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First, we appreciate the reviewers’ interest and comments on our manuscript. In the 

following, we provide responses to the reviewers’ comments in a question-answer format. 

The answers are typed in italic. The page numbers and figure numbers referred to in this 

reply are those in the revised manuscript in which all numbers of equations were rearranged 

according to the revision.

* Detailed Response to Reviewers



Answer to comments of reviewer 1

I suggest that this paper can be accepted for publication if the following minor modification 

is made.

Minor modification:

Please delete all the contents after Eq.(B-8) in Appendix B. The reason is

1) It is unnecessary to expand A(x), B(x), C(x).

2) Even if they need to be expanded, those expansions can be obtained very easily by using 

the Maple or some other softwares.

A) We removed all the contents after Eq. (B-8) as the reviewer suggested.



Answer to comments of reviewer 2

1. General comments. The authors have taken care of almost all of my remarks. However, 

they still want to stick to their extended solutions. They only changed their model into 

solution. I strongly object to the use of the notation of extended solution to deeper water in 

this paper. I said it before, the solutions of the mild-slope equation are valid for both deep 

and shallow water.

In the paper two different models are considered:

  • The long-wave model as such, and

  • The mild-slope model

Solutions of the mild-slope model are denoted by the authors as solutions extended to deep 

water. This can only be understood as opposed to the solutions of the long-wave model. The 

authors show that they do not understand what a mild-slope equation mean when they keep 

on adhering to this wording of extended. 

Under the condition that the notation and wording of extended is removed from the paper 

and heed is taken on my previous remarks on this matter, the paper may be published, but 

only under this condition.

We removed the word ‘extended’ in the paper and replaced following expressions as 

reviewer suggested.

The extended solution   the mild-slope solution

The other is a solution extended to deeper water   the other is the mild-slope solution

* Detailed Response to Reviewers



1

Linear Wave Reflection by Trench with Various Shapes

Tae-Hwa Junga,, Kyung-Duck Suhb, Seung Oh Leec, Yong-Sik Choa

aDepartment of Civil Engineering, Hanyang University, Seoul 133-791, Korea

bDepartment of Civil and Environmental Engineering & Engineering Research Institute, Seoul National 

University, Seoul 151-744, Korea

cSchool of Urban & Civil Engineering, Hongik University, Seoul 121-791, Korea

Abstract

Two types of analytical solutions for waves propagating over an asymmetric trench are derived. One is a 

long wave solution and the other is a mild-slope solution which is applicable to deeper water. The water 

depth inside the trench varies in proportion to a power of the distance from the center of the trench (which is 

the deepest water depth point and the origin of x -coordinate in this study). The mild-slope equation is 

transformed into a second order ordinary differential equation with variable coefficients based on the 

longwave assumption or Hunt’s (1979) approximate solution for wave dispersion. The analytical solutions

are then obtained by using the power series technique. The analytical solutions are compared with the 

numerical solution of the hyperbolic mild-slope equations. After obtaining the analytical solutions under 

various conditions, the results are analyzed.

Keywords: trench, analytical solution, mild-slope equation, Bragg reflection

                                                     
Corresponding author. Tel: +82 2 2220 0559

E-mail address: togye176@paran.com (T.-H. Jung).

* Manuscript



2

1. Introduction

Wave reflection due to a bathymetric change has been rigorously investigated as one of the credible 

methods to protect coastal areas from severe wave attacks. In general, practical tools such as numerical, 

experimental or analytical methods are frequently used to predict and analyze wave reflection. Among those

methods, we focus our interest on an analytical approach which has the advantage of obtaining solutions 

quickly, simply and accurately, although they are only available for idealized situations. And it can be of use 

to compare and verify the results from other methods.

Lamb (1932, p. 262, Art. 176) firstly presented the long wave solution to the reflection or transmission of 

waves for a finite step by using matching conditions for surface and normal mass flux at the boundary. 

