0$, which is called the additive inverse and denoted by $-\alpha$.
6 . To every pair of elements $\alpha, \beta \in \mathcal{F}$, there is associated a unique element $\alpha \cdot \beta$ in \mathcal{F}, called the product of α and β.
6. There exists an element, denoted by 1 , such that $\alpha \cdot 1=\alpha$ for all $\alpha \in \mathcal{F}$.
7. Multiplication is commutative; $\alpha \cdot \beta=\beta \cdot \alpha$.
8. Multiplication is associative;
$(\alpha \cdot \beta) \cdot \gamma=\alpha \cdot(\beta \cdot \gamma)$.
10 . For each $\alpha \in \mathcal{F}, \alpha \neq 0$, there exists an element γ such that $\alpha \cdot \gamma=1$, which is called the multiplicative inverse and denoted by α^{-1}.
9. Multiplication is distributive with respect to addition; $(\alpha+\beta) \cdot \gamma=\alpha \cdot \beta+\alpha \cdot \gamma$.

Definition (Vector Spaces)

A vector space over a field \mathcal{F}, denoted by $(\mathcal{X}, \mathcal{F})$, consists of a set, denoted by \mathcal{X}, of elements called vectors, a field \mathcal{F}, and two operations called vector addition " + " and scalar multiplication ".", which are defined over \mathcal{X} and \mathcal{F} such that they satisfy the following conditions:

1. To every pair of elements $x_{1}, x_{2} \in \mathcal{X}$, there is an associated unique element $x_{1}+x_{2}$ in \mathcal{X}, called the sum of x_{1} and x_{2}.
2. Addition is commutative; $x_{1}+x_{2}=x_{2}+x_{1}$.
3. Addition is associative;
$\left(x_{1}+x_{2}\right)+x_{3}=x_{1}+\left(x_{2}+x_{3}\right)$.
4. There exists a vector, denoted by 0 , such that $x+0=x$ for all $x \in \mathcal{X}$.
5. For each $x \in \mathcal{X}$, there exists an element $y \in \mathcal{X}$ such that $x+y=0$, which is denoted by $-x$.
6. To every scalar $\alpha \in \mathcal{F}$ and vector $x \in \mathcal{X}$, there is associated a unique element $\alpha \cdot x \in \mathcal{X}$, called the scalar product of α and x.
7. Scalar multiplication is associative;
$(\alpha \beta) \cdot x=\alpha \cdot(\beta \cdot x)$.
8. Scalar multiplication is distributive with respect to vector addition; $\alpha \cdot\left(x_{1}+x_{2}\right)=\alpha \cdot x_{1}+\alpha \cdot x_{2}$.
9. Scalar multiplication is distributive with respect to scalar addition; $(\alpha+\beta) \cdot x=\alpha \cdot x+\beta \cdot x$.
10. For $1 \in \mathcal{F}$ and $x \in \mathcal{X}, 1 \cdot x=x$.

Definition (Subspaces)

Let $(\mathcal{X}, \mathcal{F})$ be a vector space and $\mathcal{Y} \subset \mathcal{X}$. Then, $(\mathcal{Y}, \mathcal{F})$ is said to be a subspace of $(\mathcal{X}, \mathcal{F})$ if under the operations of $(\mathcal{X}, \mathcal{F}), \mathcal{Y}$ forms a vector space over \mathcal{F}, that is, for each pair of elements $x_{1}, x_{2} \in \mathcal{Y}$, $x_{1}+x_{2} \in \mathcal{Y}$, and for each scalar $\alpha \in \mathcal{F}$ and vector $x \in \mathcal{Y}, \alpha x \in \mathcal{Y}$.

Definition (Sum of Subspaces)

Let $(\mathcal{X}, \mathcal{F})$ be a vector space and $\mathcal{Y}, \mathcal{Z} \subset \mathcal{X}$ be subspaces of \mathcal{X}. Then, the sum of two subspaces $\mathcal{Y}, \mathcal{Z} \subset \mathcal{X}$ is the set

$$
\mathcal{Y}+\mathcal{Z}=\{x: x=y+z, y \in \mathcal{Y}, z \in \mathcal{Z}\}
$$

Definition (Intersection of Subspaces)

Let $(\mathcal{X}, \mathcal{F})$ be a vector space and $\mathcal{Y}, \mathcal{Z} \subset \mathcal{X}$ be subspaces of \mathcal{X}. Then, the intersection of two subspaces $\mathcal{Y}, \mathcal{Z} \subset \mathcal{X}$ is the set

$$
\mathcal{Y} \cap \mathcal{Z}=\{x: x \in \mathcal{Y}, x \in \mathcal{Z}\} .
$$

Definition (Direct Sum of Subspaces)

Let $(\mathcal{X}, \mathcal{F})$ be a vector space and $\mathcal{Y}, \mathcal{Z} \subset \mathcal{X}$ be subspaces of \mathcal{X} such that

$$
\begin{gathered}
\mathcal{Y}+\mathcal{Z}=\mathcal{X} \\
\mathcal{Y} \cap \mathcal{Z}=\{0\}
\end{gathered}
$$

In this case, \mathcal{X} is said to be a direct sum of \mathcal{Y} and \mathcal{Z}, and we write $\mathcal{X}=\mathcal{Y} \oplus \mathcal{Z}$.

