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Reply to referee’s comments 
 

Internal Generation of Waves: Delta Source Function Method and Source 
Term Addition Method 

by Kim/Lee/Suh, OE-D-06-00042 
 
We appreciate the referee’s interest and criticisms on our manuscript entitled “Internal 
generation of waves: line source method and source function method.” We hope that the 
revision we made could have reflected the referee’s comments in the manuscript though 
the referees may not be fully satisfied with the revision. 
 
Referee No. 1’s specific comments: 

  

(Question No. 1) Are both source methods based on the linear wave assumption? If yes, 
could the authors explain theoretically why the methods can generate nonlinear cnoidal 
waves almost perfectly? 
 
(Answer No. 1)  As the referee’s comments, the source function methods are derived 
on the base of the linear wave assumptions. Thus, the energy velocity eC  is obtained 
from the linear waves. However, nonlinear cnoidal waves can be generated properly 

using the source function given by ( ) θδη cos2 se
I xxCs −= , where Iη  is the incident 

water surface elevation of cnoidal waves which have peaked crest and flat trough. 
 
(Question No. 2) On p.12, the authors stated that "It is interesting that Schaffer and 
Sorensen (2006) couldn't get the energy velocity for the equations of Madsen and 
Sorensen". This statement does not seem to serve any professional purposes in the paper. 
 
(Answer No. 2) We revised the manuscript following the referee’s suggestion. 
 
(Question No. 3) On p.26, near the middle of the page, the authors write "There is no 
"2" in the right side of Eq. (67) while there is "2" in the right side of Eq. (56)". The 
writing does not seem to be very formal. Maybe "no 2" can be changed to "not a factor 
of 2". 
 

* Detailed Response to Reviewers



(Answer No. 3) We revised the manuscript following the referee’s suggestion. 



Reply to referee’s comments 
 

Internal Generation of Waves: Delta Source Function Method and Source 
Term Addition Method 

by Kim/Lee/Suh, OE-D-06-00042 
 
We appreciate the referee’s interest and criticisms on our manuscript entitled “Internal 
generation of waves: line source method and source function method.” We hope that the 
revision we made could have reflected the referee’s comments in the manuscript though 
the referees may not be fully satisfied with the revision. 
 
Referee No. 2’s specific comments: 
 
(Question No. 1) The computational method applied is outlined. Nothing is said or 
illustrated in a figure as to how accurate the solutions may be. For example, were the 
cnoidal waves generated compared with their analytical shapes? 
 

(Answer No. 1) We compared the numerical solutions against the analytical solution of 
the cnoidal waves at the last paragraph of p. 31 to the first paragraph of p. 32 in the 
manuscript as: “Fig. 5 shows the comparison of numerically generated water surface 
elevations and envelopes of cnoidal waves at a time of 30t T=  against the target one. 
In the figure, the horizontal distance is normalized by the wavelength obtained by the 
linearized dispersion relation. In the inner domain, good agreements are observed 
between the numerical solutions and the exact ones even for the higher wave amplitude. 
As the wave height increases, the wavelength increases due to the nonlinear dispersion. 
In the sponge layer domain, the wave envelopes decay down to almost zero values. This 
shows the capability of generating nonlinear waves using the delta source function. As 
the wave height increases, small oscillations are found more significantly both in the 
trough-level surface elevation and the envelope. However, these oscillations are not 
amplified even after a long time.” 

In the authors’ viewpoint, a more detailed comparison between the simulated and 
the target waves seems not necessary. We may have a little bit different solutions 
depending on the use of the grid system, either staggered or un-staggered, and on the 
methods of discretization, either finite difference, finite element, or finite volume, etc. 
 
 



(Question No. 2) According to page 28, the linear waves in Figure 2 are for the delta-
source method. In this figure the normalized amplitude of linear waves are compared 
with water depth. The amplitude ratio is equal to one or reasonably close to one for all 
the cases shown. It appears that all of the models reproduce linear waves that are the 
same. It appears than that the linear forms of all of the systems of equations examined 
must (in some sense) reduce to a sum of terms essentially the same plus additional terms 
that are negligible (but dependent on the particular model). Although the author's 
suggest that the Peregrine model be used for shallow water only, without additional 
details on the robustness of the numerical method, this may not be fair. 
 
(Answer No. 2) When generating waves using the source function, the wave models are 

reduced to the Helmholtz equation of sl
x

=+
∂
∂ ηη 2

2

2

 where the x -directional wave 

number l  is determined by the dispersion relation of each model. The Peregrine’s 
model can give proper solutions only for shallow water due to the limitation of the 
model’s dispersion relation. And thus, as shown in Fig. 2 (a), the Peregrine’s model 
couldn’t give accurate wave amplitudes in the depth range of π5.0>kh . 
 
(Question No. 3) In Figures 3 and 4 the wave shapes are illustrated for two systems of 
equations; one system is for shallow water the other is for deep water. It appears that the 
waves generated are linear. Then they point out what appears to be an anomaly in the 
wave picture that is guessed to be attributed to evanescent modes. It would be useful if 
the authors elaborated on this point further. 
 
(Answer No. 3) The anomaly of the wave envelopes in the vicinity of the wave 
generation line are observed for the extended Boussinesq equations which are reduced 
to 4th order ordinary differential equation over a constant depth. As being seen in the 
appendix, these equations include the evanescent modes. In the author’s viewpoint, the 
source term seems to generate evanescent waves as well as propagating waves. 
However, this assumption is not theoretically demonstrated. In order to avoid any 
ambiguities, we removed the wave envelopes in the Figure 3 and 4 of the revised 
manuscript. The surface elevations showed that waves are accurately generated. 
 
(Question No. 4) In the last figure cnoidal waves are illustrated for the deep water 
system of equations. They start by recalling that the "line source method was developed 
based on the assumption of the linearity of the wave model." The reviewer supposed 



that this is only a peculiarity of the wave generated and not the equations solved in the 
domain. The nonlinear equations must be solved in that domain otherwise nonlinear 
waves could not be possible. Are the waves generated by forcing the numerical model 
actually cnoidal? In deed they have broadened troughs and sharpened crests as 
compared with more sinusoidal waves. 
 
(Answer No. 4) As the referee’s comments, the source function methods are derived on 
the base of the linear wave assumptions. Thus, the energy velocity eC  is obtained from 
the linear waves. However, nonlinear cnoidal waves can be generated properly using the 

source function given by ( ) θδη cos2 se
I xxCs −= , where Iη  is the incident water 

surface elevation of cnoidal waves which have peaked crest and flat trough. 
 
(Question No. 5) Finally, it is not clear that a comparison of two methods was actually 
done. It is also not clear how useful the conclusions actually are. What should an 
engineer do with the conclusions? Which model is recommended by the authors? Is it 
the implementation that is recommended? 
 
(Answer No. 5) Following the referee’s suggestion, we included the following sentence 
at the first paragraph of p. 33 in the revised manuscript as: “By the fractional step 
splitting method, the two wave generation methods are proved to be identical to each 
other. However, the delta source function method is recommended to be used rather than 
the source term addition method in terms of the mathematical completeness because the 
delta source function is included in the original wave equation and then the resulting 
equations are discretized numerically.” 
 
(Question No. 6) The mathematics associated with deriving source functions for each 
system of equations is certainly interesting from a mathematical point of view. 
Reducing the extended equations to linear form certainly allowed the effective use of 
Green's functions to come up with the particular solution associated with the source 
term. Fig. 2 shows that all of the systems reproduce linear waves that are dispersive. 
Only two of the systems were examined to study the wave elevations for linear waves. 
Only one system was used to investigate the "surface" elevations of cnoidal waves. 
 
