
Kuk and Cho EURASIP Journal on Image and Video Processing 2013, 2013:7
http://jivp.eurasipjournals.com/content/2013/1/7

RESEARCH Open Access

Weighted gradient domain image processing
problems and their iterative solutions
Jung Gap Kuk1 and Nam Ik Cho2*

Abstract

This article explores an energy function and its minimization for the weighted gradient domain image processing,
where variable weights are applied to the data term of conventional function for attaining better results in some
applications. To be specific, larger weights are given to the regions where original pixel values need to be kept
unchanged, like strong edge regions in the case of image sharpening application or high contrast regions when
fusing multi-exposure images. In the literatures, it is shown that the solution to a constant weight problem can be
efficiently obtained in the frequency domain without iterations, whereas the function with the varying weights can be
minimized by solving a large sparse linear equation or by iterative methods such as conjugate gradient or
preconditioned conjugate gradient (PCG) methods. In addition to introducing weighted gradient domain image
processing problems, we also proposed a new approach to finding an efficient preconditioning matrix for this
problem, which greatly reduces the condition number of the system matrix and thus reduces the number of
iterations for the PCG process to reach the solution. We show that the system matrix for the constant weight problem
is an appropriate preconditioner, in the sense that a sub-problem in the PCG is efficiently solved by the FFT and also it
ensures the convergent splitting of the system matrix. For the simulation and experiments on some applications,
it is shown that the proposed method requires less iteration, memory, and CPU time.

1 Introduction
Since human visual system (HVS) is sensitive to the inten-
sity changes, processing an image in the gradient domain
often produces subjectively better results than the con-
ventional intensity domain processing. Specifically, the
gradient domain approach has been successfully applied
to high dynamic range (HDR) imaging [1], image stitch-
ing [2-5], filtering [6], alignment [7], matching [8], etc. In
the case of image stitching problems which include seam-
less cloning [2,5] and image composite for panoramic view
[3,4], the gradient domain processing is considered the
state-of-the-art method.
The gradient domain method is basically matching the

gradients with priors, and the first step is to generate a
targeting gradient image from the input or assume a gradi-
ent profile that meets the given purposes or specifications
[6,9]. Then the output image that corresponds to the tar-
geting gradients is generated. In this process, since the
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gradient is usually non-integrable, the output cannot be
obtained by the direct integration of gradients. Instead, an
image whose gradient is close to the targeting gradient is
obtained. To be precise, for the given gradient g(x, y), the
image that best matches g(x, y) is found byminimizing the
energy function∫ ∫

||∇u(x, y) − g(x, y)||2dxdy (1)

where ∇u(x, y) is the gradient of the output image u(x, y).
Recently in [10], an energy function in the form of data
term plus gradient term is also considered, i.e.,∫ ∫ (

(u(x, y) − d(x, y))2 + λ||∇u(x, y) − g||2) dxdy
(2)

where d(x, y) is a data function which is usually the input
image, and λ controls the balance between the terms. The
data term has the role of keeping an output close to the
input (in order not to be deviated from the input too
much), while the gradient term matches image gradients
to be close to the desired one. The analysis in [10] shows
that the solution should satisfy screened Poisson equation
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which is well known in physics, and the equation can be
solved directly (not iteratively) in the frequency domain.
By using this formulation, a number of image processing
applications can be handled such as sharpening, image
stitching, and deblocking.
This article considers some image processing problems

that can be benefited by applying the spatially varying
weights on the data constraint of above problem, i.e.,
∫ ∫ (

w(x, y)(u(x, y) − d(x, y))2+ λ||∇u(x, y) − g||2) dxdy
(3)

where the data weight w(x, y) ranges from 0 to 1. By con-
trolling the weights depending on regional properties, we
later show that a visually better result is obtained in some
applications. The basic idea is to give larger weights to
the pixels in noticeable regions where the edge is strong
or contrast is high, so that well captured regions are kept
intact and others are changed according to the manipu-
lated gradients. Although the conventional iterative meth-
ods such as conjugate gradient (CG) or preconditioned
conjugate gradient (PCG) methods can be used to obtain
the solution of this general problem (varying weights) [11],
it is noted that they require a large amount of memory
and long computation time. Hence, we analyze the prob-
lem and derive a more efficient solver to this problem.
In the analysis, we first show that the solution mini-
mizing (3) should satisfy a variant of screened Poisson
equation which we call inhomogeneously screened Pois-
son equation. Then, we solve the equation based on PCG
where the systemmatrix of the screened Poisson equation
is selected as a preconditioner. Since this solver obviates
the need of explicit form of large linear system, it requires
less memory space. We also show that this precondi-
tioner implies the convergent splitting of system matrix.
With the simulated and real data, we demonstrate that the
proposed solver is faster than the PCG. Finally we show
some examples of weighted gradient domain image pro-
cessing, which provides better subjective/objective quality
than the intensity domain solution and also the gradient
domain solution without weights.
This article is organized as follows. The inhomo-

