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Abstract  

 

We developed a new Boussinesq-type model which extends the equations of Madsen and 

Sørensen (1992) by including both bottom curvature and squared bottom slope terms. Numerical 

experiments were conducted for wave reflection from the Booij’s (1983) planar slope with 

different wave frequencies using several types of Boussinesq equations and extended mild-slope 

equation. Madsen and Sørensen’s model results are accurate in the whole slopes in shallow 

waters but inaccurate in intermediate water depths. Nwogu’s (1993) model results are accurate up 

to 1:1 (V:H) slope but significantly inaccurate for steep slopes. The present model results are 

accurate up to the slope of 1:1 but somewhat inaccurate for very steep slopes. Further, numerical 

experiments were conducted for wave reflections from a ripple patch and also a Gaussian shaped 

trench. For the two cases, the results of Nwogu’s model and the present model are accurate 

because these models include the bottom curvature term which is important for the cases. 

However, Madsen and Sørensen’s model results are inaccurate because this model neglects the 

bottom curvature term. 

 

Keywords: Extended Boussinesq equations, higher-order bottom variation terms, numerical 

experiment, planar slope test, ripple test, Gaussian shaped trench test. 

 

1. Introduction 

 

The transformation of linear regular waves may be predicted using the mild-slope equation of 

Berkhoff (1972). In deriving the equation, he assumed bottom variation to be small, i.e. 

1/  khh  (  is the horizontal gradient operator, h  is the still water depth, k  is the wave 

number), and neglected higher-order bottom variation terms proportional to the squared bottom 
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slope, 
2

h , and to the bottom curvature, h2 . Since he developed an elliptic equation, several 

researchers have developed different types of mild-slope equations, i.e., parabolic (Radder, 1979; 

Kirby, 1986) and hyperbolic equations (Nishimura et al., 1983; Copeland, 1985). Also, 

hyperbolic equations have been developed for irregular waves of narrow frequency band (Smith 

and Sprinks, 1975; Radder and Dingemans, 1985; Kubo et al., 1992). Since 1990s, by including 

the higher-order bottom variation terms in the mild-slope equation, several researchers developed 

modified or extended mild-sloped equations in either elliptic (Massel, 1993; Chamberlain and 

Porter, 1995) or hyperbolic type (Suh et al., 1997; Lee et al., 1998; Lee et al., 2003b). These 

models have been found to yield more accurate solutions than the mild-slope equations, in 

particular, for a rapidly varying topography such as a steep slope or a ripple patch.  

 

Another type of wave model is the Boussinesq equations which may predict the transformation 

of nonlinear random waves in shallow water. In the Boussiensq equations, the normalization of 

variables by a typical water depth ( 0h ) and wave number ( 0k ) in vertical and horizontal scales, 

respectively, leads to a mild-slope assumption, i.e.     100  hkOhO  (Peregrine, 1972). 

Thus, Peregrine’s (1967) conventional Boussinesq equations which were developed by truncating 

terms of  400hkO  neglect the squared bottom slope terms but they include the bottom curvature 

terms. In 1990s the so-called extended Boussinesq equations have been developed to extend the 

use of Bousssinesq equations to deeper waters. In improving the dispersion relation in deeper 

waters, Madsen and Sørensen (1992) added spatial derivative terms of the linear shallow water 

equation with a correction factor to the Peregrine’s dispersive terms. By assuming the bottom 

variation is small, they neglected all the terms of bottom curvature and squared bottom slope. 

Nwogu (1993) improved the dispersion relation using horizontal velocities at a certain level 

instead of depth-averaged velocities and truncated the terms of  400hkO  in the equations. Thus, 

in Nwogu’s model the squared bottom slope term is neglected whereas the bottom curvature term 
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is included. Gobbi et al. (2000) followed Nwogu’s method to improve the dispersion relation and 

kept the terms up to  400hkO . Even though the squared bottom slope terms as well as the 

bottom curvature terms are included, Gobbi et al.’s model has so many terms with up to 6
th
-order 

spatial derivative that it has not been used widely. It was found that in deep waters the extended 

Boussinesq equations are not accurate in view of both the linear dispersion and shoaling 

properties (Lee et al., 2003). Further, the extended Boussinesq equations have incorporated linear 

characteristics far better than nonlinear characteristics. Agnon et al. (1999) achieved the same 

accuracy in nonlinear properties as well as linear properties. They combined an exact formulation 

of the boundary conditions at the free surface and at the sea bottom with an approximate solution 

to the Laplace equation given in terms of truncated series expansions from the still water level. 