Definition (Linear Combinations)
Let A be a set in a vector space $(\mathcal{X}, \mathcal{F})$. A vector $x \in \mathcal{X}$ is said to be a linear combination of elements in A if there exist a finite set of vectors
$\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ in A and a finite set of scalars
$\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ such that

$$
x=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{n} x_{n} .
$$

Definition (Span)

Let A be a nonempty subset in a vector space $(\mathcal{X}, \mathcal{F})$. The span of A, denoted by $\operatorname{span}(A)$, is the set consisting of all linear combinations of elements in A. For convenience, $\operatorname{span}(\emptyset)=\{0\}$.

Definition (Linear Independence)
A nonempty set A in a vector space $(\mathcal{X}, \mathcal{F})$ is said to be linearly dependent if there exists a finite set of distinct elements $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ in A and a finite set of scalars $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$, not all zero, such that

$$
\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{n} x_{n}=0 .
$$

A set A in a vector space $(\mathcal{X}, \mathcal{F})$ is said to be linearly independent if it is not linearly dependent. In other words, a set A in a vector space $(\mathcal{X}, \mathcal{F})$ is linearly independent if for each nonempty finite subset of distinct elements in A, say, $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ in A, the only n-tuple of scalars satisfying the equation

$$
\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{n} x_{n}=0
$$

is the trivial solution $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{n}=0$.

Definition (Basis)
A set B of linearly independent vectors in a vector space $(\mathcal{X}, \mathcal{F})$ is said to be a basis of \mathcal{X} if every
vector in \mathcal{X} can be expressed as a linear combination of vectors in B, that is, $\operatorname{span}(B)=\mathcal{X}$.

Theorem

Let $(\mathcal{X}, \mathcal{F})$ be a vector space and
$V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a subset of \mathcal{X}. Then, V is a basis for \mathcal{X} if and only if each vector x in \mathcal{X} can be uniquely expressed as a linear combination of vectors in V, that is, can be expressed in the form

$$
x=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n}
$$

for unique scalars $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$.

Theorem (Replacement Theorem)

 Let $(\mathcal{X}, \mathcal{F})$ be a vector space and $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \subset \mathcal{X}$ be a basis for \mathcal{X}. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\} \subset \mathcal{X}$ be linearly independent. Then, $m \leq n$.Theorem
Let $(\mathcal{X}, \mathcal{F})$ be a vector space and
$V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \subset \mathcal{X}$ be a basis for \mathcal{X}. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\} \subset \mathcal{X}$ be another basis for \mathcal{X}.
Then, $m=n$.

Definition (Dimension)
A vector space $(\mathcal{X}, \mathcal{F})$ is called finite-dimensional if it has a basis B consisting of a finite number of elements. The unique number of elements in each basis for \mathcal{X} is called the dimension of \mathcal{X} and is denoted by $\operatorname{dim}(\mathcal{X})$. A vector space that is not finite-dimensional is called infinite-dimensional.

Definition (Linear Transformation)
Let $(\mathcal{X}, \mathcal{F})$ and $(\mathcal{Y}, \mathcal{F})$ be vector spaces. A function L which maps $(\mathcal{X}, \mathcal{F})$ into $(\mathcal{Y}, \mathcal{F})$ is called a linear transformation if

$$
\begin{aligned}
& L(\alpha x)=\alpha L x \quad \text { for all } x \in \mathcal{X} \text { and all } \alpha \in \mathcal{F} \\
& L\left(x_{1}+x_{2}\right)=L x_{1}+L x_{2} \quad \text { for all } x_{1}, x_{2} \in \mathcal{X}
\end{aligned}
$$

Definition (Range space)
The range space $\mathcal{R}(L)$ of a linear transformation L from $(\mathcal{X}, \mathcal{F})$ into $(\mathcal{Y}, \mathcal{F})$ is a subset of $(\mathcal{Y}, \mathcal{F})$ defined by

$$
\mathcal{R}(L)=\{y \in \mathcal{Y}: y=L x \text { for some } x \in \mathcal{X}\}
$$

Definition (Null space)
The null space $\mathcal{N}(L)$ of a linear transformation L from $(\mathcal{X}, \mathcal{F})$ into $(\mathcal{Y}, \mathcal{F})$ is a subset of $(\mathcal{X}, \mathcal{F})$ defined by

$$
\mathcal{N}(L)=\{x \in \mathcal{X}: L x=0\}
$$

Theorem
Consider a linear transformation L from $(\mathcal{X}, \mathcal{F})$ into $(\mathcal{Y}, \mathcal{F})$. The following statements are equivalent.

1. The mapping L is one-to-one.
2. Null space of L is trivial, that is, $\mathcal{N}(L)=\{0\}$.
3. L maps linearly independent vectors in \mathcal{X} into a linearly independent vectors in \mathcal{Y}.

Definition (Nullity and rank)
Let L be a linear transformation from $(\mathcal{X}, \mathcal{F})$ into $(\mathcal{Y}, \mathcal{F})$. If $\mathcal{N}(L)$ and $\mathcal{R}(L)$ are finite dimensional, we define the nullity of L, denoted by nullity (L), and rank of L, denoted by $\operatorname{rank}(L)$, to be the dimensions of $\mathcal{N}(L)$ and $\mathcal{R}(L)$, respectively.

