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Abstract  

 

We develop techniques of numerical wave generation in the time-dependent extended 

mild-slope equations of Suh et al. (1997) and Lee et al. (2003) for random waves using a 

source function method. Numerical results for both regular and irregular waves in one 

and two horizontal dimensions show that the wave heights and the frequency spectra are 

properly reproduced. The waves that pass through the wave generation region do not 

cause any numerical disturbances, showing usefulness of the source function method in 

avoiding re-reflection problems at the offshore boundary.  

 

Keywords: Source function method; Extended mild-slope equation; Numerical 

generation of wave; Random waves; Numerical experiment 

 

1. Introduction 

 

The mild-slope equation, which was derived first by Berkhoff (1972), is able to predict 

the transformation of waves due to refraction, diffraction, shoaling, and reflection from 

deep to shallow water. Nishimura et al. (1983) and Copeland (1985) developed 

hyperbolic equations for regular waves. Smith and Sprinks (1975), Radder and 



Dingemans (1985), and Kubo et al. (1992) developed time-dependent mild-slope 

equations that are able to predict the transformation of random waves.  

 

Recently, efforts have been made to improve the mild-slope equation by including 

higher-order bottom effect terms proportional to the bottom curvature and to the square 

of bottom slope, which were neglected in the derivation of the mild-slope equation. The 

resulting equations are called the extended mild-slope equations or modified mild-slope 

equations. These equations may be regarded as a complete form of the linear refraction-

diffraction equation because it is derived by integrating the Laplace equation from 

bottom to mean water surface without neglecting any terms. In an elliptic form, Massel 

(1993) and Chamberlain and Porter (1995) extended the model of Berkhoff. In a 

hyperbolic form, Suh et al. (1997) extended the two models of Smith and Sprinks, and 

Radder and Dingemans, Lee et al. (1998) extended the model of Copeland, and Lee et al. 

(2003) extended the model of Kubo et al. 

 

To predict the wave field in a concerned region using time-dependent wave equations, 

waves should be generated at the offshore boundary and propagate into the model 

domain. Waves reflected from the model domain should pass through the offshore 

boundary without any numerical distortions. Otherwise, the waves re-reflected at the 



offshore boundary may influence the numerical solution in the model domain. In order to 

avoid the re-reflection problem at the wave generation boundary, internal wave 

generation techniques have been widely used. Larsen and Dancy (1983) and Madsen and 

Larsen (1987) employed a line source method to generate waves for the Peregrine’s 

(1967) Boussinesq equations and Copeland’s mild-slope equations, respectively, by using 

a mass transport approach. Lee and Suh (1998) and Lee et al. (2001) corrected the line 

source method by using the energy transport approach for the Radder and Dingemans’ 

mild-slope equations and the Nwogu’s (1993) Boussinesq equations, respectively. In the 

mass and energy transport approaches, the phase and energy velocities are used as the 

velocities of water mass and wave envelope, respectively, at the wave generation line.  

 

Recently, Wei et al. (1999) developed a source function method for generating waves 

in the Boussinesq equations of Peregrine and Nwogu. The method employs a source term 

added to the governing equations, either in the form of a mass source in the continuity 

equation or an applied pressure forcing in the momentum equations. They used the Green 

function method to solve the governing equation including a spatially distributed source 

term. 

 

The line source method generates waves at a single point along the wave propagation 



direction, while the source function method generates waves at a source band consisting 

of several grids along the wave propagation direction. In the line source method, waves 

are assumed to be generated at either side of the source point and to propagate across the 

source point at the speed of energy velocity. In the source function method, waves are 

assumed to be generated at the source band and to propagate continuously. Therefore, 

both methods can generate waves successfully without interfering the waves crossing the 

wave generation line or band. The line source method yielded a solution with slight 

numerical noises in some wave equations such as Radder and Dingemans’ mild-slope 

equations (Lee and Suh, 1998) and Nwogu’s Boussinesq equations (Lee et al., 2001), 

while such noises were not found in the Copeland’s mild-slope equations (Lee and Suh, 

1998). However, the source function method yielded a smooth solution without any 

numerical noise in the Boussinesq equations of Nwogu (Wei et al., 1999). 