Takano (1960) developed the analytical solution for arbitrary varying water depth which can be expressed as

a series of small steps by using the eigenfunction expansion method. His approach, in fact, was originated 

from Bremmer (1951) who had described the wave solution using WKBJ (or Liouville-Green)

approximation in electromagnetic waves. The method suggested by Takano (1960) was also used by Kirby 

and Dalrymple (1983), Liu et al. (1992) and Cho and Lee (2000). Dean (1964) obtained the long wave 

solution by solving the continuity and the Euler equations in which the water depth or channel width were 

assumed to vary linearly. He found that the governing equation was transformed into the Bessel equation in 

the linear transition of water depth or channel width and thus, the solution was expressed as a Bessel 

function. Dean’s (1964) solutions become identical with those of Lamb (1932) when the slope changes 

abruptly. Miles (1967) introduced the scattering matrix to calculate the reflection and transmission 

coefficients using the variational principle and applied his method to a continental shelf. Later, Devillard et 

al. (1988) developed the theoretical solution for the wave reflection and transmission over arbitrarily varying 

topography using the transfer matrix which renormalized the scattering matrix. His approach was similar to

Bremmer (1951) or Takano (1960). He divided the domain into small steps having constant water depth and 
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applied the transfer matrix to each step.

Lee and Ayer (1981) investigated the symmetric trench problem by using the transform method. And for 

similar geometry, Miles (1982) calculated the diffraction of a long surface wave by a deformation of the 

bottom through a conformal-mapping algorithm proposed by Kreisel (1949). He applied his results to the 

symmetric rectangular trench. In order to consider obliquely incident waves, Miles (1982) used the 

variational method developed by Mei and Black (1969). 

For the case of an asymmetric rectangular trench, Lassiter (1972) and Kirby and Dalrymple (1983)

derived an analytical solution by using the variational method and Takano’s (1960) method, respectively.

Bender and Dean (2003) studied the reflection and transmission of normally incident waves by the trench 

and shoals with sloped transitions. They developed two methods, the step method and the slope method, by 

using the linearized theory. The step method is an extension of the solution of Takano (1960) and it can be 

applied to arbitrary water depths assuming the sloped transition as a series of steps. The slope method is an 

extension of Dean’s (1964) method that allows a trench and shoals with a linear transition between changes 

in depth but valid only within the long wave region. Recently, Lin and Liu (2005) and Chang and Liou

(2007) conducted analytical studies for the long wave reflection by trapezoidal shape breakwaters by

modifying the Dean’s (1964) solution.

In this study, the analytical solutions propagating over the trench having various shapes including linear 

and abrupt change of depth are developed by using the power series. One is a long wave solution which is 

valid only for shallow water and the other is a mild-slope solution which is valid for both shallow and deep 

water depths. The series solution approach considered in this study is frequently used in two-dimensional 

horizontal analytical problems since Zhang and Zhu (1994) firstly proposed that approach for the 

propagation of long waves around a conical island and over a parabolic shoal. We apply the series solution to 

a two-dimensional vertical problem to consider the wave reflection and transmission by a trench. To develop 

the mild-slope solution, Hunt’s (1979) approximate solution for the wave dispersion given by Liu et al.
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(2004) is employed. Hunt’s approximate solution was also used to develop an analytical solution for the 

submerged truncated paraboloidal shoal by Lin and Liu (2007). In the following section, the analytical 

solutions to the mild-slope equation are derived and then compared with the numerical solution based on the 

same governing equation. Finally, the results obtained from analytical solutions applied to various shapes of 

trench are investigated. 

2. Analytical solutions

The flow domain of interest is divided into the constant flow depth regions (I, IV) and the variable flow 

depth region (II, III) to consider the wave deformation in two dimensional vertical problems. For simplicity 

and convenience, the positive direction in the horizontal and vertical coordinates are defined toward the right 

side from the trench center and upward the still water level, respectively in Fig. 1. 0h  is the water depth at 

the center of a trench, 1h  and 2h  are the constant depths, 1a  and 2a are the distances from the center of 

a trench to the imaginary edge of a trench extended to the water surface, respectively, 1b  and 2b are the 

distances from the center of a trench to the actual edges of a trench, and  is an arbitrary positive integer.

Fig. 1 is an example for the case of 1 , 2 , and  . As shown in Fig. 1, the side slope of a trench is 

linear for 1 , and parabolic for 2 , and it becomes a vertical step for  .

Fig. 1

Considering a homogeneous incompressible and inviscid fluid with irrotational motion traveling over an 

asymmetric trench, the (time-harmonic) mild-slope equation can become the governing equation of interest.
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0)( 2  
C

C

dx

d
CC

dx

d g
g (1)

where,   is the complex amplitude of the water surface elevation, C  the phase velocity, gC  the group 

velocity, and   the wave angular frequency.

