
Bi-directional Grammars for
Machine Translation

Koichi Takeda

In this paper we consider bi-directional grammars for natural
languages. That is, a special class of grammars which can be used for both
parsing and generation of sentences. We define the notion of "bi­
directionality" and a class of general unification grammar and show that
any instance of the grammar is bi-directional. We also discuss a subset of
the grammar where more desirable property holds. We also consider an
operational counterpart of the unification grammar, called pseudo­
unification grammar, and show that similar results hold.

1. Introduction

Since FUG (Functional Unification Grammar) was introduced by Kay

(1984) and DCG (Definte Clause Grammar) by Pereira and Warren

(1980), bi-directionality (Hasida and Isizaki (1987), Shieber (1988),

Wedekind (1988), Gates et al. (1989), Noord (1990) (i.e. using a single

grammar for both parsing and generation of sentences) of so-called

unification grammars (Shieber (1986)) has been one of the central issues

on computational linguistics. Obvious reasons to explore the bi­

directionality include psychological and theoretical elegance and practical

importance that a single knowledge source can be shared by different

processes. In particular, machine translation systems will be benefited from

this architecture because, otherwise, they have to provide two different

version of grammars (analysis, generation) for each language.

Because of the nature of unification, it has been predicted that a phrase­

structure grammar formalism with unification as the only operation for

building feature structures is indeed bi-directional (Kay (1984), Pereira &

Language Research, Volume 27, Number 2, June 1991. 0254-4474/287-301 287

288 Koichi Takeda

Warren (1980), Hasida & Isizaki (1987». Recently, procedural consi­

derations on bi-directional grammars have emerged. Shieber (1988)

recently reported a uniform architecture of using a deductive algorithm for

parsing/generation and later Shieber et. al. (1990) elabOI .:.~edthe

algorithm to incorporate a class of grammars broader than what they call

semantically monotonic grammars. Wedekind (1988) showed that there exist

two algorithms, one for analysis and the other for generation, for LFG

(Lexical Functional Grammar)(Kaplan & Bresnan (1982» such that,

given an instance G of LFG, the former accepts a sentence S with a well­

formed f-structure F in G iff the latter generates S from Fusing G.

Remaining questions, then, include

• Does any instance of a given grammar formalism satisfy the bi­

directionality ?

• Can we determine the bi-directionality of the instance?

• Is bi -directional grammar practical?

In this paper we give an answer to these questions when a grammar

formalism is a PATR- II (Shieber (1986))-type unification grammar with

no special scheme for building semantic structures. The notion of bi­

directionality is defined in terms of syntactic feature structures alone so

that we can discuss bi-directionality independently of any constraints

imposed by a specific semantic composition scheme. However, our results

can be applied to feature structures with semantic information as shown in

Wedekind (1988). We show that bi-directionality theoretically holds for

any instance of our grammar, but there is a practical subset of instances

where more desirable properties hold. We also discuss Pseudo-Unification

Grammar (Tomita & Knight (1987), Gates et al. (1989», an extension of

the Augmented Context-Free Grammar using unification, and its bi­

directionality.

2. Feature Structures, Unification Grammar and Rule Graphs

A feature structure is a finite, rooted DAG(directed acyclic graph)D=

<V,E), where V is a non-empty, finite set of vertices, and E is a finite

subset of directed edges VxLxV. L is a (possibly infinite) set of feature

names, called labels. A path is a sequence of edges eo=<vo, ao, VI>, el=<Vh ah

V2), em = <Vm, am, Vm+1>' (m ~ 0). The last node in a path, Vm+1 above, is

BHdirectional Grammars for Machine Translation 289

called, a destination node of the path. An element of E with no out-going

edges is called a leaf. A leaf can be associated with an atomic feature

value. Such a leaf is called an atomic node. A leaf which is not an atomic

node is just a place-holder. There is one and only one node in D, called a

root. By D(p), where p is a path from the root, we mean A subgraph of D

located by the path p from the root. E does not contain two edges with the

same starting node, the same label, and different destination nodes, which

guarantees the uniqueness of a path specified by a sequence of labels.

Hence, we often abbreviate a path as a list of labels when a starting node is

understood. We say D is typed if we define a set of permissible labels on

edges for each node and possible atomic values for atomic nodes.

Otherwise, it is untyped.

