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Consider the linear system

ẋ = Ax+Bu

y = Cx
(1)

with x(0) = x0.
Proposition 1: If (A,C) is an observable pair, then, for

any d > 0 and α such that 0 < α < 1, there exist gain
matrices Lf and Lb such that

‖ exp((A− LfC)t)‖ ≤ α, ∀t ∈ [d/2, d], (2)

and

‖ exp(−(A− LbC)t)‖ ≤ α, ∀t ∈ [d/2, d]. (3)

Then, the forward observer is given by

d

dt
x̂f = Ax̂f +Bu(t) + Lf (y(t)− Cx̂f ) (4)

while the backward observer is

d

ds
x̂b = −Ax̂b −Bu(d− s)− Lb(y(d− s)− Cx̂b). (5)

In fact, the backward observer is based on the backward-time
description of the system (1) written as

d

ds
x̄ = −Ax̄−Bu(d−s), y(d−s) = Cx̄, x̄(0) = x(d),

with x̄(s) = x(d− s) for s = d− t ∈ [0, d].

I. REAL-TIME APPLICATIONS

A. State Estimation of a Switched System

Consider a switched system given in Fig. 1, which has
two modes of operation described by

Σ1 :

{
ẋ1 = A1x1 +B1u, y = C1x1,

ẋ2 = A2x2 +A21x1,
(6)
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Fig. 1. All switches are synchronized.

for mode 1, and

Σ2 :

{
ẋ1 = A1x1 +A12x2

ẋ2 = A2x2 +B2u, y = C2x2,
(7)

for mode 2, where the pair (Ai, Ci), i = 1, 2, is observable.
Now suppose that the system configuration switches between
modes 1 and 2 (i.e., between (6) and (7)) after every T
seconds, and we want to estimate the states x1 and x2
completely. Note that, at each mode, the system is not
completely observable. For example, at mode 1, the state
x2 is unobservable.

One can design a separate observer for each mode of
operation as follows:

˙̂x1 = A1x̂1 +B1u− L1C1x̂1 + L1y (8a)
˙̂x2 = A2x̂2 +A21x̂1 (8b)

for Σ1, and

˙̂x1 = A1x̂1 +A12x̂2 (9a)
˙̂x2 = A2x̂2 +B2u− L2C2x̂2 + L2y (9b)

for Σ2, where L1 and L2 are large enough so that some
meaningful estimates x̂1 and x̂2 are obtained over the interval
of length T . In fact, at the end of the first period [0, T ),
one can obtain the estimate x̂1(T ) by (8a) for mode 1.
For the second interval [T, 2T ), this estimate serves as the
initial condition of (9a), and the observer (9b) starts to
estimate x2(t). However, the observer (9b) will exhibit some
transients during the initial period of the interval [T, 2T ),
which may corrupt the estimate x̂1(t) being obtained through
the observer (9a) because of initially large error between
x̂2(t) and x2(t).

To overcome this problem, the following hybrid-type ob-
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server may be utilized instead of (8) and (9)

Σ̂1 :

{
˙̂x1 = A1x̂1 +B1u
˙̂x2 = A2x̂2 +A21x̂1

(10)

Σ̂2 :

{
˙̂x1 = A1x̂1 +A12x̂2
˙̂x2 = A2x̂2 +B2u

(11)(
x̂1(kT )
x̂2(kT )

)
=

(
ξ̂1(kT−)

ξ̂2(kT−)

)
, k ≥ 1, (12)

where the variables ξ̂1 and ξ̂2 will be obtained shortly using
the back-and-forth operation such that the inequality,

|x̂((k + 2)T )− x((k + 2)T )| ≤ γ|x̂(kT )− x(kT )|, (13)

holds for all k ≥ 1, x := (xT1 , x
T
2 )T , and a desired

parameter γ < 1. The inequality (13) guarantees the con-
vergence of estimation error to zero due to the fact that
supt∈[kT,(k+1)T ) |x̂(t) − x(t)| ≤ M |x̂(kT ) − x(kT )| where
M is a constant. The latter inequality holds because the
dynamics for x̂− x are linear and their growth is bounded
over a finite interval.

In order to obtain ξ̂1 and ξ̂2, we prepare the back-and-forth
observer (4) and (5) for the x1-subsystem of (6) and for the
x2-subsystem of (7), respectively. For each subsystem, the
injection gains Lf and Lb are designed such that (2) and (3)
hold with d = T/2 and

α =

(
γ√

2 max{α1, α2, α3, α4}

) 1
R

where α1 = M1 + L1L2 + L2, α2 = L1M2 + M2, α3 =
M2 + L1L2 + L1, α4 = L2M1 +M1 and

Mi := ‖eAiT ‖, Li :=

∥∥∥∥∥
∫ T

0

eAisdsAij

∥∥∥∥∥ , i, j = 1, 2, i 6= j,

and let R+1 be the number of round-trips of numerical back-
and-forth integrations that are possible within the interval of
length T/2. Clearly, the number R relies on the computation
power.