(Answer No. 6) The horizontally two-dimensional wave equations are categorized into 
two types, i.e., the mild-slope equations and the Boussinesq equations. In our 



manuscript, we showed the surface elevations of linear waves for only two types of the 
wave models, i.e., the extended mild-slope equations of Lee et al.’s (2003) and the 
extended Boussinesq equations of Nwogu (1993). The solutions of the other wave 
models will be almost the same as Lee et al.’s or Nwogu’s model solutions. Thus, we 
omitted the other solutions. We showed the surface elevations of nonlinear cnoidal 
waves using Nwogu’s extended Boussinesq equations. 
 

(Question No. 7) Since the paper is stated to examine internal waves, why do the 
authors display surface elevations in Figures 3-5? There seems to be a mix up as to what 
is actually being displayed. Internal waves are waves in density stratified basins. Hence, 
are the surface elevations imprints of the internal waves as they appear on the surface? 
 
(Answer No. 7) The technique of internal generation of wave is to generate surface 
waves inside the computational domain. We do not study the generation of internal 
waves between two layers. 



Reply to referee’s comments 
 

Internal Generation of Waves: Delta Source Function Method and Source 
Term Addition Method 

by Kim/Lee/Suh, OE-D-06-00042 
 
We appreciate the referee’s interest and criticisms on our manuscript entitled “Internal 
generation of waves: line source method and source function method.” We hope that the 
revision we made could have reflected the referee’s comments in the manuscript though 
the referees may not be fully satisfied with the revision. 
 
Referee No. 3’s specific comments: 
 
(Question No. 1) The end of section 4.2 suggests that the apparent error in the vicinity 
of the source for the result from Nwogu's equation is caused by the effect of evanescent 
modes.  Why would evanescent modes be generated over a flat bottom, or what 
indication do the authors have that they are present in the result? If they are present in 
this result, why not in others? I don't think this speculation has a place in the manuscript. 
 
(Answer No. 1) The anomaly of the wave envelopes in the vicinity of the wave 
generation line are observed for the extended Boussinesq equations which are reduced 
to 4th order ordinary differential equation over a constant depth. As being seen in the 
appendix, these equations include an evanescent mode. In the author’s viewpoint, the 
source term seems to generate an evanescent wave as well as a propagating wave. 
However, this assumption is not theoretically demonstrated. In order to avoid the 
ambiguous description, in the revised manuscript, we removed the wave envelopes in 
the Figure 3 and 4. The surface elevations show that waves are accurately generated. 
 

(Question No. 2) In section 4.3, the cnoidal wave solution being used is indeed not a 
solution of Nwogu's equations. The adjustment taking place in the generated wave is 
thus likely to be a result both of the numerical approach being studied as well as the 
nonlinear adjustment of the wave as it propagates. The example is thus not terribly 
informative. Why not run the example using the Peregrine equations, which the cnoidal 
wave solution given is more closely related? 
 
(Answer No. 2) As the referee’s comments, the cnoidal wave solution is not a solution 



of Nwogu’s equations. In the revised manuscript, we showed the results using 
Peregrine’s equations. The results are similar to those obtained by Nwogu’s equations. 
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Abstract  

 

In this study, we investigate two internal wave generation methods in numerical 

modeling of time-dependent equations for water wave propagation, i.e., delta source 

function method and source term addition method, the latter of which has been called the 

line source method in literatures. We derive delta source functions for the Boussinesq 

type equations and extended mild-slope equations. By applying the fractional step 

splitting method, we show that the delta source function method is equivalent to the 

source term addition method employing the energy velocity. This suggests that the 

energy velocity should be used rather than the phase velocity for the transport of incident 

wave energy in the source term addition method. Finally, the performance of the delta 

source function method is verified by accurately generating nonlinear cnoidal waves as 

well as linear waves for horizontally one-dimensional cases.  

 

Keywords: Numerical generation of wave; Internal generation of waves; Source term 

addition; Source function; Energy velocity approach; Boussinesq equations; Extended 

mild-slope equations; Numerical experiment 

 

1. Introduction 

 

  The propagation of water waves from ocean to coastal area is a dynamic phenomenon 

which can give human beings happiness some times or disaster in other times. In general, 

the wave models which predict the transformation of water waves are horizontally two-

dimensional equations in which the amplitude of vertical variation is assumed to be 



 3 

exponential or polynomial. The wave equations which have been developed until now 

may be categorized into two types, i.e., the Boussinesq equations and the mild-slope 

equations. The Boussinesq equations are able to predict the propagation of nonlinear, 

weakly dispersive waves with high accuracy especially in shallow water. The mild-slope 

equations may exactly predict the propagation of linear, dispersive waves from deep to 

shallow waters.  

 

  In order to predict the wave field in a nearshore region using wave equations, waves 

should be generated at the offshore boundary and propagate into the model domain. 

Waves reflected from the model domain should pass through the offshore boundary 

without any numerical disturbances. Otherwise, the waves re-reflected at the offshore 

boundary may influence the numerical solution in the model domain. In order to avoid 

the re-reflection problem at the wave generation boundary, internal wave generation 

techniques have been used along with the sponge layers which are placed at the offshore 

boundary. The internal wave generation techniques are categorized into the source term 

addition method and the source function method, the former of which has been called the 

line source method in literatures. In the source term addition method, we add the water 

surface elevation of desired energy to the corresponding values that are computed by the 

model equations. In the source function method, we add an appropriate source function to 

the model equation.  

 

The source term addition method was first used by Larsen and Dancy (1983) in the 

Boussinesq equations of Peregrine (1967) by using the phase velocity C  for the 

transport of water mass. Later, Lee and Suh (1998) found that the use of C  in the 

Peregrine’s equations was successful because the equations were applicable only in 

shallow water and tests were made only in shallow water where the phase velocity C  is 
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almost the same as the energy velocity eC . The energy velocity is the group velocity 

derived from each model equation. They argued that the velocity of disturbances caused 

by the incident wave is the energy velocity. After testing the use of the two velocities of 

C  and eC  in shallow to deep waters, Lee et al. (2001) found that the use of eC  

instead of C  yields a proper wave energy in the extended Boussineq equations of 

Nwogu (1993) which is applicable in deep water with a small error. Recently, Lee and 

Yoon (2007) developed a technique of internally generating multi-directional waves on 

an arc in a rectangular grid system using the source term addition method. The technique 

generated wave energy much closer to the target energy than the state-of-the-art 

technique (Lee and Suh, 1998) of generating waves on wave generation lines only.        

 

  A two-grid source function was first used by Madsen and Larsen (1987) in the mild-

slope equations. Later, Wei et al. (1999) used a Gaussian source function in the nonlinear 

shallow water equations and the Boussinesq equations of Peregrine (1967) and Nwogu 

(1993). In order to obtain an explicit relation between the target waves and the waves by 

the source function, they solved the linearized model equations including the source 

function using the Green function method. Recently, Bellotti et al. (2003) derived a delta 

source function for the elliptic mild-slope equation using the Fourier transform technique. 

More recently, Kim et al. (2006) obtained the Gaussian source functions for the extended 

mild-slope equations of Suh et al. (1997) and Lee et al. (2003b) using the Green function 

method.  