We assume untyped DAGs unless otherwise stated. The readers can find

typed feature structures with inheritance in Pollard and Sag (1987). Our

feature structures are similar to the ones in Shieber (1986). A partial

ordering, called subsumption is defined over a set of feature structures. A

feature structure Dl is said to subsume D2 iff (1) D1(p) is undefined, (2) if

D2(P) is an atomic node, then Dl(P) is also an atomic node associated with

the same atomic value or just a non-atomic ieaf, or (3) Dl (p) subsumes D2

(p), for every path p in either Dior D2. Unification of two feature

structures Dl and D2, if exists, is a feature structure D such that (i) D is

subsumed by both Dl and D2 and (ii) for all D' such that D' is subsumed

by Dl and D2, D' is also subsumed by D. Operationally, unification can be

defined as a graph-merge algorithm (see Knight(1989» for DAGs.

An instance of unification grammar consists of a set g of rules. Each rule

has a phrase structure part and a set of equations. A phrase structure part is

a context-free rule of the form Xo -+ X 1X2 ••• Xnt (n ~ 1) and an equation is

one of the following.

<x, p > = c, or

< x, p > = < Xl p >
An equation specifies that the feature structures specified in the LHS (left

hand side) and the RHS (right hand side) to be unified. The symbol X,

refers to the root of a feature structure associated with the i-th non­

terminal symbol in the RHS, (i=l, ... ,n) and Xo denotes a root of the LHS

feature structure. Symbols p and q denote paths from a root of a feature

structure. That is, <x, p> means D(p), where D is the feature structure of x,.

290 Koichi Takeda

The first equation says that D(p) must be an atomic node associated with a

constant c. The second equations says that two paths (x, p) and (x, q)

reach the same feature structure. A path in an equation may be empty. In

this case, the entire feature structure is referred to by the empty path. Note

that we do not allow negations, disjunctions, and functions in the rules.

Lexical rules have a form X -+ word, where only allowable equations are

(xo p) = C, or

(xop) = (xoq)

This definition of a unification grammar is similar to the basic P A TR - II

grammar in Shieber (1986).

Each rule r in a unification grammar G, just like feature structures, can

also be represented by a rooted DAG called rule graph Dr as follows. Let r

be Xo -+ X IX 2 •• X n, (n ~ 1) with a set Qr of equations eh .•.• em. Then. Dr =

(V,E) is also a rooted DAG. such that

1. V is a union of nodes {x, I i=O •...• n} U {nodes appearing in Qr}.

2 The root of Dr is Xo•

3. E is a union of edges appearing in the paths of Q" and

4. Dr is a unification of n pairs of DAGs (LHS of eh RHS of el) • ...•

(LHS of en. RHS of en).

A rule graph for a lexical rule is defined similarly. Multiple rule graphs

can be combined into one. For example. a rule graph Dl for Xl -+ word and

a rule graph D2 for X2 -+ Xl can be combined into a rule graph D21 for X2-+

word such that D21 is obtained by unifying Xo in Dl with Xl in D2. Hence. the

feature structure of an entire sentence is obtained by combining all the rule

graphs that appear in the derivation of the sentence. Note that we may have

a trivial equation (x,p) = (x,p) or its transitive equivalent (x,p) = (x,p)

and x, = x/. In a (single or combined) rule graph. the path p seems

redundant but it prevents the graph from being unified with a feature

structure which forces a node in p. except the destination node. to be

atomic. A non-trivial node is either an atomic node or a node which has at

least one out-going edge. A leaf node is called trivial if it is non-atomic and

has just one in-coming edge from a non-trivial node.

A rule graph can be viewed as a relation over n constituent feature

I This equation does not require the existence of an atomic node in D(p)

although a different interpretation is possible.

Bi-,directional Grammars for Machine Translation 291

structures and one superordinate feature structure. For example. given n

constituent feature structures, the rule graph defines their superordinate

feature structure by unifying a node XI in the rule graph with a feature

structure of the i-th constituent for each i. Rule graphs are said to be

equivalent if they define the same (n + 1)-ary relations over such feature

structures. Note that a rule graph might not be connected. That is, not all

nodes may not be reachable from the root of the graph. It is easily shown

that there must be a node XI for some i if there is a node unreachable from

the root. Then the node XI is called a lwle since only reachable components

are visible from the root and are percolated to superordinate levels. Figure

I illustrates a feature structure, a grammar rule, and its rule graph. Two

rule graphs are called semi-identical if they are associated with the same

phrase structure part and one is obtained by just adding a set of trivial

nodes to another.

agreement [number Sg]
person 3

[

catv

subj
____ sg

Feature Structure

vp~v

(xO> = (xl>
<xO form> = <x2 form>

V~eat

(xO root> = eat
<xO cat> = V

xO,xl x2 xO root

~ 1' .. , ----
fo~rm. "'"

~"'" unconnected node

non-atomic leaf node
atomic nodes

Grammar Rules and Rule Graphs

Figure 1. Feature Structure, Grammar Rules and Rule Graphs

3

eat

292 Koichi Takeda

Proposition 1 Two rule graPhs are ~uivalent ill they are semi-identical.