 

In this study, to generate waves without any noise in the model domain, source 

functions are developed for the time-dependent extended mild-slope equations of Suh et 

al. (1997) and Lee et al. (2003). And, numerical experiments were conducted to verify 

the source function method. In section 2, a source function is derived for each model. In 

section 3, numerical experiments are conducted for generating desired incident waves, 

including monochromatic and random waves in one and two horizontal dimensions. In 



section 4, summaries and discussions are presented. 

 

2. Derivation of source function 

 

The time-dependent extended mild-slope equations of Suh et al. (1997) and Lee et al. 

(2003) are reduced to the Helmholtz equation in a constant-depth region. In this section, 

we first derive a source function for the Helmholtz equation which is then used to obtain 

source functions for Suh et al. and Lee et al.’s equations.  

 

2.1 Helmholtz equation with source function 

 

The Helmholtz equation is the governing equation for linear waves propagating on a 

flat bottom. The Helmholtz equation with a source function is given by: 

 

fFkF  22                        (1) 

 

where F  is the wave property such as surface elevation or velocity potential, k  is the 

wave number, f  is the source function, and   is the horizontal gradient operator. For 

waves propagating obliquely with respect to the x -axis, we may have the following 



expressions for F  and f : 

 

     ykixFyxF yexp
~

),(                                 (2) 

     ykixfyxf yexp
~

),(                                             (3) 

 

where yk  is the wave number in the y -direction and   is the wave phase. Substituting 

Eqs. (2) and (3) into Eq. (1) yields an ordinary differential equation for F
~

 with respect to 

x : 
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where xk  is the wave number in the x -direction. We can find a non-homogeneous 

solution for Eq. (4) by following the method of Wei et al. (1999). A detailed procedure is 

given in the Appendix A. The source function can adopt a smooth Gaussian shape: 

 

    2
exp

~
sxxDxf                                                (5) 

 

where D  and   are  parameters associated with the magnitude and width, respectively, 

of the source function and sx  is the location of the center of the source region. 



Introducing the Green’s function method to the differential equation gives the wave 

property corresponding to the source function: 
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                                 (6) 

 

where A  and I  are given by  
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The parameter D  can be determined by the target wave property and the parameter  . 

Although a large value of   is preferred since the source region can become narrower, 

too narrow a source region may cause a poor representation of the source function in the 

discretized equation. We follow Wei et al.’s recommendation to take the width of the 

source function as half of the wavelength. If we neglect the source function where the 

value of the Gaussian function (  2)(exp sxx   ) is smaller than   0067.05exp  , the 

width parameter   is determined as 2)/(80 L  , where the value of   is in the range 

of 0.3 to 0.5 and L  is the wavelength corresponding to the carrier frequency  .  

 



2.2 Source function for Suh et al.’s model 

 

The time dependent mild-slope equations of Suh et al. (1997) are given by 
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where   is the surface elevation,   is the velocity potential at mean water level, and C  

and gC  are the phase speed and the group velocity, respectively, g  is the gravitational 

acceleration, h  is the water depth, and the over bar indicates the variables associated 

with the carrier angular frequency  . If 021  RR , the above equations are reduced to 

the model of Radder and Dingemans (1985).  

 

We consider waves on a flat bottom. Adding the source function 

  )exp(
2

sSS xxDf    to the right-hand side of Eq. (9), where the subscript S  

implies the model of Suh et al., and eliminating   in favor of   give the following 

equation: 
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For a component wave whose angular frequency is  , the y -directional and temporal 

harmonic terms of ),,( tyx  and  tyxfS ,,  can be separated as 

 

  tyki y   exp
~

                               (12) 

  tykiff ySS  exp
~

                (13) 

 