 

  A vertical source function has also been used by Brorsen and Larsen (1987) who 

included the source function in the Laplace equation of the velocity potential. The 

vertical source function was defined by the delta function. They used the source function 

of both linear and nonlinear waves in the boundary integral equation method. 
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  The source term addition method and the source function method had been developed 

separately, and their relationship had not been investigated yet. Recently, Schäffer and 

Sørensen (2006) made theoretical derivations to get the energy velocities for the transport 

of incident wave energy in the source term addition method. They added the delta source 

function to the mass conservation type equation, integrated asymptotically the resulting 

equation at the generation point, and thus they obtained an explicit relation of the source 

function to the energy velocity. However, they couldn’t get the energy velocity for the 

extended Boussinesq equations of Madsen and Sørensen (1992) because the source 

function couldn’t be explicitly related to the energy velocity. 

 

In this study, firstly, we derive the delta source function and the energy velocities in 

the source term addition method for various types of wave equations available to date. To 

do this, we add the delta source function to the mass conservation type equation, and 

solve the linearized model equations including the source function by using the Green 

function method. Secondly, the fractional step splitting method is used to find the 

relationship between the source term addition method and the source function method. 

The relation explains why the energy velocity should be used instead of the phase 

velocity in the source term addition method. Thirdly, numerical experiments are 

conducted to accurately generate nonlinear cnoidal waves as well as linear waves using 

the delta source function method in a finite difference system. Finally, a brief summary is 

given. 
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2. Delta Source Function Method 

 

Wei et al. (1999) obtained a particular solution for the wave equations including a 

source function by applying the Green’s function method. They selected the amplitude of 

the source function as a Gaussian function in order to overcome the discontinuity of the 

source at the wave generation line. Due to the smooth shape of the Gaussian function, 

waves can be generated without numerical disturbances regardless of numerical methods. 

But at least several grids are needed to guarantee the spatial resolution of the source 

function. With the Gaussian source function, we cannot find the relation between the 

source term addition method and the source function method because the source term 

addition method needs just one grid point to generate waves. Therefore, in the present 

study, we select a delta function for the amplitude of the source functions s  as   

 

( ) ( ){ }tmyistyxs ω−= exp~,,         (1) 

 

where ω  is the angular frequency, )sin( θkm =  is the y -directional wave number, θ  

is the direction of incident waves from the x -axis, and i  is the imaginary unit. In the 

above equation s~  is a source function without the y -directional and time harmonic 

terms which is defined as 
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( )sxxDs −= δ~           (2) 

 

In the above equation, D  is the amplitude of the source function, δ  is the delta 

function, and sx  is the location of the source point. In the following sub-sections, we 

obtain the source function s  for each wave model of the Boussinesq equations and the 

mild-slope equations by equating the particular solution with the target value. 

 

2.1 Source function for Boussinesq equations of Peregrine (1967) 

 

The Boussinesq equations of Peregrine (1967) are given by 

 

( ){ } 0=+⋅∇+
∂
∂ uηη h
t

                        (3) 
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where η  is the surface elevation, u  is the depth-averaged horizontal velocity and h  

is the still water depth, and ∇  is the horizontal gradient operator. For sinusoidal waves 

over a flat bottom, a linearized form of Eq. (4) gives the relation between η  and φ  as 

 

( ) φωη






 += 2

3
11 kh

g
i         (5) 



 8 

 

where the velocity potential φ  is given by the relation as 

 

φ∇=u          (6) 

 

We add the source function s  in the right side of Eq. (3). Then, we substitute Eq. (6) 

into the linearized forms of Eqs. (3) and (4) over a constant water depth. Further, we 

combine these equations in favor of φ . Finally, integrating the combined equation in 

space and using the relation of Eq. (5), we get the following equation 

 

( ) skhi
t

hgh
t 







+−=

∂
∂∇−∇−

∂
∂

3
1

3

2

2

2
2

2
2

2

2

ωηηη         (7) 

 

In order to obtain the relationship between the source function s  and the surface 

elevation η , a particular solution of the differential equation including the source 

function should be obtained. Let the surface elevation propagating from the source point 

of sxx =  be defined as 

 

( ){ }tmyi ωηη −= exp~          (8) 

 

where η~  is the variable without the y -directional and time harmonic terms of the 

surface elevation. Substituting Eqs. (1) and (8) into Eq. (7) yields the following one-
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dimensional Helmholtz equation 

 

( ) skhkil
dx
d ~

3
1~~ 22

2
2

2








+=+

ω
ηη         (9) 

 

where ( )θcoskl =  is the x -directional wave number. Using the results in the Appendix 

A.1, we obtain the particular solution of Eq. (9) as 

 

( ) ( ){ }sxxilDkh
l

k −±







+= exp

3
1

2
~

22

ω
η       (10) 

 

where the upper plus and lower minus signs, respectively, represent the right- and left-

going waves from the source point of sxx = . The amplitude of the source function D  

can be determined by equating Eq. (10) with the target value of ( ){ }sxxila −±= exp~η . 

Thus, using Eqs. (1) and (2), we get the source function given by 

 

( ) θδη cos2 se
I xxCs −=        (11) 

 

where kl=θcos , eC  is the energy velocity for Peregrine’s Boussinesq equations (Lee 

and Suh., 1998) given by 
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( )
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
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and Iη  is the water surface elevation of incident waves given by 

 

( ){ }tmyiaI ωη −= exp         (13) 

 

2.2 Source function for extended Boussinesq equations of Madsen and 
Sørensen (1992) 
 

The extended Boussinesq equations of Madsen and Sørensen (1992) are given by 
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∂
∂+








∂
∂+








∂
∂+

∂
∂

yx
Bgh

ty
P

x
hh

x
Bgh

y
Bgh

tx
P

ty
Q

y
hh

yxy
Bgh

tyx
P

ty
QhB

y
gd

d
Q

yd
PQ

xt
Q

η

ηηηη

η

  (16) 

 

where ( )QP,  is the depth-integrated velocity, η+= hd  is the total water depth, and 

the value of the parameter B  is chosen to optimize the dispersion characteristics. 

Adding the source function s  in the right side of Eq. (14), and combining linearized 
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forms of Eqs. (14) - (16) in favor of η  for a flat bottom yield the following equation 

 

( )
t
shB

t
sBgh

t
hBgh

t ∂
∂∇






 +−

∂
∂=∇∇+

∂
∂∇






 +−∇−

∂
∂ 22223

2

2
222

2

2

3
1

3
1 ηηηη   (17) 

 

Substituting Eqs. (1) and (8) into the above equation yields a one-dimensional differential 

equation given by 

 

















−






 +−=++ sm

dx
sdhBsiC

dx
dC

dx
dC ~~

3
1~~~~

2
2

2
2

32

2

24

4

1 ωηηη    (18) 

 
where 
 

3
1 BghC −=          (19a) 

2322
2 2

3
1 mBghhBghC +





 +−= ω       (19b) 

4322222
3 3

1 mBghmhBghmC −





 ++−= ωω      (19c) 

 

Using the results in the Appendix A.2, we obtain the particular solution of Eq. (18) as 

 

( )

{ } ( ){ }sxxilD
hBgk

khBk
−±

+














 ++

= exp
cos2

3
11

~
342

2

θω

ω
η           (20) 

 

The amplitude of the source function D  can be determined by equating Eq. (20) with 

the target value of ( ){ }sxxila −±= exp~η . Thus, using Eqs. (1) and (2), we get the source 

function given by Eq. (11) where Iη  is given in Eq. (13) and eC  is the energy velocity 

for the extended Boussinesq equations of Madsen and Sørensen given by 
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( )
( ){ } ( ) 
































 +++

−=
22

2

3
1113

1
khBkhB

kh
k

Ce
ω      (21) 

 

Schäffer and Sørensen (2006) added the delta source function to the mass conservation 

type equation of Madsen and Sørensen, integrated asymptotically the resulting equation 

at the generation point, and thus obtained an explicit relation of the source function to the 

energy velocity. However, for the equations of Madsen and Sørensen, the source function 

cannot be explicitly related to the energy velocity because the spatial derivative of the 

source function appears in addition to the function itself as in Eq. (17). 

