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Abstract: In 1995, Suh and Park developed a numerical model that computes the 

reflection of regular waves from a fully-perforated-wall caisson breakwater. This paper 

describes how to apply this model to a partially-perforated-wall caisson and irregular 

waves. To examine the performance of the model, existing experimental data are used 

for regular waves, while a laboratory experiment is conducted in this study for irregular 

waves. The numerical model based on a linear wave theory tends to over-predict the 

reflection coefficient of regular waves as the wave nonlinearity increases, but such an 

over-prediction is not observed in the case of irregular waves. For both regular and 

irregular waves, the numerical model slightly over- and under-predicts the reflection 

coefficients at larger and smaller values, respectively, because the model neglects the 

evanescent waves near the breakwater. 
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1. Introduction 

 

   A perforated-wall caisson breakwater is often used to remedy the drawbacks of a 

vertical caisson breakwater. It reduces not only wave reflection but also wave 

transmission due to overtopping. It also reduces wave forces, especially impulsive wave 

forces, acting on the caisson (Takahashi and Shimosako, 1994; Takahashi et al., 1994). 

A conventional perforated-wall caisson consists of a front wave chamber and a back 

wall as shown in Fig. 1(a), and the water depth inside the wave chamber is the same as 

that on the rubble foundation. The weight of the caisson is less than that of a vertical 

solid caisson with the same width, and moreover most of this weight is concentrated on 

the rear side of the caisson. Therefore, difficulties are sometimes met in the design of a 

perforated-wall caisson to satisfy the design criteria against sliding and overturning. In 

addition, particularly in the case where the bearing capacity of the seabed is not large 

enough, the excessive weight on the rear side of the caisson may have an adverse effect. 

In order to solve these problems, a partially-perforated-wall caisson as shown in Fig. 

1(b) is often used, which provides an additional weight to the front side of the caisson. 

In this case, however, other hydraulic performance characteristics of the caisson such as 

wave reflection and overtopping may become worse compared with a fully-perforated-

wall caisson. 

   In order to examine the reflection characteristics of a perforated-wall caisson 

breakwater, hydraulic model tests have been used (Jarlan, 1961; Marks and Jarlan, 

1968; Terret et al., 1968; Bennett et al., 1992; Park et al., 1993; Suh et al., 2001a). 

Efforts have also been made toward developing numerical models for predicting the 
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reflection coefficient (Kondo, 1979; Kakuno et al., 1992; Bennett et al., 1992; Fugazza 

and Natale, 1992; Suh and Park, 1995; Suh et al., 2001a). All the aforementioned 

studies dealt with the case in which a fully-perforated-wall caisson lies on a flat sea bed, 

except Park et al. (1993) and Suh and Park (1995). The former carried out a laboratory 

experiment of wave reflection from a partially-perforated-wall caisson mounted on a 

rubble foundation, while the latter developed a numerical model that predicts the wave 

reflection from a fully-perforated-wall caisson mounted on a rubble foundation. Both 

used only regular waves. Recently, on the other hand, Suh et al. (2002) compared the 

regular wave approximation and spectral wave approximation to compute the reflection 

of irregular waves from a perforated-wall caisson breakwater. They concluded that the 

spectral wave approximation is more adequate but the root-mean-squared wave height 

should be used for all the component waves to compute the energy dissipation at the 

perforated wall. 

   In the present paper, the experimental data of Park et al. (1993) are compared with 

Suh and Park’s (1995) numerical model results. The Suh and Park’s model, originally 

developed for a fully-perforated-wall caisson breakwater, is used for a partially-

perforated-wall caisson breakwater by assuming that the lower part of the front face of 

the caisson (below the perforated wall), which is actually vertical, is assumed to have a 

very steep slope. In addition, a laboratory experiment is performed for irregular wave 

reflection from a partially-perforated-wall caisson breakwater using the same 

breakwater model as that used in the experiment of Park et al. (1993) for regular waves. 

