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Abstract 

 

In the calculation of partial safety factors of breakwater armor stones, it has been 

assumed that all the design variables are independent one another. However, some of them 

are not independent but are correlated each other. In the present study, the partial safety 

factors are calculated by considering the correlation between wave height and wave 

steepness. Smaller partial safety factors and smaller armor weight are obtained if the 

correlation is taken into account. The reduction becomes prominent as the probability of 

failure decreases (or the design armor weight increases). The correlation between wave 

height and steepness in real sea is also estimated by using the wave hindcasting data along 

the Korean coast. 

 

Keywords: armor stones, breakwaters, correlation, partial safety factors, reliability-based 

design, wave height, wave steepness 

 

 

1. Introduction 

 

During the last several decades, the design method of civil engineering structures has 

been changed from the conventional allowable stress design to the limit state design, 

which is also called partial safety factor design or load and resistance factor design. In the 

allowable stress design, the safety of a structure is obtained by using the safety factor for 

considering the uncertainties of load and resistance. These uncertainties should be 

considered in the limit state design as well. The safety factor in the allowable stress design 
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is determined more or less arbitrarily based on the experience and judgment of engineers. 

In the limit state design, however, the uncertainties of load and resistance can be 

considered more reasonably and objectively by performing reliability analyses based on 

the statistical characteristics of design variables. 

In the design of breakwaters, van der Meer (1988) proposed a probabilistic approach 

for the design of breakwater armor layers, and Burcharth (1991) introduced the partial 

safety factors in the design of rubble mound breakwaters. Later Burcharth and Sørensen 

(2000) established partial safety factor systems for rubble mound breakwaters and vertical 

breakwaters by summarizing the results of the PIANC (Permanent International 

Association of Navigational Congresses) Working Group. They calculated the partial 

safety factors on the assumption that all design variables are independent one another. 

However, some of them are not independent but are correlated each other. For instance, in 

the van der Meer (1987) formula for breakwater armor stones attacked by plunging waves, 

wave height and wave steepness are correlated each other. In the present study, we 

calculate the partial safety factors of breakwater armor stones considering the correlation 

between wave height and steepness, and compare them with those of Burcharth (1992) 

who did not consider the correlation. We also estimate the correlation between wave 

height and steepness in real sea using the wave hindcasting data along the Korean coast. 

 

 

2. Correlation between design variables 

 

2.1. Correlation coefficient of random variables 

 

In order to calculate the influence factor using correlated random variables, we have 

to calculate the correlation coefficient. The covariance matrix of correlated random 

variables, nXXX ,,, 21  , is calculated as 
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where ),(Cov ji XX  is the covariance between random variables iX  and jX . The 
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covariance between normalized random variables 'iX  and 'jX  is expressed as 
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where ][E  denotes the expectation, 
iX  and 

iX  are respectively the mean and 

standard deviation of the random variable iX , and 
ji XX  is the correlation coefficient 

between iX  and jX . The normalization method of a random variable will be explained 

in Section 3.3. The preceding equation describes that the covariance between normalized 

random variables 'iX  and 'jX  is the same as the correlation coefficient between iX  

and jX . Therefore, the covariance matrix of normalized random variables, 

',,',' 21 nXXX  , is calculated as 
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Using the orthogonal transformation matrix T  composed of the eigenvectors of the 

matrix ]'[C , the correlated random variables can be transformed into non-correlated 

variables by 

 

   'XTY
t                                                            (4) 

 

where )',,','(' 21 nXXX X  is the normalized correlated random variables, 

),,,( 21 nYYY Y  is the transformed non-correlated variables, and the superscript t  
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denotes a transpose matrix. Since T  is an orthogonal matrix, its inverse 1
T  is the same 

as t
T , and hence X , 'X , and Y  are related as follows: 

 

   
XXXX TYXX   ]['][                                          (5) 

 

where TYX ' , and ][ X  and 
X  are given by 
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respectively. On the other hand, the covariance of the random variable Y  is given by 

 

   ][]'[)''()''()(][  TTTXXTTXXTYYY CEEEC tttttt                 (8) 

 

The preceding equation states that the eigenvalue ][  of the matrix ]'[C  is the same as 

the covariance of the random variable Y . 

