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Gas Temperature Effect on Discharge-Mode
Characteristics of Atmospheric-Pressure Dielectric
Barrier Discharge in a Helium—Oxygen Mixture
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Abstract—For a better understanding of gas temperature effects
on plasma characteristics, a numerical study has been carried out
for a dielectric barrier discharge (DBD) with a helium-oxygen
mixture at atmospheric pressure. A one-dimensional time-
dependent simulation code has been developed to solve continuity
equations for plasma species and Poisson’s equation for electric
field calculation for a parallel-plate DBD reactor. To include tem-
perature effects, gas heating by enthalpy change and Joule heating
with ionic current movement are considered in the helium—oxygen
plasma including 13 species reacting with one another according
to 34 reactions depending on the gas temperature. Varying the am-
bient temperature from 300 K to 500 K, the plasma characteristics
are calculated for the temporal variations and spatial distributions
of electric field and species densities in the DBD region, and
the different features of discharge modes are described by the
voltage—current characteristic curves. A glowlike mode, which
typically shows the formation of cathode fall, Faraday dark space,
negative glow, and positive column in the spatial distributions
of electric field and plasma density, is found in the discharge at
a low ambient temperature, while a Townsend discharge mode
with moderate electric field intensity and lower electron density is
characterized at higher ambient temperatures. The temperature-
dependent reactions strongly influence the generation and loss of
species in the DBD plasma, and the decomposition of O3 into O
or O, and the quenching of metastable helium by the resultant
O or O, play an important role in determining the distinct dis-
charge mode in the DBD of a He—O- mixture. Furthermore, it is
understood that the discharge-mode transition is controllable by
the coupled effects of oxygen additive concentration, frequency,
and gas temperature. A small amount of O, additive or a high-
frequency operation exhibits a glow mode in a specific range of
ambient temperature, of which reason can be explained by density
variation and quenching of helium metastable species caused by
the produced oxygen-related species.

Index Terms—Atmospheric-pressure dielectric barrier dis-
charge (DBD), discharge-mode characteristics, gas temperature
effect, He— O plasma, time-dependent simulation.

I. INTRODUCTION

IELECTRIC barrier discharge (DBD) has been used to
generate nonequilibrium atmospheric-pressure plasmas in
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a few millimeters’ gap between the electrodes that are cov-
ered with thin dielectric layers. The conventional application
of DBD has been found typically in ozone production with
spatially localized streamers [1], and recent studies for the
generation of homogeneous DBD make it more attractive to
produce abundant reactive species for various industrial fields
[21-[5].

The homogeneous DBD has two distinct discharge modes:
glow and Townsend. The Townsend-mode DBD is character-
ized by small electric field distortion with low plasma den-
sity, while the glow-mode DBD exhibits high-density plasmas,
which are more effective in materials processing. For this
reason, current research interests have been mainly focused
on understanding the mechanism of generation and sustenance
of the glow DBD, and some specific control conditions are
needed to maintain the glow mode. For the generation of glow
DBD at atmospheric pressure, Kanazawa et al. [6] suggested
three essential elements: helium as discharge gas, electrodes
covered with dielectric barriers, and higher frequency power
operation. Later, Massines et al. [3] verified experimentally that
helium metastable species play dominant roles in generating
and sustaining the glow mode in atmospheric-pressure helium
discharge and extended their research to various discharge gas
conditions [4]. From numerical simulation work, Gadri [7]
showed that dielectric-barrier-controlled atmospheric-pressure
glow discharges have the same characteristics to those of low-
pressure dc glow discharges, for instance, high electric field dis-
tortions by a cathode sheath layer formation along with a nearly
quasi-neutral positive column. Lee et al. [8] also simulated that
the operation regimes for a glow mode of helium DBD could be
determined by both oxygen additive concentration and applied
power frequency. On the basis of these previous outcomes, it
is emphasized that discharge reactor configuration, voltage and
frequency of input power supply, and discharge gas species are
the major factors influencing the generation and sustenance of
a glow DBD.