Suh and Park’s (1995) regular wave model is then applied, by following the method of 

Suh et al. (2002), to the calculation of irregular wave reflection. In the following section, 

the numerical model of Suh and Park (1995) and its extension to irregular waves (Suh et 
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al., 2002) are briefly described for the sake of completeness of the paper, although they 

were already published in the previous papers. In section 3, the experimental data for a 

partially-perforated-wall caisson subject to regular waves of Park et al. (1993) are 

compared with the numerical model. In section 4, the laboratory experiment for 

irregular waves is described. In section 5, the experimental results for irregular waves 

are compared with the predictions by the regular wave model. The major conclusions 

then follow. 

 

2. Numerical model 

 

   Based on the extended refraction-diffraction equation proposed by Massel (1993), 

Suh and Park (1995) developed a numerical model to compute the reflection coefficient 

of a fully-perforated-wall caisson mounted on a rubble foundation when waves are 

obliquely incident to the breakwater at an arbitrary angle. The x -axis and y -axis are 

taken to be normal and parallel, respectively, to the breakwater crest line, and the water 

depth is assumed to be constant in y -direction. Taking 0x  at the perforated wall, 

bx   at the toe of the rubble mound, and Bx   at the back wall of the wave 

chamber, Suh and Park (1995) showed that the function )(~ x  [see Suh and Park 

(1995) for its definition] on the rubble mound ( 0 xb ) satisfies the following 

ordinary differential equation: 
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with the boundary conditions as follows: 
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The subscripts 1 and 3 denote the area of flat sea bed ( bx  ) and inside the wave 

chamber ( Bx 0 ), respectively, and   is the wave incident angle. In (1), the depth-

dependent functions )(xD  and )(xE  are given by 
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where )tanh( kh , k  is the wave number which is related to the water depth h , 

wave angular frequency  , and gravity g , by the dispersion relationship 

)tanh(2 khgk , )sin(sin 3311  kk  , and 0u , 1u , and 2u  are given by 
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where the abbreviation khK 2  was used. As seen in (5), the model equation includes 

the terms proportional to the square of bottom slope and to the bottom curvature which 

were neglected in the mild-slope equation so that it can be applied over a bathymetry 

having substantial variation of water depth. Note that the coefficients associated with 

the higher-order bottom effect terms in Suh and Park’s (1995) paper were replaced by 

those of Chamberlain and Porter (1995), which are given in more compact forms as in 

(6) to (8). 

   In (2) and (3), 1i , 333 cos ik ,   is the length of the jet flowing through 

the perforated wall, and   is the linearized dissipation coefficient at the perforated 

wall given by (Fugazza and Natale, 1992) 
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where wH  is the incident wave height at the perforated wall, )tan( 3BkW  , 

 /3kR  , PWG 1 , 3kP  , and   is the energy loss coefficient at the 

perforated wall: 
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where r  is the porosity of the perforated wall. In the preceding equation, 3cosr  

denotes the effective ratio of the opening of the perforated wall taking into account the 
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oblique incidence of the waves to the wall. For normal incidence, this reduces to r  as 

in Fugazza and Natale (1992). cC  is the empirical contraction coefficient at the 

perforated wall. Mei et al. (1974) suggest using the formula 

 

   24.06.0 rCc                                                    (11) 

 

for a rectangular geometry like a vertical slit wall. Note that R  in Eq. (9) is a function 

of  . Rearranging (9) gives a quartic polynomial of  , which can be solved by the 

eigenvalue method [see Press et al. (1992), p. 368]. 

   In (3), the jet length,  , represents the inertial resistance at the perforated wall. 

Fugazza and Natale (1992) assumed that the importance of the local inertia term is weak, 

and they took the jet length to be equal to the wall thickness, d . On the other hand, 

Kakuno and Liu (1993) proposed a blockage coefficient to represent the inertial 

resistance of a vertical slit wall: 
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where A2  is the center-to-center distance between two adjacent members of the slit 

wall, a2  is the width of a slit, so that the porosity of the wall is Aar / . By 

comparing the Fugazza and Natale (1992) and Kakuno and Liu (1993) models, Suh et al. 