Substituting Eq. (12) and (13) into Eq. (11) yields the one-dimensional Helmholtz 

equation in terms of 
~

: 
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where the right-hand-side term can be regarded as the source function f
~

 in the 

Helmholtz Eq. (4), and the wave number k  is the wave number corresponding to the 

angular frequency   in this model, which can be obtained by the dispersion relation of 

the model (Lee et al., 2004) as 
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Following the procedures from Eq. (4) to (8), the velocity potential function )(
~

x  

corresponding to the source function can be obtained as 
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where A  and I  are given in Eqs. (7) and (8). On the other hand, the target velocity 

potential function )(
~

x  is given as 
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where a  is the wave amplitude. Thus, the parameter SD  in Eq. (16) can be obtained by 

equating )(
~

x  in Eqs. (16) and (17) as 
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Thus, the source function Sf  for Suh et al.’s model is obtained as 
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2.3 Source function for Lee et al.’s model 

 

The equation of Lee et al. (2003) are given by 
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where   is related to the water surface elevation   by  ti  exp . If 021  uu , 

the above equation is reduced to the model of Kubo et al. (1992). 

 

We consider waves on a flat bottom. Adding the source function 

  )exp(
2

sLL xxDf    to the right-hand side of Eq. (20), where the subscript L  

implies the model of Lee et al., gives the follow equation: 
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For a component wave whose angular frequency is  , we have the following relation: 
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where   . The y -directional and temporal harmonic terms of ),,( tyx  and 

 tyxfL ,,  can be separated as 
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Substituting Eqs. (23) and (24) into Eq. (21) and using Eq. (22) give the one-dimensional 

Helmholtz equation in terms of 
~

: 
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where the right-hand-side term can be regarded as the source function f
~

 in the 

Helmholtz Eq. (4) and the wave number k  is obtained by the dispersion relation of the 

model (Lee et al., 2004) as 
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Following the procedure from Eq. (4) to (8), the surface elevation function )(
~

x  

corresponding to the source function can be obtained as 
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where A  and I  are given in Eqs. (7) and (8). On the other hand, the target water surface 

elevation function 
~

 is given as 
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Thus, the parameter LD  in Eq. (27) can be determined by equating 
~

 in Eqs. (27) and 

(28) as 
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Thus, the source function 
Lf  for Lee et al.’s model is obtained as 
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3. Numerical experiments 

 

In this section, both monochromatic and random waves are tested for the models of 

Suh et al. (1997) and Lee et al. (2003) in horizontally one dimension. And also multi-

directional random waves are tested in horizontally two dimensions. For the Suh et al.’s 

model, the time-derivative terms are discretized by a fourth-order Adams-Moulton 

predictor-corrector method and the spatial derivative terms are discretized by a three-

point symmetric formula. The Lee et al.’s model equation is discretized by the Crank-

Nicolson method in horizontally one dimension and by the ADI method in horizontally 

two dimensions. 

 

3.1 Uni-directional monochromatic waves 

 



The computational domain consists of an inner domain of L10 , where L  is the 

wavelength, and two sponge layers with the thickness of L5.2  at the outside boundaries. 

The center of the source region is located at the center of the inner domain (see Fig. 1). 

The grid spacing x  is chosen as 20Lx   and the time step t  is chosen so that the 

Courant number is 1.0/  xtCC er , where eC  is the energy velocity (Lee and Suh, 

1998), so that a stable solution is guaranteed.  

 

Fig. 1 

 

Firstly, we generate uni-directional monochromatic waves. Fig. 2 and Fig. 3 show 

numerical solutions of the surface elevation and wave amplitude in shallow water 

( 05.0kh ) and deep water ( 2kh ), respectively, at time of Tt 30 , where T  is the 

wave period. In the figures, the solutions are normalized with the target wave amplitude 

0a . Both wave amplitudes and wavelengths are almost equal to the target values. Also, 

wave energy is dissipated at the sponge layer almost perfectly. 

 

Fig. 2 

 

Fig. 3 

 



Secondly, we test whether the waves pass through the wave generation band without 

any numerical disturbances. We remove the sponge layer at the right boundary, and 

reduce the computational domain to L8 . The relative water depth is 2kh , and Lee et 

al.’s model is used. Fig. 4 shows a snapshot of water surface elevations at 

4330,4230,430,30 TTTTTTTt  . The waves reflected from the right 

boundary do not make any numerical disturbances when passing through the wave 

generation region around 0/ Lx , while wave energy is well absorbed in the left sponge 

layer. 