However, in practice, when a DBD reactor is operated, gas
temperature rise is usually accompanied because some part
of the input electric power is inefficiently converted into heat
over the entire electrodes and barriers enclosing the whole
discharge volume. Moreover, the gas temperature in DBD can
easily be varied because the reactor can be exposed to high or
low ambient temperature in specific applications. In any cases,
plasma characteristics are vulnerable to temperature changes,
while plasma species react among them with the associ-
ated temperature-dependent reaction rates in a nonequilibrium
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plasma state. Such temperature change effects on DBD charac-
teristics are also regarded as among the key issues for research
to find optimum operational conditions for material surface
treatment, which might be influenced by process parameters
like gas temperature, gas flow, substrate temperature, etc., in
atmospheric-pressure nonequilibrium plasma processing [9].

There have been numerous studies dealing with the issues on
the effects of gas temperature in some types of atmospheric-
pressure nonequilibrium plasmas. Among them, a gas tem-
perature rise makes a breakdown voltage increase in corona
discharge [10], and some plasma characteristics, such as elec-
tron density and electron temperature, are dependent on gas
temperature in microwave plasmas [11]. In the case of DBD,
there has also been the temperature issue that elevating the
gas temperature decreases the ozone generation efficiency in an
ozonizer [1], [12]. Moreover, it was reported that a temperature
rise by gas heating could break the homogeneity of glowlike
barrier discharge [13]. Even a recent experimental work showed
temperature-dependent specific discharge patterns as the tem-
perature decreased from room temperature to 88 K in a cryo-
DBD [14]. Previous work showed that the temperature effect
on DBD is evident, and more extensive research is essential for
detailed analysis on temperature-dependent plasma characteris-
tics in DBD.

In this numerical work, a one-dimensional (1-D) time-
dependent simulation code for the atmospheric-pressure DBD
in a helium-oxygen mixture is developed with temperature-
dependent reactions among plasma species to understand
temperature effects on DBD characteristics. The discharge
characteristics of DBD are calculated under different ambient
temperatures varying from 300 K to 500 K in a mixture of he-
lium plasma gas and oxygen additive gas. The voltage—current
characteristic curves of the discharge, which are suggested
as a method to identify the feature of each discharge mode,
are compared for the plasma modes in different temperature
conditions. Additionally, the characteristics of DBD affected by
other operating factors, such as O» additive concentration and
RF frequency, are compared to find the influence of operating
factors coupled with temperature on mode transition. Last,
the importance of temperature control in the DBD reactor is
examined as a case study.

II. NUMERICAL SIMULATION

To simulate an atmospheric-pressure DBD, a 1-D time-
dependent numerical study is carried out on the basis of a
numerical code previously developed in the authors’ research
group [8], [15], [16]. In this simulation model for a 1-D DBD
plasma, as shown in Fig. 1, the plasma is assumed to be
uniformly distributed without any filamentary discharge in the
computational domain of a parallel-plate DBD reactor with a
3-mm gap between the electrodes that are covered with dielec-
tric materials of 1 mm in thickness with a relative permittivity
(e,) of eight.

The motions of electrons and ions are calculated by continu-
ity equations, and the electrostatic potential and electric field
are obtained from Poisson’s equation. For boundary conditions
at the plasma-barrier interfaces, all the incoming fluxes of elec-
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Fig. 1. Schematic diagram of a 1-D DBD computational domain used in this
simulation.

trons or ions toward each barrier are assumed to be accumulated
as surface charges depending on the electric field direction at
the interfaces in the presence of secondary emission from the
barrier surface and ion—electron recombination on the barrier

Jdo;

atl = (1 + ’yi)nivi — Qpe0i0¢
do,

ot =MNeVe — Qre0i0¢

where the subscripts ¢ and e indicate the ion and the electron,
respectively; o is the accumulated surface charge density; ~y
(assumed to be 0.01) is the secondary emission coefficient from
barrier surfaces; v is the drift velocity; n is the number density;
and «,.. (assumed to be 107%) is the ion—electron recombina-
tion coefficient over barrier surfaces. The boundary conditions
for electric field and electric potential at the plasma—barrier
interfaces are calculated from Gauss’ theorem with surface
charges [15].

