

Simple Structured DPP-based Small Molecules for High Efficient Organic Photovoltaics

Jong Won Lee, Yoon Suk Choi, Won Ho Jo* Department of Materials Science and Engineering, Seoul National University, Seoul 151-742, Korea

Introduction

Intramolecular charge transfer

Bandgap tuning in D-A type small molecule

 $V_{\rm oc} \propto \rm HOMO$ Energy level of small molecules Weak electron-donating power of donor \rightarrow Deep HOMO energy of small molecule \rightarrow high V_{0C}

Objectives

- To synthesize low bandgap small molecules (SM) based on thiophenecapped diketopyrrolopyrrole (TDPP) unit and different electron-donating group with thiophene (T) or phenylene (Ph)
- > To precisely control the HOMO energy level by introducing T or Ph
- > To investigate the optical, electrochemical, and photovoltaic properties of the SMs

400 500 600 Wavelengt	700 800 900 h (nm)	400 500 600 7 Wavelength	200 800 900 (nm)	0.0 0.2 0.4 0.6 0.8 1.0 Potential (V) vs Ag/Ag ⁺			
 Small molecule	λ _{max, CHCI3} (nm)	λ _{max, film} (nm)	E _g opt (eV)	HOMO (eV)	LUMO (eV)ª		
SM1	625	628	1.51	-5.18	-3.66		
SM2	615	638	1.51	-5.17	-3.68		
SM3	601	612	1.66	-5.31	-3.65		

^aCalculated from LUMO = HOMO + E_{g}^{opt}

■ Weak electron-donating power of Ph → Deep HOMO energy level and large bandgap of SM1

■ Same electron-deficient unit → almost the same LUMO energy levels of SMs

Photovoltaic properties

Results

Synthesis

T(TDPP)2 (SM2)

Structure study

As-cast					After annealing at 120 °C for 10 min.						
SMs	SM:PC ₇₁ BM (w/w)	V _{oc} (V)	J _{sc} (mA/cm²)	FF	PCE (%)	SMs	SM:PC ₇₁ BM (w/w)	V _{oc} (V)	J _{sc} (mA/cm²)	FF	PCE (%)
SM1	1:1	0.85	5.41	0.34	1.59	SM1	1:1	0.84	7.40	0.37	2.31
SM2	1:1	0.77	3.60	0.89	0.89	SM2	1:1	0.80	4.30	0.43	1.49
SM3	1.25:1	0.92	8.36	0.45	3.47	SM3	1.25:1	0.93	9.09	0.47	4.01

Morphology study

Homogeneous one-phase morphology

• The length scale of phase separation

Bicontinuous two-phase nanostructured morphology

Macro-phase separated morphology

• Strong X-ray diffraction peak at $2\theta = 6.10^{\circ}$ for all SMs \rightarrow (100) diffraction with 14.4 Å interlayer spacing

The highest crystallinity of SM1 from XRD (a) and DSC (b, c) data

Conclusions

 \succ TDPP-based Small molecules (TDPP)₂, T(TDPP)₂ and Ph(TDPP)₂ are successfully synthesized and show V_{oc} of 0.84 V, 0.80 V and 0.93 V, respectively.

(a): exciton recombination before reaching the D/A interface (b): blocking of efficient charge transport

(c): optimum for charge separation and transport

• Charge carrier mobility of SMs (SCLC)

 \geq Ph(TDPP)₂ shows the best PCE of 4.01 % with a high V_{OC} of 0.93 V and a high J_{SC} of **9.09 mA/cm²**.