However, the developed model does not provide an accurate vertical distribution of the velocity 

field. Madsen et al. (2003) solved this problem by following Agnon et al.’s approach but with 

series expansions from a certain level  yxzz ,ˆ . They assumed a mildly sloping bottom and 

included up to the first derivative of ẑ . Later, Madsen et al. (2006) developed a new Boussinesq 

equations for rapidly varying bathymetry by including terms proportional to ẑ , ẑ2 , and 

2
ẑ . They showed that the developed model are accurate up to the slope of 1:1 (V:H) on the 

Booij’s (1983) sloping plane. 

 

In this study, we develop Boussiensq equations for a rapidly varying topography by following 

Madsen and Sørensen’s (1992) approach while including both the bottom curvature and squared 

bottom slope terms which were neglected by them. The developed model’s accuracy is verified 

by comparing the reflection coefficients of waves over the Booij’s (1983) planar slope, the 

Davies and Heathershaw’s (1984) ripple, and the Bender and Dean’s (2003) Gaussian shaped 

trench against the exact solutions or experimental data. 
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2. Development of Extended Boussinesq Equations 

 

The conventional Boussinesq equations of Peregrine (1967) were derived based on the 

assumption of an incompressible and inviscid fluid. The variables are normalized as 
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where the prime implies that the variable is normalized, 0h  is the still water depth, 0a  is the 

wave amplitude, and 0k  is the wave number. A normalized Laplace’s equation was given by 
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where 00hk  and 00 / ha  denote the frequency dispersion and nonlinearity parameters, 

respectively. Peregrine developed the Boussinesq equations based on the assumption of a shallow 

water and a weakly nonlinear wave (i.e.,   1O  and   1O , respectively) and the 
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relation of    2 OO  . Thus, the bottom slope has the order of magnitude as 

 

  Ohh  ''         (6) 

 

which implies that the bottom slope is mild. Peregrine’s equations can be written in terms of the 

water surface elevation and depth-integrated velocities as 
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where   is the surface elevation,   hd  is the total water depth, h  is the still water depth, 

P  and Q  are the depth-integrated velocity components in the x  and y directions, 

respectively, and xP  and yP  are dispersive terms expressed by  
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where the subscript P  means the model of Peregrine. In deriving the equations, he kept the 

terms of  2,O  and neglected higher-order terms. The squared bottom slope terms are of 

 4O  and thus were neglected in the dispersive terms given by Eqs. (10a) and (10b). However, 

the bottom curvature terms were included in the dispersive terms. 

 

Madsen and Sørensen (1992) derived the extended Boussinesq equations by adding the 
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dispersive terms to the Boussinesq equation of Peregrine (1967). They assumed a mild slope, and 

thus the higher-order bottom variation terms proportional to 
2

h  and h2  were neglected. In 

this study, we derive the extended Boussinesq equations following Madsen and Sørensen’s 

(1992) approach but including these higher-order bottom effect terms. 

 

The momentum equations in a weakly nonlinear and weakly dispersive water wave (i.e., 

  1O  and   1O ) may be approximately expressed as 
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Taking spatial derivatives of the equations gives the following equations 
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Multiplying Eqs. (12a-d) by 
2Bh  yields the modified terms of  42 ,O . Adding the 

modified Eqs. (12a) and (12d) to xP , and also adding the modified Eqs. (12b) and (12c) to 

yP  give new dispersive terms of x  and y  given by 
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Eqs. (7), (8), (9) with the dispersive terms xP  and yP  replaced by x  and y  in Eqs. 

(13a) and (13b), respectively, are the extended Boussinesq equation for a rapidly varying 

topography. If 0
22  hh , Eqs. (13a-b) reduce to the dispersive terms of Madsen and 

Sørensen (1992) as 
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where the subscript M  denotes the model of Madsen and Sørensen.  

