
 

1. INTRODUCTION 
 

Due to its large application areas involving hydraulic 

machine, underwater high-speed vehicle, liquid fuel rocket, 

etc., the computation of compressible multiphase flows has 

received a growing attention in recent years. We are interested 

in the accurate and robust simulation of gas-liquid two-phase 

flows with compressibility effect. Among the numerous levels 

of physical multiphase modeling, homogeneous equilibrium 

model (HEM) using mass fraction is adopted in this paper. 

For the high resolution simulation, we developed the 

two-phase versions of RoeM [1] and AUSMPW+ [2] schemes 

which are originally developed for the high resolution 

simulation of high-speed gas dynamics. The RoeM scheme, 

based on Roe’s flux difference splitting (FDS), is a 

shock-stable scheme without any tunable parameters while 

maintaining the accuracy of the original Roe scheme. The 

AUSMPW+ scheme is the improved version of AUSMPW 

scheme. By the use of pressure based weighting functions, 

AUSMPW+ can reflect both properties of a cell interface 

adequately, and its numerical results show the successful 

elimination of oscillations and overshoots behind shocks and 

near a wall. Both RoeM and AUSMPW+ schemes are among 

recently developed advanced schemes for the gas dynamics. 

The purpose of this paper is to extend both schemes to 

two-phase flows without losing their original ideas and merits. 

Difficulties in extending RoeM and AUSMPW+ to 

two-phase flows are not far different from those in general 

two-phase calculation. One lies in the treatment of the 

equation of state (EOS). The definition of mixture density 

plays the role of mixture EOS in HEM. From the mixture EOS, 

we introduce new pressure weighting terms, which are 

commonly used in RoeM and AUSMPW+ to sense the shock 

discontinuity. The other difficulty is the fluxes at the phase 

interface. Due to the advection property of AUSM-type 

scheme, the original AUSMPW+ could cause numerical 

instability near the large density ratio phase interface. To 

overcome this instability problem, we scale the control 

function f instead of using non-conservative approaches such 

as ghost fluid method. 

The present paper organized as follows. After introduction, 

governing equations with the EOS for each phase is given. In 

section 3, new shock discontinuity sensing term is introduced 

and two phase versions of the RoeM and AUSMPW+ schemes 

are presented in section 4 and 5. Numerical results for well 

known test problems are appeared in section 5. Finally, 

conclusion is given in section 6. 

 

2. GOVERNING EQUATIONS 
 

HEM [3] with mass fraction is adopted to describe 

two-phase flows. As we assumed fully compressible flows, the 

governing equations are consisted of mixture mass, 

momentum, and energy conservation laws together with one 

phase mass conservation law. The two-dimensional Euler 

equations are as follows:  

0
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  
  

  
,            (1) 

where Q is the state vector, and E and F are flux vectors. 

For compressible two-phase flows with mass fraction, the 

state and flux vectors have the form: 
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                  (3) 
Contra-variant velocity 

x yU n u n v   means control 

surface-normal velocity component. And 
1Y  stands for the 

mass fraction of gas phase. 

The following definition of mixture density, 
m , has the 

role of mixture EOS [4] combined with each phase’s EOS: 
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In Eq. (4), ˆ
i  means density defined on the occupied 

volume of i-th fluid, while 
m  is defined on the each control 

volume (or each computational mesh). 

We adopted ‘the EOS for stiffened fluid’ for liquid phase, 

which has the following form [5]: 

( 1) cp n e np   ,            (5) 

 where 7.0n  , 83.03975 10cp   Pa. 

And ideal gas EOS is used for gas phase: 

( 1)p e   ,              (6) 

 where 1.4  . 

 
Computations of Compressible Two-phase Flow 

using Accurate and Efficient Numerical Schemes 

Chongam Kim *  

* Department of Aerospace Engineering, Seoul National University, Seoul, Korea 

Tel : +82-2-880-1915; E-mail: chongam@snu.ac.kr 

 

Abstract: RoeM and AUSMPW+ schemes are two of the most accurate and efficient schemes which are recently developed for the 

analysis of single phase gas dynamics. In this paper, we developed two-phase versions of these schemes for the analysis of gas-liquid 

large density ratio two-phase flow. We adopt homogeneous equilibrium model (HEM) using mass fraction to describe different two 

phases. In the Eulerian-Eulerian framework, HEM assumes dynamic and thermal equilibrium of the two phases in the same 

computational mesh. From the mixture equation of state (EOS), we derived new shock-discontinuity sensing term (SDST), which is 

commonly used in RoeM and AUSMPW+ for the stable numerical flux calculation. The proposed two-phase versions of RoeM and 

AUSMPW+ schemes are applied on several air-water two-phase test problems. In spite of the large discrepancy of material 

properties such as density, enthalpy, and speed of sound, the numerical results show that both schemes provide very satisfactory 

solutions. 