Theorem (Dimension Theorem)
Let L be a linear transformation from $(\mathcal{X}, \mathcal{F})$ into $(\mathcal{Y}, \mathcal{F})$. If \mathcal{X} is finite dimensional, then $\operatorname{nullity}(L)+\operatorname{rank}(L)=\operatorname{dim}(\mathcal{X})$.

Definition (Similarity transformation)
Two square matrices A and B are said to be similar if a nonsingular matrix T exists such that $A=T^{-1} B T$. The matrix T is called a similarity transformation.

Definition (Invariant subspace)
Let L be a linear transformation of $(\mathcal{X}, \mathcal{F})$ into itself.
A subspace \mathcal{Y} of \mathcal{X} is said to be an invariant subspace of \mathcal{X} under L, or an L-invariant subspace of \mathcal{X}, if $L(\mathcal{Y}) \subset \mathcal{Y}$, which implies that $L y \in \mathcal{Y}$ for all $y \in \mathcal{Y}$.

Definition (Eigenvalue and eigenvector)
Let A be a linear transformation from $\left(\mathrm{C}^{n}, \mathrm{C}\right)$ into ($\mathrm{C}^{n}, \mathrm{C}$). A scalar λ in C is called an eigenvalue of A if there exists a nonzero vector x in C^{n} such that $A x=\lambda x$. Any nonzero vector x satisfying $A x=\lambda x$ is called an eigenvector of A associated with the eigenvalue λ.

Theorem

Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}$ be distinct eigenvalues of A and let v_{i} be an eigenvector of A associated with λ_{i}. Then, the set $\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}$ is linearly independent.

Theorem

Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}$ be distinct eigenvalues of A and let $\left\{v_{i 1}, v_{i 2}, \ldots, v_{i g_{i}}\right\}$ be a set of linearly independent eigenvectors of A associated with λ_{i}. Then, the set

$$
\left\{v_{11}, \ldots, v_{1 g_{1}}, v_{21}, \ldots, v_{2 g_{2}}, \ldots, v_{d 1}, \ldots, v_{d g_{d}}\right\}
$$

is linearly independent.

Theorem
A is diagonalizable if and only if it has n linearly independent eigenvectors, that is, $g_{i}=m_{i}$, $i=1,2, \ldots, d$.

Definition (Generalized eigenspace)

The generalized eigenspace of A corresponding to the eigenvalue λ is the subset defined by

$$
\left\{x:(\lambda I-A)^{k} x=0 \text { for some } k \geq 1\right\} .
$$

Theorem
The dimension of the generalized eigenspace of A corresponding to the eigenvalue λ_{i} is equal to m_{i}.

Definition (Generalized eigenvector)
A vector v is called a generalized eigenvector of grade $k(k \geq 1)$ of A associated with eigenvalue λ if

$$
\begin{aligned}
(A-\lambda I)^{k} v & =0 \\
(A-\lambda I)^{k-1} v & \neq 0
\end{aligned}
$$

Theorem
The union over all the eigenvalues of the set of generalized eigenvectors associated with each different eigenvalue is linearly independent.

$$
A=\left[\begin{array}{ccccc}
1 & 0 & -1 & 1 & 0 \\
-4 & 1 & -3 & 2 & 1 \\
-2 & -1 & 0 & 1 & 1 \\
-3 & -1 & -3 & 4 & 1 \\
-8 & -2 & -7 & 5 & 4
\end{array}\right], \quad \operatorname{det}(\lambda I-A)=(\lambda-2)^{5}
$$

$\operatorname{dim}(\mathcal{N}(A-2 I))=2, \operatorname{dim}\left(\mathcal{N}(A-2 I)^{2}\right)=4$, $\operatorname{dim}\left(\mathcal{N}(A-2 I)^{3}\right)=5$

$$
u_{11}=\left[\begin{array}{c}
0 \\
-1 \\
1 \\
1 \\
0
\end{array}\right], u_{12}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
1
\end{array}\right], u_{21}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right], u_{22}=\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0 \\
0
\end{array}\right]
$$

$$
u_{31}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right]=v_{31}, v_{21}=(A-2 I) v_{31}=\left[\begin{array}{l}
1 \\
2 \\
1 \\
2 \\
5
\end{array}\right]
$$

Choose v_{22} s.t. $\left\{u_{11}, u_{12}, v_{21}, v_{22}\right\}$ is a basis of $\mathcal{N}(A-2 I)^{2}$:

$$
v_{22}=\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0 \\
0
\end{array}\right]
$$

$$
v_{11}=(A-2 I) v_{21}, \quad v_{12}=(A-2 I) v_{22}
$$

$$
A=\left[\begin{array}{ccc}
5 & 19 & 9 \\
0 & 0 & 1 \\
-1 & -4 & -2
\end{array}\right], \operatorname{det}(\lambda I-A)=(\lambda-1)^{3}
$$

$\operatorname{dim}(\mathcal{N}(A-I))=1$

$$
v_{1}=[7,-1,-1]^{T}
$$

$$
(A-I) v_{2}=v_{1}
$$

$$
v_{2}=[-3,1,0]^{T}
$$

$$
(A-I) v_{3}=v_{2}
$$

$$
v_{3}=[-3,0,1]^{T}
$$

$$
A=\left[\begin{array}{ccc}
-2 & -9 & -12 \\
1 & 4 & 4 \\
0 & 0 & 1
\end{array}\right], \operatorname{det}(\lambda I-A)=(\lambda-1)^{3}
$$