 

Fig. 4 

 

3.2 Uni-directional random waves 

 

In generating random waves and predicting the propagation of the waves, the 

frequency of carrier waves must be chosen so as to give minimal errors in a wide range 

of local wave frequencies. As the difference between the component wave frequency and 

the carrier one becomes larger, the model yields larger errors in both wave phase and 

energy. The accuracy of the dispersion relation of the model determines the accuracy of 

the model. 



 

Lee et al. (2004) found that the dispersion relation of the Suh et al.’s model is accurate 

at higher frequencies, while the dispersion relation of the Lee et al.’s model does not 

have a particular range of high accuracy. Therefore, for the Suh et al.’s model, the peak 

frequency is chosen as the carrier frequency which is relatively lower in whole frequency 

range. For the Lee et al.’s model, the weight-averaged frequency is chosen as the carrier 

frequency which is higher than the peak frequency. 

 

The TMA shallow-water spectrum is used as the target spectrum (Bouws et al., 1985) : 
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where   is a spectral parameter,   is the peak enhancement factor,   is the spectral 

width parameter, and the Kitaigordskii shape function,  hfk ,  incorporates the effect of 

finite water depth. 
41057.7  ,  = 2, and the peak frequency of input wave, pf = 

0.767 Hz is used.  

 

The computational domain has an inner domain of max10L ( maxL  is the maximum 

wavelength resulting from the cutoff incident frequency spectrum), and the center of 



wave generation band is located at a distance of maxL  from the up-wave boundary of the 

inner domain (see Fig. 5). Two sponge layers with the thickness of max5.2 LS   are 

placed at the outside boundaries. 

 

Fig. 5 

 

To ensure the resolution in space and time as well as the numerical stability, the 

frequency range of incident waves is confined to 0.6 to 1.4 Hz. The grid size is chosen as 

3.30minLx  (
minL  is the minimum wavelength resulting from the cutoff incident 

frequency spectrum) and the time step is chosen for the maximum Courant number 

xtCC er  /maxmax  to be 0.1. 

 

Uni-directional random waves are generated by superposing all the source functions 

corresponding to all the component waves: 
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where m  denotes the number of frequency components, ma  is the amplitude of a 

component wave, m  is the phase angle which is randomly distributed between 0  and 

2 , and mA  and mI  are given in Eqs. (7) and (8). 

 

The water surface elevations are recorded at a distance of maxL  up-wave from the 

down-wave boundary of the inner domain. The surface elevations are recorded from 

pTt 100  at every s05.0 , where pT  is the peak wave period, and the total number of 

samples is 16384. Figs. 6 and 7 compare simulated wave spectra with the target in 

shallow water ( 05.0kh ) and deep water ( 2kh ), respectively. The agreement 

between the target and computed spectrum is excellent in whole frequency ranges. 

 

Fig. 6 

 

Fig. 7 

 

3.3 Multi-directional random waves 

 

Finally, we carry out the test of multi-directional random waves. Lee and Suh (1998) 

tested the line source method to generate multi-directional random waves. In this study, 

we use the same wave conditions as they used. The TMA shallow-water spectrum is used 



as a target spectrum, and the conditions of input waves are s10pT , m35h , 

003523.0 , 20 . To insure the resolution in space and time and also the numerical 

stability, the frequency range of incident waves is confined between 0.086 Hz and 

0.123Hz that covers 85% of the total energy and gives the significant wave height of 

m24.4sH .  

 

The amplitude of each wave component is given by     jijiiji ffGfSa   ,2,  

where the directional spreading function  ,fG  is obtained by the Fourier series 

representation for the wrapped normal spreading function as: 
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where  20N  is the number of terms in the series, the mean wave direction m  is 0 , 

and the directional spreading parameter m  is 10 . These conditions of input waves are 

the same as the M1 case in Lee and Suh (1998). The representative directions are 14 , 

5 , 0 , 5 , 14 , and these directional components are taken to have equal area of 

directional spreading function. The amplitude of each wave component is 

  5/2, iiji ffSa    5,,1j . 