To find the gas temperature, the energy equation, including
enthalpy changes and Joule heating during the discharge, is
adopted

A(pepTy)

% = =V (=kVTy + pvcyTy) + PV - v

*ZRz'AHiJrZ]'i'E

where p is the total mass density, ¢, is the heat capacity, x is
the thermal conductivity, v is the average gas velocity, P is the
thermodynamic pressure, R; is the rate coefficient of the ith
reaction with the enthalpy change of H;, and j; is the current
induced by the th reaction listed in Table I. For the simplified
1-D calculation, the average gas velocity (v) is assumed to be
externally controlled to be kept constant at 5 m/s over the whole
discharge region by neglecting the boundary layer phenomena
for the gas temperature calculation inside the discharge region.
The ambient temperature is designated as the gas temperature
at the barrier—plasma interface.

As the physical and chemical processes take place in the
discharge gas, 34 reactions involving 13 helium- and oxygen-
related species [He, He(2'S), He(23S), He™, Hey, Hep (2% 1),

Authorized licensed use limited to: Seoul National University. Downloaded on August 12,2010 at 05:07:42 UTC from IEEE Xplore. Restrictions apply.



1984

IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 38, NO. 8, AUGUST 2010

TABLE 1
PHYSICAL AND CHEMICAL REACTIONS AND THEIR CORRESPONDING RATE COEFFICIENTS OF A HELIUM—OXYGEN MIXTURE IN THE DBD

i™ Reaction Rate coefficient (k;) Reference
1 He +e — He' +2e JEN) 117]
2 Hete— He(2'S)+e JEN) [17]
3 Hete—He(2’S)+e SEN) 117]
4 He* + 2He — Hey(a®> )+ He 2.0x 103 cm®s! [20]
5 Hey(a®S ) + Hex(@®S ) — He, +2He +e 1.5 x 10% em3s! [20]
6 He,(a*S,") + M — 2He + M 1.0 x 10°s! [21]
7 He" +He" — He, +e 1.5 x 107 em3s™! [20]
8 He, +e¢ — He" + He 8.9 x 10 cm3s’! [21]
9 He"+He' — He + He' + e 1.5 x 10(7,/300)%3 cm3s°! [22]
10 He+He — He+He™ 1.0 x 10 (7,/300)°% cm3s™! [22]
11 Oy+e— 0, +2e FE/N) [17]
2 Ofte—s0+0 4.8 x 107cm?3s! [17]
13 0,+0">0,7+0 2.0 x 101 (7,/300) 04 cm3s™! [22]
4 0y +te—0y JEN) L7
15 0;+0—>0,+0, 1.8 x 10" exp(-2300/T,) cms’! [23]
16 O,+te—0+0+e 2.0 x 10%cm?3s™! [23]
17 O3+e—0+0,+e 5.0 x 107 cm3s7! [23]
18 0+0+0,—0,+0, 3.8 x 10%%exp(-170/T,)/ T, cmPs’! [23]
19 0+0,+0—0;+0 2.15 x 10 exp(345/T,) cm®s™! [23]
20 0+0,+0,—0;+0, 6.9 X 1074(300/7) 1% em®s! [23]
21 0+0,+0;—0;+0; 4.6 x 1039 exp(1050/7,) cm®s™! [23]
2 0;+0,50+0,+0, 7.3 x 10" %exp(-11400/T,) cm3s™! [23]
23 0;405—0+0,+ 0, 1.65 x 107 exp(-11400/T,) cm3s™! [23]
24 0+0+0—>0,+0 9.21 x 107,063 ¢mSs! [22]
25  He +0,—He+0, +e 2.54 x 10"°(7,/300)°3 cm3s™! [22]
26 He +O—He+O +e 2.54 x 1071°(7,/300)* cm3s™! [22]
27 He+O0+0—He+0, 1.04 x 107 emSs”! [24]
28 He+0,+0—He+O0; 34x10M75"2 em®s’! [22]
29  He+0;—He+0,+0 2.28 x 102 cm3s™! [24]
30 He +0;>0," +O+He+e 2.54 x 1071°(7,/300)*cms™! [22]
31 He'+0,—0 +0+He 1.07 x 107 (7,/300)*3 cm3s! [22]
32 He +0; >0 +0,+He 1.07 x 107 (T/300)°3 em3s™! [22]
33 He'+0,— O, + He 33 x 10" (7,/300)*em3s™! [22]
34 He'+0—O0 +He 5.0 x 10™(7,/300)* cm?s™! 22]