$\operatorname{dim}(\mathcal{N}(A-I))=2$

$$
\begin{array}{r}
v_{11}=[3,-1,0]^{T}, v_{12}=[4,0,-1]^{T} \\
(A-I) v_{2}=?
\end{array}
$$

Theorem (Cayley-Hamilton THM)

Let
$\gamma(\lambda)=\operatorname{det}(\lambda I-A)=\lambda^{n}+c_{n-1} \lambda^{n-1}+\cdots+c_{1} \lambda+c_{0}$ be the characteristic polynomial of A. Then,

$$
\gamma(A)=A^{n}+c_{n-1} A^{n-1}+\cdots+c_{1} A+c_{0} I=0
$$

Definition (Minimal Polynomial)
The minimal polynomial of a matrix A is the monic polynomial $\mu(\lambda)$ of the least degree such that $\mu(A)=0$.

Theorem
The minimal polynomial $\mu(\lambda)$ of J is given as

$$
\mu(\lambda)=\prod_{i=1}^{d}\left(\lambda-\lambda_{i}\right)^{\eta_{i}}
$$

where η_{i} is the index of λ_{i} in J.

Definition (Function of a matrix)
Let $f(\lambda)$ be a function that is defined on the spectrum of A. If $p(\lambda)$ is a polynomial that has the same values as $f(\lambda)$ on the spectrum of A, then $f(A)$ is defined as $f(A)=p(A)$.

Lemma

Given distinct numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}$, positive integers $\eta_{1}, \eta_{2}, \ldots, \eta_{d}$ with $\eta=\sum_{i=1}^{d} \eta_{i}$, and a set of numbers

$$
f_{i, 0}, f_{i, 1}, \ldots, f_{i, \eta_{i}-1}, \quad i=1,2, \ldots, d
$$

there exists a polynomial $p(\lambda)$ of degree less than η such that
$p\left(\lambda_{i}\right)=f_{i, 0}, p^{(1)}\left(\lambda_{i}\right)=f_{i, 1}, \ldots, p^{\left(\eta_{i}-1\right)}\left(\lambda_{i}\right)=f_{i, \eta_{i}-1}$,
Furthermore, such a polynomial $p(\lambda)$ is unique.

$$
a_{1}=\frac{1}{4}\left(e^{-t}-e^{-5 t}\right) \text { and } a_{0}=\frac{5}{4} e^{-t}-\frac{1}{4} e^{-5 t}
$$

$$
\begin{aligned}
e^{A t} & =\left(\frac{5}{4} e^{-t}-\frac{1}{4} e^{-5 t}\right) I+\frac{1}{4}\left(e^{-t}-e^{-5 t}\right) A \\
& =\left[\begin{array}{cc}
2 e^{-t}-e^{-5 t} & e^{-t}-e^{-5 t} \\
\frac{1}{2}\left(e^{-t}-e^{-5 t}\right) & \frac{3}{2} e^{-t}-\frac{1}{2} e^{-5 t}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
f(1)=p(1) & e^{t}=a_{0}+a_{1}+a_{2} \\
f^{(1)}(1)=p^{(1)}(1) & t e^{t}=a_{1}+2 a_{2} \\
f(2)=p(2) & e^{2 t}=a_{0}+2 a_{1}+4 a_{2}
\end{aligned}
$$

$$
e^{A t}=\left(-2 t e^{t}+e^{2 t}\right) I+\left(3 t e^{t}+2 e^{t}-2 e^{2 t}\right) A+\left(e^{2 t}-e^{t}-t e^{t}\right) A^{2}
$$

$$
\begin{gathered}
e^{t}=a_{0}+a_{1} \\
e^{2 t}=a_{0}+2 a_{1} \\
e^{A t}=\left(2 e^{t}-e^{2 t}\right) I+\left(e^{2 t}-e^{t}\right) A
\end{gathered}
$$

cf.

$$
e^{A t}=\left(-2 t e^{t}+e^{2 t}\right) I+\left(3 t e^{t}+2 e^{t}-2 e^{2 t}\right) A+\left(e^{2 t}-e^{t}-t e^{t}\right) A^{2}
$$

$$
\begin{gathered}
A=\left[\begin{array}{lll}
1 & 1 & 2 \\
0 & 1 & 3 \\
0 & 0 & 2
\end{array}\right]=P J P^{-1}=P\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right] P^{-1} \\
P=\left[\begin{array}{lll}
1 & 0 & 5 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right] \\
f(\lambda)=e^{\lambda t}, f^{(1)}(\lambda)=t e^{\lambda t} \\
f(J)=e^{J t}=\left[\begin{array}{ccc}
e^{t} & t e^{t} & 0 \\
0 & e^{t} & 0 \\
0 & 0 & e^{2 t}
\end{array}\right] \\
f(A)=e^{A t}=P e^{J t} P^{-1}=P\left[\begin{array}{ccc}
e^{t} & t e^{t} & 0 \\
0 & e^{t} & 0 \\
0 & 0 & e^{2 t}
\end{array}\right] P^{-1}
\end{gathered}
$$

Definition (Inner Product)

Let $(\mathcal{X}, \mathcal{F})$ be a vector space. The inner product of two vectors x and y in \mathcal{X} denoted by $<x, y\rangle$ takes the value in \mathcal{F} and satisfies the following properties for all $a, b \in \mathcal{F}$:

$$
\begin{aligned}
& \text { 1. }<x, y>=<y, x> \\
& \text { 2. }<x, a y+b z>=a<x, y>+b<x, z> \\
& \text { 3. }<x, x>\geq 0 \text { for all } x \text {, and }<x, x>=0 \text { if and } \\
& \text { only if } x=0 \text {. }
\end{aligned}
$$

Definition (Orthogonality)
Two vectors x and y in an inner product space \mathcal{X} are said to be orthogonal if their inner product is zero, that is, $\langle x, y\rangle=0$. If x and y are orthogonal, this is denoted by $x \perp y$.
Two subsets A and B in an inner product space \mathcal{X} are said to be orthogonal if $x \perp y$ for all x in A and y in B. If A and B are orthogonal, this is denoted by $A \perp B$.