 

Madsen et al. (1991) suggested the tuning parameter of 15/1B  which gives a (2,2) Padé 

approximation of the dispersion relation of linear Stokes waves. The same parameter can be used 
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in the present model because the present equation is identical to the Madsen and Sørensen’s 

model over a constant water depth. The difference between the dispersive terms given by (13a-b) 

and (14a-b) shows the higher order bottom effects as 
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3. Numerical Experiments 

 

The developed model includes the higher-order bottom effect terms which are neglected in 

Madsen and Sørensen’s (1992) model. We found that Nwogu’s (1993) model includes the bottom 

curvature term, but neglects the squared bottom slope term. In order to examine the accuracy of 

several Boussinesq-type models, we conducted numerical experiments for monochromatic waves 

propagating over a planar slope using different inclinations as done by Booij (1983). Numerical 

experiments were also conducted to measure the reflection coefficients of waves over the ripple 

patch of Davies and Heathershaw (1984) and also the Gaussian shaped trench of Bender and 

Dean (2003). 

 

3.1 Finite difference method 

 

Including the source term and the energy dissipation term, the resulting linearized one-
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dimensional equations of Madsen and Sørensen (1992) are given by  
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where   is the angular frequency. The linearized one-dimensional momentum equation of the 

developed model is given by  
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The linearized one-dimensional Nwogu’s model equations are given by 
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where z  is the elevation in which the horizontal particle velocity u  is defined. In this study 

we used Nwogu’s suggested value of hz 531.0  (i.e.,    39.02
2

 hzhz  ) 

which gives minimal squared relative errors in the phase velocity in the depth range of 

 hk00  where 0k  is the wavenumber in a deep water. In Eqs. (16) and (19), Ms  and Ns  

are line source terms which are determined in the finite difference scheme as (Lee et al., 2001; 
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Kim et al., 2007) 
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where 
I  is the surface elevations of the target wave. The energy velocity eC  is the group 

velocity for the model equations and is obtained by (Lee and Suh, 1998) 
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And, the energy dissipation term sD  is defined by  
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where d  is the distance from the starting point of the sponge layer and  LW 5.2 ( L  is 

wavelength) is the thickness of the sponge layer.  

 

All the Boussinesq-type models are discretized in time by the fourth-order Adams-Bashforth-

Moulton predictor-corrector scheme (Wei and Kirby, 1995). The terms with the 1
st
 order spatial 

derivative are discretized to  4xO  . A nine-point filtering technique (Shapiro, 1970) is used to 

smooth numerical noises in the solution of the Boussinesq equations.  
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3.2 Wave reflection from a planar slope 

 

We conducted numerical experiments for monochromatic waves propagating over a planar 

slope each end of which was connected to a constant-depth region. This experiment was first 

made by Booij (1983) who investigated the accuracy of the mild-slope equation of Berkhoff 

(1972) by comparing the model’s reflection coefficients against the exact solution. Since Booij’s 

tests, many researchers have conducted this experiment to demonstrate their model’s accuracy. 

The computational domain for the numerical test is shown in Fig. 1. The water depths on the up- 

and down-wave sides of the slope are m6.01 h  and m2.02 h , respectively, and the 

width of the sloping bottom, b , is varied so that the bottom slope varies. Tests were conducted 

with the wave frequency of f 0.5 Hz, and thus the water depths are relatively intermediate 

with  28.0~15.0kh . 

 

Booij showed the result of the mild-slope equation in the slope range of 1:15 ~ 4:1 (V:H) and 

compared it against the FEM solution of the Laplace equation which is shown in the slope range 

of 1:3 ~ 4:1. The solution of the Laplace equation can be regarded as an exact solution. Booij 

argued that the mild-slope equation is accurate up to the slope of 1:3. Suh et al. (1997) compared 

the time-independent solutions of the mild-slope equation (Berkhoff, 1972) and their extended 

mild-slope equation against the FEM solutions in the same slope range of 1:15 ~ 4:1. They found 

that the extended mild-slope equation is accurate in the whole slope range while the mild-slope 

equation is not accurate even for mild slopes. They also found that, with the inclusion of the 

bottom curvature term, the mild-slope equation is accurate up to the slope of 1:1. Lee et al. 

(1998) also compared the time-dependent solutions of the mild-slope equation (Copeland, 1985) 

and their extended mild-slope equation against the FEM solutions in the slope range of 1:25 ~ 4:1. 

They obtained almost the same comparisons as Suh et al. (1997). They argued that comparisons 

of the model equations in view of the bottom slope cannot be made in this condition because of 
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the following two reasons. Firstly, this condition did not cover the entire range of water depth 

from deep to shallow water. Secondly, the solutions were affected by the existence of two slope 

discontinuities as well as the bottom slope. The slope discontinuities cannot be considered in the 

mild-slope equations while the extended mild-slope equation considers them with the bottom 

curvature term.  