Proof: Let the two rule graphs be Dl and D2• The "if" part is easily

proved because any feature structures which cannot unify with Dl also fail

to unify with D2• Successful cases could only differ in the trivial nodes but

they do not make different untyped feature structures. The "only-if" part is

proved as follows. Suppose Dj has a node x which is not in D2, and x is an

atomic node, or a node which has multiple in-coming edges. Then, the two

graphs are not equivalent because we can choose n feature structures

which introduce an atomic node in the position of x and make successful

unification with D2 but not with Dj. Similarly, if x is a leaf node connected

to a node y which is not non-trivial, we can find n feature structures which

unifies an atomic node with y to make successful/unsuccessful result,

respectively. If these cases do not apply to x, then there must be a path,

whose labels do not appear in D2• From a root node of some constituent to

x, and x has at least one out-going edge. This is when we can also find n

feature structures which unifies with D2 but not with D1• Thus the two

graphs must have the same set of nodes. If a node is connected in one

graph but not in the other, say Dj. Then there must be a root for some

constituent which is not connected in Dh either. This always makes

different unification for the two graphs. Finally, suppose that there is an

edge e in Dj but not in D2• Then we can choose a feature structures that

introduces e connected to a new atom node in Dz but fail to unify with Dl
because of conflict in e.

3. Bi-directionality of Unification Grammar

We define notions of parsing and generation. Let G = {rh ..• ,rn } be an

instance of a grammar over a set of alphabets 1:. A parse tree T is a finite

ordered tree such that each terminal node in T corresponds to a terminal

symbol in G, the root and other non-terminal nodes in T correspond to a

start symbol and non-terminal symbols in G, respectively, and each non­

terminal node and its immediate daughters correspond to LHS and RHS

symbols of a phrase structure part of some r, in G. For any given

immediate subtree T' of T, a feature structure associated with the root of

T' is obtained from a rule graph of a corresponding rule r" where each node XI

Bi-ldirectional Grammars for Machine Translation 293

(j=1,2, ...) is unified with the root of a feature structure of the j-th immediate

daughter. G successfully parses a sentence s, written parse(G,s,F), iff there is

a parse tree T such that linear arrangement of terminal symbols in T
{

agrees with s. A feature structure F must be associated with the root in T.

G cannot parse s if such a tree does not exist (i.e. context free rules fail to

reduce s into a start symbol, or it is impossible to construct an acyclic

feature structure satisfying the equations). G successfully generates s from

a given feature structure F, again written generates (G,F,s), iff there is a

parse tree T such that the feature structure for the root of T is identical to

F, and linear arrangement of terminal symbols in T agrees with s. By

definitions, parse (G,s,F) holds iff generate (G,F,s)holds.

It can be easily shown that combination of the early deduction algorithm

(Pereira & Warren (1983), Shieber et al. (1990» with a DAG-merge

unification algorithm[9] can eventually build any possible parse tree and a

feature structure for a given sentence s using G because the tree is finite.

Similarly, a DAG-marking algorithm(Wedekind (1988» with a slight

modification for handling unconnected nodes can generate a sentence, if

possible, for a given feature structure F under G. Let us name these two

algorithms PARS ER (G,s,F) and GENERATOR (G,F,s), respectively.

Hence, it immediately follows that PARSER (G,s,F) iff parse (G,s,F).

Proposition 2 For any grammar G, a feature structure F, and a sentence s,

GENERATOR (G,F,s) iff generate (G,F,s).

DAG-marking algorithm succeeds only if it reconstructs a parse tree by

non -deterministically choosing a grammar rule, marking up all the nodes

and edges in a given feature structure which appear in equations of the

rule, and checking if two destination nodes in an equation are the same

node.2 The algorithm fails if it encounters an equation having a node or a

path which is not in the given feature structure, or if there is a node or a

path yet to be marked but no grammar rule is applicable. Therefore, if the

algorithm succeeds, we have a derivation tree (or a parse tree) for s. If G

generates s, which means there is a parse tree T with the feature structure

2 The input F may not include trivial nodes as they are just place holders. In
this case, the algorithm simply ignores trivial equations in the rule graphs.