 

2.3 Source function for extended Boussinesq equations of Nwogu (1993)  
 

The extended Boussinesq equations of Nwogu (1993) are given by 

 

( ){ } ( ) ( ){ } 0
262

22

=







⋅∇∇






 ++⋅∇∇








−⋅∇++⋅∇+

∂
∂

ααα
α

αηη uuu hhhzhhzh
t

   (22) 

( ) 0
2

=




























∂
∂⋅∇∇+








∂
∂⋅∇∇+∇+∇⋅+

∂
∂

t
h

t
zzg

t
ααα

ααα
α η uuuuu       (23) 

 

where αu  is the horizontal velocity at a certain elevation of αzz = . For sinusoidal 

waves over a flat bottom, a linearized form of Eq. (23) gives the relation between η  and 

αφ  as 
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( ){ } αφαωη 21 kh
g
i −=         (24) 

 

where ( ) hzhz /2// 2
ααα +=  and the velocity potential αφ  is given by the relation as 

 

αφ∇=αu          (25) 

 

We add the source function s  in the right side of Eq. (22). Then, we substitute Eq. (25) 

into the linearized forms of Eqs. (22) and (23) over a constant water depth. Further, we 

combine these equations in favor of αφ . Finally, integrating the combined equation in 

space and using the relation of Eq. (24), we get the following equation 

 

( ) ( ){ } skhi
t

hghgh
t

2
2

2
222232

2

2

1
3
1 αωηαηαηη −−=

∂
∂∇+∇∇






 +−∇−

∂
∂       (26) 

 

Substituting Eqs. (1) and (8) into the above equation yields a one-dimensional differential 

equation given by 

 

sCC
dx
dC

dx
dC ~~~~

432

2

24

4

1 =++ ηηη           (27) 

 

where 

  

3
1 3

1 ghC 





 += α         (28a) 

2322
2 3

12 mghhghC 





 +−+= ααω       (28b) 

4322222
3 3

1 mghmhghmC 





 ++−−= ααωω      (28c) 
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( ){ }2
4 1 khiC αω −=         (28d) 

 

Using the results in the Appendix A.3, we obtain the particular solution of Eq. (27) as 

 

( ){ } ( ){ }sxxi
D

hgk

khk
−±















 +−

−
= exp

cos
3
12

1~
342

2

θαω

αωη     (29) 

 

The amplitude of the source function D  can be determined by equating Eq. (29) with 

the target value of ( ){ }sxxila −±= exp~η . Thus, using Eqs. (1) and (2), we get the source 

function given by Eq. (11) where Iη  is given in Eq. (13) and eC  is the energy velocity 

for the extended Boussinesq equations of Nwogu (Lee et al., 2001) given by 

 

( )
( ){ } ( ) 
































 +−−

−=
22

2

3
1

113
1

khkh

kh
k

Ce
αα

ω      (30) 

 

2.4 Source function for elliptic extended mild-slope equation of Massel 
(1993) 
 

The elliptic extended mild-slope equation of Massel (1993) is given by 

 

( ) ( ){ } 0ˆˆ 2
2

22
1

22 =∇−∇−+∇⋅∇ ϕωωϕ hRhRCCkCC gg     (31) 

 

where ( )tiωϕϕ expˆ =  and ϕ  is the velocity potential at the mean water level, C  and 

gC  are the phase and group velocities, respectively, and 1R  and 2R  are the 
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coefficients related to the second order bottom effect. For a flat bottom, adding the 

source function s  in the right side of Eq. (31), defining the variable ( )tiωηη expˆ =  

and using the relation of ( )ϕωη ˆ/ˆ gi−=  give the following equation 

 

s
gCC
ik

g

ωηη =+∇ ˆˆ 22         (32) 

 

Substituting ( )imyexp~ˆ ηη =  and ( )imyss exp~=  into Eq. (32) yields a one-dimensional 

Helmholtz equation given by 

 

gCC
s

g
il

dx
d ~~

~
2

2

2 ωηη =+         (33) 

 

Using the results in the Appendix A.4, we obtain the particular solution of Eq. (33) as 

 

( ) ( ){ }s
g

xxilD
gC

x −±= exp
cos2

1~
θ

η       (34) 

 

The amplitude of the source function D  can be determined by equating Eq. (34) with 

the target value of ( ){ }sxxila −±= exp~η . Thus, using the relation of ( )imyss exp~=  

and Eq. (2), we get the source function given by 

 

( ) θδωη cos)exp(2 se
I xxgCtis −=       (35) 

 

where Iη  is given in Eq. (13) and ge CC =  is the energy velocity for the extended 
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mild-slope equation of Massel. When the direction of the incident wave is perpendicular 

to the y -axis, i.e., 0=θ , Eq. (35) is the same as the source function derived by Bellotti 

et al. (2003). 

 

2.5 Source function for extended mild-slope equations of Suh et al. 
(1997) 

 

The extended mild-slope equations of Suh et al. (1997) are given by 

 

( ){ } 02
2

2
1

222

=∇+∇−
−

−








∇⋅∇+

∂
∂ ϕωϕ

ω
ϕη hRhR

gg
CCk

g
CC

t
gg    (36) 

0=+
∂
∂ ηϕ g
t

          (37) 

 

where ϕ  is the velocity potential at the mean water level and the over bar indicates the 

variables associated with the carrier angular frequency ω . Adding the source function 

s  in the right side of Eq. (36), combining Eqs. (36) and (37) in favor of ϕ  for a flat 

bottom, and using the relation ( )ϕωη gi /−=  give the following equation 

 

( ) siCCkCC
t gg ωηωηη −=−+∇−

∂
∂ 222

2

2

        (38) 

 

Substituting Eqs. (1) and (8) into the above equation yields a one-dimensional Helmholtz 

equation given by 

 