Hej, O, 0", Oy, OF, O3, and electron] are listed in Table I,
along with their rate coefficients that are dependent on the
gas temperature. In this table, He" represents the helium
metastable-state species, i.e., He(2'S) and He(23S), and T,
means the gas temperature in kelvins. A Boltzmann’s equation
solver, namely, BOLSIG+ [17], has been used for the calcu-
lation of electron energy distribution function (EEDF), i.e.,

f(E/N). Then, the reaction rate coefficient, cross section, and
electron mobility, which are dependent on electric field, are
calculated from this EEDF. Moreover, the initial density of the
neutral species is determined by the ideal gas law, ie., P =
nkT, including the gas temperature effect on density variations.

In the calculation of the electrical characteristics of the
discharge, the discharge voltage between the dielectrics is
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TABLE II
PARAMETER VALUES USED IN THIS NUMERICAL WORK
Geometrical Parameters Input Power Parameters Gas Parameters Ambient
Temperature
Barrier Barrier relative | Discharge Applied Operation Plasma gas Additive gas
thickness permittivity dgi sgtzgce voltage frequency Concentration
1 mm 8.0 3 mm 1.5kV 10 ~30 kHz Helium Oxygen (Oy) 300 ~ 500 K
Sine wave (He) 3~ 10 ppm
6 12
2F 300K ] 2 1 1a
i 400K ]
| : 500 K 1 4 _ ] 10™
L ] ~ E
L 1 § {1 =
S 12 g _ BEGE §
x 1 < > N >
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Fig.2. Temporal variations of discharge voltages and currents responding to a Fig. 3. Temporal variations of densities of electron and He* species respond-

sinusoidal applied voltage in the DBD reactor at different ambient temperatures
(300 K, 400 K, and 500 K).

obtained, and the discharge current is calculated from the mod-
ified Sato’s equation, including the time-dependent variations
of the applied voltage [18]. A finite-difference method is taken
as a numerical method associated with a flux-corrected trans-
port (FCT) algorithm with upwind and Lax—Wendroff schemes
[15], which are subsequently corrected by a numerical method
suggested by Zalesak [19]. In Table II, all the parameter values
used in this numerical work are summarized for geometry, input
power, discharge gas, and ambient temperature.

III. SIMULATION RESULTS
A. Effects of Ambient Temperature

Simulations are carried out for DBD plasma characteristics
under three different ambient temperatures of 300 K, 400 K,
and 500 K at a fixed power frequency of 10 kHz and an
oxygen additive concentration of 5 ppm. Figs. 2 and 3 show
the temporal variations of electrical discharge characteristics
and average densities of electron and helium metastable species
(He"), respectively, during two phases of a sinusoidal applied
voltage.

In these figures, the repetitive profiles of discharge current,
discharge voltage, and average species densities are found
according to the applied voltage at different ambient temper-
atures. In Fig. 2 for 300 K, as the discharge voltage gradually
increases up to a breakdown voltage of the gas, the discharge
current slowly increases and then suddenly peaks up to a

ing to a sinusoidal applied voltage in the DBD reactor at different ambient
temperatures (300 K, 400 K, and 500 K).

maximal current density of 4.2 mA/cm2, which is followed
by a large distortion of the discharge voltage in return with
a rapid voltage drop. Such discharge patterns usually appear
in the discharge characteristic profiles of typical atmospheric-
pressure glow discharges [3], [8]. At the same moment of the
current peak, the average densities of electrons and helium
metastable species also exhibit their maximal values (1.0 x
100 ¢cm~3 for electron and 6.2 x 10'' cm™2 for He*), as seen
in Fig. 3. Meanwhile, at 400 K and 500 K in Figs. 2 and 3,
small discharge current peaks of less than 1.4 mA/cm? are
found with relatively moderate decreases in discharge voltages,
and electron and He* densities also show smaller peak values
compared to those at 300 K (2.0 x 10° cm™3 for electron and
3.4 x 10 cm~2 for He").