(2002) showed that 
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which is much greater than the wall thickness, d , implying the influence of the inertial 

resistance term is not so insignificant. In this study, (12) and (13) were used to calculate 

the jet length. 

   The differential equation (1) with the boundary conditions (2) and (3) can be solved 

using a finite difference method. Using the forward-differencing for dxbd /)(~  , 

backward-differencing for dxd /)0(~ , and central-differencing for the derivatives in (1), 

the boundary value problem (1) to (3) is approximated by a system of linear equations, 

BAY  , where A  is a tridiagonal band type matrix, Y  is a column vector, and B  

is also a column vector. After solving this matrix equation, the reflection coefficient rC  

is calculated by 

 

   }1)(~R e {  bCr                                                  (14) 

 

where the symbol Re represents the real part of a complex value. 

   In the calculation of the dissipation coefficient   in (9), the incident wave height at 

the perforated wall wH  is a priori unknown. In the case where the caisson does not 

exist and the water depth is constant as 3h  for 0x  (Note that 3h  is not the water 

depth inside the wave chamber but that on the rubble mound berm in the case of a 

partially-perforated-wall caisson breakwater), Massel (1993) has shown that the 

transmitting boundary condition at 0x  is given by 
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The governing equation (1) and the upwave boundary condition (2) do not change. After 

solving this problem, the transmission coefficient tC  is given by )}0(~Re{tC , 

from which wH  is calculated as tC  times the incident wave height on the flat bottom. 

   As for irregular waves, the reflection coefficient is calculated differently for each 

frequency component. The wave period is determined according to the frequency of the 

component wave, while the root-mean-squared wave height is used for all the 

component waves to compute the energy dissipation at the perforated wall. The spectral 

density of the reflected waves is calculated for a particular frequency component by 
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where f  is the wave frequency and )(, fS i  is the incident wave energy spectrum. 

The frequency-averaged reflection coefficient is then calculated as (Goda, 2000) 
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where im ,0  and rm ,0  are the zeroth moments of the incident and reflected wave 

spectra, respectively, obtained by integrating each spectrum over the entire frequency 

range.  

 

3. Comparison with experimental data for regular waves 
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   Park et al. (1993) carried out a laboratory experiment in the wave flume at Korea 

Ocean Research and Development Institute, which was 53.15 m long, 1 m wide, and 

1.25 m high. A composite breakwater with a partially-perforated-wall caisson was used 

in the experiment. Fig. 2 shows an example of the breakwater model with a wave 

chamber width of 20 cm. The mound was constructed with crushed stones of 0.12 to 

0.24 cm
3
 class and it was covered by thick armor stones of 5.6 cm

3
 class. Two rows of 

concrete blocks of 3 cm thickness were put at the front and back of the caisson. The 

total height of the mound was 24 cm with 1:2 fore and back slopes, and the berm width 

of the mound was 25 cm. The model caisson was made of transparent acrylic plates of 

10 mm thickness. Park et al. (1993) used three different types of perforated walls of the 

same porosity but with vertical slits, horizontal slits, or circular holes. They found that 

the difference of reflection coefficients of different types of perforated walls was small. 

In this study, only the data of the vertical slit wall are used, which contained vertical 

slits of 2 cm width and 27 cm height with 4 cm separation between each slit so that the 

wall porosity was 0.33. The breakwater model was installed at a distance of about 30 m 

from the wavemaker. Wave measurements were made in the middle between the 

wavemaker and the breakwater by three wave gauges separated by 20 and 35 cm one 

another along the flume. The method of Park et al. (1992) was then used to separate the 

incident and reflected waves. 