 

In this study, we conducted numerical experiments for the Booij’s planar slope with different 

wave frequencies of f 0.2Hz, 0.35Hz, 0.5Hz, 0.75Hz, and 1 Hz to investigate wave reflections 

in a broad range of relative water depths. Table 1 shows the incident wave frequency and the 

corresponding relative water depths in the up- and down-wave sides of the slope. For the lowest 

wave frequency (i.e., f 0.2 Hz), the water depths were shallow with  10.0~06.0kh  

while, for the highest wave frequency (i.e., f 1 Hz), the water depths were intermediate with 

 78.0~33.0kh . The reflection coefficient is obtained by 

 

minmax

minmax








RK         (24) 

 

where 
max

  and 
min

  are, respectively, the maximum and minimum values of the wave 

amplitude   in a wave envelope which is located between the wave generation point and the 

starting point of the slope. 

 

Fig. 2 compares FEM solutions of the reflection coefficient at 5 different wave frequencies. As 

the wave frequency increased, the wave reflections decreased because the bottom was less felt in 

deeper waters. Also, with the higher wave frequency, there existed more numbers of resonant and 

non-resonant reflections with the slope-width variation. This could be explained by the Bragg 
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reflection, which occurs when the relation nKk /2  is satisfied, where k  and K  are the 

wavenumbers of surface wave and bottom undulation, respectively, and n  is an arbitrary 

integer. Even if the bottom topography is not periodic in our problem, the slope width b  would 

be somehow related to K . Since b  varies between 0.1 and 10.0 m, K  will also vary within a 

certain range, which does not depend on the wave frequency. However, k  increases with the 

wave frequency. Therefore, the number of integers which satisfy the relation nKk /2  

increases with the frequency. In other words, the number of the Bragg resonant peaks increases 

with the frequency, as shown in Fig. 2. 

 

Fig. 3 compares the reflection coefficients calculated by the present equations, Madsen and 

Sørensen’s (1992) equations, and Nwogu’s (1993) equations against the FEM solution of the 

Laplace equation at 5 different wave frequencies. For f 0.5 Hz, we also compared available 

solutions of Madsen et al.’s (2006) equations which included higher-order bottom variation 

effects in the fully nonlinear Boussinsq equations of Madsen et al. (2003). Further, for a 

quantitative comparison at f 0.5 Hz, we showed the percent error of the reflection coefficient 

against the FEM solution in Fig. 4. The percent error is defined as 100 eec RRR  where cR  

and eR  are the calculated reflection coefficient and the FEM solution, respectively. Madsen and 

Sørensen’s equations showed accurate solutions in the whole slope range in shallow waters with 

f 0.2Hz. However, as the water depths became intermediate with f 0.35Hz, 0.5Hz, 0.75 Hz, 

and 1Hz, Madsen and Sørensen’s equations overestimated the reflection coefficient even for very 

mild slopes because they neglected the bottom curvature term as well as the squared bottom slope 

term (see Fig. 4 for a quantitative comparison at f 0.5Hz). Nwogu’s equations were accurate 

up to the slope of 1:1 in the whole wave frequency range except the highest frequency of 

f 1Hz because they included the bottom curvature term. However, Nwogu’s equations 

significantly overestimated the reflection coefficient at steeper slopes because they neglected the 

squared bottom slope term which is important for steeper slopes. The present equations were 
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accurate up to the slope of 1:1 in the whole wave frequency range because they included the 

bottom curvature term. However, the present equations overestimated the reflection coefficient at 

steeper slopes. This inaccuracy can be explained by two reasons. First, the present equations 

yielded more errors in deeper waters because the parameter of 151B  could not guarantee 

exact solutions in the linear dispersion and shoaling properties even in intermediate water depths 

(see detailed accuracies in Figs. 1 and 3 of Lee et al. (2003a)). Second, the present equations did 

not correctly consider the evanescent modes which became important in intermediate water 

depths. Fig. 3(e) shows non-negligible errors of the present equation in the whole slope range for 

the case of f 1Hz in which relative water depths are  78.033.0  kh . For f 0.5Hz, 

Madsen et al.’s (2006) solution showed a deviation from the exact solution at the slope of 1:1 

which was larger than the present solution (see Figs. 3(c) and 4). The trend of inaccuracies 

implies that for steeper slopes the deviation would be more significant than the present solution.  