s
CC

il
dx
d

g

~~~
2

2

2 ωηη =+            (39) 
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Using the results in the Appendix A.4, we obtain the particular solution of Eq. (39) as 

 

( ){ }s
g

xxilD
CCl

−±= exp
2

~ ωη          (40) 

 

The amplitude of the source function D  can be determined by equating Eq. (40) with 

the target value of ( ){ }sxxila −±= exp~η . Thus, using Eqs. (1) and (2), we get the source 

function given by Eq. (11) where kl=θcos , Iη  is given in Eq. (13) and eC  is the 

energy velocity for the extended mild-slope equation of Suh et al. (Lee and Suh, 1998) 

given by 

 

C
CC

C g
e =          (41) 

 

2.6 Source function for extended mild-slope equations of Lee et al. 
(1998) 
 

The extended mild-slope equations of Lee et al. (1998) are given by 

 

( )
0

2
2

2
1

=
∇−∇−

⋅∇+
∂
∂

hRhR
C
Ct g

Qη           (42) 

0=∇+
∂
∂ ηgCCt
Q           (43) 

 

where the flux Q is defined as ηgCQ = . Adding the source function s  in the right 

side of Eq. (42), and combining Eqs. (42) and (43) in favor of η  for a flat bottom give 

the following equation 
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siC
t

ωηη −=∇−
∂
∂ 22

2

2

        (44) 

 

Substituting Eqs. (1) and (8) into the above equation yields a one-dimensional Helmholtz 

equation given by 

 

s
C
kil

dx
d ~~~

2
2

2

=+ ηη         (45) 

 

Using the results in the Appendix A.4, we obtain the particular solution of Eq. (45) as 

 

( ){ }sxxilD
Cl
k −±= exp

2
~η        (46) 

 

The amplitude of the source function D  can be determined by equating Eq. (46) with 

the target value of ( ){ }sxxila −±= exp~η . Thus, using Eqs. (1) and (2), we get the source 

function given by Eq. (11) where kl=θcos , Iη  is given in Eq. (13) and eC  is the 

energy velocity for the extended mild-slope equation of Lee et al. (Lee and Suh, 1998) 

given by  

 

CCe =           (47) 
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2.7 Source function for extended mild-slope equation of Lee et al. 
(2003b) 
 

The extended mild-slope equation of Lee et al. (2003b) is given by 

 

( ) ( ){ } ( )

( ) ( ) 02221
2

2
2

2
1

2

=
∂
∂













∇
∂
∂+∇

∂
∂+

∂
∂

+













∂
∂∇

∂
∂

⋅∇+∇+∇++∇⋅∇

t
hughug

CCk
i

t
CC

ihughugCCkCC

g

g
gg

ς
ωωω

ς
ω

ςς

     (48) 

 

where ς  is related to η  by ( )tiωςη −= exp . 1u  and 2u  are the coefficients 

mathematically equivalent to gR 2
2ϖ−  and gR 2

1ϖ− , respectively. For a flat 

bottom, adding the source function s  in the right side of Eq. (48) yields the following 

equation 

 

( ) ( )
s

t
CCk

i
t

CC
iCCkCC gg

gg =
∂
∂

∂
∂

+
∂
∂∇

∂
∂

++∇ ς
ω

ς
ω

ςς
2

222    (49) 

 

Substituting ( ){ }tmyi ωης ∆−= exp~  and ( ){ }tmyiss ω∆−= exp~ , where ωωω −=∆ , 

into the above equation yields a one-dimensional Helmholtz equation given by 

 

( )
ω

ω
ηη

∂
∂

∆+
=+

g
g

CC
CC

sl
dx
d ~~~

2
2

2

        (50) 

 

Using the results in the Appendix A.4, we obtain the particular solution of Eq. (50) as 
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( ) ( ){ }s
g

g

xxilD
CC

CCl

i −±













∂
∂

∆+

−= exp

2

~

ω
ω

η        (51) 

 

The amplitude of the source function D  can be determined by equating Eq. (51) with 

the target value of ( ){ }sxxila −±= exp~η . Thus, using Eqs. (1) and (2), we get the source 

function given by 

 

( ) ( ) ( ) θδ
ωω

ς cos2
2

s
gg

e
I xx

CC
k

CCk
Cis −













∂
∂

−
∂

∂
=      (52) 

 

where kl=θcos , eC  is the energy velocity for the extended mild-slope equations of 

Lee et al. (2003b) given by 

 

( )

( ) ( )
ωω

ω
ω

∂
∂

−
∂

∂
∂

∂
∆+

=
gg

g
g

e
CC

k
CCk

CC
CC

kC
2

2
2        (53) 

 

and Iς  is the surface elevation function of incident waves given by 

 

( ){ }tmyiaI ως ∆−= exp         (54) 
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3. Relation between Source Term Addition Method and Delta Source 

Function Method 

 

We first follow the previous studies to get the energy velocities for the time-dependent 

wave equations which are needed in the source term addition method. And then, we find 

the equivalence between the two line source methods, i.e., the source term addition 

method and the delta source function method for the time-dependent wave equations by 

using the fractional step splitting method. 

 

3.1 Source term addition method 

 

In the source term addition method, we add at each time step the water surface 

elevation *η  of desired energy to the corresponding value modelη  that is computed by 

the time-dependent model equations. Thus, we have the following equation 

 

*model1 ηηη +=+n                          (55) 

 

where the superscript 1+n  denotes the time step in which the surface elevation is 

predicted. When the wave generation line is parallel to the y -axis, the value *η  which 

is added at the wave generation line is given by (Lee and Suh, 1998) 

 

θηη cos2*

x
tCeI

∆
∆

=            (56) 

 

where Iη  is the water surface elevation of incident waves, eC  is the energy velocity, 
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θ  is the direction of incident waves from the x -axis, x∆  is the grid size in the x -axis, 

and t∆  is the time step. It is noted that only the x -directional component of the wave 

energy is transported, which is normal to the wave generation line. It is also noted that 

there is ‘2’ in Eq. (56) because wave energy is transported in both directions from the 

wave generation line. 

 

The energy velocity eC  can be found by applying the geometric optics approach to 

each wave model for a flat bottom. Lee and Suh (1998) and Lee et al. (2001) derived in 

detail the energy velocity as well as the phase velocity for several wave models. The 

surface elevation η  can be defined as 

 

( )Ψ= ia expη            (57) 

 

where the amplitude a  modulates in horizontal space and time, i  is the imaginary unit, 

and the phase function Ψ  has the following relations with the angular frequency ω  

and the wave number components ( )ml , : 

 

ω−=
∂
Ψ∂
t

,    ( )ml,±=Ψ∇              (58) 

  

where the upper plus and lower minus signs, respectively, represent the right- and left-
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going waves from the source line. Substituting Eq. (57) into the linearized governing 

equations and rearranging the imaginary part yield the energy velocities given by Eqs. 

(12), (21), (30), (41), and (47) for the wave equations of Peregrine (1967), Madsen and 

Sørensen (1992), Nwogu (1993), Suh et al. (1997), and Lee et al. (1998), respectively. 

For the extended mild-slope equation of Lee et al. (2003b), using the relations of 

( ){ }tia ως +Ψ= exp  and ωςς ∆−=∂∂ it/ , where ωωω −=∆ , and rearranging the 

imaginary part of the resulting equation yield the energy velocity given by Eq. (53). 

 

3.2 Fractional step splitting method 
 

In this section, the fractional step splitting method (LeVeque, 1998) is used to find the 

equivalence between the source term addition method and the delta source function 

method for the wave equations. We also show that the energy velocity should be used in 

the source term addition method. 

 

  If the source function method is used for the wave equations, the resulting equation 

would be a form of the conservation equation for q  including a source function S :  

 

( ) Sqf
t
q =+
∂
∂           (59) 

 

where q  is a physical variable and ( )qf  is a function of q  which may have a spatial 

derivative of q  to consider the convection of the variable. The fractional step splitting 

method allows to split Eq. (59) into the homogeneous conservation equation 

 

( ) 0=+
∂
∂ qf
t
q           (60) 
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and the ordinary differential equation 

 

S
dt
dq

=           (61) 

 

at each time step. Also, Eq. (61) can be discretized in time using a forward difference 

scheme as 

 

*model1 qqq n +=+         (62) 

 

where modelq  is obtained by solving the conservation Eq. (60) which does not include the 

source function and *q  is obtained as 

 

tSq ∆=*           (63) 

 

The mathematical form of Eq. (55) in the source term addition method is equal to Eq. 

(62) in the delta source function method. If the physical variable q  is the water surface 

elevation η , the added value *q  in Eq. (63) is the added value *η  in Eq. (56). In a 

rectangular grid system, the delta function may be represented as a unit impulse function 

given by 

 

( )








∆>−

∆≤−
∆=−

2
,0

2
,1

xxx

xxx
xxx

s

s

sδ        (64) 

 

The mass conservation type Eqs. (3), (14), (22), (32), and (42) in the wave equations of 
