
Efficient Register Mapping and Allocation
in LaTTe, an Open-Source Java

Just-in-Time Compiler
Byung-Sun Yang, Junpyo Lee, SeungIl Lee, Seongbae Park, Yoo C. Chung, Suhyun Kim,

Kemal Ebcio�glu, Senior Member, IEEE, Erik Altman, Member, IEEE, and

Soo-Mook Moon, Member, IEEE

Abstract—Java just-in-time (JIT) compilers improve the performance of a Java virtual machine (JVM) by translating Java bytecode
into native machine code on demand. One important problem in Java JIT compilation is how to map stack entries and local variables to
registers efficiently and quickly, since register-based computations are much faster than memory-based ones, while JIT compilation
overhead is part of the whole running time. This paper introduces LaTTe, an open-source Java JIT compiler that performs fast
generation of efficiently register-mapped RISC code. LaTTe first maps “all” local variables and stack entries into pseudoregisters,
followed by real register allocation which also coalesces copies corresponding to pushes and pops between local variables and stack
entries aggressively. Our experimental results indicate that LaTTe’s sophisticated register mapping and allocation really pay off,
achieving twice the performance of a naive JIT compiler that maps all local variables and stack entries to memory. It is also shown that
LaTTe makes a reasonable trade-off between quality and speed of register mapping and allocation for the bytecode. We expect these
results will also be beneficial to parallel and distributed Java computing 1) by enhancing single-thread Java performance and 2) by
significantly reducing the number of memory accesses which the rest of the system must properly order to maintain coherence and
keep threads synchronized.

Index Terms—Java virtual machine, just-in-time compilation, register mapping, register allocation, copy coalescing.

Ç

1 INTRODUCTION

RECENTLY, Java became a prominent programming
language for parallel and distributed computing, due

to its support for multithreading, networking, CORBA, and
remote method invocation [1]. Unfortunately, parallel and
distributed Java still has the same performance issue as
sequential Java, related to executing Java bytecode. Indeed
these performance issues are magnified by the additional
synchronization and coherence overhead required in multi-
processor environments. Efficient register allocation, as
described in this paper, helps mitigate some of those
problems by reducing the number of memory accesses
which the rest of the system must properly order.

The Java Virtual Machine (JVM), a software layer to
execute bytecode, while providing desirable features such
as a “write-once, run anywhere” model for software
developers, and security and portability for end-users, does
not immediately lend itself to high performance. In order to
circumvent the JVM overhead, a technique called Just-in-
Time (JIT) compilation [2] is used to implement a JVM.
Through JIT compilation, a bytecode method is translated
into a native method on the fly, so as to remove the
interpretation overhead.

The most important issue in Java JIT compilation is
generating efficient code. A critical part of this is how to
map and allocate stack entries and local variables into
registers effectively. One constraint is that since the JIT
compilation time is part of the whole running time, this job
should be done quickly. This requires a trade-off between
quality of the generated code and speed of mapping and
allocating registers for the bytecode, which poses a
challenging research and engineering problem beyond a
simple register allocation problem.

LaTTe is a freely available JVM and JIT compiler. LaTTe
aggressively maps registers for the bytecode, and performs
fast register allocation. LaTTe first translates bytecode into
pseudocode by mapping all stack entries and local variables
to symbolic registers. There will be many copies correspond-
ing to pushes and pops between local variables and the stack
in the pseudocode. LaTTe removes most of these copies via
efficient register allocation with a local lookahead.

The contribution of this paper is twofold. First, since
LaTTe is a working, high-performance JIT compiler whose
source code is publicly available, this paper, together with

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 1, JANUARY 2007 57

. B.-S. Yang, J. Lee, and S. Lee are with Veloxsoft, Inc. and Seoul National
University, Dae Rung Post Tower I, 7F, 212-8, Guro-Dong, Guro-Gu,
Seoul, 152-050, Korea. E-mail: {sun.yang, walker, seungil}@veloxsoft.com.