 

2.2. Calculation of correlation coefficient 

 

The design formula proposed by van der Meer (1987) for plunging waves can be 

written in the form including partial safety factors as 
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where 50nD  is the equivalent cube length of median armor stone, which is the side length 

of a cube having the same volume as the armor stone, sH  is the design significant wave 

height, vA  is the coefficient representing the uncertainty of the empirical formula, dS  is 

the damage level, which is defined as the eroded area divided by 
2

50nD , P  is the 
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permeability coefficient underneath the armor layer, 1/  ws  , s  and w  are 

mass density of rock and water, respectively,   is the slope angle of breakwater, 

msm LHs 00 /  is the wave steepness, mL0  is the deepwater wavelength corresponding to 

mean wave period, wN  is the number of waves during a storm, and S  and 
R  are the 

partial safety factors of load and resistance, respectively. In Eq. (9), all the variables are 

assumed to be independent one another except between sH  and ms0 . 

In order to calculate the correlation coefficient between sH  and ms0 , we used the 

data of Lee and Jun (2006), who established a data base of hindcasted wave parameters 

such as significant wave height, peak period and direction for the period of 25 years 

starting from 1979 and for major 106 typhoons for 53 years since 1951 at each grid point 

of the northeast Asia regional seas with grid size of 18 km. The HYPA (HYbrid 

PArametrical) model and the ECMWF (European Center for Medium-range Weather 

Forecasts) wind data were used for the simulation of waves for the extra-tropical storms, 

while the WAM model was used for the simulation of typhoon waves using the wind field 

calculated by a typhoon wind model with carefully analyzed typhoon parameters. They 

also presented the design wave heights for return period of 50 years at the 106 coastal grid 

points around the Korean peninsula as indicated as black dots in Fig. 1. In this study, we 

used the annual maximum wave heights and the corresponding wave periods during 25 

years from 1979 to 2003 (including typhoon wave data for the same period) at the coastal 

grid points. The coastal grid points are divided into three regions as shown in Fig. 1 

depending on wave characteristics. The large waves along the east and west coasts of 

Korea (Region I and III) are usually generated by extra-tropical storms in winter and 

spring, while the southern part of Korea (Region II) is influenced by large typhoon waves 

in summer and fall. 

Fig. 2 shows the relationship between significant wave height and steepness on each 

coast. The curve-fitted line and correlation coefficient are also given. The correlation 

coefficient is almost same on the east and south coasts even though the curve-fitted lines 

are different, while it is small on the west coast. On the other hand, the wave steepness has 

the mean of 0.030, 0.035, and 0.033, and standard deviation of 0.011, 0.013, and 0.008 on 

the east, south, and west coasts, respectively. It is observed some data in Fig. 2 are lined 

on the radial lines. This is because the periods of typhoon waves refer to the spectral peak 

period rather than the mean wave period. The spectral peak period, pT , was converted to 

the mean period by the relationship, 21.1/pm TT  . In the WAM model, a sparse 
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frequency resolution is used to calculate wave interactions among different frequency 

components. If the mean period was calculated by 20 / mmTm  , where 0m  and 
2m  

respectively are the zero-th and second moments of the frequency spectrum, the lining 

problem could be avoided. 

 

 

     

Fig. 1. Coastal grid points for design wave height estimation and regions divided 

depending on wave characteristics  

Region I 

Region II 

Region III 
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(a) East coast (Region I)                 (b) South coast (Region II) 
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(c) West coast (Region III) 

 

 

Fig. 2. Relationship between significant wave height and wave steepness along the coasts 

of Korea 
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3. Reliability analysis 

 

In order to compare the calculated partial safety factors with those of Burcharth 

(1992), we used the same statistical characteristics of design variables as his as given in 

Table 1. In the table,  denotes the coefficient of variation, and k , A , and B  are shape, 

scale, and location parameters, respectively.   is the number of storm events in a year. 

In the case of the south coast of Korea, considering the correlation between wave 

height and steepness, the covariance matrix of the normalized variables 

)',,','(' snv HDA X  is expressed as 
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Table 1. Statistical characteristics of design variables of van der Meer (1987) formula. 

 

No. iX  
iX  

iX  
iX  Distribution 

1 vA  6.2 0.4 0.065 Normal 

2 50nD  various various 0.030 Normal 

3   1.72 0.054 0.031 Normal 

4 cot  1.50 0.075 0.050 Normal 

5 P  0.40 0.040 0.100 Normal 

6 wN  2500 1250 0.500 Normal 

7 ms0  0.04 0.010 0.250 Normal 

8 sH  44.0,06.1,17.4,39.1  BAk   Weibull 
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The diagonal matrix ][  consisted of the eigenvalues of the matrix ]'[C  is given as the 

covariance of the non-correlated variable Y , i.e., 
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where 0.1i  for 1i  to 6, 49.07  , 51.18  , and Var  denotes the variance. 