 

In order to examine each effect of the squared bottom slope term and the bottom curvature 

term, additional calculations were made by including each term to Madsen and Sørensen’s model 

at higher wave frequencies of f 0.5Hz, 0.75Hz, and 1Hz. Comparisons were made in Fig. 5. 

The inclusion of the squared bottom slope term gave almost identical results to Madsen and 

Sørensen’s model for very mild slopes, and it gave even worse results than Madsen and 

Sørensen’s model for very steep slopes. For very steep slopes, the trend of increase of reflection 

coefficients with the bottom slope was almost the same as the present equations. It is because the 

present model also includes the squared bottom slope term which is important for very steep 

slopes. On the other hand, the inclusion of the bottom curvature term for f 0.5Hz and 0.75Hz 

significantly improved Madsen and Sørensen’s model in the whole slope range even more 

accurate than the present model. This means that the bottom curvature term is more important 

than the squared bottom slope term in improving the Madsen and Sørensen’s model even for 
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steeper slopes. However, for f 1Hz, the inclusion of the bottom curvature term gave less 

accurate solutions than the present model. This implies that in a deeper water the equations with 

both the bottom curvature and squared bottom slope terms gives more accurate solutions than 

with only the bottom curvature term. 

 

 

 

 

 

 

 

 

 

 

3.3 Wave reflection from a non-plane slope 

 

The Booij’s(1983) problem discussed in the previous section involves the effect of bottom 

curvature only at the two points at the ends of the slope. In order to assess the simultaneous 

influence of the steepness and curvature of slope, Suh et al. (1998) considered a non-plane slope 

where both the steepness and curvature of the slope vary continuously in space. The water depth 

on the slope was given by (Fig. 4) 

 

       xphhhhxh tanh5.05.0 2121                (24) 
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Where 

 

  









2

1
3

b

x
xp            (25) 

 

b  is the width of the slope where the water depth varies. As in the Booij’s problem, the constant 

depths on the upwave and downwave sides of the slope were chosen to be mh 6.01   and 

mh 2.02  , respectively, and the wave period is 2 s.  

 

 

 

3.3 Bragg reflection from a ripple patch 

 

When surface waves are normally incident on a region of long-crested periodic bottom 

undulation, a significant amount of incident wave energy is reflected at the point where the 

wavenumber of the periodic bottom undulation ( K ) is twice the wavenumber of the surface 

wave ( k ), that is 1/2 Kk . This type of wave reflection may be categorized as the Class I 

Bragg reflection (Liu and Yue, 1998). Davies and Heathershaw (1984) conducted experiments 

with different numbers of ripples and water depth. In their experiment, the ripple wavelength and 

amplitude were 1 m and 5 cm, respectively, and the numbers of ripples were 2, 4, and 10. The 

water depth in the constant-depth region was 15.6 cm for the cases of 2 and 4 ripples and 31.3cm 

for the case of 10 ripples. Their experimental data has been used for comparisons to various 

numerical models. We also conducted numerical experiments with the condition of Davies and 

Heathershaw. The computational domain for numerical test is shown in Fig. 6. The water depth is 
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given by  
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where A  is the ripple amplitude, 
rL  is the ripple wavelength, n  is the number of ripples, 

ch  is the water depth at the constant-depth region, K  is the wave number of the ripple, and rx  

is the x -coordinate of the starting point of the ripple patch. 

 

Figs. 7(a)-(c) compares the reflection coefficients calculated by the present model, Madsen and 

Sørensen’s model, and Nwogu’s model against the experimental data for the cases of 2, 4, and 10 

ripples, respectively. For the case of 10 ripples, Madsen et al.’s (2006) model results were also 

compared. The reflection coefficients calculated by Madsen and Sørensen’s model were close to 

the experimental data for the case of 2 ripples. However, as the number of ripples increased to 4 

and 10, the Bragg reflection significantly occurred and Madsen and Sørensen’s model yielded 

reflection coefficient larger than the experimental data. However, Nwogu’s model and the present 

model predicted the Bragg reflection very well for all the three cases. For the case of 10 ripples, 

Madsen et al.’s model results were on the whole close to the experimental data. However, around 

the resonance conditions of 12 Kk  and 22 Kk  the predicted reflection coefficients were 

slightly larger and smaller than the experimental data, respectively. Lee et al. (1998) found that 

the magnitude of the bottom curvature of the ripple patch (i.e.,  rr LAOdxhdL 22 ) is larger 

than the magnitude of the squared bottom slope (i.e.,    22

rLAOdxdh  ) due to 1rLA . 

