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ABSTRACT 

 
As an efficient AMR method on structured grids, a new cell-by-cell refinement algorithm is 
developed. Key idea of the new cell-by-cell refinement is to use categorized cell types which 
are originated from overset mesh technique. Thanks to categorized cell types, present method 
provides efficient cell-by-cell refinement algorithm, while preserving structured index of grid 
system. Through numerical test cases, the performance of present algorithm is investigated 
and comparison of accuracy and efficiency shows that present method is much more accurate 
and efficient than the case without AMR method. 
 
 

INTRODUCTION 
 
Generally speaking, in CFD society, there are several approaches for improving the accuracy 
and efficiency of Euler/Navier-Stokes analyses: h-(mesh size), p-(the order of the interpolant), 
hp-, and r-(mesh redistribution) refinement. While h-methods improve the accuracy by mesh 
refinement with a fixed, usually low-order, interpolant, p-methods do it by increasing the 
order of the interpolant with a fixed mesh size. Also, hp-methods and r-methods enhance the 
accuracy by combining h- and p-refinement, and by mesh movement, respectively. 

In present research, the previous efforts and search for an accurate and effective way are 
continued to improve the resolution capability of the Godunov-type schemes and thus to 
reduce their numerical diffusion. Among above strategies, h-refinement method is mainly 
dealt with and an efficient cell-by-cell adaptive mesh refinement (AMR) algorithm is 
introduced in following sections. 
 

ADAPTIVE MESH REFINEMENT (AMR) METHODS ON STRUCTURED GRIDS 
 
Although the majority of research on solution adaptive gridding has been for unstructured 
solution methods [1], there have been meaningful progresses for structured counterpart as well 
[2-6]. Previous methods for solution-adaptive, structured gridding have involved globally 
regenerating the grid. Such techniques are referred to as grid movement (see review in ref. [2]). 
Another approach is to refine sub-domains of a multi-block, structured grid [3-6]. In this case 
discontinuous grids meet at block-to-block boundaries and appropriate coupling operators 
must ensure accuracy and conservation. The sub-domain refinement approach is the method 
that present research is aimed at. Thus, several algorithms related to sub-domain refinement 
are introduced in this section. 
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(1)  Block-by-Block AMR Algorithm 
This algorithm was originally proposed by M. J. Berger [3, 4] and it is one of the most 

popular AMR algorithms on structured-based grid system. In this approach, the refined 
regions consist of a small number of rectangular grid patches with finer mesh spacing than the 
underlying global coarse grid. These rectangular subgrids contain refined points where the 
error in the coarser grid solution is too high. We use rectangular subgrids so that we can use 
integration methods for rectangular grids whose convergence properties are well understood. 
These methods can be made quite efficient on vector and parallel computers. 
 
(2)  Cell-by-Cell AMR Algorithm 

In previous works of [3, 4], refinement occurs in rectangular blocks and solutions must be 
obtained on all levels. In contrast, the approach discussed in [5] considers a cell-by-cell 
refinement and we solve only on the finest resolution that exists for each part of the domain. 
The solution is obtained on the dynamic mesh containing both coarse and fine elements, while 
retaining the efficiency of a hierarchical array based data structure.  
 
(3)  Add-and-Blank Lines AMR Algorithm 

The locally adaptive method proposed in [6] was motivated by the idea of iblanking (the 
terminology iblank comes from a variable name used in computer codes). Originally, 
iblanking was a device to insert geometry into a structured grid by extending the grid inside 
the body, then blanking out the interior portion. The region inside the body is decoupled from 
the fluid via boundary conditions, which is called as chimera or overset mesh technique. 
 

AN EFFICIENT CELL-BY-CELL AMR ALGORITHM 
 
In previous chapter, three types of AMR on structured grids are reviewed. Keeping the 
characteristics of each algorithm in mind, a new AMR algorithm is proposed in this section.  

In order to understand how the AMR algorithms work in actual, let us consider that one 
grid system has sub-domain where higher resolution is required. Firstly, let us consider the 
case in which block-by-block AMR algorithm is used. The refined regions of the block-by-
block AMR consist of several rectangular grid patches with finer mesh spacing than the 
underlying global coarse grid. Figure 1(a) shows a typical configuration of grid refinement 
 

 
Figure 1. Comparison of refined sub-domain for the Korean Peninsula:  

(a) block-by-block AMR method, (b) cell-by-cell AMR method, (c) present method  
(blue: normal cell, red: fringe cell, green: hole cell) 
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using this method. Each patch forms a sub-domain which is independently solved and block-
to-block boundaries are used to couple the sub-domains. 