To solve the boundary problem, appropriate boundary conditions should be required. The continuity of 

surface elevation and its derivative are used to conserve the mass and momentum at the junction where each 

region meets and the radiation condition is used at x .

In the constant water depth regions (I, IV), the form of the solution of Eq. (1) is 

ikxikx BA  ee (2)

where A and B  are unknown complex variables to be determined by boundary conditions, k  is the 

wave number, and i  is the pure imaginary number )1(  . If waves having unit amplitude are propagating 

from the left side to the right side in the horizontal coordinate, the water surface elevations in the region I

and IV  can be expressed, respectively.

)()(
I

1111 ee bxikbxik R                       )( 1bx  (3)

)(
IV

22e bxikT                                )( 2bx  (4)

where subscript I  and IV  mean the upwave and downwave constant water depth regions, respectively. 

R  and T  are representing the reflection and transmission coefficients, and 1k  and 2k  are the wave 

numbers corresponding to 1h  and 2h , respectively.
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In the variable water depth regions (II, III), the water depths can be given by
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(5)

where 1  and 2 are the values of   in the left and right sides of trench, respectively.

In this study, two kinds of analytical solution in the variable water depth are developed. One is the long

wave solution which is valid only in shallow water; the other is the mild-slope solution which can be applied 

to from shallow water to deep water.

2.1 Shallow water model

For long waves, ghCC g   and hgk 22  , thus, Eq. (1) in the trench becomes the well-

known long wave equation.

0
2

2

2

 
gdx

d

dx

dh

dx

d
h (6)

where g  is the gravitational acceleration, h  is the water depth inside the trench, which decreases 

gradually from the center to the edge according to the Eq. (5). The trench is assumed to be infinitely long in 

the y -direction. 

Substituting Eq. (5) into Eq. (6) results in the following equations:
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where II and III mean the water surface elevation inside the trench, and 

0

2

gh

a i
i

i


     )2,1( i (9)

Since the Eqs. (7) and (8) are the second-order ordinary differential equations with variable coefficients, 

the solutions of Eqs. (7) and (8) can be written in the form of power series as following:







0

II
m

m
m x                              )0( 1  xb (10)







0

III
m

m
m x                              )0( 2bx  (11)

where m  and m  are unknown complex values. These values must be complex because the free 

surfaces in the variable-depth regions [i.e., Eqs. (10) and (11)] must satisfy the matching conditions at the 

boundaries with the constant-depth regions (i.e., at 1bx   and 2bx  ) and the free surfaces at the 

constant-depth regions are expressed as complex as shown in Eqs. (3) and (4). These values are determined 

from recursion relations. According to the Frobenius theory (Hildebrand, 1976), if the series is expanded at 

ordinary or regular singular points, the series solution converges for Xxx  || 0  where 0x  is ordinary 

or regular singular point and X  is the distance from 0xx   to the nearest singular point 

( )2,1(,00  iaXx i  in this case). Thus, the solutions of Eqs. (7) and (8) always converge in the 
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whole trench region because the absolute value of ib  is always less than that of ia  as shown in Fig. 1.

Substituting Eqs. (10) and (11) into Eqs. (7) and (8), respectively, and collecting the terms of the same 

power of x  give the following results:
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where 0 , 1 , 0  and 1  are arbitrary complex constants. Since the values of i  and i )2( i

are determined by 0 , 1 , 0  and 1 , Eqs. (10) and (11) can be rearranged as following:

)()( 2110 xXxXII   (20)

)()( 4130 xXxXIII   (21)

where )(1 xX is obtained after choosing 10   and 01  , and )(2 xX  is computed when 00 

and 11   from Eq. (10). )(3 xX  and )(4 xX  can be obtained according to the same procedure. The 

expression for )(1 xX  and )(2 xX  for the case of 11   is given in Appendix A

Matching conditions at the junction ),0,( 21 bbx   give six algebraic equations, thus the unknown 

coefficients can be obtained using the matrix.
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where
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Substituting these coefficients back into Eqs. (3), (4), (20) and (21), the water surface elevation can be 

obtained for the whole domain. Note that the matching conditions at 0x  give 00    and 11   . 