More distinguished characteristics according to ambient tem-
peratures appear in the spatiotemporal distributions of electric
field intensity (Fig. 4), electron density (Fig. 5), and He* density
(Fig. 6). When the discharge current reaches its peak value at
~ 510 ps or at ~ 560 us in the 300-K condition, a strong elec-
tric field distortion occurs near each barrier, and accordingly, a
high-density electron channel is formed in the whole discharge
region. Moreover, high-density formation of He* results in front
of each barrier where a cathode fall region usually falls on.
However, in the 500-K condition, the smaller electric field
and electron density distributions are found, and the dispersed
distributions of He" densities appear over the discharge region
with relatively lower densities.
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Fig. 4. Spatiotemporal variations of electric fields in the DBD reactor at
different ambient temperatures: (a) 300 K and (b) 500 K (in kilovolts per
centimeter).
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Fig. 5. Spatiotemporal variations of electron densities in the DBD reactor at
different ambient temperatures: (a) 300 K and (b) 500 K (in cubic centimeters).

Fig. 7 more clearly shows the differences in the spatial
distributions of electric field intensity and species densities
at the moment of the peak discharge current in the DBD
reactor among the three ambient temperature conditions. At
300 K, Fig. 7(a) shows the formation of cathode fall with
high electric field (up to 62 kV/cm) near the cathode barrier,
Faraday dark space, negative glow, and positive column in
the spatial variations of electric field, and electron and ion
densities. Such spatial plasma characteristics in the discharge
region have also been found in the typical low-pressure dc glow
discharge. Therefore, this plasma can be regarded as a glow
discharge, which exhibits the same behaviors reported in the
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Fig. 8. Comparison of voltage—current characteristic curves during a half
cycle of the sinusoidal applied voltage in the DBD reactor at different ambient
temperatures of (—) 300 K, (-----) 400 K, and (- - - - - - ) 500 K.

previous work dealing with a homogeneous glow DBD [3], [7],
[8]. In particular, it is noted that the highest He* density of
6.2 x 10! cm~2 is produced in this 300-K condition due to the
formation of glow discharge at atmospheric pressure. On the
other hand, at 400 K and 500 K, the Townsend-like discharge is
characterized, as shown in Fig. 7, with moderate electric field
intensities (< 40 kV/cm) and lower electron densities. It is also
noticeable that He* density is lower, while O and O3 densities
are relatively higher at higher temperature.

As the various discharge modes, such as Townsend, glow,
abnormal glow, and arc discharge, are distinguishable by their
voltage—current (V' —I) characteristic curves in the conventional
low-pressure dc discharge [9], an attempt has been made to
identify the exact discharge mode of the DBD by the calculated
V—I characteristic curves. As shown in Fig. 8 for 300 K,
the DBD plasma shows the typical characteristics of a self-
sustaining glow discharge with increasing discharge currents
up to 4.2 mA/cm?, even during a descending phase of the
discharge voltage (down to ~1.1 kV). On the other hand, at
400 K and 500 K, the plasma cannot be sustained because
the small discharge currents decreased in the voltage drop
phase.

B. Effects of Oxygen Additive and Power Frequency Coupled
With Gas Temperature

It was previously revealed that the effects of oxygen additive
and frequency play an import role in the determination of
discharge mode between Townsend and glow [3], [8]. In order
to find out in detail the effects of these factors along with
temperature, calculations are carried out in the cases of different
amounts of oxygen additive and changes of frequency.

To find the effects of oxygen additive in the helium plasma,
the amounts of O, concentration are varied with 3, 5, and
10 ppm at 10 kHz and 300 K. The calculated results for different
oxygen concentrations are compared in Fig. 9 for the spatial
distributions of electric field and species densities. At low
amounts of oxygen (3 and 5 ppm), higher He* densities (up
to 7.7 x 10'! cm™3) are found near the cathode fall region in a
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Fig. 10. Spatial distributions of He*, O, and O3z densities, along with electric
field intensities at the peak currents in the DBD reactor for different frequencies
of (—) 10 kHz, (-----) 20kHz, and (- - - - - - ) 30 kHz at 300 K and 5 ppm.

glowlike discharge. However, when an excessive O (10 ppm)
is added, the discharge shows a Townsend mode with low He*
densities (< 2.1 x 10*! cm™?) and relatively higher densities
of O and Ogs. This can be explained that the excessive Oo
addition makes the densities of oxygen-related species (like
0O, O, and O3) increase, and these species, in turn, quench
the production of helium metastable species. The changes of
discharge modes with the O additive concentration are more
apparent in the V—I characteristic curves shown in Fig. 11(a),
where the glow and Townsend modes are clearly distinguished
between the Oy concentrations of 3 and 10 ppm.