The water depths on the flat bottom, on the berm and inside the wave chamber were 

50, 26 and 17 cm, respectively. The crest elevation of the caisson was 12 cm above the 

still water level, thus excluding any wave overtopping for all tests. Regular waves were 

generated. The wave period was changed from 0.7 to 1.8 s at the interval of 0.1 s, and 

two different wave heights of 5 and 10 cm were used for each wave period, except 0.7 
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and 0.8 s wave periods for which only 5 cm wave height was used. Three different wave 

chamber widths of 15, 20, and 25 cm were used. This resulted in a total of 66 test cases.  

It is well known that the wave reflection from a perforated-wall caisson breakwater 

depends on the width of the wave chamber relative to the wavelength. For a fully- 

perforated-wall caisson lying on a flat sea bed, Fugazza and Natale (1992) showed that 

the resonance inside the wave chamber is important so that the reflection is at its 

minimum when 25.0/ LB  where B  is the wave chamber width and L  is the 

wavelength. For a fully-perforated-wall caisson lying on a flat bed, the wavelength does 

not change as the wave propagates into the wave chamber as long as the inertia 

resistance at the perforated wall is assumed to be negligible. For a partially-perforated-

wall caisson mounted on a rubble mound which is examined in this study, however, the 

wavelength changes as the wave propagates from the flat bottom to the wave chamber. 

Since the wave reflection of a perforated-wall caisson is related to the resonance inside 

the wave chamber, it may be reasonable to examine the reflection coefficient as a 

function of the wave chamber width normalized with respect to the wavelength inside 

the wave chamber. 

Fig. 3 shows the variation of the measured reflection coefficients with respect to 

cLB /  where cL  is the wavelength inside the wave chamber. The reflection coefficient 

shows its minimum at cLB /  around 0.2, which is somewhat smaller than the 

theoretical value of 0.25 obtained by Fugazza and Natale (1992). In the analysis of 

Fugazza and Natale, they neglected the inertia resistance at the perforated wall. In front 

of a perforated-wall caisson breakwater, a partial standing wave is formed due to the 

wave reflection from the breakwater. If there were no perforated wall, the node would 

occur at a distance of 4/cL  from the back wall of the wave chamber, and hence the 
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largest energy loss would occur at this distance. In reality, however, due to the inertia 

resistance at the perforated wall, a phase differences occur between inside and outside 

of the wave chamber in such a way that the perforated wall slows the waves. 

Consequently the location of the node will move onshore, and the distance where the 

largest energy loss is gained becomes smaller than 4/cL . Therefore, the minimum 

reflection occurs at a value of cLB /  smaller than 0.25. In Fig. 3, it is also seen that 

increasing wave steepness leads to a reduction in the reflection coefficient. This is 

associated with an increase in the energy dissipation within the breakwater at higher 

wave steepnesses. 

The numerical model described in the previous section assumes that the water depth 

inside the wave chamber is the same as that on the mound berm as in a fully-perforated-

wall caisson breakwater shown in Fig. 1(a). However, for a partially-perforated-wall 

caisson breakwater used in the experiment (see Fig. 2), these water depths are different 

each other, having depth discontinuity at the location of the perforated wall. In order to 

apply the model to the case of a partially-perforated-wall caisson, we assume that the 

lower part of the front face of the caisson (below the perforated wall) is not vertical but 

has a very steep slope. As mentioned previously, the model equation (1), which includes 

the terms proportional to the square of bottom slope and to the bottom curvature, can be 

applied over a bed having substantial variation of water depth. In order to examine the 

effect of the slope of the lower part of the caisson (which is infinity in reality), the 

reflection coefficient was calculated by changing the slope from 0.1 to 10 for the test of 

wave period of 1.3 s, wave height of 5 cm, and wave chamber width of 20 cm, in which 

the measured reflection coefficient was 0.33. Fig. 4 shows the calculated reflection 

coefficients for different slopes of the lower part of the caisson. The reflection 
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coefficient virtually does not change for slopes greater than 2.0. In the following 

calculations, the slope was fixed at 4.0. 