 



We generate multi-directional random waves by superposing all the source functions 

corresponding to all the component waves as: 
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where m  and n  denote the components of different frequency and direction, respectively, 

nm,  is the phase angle which is randomly distributed between 0 and 2 , and nmA ,  and 

nmI ,  are given in Eqs. (7) and (8).  

The computational domain consists of an inner domain of maxmax 35.3 LL   and the 

sponge layers with the thickness max5.2 LS  at four outside boundaries. The centerline of 

the source band is located at a distance of max5.0 L  from the up-wave boundary of the 

inner domain. Fig. 8 shows a schematic diagram of the computational domain. The water 

surface elevation ( ) and its slopes in the x - and y -directions ( yx  /,/  ) are 

recorded at a point of  (    maxmax 5.1,, LLyx  ) of the inner domain from pT10  at every 

0.32 second until the total number of samples becomes 8192.  



 

Fig. 8 

 

 In order to calculate the directional wave spectrum, we analyzed the data by using the 

maximum entropy principle method (MEP). Fig. 9 shows the target spectrum and the 

two-dimensional wave spectra calculated from the recorded data. And, Fig. 10 shows the 

frequency spectra and the directional spreading function for the peak frequency. All the 

results show that the agreement between the target spectrum and computed one is good, 

and the source function method is very efficient even for generation of multi-directional 

random waves.  

 

Fig. 9 

 

Fig. 10 

 

4. Conclusions 

 

Following the method of Wei et al. (1999), we have developed a wave generation 

method using a source function for the time-dependent extended mild-slope equations of 

Suh et al. (1997) and Lee et al. (2003). Numerical simulations of uni-directional 



monochromatic waves showed that the waves were properly generated for an arbitrary 

water depth. The wave reflection test showed that the waves passing through the source 

region did not cause any numerical disturbances.  

 

In simulating random waves, the peak frequency was chosen as a carrier frequency for 

the Suh et al.’s model, and the weight-averaged frequency for the Lee et al.’s model. For 

uni-directional random waves, the computed wave spectrum was nearly identical to the 

target one for an arbitrary relative water depth, and multi-directional random waves were 

also generated as desired. The source functions obtained in this study for the extended 

mild-slope equations of Suh et al. and Lee et al. can also be used for the mild-slope 

equations of Radder and Dingemans (1985) and Kubo et al. (1992), respectively, because 

the source functions were derived based on the assumption of a constant water depth. In 

conclusion, we verified that the source function of the Helmholtz equation may be used 

in generating waves in any refraction-diffraction equation models. 

 

 

Appendix  A. The method of Green’s function 

 

In order to obtain the relationship between the source function ),,( tyxf  and the wave 



property ),,( tyxF , a particular solution of the differential equation including a source 

function should be obtained. The differential equation after excluding the component of 

waves propagating in the y -direction is given by 
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where the relations between F  and F
~

 and those between f  and f
~

 are given in Eqs. (2) 

and (3), respectively. Homogeneous solutions of Eq. (4) corresponding to progressive 

waves are given by 

  

)exp(
~

xikF xh                   (37) 

 

In order to obtain a particular solution, we seek a Green’s function  xG ,  which 

satisfies 
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where   and x  are regarded as the active and fixed variables, respectively, and   is the 

Dirac delta function. The wave property and the Green’s function should satisfy the 



radiation boundary conditions given by 
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Integrating Eq. (38) with respect to   from 0x  to 0x , we have 
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If the Green’s function is continuous at x , Eq. (40) becomes 
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The Green’s function that satisfies the radiation conditions (39), and the continuity 

condition (41) at x  is given by 
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where xkiA 2/ . Multiplying Eq. (38) by  F
~

 and integrating with respect to   from 

  to   give 
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Integrating by parts and using the boundary conditions and the definition of the delta 

function give 
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The arbitrary function f
~

 can be selected as a smooth Gaussian shape given by 
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where the parameter D  is the source function amplitude, and   is related to the width of 

the source function. The source function is negligibly small except in the vicinity of sx . 