Additional calculations are carried out to understand the
frequency effects for 10, 20, and 30 kHz at 5-ppm oxygen
additive and 400-K ambient temperature. As the result shows in
Fig. 10, the DBD operation with a higher frequency at 30 kHz
produces relatively higher species densities (5.1 x 10** cm™3
for He*, 5.2 x 10 ¢cm=2 for O, and 2.8 x 10! cm™3 for
Os3), and it is presumed that the higher frequency operation
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also makes electron density and discharge current increase to
sustain a glowlike discharge. The V—I characteristic curves
shown in Fig. 11(b) exhibit that the higher frequency operation
tends to make the maximum discharge current increase with the
decrease of the discharge-sustaining voltage.

IV. DISCUSSION

The simulation results show that the discharge characteristics
in DBD are strongly influenced by the gas temperature. The
gas temperature is considered to affect the concentrations of
the species to increase or decrease through the temperature-
dependent reactions listed in Table I for an atmospheric-
pressure DBD of He—Os mixture gas. The mechanism of the
mode transition from glow to Townsend due to the temperature
rise can be explained by the following two-step reactions. In the
first step, some temperature-dependent reaction rate coefficients
increase at a high ambient temperature, and the dissociation of
ozone is accordingly accelerated by the relevant reactions in
Table I, such as

O3+ 05 — O+ 0g + 0y
with koo = 7.3 x 1071 exp(—11400/T,) cm® - s~*
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or

O3 +03 — O+ 03 + O3
with kg3 = 1.65 x 107 exp(—11400/T,) cm® - s~ *.

Hence, the density of ozone reduces, while the densities of
O and O, increase in the discharge region. In the second step,
these increased O and O species quench the generation of He*
species that are necessary to sustain a glow discharge state, and
therefore, the density of He* decreases so that the discharge
characteristics will be readily changed to a Townsend mode.

In a similar manner, the discharge-mode transition can also
be explained by the generation and reduction of the helium
metastable species affected by other factors, such as oxygen
additive and frequency, as shown in Fig. 12 with a schematic
diagram of the physical mechanism determining a discharge
mode in DBD by control of O, additive, frequency, and gas
temperature. In the case of oxygen additive control, a large
amount of oxygen additive results in the generation of high
density of O and O, which, in turn, quench the He" generation
to lead the discharge eventually to a Townsend mode. On the
other hand, in the case of frequency change, increasing the
frequency enhances the electric field intensity and electron
density, which generate much more He" species in the whole
discharge region exhibiting a glowlike mode.

As the discharge mode is determined by the coupled effects
of the three factors (not only by a single one), it is hard to
control the discharge mode affected by an individual factor
in a certain condition. The previous authors’ work reported
the discharge modes determined by the coupled effects of
the two factors, namely, O, additive and frequency [8]. In
addition to these two factors, the mode transition between
glow and Townsend can be characterized by the coupled three
factors, i.e., Oo additive, frequency, and ambient temperature.
In Fig. 13, the three mode transition regimes, called as zones A,
B, and C, are separated according to the operating values of
ambient temperature and frequency, and the discharge mode in
each zone is determined by the value of O concentration. For
a glow (or Townsend) discharge mode, the Oy concentration
should be larger (or smaller) than the critical one.