294 Koichi Takeda

F, then there must be a sequence of non-deterministic choices of rules to

construct T. Correctness of DAG-marking follows immediately from the

definition of the rule graph and feature structures. Proof is harder when a

grammar rule has unconnected nodes since F only specifies a feature

structure with connected nodes. In this case, the algorithm simply assume a

hole for each unconnected root x of constituent that could be unified with a

feature structure for any derivation subtree with root x. That is, any

derivation tree with root x will be a part of generation from F.

Proposition 3 GENERATOR (G,F,s) hold iff PARSER (G,s,F) holds. G is

called bi-directional.

The proof is immediate using the previous proposition. Thus, we have the

following result.

Theorem 1 Any instance of our unification grammar is bi-directional.

That is, for any instance G, the parser and generator are exactly the

inverse algorithm to each other. Note that the property holds for only a set

of valid sentences. Now we proceed to propositions which show undesirable

properties of the grammar.

Proposition 4 If we allow unnconnected rules, we can have an instance G
of grammar and a feature structure F such that GENERATOR (G,F,s) holds

for arbitrarily manys.

Proposition 5 The DAG-marking algorithm may not terminate for a certain

grammar instance G and a feature structure F when generate(G,F,s) does not

hold for any s.

We give examples.

S-+AB

<xo> = <Xl>
S-+C

<xo> = <Xl>
A-+a

Bi~directional Grammars for Machine Translation

<io root) = a

B-BB

<xo> = <Xl>
<xo> = <xz>

B-b

<xo root> = b

C-DC

<xo> = <Xl>
<xo> = <xz>

C-c

<xo root> = c

D-d
<xo root> = d

295

Given a feature structure «root a}, the algorithm assumes a hole for b in

the first rule. A successful derivation will generate "a" followed by

arbitrary many "b"'s because of the fourth and fifth rules which will fill the

hole. The parsing of such a string ab+does not suffer this problem although

these strings all have the same feature structure «root a}. Hence, This

shows a kind of asymmetry (Russel et al. (1990)) in parsing and

generation. Note both parsing and generation suffer from the structural

ambiguities caused by the fourth rule to derive a sequence of b's. Now,

consider a feature structure «root c} as input. The generation from «root c}

never succeeds because two feature structures for C and D in the sixth rule

always disagree on the "root" value no matter how deep the sixth rule is

expanded. Thus, the algorithm has to "know" somehow that the derivation

from C will be in vain in order to terminate. Similary, if a grammar has a

loop of non-branching rules, whose equation is only <xo> = <Xl>, even these

connected rules may force the algorithm to run forever. For this same

reason, functional uncertainty (Kaplan et al. (1986)), which allows regular

expressions in a path, would be problematic when it is used in a rule.

One way to handle this problem is to modify the algorithm so that it can

detect infinite derivations. The other way is to define a safe subset of

grammar instances such that the algorithm always terminates. For example,

the depth-bounded unification grammar (Haas (1989)) is such a safe subset

for parsing. This idea leads to the following theorem. Let unconstrained

296 Koichi Takeda

derivation be a sequence q of grammar rule application of a form A -+ ... -+

aA/3 such that, in a combined rule graph D for q, the root of D is also the

root of the constituent A in the derived sequence. Note the further

derivation A -+ ... -+ aaA/3/3 will not change the rule graph.

Theorem 2 If a grammar G has no unconstrained derivation and each rule

in G is connected, then, for any sentence s, GENERATOR (G,F,s) fails in

some bounded time iff generate (G,F,s) does not hold.

Proof: THE "only-if" part is immediate. The "if" part is shown as follows.

Let k be the length of the longest path in F and let N must introduce an

edge from the root to its re-appearing constituent, which grows the length

of the path by one. Thus, after trying such derivation N * k times, any
further derivation will exceed the size k and f fails to generate s.

This subset of grammar is so restrictive that even a simple V P -+ V PNP

rule must be excluded. The restriction can be relaxed by introducing

additional information which is similar to the well-formedness constraints

(Kaplan & Bresnan (1982)) of LFG. Unconstrained derivation will be

restated by the well-formedness condition and uniqueness of PRED fillers.

Connectedness of a constituent is imposed by the completeness and

coherence constraints if the constituent has a grammatical function.3

Proposition 6 It is NP-complete to check whether a grammar G has an

unconstrained derivation or not.