Definition (Orthogonal Complement)

Let \mathcal{X} be an inner product space and \mathcal{Y} be any subspace of \mathcal{X}. The set

$$
\mathcal{Y}^{\perp}=\{x:<x, y>=0 \text { for all } y \in \mathcal{Y}\}
$$

is called the orthogonal complement of \mathcal{Y}.

Definition (Norm)
A real-valued function $\|x\|$ defined on a vector space $(\mathcal{X}, \mathcal{F})$, where $x \in \mathcal{X}$, is called a norm if for all $x, y \in \mathcal{X}$ and $\alpha \in \mathcal{F}$
(i) $\|x\| \geq 0$ for all $x \in \mathcal{X}$, and $\|x\|=0$ if and only if $x=0$
(ii) $\quad\|\alpha x\|=|\alpha|\|x\|$ for all $x \in \mathcal{X}$ and $\alpha \in \mathcal{F}$
(iii) $\|x+y\| \leq\|x\|+\|y\|$ for all $x, y \in \mathcal{X}$.

Theorem (Schwarz Inequality)

If, on an inner product space, $\|x\|$ is defined by $\|x\|=\left\langle x, x>^{1 / 2}\right.$, then

$$
|<x, y>| \leq\|x\|\|y\| .
$$

Definition (Orthonormal Basis)
Let \mathcal{X} be an inner product space. A subset B is an orthonormal basis if it is a basis that is orthonormal.

Theorem (Gram-Schmidt Orthonormalization Process)

Let \mathcal{X} be an inner product space, and $W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ be a linearly independent subset of \mathcal{X}. Then, there exists an orthonormal set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ such that $v_{k}=\sum_{i=1}^{k} a_{i k} w_{i}$, $k=1,2, \ldots, n$.

Let $w_{1}=[1,1,0]^{T}, w_{2}=[2,0,1]^{T}, w_{3}=[2,2,1]^{T}$.
Then,

$$
\begin{gathered}
v_{1}=\frac{1}{\left\|w_{1}\right\|} w_{1}=\left[\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right]^{T} \\
u_{2}=w_{2}-<v_{1}, w_{2}>v_{1}=[2,0,1]^{T}-[1,1,0]^{T} \\
=[1,-1,1]^{T} \\
v_{2}=\left[\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right]^{T} \\
u_{3}=w_{3}-<v_{1}, w_{3}>v_{1}-<v_{2}, w_{3}>v_{2} \\
v_{3}=\frac{1}{\left\|u_{3}\right\|} u_{3}=\left[-\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right]^{T}
\end{gathered}
$$

Corollary

Let \mathcal{X} be an inner product space and \mathcal{Y} be a finite dimensional subspace of \mathcal{X}. For each $x \in \mathcal{X}$, there exist unique vectors $y \in \mathcal{Y}$ and $z \in \mathcal{Y}^{\perp}$ such that $x=y+z$. Furthermore, if $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is an orthonormal basis of \mathcal{Y}, then

$$
y=\sum_{i=1}^{k}<v_{i}, x>v_{i}
$$

The vector y is the unique vector such that $\|x-y\|<\|x-u\|$ for any $u \in \mathcal{Y}$ such that $u \neq y$.

Theorem (Properties of induced norm)

For $m \times n$ matrices A and B mapping normed space \mathcal{R}^{n} into normed space \mathcal{R}^{m}, and $n \times l$ matrix C mapping normed space \mathcal{R}^{l} into normed space \mathcal{R}^{n}, the following hold:

$$
\begin{aligned}
& \text { 1. }\|A\| \geq 0 \text {, and }\|A\|=0 \text { if and only if } A=0 \text {, } \\
& \text { 2. }\|\alpha A\|=|\alpha|\|A\| \text {, } \\
& \text { 3. }\|A+B\| \leq\|A\|+\|B\| \text {, } \\
& \text { 4. }\|A C\| \leq\|A\|\|C\| \text {. }
\end{aligned}
$$

Theorem

Let A be an $m \times n$ matrix mapping \mathcal{R}^{n} into \mathcal{R}^{m} defined by $y=A x$ with the adjoint transformation given by $x=A^{T} y$.

1. $\mathcal{N}\left(A^{T}\right)$ is an orthogonal complement of $\mathcal{R}(A)$, that is, $\mathcal{N}\left(A^{T}\right)=\mathcal{R}(A)^{\perp}$.
2. $\mathcal{R}(A)$ is an orthogonal complement of $\mathcal{N}\left(A^{T}\right)$, that is, $\mathcal{R}(A)=\mathcal{N}\left(A^{T}\right)^{\perp}$.