The orthogonal transformation matrix obtained by calculating the eigenvectors 

corresponding to each eigenvalue is given by 
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In this study, we use the Level 2 FORM (First-Order Reliability Method) for the 

reliability analysis of armor stones. Usually an iterative method is used to achieve the 

convergence of influence factors and design point coordinates. 

 

3.1 Calculation of influence factors 

 

The reliability function of the stability formula for plunging waves of van der Meer 

(1987) is given by 

 

   T

smwndv HsNPDSAZ   25.0

0

1.018.0

50

2.0 cot                                 (13) 

 

where 
T

sH  is the design significant wave height for T -year lifetime of the breakwater. 
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Since ms0  and T

sH  are correlated, the preceding reliability function cannot be used in its 

form, and it should be expressed in terms of non-correlated variables. For this, the 

correlated design variables in Table 1 are transformed into the non-correlated variables Y  

using Eqs. (5) and (12): 
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Substituting these equations into Eq. (13), the reliability function is expressed in terms of 

non-correlated variables Y : 
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Applying the Rackwitz (1976) algorithm to the preceding equation, the influence factors 

are calculated as 
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where the prime indicates a normalized value, and * denotes the design point, i.e., the 

most probable failure point. 

 

3.2. Comparison of calculated influence factors 

 

In this section, we compare the influence factors calculated with and without 

considering the correlation between wave height and steepness. The correlation coefficient 

on the south coast of Korea was used, i.e., 51.0
0, 

ms sH .  

The rightmost column of Table 2 shows the influence factors calculated without 

considering the correlation. Only two times of iteration were needed for the convergence 

of the reliability index, which will be explained in the following sub-section. The positive 

and negative values represent resistance and load variables, respectively. The variable of 

the greatest influence in the design is the wave height, and it is followed by the empirical 

coefficient of the formula and the wave steepness of almost same degree of importance. 

Table 3 shows the influence factors calculated considering the correlation. Compared with 

the results in Table 2, the magnitudes of the influence factors of all the design variables 

increased except the wave height, the magnitude of the influence factor of which 

decreased. 

 

3.3. Calculation of reliability index 

 

The design variables are normalized using the influence factors as follows: 

 

   
iXiX '                                                         (17) 

 

The variable at the design point P  is then expressed as 

 

   
iiiii XXXXiXPi XX  '|                                      (18) 

 

This equation is substituted for each variable in Eq. (13) and is calculated the reliability 

index   that makes 0Z . Iteration was made until the difference from the previous   
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is less than 0.005. The final reliability index is substituted into the following equation to 

calculate the probability of failure as 

 

 

Table 2. Iterative calculation of reliability index without considering correlation. 

 

Iteration No. 
i

X  Assumed 
*

iX  
X  

X   
*

'
/ iXZ   

iX  

1 

vA  6.200 0.403 6.200 0.259 0.39 

50nD  1.530 0.046 1.530 0.119 0.18 

  1.720 0.053 1.720 0.123 0.18 

cot  1.500 0.075 1.500 0.099 0.15 

P  0.400 0.040 0.400 0.072 0.11 

wN  2500 1250 2500 -0.199 -0.30 

oms  0.040 0.010 0.040 0.249 0.37 

sH  3.980 0.487 4.144 -0.487 -0.73 

261.0  

2 

vA  6.255 0.403 6.200 0.262 0.38 

50nD  1.533 0.046 1.530 0.122 0.18 

  1.724 0.053 1.720 0.126 0.18 

cot  1.504 0.075 1.500 0.101 0.15 

P  0.402 0.040 0.400 0.073 0.11 

wN  2369 1250 2500 -0.211 -0.31 

oms  0.040 0.010 0.040 0.248 0.36 

sH  4.052 0.508 4.149 -0.508 -0.73 

263.0  
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Table 3. Iterative calculation of reliability index considering correlation. 