geneously screened Poisson equation is derived in
Section 2.1 and a solution based on the PCG is presented
in Section 2.2. The convergence rate is also analyzed in
Section 2.3. In Section 3, the proposed formulation is
applied to the image sharpening problem (Section 3.1)
and exposure fusion problem (Section 3.2). Finally in
Section 4, conclusions are given.

2 Variational formulation and its solution
In this section, we derive the inhomogeneously screened
Poisson equation from the energy function in (3), which

includes spatially varying data weight. Then we present
an iterative solver for the equation and analyze its
convergence rate.

2.1 Inhomogeneously screened Poisson equation
By denoting the integrand in (3) as Z , the solution that
minimizes the energy satisfies Euler-Lagrange equation:

∂Z
∂u

= ∂

∂x
∂Z
∂ux

+ ∂

∂y
∂Z
∂uy

, (4)

which turns to be

w(x, y)(u(x, y)−d(x, y)) = λ(�u(x, y)−∇·g(x, y))) (5)

where � is a Laplacian operator, i.e., � = ∂2

∂x2 + ∂2

∂y2 . After
rearranging (5), we finally have

w(x, y)u(x, y)−λ�u(x, y) = w(x, y)d(x, y)−λ∇·g(x, y).
(6)

Note that the linear equation in (6) is reduced to the
screened Poisson equation if the data weight is a con-
stant. To emphasize the inhomogeneous design of the data
weight, we call this equation inhomogeneously screened
Poisson equation. In the discrete form, (6) is written as

wiui − λ
∑
j∈Ni

(uj − ui) = widi − λ
∑
j∈Ni

gji, i ∈ V (7)

where i and j denote pixel indices, V is a set of all the
pixels, Ni is a set of 4 neighboring pixels of the ith pixel,
and ui, di, and gij are discrete counterparts of u(x, y),
d(x, y), and g(x, y), respectively.

2.2 Iterative solution
To find the optimal solution that satisfies inhomo-
geneously screened Poisson equation, all the linear
equations in (7) are aggregated to be a matrix-vector form
as

(W − λL)u = b (8)

whereW is a diagonal matrix with wi on the diagonal, b is
a vector whose ith element is widi − ∑

j∈Ni gji and L is a 5-
point Laplacian matrix. It is noted that W − λL in (8) is a
large, sparse, and symmetric matrix, and it can be directly
solved by triangular factorization. However, direct solver
needs very large memory, even though the sparsity of the
matrix is fully exploited [12]. Hence, an iterative method
is usually preferred to the direct method when solving this
kind of problem, such as the preconditioned conjugate
gradient (PCG). Preconditioning is to transform the origi-
nal problemAu = b to the one that can converge faster, by
pre-multiplying an inverse of a certain matrix that reduces
the condition number (ratio of maximum to minimum
eigenvalue in the case of symmetric matrix) of the result-
ing system. To be specific, the inverse of a preconditioning
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matrixM is multiplied to (8), i.e.,M−1Au = M−1b, where
A = W − λL, so that the eigenvalue spread of M−1A is
smaller than that of original systemmatrixA. In summary,
the PCG is to find a matrix M that reduces the condi-
tion number of the linear system, and then iterate the
conjugate gradient steps as in the Algorithm 1.