. S. Park is with Google, Inc., 1600 Ampitheatre Parkway, Mountain View,
CA 94043. E-mail: spark@google.com.

. Y.C. Chung is with the Information and Communication University,
119 Munjiro, Yuseong-gu, Daejeon 305-732, Korea.
E-mail: chungyc@icu.ac.kr.

. S. Kim and E. Altman are with the IBM T.J. Watson Research Center, PO
Box 218, Yorktown Heights, NY 10598.
E-mail: kimsu@us.ibm.com, erik@watson.ibm.com.

. K. Ebcio�glu is with the Global Supercomputing Corporation, PO Box 603,
Yorktown Heights, NY 10598.
E-mail: kemal.ebcioglu@global-supercomputing.com.

. S.-M. Moon is with the School of Electrical Engineering, Seoul National
University, San 56-1 ShinLim-Dong, KwanAk-Gu, Seoul 151-742, Korea.
E-mail: smoon@altair.snu.ac.kr.

Manuscript received 17 Dec. 2004; revised 15 Nov. 2005; accepted 27 Nov.
2005; published online 28 Nov. 2006.
Recommended for acceptance by R. Eigenmann.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0310-1204.

1045-9219/07/$20.00 � 2007 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: Seoul National University. Downloaded on March 10,2010 at 01:11:18 EST from IEEE Xplore. Restrictions apply.

the source code, can be helpful to readers interested in
designing JIT compilers. Second, the present paper shows
that LaTTe has made a reasonable trade-off between the
quality and the speed of register mapping and allocation:
the performance impact and the translation overhead of
LaTTe’s approach to register allocation are evaluated in
detail in the paper. As already noted, these techniques
contribute to improved performance in parallel environ-
ments by significantly reducing the number of memory
accesses which the rest of the system must properly order.
These techniques also contribute to parallel and distributed
Java computing environments by improving the perfor-
mance of individual threads.

The rest of the paper is organized as follows: Section 2
briefly reviews the Java VM and our target RISC machine,
SPARC, focusing on calling conventions. Section 3 describes
the register mapping and the translation of bytecode into
pseudo SPARC code. Section 4 describes the real register
allocation technique of LaTTe for the pseudocode. A
comparison with previous JIT compilation techniques is
given in Section 5. Section 6 briefly overviews the LaTTe
JVM and its JIT compiler. Section 7 presents our experi-
mental results. A summary follows in Section 8.

2 JAVA VIRTUAL MACHINE AND SPARC

The Java VM is a typed stack machine [3]. Each thread of
execution has its own Java stack where a new activation
record is pushed when a method is invoked and is popped
when it returns. An activation record includes state
information, local variables, and the operand stack. All
computations are performed on the operand stack and
temporary results are saved in local variables, so there are
many pushes and pops between the local variables and the
operand stack.

The calling conventions for a Java method are as follows:
The actual parameters are pushed on the operand stack of
the caller method before a call is made. In the case of a
virtual method call invokevirtual, the this reference is
also pushed as the first parameter. The JVM pops those
parameters and moves them into local variables of the callee
method in order, starting from local variable zero. When a
(nonvoid) Java method returns, the return value is pushed
on top of the caller’s operand stack.

SPARC is a 32-bit RISC machine with a register-based
instruction set [4]. A function has its own register window
which consists of 24 consecutive integer registers: eight in
registers (%i0-%i7), eight local registers (%10-%17), and
eight out registers (%10-%17).1 When a method is called, the
register window is rotated, such that the callee gets a new
register window, where the callee’s in registers overlap the
caller’s out registers. This facilitates argument passing: the
caller passes arguments in %o0-%05, which can be
retrieved by the callee in %i0-%i5. The callee saves the
return value in %i0 which can be retrieved by the caller in
register %o0 when the called method returns. In addition,
each method has its own C stack frame in memory, with a

reserved 64-byte register-window save area for saving the
local registers when a trap is raised; LaTTe uses this for
exception handling.