In Fig. 1(a), seven rectangular grid patches are involved, but the number of grid patches 
and formation are not determinate. Fewer grid patches lead the inclusion of more unnecessary 
fine grids, which decreases computational efficiency. On the other hand, more grid patches 
need complicated data structure and robust algorithm, although they can express more 
complex configuration. Thus, in order to use block-by-block AMR, efficient and robust grid 
patch construction algorithm has to be implemented essentially. It makes block-by-block 
AMR algorithm be bothersome to use widely. 

Next, let us consider cell-by-cell AMR algorithm in ref. [5]. Figure 1(b) is an example of 
grids refined by using cell-by-cell AMR algorithm. Since grid refining is conducted by the 
unit of cell, this algorithm has capability to refine complicated configuration effectively. It 
does not include unnecessarily refined cells, but refines the target cells only, which is very 
charming characteristics as an AMR algorithm.  

In spite of its powerful capability, this algorithm also has fatal weak point at the viewpoint 
of structured solver. Since meshes with different size exist simultaneously, structured index of 
mesh can’t be used in this case. It means that the most remarkable strong points of structured 
solver is not available in this method. Thus, this approach needs a cell-based connectivity 
array data hierarchy like quadtree/octree data structure and it can be considered as a kind of 
approach on unstructured or Cartesian grids.  

In contrast to block-by-block AMR algorithm, the refined regions of present method 
consist of one rectangular grid patch with finer mesh spacing than the underlying global 
coarse grid. The outer boundary of grid patch is determined by checking the maximum and 
minimum coordinates of target region. Then, refined cells in the patch are categorized into 
three types: normal cell, fringe cell and hole cell. Normal cell is the cell that is going to be 
solved and hole cell is the cell that is blanked. Fringe cell is the cell abutting to the outer 
boundary of normal cell and it can be considered as an interface between normal and hole 
cells. Figure 1(c) describes grid patch and three types of cells. The grid patch consists of bold 
lined meshes. In Fig. 1(c), blue, red and green cells are normal, fringe, and hole cells, 
respectively. 

This cell categorization simplifies the way to couple sub-domains. Especially, for 
researchers who have experiences to deal with overset mesh, present grid description may be 
very familiar conceptually and practically. Thus, present method can be easily accepted and 
implemented into his/her own existing solver. 
 

NUMERICAL RESULTS 
 
The accuracy and efficiency of a new AMR algorithm are examined through various test cases. 
For each numerical test, we compare accuracy and efficiency characteristics of present AMR 
approach with those of conventional solver without AMR. As a time integration method, the 
first-order Euler simple method and the third-order TVD Runge-Kutta method is used for 
unsteady calculation.  

Among them, the interaction of a vortex with a steady shock wave is introduced here. 
This shock-vortex interaction (SVI) leads to complicated flow patterns where smooth and 
discontinuous features, namely acoustic waves and shock waves, are present. The 
computational domain is defined as Ω=[0; 2]×[0; 1]. The initial condition is given by a 
steady normal shock wave at x=0.5 with a shock Mach number Ms. The vortex is located 
initially at the position (xc, yc) = (0.25, 0.5) and moves downstream. 

Numerical schlieren of shock-vortex interaction (SVI) at t =0.7 can be seen in Fig. 2. As 
seen in this figure, the resolution of complicated vortex shape is noticeably enhanced by using  
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Figure 2. Numerical Schlieren of shock-vortex interaction (SVI) at t=0.7:  
(a) 400×200 main grid, (b) 400×200 main grid with AMR (λr=2) 

 
present AMR algorithm. Especially, one primary vortex seems to be separated into two small 
ones, which shows the performance of present AMR algorithm clearly. 
 

CONCLUDING REMARKS 
 
As an efficient AMR method on structured grids, a new cell-by-cell refining algorithm is 
developed. Key idea of present method is to use categorized cell type which is originated from 
overset mesh technique. Thanks to categorized cell types, present method provides efficient 
cell-by-cell refinement algorithm, while preserving structured index of grid system.  

Through various numerical tests, the performance of present algorithm is investigated. In 
test cases, the error decrease per unit cost which is closely related to computational efficiency 
is used as a useful parameter to assess the efficiency of present method. Comparison of 
efficiency shows that present methods are much more efficient than the case without AMR 
method. 
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