Algorithm 1 PCG steps
Initialization:

u0 = 0, r0 = b − Au0, t0 = M−1r0, p0 = t0
Loop:

1. α = rTi ti
pTi Api

2. ui+1 = ui + αpi
3. ri+1 = ri − αApi
4. ti+1 = M−1ri+1

5. β = rTi+1ti+1
rTi ti

6. pi+1 = ti + βpi
For the fast convergence of PCG, it is important to

find the optimal preconditioner M. But there is no gen-
eral way to design the optimal M, i.e., the design of the
preconditioner is problem-dependent [11]. Though, there
are two well known requirements to be a good precondi-
tioner. First, the preconditioning matrix should easily be
inverted. In other words, a linear system involvingM (step
4 of Algorithm 1) should be easily solved, because it is
the main problem in the loop. Second, when the system
matrix A is written as M − N where M is a non-singular
matrix, the splitting should be a convergent splitting,
whichmakes the solver stable [13]. Note that the represen-
tationM −N of A is called a convergent splitting whenM
is non-singular and ρ(M−1N) < 1, where ρ(�) measures
the spectral radius of the matrix �, defined as

ρ(�) = max{|α||α ∈ σ(�)}, (9)

where σ(�) denotes the spectrum of �, that is, the set of
eigenvalues of �.
For the selection of preconditioner in our inhomoge-

neously screened Poisson equation, we split the system
matrix W − λL into the matrices which represent the
screened Poisson equation and the residual. More for-
mally,W − λL is written as

W − λL = (I − λL) − (I − W ), (10)

where I is the identity matrix and (I − λL) is a system
matrix that represents screened Poisson equation for the
minimization of (2) without the weights. From the split-
ting in (10), we choose to use (I − λL) as a preconditioner,
which will be denoted as As in the rest of this article. This
preconditioner satisfies the required constraints stated
above: first, As is easily inverted, or the linear system

Asu = b is efficiently solved because the optimal solu-
tion of the linear system Asu = b is the same as that
of screened Poisson equation [10] which can be directly
solved in the frequency domain. Also, the proposed PCG
is memory-efficient because we do not need the explicit
form of the system matrix As when solving the linear sys-
tem Asu = b. Furthermore, we have the advantage in
the implementation issue because there are many efficient
libraries for fast real transform such as FFTW [14] and
Intel Integrated Performance Premitive [15] for solving
Asu = b. Second, the splitting in (10) is a convergent split-
ting, that is, As is non-singular and ρ(A−1

s (I − W )) < 1.
It is easy to show that As is non-singular because all the
eigenvalues of As is larger than 1. More precisely, As can
be written as

U−1U − λU−1	U = U−1(I − λ	)U , (11)

whereU−1	U is a decomposition of the Laplacian matrix
L and 	 is a diagonal matrix whose ith diagonal element
γi denotes the eigenvalue of Laplacian matrix. Since the
Laplacian matrix is a negative semi-definite matrix (γi ≤ 0
for all i), it follows that 1 − λγi ≥ 1, where 1 − λγi is
the ith eigenvalue of As. Hence, all the eigenvalues of As is
larger than 1. The other requirement for the convergence
splitting, i.e., ρ(A−1

s (I − W )) < 1, can also be proved as
follows.

Proof. To begin with, we denote W − λL and I − W as
A andN, respectively. Supposing that α is an eigenvalue of
A−1
s N and x is a corresponding eigenvector to α, we can

write A−1
s Nx = αx. Pre-multiplying xT to both sides of

the equation, we have

xTNx = αxTAsx.

Substituting As with A + N and rearranging give

xTNx = αxTAx + αxTNx
xTNx = α

1 − α
xTAx.

Since bothA andN are positive semi-definite and α �= 1,
α

1−α
≥ 0, i.e., 0 ≤ α < 1. Hence ρ(A−1

s N) < 1.

Table 1 Condition numbers for a p × pmatrix

p CG ILU0 MILU MILUC Proposed

100 602.9 53.5 7.4 2.6(2.14) 1.8

400 597.1 54.7 8.4 2.7(2.24) 1.7

900 639.0 59.2 9.0 2.7(2.27) 1.8

1600 642.5 59.8 8.9 2.8(2.29) 1.8

2500 635.9 59.5 8.8 2.7(2.30) 1.8
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Figure 1 Log RMS error curves for the 2500 × 2500matrix of a
simulation problem.