3 BYTECODE TRANSLATION WITH AGGRESSIVE

REGISTER MAPPING

When a method is called for the first time, LaTTe translates
its bytecode into SPARC code. In LaTTe, there are two
issues in translating bytecode into register-based code. One
is converting stack entries and local variables into symbolic
registers, which we call register mapping. The other is
assigning symbolic registers to real registers, which we call
register allocation. This section deals with register mapping.
We will first discuss some JIT compiler design issues
pertaining to register mapping, and we will then show how
each bytecode is translated.

3.1 Issues in Register Mapping for Bytecodes

There are a few JIT compiler design issues related to register
mapping for bytecodes. The JIT compiler designer first needs
to decide if registers will be used for stack entries only, or for
local variables only, or for both. Obviously, mapping both the
stack entries and local variables to registers would be better,
but it would require a nontrivial but fast register allocation
scheme, which must also be able to remove register copies
corresponding to pushes and pops between stack entries and
local variables. The JIT compiler designer also needs to decide
whether to generate register-allocated code directly from the
bytecode in a single pass, or to have a separate pass to
generate pseudocode with symbolic registers, followed by
real register allocation. The former approach would be faster,
yet may constrain register allocation by preallocating fixed
registers to some stack entries or local variables, to reduce
allocation complexity. The latter would be more versatile in
terms of allocating registers and eliminating copies, but it
could be slower.

LaTTe uses registers for all stack entries and local
variables. It also has a separate pass to generate pseudocode
in order to allocate registers and remove copies in a highly
flexible way. The translation process is composed of four
stages. In the first stage, LaTTe identifies all control join
points and subroutines (finally blocks) in the method’s
bytecode via a depth-first traversal. In the second stage, the
bytecode is translated into a control flow graph (CFG) of
pseudo SPARC instructions with symbolic registers. In the
optional third stage, LaTTe optimizes the pseudocode. In
the fourth stage, LaTTe performs fast register allocation,
generating a CFG of real SPARC instructions, which is
finally converted into SPARC code. In the remainder of this
section, we focus on the second stage and the next section
focuses on the fourth stage.

3.2 Translation of Bytecode into Pseudocode

This section describes the translation of key bytecode
instructions into SPARC primitives with symbolic registers.
The translation rule for each bytecode instruction is
determined based solely on the operand types and the
opcode of the instruction itself. When this independently
generated SPARC code fragment for each bytecode is
concatenated with others, the resulting code becomes

58 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 1, JANUARY 2007

1. LaTTe uses 20 registers for allocation (excluding %i6; %i7; %o6; %o7). In
the SPARC notation, the destination is the last operand, e.g.,
“ add %l1; %l2; %l3” means “ %l3 ¼ %l1þ %l2” and “ mov %l1; %l2” means
a copy “%l2 ¼ %l1.”

Authorized licensed use limited to: Seoul National University. Downloaded on March 10,2010 at 01:11:18 EST from IEEE Xplore. Restrictions apply.

correct because consistent formats are used for symbolic
registers, especially for those corresponding to stack
elements; their format includes information on the current
operand stack status, called TOP (explained shortly). A
symbolic register in the pseudo SPARC code is composed of
three parts:

. The first character indicates the type:
a = address (object reference), i = integer, f =

float, l = long, and d = double.
. The second character indicates the location:

s = operand stack, l = local variable, t =
temporaries generated by LaTTe for translation
purposes.

. The remaining number further distinguishes the
symbolic register.

For example, al0 represents a local variable 0 whose type is
an object reference. is2 represents the second item of the
operand stack whose type is an integer.

TOP is a translation-time variable used by LaTTe (not a
value computed at runtime) which indicates the number of
items on the operand stack just before translating the
current bytecode instruction. For example, if the current
value of TOP is 4, “add is{TOP-1}, is{TOP}, is{TOP-

1}” means “add is3, is4, is3.” There is another
translation-time array, type[1..TOP] which indicates
the type of each item (one of a, i, f, l, d) currently on
the stack (required for translating dup/pop).