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Peregrine (1967), Madsen and Sørensen (1992), Nwogu (1993), Suh et al. (1997), and 

Lee et al. (1998), respectively, have the same forms as the homogeneous conservation Eq. 

(60) in terms of η . Adding the source functions given by Eq. (11) to the right sides of 

the corresponding mass conservation equations and solving them by the fractional step 

splitting method give *η  for each equation. Using Eq. (64) for ( )sxx −δ  in the 

obtained *η  and comparing the resulting *η  with Eq. (56), we obtain the energy 

velocity eC  which is obtained by the geometrical optics approach and used in the source 

term addition method.  

 

For example, the mass conservation equation of Peregrine (1967) including the source 

function, Eq. (11), is given by 

 

( ){ } ( )2 cosI
e sh C x x

t
η η η δ θ∂ + ∇ ⋅ + = −
∂

u       (65) 

 

Solving this equation by the fractional step splitting method gives the added value *η . 

Using Eq. (64) for ( )sxx −δ  in the obtained *η  and comparing the resulting *η  with 

Eq. (56) yield the energy velocity given by Eq. (12) which was used in the source term 

addition method. 

 

  Lee et al.’s (2003b) extended mild-slope Eq. (48), which includes the source function, 

is not a form of the conservation Eq. (59). By using the relation of ςς 22 k−=∇ , we can 

modify Eq. (49) to be a form of the conservation equation in terms of ς  as 
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( )
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−
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∂

−
−

∂
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CCk
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   (66) 

 

Therefore, the added value *ς  at each time step is given by 

 

( ) ( )

θς

ωω

ς

cos

2
2

*

x
tC

t
CC

k
CCk

si

eI

gg

∆
∆

=

∆

∂
∂

−
∂

∂
−=

             (67) 

 

In order to obtain the energy velocity, we used the source function given by Eq. (52) as 

well as the delta function given by Eq. (64). There is not a factor of 2 in the right side of 

Eq. (67) while there is a factor of 2 in the right side of Eq. (56) which is applied to all 

other wave models. 

 

Schäffer and Sørensen (2006) also derived the source functions given in Eq. (11) for 

the extended Boussinesq equations of Nwogu (1993) and the mild-slope equations of 

Radder and Dingemans (1985) and Copeland (1985). They considered for only 

horizontally one-dimensional cases, and thus did not explain the presence of θcos  in 

Eq. (11) for horizontally two-dimensional cases. Also, they did not show that, from the 

delta source function method, the added value of *η  in the source term addition method 

should be related to the energy velocity eC  as given in Eq. (56). However, it is hard to 

get the relation of Eq. (56) directly from the delta source function method. Furthermore, 

without the fractional step splitting method which was used in the present study, the 

added value of *ς  for Lee et al.’s (2003b) cannot be related to the energy velocity eC  



 27 

as given in Eq. (67). 

 

It should be noted that the source function may have a different dimension depending 

on the wave equation to which the source function is added. The source function has the 

dimension of  [ ]1−LT  for the equations of Peregrine (1967), Madsen and Sørensen 

(1992), Nwogu (1993), Suh et al. (1997), and Lee et al. (1998). And, the source function 

has the dimension of [ ]32 −TL  and [ ]2−LT  for the equations of Massel (1993) and Lee et 

al. (2003b), respectively. Here, L  and T  denote the length and time, respectively. 

 

 

4. Numerical Experiments 

 

  By numerical experiments, Lee and Suh (1998) verified the source term addition 

method with the use of the energy velocity in the mild-slope equations of Radder and 

Dingemans (1985) and Copeland (1985). They also proved its applicability in generating 

multi-directional random waves using three wave generation lines which surround the 

concerned region. Lee et al. (2001) verified the source term addition method with the use 

of the energy velocity in the extended Boussinesq equations of Nwogu (1993). They also 

generated nonlinear cnoidal waves in shallow water.  

 

  In this section, we generate linear waves using the delta source functions in all the 

types of the Boussinesq type equations and the extended mild-slope equations. We also 

generate cnoidal waves using the extended Boussinesq equations of Peregrine (1967). 
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4.1 Finite difference method  
 

  To minimize wave reflection from the boundaries, sponge layers are placed at the 

outside boundaries by dissipating wave energy inside the sponge layers. Thus, the 

damping coefficient sD  is given by 

 

( )
( )







−
−

=
layer  sponge  outside,0

layer sponge inside,
11exp

1/exp Wd
Ds     (68) 

 

where d  is the distance from the starting point of the sponge layer and W  is the 

thickness of the sponge layer. 

 

  All the Boussinesq type models are descretized in time by the composite 4rd order 

Adams-Bashforth-Moulton predictor-corrector scheme of Wei and Kirby (1995). . A 9-

point filtering technique (Shapiro, 1970) was used to smooth out numerical noises in the 

solution of the Boussinesq equations. The extended mild-slope equations of Suh et al. 

(1997) are discretized in time by the 4th order Adams-Moulton predictor-corrector 

scheme (Kirby et al., 1992). The extended mild-slope equations of Lee et al. (1998) are 

discretized by a leap-frog method in a staggered grid in time and space. The extended 

mild-slope equations of Lee et al. (2003b) are discretized in time and space by the Crank-

Nicolson scheme. 

 

4.2 Generation of linear waves 
 

  Using the delta source function method we generate linear waves for all the 

Boussinesq type and mild-slope type equations. The computational domain consists of an 

inner domain of L15 , where L  is the wavelength, and two sponge layers with the 
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thickness of L5.2  at the outside boundaries. The source point is located at the center of 

the inner domain (see Fig. 1). The water depth is 1 m and the amplitude of target water 

surface elevation is 0.001 m. The wave amplitudes are measured one wavelength apart 

from the wave generation line. These are normalized by the target amplitude. 

 

Figs. 2 (a) – (f) show the normalized wave amplitudes versus relative water depth for 

the Boussinesq type models of Peregrine (1967), Madsen and Sørensen (1992), and 

Nwogu (1993), and the extended mild-slope equations of Suh et al. (1997), Lee et al. 

(1998), and Lee et al. (2003b). On the whole, the amplitudes of the generated waves are 

almost equal to the target amplitude. Although the wave energy can be accurately 

generated even in a deep water for the extended Boussinsq equations of Madsen and 

Sørensen (1992) and Nwogu (1993), use of these models should be limited up to the 

intermediate water depth to guarantee a good dispersion characteristics (Lee et al., 

2003a). 

 

For Peregrine’s Boussinesq equations, the wave amplitudes are somewhat different 

from the target one at water depth of π7.0>hke  where ek  is the wave number 

obtained by the dispersion relation for linear Stokes waves. This is because the 

conventional Boussinesq equations cannot predict wave amplitudes as well as 

wavelengths due to the limitation in the dispersion relation when the water depth 

becomes large. Thus, in the case of deep water with π=hke , waves could not be 

generated. The dispersion relation for the Peregrine’s Boussinesq equations is 

 

( )
3

1
2kh

gh
k

C
+

==
ω                (69) 
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From Eq. (69), the wave number k  may be determined as 

 

3

22

2

hgh
k

ω
ω

−
=          (70) 

 

The denominator in the above equation should be greater than zero to get a real value of 

k . Using the linear dispersion relation of hkgk ee tanh2 =ω , we can see that the relative 

water depth hke  should satisfy the condition of π96.0<hke . However, the model 

should be used only in shallow water to guarantee a good dispersion relation. 

 

Figs. 3 and 4 show the surface elevations generated for the extended mild-slope 

equation of Lee et al. (2003b) and the extended Boussinesq equations of Nwogu (1993), 

respectively, in a shallow water ( π1.0=hke ) and a deep water ( π=hke ). For both the 

extended mild-slope equation and extended Boussinesq equations, the normalized 

amplitudes are almost equal to one in the inner domain. Wave amplitudes decay down to 

almost zero values in the sponge layer domain.  

 