2.3 Convergence analysis
In this section, we analyze the convergence rate of the
proposed preconditioner with the simulated data and real
problems. We consider three measures for the evaluation
of convergence rate, namely condition number, elapsed
time and the amount of required memory. Specifically, the
proposed method is compared with standard conjugate
gradient without preconditioning, and several incomplete
LU (ILU) factorization methods for the sparse symmetric
system such as ILU0 [11], modified ILU (MILU) [11] and
modified Crout variant of ILU (MILUC) [16].
First, we build a simulation problem for evaluating the

convergence rate: we assume that an arbitrary image is
the optimal solution uo, and measure how fast the ui in
Algorithm 1 converges to uo. Specifically, a linear system
(8) is built where the diagonal element wi of the matrix
W is randomly generated within the range of [0 1], and
λ is set to be 30. We need not specifically define d(x, y)
and g(x, y), because we need just b that corresponds to uo,
which is computed as b = (W − λL)uo. Given this linear
system, we compare the condition numbers in Table 1 for
the matrices of moderate sizes ranging from 100 × 100 to
2500×2500. In this table, the density of nonzero elements
of MILUC is given in the parenthesis, which is the ratio of
the number of nonzero elements of MILUC to that of the

Table 2 Requiredmemory space (KB), elapsed time (ms)
and required iterations to reach the error of 10−3 for a
250000 × 250000matrix

CG ILU0 MILU MILUC Proposed

mem 32,6842 62,624 46,984 81,228 25,444

time 2.9661 0.8661 0.3201 872.56 0.2110

iters 62 20 7 4(2.33) 3

Table 3 Requiredmemory space (KB), elapsed tie (ms) and
number of required iterations to reach the error of 10−3

for the image sharpening example

CG ILU0 MILU MILUC Proposed

mem 16,396 24,770 36,652 43,128 13,272

time N/M 0.6596 0.1328 20.4474 0.1035

iters N/M 135 28 17(2.32) 10

original matrix. It can be seen that the proposed precon-
ditioning method has the smallest condition number. The
linear system with the lower condition number converges
faster, which is also verified by plotting the log RMS error
curve for the 2500 × 2500 case in Figure 1. The log RMS
error is defined as log10

(√|ui − uo|/N)
, where ui denotes

the solution after the ith iteration, and N is the number of
whole pixels.
We implement existing methods using MATLAB on a

PC with Intel Core 2 quad (only a single core is used) and
compare the number of iterations and CPU elapse time
until the error reaches to 10−3, and also the amount of
required memory. In this implementation, the size of the
linear system is set to be 250000 × 250000. Note that all
the steps in Algorithm 1, except for the step 4, are equally
implemented for all the methods. The step 4 in our prob-
lem is solved by using FFTW as stated previously. Table 2
shows the result that the amount of required memory
space and CPU time for the proposed solver are less than
those of others. It is found that the elapsed time ofMILUC
ismuch larger than others because it spendsmuch time on
the incomplete factorization of denser nonzero pattern.
The ratio of the number of nonzero elements of MILUC
to that of original matrix is also given in the parenthesis.
Second, the convergence rate is measured with two

real problems: image sharpening and gradient domain

Figure 2 Log RMS error curves for the image sharpening
problem.
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Table 4 Requiredmemory space (KB), elapsed time (ms)
and number of required iterations to reach the error of
10−3 for the HDR imaging problem

Image
size

CG ILU0 MILU MILUC Proposed

1025×
769

mem 163,688 255,572 241,785 N/A 110,488

time N/M 53.9044 6.2435 N/A 5.5096

iters N/M 384 43 N/A 17

250×
150

mem 4,012 5,428 5,768 13,232 3,528

time N/M 0.4574 0.0936 11.3748 0.0516

iters N/M 148 26 15(2.32) 8

exposure fusion which will be addressed in the following
section. The comparison for the image sharpening prob-
lem is given in Table 3, which shows that the proposed
method shows better performance than the others. In this
table, there are N/M (not measured) in the case of CG
because it hardly converges to the predefined log RMS
error of (10−3) as observed in Figure 2. The comparison
for the exposure fusion example is given in Table 4 where
an additional experiment is conducted for the reduced
image size (250× 150), because MILUC causes an out-of-
memory problem for the actual image size (1025 × 769).
As shown in Table 4, the proposedmethod also shows bet-
ter performance than the others. The convergence error
curve for this problem is plotted in Figure 3.

3 Examples of weighted gradient domain image
processing

In this section, we present two examples, image sharp-
ening and gradient domain exposure fusion, where the
gradient domain processing with the variable weights can
be more effective than the existing approaches.