Theorem

For a Hermitian matrix H,

1. all the eigenvalues are real,
2. there are n linearly independent eigenvectors,
3. the eigenvectors corresponding to different eigenvalues are orthogonal,
4. \exists a unitary matrix Q such that

$$
H=Q \Lambda Q^{-1}=Q \Lambda \bar{Q}^{T}
$$

where Λ is a diagonal matrix.

Definition (Positive definiteness)

A quadratic form $x^{T} M x$ is said to be

1. positive definite if $x^{T} M x>0$ for all $x \neq 0$,
2. positive semidefinite if $x^{T} M x \geq 0$ for all x,
3. negative definite if $x^{T} M x<0$ for all $x \neq 0$,
4. negative semidefinite if $x^{T} M x \leq 0$ for all x.

A symmetric matrix M is said to be positive definite (positive semidefinite, negative definite, negative semidefinite, respectively) if the quadratic form $x^{T} M x$ is so.

Theorem

A symmetric matrix M is positive definite (positive semidefinite) if and only if all the eigenvalues of M are positive (nonnegative).
Theorem
If a symmetric matrix M is positive definite (positive semidefinite), then $\operatorname{det}(M)>0(\operatorname{det}(M) \geq 0)$.

Theorem

A symmetric matrix M is positive definite (positive semidefinite) if and only if all the leading principal minors (all the principal minors) of M are positive (nonnegative).

$$
\begin{gathered}
(M+m) \ddot{x}+m l\left(\ddot{\theta} \cos \theta-\dot{\theta}^{2} \sin \theta\right)=u \\
m(\ddot{x} \cos \theta+l \ddot{\theta}-g \sin \theta)=0 \\
\Downarrow \\
(M+m) \ddot{x}+m l \ddot{\theta}=u \\
\ddot{x}+l \ddot{\theta}-g \theta=0
\end{gathered}
$$

$(M+m) \ddot{x}+m l\left(\ddot{\theta} \cos \theta-\dot{\theta}^{2} \sin \theta\right)=u$ $m(\ddot{x} \cos \theta+l \ddot{\theta}-g \sin \theta)=0$
\Downarrow

$$
\begin{gathered}
{\left[\begin{array}{cc}
M+m & m l \\
1 & l
\end{array}\right]\left[\begin{array}{l}
\ddot{x} \\
\ddot{\theta}
\end{array}\right]=\left[\begin{array}{c}
u \\
g \theta
\end{array}\right]} \\
\Downarrow \\
{\left[\begin{array}{c}
\ddot{x} \\
\ddot{\theta}
\end{array}\right]=\frac{1}{M l}\left[\begin{array}{cc}
l & -m l \\
-1 & M+m
\end{array}\right]\left[\begin{array}{c}
u \\
g \theta
\end{array}\right]}
\end{gathered}
$$

Theorem

If A is an $n \times n$ matrix function whose entries are continuous functions of time on the interval $I=\left[t_{l}, t_{u}\right]$, then there exists the unique solution to the initial value problem

$$
\dot{x}(t)=A(t) x(t), \quad x\left(t_{0}\right)=x^{0}, \quad t_{0} \in I=\left[t_{l}, t_{u}\right] .
$$

$$
\frac{d}{d t} x(t)=\left[\begin{array}{ll}
1 & 0 \\
t & 1
\end{array}\right] x(t)=A(t) x(t)
$$

Show

$$
\Phi\left(t, t_{0}\right)=\left[\begin{array}{cc}
e^{\left(t-t_{0}\right)} & 0 \\
\frac{1}{2}\left(t^{2}-t_{0}^{2}\right) e^{\left(t-t_{0}\right)} & e^{\left(t-t_{0}\right)}
\end{array}\right]
$$

is the state transition matrix. Answer: $\Phi\left(t_{0}, t_{0}\right)=I$ and

$$
\begin{aligned}
\frac{d}{d t} \Phi\left(t, t_{0}\right) & =\left[\begin{array}{cc}
e^{\left(t-t_{0}\right)} & 0 \\
\frac{1}{2}\left(t^{2}-t_{0}^{2}\right) e^{\left(t-t_{0}\right)}+t e^{\left(t-t_{0}\right)} & e^{\left(t-t_{0}\right)}
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0 \\
t & 1
\end{array}\right]\left[\begin{array}{cc}
e^{\left(t-t_{0}\right)} & 0 \\
\frac{1}{2}\left(t^{2}-t_{0}^{2}\right) e^{\left(t-t_{0}\right)} & e^{\left(t-t_{0}\right)}
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0 \\
t & 1
\end{array}\right] \Phi\left(t, t_{0}\right)=A(t) \Phi\left(t, t_{0}\right)
\end{aligned}
$$

Definition (Stability)

For $\dot{x}=f(t, x)$, the equilibrium point x_{e} (i.e., $\left.f\left(t, x_{e}\right)=0,{ }^{\forall} t\right)$ is