LaTTe traverses the bytecode of a method in depth-first
order, starting at the beginning of the method with TOP set
to zero. Following any path of the bytecode, when a
bytecode instruction that pushes some item(s) on the stack
is encountered, TOP is incremented by the number of
pushed items. Similarly, when a bytecode instruction that
pops some item(s) is encountered, TOP is decremented by
the number of popped items. The type array type[] is
appropriately updated by the type of pushed items.
According to the JVM specification [3] paragraph 4.9.2, this
translation-time computation of the operand stack status is
justified, since if the number of items on the operand stack
is N on one path from the beginning to a given point, the
operand stack must have the same number of items N and
the same types of items in the same order on any path
arriving at the same point [3]. In fact, the JVM verifier
checks if this property is violated during the class loading.

3.2.1 Stack/Local Variable Manipulation Instructions

Due to the stack computation model, bytecode instructions
that push a local variable onto the stack or pop the stack top
into a local variable are executed frequently. These are
translated into symbolic register copies as follows ($ means
a translation-time action, not a runtime action).

It should be noted that these symbolic register copy
instructions do not really generate code because they will be
coalesced during the register allocation phase.

3.2.2 Arithmetic/Logical/Shift Instructions

The arithmetic/logical/shift bytecode instructions that

operate on the top items of the operand stack can be

directly mapped to one or two pseudo instructions.

3.2.3 Object Access Instructions

Fig. 1 depicts the object model of LaTTe. An object includes

two fields before the instance data: a pointer to the virtual/

interface method table and a 32-bit lock, which are for

method invocation and for thread synchronization, respec-

tively. The instance data can be accessed by a single

memory access, compared to two accesses used in some

implementations of the JDK [3]. Here is an example

pseudocode for accessing the integer field foo of an object.

The JVM is required to throw a NullPointerExcep-

tion if the object reference is NULL. LaTTe does not

generate such check code here because if the object

reference is NULL, a SIGSEGV or SIGBUS signal will be

raised by the operating system during the execution of the

load/store; the LaTTe JVM includes a signal handler where

the NullPointerException is thrown.

3.2.4 Method Invocation Instructions

The LaTTe JVM maintains a virtual method table for each

loaded class. The table contains the start address of each

method defined in the class or inherited from the super-

class. Due to the single inheritance property of Java, if the

start address of a method is placed at offset n in the virtual

method table of a class, it can also be placed at offset n in

the virtual method tables of all subclasses of the class.

Consequently, the offset n is a translation-time constant.

Since each object includes a pointer to the method table of

its corresponding class as shown in Fig. 1, a virtual method

invocation can be translated into an indirect function call

after two loads, as follows:

YANG ET AL.: EFFICIENT REGISTER MAPPING AND ALLOCATION IN LATTE, AN OPEN-SOURCE JAVA JUST-IN-TIME COMPILER 59

Fig. 1. The object model of LaTTe.

Authorized licensed use limited to: Seoul National University. Downloaded on March 10,2010 at 01:11:18 EST from IEEE Xplore. Restrictions apply.

In the above example, the virtual method x.func is
assumed to have two integer arguments and to return an
integer value. At call at1, these two arguments and the
implicit this argument are mapped to symbolic registers
is{TOP}, is{TOP-1}, and as{TOP-2}, respectively.
Also, the return value is mapped to a symbolic register
is{TOP-2} when the method returns.

It is desirable to allocate these symbolic registers following
the SPARC calling conventions. In our example, the argument
registers, as{TOP-2}, is{TOP-1}, and is{TOP}, are
preferably allocated into %o0, %o1, and %o2, respectively;
otherwise, we should insert copies before the call instruction.
Similarly, the return value register is{TOP-2} after the call
should be allocated into %o0.

The calling conventions should also be followed at the
callee side. At the beginning of x.func, the this argument
and the two integer arguments are mapped to local
symbolic registers al0, il1, and il2, respectively. These
registers must be allocated into %i0, %i1, and %i2,
respectively. The return value symbolic register, is0 at
the end of the method, must be allocated to %i0. Section 4
describes how LaTTe can allocate registers following the
calling conventions.