3.1 Image sharpening
Image sharpening is one of the most commonly used
techniques for enhancing the contrast. The conventional

Figure 4 Halo effect in conventional sharpening method. (a)
Input image. (b) Sharpened image by Laplacian subtraction [10].

method for image sharpening is the Laplacian subtraction
approach, i.e., a Gaussian blur is applied to a given image,
the blurred image is subtracted from the original to form
a contrast image, and then the contrast image is weighted
and added to the original. In this procedure, since the
subtraction of blurred image from the original can be
interpreted as an approximation of Laplacian filtering, this
technique is called Laplacian substraction.
In the gradient domain processing, a similar operation

to Laplacian subtraction has been developed in [10]. In
this method, the energy function is designed based on (2),
where d(x, y) is the input image and g(x, y) is designed
such that the gradients are boosted as

g(x, y) = ∇d(x, y)(c1 + c2s(x, y)), (12)

where c1(> 1) and c2 are constants, and s(x, y) is a vector
image containing the saliency in both x and y directions
around the pixel coordinate (x, y). According to the gra-
dient manipulation strategy in (12), all the gradients are
basically boosted by constant value c1 and they are selec-
tively magnified again by the edge saliency s(x, y). The
parameter c2 controls the amount of sharpening boosted
by s(x, y). Although the gradient domain approach seems
to be different from the Laplacian subtraction method, it
has been shown that this approach can be interpreted as a
generalized version of Laplacian subtraction method [10].
The images sharpened by the Laplacian subtraction

sometimes suffer from halo effect which arises near object

Figure 3 Log RMS error curves for the exposure fusion problem. (a) 1025 × 769. (b) 250 × 150.
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Figure 5 Image sharpening results. From the first to the third column are input image, results of conventional gradient domain method
(Laplacian subtraction) in [10] and the proposed method.

boundaries. An example is shown in Figure 4b for the
input image in Figure 4a. As can be seen in Figure 4b,
there exists annoying halo around the edge although per-
ceived contrast is enhanced to some extent. That is, there
can be overshoot artifacts when stressing the contrast
image too much. In order to reduce the halo effects we
pose weights on the data term, which are given larger

values near the stronger edges and small values on tex-
tureless areas, so that the pixel values on the less textured
areas can be changed much while keeping the pixels val-
ues around the strong edges. This weighting is formulated
as

wi = (1 − e−g2i /σ 2
d ), (13)

Figure 6Magnification of cropped images from Figure 5. Halo effects are clearly observed in the case of conventional method.



Kuk and Cho EURASIP Journal on Image and Video Processing 2013, 2013:7 Page 7 of 10
http://jivp.eurasipjournals.com/content/2013/1/7

Figure 7 Comparison of enhancement result. (a) Original. (b) Conventional method. (c) Proposed.

where gi is the gradient magnitude given by
√
d2iv + d2ih

with div and dih being the vertical and horizontal gradient
value, respectively, and σd controls attenuation. Note that
the gradientmanipulation term in our solution is designed
in the same manner as in (12).
The proposed sharpening is compared with the con-

ventional gradient domain method in [10]. In Figure 5,
the first column images are the inputs, the second shows
the results of existing gradient domain method, and the
last column shows the proposed. It can be observed that
the previous method causes halo effect around the salient
boundary, whereas the proposed method produces less

halo effect. Comparison on cropped area is also given in
Figure 6, where the difference in the strong edges can
be more easily observed. Results for another images are
also shown in Figures 7 and 8, where bright or dark halo
effects are also observed around the edges in the case of
conventional enhancement result.

3.2 Weighted gradient domain exposure fusion
Dynamic range of natural scene is often much wider
than that of commercial display and imaging sensors, and
thus there have been many approaches to generating an
HDR image from several differently exposed images. For

Figure 8 Comparison of enhancement result for another image where dark halo is observed in the case of conventional method.
(a) Original. (b) Conventional method. (c) Proposed.
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Figure 9 Input images captured under different exposures. (a) Under-exposed image. (b) Over-exposed image.

displaying the HDR images so obtained on the LDR dis-
plays, the tone-mapping is followed. More recently, the
“exposure fusion” method has also been proposed, which
generates a high quality image by the weighted summation
of multi-exposure images [17].When we do not have HDR
displays, the exposure fusion is preferred because it skips
the complicated process of expanding and compressing
the dynamic ranges. In this method, using more images
usually results in better quality. But a tripod is needed and
there should be no moving object in the scene in order to
prevent the ghost effects caused by hand trembling and
moving objects. Hence the plausible HDR imaging with
the hand held digital cameras is to use just two exposures:

an over-exposed image and an under-exposed one (see
the images in Figure 9). However, using just two images
sometimes brings loss of contrast.
For keeping all the contrasts perceived in two images,

we design an energy function, where there are three func-
tions to be considered: d(x, y),w(x, y), and g(x, y). First, the
data function d(x, y) is devised to keep the regions with
better contrast in either of under or over exposed images,
i.e.,

d(x, y) =
{
Iu(x, y), if C(Iu(x, y)) > C(Io(x, y))