Therefore, the reflection and transmission coefficients in Eq. (22) can be simplified as follows:



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where

)()()()(

)()()()()()(

)()()()()()(
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23122312124112

24112123122231221
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




(26)

2.2 Extension to deeper waters

For the analysis for deeper water it is advantageous to rewrite the mild-slope equation (1) in the 
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following form:

0
)( 2

2

2

 
C

C

dx

d

dx

CCd

dx

d
CC gg

g (27)

The coefficients in Eq. (27), expressed with the phase velocity and the group velocity, involve the wave 

number which must be obtained from the implicit linear dispersion relation. This makes it difficult to solve 

Eq. (27) analytically. To make the coefficients in Eq. (27) be explicit in forms, Hunt’s (1979) direct solution 

is employed in this study. It involves an infinite series while taking the following form:

)(
)( 22




P
kh  (28)

2 3 42 16 152 128
( ) 1

3 45 945 2025
P           (29)

where

g

h2  (30)

While denoting  


S

j

j
jdP

0
)(  with 10 d  and defining the corresponding direct solution as 

Hunt’s (1979) s th order approximate solution, the phase velocities for different Hunt’s (1979) solution, 

normalized with respect to the phase velocity from the linear theory, are plotted as a function of   in Fig. 2. 

As shown in the figure, Hunt’s solution approaches the solution of the linear dispersion equation as the order 

increases. However, the increase of the order makes the analytical solution much more complicated at the 

expense of a little improvement of accuracy. In addition, the convergence of the analytic solution can be 
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judged analytically up to the fourth order, while a numerical method such as Bairstow’s method (see Press et 

al., 1992, p. 370) should be used for the higher order solutions. Therefore, the Hunt’s fourth order solution is 

used in this study, the relative error of which is less than 1% for all values of   as shown in Fig. 2.

Fig. 2

The coefficients of Eq. (27) are expressed with )(P  and  as follows when the Hunt’s (1979) direct 

solution is used. 
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Substituting Eqs. (31) to (33) and Eq. (5) into Eq. (27) yields the following approximate equation:

0)()()( 1
2

2

    xC
dx

d
xxB

dx

d
xA i (34)

The variable coefficients )(),( xBxA  and )(xC  are given in Appendix B. The solution of Eq. (34) can 

be obtained by duplicating the procedure from Eq. (10) to Eq. (21).

The singular points, i.e., the roots for 0)( xA , are as follows:
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For 1 0b x  

1 1 1
1( 1)x a    (35)

1 1 1
1

1

1.63009 1.10252
( 1)

i
x a  


 

   
 

(36)

1 1 1
1

1

0.357769 1.98923
( 1)

i
x a  


 

   
 

(37)

1 1 1
1

1

1.9903 1.55755
( 1)

i
x a  


 

   
 

(38)

1 1 1
1

1

0.717978 2.10671
( 1)

i
x a  


 

   
 

(39)

For 20 x b 

2 2
2x a  (40)

2 2
2

2

1.63009 1.10252i
x a 




  (41)

2 2
2

2

0.357769 1.98923i
x a 




  (42)

2 2
2

2

1.9903 1.55755i
x a 




  (43)

2 2
2

2

0.717978 2.10671i
x a 




  (44)

where 2
0 / i

i ih ga   .



14

Since i is positive because the lengths ia  are positive, the absolute values of x  in Eqs. (35), (36), 

(38), (40), (41), and (43) are all greater than or equal to ia . In Eqs. (37), (39), (42), and (44), x  varies

depending on i , having the minimum value of iax 94655.0  at 0.69i   in the case of 1i . 

Because the power series is used in the range of ibx  ||0 , the convergence of the series solution is 

guaranteed if ii ab 94655.0 . Since ib  is defined as i hhab iii


0/1 , the series solution diverges 

only for very small values of 0/ hhi . Since this case is very rare, the present analytical solution converges 

in most practical situations.

In shallow water, the coefficients of Eq. (34) are reduced

For 1 0b x  

1 1 1
1( ) 4( ( 1) )A x a x     (45)

1
1( ) ( 1) 4B x     (46)

2
1( ) 4C x  (47)

For 20 x b 

2 2
2( ) 4( )A x a x   (48)

2( ) 4B x   (49)

2
2( ) 4C x  (50)

With these coefficients, Eq. (34) becomes identical to Eq. (7) or (8).
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3. Results and Discussion

3.1 Comparison with numerical solutions

The long wave solution and the mild-slope solution (hereafter MSE-S and MSE-D, respectively) are 

compared with the numerical solution based on the hyperbolic mild-slope equation developed by Copeland

(1985). Computations are conducted for the following conditions: 221  , m4.60 h , 

m2.321  hh , 121 5.0 Lbb  , and 11hk  varies from 0.084 to 1.336 to consider a wide range of 

wave conditions. Figs. 3 to 5 show the comparisons of dimensionless wave amplitude among the MSE-S, 

MSE-D, and the numerical model. When the longwave assumption is satisfied, three analytical solutions are 

almost identical to the numerical solution as shown in Fig. 3. However, as shown in Figs. 4 and 5, moving 

from shallow water to deeper waters, the mild-slope solution, MSE-D, still shows good agreement with the 

numerical solution, while the long wave solution, MSE-S, shows large discrepancy with the numerical 

solution.