1. stable i.s.L. (in the sense of Lyapunov) if for each t_{0} and each $\epsilon>0$, there exists $\delta\left(\epsilon, t_{0}\right)>0$ s.t. if $\left\|x\left(t_{0}\right)-x_{e}\right\|<\delta$ then

$$
\left\|x(t)-x_{e}\right\|<\epsilon \quad \text { for all } t \geq t_{0}
$$

2. uniformly stable i.s.L. if, ${ }^{\forall} \epsilon>0, \exists \delta=\delta(\epsilon)>0$ s.t. if $\left\|x\left(t_{0}\right)-x_{e}\right\|<\delta$ then

$$
\left\|x(t)-x_{e}\right\|<\epsilon \quad \text { for all } t \geq t_{0}
$$

3. unstable if it is not stable
4. asymptotically stable if it is stable i.s.L. and for each t_{0}, there is a positive constant c such that if $\left\|x\left(t_{0}\right)-x_{e}\right\|<c$, then $x(t) \rightarrow x_{e}$ as $t \rightarrow \infty$.
5. globally asymptotically stable if it is stable i.s.L. and for each t_{0} and each $x\left(t_{0}\right), x(t) \rightarrow x_{e}$ as $t \rightarrow \infty$.

$$
\begin{gathered}
\dot{x}=\left[\begin{array}{cc}
0 & \omega \\
-\omega & 0
\end{array}\right] x(t) \\
\Phi\left(t, t_{0}\right)=\left[\begin{array}{cc}
\cos \omega\left(t-t_{0}\right) & \sin \omega\left(t-t_{0}\right) \\
-\sin \omega\left(t-t_{0}\right) & \cos \omega\left(t-t_{0}\right)
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& x_{1}(t)=\cos \omega\left(t-t_{0}\right) x_{1}\left(t_{0}\right)+\sin \omega\left(t-t_{0}\right) x_{2}\left(t_{0}\right) \\
& x_{2}(t)=-\sin \omega\left(t-t_{0}\right) x_{1}\left(t_{0}\right)+\cos \omega\left(t-t_{0}\right) x_{2}\left(t_{0}\right)
\end{aligned}
$$

Theorem

For linear continuous time system, the equilibrium point at the origin is

1. stable if and only if for each t_{0}, there exists a constant $\kappa\left(t_{0}\right)$ such that

$$
\left\|\Phi\left(t, t_{0}\right)\right\| \leq \kappa\left(t_{0}\right) \quad \text { for all } t \geq t_{0}
$$

2. asymptotically stable if and only if for each t_{0}, $\left\|\Phi\left(t, t_{0}\right)\right\| \rightarrow 0$ as $t \rightarrow \infty$.

$$
\begin{gathered}
\dot{x}=\left[\begin{array}{cc}
-1 & e^{2 t} \\
0 & -1
\end{array}\right] x \\
\Phi\left(t, t_{0}\right)=\left[\begin{array}{cc}
e^{-\left(t-t_{0}\right)} & \frac{1}{2} e^{-\left(t-t_{0}\right)}\left(e^{2 t}-e^{2 t_{0}}\right) \\
0 & e^{-\left(t-t_{0}\right)}
\end{array}\right]
\end{gathered}
$$

Theorem

For the linear time invariant system with system matrix A, the equilibrium point at the origin is

1. asymptotically stable if and only if all the eigenvalues of A have negative real parts,
2. stable if and only if all the eigenvalues of A have nonpositive real parts, and those eigenvalues with zero real parts are distinct roots of the minimal polynomial of A (or, equivalently, have indices equal to 1),
3. unstable if there exist eigenvalues with positive real parts or eigenvalues with zero real parts which are not distinct roots of the minimal polynomial of A (or equivalently, have indices greater than 1).

Definition (BIBO stability)

The input-output system is said to be bounded-input-bounded-output (BIBO) stable if for any bounded input $u(t),\|u(t)\| \leq M$ for all t, there exists a finite constant $N(M)$ such that $\|y(t)\| \leq N$ for all t.

Theorem
For a linear time-invariant system, the zero-state response is BIBO stable if and only if all the poles of the transfer function are located in the open left-half complex plane.
Theorem
For a linear time-invariant system, the zero-state response is BIBO stable if for all the eigenvalues λ_{i} of the system matrix $A, \operatorname{Re} \lambda_{i}<0$.

Theorem

The matrix A is Hurwitz, or equivalently, the zero state of $\dot{x}=A x$ is asymptotically stable if and only if for any given symmetric positive definite matrix Q, the matrix equation

$$
A^{T} P+P A=-Q
$$

has a unique symmetric positive definite solution P.

$$
\begin{gathered}
A=\left[\begin{array}{cc}
-1 & -2 \\
1 & -4
\end{array}\right], \quad Q=I \\
P=\left[\begin{array}{cc}
23 / 60 & -7 / 60 \\
-7 / 60 & 11 / 60
\end{array}\right]
\end{gathered}
$$

Definition (Controllability)
A linear system (or the pair $(A(t), B(t))$) is said to be controllable on the interval $\left[t_{0}, t_{1}\right]$ if for any x^{0} in the state space \mathcal{S} and any x^{1} in \mathcal{S}, there exists an input $u_{\left[t_{0}, t_{1}\right]}$ which transfers the state $x\left(t_{0}\right)=x^{0}$ to the state $x\left(t_{1}\right)=x^{1}$ at time t_{1}.

Theorem

A linear system (or the pair $(A(t), B(t))$) is controllable on the interval $\left[t_{0}, t_{1}\right]$ if and only if the controllability Gramian

$$
G_{c}\left(t_{0}, t_{1}\right)=\int_{t_{0}}^{t_{1}} \Phi\left(t_{0}, t\right) B(t) B^{T}(t) \Phi^{T}\left(t_{0}, t\right) d t
$$

is nonsingular.