Io(x, y), otherwise
(14)

Figure 10 Comparison of conventional exposure fusion and the proposedmethod. (a) Result of exposure fusion [17]. (b) Result of the
proposed method. (c) The result when the data weight is a constant. (d) Cropped image from (a). (e) Cropped image from (b).
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Figure 11 Histogram of gradient magnitude.

where Iu(x, y) and Io(x, y) denote under- and over-exposed
image, respectively, and C(I(x, y)) measures the contrast
of the image I around pixel coordinate (x, y). However,
such hard decision scheme in (14) would fail when the
measured contrast is low. In other words, the reliability of
the data function becomes low when the measured con-
trast is low. We handle this problem by designing the data

weight function w(x, y) in a spatially varying manner. To
be specific,w(x, y) is designed such that the weight is close
to one when the contrast is strong and to zero when the
contrast is weak due to saturation, in the form of

w(x, y) = 1 − e−C(x,y)2/σ 2 , (15)

2erusopxE(b)1erusopxE(a)

desoporP(d)dohtemlanoitnevnoC(c)

(e)Cropped image from (c) (f) Cropped image from (d)

Figure 12 Comparison for another set of multi-exposer images. (a) Exposure 1. (b) Exposure 2. (c) Conventional method. (d) Proposed.
(e) Cropped image from (c). (f) Cropped image from (d).
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where C(x, y) = max{C(Iu(x, y),C(Io(x, y)} and σ controls
the attenuation. The target gradient function g(x, y) is
designed such that the larger gradient is preferred as

g(x, y) =
{

φ(∇Iu(x, y))∇Iu(x, y), if ∇Iu(x, y) > ∇Io(x, y)
φ(∇Io(x, y))∇Io(x, y), otherwise

(16)

where φ(·) is a weight function which attenuates large
gradients and magnifies small gradients, as defined in [1].
The result of our solution is compared with the intensity

domain fusion [17] in Figure 10. Although the intensity
domain exposure fusionmethod shows good performance
in most of areas, it sometimes fails to preserve the con-
trast as shown in Figure 10a (see outdoor areas). On the
other hand, the proposed variable weight method pre-
serves the contrast as shown in Figure 10b. The difference
between the resulting images can be better perceived if we
compare the cropped and magnified results as shown in
Figure 10d,e, where the regions with noticeable differences
are marked in the circles. For the objective compari-
son, we compare the histogram of gradient magnitudes
in the cropped region in Figure 11. It can be seen that
the conventional exposure fusion has more zero gradi-
ents (saturated pixels) than the proposed method. Also,
the proposed method has more pixels around the gradi-
ent magnitude of 0.1, which means that contrast is better
preserved. To verify the effect of spatially varying weights,
we also present a result with constant weight [10] in
Figure 10c. Since the reliability of the data function is not
considered in this case, the contrast is not well exposed
and many regions remain dark, especially in textureless
region. Another set of images for the comparison is shown
in Figure 12, where it can be observed that the proposed
method better keeps the contrast in dark regions such as
the regions under the table and monitor. Figure 12e,f are
the magnification of the regions under the table, which
show the difference more clearly.

4 Conclusions
We have presented weighted gradient domain image pro-
cessing problems where spatially varying weights are
applied to the data term of conventional energy function.
The problem is formulated as a system of linear equation,
which is more efficiently solved by iterative methods such
as PCG than by direct inverse or factorization methods.
For solving the problem with the PCG, the most impor-
tant thing is to find a preconditioning matrix that makes
the system matrix have low condition number. We have
shown that the system matrix for the constant weight
problem is an appropriate choice for the preconditioner.
Specifically, a subproblem in the PCG steps is efficiently
solved by the proposed preconditioning matrix and it is

also shown that this matrix induces the convergent split-
ting of the system matrix. Simulation and experiments
also show that the proposed method converges faster
than the existing methods, and also requires less memory
space and CPU time. Applications of the weighted gra-
dient domain image processing problems have also been
presented, with the examples of image sharpening and the
exposure fusion problems. In the comparison results, it
is shown that better outputs are produced owing to the
spatially varying design of data weight.
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