Fig. 5 shows a comparison between the measured and calculated reflection coefficients. 

In this figure, the open and solid symbols denote the incident wave height of 5 and 10 

cm, respectively. The data of the smaller wave height show reasonable agreement 

between measurement and calculation, though the numerical model slightly over-

predicts the reflection coefficients at larger rC  values and under-predicts them at 

smaller rC  values probably because the evanescent waves near the breakwater were 

neglected (see Suh et al. 2001a). For the data of the larger wave height, the model 

significantly over-predicts the reflection coefficient when the reflection coefficients are 

small. The present model is based on a linear wave theory and it utilizes the linearized 

energy dissipation coefficient at the perforated wall as in (9). Therefore, the model may 

not be applicable to highly nonlinear waves. In order to examine the effect of 

nonlinearity, the ratio of the calculated reflection coefficient to the measured one was 

plotted in Fig. 6 in terms of the wave steepness, 00 / LH , in which 0H  and 0L  are the 

deepwater wave height and wavelength, respectively. It is observed that the model tends 

to overestimate the reflection coefficient as the wave steepness increases. In Fig. 6, it is 

shown that the model gives reasonably accurate results for the deepwater wave 

steepness up to about 0.02. At this value, the deepwater wave height, 0H , for T  = 6, 8, 

and 10 s is approximately 1, 2, and 3 m, respectively. Considering that the wave 

reflection from a breakwater is of more interest for ordinary waves than the severe 

storm waves (because most ships seek refuge into harbors during the severe wave 

condition), the present model may provide useful information about wave reflection in 

the design of perforated-wall caisson breakwaters. Also note that the agreement between 
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measurement and calculation is good for the reflection coefficients greater than about 

0.3 (see Fig. 5). This fact supports the usefulness of the numerical model because larger 

reflection coefficients may be of more interest in the design of breakwaters, for which 

the model is more error-free. 

 

4. Laboratory experiment for irregular waves and comparison with numerical 

model prediction 

 

   In order to examine the applicability of the regular wave model to irregular waves, 

laboratory experiments were conducted in the wave tank at the Coastal Engineering 

Laboratory of Seoul National University. The wave tank was 11 m wide, 23 m long, and 

1 m high. The wave paddle was only 6 m wide, so guide walls were installed along the 

tank and wave absorbers at both ends of the tank as shown in Fig. 7. Inside these guide 

walls, another pair of guide walls of 1 m separation was installed to accommodate the 

breakwater model. The breakwater model and the water depth were the same as those 

used in the experiment of Park et al. (1993) (See Fig. 2). Waves were generated with a 

piston-type wavemaker. Water surface displacements were measured with parallel-wire 

capacitance-type wave gauges.  

   To measure the incident and reflected wave spectra, three wave gauges were 

installed inside the inner guide walls, as shown in Fig. 7. The free surface displacements 

measured by these wave gauges were used to separate the incident and reflected wave 

spectra using the method of Suh et al. (2001b). For the purpose of cross-check, the 

incident waves were also measured at a point outside the guide walls denoted as G4 in 

Fig. 7, where the effect of wave reflection from the breakwater is minimal. Wave 



 15 

measurements were made for 300 s at a sampling rate of 20 Hz at each of the wave 

gauges. For spectral analysis, the last 4096 data were used. The time series was 

corrected by applying a 10% cosine taper on both ends and was subjected to spectral 

analysis. The raw spectrum was running-averaged twice over 15 neighboring frequency 

bands, the total number of degrees of freedom of the final estimates being 225. 

The incident wave spectrum used in the experiment was the Bretschneider-

Mitsuyasu spectrum given by 
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where sH and sT  are the significant wave height and period, respectively. The target 

significant wave heights and periods are given in Table 1 with other experimental 

conditions and calculated parameters. Similarly to the experiment of Park et al. (1993), 

the significant wave period was changed from 1.1 to 2.0 s at the interval of 0.1 s, and 

two different significant wave heights of 5 and 10 cm were used for each wave period, 

except 1.1 and 1.2 s wave periods for which only 5 cm wave height was used. These 

wave conditions were used for three different wave chamber widths of 15, 20, and 25 

cm, resulting in a total of 54 test cases. The error of the model prediction was calculated 

by  
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where the superscripts c  and m  indicate calculation and measurement, respectively. 