Proof: By a simple reduction of the 3-SAT problem (Garey & Johnson
(1979))

The implication of this proposition is that it is unlikely to determine

efficiently if a given instance of the grammar is free from an infinite loop.

Since a membership problem for such a restrictive subset seems intractable,

a well-designed semantic structure (e.g. monotonic semantic structure

(Shieber (1988)) might be inevitable to guarantee the termination. This

problem also applies to the Pseudo-Unification grammar mentioned below.

4. Pseudo-Unification Grammar

PUG (Pseudo-Unification Grammar) was first proposed by Tomita and

BH directional Grammars for Machine Translation 297

Knight (1987) as an alternative unification grammar formalism for

efficient processing of natural languages and was employed in the KBMT-

89 system (KBMT 89 (1989» at CMU. PUG consists of grammar rules

similar to PATR-H. However, the interpretation of equations, such as <x, p)

= <Xl q), is snapshot identity rather than permanent identity of feature

structures. That is, two feature structures for <XI p) and <Xl q) get unified

and result in identical feature structures when the above equation is

evaluated. After that, however, these two feature structures are treated as

two unrelated structures. In other words, PUG can be thought of as

Augmented Context-Free Grammar with feature assignment rules <x, p) ==

<Xl q), where the meaning of this equation is to unify these two feature

values and assign the result to both LHS and RHS. The order of equations

in a rule is important in PUG because equations are basically assignments

and order-dependent.

Syntactically, PUG is defined exactly the same as our unification

grammar in section 2, except that PUG has more types of equations. In

addition to the" =" operator, PUG has

• (a constraint equation) =c,

• (value existence tests)=*defined* and=*undefined*,

• (plain assignment) < =, and

• (append value) <

A constraint equation "X=c v" holds if v is an atomic value and X

already has value v. "X=*defined*" holds if X does not have an empty

feature structure. "X=*undefined*" holds if X is empty. "X <= y"
always holds and the feature structure of X is overwritten by the feature

structure of y. "X < Y" holds if a feature structure of Y can be appended

to X's. The resulting list of feature structures replaces the old value of X.

Normally the equations in PUG rules is written from top to bottom to build

feature structures for parsing. For generation, we view the equations from

bottom to top to determine the constituent feature structures (See Gates et

al. (1989) for more details). We can use the Tomita algorithm (Tomita

(1985» for parsing and DAG marking algorithm (with bookkeeping of

instantiation that is required to handle constraint equations and value

existence tests) for generation.

Since PUG has destructive operations, it is easily seen that "full" PUG

298 Koichi Takeda

has the same problem as unconnected grammar rule does in the unification

grammar. Another problem is ordering of equations. For example,

S+-AB

<xo> = <Xl>
<Xl> = <X2>

fails to carry the feature structure X2 to Xo because the second equation

unifies X2 with Xl which was already unified with Xo. Thus, a generation

algorithm cannot determine the feature structure of X2 from Xo during the

generation. Similarly,

S+-AB

<xoa> = <Xl>

<Xl> = <X2>

<xob> = <Xl>
makes version inconsistency; two versions of Xl in <xo a> and <xo b>

might disagree. Unconnectedness and version inconsistency mislead a

generator in a sense that it might generate a sentence which will never be

parsed successfully. Thus, we define a safe subset of PUG as follows to

guarantee the bi -directionality.

Suppose G= {rh ... ,r.} is an instance of PUG such that for each rule r,

with k equations {e, ... ,ek}, (1) there is one and only one equation of the

form (empty paths in both LHS and RHS) <xo> = <x,> for some i> 0,

(2) a rule graph D constructed from only "=" equations is a connected

tree, (3) no edge is included in two or more equations, and (4) for each

root X of every subtree in D, no equation that includes an edge going to X

precedes the equations which make the subtree. This subset of PUG is also

very restrictive even though no information loss and version problems

occur in the subset.

Theorem 3
anality.

This subset of PUG defined above satisfies the bi-directi-

The subset of PUG above is free from anomalies of destructive

operations. The finite failure property, discussed in the previous section,

also holds for this subset of PUG by excluding unconstrained derivation.

Bi-:directional Grammars for Machine Translation 299

5. Concluding Remarks

In this paper we examined bi-directionality of a general unification

grammar and Pseudo-Unification grammar. Although any instance of the

unification grammar satisfies bi-directionality, there is a practical subset

which has more desirable property. Future problems include the handling of

extended formalisms such as disjunctions and set values in feature

structures, characterization of other subsets such as unique generation

(any successful feature structure generates unique sentence), and

utilization of semantic representation (Wedekind (1988), Shieber et a!.