 

Keywords: two-phase flow, RoeM scheme, AUSMPW+ scheme, shock discontinuity sensing term 

 

13



At atmospheric pressure ( 101325.0p  Pa), the density of 

liquid comes to 1000.0  kg/m3, and the density of gas 

becomes 1.225  kg/m3. 

From the following assumption of dynamic and thermal 

equilibrium, the total system is closed: 

g g,l lp p p T T T      .          (7) 

 

3. SHOCK DISCONTINUITY SENSING TERM 

 

The pressure ratio term “ min( , )
L R

R L

p p

p p
” at the control 

surface (i.e., computational cell interface) is used both in 

RoeM and AUMSPW+ to sense the shock discontinuity and 

control the proper numerical fluxes. For the single phase flows 

of gas dynamics, the direct use of real pressure ratio works 

well. In the liquid phase, however, due to the large density and 

high speed of sound, pressure field varies drastically even for 

non-shock region. This means that our schemes could lose 

their accuracy near liquid region. So the proper scaling of the 

shock discontinuity sensing term is required. 

Development of a new SDST is a scaling problem near 

liquid phase. The main idea of the scaling starts from the 

derivation process of the AUMSPW scheme [6]. At first, 

through the analysis of AUSM+ and AUSMD, density ratio 

was chosen to determine the consideration of physical 

properties on both sides. And, after assuming the interfacial 

common speed of sound, the density ratio was changed into 

the pressure ratio. 

In the same manner, we start from the density ratio, and try 

to change it into the pressure ratio. With the mixture EOS 

applied to the speed of sound, the density is given by 
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where 
m  is a mixture density, 

mc  is a mixture speed of 

sound, 
1  is a volume fraction of gas phase, and , , cn p    

are constant coefficients from the EOS. 

If we assume to use the interfacial common /m p   and 

volume fraction, we can define following pressure function 

,L Rp : 

,
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Then, density ratio can be changed into pressure ratio: 
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,

m L L
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


 .              (10) 

Now we can use “ min( , )
L R

R L

p p

p p
” as a shock discontinuity 

sensing term. In order to validate the developed SDST for 

two-phase flow, the proposed pressure function’s ratio 

/R Lp p  is checked on 1-D mixture shock relation. As we can 

see in Table 1, the scaled pressure ratio min( , )
L R

R L

p p

p p
 has the 

value of about 1/O(1) even for the near liquid phase. So we 

can expect that our new SDST will not work on smooth region 

even in near liquid phase. 

Here, we want to mention that we can use the same SDST 

form for all mixture flows regardless of mass fraction, mixture 

density, and mixture speed of sound. And we also mention 

that the same SDST form can be derived for isothermal 

two-phase flows, too, if we use stiffened fluid type EOS for 

liquid phase. 

 

4. ROEM SCHEME FOR TWO-PHASE FLOW 
 

In the compressible two-phase flow, direct derivation of the 

system Jacobian matrix using conservative variables is very 

hard due to its complicated form of EOS. Moreover, due to the 

large speed of sound at liquid phase, many two-phase flow 

analyses require preconditioning technique, which alters the 

governing system to primitive variable-based form. So the Roe 

scheme based on primitive variables are popularly used 

instead of the original conservative variable based Roe scheme 

in the two-phase flow research area. The primitive variable 

 

Table 1 Magnitude of pressure ratio and developed function’s ratio on 1-D shock relation 

 

p
L
=101325Pa 

c
L
 

(m/s) 

ρ
L
 

(kg/m
3
) 