 16 

Fig. 8 shows the variation of the measured frequency-averaged reflection 

coefficients with respect to csLB /  where csL  is the significant wavelength inside the 

wave chamber. The data do not cover the range of csLB /  larger than 0.18, but their 

trend shows that the minimum reflection would occur at csLB /  close to 0.2, as with 

regular waves. While the minimum reflection coefficient was as small as almost zero for 

regular waves (see Fig. 3), it lies between 0.3 and 0.4 for irregular waves. This agrees 

with the experimental results reported by Tanimoto et al. (1976) and Suh et al. (2001a) 

for fully-perforated-wall caisson breakwaters. The reflection coefficient is different for 

each frequency in irregular waves. Even though the reflection coefficient is almost zero 

at a certain frequency, it is large at other frequencies. Therefore, the frequency-averaged 

reflection coefficient of irregular waves cannot be very small. Again as with regular 

waves, increasing wave steepness leads to a reduction in the reflection coefficient, 

because of the increase in the energy dissipation within the breakwater at higher wave 

steepnesses. 

Fig. 9 shows a comparison between the measured and calculated frequency-

averaged reflection coefficients. The open and solid symbols denote the incident 

significant wave height of 5 and 10 cm, respectively. A reasonable agreement is shown 

between measurement and calculation, but, as with regular waves, the numerical model 

somewhat over-predicts the reflection coefficients at larger values and under-predicts 

them at smaller values because the evanescent waves near the breakwater were 

neglected. The significant over-prediction of the reflection coefficient observed in the 

case of highly nonlinear regular waves is not observed in the case of irregular waves.  

Finally, we present comparisons of the measured and calculated spectra of reflected 

waves for several cases. Fig. 10 shows the results for the case of sH  = 10 cm, sT  = 
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1.9 s and B  = 25 cm, for which the error for the frequency-averaged reflection 

coefficient was the smallest as -0.6%. Note that the measured incident wave spectrum 

was used to calculate the reflected wave spectrum. A good agreement is shown between 

measurement and calculation, though the numerical model slightly over-predicts the 

wave reflection near the peak frequency and under-predicts it at higher frequencies. Fig. 

11 shows the results for the case of sH  = 5 cm, sT  = 1.1 s, and B  = 25 cm, for 

which the error for the frequency-averaged reflection coefficient was the largest as -

35.3%. The numerical model under-predicts the wave reflection throughout the 

frequency, but the overall agreement is still acceptable. Similar plots for other test 

conditions can be found in Park (2004). 

 

5. Conclusions 

 

   In this study, we examined the use of the numerical model of Suh and Park (1995), 

which was developed to predict the reflection of regular waves from a fully-perforated-

wall caisson breakwater, for predicting the regular or irregular wave reflection from a 

partially-perforated-wall caisson breakwater. For this we assumed that the lower part of 

the front face of the partially-perforated-wall caisson is not vertical but has a very steep 

slope. A numerical test carried out by changing this slope and the comparison of the 

model prediction with the experimental data of Park et al. (1993) showed that such an 

assumption was reasonable and that the Suh and Park's model can be used for predicting 

the regular wave reflection from a partially-perforated-wall caisson breakwater. The Suh 

and Park's regular wave model was then used for computing the irregular wave 

reflection by following the method of Suh et al. (2002), in which the wave period was 
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determined according to the frequency of the component wave, while the root-mean-

squared wave height was used for all the component waves to compute the energy 

dissipation at the perforated wall. A laboratory experiment was carried out to examine 

the validity of the model for irregular wave reflection. Reasonable agreements were 

observed between measurement and prediction for both frequency-averaged reflection 

coefficients and reflected wave spectra. 