(1990» that will play as an interlingua for machine translation. Frame­

based semantic representation and syntax-semantics mapping rules are

also promising candidate for bi-directional machine translation systems

(KBMT 89 (1989), Takeda (1991».

References

Garey, M. and D. Johnson (1979) Computers and Intractability, W. H.

Freeman and Co., San Frandisco.

Gates, D., K. Takeda, T. Mitamura, L. Levin and M. Kee (1989) 'Analysis

and Generation Grammar,' Machine Translation, 4 (1): 53-66.

Haas, A. (1989) 'A Parsing Algorithm for Unification Grammar,'

Computational Linguistics, 15(4): 219-232.

Hasida, K. and S. Isizaki (1987) 'Dependency Propogation: A Unified

Thory of Sentence Comprehension and Generation,' In Proc. of the

10th IJCAl, pp. 664-670.

Kaplan, R. and J. Bresnan (1982) 'Lexical-Functional Grammar: A

Formal System for Generalized Grammatical Representation,' In J.

Bresnan, editor, Mental Representation of Grammatical Relations,

MIT Press, Cambridge, Mass., pp. 173-281.

Kaplan, R., J. Maxwell and A. Zaenen (1986) 'Functional Uncertainty,'

Technical Report CSU Monthly Vo!. 2, No. 4, CSLI, Stanford.

Kay, M. (1984) 'Functional Unification Grammer: A Formalism for

Machine Translation,' In 10th International Conference on

Computational Linguistics, Stanford, pp. 75-78.

300 Koichi Takeda

KBMT 89 (1989) 'Special Issue on Knowledge-based Machine Translation

I and 11,' Machine Transltion 4 (2-3).

Knight, K. (1989) 'Unification: A Multidisciplinary Survey,' ACM

Computing Surveys 21(1): 93-124.

Perira, F. and D. Warren (1980) 'Definite Clause Grammar for Lanuage

Analysis,' Artificial Intelligence 13: 231-278.

Pereira, F. and D. Warren (1983) 'Parsing as Deduction,' Proc. of 21st

Annual Meeting of the Association for Computational Linguistics, pp.

133-144.

Pollard, C. and 1. A. Say (1987) 'An Information-based Syntax and

Semantics,' CSU Lecture Notes 13.

Russel, G., S. Warwick and J. Carroll (1990) 'Asymmetry in Parsing and

Generating with Unification Grammars: Case Studies from ELU,'

In Proc. of the 28th Annual Meeting of the Association for

Computational Linguistics, Pittsburgh, pp. 205-210.

Shieber, S. M. (1986) 'An Introduction to Unification-based Approaches to

Grammar,' CSU Lecture Notes 4, Standford CA.

Shieber, S. M. (1988) 'A Uniform Architecture for Parsing and

Generation,' In Proc. of the 12th International Conference on

Computational Linguistics, pp. 614-619.

Shieber, S. M., F. C. N. Pereira, G. van Noord and R. C. Moore (1990)

'Semantic-Head-Driven Generation,' Computational Linguistics 16

(1): 30-42.

Takeda, K. (1991) 'Semantic Mapping and Bi-directional Machine

Translation,' Technical Report (to appear), Tokyo Research

Laboratory, IBM Research, Tokyo.

Tomita, M. (1985) Efficient Parsing for Natural Language: A Fast

Algorithm for Practical Systems, Kluwer Academic Publishers,

Boston, MA.

Tomita, M. and Kinght, K. (1987) 'Pseudo Unification and Full

Unification,' Technical Report CMU -CMT-88-MEMO, Center for

Machine Translation, Carnegie Mellon University.

Noord, G. van (1990) 'Reversible Unification Based Machine Translation,'

In Proc. of the 13th International Conference on Computational

Lingustics, Helsinki, pp. 299-304.

Bi-Idirectional Grammars for Machine Translation 301

Wedekind, J. (1988) 'Generation as Structure Driven Derivation,' In Proc.

of the 12th International Conference on Computational Linguistics, pp.

732-737.

Tokyo Research Laboratory

IBM Japan, Ltd.

5-19 Sanban-cho, Chiyoda-ku

Tokyo 102

Japan

	Bi-directional Grammars for Machine Translation
	1. Introduction
	2. Feature Structures, Unification Grammar and Rule Graphs
	3. Bi-directionality of Unification Grammar
	4. Pseudo-Unification Grammar
	5. Concluding Remarks
	References