Fig. 3

Fig. 4

Fig. 5

3.2 Miles’s formula for wave reflection

The MSE-D was compared with the results from the Miles’ (1981) theory. Miles (1981) derived a theory 

for the wave reflection from an obstacle with small and continuous height variations by using the Fourier 
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cosine transformation. The expression for reflection coefficients can be written as (Miles, 1981)





 dxex

khkh

k
R ikx

Miles
2

2

)(
2sin2

2  (51)

where )(x  represents the bottom variation in the x -direction and can be expressed in this study as 

follows:

For 1i ,

















)(

)())((

)0(

)(

211
2

201120

1
1

01
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b

bhhbxhh

bxx
b

hh

x (52)

For 2i ,





















 





)(                              
})({

)0(
2

)(

211
2

12021

1
1

1
1

0

2

222

1

11

bbxb
a

bxahah

bx
a

xbx
h

x









 (53)

The comparison was conducted for a simple case of 221  , 167.021 5.0 Lbb  , 

m2.321  hh , and m2.30 h , where 167.0L represents the incident wave length when 

167.011 hk  is satisfied. In the case of a symmetric trench, Eqs. (24) and (51) are expressed as follows:
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










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2
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2

1
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4

1
1
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2
1111 4

2
1

4

1

1
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1
2
1
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ik
e

ik

b

hkhk

k

a

h
R (55)

Fig. 6 shows the comparison of the reflection coefficients between the Miles’ (1981) theory and the present 

solution changing the incident wave period. Since the validity of the Miles’ (1981) theory is restricted to

small variation of bottom, the discrepancy between the two solutions increase as the central water depth in 

the trench increases. However, they show good agreement in relatively small height of obstacle (i.e. 

m)5.30 h . As shown in Fig. 6, the magnitudes of the reflection coefficients increase and decrease 

periodically and the peak and span of them continuously decrease when the ratio of the half-width of a 

trench to the incident wave length increases. It is found that the peak and the span of reflection coefficients 

increase as the central water depth increases.

Fig. 6

3.3 Effects of trench dimensions

In order to investigate the reflection of waves in detail, the reflection coefficients are calculated for 

various trench configurations. Fig. 7 shows the reflection coefficients calculated by changing the half-width 

of trench for different central water depths with the following geometrical and wave conditions: 

221  , m2.321  hh ,  and 167.011 hk  and 336.1 . Also, the central water depth varies 

from 4.6  to m8.12 . In shallow water )167.0( 11 hk , the observed phenomena in Fig. 7 are similar 
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to those of Fig. 6. The reflection coefficients increase and decrease periodically as the half-width increases

while the peak and span of reflection coefficients decrease. The peak and span of the reflection coefficient 

increase as the central water depth increases. In the intermediate-depth water )336.1( 11 hk , however, the 

span and peak of them are opposite to them in shallow water, which means that the peak increases while the 

span decreases as the central water depth increases.

Fig. 8 shows the reflection coefficients calculated by changing the central water depth for different half-

widths of trench in the same condition as in Fig. 7. The half-width of trench varies from 125.0 L to 10.1 L . 

In the shallow water, the results show somewhat opposite to them in Fig. 7. For instance, the peak and span

of reflection coefficients increase as the central water depth increases and the peak of reflection coefficients 

decreases as the half-width of the trench increases. In the intermediate-depth water, the periodicity does not 

appear apparently within the computational range. And, the reflection seldom occurs when the half-width of 

the trench becomes equal to the incident wave length regardless of the central water depth. 

The trench used in this study has the ability to deform to various shapes. For instance, when 12  , 

01 b , m6.01 h , and m2.02 h , the trench becomes a constant-slope ramp used in Booij’s (1983) 

test. When 01 b  and 2  is satisfied, the trench become a step up and the reverse case is possible. 