   For regular and irregular waves, respectively, the reflection coefficient showed its 

minimum when cLB /  and csLB /  are approximately 0.2. While the minimum 

reflection coefficient was as small as almost zero for regular waves, it lay between 0.3 

and 0.4 for irregular waves. Increasing wave steepness led to a reduction in the 

reflection coefficient due to the increase in the energy dissipation within the breakwater 

at higher wave steepnesses. It was shown that the numerical model based on a linear 

wave theory tends to over-predict the reflection coefficient of regular waves as the wave 

nonlinearity increases. However, such an over-prediction was not observed in the case 

of irregular waves. For both regular and irregular waves, the numerical model slightly 

over-predicted the reflection coefficients at larger values, and under-predicted at smaller 

values because the model neglected the evanescent waves near the breakwater. 
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Table 1 Experimental conditions and analyzed data 

 

B (cm)  sH (cm)  sT (s)  m
sH (cm)   m

sT (s)     c
rC       m

rC     Error(%) 

15      5      1.1     5.14      1.24     0.489    0.506     –3.4 

5      1.2     4.99      1.33     0.555    0.561     –1.1 

5      1.3     4.94      1.40     0.593    0.559      5.8 

5      1.4     4.75      1.49     0.645    0.573     11.2 

5      1.5     5.08      1.55     0.660    0.591     10.6 

5      1.6     4.99      1.63     0.707    0.631     10.7 

5      1.7     4.89      1.73     0.752    0.673     10.5 

5      1.8     4.67      1.83     0.787    0.707     10.2 

5      1.9     4.79      1.86     0.801    0.741      7.5 

5      2.0     4.88      1.97     0.825    0.756      8.3 

10      1.3     9.43      1.41     0.513    0.488      4.9 

10      1.4     9.40      1.47     0.545    0.493      9.5 

10      1.5     9.63      1.54     0.573    0.528      8.0 

10      1.6     9.60      1.68     0.624    0.551     11.6 

10      1.7     9.82      1.83     0.674    0.599     11.2 

     10      1.8     9.49      1.88     0.708    0.646      8.8 

10      1.9    10.08      1.90     0.717    0.668      6.9 

10      2.0     9.11      2.07     0.774    0.681     12.0 

20      5      1.1     5.25      1.23     0.366    0.453    –23.7 

5      1.2     5.09      1.32     0.409    0.481    –17.8 

5      1.3     5.10      1.39     0.440    0.492    –11.8 

5      1.4     5.03      1.49     0.476    0.493     –3.5 

5      1.5     5.31      1.54     0.502    0.539     –7.3 

5      1.6     5.20      1.62     0.556    0.550      1.2 

5      1.7     5.00      1.66     0.599    0.586      2.2 

5      1.8     4.75      1.75     0.641    0.596      7.0 

5      1.9     5.32      1.78     0.640    0.598      6.6 

5      2.0     4.69      1.77     0.691    0.667      3.4 

10      1.3     9.76      1.38     0.378    0.411     –8.7 

10      1.4     9.89      1.44     0.398    0.423     –6.2 

10      1.5    10.16      1.53     0.433    0.427      1.3 

10      1.6     9.17      1.61     0.505    0.484      4.0 

10      1.7     9.13      1.73     0.545    0.525      3.7 

     10      1.8    10.02      1.88     0.556    0.524      5.9 

10      1.9    10.57      1.94     0.586    0.524     10.5 

       10      2.0     8.96      1.94     0.627    0.585      6.8 
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Table 1 (Continued) 

 

B (cm)  sH (cm)  sT (s)  m
sH (cm)   m

sT (s)     c
rC       m

rC     Error(%) 