This means that for a ripple patch the bottom curvature term is more important than the squared 

bottom slope term. Madsen and Sørensen’s model neglected the bottom curvature term whereas 

other models included the bottom curvature term. 



 19 

 

3.4 Wave reflection from a Gaussian shaped trench 

 

We also conducted numerical experiments for monochromatic waves propagating over a 

Gaussian shaped trench. This experiment was first made by Bender and Dean (2003) who used 

the step method to get reflection coefficients over the trench. Later, Madsen et al. (2006) tested 

their model for the trench and found problematic solutions using a fixed condition of the 

elevation hz 5.0ˆ  . Their model has been derived based on the assumption of a mildly varying 

ẑ  which is not true for this case. They could get accurate solutions after smoothing the rapidly 

varying ẑ . In the test of Booij’s (1983) planar slope, Madsen et al. smoothed the elevation ẑ  at 

the two ends of the slope when the slope was steeper than 0.2.  

 

In this study, we tested for the case of a rapidly varying trench in which Madsen et al. 

smoothed the elevation ẑ  for accurate solutions. The water depth is given by  
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where ch  is the water depth at the constant-depth region, tx  is the x -coordinate of the starting 

point of the trench, and 1C  and 2C  are the shape parameters. The computational domain for 

numerical test is shown in Fig. 8. The bottom conditions were given by ch =10m, 1C =7.5m, 

2C =12.5m.  

 

Fig. 9 compares the reflection coefficients calculated by the present equations, Madsen and 

Sørensen’s (1992) equations, and Nwogu’s (1993) equations against the Bender and Dean’s 
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(2003) step method. We also compared Madsen et al.’s (2006) solutions which included the 2  

terms for the rapidly varying topography. Bender and Dean’s solution considers both the 

propagating and evanescent modes and thus can be regarded as the exact solution.  

 

Bender and Dean’s solution showed that the reflection coefficient was resonantly peaked at 

13.0cchk  and decreased monotonically in shallower and deeper waters from the water of the 

resonant reflection. The resonant reflection coefficient calculated by Madsen and Sørensen’s 

model were larger than Bender and Dean’s solutions, while the results of other models predicted 

the resonant reflection very well. The magnitude of the bottom curvature of the trench (i.e., 

 cc LCOdxhdL 1
22  ) is larger than the magnitude of the squared bottom slope (i.e., 

   21

2

cLCOdxdh  ) due to 11 cLC  where cL  is the trench length. The bottom 

curvature effect was neglected in Madsen and Sørensen’s model whereas it was considered in 

other models.  

 

Near the deeper-water edge of the resonant reflection, the results of Nwogu’s model, Madsen 

and Sørensen’s model and the present model overestimated the reflection coefficient. And, the 

errors were largest in the Nwogu’s model and smallest in the present model. These were due to 

firstly the fact that near the deeper-water edge of 4.0cchk  (i.e.,  62.040.0  kh ) 

Nwogu’s model yielded larger errors in the linear dispersion relation and the shoaling properties 

than Madsen and Sørensen’s model and the present model (see Figs. 1 and 3 of Lee et al. 

(2003a)). Secondly, Madsen and Sørensen’s model neglected the bottom curvature effect which 

was considered in Nwogu’s model and the present model.  

 

4. Conclusions 

 

In this study, we found that a mild slope assumption was made in most of the Boussinesq 
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equations. Thus, both the bottom curvature and squared bottom slope terms were neglected in the 

equations of Madsen and Sørensen (1992) and the squared bottom slope terms were neglected in 

the equations of Nwogu (1993). Further, we developed a new model which extends the model of 

Madsen and Sørensen (1992) by including both the bottom curvature and squared bottom slope 

terms.  