4.3 Generation of cnoidal waves 
 

The source term addition method was developed based on the assumption of the 

linearity of the wave model. However, using the source term addition method, Larsen 

and Dancy (1983) and Lee et al. (2001) generated cnoidal waves using the Boussinesq 

type equations of Peregrine (1967) and Nwogu (1993), respectively. Even though the 

linear energy velocity was used at one grid point in generating nonlinear waves, the wave 

models reproduced the propagation of nonlinear cnoidal waves. In this section, we 

generate cnoidal waves using the delta source function method in the Boussinesq 



 31 

equations of Peregrine (1967). 

 

The water surface elevation of cnoidal waves η  is given by 

 









+= m

T
KtHt

2cn2ηη         (71) 

 

where H  is the wave height, and tη  is the elevation of wave trough given by 

 







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K
Em

m
H

t 1η         (72) 

 

where cn  is the Jacobian elliptic function, K  is the complete elliptic integral of the 

first kind, E  is the complete elliptic integral of the second kind, and m  is the modulus 

which determines the wave shape. It should be noted that these cnoidal wave solutions 

are not necessarily the solutions to all sets of the Boussinesq equations and anomalies 

may show up in the computations unless the relative water depth is relatively small. 

 

The computational domain is the same as the case of linear waves. The wave period is 

s20=T  and the water depth is h=10m, and thus the water depth is relatively shallow 

with π1.0=hke . The wave heights are =H 1 m, 2 m, and 3 m, so the Ursell numbers 

are ( ) ( )2/ hkhaU er = = 0.48, 0.96, and 1.44, respectively, and the moduli are m = 

0.9360, 0.9938, and 0.9992, respectively 

 

Fig. 5 shows the comparison of numerically generated water surface elevations and 

envelopes of cnoidal waves at a time of 30t T=  against the target one. In the figure, the 

horizontal distance is normalized by the wavelength obtained by the linearized dispersion 
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relation. In the inner domain, good agreements are observed between the numerical 

solutions and the exact ones even for the higher wave amplitude. As the wave height 

increases, the wavelength increases due to the nonlinear dispersion. In the sponge layer 

domain, the wave envelopes decay down to almost zero values. This shows the capability 

of generating nonlinear waves using the delta source function. As the wave height 

increases, small oscillations are found more significantly both in the trough-level surface 

elevation and the envelope. However, these oscillations are not amplified even after a 

long time. 

 

 

5. Conclusions 

 

In this study, we investigated two internal wave generation methods, i.e., delta source 

function method and source term addition method. The internal wave generation 

techniques have been used along with the sponge layers which are placed at the offshore 

boundary in order to avoid the re-reflection problem at the wave generation boundary. 

We derived delta source functions for the Boussinesq equations of Peregrine (1967), the 

extended Boussinesq equations of Madsen and Sørensen (1992), Nwogu (1993) and the 

extended mild-slope equations of Massel (1993), Suh et al. (1997), Lee et al. (1998), and 

Lee et al. (2003b). By applying the fractional step splitting method to the time-dependent 

wave equations including the source function, we found the equivalence of the two types 

of internal wave generation techniques, i.e., the source term addition method and the 

delta source function method. From the equivalent relation, we verified the energy 

velocity approach that the energy velocity should be used instead of the phase velocity 

for the transport of incident wave energy in the source term addition method. The source 

function method is verified numerically by generating accurately nonlinear cnoidal 
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waves as well as linear waves for horizontally one-dimensional cases. All the numerical 

solutions show the target wave amplitudes are accurately generated by the source 

functions. While the Gaussian source function (Wei et al., 1999) needs several grids for 

generating waves accurately, the delta source function needs only one spatial grid which 

saves the storage and computational time. By the fractional step splitting method, the two 

wave generation methods are proved to be identical to each other. However, the delta 

source function method is recommended to be used rather than the source term addition 

method in terms of the mathematical completeness because the delta source function is 

included in the original wave equation and then the resulting equations are discretized 

numerically. 

 

  This energy velocity approach was also verified by Schäffer and Sørensen (2006). 

They added the delta source function to the mass conservation type equation, integrated 

asymptotically the resulting equation at the generation point, and thus they got an explicit 

relation of the source function to the energy velocity. However, they couldn’t get the 

energy velocity for the extended Boussinesq equations of Madsen and Sørensen (1992) 

because the source function cannot be related explicitly to the energy velocity. To the 

contrary, we could get the energy velocities for all types of wave equations including the 

equations of Madsen and Sørensen. 

 

  In this study, we derived the source functions for the extended mild-slope equations, 

which are reduced to the mild-slope equations by excluding the terms of second-order 

bottom effects. Thus, the source functions of the extended models of Massel (1993), Suh 

et al. (1997), Lee et al. (1998), and Lee et al. (2003b) can be used to the models of 

Berkhoff (1972), Radder and Dingemans (1985), Copeland (1985), and Kubo et al. 

(1992), respectively. 
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Appendix A. Green’s function approach 

 

In order to obtain the relationship between the source function s  and the surface 

elevation η , a particular solution of the differential equation including the source 

function should be obtained. The differential equation after extracting both the y -

directional and time-harmonic terms is given by 

 

)(~~~~
432

2

24

4

1 xsCC
dx
dC

dx
dC =++ ηηη               (73) 

 

For the conventional Boussinesq equations of Peregrine (1967) and all the extended 

mild-slope equations, 01 =C , 12 =C  and 2
3 lC = , and thus the above equation 

becomes the Helmholtz equation. For the extended Boussinesq equations, 1C , 2C  and 

3C  are listed in Eqs. (19a)-(19c) and Eqs. (28a) – (28c). 4C  is a coefficient of the 

source function. In order to obtain the particular solution for Eq. (73), we seek a Green’s 

function ( )xG ,ξ  which satisfies the following equation 

 

( ) ( ) ( ) ( )xxGC
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d
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32

2

24

4

1     (74) 

 

where ξ  and x  are regarded as the active and fixed variables, respectively, and δ  is 
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the Dirac delta function. The variables of G  and η~  should satisfy the radiation 

boundary conditions given by 

 

( ) ( ) +∞→+=+= ξη
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( ) ( ) −∞→−=−= ξη
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ξ
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n

n
n

n
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d
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A.1 Boussinesq equations of Peregrine (1967) 
 

For Peregrine’s Boussinesq equations, the coefficients of Eq. (73) are  

 

01 =C , 12 =C , 2
3 lC =           (77a,b,c) 
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Integrating Eq. (74) with respect to ξ  from 0−x  to 0+x  yields the following 

equation 

 

1
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−=

x

xd
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ξ
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                 (78) 

 

where we use the continuity condition of G  at x=ξ . The Green’s function that 

satisfies Eq. (78) and the radiation conditions (75) and (76) is given by 
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where the amplitude A  is 

 

l
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−=            (80) 

 

Multiplying Eq. (74) by ( )ξη~  and integrating with respect to ξ  from ∞−  to ∞+  

give the following equation 