Therefore, in an interested region ( sxx  ), the second integral in the righ-hand side of 



Eq. (44) is negligible, and thus we have 
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where I  is defined by 
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For waves that are generated at a point sxx   and propagate in the opposite region 

( sxx  ), a similar approach is used to give 
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Captions of figures 

Fig. 1. Computational domain for generating uni-directional monochromatic waves. 

Fig. 2. Normalized water surface elevations and amplitudes of uni-directional 

monochromatic waves at Tt 30  in shallow water with 05.0kh ; solid line = 

water surface elevation, dashed line = wave amplitude. (a) Suh et al.’s model, (b) Lee  

et al.’s model. 

Fig. 3. Normalized water surface elevations and amplitudes of uni-directional 

monochromatic waves at Tt 30  in deep water with 2kh ; solid line = water 

surface elevation, dashed line = wave amplitude. (a) Suh et al.’s model, (b) Lee et al.’s 

model. 

Fig. 4. Snapshots of water surface elevations at 30Tt  , T/430T , T/4230T  , 

3T/430T . 

Fig. 5. Computational domain for generating uni-directional random waves. 

Fig. 6. Frequency spectra of uni-directional random waves with 05.0hk p ; solid line 

= numerical solution, dashed line = target. (a) Suh et al.’s model, (b) Lee et al.’s 

model. 

Fig. 7. Frequency spectra of uni-directional random waves with 2hk p ; solid line = 

numerical solution, dashed line = target. (a) Suh et al.’s model, (b) Lee et al.’s model. 

Fig. 8. Computational domain for generating multi-directional random waves.  



Fig. 9. Computed 2D directional wave spectra. (a) Target spectrum, (b) Suh et al.’s model, 

(c) Lee et al.’s model. 

Fig. 10. (a) Frequency spectra and (b) directional spreading functions (solid line= target 

spectrum, dashed line= Suh et al.’s model, dash-dotted line= Lee et al.’s model). 
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Fig. 1. Computational domain for generating uni-directional monochromatic waves. 
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Fig. 2. Normalized water surface elevations and amplitudes of uni-directional 

monochromatic waves at Tt 30  in shallow water with 05.0kh ; solid line = water 

surface elevation, dashed line = wave amplitude. (a) Suh et al.’s model, (b) Lee  et al.’s 

model. 
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Fig. 3. Normalized water surface elevations and amplitudes of uni-directional 

monochromatic waves at Tt 30  in deep water with 2kh ; solid line = water surface 

elevation, dashed line = wave amplitude. (a) Suh et al.’s model, (b) Lee et al.’s model. 
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Fig. 4. Snapshots of water surface elevations at 30Tt  , T/430T , T/230T , 

3T/430T . 
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Fig. 5. Computational domain for generating uni-directional random waves. 
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Fig. 6. Frequency spectra of uni-directional random waves with 05.0hk p ; solid line 

= numerical solution, dashed line = target. (a) Suh et al.’s model, (b) Lee et al.’s model. 
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Fig. 6. (Continued). 
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Fig. 7. Frequency spectra of uni-directional random waves with 2hk p ; solid line = 

numerical solution, dashed line = target. (a) Suh et al.’s model, (b) Lee et al.’s model.
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Fig. 7. (Continued). 
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Fig. 8 Computational domain for generating multi-directional random waves. 
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Fig. 9. Computed 2D directional wave spectra. (a) Target spectrum, (b) Suh et al.’s model, 

(c) Lee et al.’s model. 
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Fig. 9. (Continued). 
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Fig. 9. (Continued). 
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Fig. 10. (a) Frequency spectra and (b) directional spreading functions (solid line= target 

spectrum, dashed line= Suh et al.’s model, dash-dotted line= Lee et al.’s model). 
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Fig. 10. (Continued). 

 