 

Numerical experiments were conducted to measure reflection coefficients of waves over the 

Booij’s (1983) planar slope using several types of the Boussinesq equations and the extended 

mild-slope equation. Madsen and Sørensen’s model results were accurate in the whole slope 

range in shallow waters but inaccurate in intermediate water depths. Nwogu’s (1993) model 

results were accurate up to 1:1 (V:H) slope but significantly inaccurate for steep slopes. The 

results of the present model were accurate up to the slope of 1:1 but somewhat inaccurate for very 

steep slopes. Conclusively, the tested Boussinesq equations including one or both of the higher-

order bottom effect terms performed well for slopes smaller than unity, which is the maximum 

slope for most beaches and sloping coastal structures. 

 

Also, numerical experiments were conducted to measure reflection coefficients of waves over 

the Davies and Heathershaw’s (1984) ripple patch and the Bender and Dean’s (2003) Gaussian 

shaped trench. For all the two cases, the solutions of both the Nwogu’s model and the present 

model were accurate because they included the bottom curvature term. However, the solutions of 

Madsen and Sørensen were inaccurate due to the neglect of the bottom curvature term.  
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Table 1.  Incident wave frequency and relative water depths. 

 

frequency (period) 11hk  
22hk  

0.20Hz (5.00s) 0.10π 0.06 π 

0.35Hz (2.86s) 0.18 π 0.10 π 

0.50Hz (2.00s) 0.28 π 0.15 π 

0.75Hz (1.33s) 0.48 π 0.23 π 

1.00Hz (1.00s) 0.78 π 0.33 π 
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Fig. 1. Computational domain for numerical test of waves propagating over a planar slope. 
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Fig. 2. Variation of FEM solutions of reflection coefficient with width of a planar slope; —— = 

(f=0.2 Hz) , ­ ­ ­ ­ = (f=0.35 Hz), ­ · ­ · ­ = (f=0.5 Hz), ­ ·· ­ ·· ­ = (f=0.75 Hz), ­ ··· ­ ··· ­ = (f=1Hz). 
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Fig. 3. Variation of reflection coefficients with width of a planar slope: (a) f=0.2 Hz, (b) f=0.35 

Hz, (c) f=0.5 Hz, (d) f=0.75 Hz, (e) f=1.0 Hz; —○— = Laplace equation, —♦— = present 

equations, ——— = Madsen and Sørensen (1992), ­ ­ ­ ­ = Nwogu (1993), —— = Madsen et al. 

(2006) (only in Fig. 3(c)). 
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Fig. 3 (continued). 
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Fig. 3 (continued). 
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Fig. 3 (continued). 
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Fig. 3 (continued). 

 

 

 



 33 

0.1 1 10
b (m)

0

40

80

120

160

p
e
rc

e
n
t 

e
rr

o
r

 

Fig. 4. Percent error of calculated reflection coefficient against the FEM solution for a planar 

slope with f=0.5 Hz; —♦— = present equations, ——— = Madsen and Sørensen (1992), ­ ­ ­ ­ = 

Nwogu (1993), —— = Madsen et al. (2006). 
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Fig. 5. Variation of reflection coefficients with width of a planar slope with the inclusion of 

higher-order bottom effects: (a) f=0.5 Hz, (b) f=0.75 Hz, (c) f=1.0 Hz; —○— = Laplace equation, 

—♦— = present equations, ——— = Madsen and Sørensen (1992), ­ ­ ­ ­ = Madsen and 

Sørensen (1992) +
2

h , ­ · ­ · ­ = Madsen and Sørensen (1992) + h2 . 
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Fig. 5 (continued). 
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Fig. 5 (continued).  
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Fig. 6. Computational domain for numerical test of waves propagating over a ripple patch (n=10). 
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Fig. 7. Variation of reflection coefficient with 2k/K for a ripple bed: (a) n=2, (b) n=4, (c) n=10; ○ 

= Davies and Heathershaw’s (1984) experimental data, —♦— = present equations, ——— = 

Madsen and Sørensen (1992), ­ ­ ­ ­ = Nwogu (1993), —— = Madsen et al. (2006) (only in Fig. 

7(c)).
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Fig. 7 (continued). 
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Fig. 7 (continued). 
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Fig. 8. Computational domain for numerical test of waves propagating over a Gaussian shaped 

trench.
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Fig. 9. Variation of reflection coefficients with relative water depth for a Gaussian shaped trench; 

—○— = Bender and Dean (2003), —♦— = present equations, ——— = Madsen and Sørensen 

(1992), ­ ­ ­ ­ = Nwogu (1993), —— = Madsen et al. (2006). 