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Integrating the above equation by parts and using the relation (73) and the radiation 

boundary conditions (75) and (76) give the following equation 

 

( ) ( ) ( ){ }4 , ( ) , ( )
x

x
x C G x s d G x s dη ξ ξ ξ ξ ξ ξ

+∞

− +−∞
= +∫ ∫             (82) 

 

For waves propagating in the positive x -direction, the second integral in the right side 
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of Eq. (82) becomes zero in a concerned region ( sxx > ). Thus, Eq. (82) becomes 

 

( ) ( ) ( ){ }s
x

xxilDACdsxGCx −== ∫ ∞− − exp)(~,~
44 ξξξη     (83) 

 

After using a similar way for waves propagating in the negative x -direction, we have 

the following solution 

 

( ) ( ){ }sxxilDACx −±= exp~
4η         (84) 

 

where the upper plus and lower minus signs mean that waves are propagating in the right 

and left directions, respectively, from the source point of sxx = . Using Eqs. (77d) and 

(80), we get the following solution  

 

( ) ( ){ }sxxilDkh
l

k −±







+= exp

3
1

2
~

22

ω
η       (85) 

 

A.2 Extended Boussinesq equations of Madsen and Sørensen (1992) 
 

As the coefficient of Eq. (73) is 01 ≠C  for the extended Boussinesq equations of 

Madsen and Sørensen, the Green’s function which satisfies the differential equation (74) 

and the radiation conditions (75) and (76) is given by 
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where the wave numbers 1l  and 2l  are 
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where 1l  is the x -directional wave number of progressive waves and 2l  is the 

imaginary wave number of evanescent modes. As G  is continuous at x=ξ , we have 

 

02211 =+ AlAl          (88) 

 

Integrating Eq. (74) and using the continuity conditions of G , ξddG /  and 22 / ξdGd  

at x=ξ  yield the following equation 
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Thus, we have 
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3
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The amplitude 1A  can be obtained from Eqs. (88) and (90) as 
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The dispersion relation for the extended Boussinesq equations of Madsen and Sorsensen 

is 
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( )( )2
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khBgh
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Using the dispersion relation of Eq. (92) and the definitions of 1l  and 2l , the amplitude 

1A  can be expressed as 

 

( ) θω cos2 3421 hBgk
ikA

+
−=          (93) 

 

The amplitude 2A  of the evanescent mode with 2l  becomes negligible at a point away 

from the source point. Thus, we take into account only the propagating component with 

the amplitude 1A .  

 

Multiplying Eq. (74) by ( )ξη~  and integrating with respect to ξ  from ∞−  to ∞+  

give Eq. (81). Then, integrating Eq. (81) by parts and using the relation (73) and the 

radiation boundary conditions (75) and (76) give the following equation 
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For waves propagating in the positive x -direction ( sxx > ), the above equation becomes 
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where the integration of the second-derivative term of the delta function is obtained by 

integrating by parts as 
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After following a similar way for waves propagating in the negative x -direction and 

then using Eq. (93), we have the following solution 
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A.3 Extended Boussinesq equations of Nwogu (1993) 
 

As the coefficient of Eq. (73) 01 ≠C  for the extended Boussinesq equations of 

Nwogu, the Green’s function which satisfies the differential equation (74) and the 

radiation conditions (75) and (76) is given by Eq. (86). To get the amplitude 1A , we 

follow the same procedure given in Eqs. (88) to (93) as for the extended Boussinesq 

equations of Madsen and Sørensen except using the dispersion relation given by 
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Thus, we have the amplitude 1A  given by 
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Then, to get the particular solution η~ , we follow the same procedure given in Eqs. (81) 

to (84) as for the Boussinesq equations of Peregrine except that the amplitude A  should 

be replaced by 1A  given in Eq. (99). Thus, using Eqs. (28d) and (99), we get the 

following solution 
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A.4 Extended mild-slope equations of Massel (1993), Suh et al. (1997), 
Lee et al. (1998), and Lee et al. (2003b) 
 



 42 

For extended mild-slope equation of Massel (1993), Suh et al. (1997), Lee et al. (1998), 

and Lee et al. (2003b) the coefficients of Eq. (73) are 01 =C , 12 =C , 2
3 lC = , and  

 

ggCC
iC ω=4 ,    Massel’s (1993) equation        (101a) 

gCC
iC ω=4 ,   Suh et al.’s (1997) equations        (101b) 

C
kiC =4 ,   Lee et al.’s (1998) equations        (101c) 
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4 , Lee et al.’s (2003b) equation          (101d) 

 

The Green’s function which satisfies the differential equation (74) and the radiation 

conditions (75) and (76) is given by Eq. (79). Then, to get the particular solution η~ , we 

follow the same procedure given in Eqs. (81) to (84) as for the Boussinesq equations of 

Peregrine. Thus, using Eqs. (80) and (101a)-(101d), we get the following solution 
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Captions of Figures 

 

Figure 1. Computational domain. 

 

Figure 2. Normalized amplitudes of linear waves versus relative water depth: (a) 

Peregrine (1967)’s conventional Boussinesq equations, (b) Madsen and Sørensen 

(1992)’s extended Boussinesq equations, (c) Nwogu (1993)’s extended Boussinesq 

equations, (d) Suh et al. (1997)’s extended mild-slope equations, (e) Lee et al. (1998)’s 

extended mild-slope equations, (f) Lee et al. (2003b)’s extended mild-slope equation. 

 

Figure 3. Normalized water surface elevations and envelopes of linear waves for the 

extended mild-slope equations of Lee et al. (2003b): (a) π1.0=hke , (b) π=hke ; solid 

line = water surface elevation, thick vertical line = starting point of sponge layer. 

 

Figure 4. Normalized water surface elevations and envelopes of linear waves for the 

extended Boussinesq equations of Nwogu’s (1993): (a) π1.0=hke , (b) π=hke ; solid 

line = water surface elevation, thick vertical line = starting point of sponge layer. 

 

Figure 5. Normalized water surface elevations and wave envelopes of cnoidal waves for 

the Boussinesq equations of Peregrine (1967): (a) I||η =1 m, (b) I||η =2 m, (c) I||η =3 

m.; solid line = numerical solution of water surface elevation, dashed line = analytical 

solution of water surface elevation, dash-dotted line = numerical solution of wave 

envelope, thick vertical line = starting point of sponge layer. 
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Figure 1. Computational domain. 
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Figure 2. Normalized amplitudes of linear waves versus relative water depth: (a) 

Peregrine (1967)’s conventional Boussinesq equations, (b) Madsen and Sørensen 

(1992)’s extended Boussinesq equations, (c) Nwogu (1993)’s extended Boussinesq 

equations, (d) Suh et al. (1997)’s extended mild-slope equations, (e) Lee et al. (1998)’s 

extended mild-slope equations, (f) Lee et al. (2003b)’s extended mild-slope equation. 
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Figure 2. (Continued). 
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Figure 2. (Continued). 
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Figure 3. Normalized water surface elevations and envelopes of linear waves for the 

extended mild-slope equations of Lee et al. (2003b): (a) π1.0=hke , (b) π=hke ; solid 

line = water surface elevation, thick vertical line = starting point of sponge layer. 
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Figure 4. Normalized water surface elevations and envelopes of linear waves for the 

extended Boussinesq equations of Nwogu’s (1993): (a) π1.0=hke , (b) π=hke ; solid 

line = water surface elevation, thick vertical line = starting point of sponge layer. 
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Figure 5. Normalized water surface elevations and wave envelopes of cnoidal waves for 
the Boussinesq equations of Peregrine (1967): (a) I||η =1 m, (b) I||η =2 m, (c) I||η =3 
m.; solid line = numerical solution of water surface elevation, dashed line = analytical 
solution of water surface elevation, dash-dotted line = numerical solution of wave 
envelope, thick vertical line = starting point of sponge layer. 

 

Figure 5