Let the initial condition ξ̂1(0−) and ξ̂2(0−) be arbi-
trary. Fig. 2 illustrates the strategy to obtain ξ̂1(kT−) and
ξ̂2(kT−), for k = 2, over the interval [T, 2T ) when mode 2
is active. At time t = T , the estimate x̂1(T ) and x̂2(T )
are set to ξ̂1(T−) and ξ̂2(T−) respectively, and they are
integrated in the real time by (11). At the same time, the
initial condition of the forward observer (for estimating x2)
is set by ξ̂2(T−), and this forward observer runs in the
real time first until T + T/2. At T + T/2, the backward
observer is employed with the terminal state of the forward
observer as its initial condition. The round-trip of back-
and-forth operation continues R times with the input-output
data of the interval [T, T + T/2], after which the forward
observer is finally integrated from T to 2T . Since the time
elapsed by the back-and-forth operation and the last forward
operation does not exceed T/2, the last forward integration
will ‘catch up’ with the real time, as indicated in Fig. 2.
While these operations are performed, the information about

Fig. 2. Operation time chart for mode 2 in the interval [T, 2T ). Solid
arrow implies real time frame, and solid-dot means numerical integration
time frame that is faster than real time. Circles with letters help identifying
the same times.

ξ̂2(t) is collected as illustrated in the figure. At the same
time with the start of the last forward observer, we begin the
integration of

˙̂
ξ1 = A1ξ̂1 +A12ξ̂2 (14)

with the initial condition ξ̂1(T ) = ξ̂1(T−) and with the signal
ξ̂2(t) obtained by back-and-forth operation over the interval
[T, 2T ). By this procedure, we obtain ξ̂1(2T−) and ξ̂2(2T−).
This procedure repeats in the next interval, with the role for
x1 and x2 being switched, and instead of (14), the following
equation is used to compute ξ̂2:

˙̂
ξ2 = A2ξ̂2 +A21ξ̂1. (15)

We now proceed with the error analysis. Let ε := x̂ − x.
Then, ε(kT ) = x̂(kT )−x(kT ) = ξ̂(kT−)−x(kT ). We note
that, for the (2k + 1)-th interval with k being nonnegative
integer, ξ̂1 is the estimate from the back-and-forth observer
while ξ̂2 is the state of (15), and for the 2k-th interval, their
roles are reversed. Therefore, in the first interval [0, T ), we
have that

|ε1(T )| ≤ αR|ε1(0)|

|ε2(T )| ≤ ‖eA2T ‖|ε2(0)|+

∥∥∥∥∥
∫ T

0

eA2sdsA21

∥∥∥∥∥ [αR|ε1(0)|
]
.

Similarly, we can derive the following expressions for the
second interval [T, 2T ),

|ε1(2T )| ≤ ‖eA1T ‖|ε1(T )|+

∥∥∥∥∥
∫ T

0

eA1sdsA12

∥∥∥∥∥ [αR|ε2(T )|
]

≤ αR‖eA1T ‖|ε1(0)|+ αR

∥∥∥∥∥
∫ T

0

eA1sdsA12

∥∥∥∥∥ ‖eA2T ‖|ε2(0)|

+ α2R

∥∥∥∥∥
∫ T

0

eA1sdsA12

∥∥∥∥∥
∥∥∥∥∥
∫ T

0

eA2sdsA21

∥∥∥∥∥ |ε1(0)|
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and

|ε2(2T )| ≤ αR|ε2(T )|

≤ αR‖eA2T ‖|ε2(0)|+ α2R

∥∥∥∥∥
∫ T

0

eA2sdsA21

∥∥∥∥∥ |ε1(0)|.

The terms within the brackets, [·], are due to the back-and-
forth observer, which yields a rich estimation on the entire
interval of length T , including the initial period. Finally, it
is seen that

|ε(2T )| ≤ |ε1(2T )|+ |ε2(2T )|
≤ αR(M1 + L1L2 + L2)|ε1(0)|+ αR(L1M2 +M2)

× |ε2(0)|

≤ γ√
2

(|ε1(0)|+ |ε2(0)|) ≤ γ|ε(0)|.

This proves the claim (13) for even k. For odd k, the proof
is similar and thus omitted.

An underlying reasoning is that the use of the back-and-
forth observer has improved the transient response of the
state estimation error, thus leading to quality estimates of
the state variable over the entire interval.
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