 

Iteration No. 
i

X  Assumed 
*

iX  
X  

X  iY  
*

iY   
*

'
/ iYZ   

iY  

1 

vA  6.200 0.403 6.200 1Y  0.000 0.259 0.45 

50nD  1.530 0.046 1.530 2Y  0.000 0.119 0.21 

  1.720 0.053 1.720 3Y  0.000 0.123 0.22 

cot  1.500 0.075 1.500 4Y  0.000 0.099 0.17 

P  0.400 0.040 0.400 5Y  0.000 0.072 0.13 

wN  2500 1250 2500 6Y  0.000 -0.199 -0.35 

oms  0.040 0.010 0.040 7Y  0.241 0.520 0.64 

sH  3.980 0.487 4.144 8Y  -0.241 -0.168 -0.36 

300.0  

2 

vA  6.255 0.403 6.200 1Y  0.136 0.262 0.44 

50nD  1.533 0.046 1.530 2Y  0.063 0.122 0.21 

  1.724 0.053 1.720 3Y  0.065 0.126 0.21 

cot  1.504 0.075 1.500 4Y  0.052 0.101 0.17 

P  0.402 0.040 0.400 5Y  0.038 0.073 0.12 

wN  2369 1250 2500 6Y  -0.105 -0.214 -0.36 

oms  0.040 0.010 0.040 7Y  0.136 0.539 0.64 

sH  4.052 0.508 4.149 8Y  -0.136 -0.180 -0.37 

303.0   
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   )(1 fP                                                        (19) 

 

where   is the cumulative distribution function of the normal distribution. 

Fig. 3 shows the probability of failure for the weight of armor stones varying from 12 

to 40 tons. The damage level 0.2dS  was used as the criterion of failure, which is 

corresponding to the onset of damage (van der Meer, 1987). The lifetime of the breakwater 

50T  years was used. In other words, 50

sH  was used in Eq. (13). Considering the 

correlation makes the probability of failure decrease. Therefore, a smaller weight of armor 

stones can be used if the correlation is considered in the design. The difference of the 

weight of armor stones between correlation and non-correlation increases as the 

probability of failure decreases. Therefore, if the correlation is considered, more reduction 

of armor weights can be made as the design weight increases (or the probability of failure 

decreases). For example, the weight reduces by only 2 tons (from 23 to 21 ton) for the 

probability of failure of 10%, while it reduces by 4 tons (from 29 to 25 ton) for that of 5%. 

To explain the reason why the probability of failure decreases if the correlation is 

taken into account, let us consider a simple reliability function 

 

   SRZ                                                           (20) 

 

where R  and S  are the resistance and loading functions, respectively. If R  and S  

are normally distributed and correlated, then the reliability function is also normally 

distributed with mean value 

 

   SRZ                                                          (21) 

 

and standard deviation 

 

   SRRSSRZ  222                                             (22) 

 

The reliability index is expressed as 
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Therefore, as the correlation coefficient increases, the reliability index increases, and the 

probability of failure decreases. 

 

 

4. Calculation of partial safety factors 

 

Eq. (13) can be simply expressed using the resistance function )(XR  and load 

function )(YS  as 
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Fig. 3. Probability of failure versus weight of armor stone 
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   )()(),( YSXRYXZ                                                 (24) 

 

where X  and Y  are the design variables included in the resistance and load functions, 

respectively. The design equation including the partial safety factors of load and resistance, 

S  and 
R , is then expressed as 
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where the subscript c  denotes a characteristic value. In this study, the mean value is used 

as the characteristic value of each variable except the significant wave height for which 

theT -year return period value of sH  is used. If the target reliability index 
T  is greater 

than 0.0, the partial safety factors are greater than 1.0. 

In order to calculate the partial safety factors, the design point (or the most probable 

failure point) must be calculated such that 0),( YXZ  for the target reliability index T . 

To satisfy this, the design point and the characteristic values must have the following 

relationship: 
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In other words, the design variables at the design point are expressed as the product of the 

characteristic value and the partial safety factor. Therefore, the partial safety factors of 

resistance and load are expressed as 
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


                                            (27) 
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In our problem, we have one load variable, sH , and seven resistance variables, see 

Table 1. In fact, wN  is also a load variable, but it is included in the resistance term for 

convenience’ sake, with a negative exponent. It is common to use overall safety factors, 

like S  and 
R  in Eq. (9), which are obtained as the product of the partial safety factors 

calculated for each variable, i.e., 

 

   
sHS                                                              (28) 

1.025.018.05.0

cot 0




wmnv NsPDAR                                            (29) 

 

The partial safety factors in these equations can be expressed in terms of the 

statistical characteristics of the design variables: 
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
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 


                      (30) 
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

1

1
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                            (31) 

 

where N

H s
 , N

H s
 , and N

Hs
  are the mean, standard deviation, and coefficient of variation, 

respectively, of the equivalent normal distribution of significant wave height. 