25      5      1.1     5.27      1.23     0.335    0.454    –35.3 

5      1.2     4.97      1.28     0.378    0.481    –27.4 

5      1.3     5.17      1.35     0.372    0.474    –27.4 

5      1.4     4.65      1.45     0.386    0.484    –25.3 

5      1.5     5.25      1.53     0.377    0.488    –29.5 

5      1.6     4.88      1.51     0.476    0.535    –12.4 

5      1.7     5.07      1.68     0.459    0.513    –11.6 

5      1.8     4.94      1.76     0.509    0.551     –8.2 

5      1.9     5.36      1.78     0.511    0.550     –7.6 

5      2.0     4.55      1.87     0.607    0.589      3.0 

10      1.3     9.58      1.37     0.320    0.395    –23.4 

10      1.4     9.67      1.42     0.337    0.395    –17.1 

10      1.5     9.79      1.51     0.349    0.406    –16.3 

10      1.6     9.83      1.60     0.387    0.435    –12.4 

10      1.7    10.27      1.74     0.408    0.438     –7.3 

     10      1.8    10.32      1.85     0.442    0.463     –4.8 

10      1.9    10.82      1.94     0.474    0.477     –0.6 

       10      2.0     8.82      1.88     0.513    0.505      1.7 
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Caption of figures 

 

1. Bird’s-eye views of (a) a fully-perforated-wall caisson breakwater and (b) a partially-

perforated-wall caisson breakwater. 

2. Illustration of the breakwater model. 

3. Variation of the measured reflection coefficients with respect to cLB /  (regular 

waves). 

4. Reflection coefficients calculated for different slopes of the lower part of the caisson. 

5. Comparison of the reflection coefficients between measurement and calculation for 

regular waves: ○ = wave height of 5 cm; ● = wave height of 10 cm. 

6. Ratio of calculated reflection coefficient to measured one in terms of wave steepness. 

7. Experimental setup for irregular wave reflection. 

8. Variation of the measured frequency-averaged reflection coefficients with respect to 

csLB / . 

9. Comparison of the frequency-averaged reflection coefficients between measurement 

and calculation: ○ = significant wave height of 5 cm; ● = significant wave height of 

10 cm. 

10. Measured and calculated spectra of incident and reflected waves for the case of sH  

= 10 cm, sT  = 1.9 s, and B  = 25 cm: thick solid line = measured incident wave, 

thick dash-dot line = target incident wave, thin solid line = measured reflected wave, 

thin dashed line = calculated reflected wave. 

11. Same as Fig. 10, but for sH  = 5 cm, sT  = 1.1 s, and B  = 25 cm. 
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Fig. 1. Bird’s-eye views of (a) a fully-perforated-wall caisson breakwater and (b) a 

partially-perforated-wall caisson breakwater. 
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Fig. 2. Illustration of the breakwater model (unit: cm). 
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Fig. 3. Variation of the measured reflection coefficients with respect to cLB /  (regular 

waves). 
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Fig. 4. Reflection coefficients calculated for different slopes of the lower part of the 

caisson. 
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Fig. 5. Comparison of the reflection coefficients between measurement and calculation 

for regular waves: ○ = wave height of 5 cm; ● = wave height of 10 cm. 
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Fig. 6. Ratio of calculated reflection coefficient to measured one in terms of wave 

steepness. 
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Fig. 7. Experimental setup for irregular wave reflection. 
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Fig. 8. Variation of the measured frequency-averaged reflection coefficients with respect 

to csLB / . 
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Fig. 9. Comparison of the frequency-averaged reflection coefficients between 

measurement and calculation: ○ = significant wave height of 5 cm; ● = significant 

wave height of 10 cm. 
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Fig. 10. Measured and calculated spectra of incident and reflected waves for the case of 

sH  = 10 cm, sT  = 1.9 s, and B  = 25 cm: thick solid line = measured incident wave, 

thick dash-dot line = target incident wave, thin solid line = measured reflected wave, 

thin dashed line = calculated reflected wave. 
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Fig. 11. Same as Fig. 10, but for sH  = 5 cm, sT  = 1.1 s, and B  = 25 cm 
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