And  21  gives a rectangular trench. In addition, analytical solutions for various shapes of 

trench can be obtained by adjusting the power of distance, the width of trench, and the central water depth in 

both upwave and downwave sides. 

Fig. 7

Fig. 8

4. Concluding Remarks
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Two types of analytical solutions have been derived in this study. One is the long wave solution (MSE-S)

and the other is a mild-slope solution (MSE-D). For the long wave solution, the relationship hgk 22 

based on the longwave assumption was used to make the coefficients of the governing equation explicit. In 

order to obtain a mild-slope solution, Hunt’s (1979) explicit dispersion relation was used instead of the linear 

implicit dispersion relation. The convergence of the long wave solution was guaranteed for all possible 

conditions. For instance, the analytical solution based on the longwave assumption gives the convergent 

solution for any given wave and geometric conditions which satisfy the longwave assumption. The mild-

slope solution converges in most cases except that the central water depth is much deeper in comparison to 

the constant water depth outside the trench. Therefore, it can be advocated that the present analytical 

solution is practical since the case in which the solution diverges is unusual. 

The effects of the geometry of the trench on the reflection of waves were examined in both shallow and 

intermediate-depth waters. Similar phenomena to Bragg-reflection appeared. It is observed that the reflection 

coefficients increase and decrease periodically as one of the central water depth, the half-width of trench, or 

the incident wave period changes at the same time other parameters hold constant. 

The analytical solutions developed in this study can be utilized for verifying the numerical solutions in 

addition to the analysis of the wave reflection and transmission. Since the numerical solutions inherently 

involve approximations, it is necessary to validate those models with the representative data. Analytical 

solutions are a direct examination of the numerical model scheme under idealized conditions. Also, they 

require relatively less cost, time and efforts than the numerical or experimental methods.
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APPENDIX A. Determination of )(1 xX  and )(2 xX

The coefficients of Eq. (16) can be expressed as

2
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2
1
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1
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Again, Eq. (A-1) can be expressed as follows:

00100  fe  (A-2)

01111  fe  (A-3)

0121  mmmmmmm fedc              )2( m (A-4)

where

00 e , 10 f , 11 e , 01 f ,

21   mmmmm edece , 21   mmmmm fdfcf , (A-5)
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where
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3
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2101 )( xfxfxffxX (A-7)
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APPENDIX B. Variable Coefficients

The expressions for ( )A x , ( )B x , and ( )C x  in Eq. (34) are given as follows.

For 1 0b x  

1 1 12
1( ) [ ( ) 1] ( )[ ( 1) ]A x P P a x       (B-1)

1
1( ) ( 1) [3 ( ) 1 2 ( ) ] ( )B x P P P          (B-2)

1
21

0

( ) [ ( ) 1][ ( ) 1]
a

C x P P
gh

      (B-3)

where 

1 1 1 1 1 1

1

22
0

1 1 1
1

( ( 1) ) ( ( 1) )
hh

a x a x
g ga

     


        (B-4)

For 20 x b 

2 22
2( ) [ ( ) 1] ( )[ ]A x P P a x     (B-5)

2( ) [3 ( ) 1 2 ( ) ] ( )B x P P P        (B-6)

2
22

0

( ) [ ( ) 1][ ( ) 1]
a

C x P P
gh

      (B-7)

where 
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Figure Captions

Fig. 1. Definition sketch of an asymmetric trench (for 1 , 2, and  ).

Fig. 2. Comparison of normalized phase velocities for different orders of )(P  of Hunt formula.

Fig. 3. Comparison among analytical and numerical solutions for normalized amplitudes for a symmetric 

trench with 221  , m4.60 h , m2.321  hh , 121 5.0 Lbb  , 083.011 hk  and 

118.000 hk .

Fig. 4. Same as Fig. 3 except for 334.011 hk  and 481.000 hk .

Fig. 5. Same as Fig. 3 except for 336.111 hk  and 368.200 hk .

Fig. 6. Reflection coefficients of present and Miles solutions for different incident wave periods for the case 

of 221  , m2.321  hh and 167.021 5.0 Lbb  .

Fig. 7. Reflection coefficients of analytical solution for different central water depths for the case of  

221  , and m2.321  hh : (a) 167.011 hk ; (b) 336.111 hk .

Fig. 8. Reflection coefficients of analytical solution for different half-widths of trench for the case of 

221  , and m2.321  hh : (a) 167.011 hk ; (b) 336.111 hk .
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