When focusing only on the temperature effect on the dis-
charge mode, it is inferred that the temperature control of a
DBD reactor is important to minimize the unintended change
of discharge characteristics in any ambient or internal circum-
stances. In order to illustrate such a situation, the effects of
electrode barrier cooling on the discharge mode are shown in
Fig. 14. The ambient and inlet gas temperatures are initially
kept at 400 K for the DBD, and then, three cooling cases are
considered: 1) no barrier cooling; 2) barrier cooling down to
350 K; and 3) barrier cooling down to 300 K, as shown in
Fig. 14(a). The different discharge characteristics are compared
by the V—I characteristic curves shown in Fig. 14(b), in which
the discharge without cooling shows a Townsend mode, but
the discharge characteristics are gradually changed to a glow
mode with lowering the barrier temperature by cooling. These
results suggest that the discharge feature can be maintained or
controlled for a homogeneous glow mode, even in an elevated
ambient or gas temperature condition by a well-controlled heat
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Fig. 12.  Schematic diagrams describing the physical mechanisms of the discharge mode determined by control of oxygen additive, frequency, and gas temperature

for the DBD. (a) Townsend mode. (b) Glow mode.
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i
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Fig. 13. Discharge-mode transition zones appeared in the temperature-

frequency parameter space, which are characterized by the amount of oxygen
additive. In each zone, a mode transition between glow and Townsend takes
place at a critical Oz concentration (7 ppm in zone A, 5 ppm in zone B, and
3 ppm in zone C). If the O2 concentration is greater than the critical one, the
discharge exhibits a glow mode; otherwise, it exhibits a Townsend mode.

removal design of the DBD reactor, including electrode-cooling
components, barrier material options, and control of input gas
temperature and flow rate.

V. CONCLUSION

A 1-D time-dependent simulation for the atmospheric-
pressure DBD has been developed by taking account of
temperature-dependent reactions in a He—Os mixture plasma.
The calculated results have been obtained for the temporal vari-
ations and spatial distributions of the discharge characteristics,
such as electric field, electron density, and ion and radical
species densities. The different discharge characteristics of
glow and Townsend modes have been described and compared
by the discharge voltage—current characteristic curves.

The effects of gas temperature on discharge characteristics
have been numerically simulated for a frequency of 10 kHz
and an O, additive concentration of 5 ppm. At low ambient
temperature (300 K), a glowlike mode is characterized in the
DBD with high values of discharge current, electron and He*
densities, and electric field intensity. On the contrary, at high
ambient temperature (400 K or 500 K), a Townsend discharge

(a) 450
400 i no cooling
g 4001
e - cooling (keep 350 K at barrier)
=1 = s e S . T - e
‘é [ _~~7 o e -
2 350 i N cooling (keep 300 K at barrier) oo
= L
12} -’
2 |
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»B/oL—
0 0.1 0.2 0.3
Distance (cm)
(b) |
15F
S |
=
= L
o i
8
s T
S L
v L
2
= L
R =
[
205
Q L
i no cooling
- — — — cooling (keep 350 K)
5 e CO0lING (ke ep 300 K)
“ PRI | T | .

107" 100 10!
Discharge Current (mAIcmz)

Fig. 14. Effects of electrode barrier cooling (a) on temperature profiles inside
the DBD region and (b) on discharge voltage—current characteristic curves for
10 kHz and 5 ppm.

mode is featured with the reduced values of discharge current,
electron and He" densities, and electric field intensity. The
mode characteristics are also analyzed by the voltage—current
characteristic curves, and the different discharge characteris-
tics caused by ambient temperature changes suggest that the
temperature-dependent reactions strongly influence the genera-
tion and loss of species in the DBD plasma.

Authorized licensed use limited to: Seoul National University. Downloaded on August 12,2010 at 05:07:42 UTC from IEEE Xplore. Restrictions apply.



1990

The coupled influences of frequency and temperature, along
with Os concentration on mode transition characteristics, have
been analyzed, and the schematic diagrams of the physical
mechanisms and transition zones for the discharge modes have
been presented. A small amount of O additive or a high-
frequency operation shows a glow mode in a specific range of
ambient temperature, whose reason is explained by the density
variation and quenching of helium metastable species caused by
the produced oxygen-related species. It is understood from the
mode transition zones suggested herein that the transition phe-
nomena between glow and Townsend modes are controllable
not by a single factor but by the coupled factors of O2 additive,
frequency, and gas temperature. Calculations for different cool-
ing cases predict that the discharge mode can be determined by
temperature control through boundary cooling and that a proper
cooling design of the DBD reactor has to be supplemented to
generate and sustain a stable homogeneous DBD.
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