M
L
=1.5 M

L
=2.0 

Mass fraction /R Lp p   /R Lp p  /R Lp p   /R Lp p  

Y
1
=0.0 

(pure liquid) 
1458.95 1000.00 6565.685 3.18750 15756.3 6.25000 

Y
1
=1.0×10

-8
 1347.99 999.99 4836.944 2.61162 12682.5 5.22595 

Y
1
=1.0×10

-7
 885.63 999.92 8.24318 1.22860 2494.80 1.83307 

Y
1
=1.0×10

-6
 342.81 999.19 2.42609 2.06508 4.84434 2.78550 

Y
1
=1.0×10

-5
 112.01 991.91 2.26608 2.22898 4.06936 3.83132 

Y
1
=1.0×10

-4
 38.10 924.61 2.25124 2.24752 4.00529 3.98094 

Y
1
=1.0×10

-3
 20.23 550.87 2.24981 2.24943 3.99909 3.99665 

Y
1
=1.0×10

-2
 32.26 109.25 2.25005 2.25001 3.99940 3.99915 

Y
1
=1.0×10

-1
 92.31 12.12 2.25426 2.25426 4.00948 4.00946 

Y
1
=1.0 

(pure gas) 
340.29 1.225 2.45833 2.45833 4.50000 4.50000 
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based Roe scheme in our two-phase model can be summarized 

as follows: 

1

1/ 2 ,1/ 2 1/ 2
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    where 
e

p
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Q
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
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p

p
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



. 

And our choice of primitive variables is 

1[ , , , , ]T

p mQ p u v h Y .           (12) 

After grouping subsonic numerical dissipation parts by two 

common eigenvalues, Roe scheme can be converted into 

HLLE-like form. And by introducing control functions f and g, 

the RoeM scheme for compressible two-phase flow is derived 

and summarized as follows: 
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, (13) 

  

2

1
1

0
1

ˆ

ˆ ˆ( )
ˆ ˆˆ

ˆ
ˆ

x

y

m m

m

m

u n U
u

v n Up vB Q f
c p

H U UH

Y
Y

 



 
   

     
             
         
       

, 

    
2 2

2 2

1 ˆ ˆ, 0

ˆ ˆ ˆ, 0| |h
u v

f
u vM

   
 

  

, 

        
1 / 2 , , 1 / 2 , 1 / 2 1 , 1 / 2 1 , 1 / 21 m i n ( , , , , )i j i j i j i j i jh P P P P P        , 

        , 1 ,

1 / 2 ,

1 , ,

m i n ( , )
i j i j

i j

i j i j

p p
P

p p







 , 

    
, 1 ,

1 , ,

1 m i n ( , )̂, 0ˆ| |
ˆ, 01

i j i j

i j i j

p p

p p M
Mg

M








 
 

, 

        where 
ˆ

ˆ
ˆ

U
M

c
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The properties with hat symbol indicate Roe average values. 

B Q  term does not exist in HLLE scheme, and RoeM 

controls this part near the shock discontinuity. 

It is noted that Mach number-based functions f and g are 

introduced to balance damping and feeding rates, which leads 

to a shock-stable Roe scheme. And the new SDST is used in 

both f and g. 

 

5. AUSMPW+ SCHEME FOR TWO-PHASE FLOW 
 

Contrary to FDS type schemes, AUSM type schemes have 

an advantage in the application to complicated fluid systems, 

because a consistent vector form used in single phase can be 

extended. In the following, the AUSMPW+ scheme for the 

two-phase flow is given. 
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Note that the speed of sound at phase interface is lower than 

that of either phases, because HEM allows mixture region. 

From the mixture EOS, typical averaging of mass fraction at 

phase interface can reflect this characteristic, but any 

averaging of left and right speed of sound cannot predict this 

low speed of sound. Among the several candidates, we use 

Roe type speed of sound in the numerical tests. 

It is noted that AUSMPW+ can reflect the flux by pressure 

difference with the help of control function f. In two-phase 

flows, however, if pressure difference coinsides with large 

density ratio phase interface, the flux by pressure difference 

could be too large, because of the advection property of 

AUSM-type schemes, causing numerical instabilities. So, in 

order to stabilize the scheme near the large density ratio phase 

interface, we modified the function f by considering density 

ratio of both sides. 

Our modifications for two-phase version AUSMPW+ 

scheme can be summarized as follows. 