On the other hand, Burcharth (1992) expressed the partial safety factors of load and 

resistance as follows: 
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   fR Pk ln1                                                         (33) 

 

where '

HsF  is a parameter to account for the uncertainty of wave measurement (the 
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larger the value, the larger the uncertainty), T

sH 3  is the T3 -year return period value of 

sH , and fPT

sH  is the significant wave height corresponding to an equivalent return period 

fPT  defined as the return period corresponding to a probability fP  that fPT

sH  will be 

exceeded during the structural lifetime T . 
fPT  is calculated from the encounter 

probability formula    1/1
11




T

fP PT
f

. N  is the number of sH  data used for fitting 

the extreme distributions, and k , k , and sk  are coefficients determined by an 

optimization procedure. For plunging waves, 027.0k , 38k , and 05.0sk . 

50N  was used in Burcharth (1992). 

The partial safety factor calculated by Eq. (30) does not consider the uncertainties 

involved in wave measurement and estimation of wave height distribution, which are 

represented by the second and third terms, respectively, on the right-hand side of Eq. (32) 

presented by Burcharth (1992). In order to compare the present result with the Burcharth’s 

result, these two terms are added to Eq. (30) to give 
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Now, the Burcharth’s method (Eq. (32)) and present method (Eq. (34)) for calculating 
sH  

are different only in the definition of the wave height that causes failure. Burcharth 

assumes that failure occurs at the wave height of fPT

sH , while the present study assumes 

that failure occurs at the wave height of )(*

fs PH , i.e., the wave height at the most 

probable failure point. In fact, )(*

fs PH  is smaller than fPT

sH  by a few percent. 

Table 4 shows the partial safety factors calculated by Burcharth (1992) on the 
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assumption that all the design variables are uncorrelated. On the other hand, Table 5 shows 

the partial safety factors calculated by the present method for the cases of non-correlation 

and correlation. The resistance factors of non-correlation are almost same as the 

Burcharth’s values, as they should be. The load factors, however, are slightly smaller than 

the Burcharth’s values, because of the different definitions of wave height of failure.  

Fig. 4 shows the partial safety factors of load and resistance calculated by the present 

method with and without considering the correlation. 05.0' 
HsF  was used. The partial 

safety factors considering the correlation are slightly smaller than those of non-correlation 

for both load and resistance. The difference between correlation and non-correlation 

increases as the probability of failure decreases, especially for the resistance factor. This 

result corresponds with that in Fig. 3, in which the armor weight calculated by considering 

the correlation is smaller than that of non-correlation and the difference increases as the 

probability of failure decreases. 

 

Table 4. Partial safety factors calculated by Burcharth (1992). 

 

)(yearT  TfP )(  
R  

sH  

05.0' 
HsF  2.0' 

HsF  

50 
0.2 1.04 1.19 1.23 

0.1 1.06 1.29 1.37 

100 
0.2 1.04 1.18 1.22 

0.1 1.06 1.27 1.35 

 

 

Table 5. Partial safety factors calculated by present method. 

 

T  

)(year  
TfP )(  

R  
sH  

0.0  51.0  
0.0  51.0  

05.0' 
HsF  2.0' 

HsF  05.0' 
HsF  2.0' 

HsF  

50 
0.2 1.05 1.03 1.16 1.20 1.15 1.19 

0.1 1.07 1.04 1.24 1.32 1.23 1.31 

100 
0.2 1.05 1.03 1.14 1.19 1.13 1.18 

0.1 1.07 1.04 1.21 1.30 1.20 1.28 
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Fig. 4. Partial safety factors of load and resistance calculated by present method 

 with 51.0  ( )50 yearsT  . 
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4. Conclusion 

 

In this study, the partial safety factors of breakwater armor stones were calculated by 

considering the correlation between wave height and wave steepness. The correlation 

coefficient between these variables was calculated using the wave hindcasting data along 

the coasts of Korean peninsula. The probability of failure decreases if the correlation is 

taken into account. Therefore, a smaller weight of armor stones can be used if the 

correlation is taken into account in the design. The difference of the weight of armor 

stones between correlation and non-correlation increases as the probability of failure 

decreases. Therefore, more reduction of armor weight can be achieved as the design 

weight increases (or the probability of failure decreases). The partial safety factors 

calculated by considering the correlation are slightly smaller than those of non-correlation 

for both load and resistance. The difference increases as the probability of failure 

decreases, especially for the resistance factor. This result corresponds with that for the 

weight of armor stones. In summary, if the correlation is taken into account, the smaller 

partial safety factors and smaller armor stone weight are calculated, and the reduction 

becomes prominent as the probability of failure decreases (or the design weight increases). 

Lastly it should be mentioned that the correlation is not so important in the design of 

ordinary breakwaters for which the target probability of failure is several ten percent (See 

Fig. 4). 
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