Theorem

A linear system is controllable on the interval $\left[t_{0}, t_{1}\right]$ if there exists $\tau \in\left[t_{0}, t_{1}\right]$ such that

$$
\operatorname{rank}\left(\left[\begin{array}{llll}
M_{0}(\tau) & M_{1}(\tau) & \cdots & M_{n-1}(\tau)
\end{array}\right]\right)=n
$$

where $M_{0}(\tau)=B(\tau)$ and

$$
M_{j}(\tau)=-A(\tau) M_{j-1}(\tau)+\frac{d}{d \tau} M_{j-1}(\tau)
$$

where $j=1,2, \ldots, n-1$.

Theorem

A linear time-invariant system (or the pair (A, B)) is controllable on the interval $\left[t_{0}, t_{1}\right]$ if and only if the controllability matrix

$$
\mathcal{P}=\left[\begin{array}{llll}
B & A B & \cdots & A^{n-1} B
\end{array}\right]
$$

has rank n.

Lemma

The range space and null space of

$$
G_{c}\left(t_{0}, t_{1}\right)=\int_{t_{0}}^{t_{1}} e^{A\left(t_{0}-t\right)} B B^{T} e^{A^{T}\left(t_{0}-t\right)} d t
$$

coincide with the range space and null space of $\mathcal{P} \mathcal{P}^{T}$.

Definition (Observability)

A linear system (or the pair $(C(t), A(t))$) is said to be observable on the interval $\left[t_{0}, t_{1}\right]$ if for any initial state $x\left(t_{0}\right)$ in the state space \mathcal{S}, the knowledge of the input $u_{\left[t_{0}, t_{1}\right]}$ and the output $y_{\left[t_{0}, t_{1}\right]}$ is sufficient to uniquely solve for $x\left(t_{0}\right)$.

Theorem

A linear system is observable on the interval $\left[t_{0}, t_{1}\right]$ if there exists $\tau \in\left[t_{0}, t_{1}\right]$ such that

$$
\operatorname{rank}\left(\left[\begin{array}{c}
N_{0}(\tau) \\
N_{1}(\tau) \\
\vdots \\
N_{n-1}(\tau)
\end{array}\right]\right)=n
$$

where $N_{0}(\tau)=C(\tau)$ and

$$
N_{j}(\tau)=N_{j-1}(\tau) A(\tau)+\frac{d}{d \tau} N_{j-1}(\tau)
$$

Theorem

For a single-input LTI system

$$
\dot{x}=A x+b u
$$

with $\operatorname{det}(s I-A)=s^{n}+a_{n-1} s^{n-1}+\cdots+a_{1} s+a_{0}$, there exists a change of coordinates $x_{c}=T x$ s.t.

$$
\dot{x}_{c}=\left[\begin{array}{cccc}
0 & 1 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 \\
-a_{0} & -a_{1} & \cdots & -a_{n-1}
\end{array}\right] x_{c}+\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right] u
$$

if and only if the pair (A, b) is controllable.

Theorem

For a single-output LTI system

$$
\dot{x}=A x, \quad y=c x
$$

with $\operatorname{det}(s I-A)=s^{n}+a_{n-1} s^{n-1}+\cdots+a_{1} s+a_{0}$, there exists a change of coordinates $x_{o}=T x$ s.t.

$$
\begin{aligned}
\dot{x}_{o} & =\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & -a_{0} \\
1 & 0 & \cdots & 0 & -a_{1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & -a_{n-2} \\
0 & 0 & \cdots & 1 & -a_{n-1}
\end{array}\right] x_{o} \\
y & =\left[\begin{array}{lllll}
0 & 0 & \cdots & 0 & 1
\end{array}\right] x_{o}
\end{aligned}
$$

if and only if the pair (c, A) is observable.

Definition (Controllable subspace)
The set of the initial states that can be transferred to the zero state in finite time is called the controllable subspace and is denoted by \mathcal{C}.

Definition (Stabilizability)
The linear time invariant system is said to be stabilizable if its unstable subspace is contained in its controllable subspace, that is, any vector x in the unstable subspace is also in the controllable subspace.

Definition (Unobservable subspace)
The set of the initial states that produce zero-input responses $\bar{y}(t)$ which are identically zero on any finite time interval is called the unobservable subspace and is denoted by \mathcal{O}.

Definition (Detectability)

The linear time invariant system is said to be detectable if its unobservable subspace is contained in its stable subspace, that is, any vector x in the unobservable subspace is also in the stable subspace.

Theorem
The pair (A, B) is controllable if and only if by the state feedback $u(t)=K x(t)+r(t)$, the eigenvalues of $(A+B K)$ can be arbitrarily assigned provided that complex conjugate eigenvalues appear in pair.

Theorem
The pair (C, A) is observable if and only if the eigenvalues of $A-L C$ can be arbitrarily assigned by a proper choice of the matrix L provided that complex conjugate eigenvalues appear in pair.

Definition (Realization)

A realization of a transfer matrix $G(s)$ is any state space model (A, B, C, D) such that
$G(s)=C(s I-A)^{-1} B+D$. If such a state space model exists, then $G(s)$ is said to be realizable.

Definition (Minimal realization)
A realization (A, B, C, D) of a transfer matrix $G(s)$ is called a minimal realization if there exists no other realization with state space of smaller dimension.