• M1: Introduction of new SDST 

• M2: Use of Roe type speed of sound at the control surface 

• M3: Modification of function f to consider the density ratio 

of both sides 

 

6. NUMERICAL RESULTS 
 
6.1 Odd-Even Decoupling Test  

In order to test the shock stability of the schemes, we solved 

two-phase mixture moving shock problem on a perturbed grid. 

In this “Quirk’s test,” it is known that the schemes which 

cause shock instability phenomenon destroy the original 

moving shock profile by amplifying the numerical errors 

coming from the perturbed grid system. In gas dynamics, 

RoeM and AUSMPW+ show shock-stable characters while 

the original Roe scheme provides solution with numerical 

errors. 

Fig. 1 shows the results of each scheme for Y1 = 0.1 mixture 

flow. While Roe scheme destroys the normal shock structure, 

both RoeM and AUSMPW+ clearly capture the shock, 

showing their robust and stable behavior even in the 

two-phase flow region. 

15



 

 
6.2 Liquid Shock-Phase Interface Interaction (SII)   

In this challenging problem, the liquid shock of M=1.7 

encounters with the phase interface of about 1:1000 density 

ratio. Initial right-going liquid shock is located at x=0.1, and 

the phase interface is at x=0.5. Results at t=0.3ms are shown 

in Fig. 2~4. Well known physics including shock 

transmission/reflection pattern, generation of constant velocity 

region after the shock-phase interface interaction are shown. 

(line: initial, circle: RoeM, filled square: AUSMPW+) 

When the liquid shock interacts with phase interface, 

reflection wave is a rarefaction wave, while incident wave is 

still a shock wave. In Fig. 2, the incident shock wave in gas is 

located at x=0.65, and the end of rarefaction wave is located at 

x=0.42. This can be noticed from Fig. 4. Both liquid and gas 

phases are moving at the same velocity in the region x=[0.42, 

0.65] after the shock-interface interaction. It is noticed that 

both RoeM and AUSMPW+ with the modified SDST work 

well in this simulation in spite of large density and pressure 

ratio. 

 

 
Fig. 2 Density distribution at t=3×10-4 

 
Fig. 3 Velocity distribution at t=3×10-4 

 
Fig. 4 Pressure distribution at t=3×10-4 (log scale) 

 
6.3 2-D Shock-Bubble Interaction (SBI)  

As a more practical problem, we chose liquid shock- 

cylindrical air bubble interaction problem with 175 by 125 

mesh. A moving shock of M=1.422 in liquid hits the 

cylindrical gas bubble of d=2mm. This problem is the 

modeling of the contribution of gas bubbles near kidney stone 

in lithotripsy process. 

 
 

Fig. 1 Quirk’s test on Y1 = 0.1 mixture flow(density contour) 
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Fig. 5 Shock-bubble interaction at every 0.1µs 

(left: numerical schlieren of density, right: pressure) 

 

As we can see in section 6.2, when the liquid shock hits gas 

bubble, reflection wave is a rarefaction wave, while incident 

wave is still a shock. However, when the transmitted shock 

coincides with gas-to-liquid phase interface, both reflection 

and incident waves are all shock waves. So the blasting wave 

is generated at the right end of the gas bubble. And we can see 

the high-speed liquid jet between the vortex pair which is 

formed after the bubble collapse. Numerical results show 

well-known flow physics including blast wave and liquid jet 

formation in Fig. 6. 

 

7. CONCLUSION 

 
Numerical methods for simulating compressible two-phase 

flows with large density ratio are presented. We extended the 

RoeM and AUSMPW+ scheme which are recently developed 

for gas dynamics to two-phase flows. For the two-phase flows 

using homogeneous equilibrium model (HEM) with mass 

fraction, shock discontinuity sensing term (SDST) is derived 

from mixture EOS. New shock discontinuity sensing term has 

the value of 1/O(1) even for the near liquid phase. The 

developed two-phase versions of RoeM and AUSMPW+ 

schemes are tested on several air-water two-phase problems. 

In spite of the large discrepancy of material properties, the 

numerical results show a good performance of the developed 

schemes. We expect that our proposed shock discontinuity 

sensing term can be used for other numerical applications for 

two-phase flows. And let us mention that both the SDST and 

the developed schemes have a consistent form for isothermal 

compressible two-phase flows. 
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