The LaTTe JVM also maintains an interface method table
for each class which lists the start address of each method
implementing an interface method. Each interface method
is assigned a globally unique offset so that invokeinter-
face is also translated into an indirect function call after
two loads. This is faster than searching the virtual method
table although it incurs some space overhead. We have
currently seen a maximum of 150 entries in an interface
method table.

3.2.5 Array Access Instructions

Arrays in Java are objects. The layout of a LaTTe array
object starts with the same two fields as in Fig. 1, followed

by the array length and the array data. The JVM is supposed
to check array bounds for all array accesses. LaTTe inserts
the bound check code based on a trap, as opposed to
branches around calls to error routines, in order to simplify
control flow. The signal handler takes care of throwing the
exception. The check of a NULL array reference is handled
by SIGBUS as previously. The translation of iaload, for
example, is as follows:

3.2.6 A Translation Example

Fig. 2 shows a simple translation example. The instance
method work_on_max() in Fig. 2a simply takes the
maximum of two values, adds a tip value, and calls another
instance method work() (whose offset in the method table is
48). Starting from the first bytecode in Fig. 2b with TOP = 0,
translation of each bytecode will generate the pseudocode in
Fig. 2c.

4 FAST REGISTER ALLOCATION

The translation rules described above indicate that it is
simple to convert the bytecode into SPARC code with
symbolic registers. We now describe our fast register
allocator which effectively coalesces copies and conserves
registers. The technique is based on the left-edge greedy
interval coloring algorithm [5], extended to a larger region
of code called the tree region.

4.1 Tree Regions

The CFG of pseudocode is partitioned into tree regions
which are single-entry, multiple-exit subgraphs shaped like
trees. Tree regions start at the beginning of the program or
at control join points and end at the end of the program or
at other join points. For example, the CFG in Fig. 3,

60 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 1, JANUARY 2007

Fig. 2. A translation example from bytecode into pseudo SPARC code. (a) Java source, (b) bytecode, and (c) CFG of pseudo SPARC code.

Authorized licensed use limited to: Seoul National University. Downloaded on March 10,2010 at 01:11:18 EST from IEEE Xplore. Restrictions apply.

composed of three basic blocks (A, B, C), has two tree
regions depicted by shaded areas.

A tree region is a unit of optimizations in LaTTe, such as
redundancy elimination, common subexpression elimina-
tion, constant propagation, loop invariant code motion, as
well as register allocation. Tree regions can be enlarged by
code duplication techniques such as loop unrolling to
increase the opportunity for optimization in frequently
executed parts of code. By working on tree regions, LaTTe
trades off quality and speed of optimization.

After regions are constructed for a method, last uses of
each symbolic register are computed. Stack symbolic regis-
ters are supposed to be dead once they are used, and the live
range of temporary symbolic registers cannot span beyond
the translated code sequence for a bytecode instruction.
Consequently, last uses of these symbolic registers can be
readily identified. For local symbolic registers, however,
liveness is computed “approximately” via a single postorder
traversal [6] of the regions such that every local symbolic
register is assumed to be live on a backward edge of the CFG.
This gives a conservative, yet fast, estimation of live variables
in each region. Based on the liveness information, we can
identify the last use of each local symbolic register. When a
local symbolic register is dead on one path of a conditional
branch while it is live on the other path, we mark the path
where it is dead with the last use for the register.

The regions are then register-allocated one by one in a
reverse postorder traversal of the regions, such that a region is
allocated before its descendents are allocated, in a depth-first

spanning tree of regions [6]. In each region during the
traversal, the tree is traversed twice, first by postorder which
is called the backward sweep, followed by preorder which is
called the forward sweep. The backward sweep collects
information on the preferred destination registers for
instructions, which works as a local lookahead. The forward
sweep performs real register allocation using that informa-
tion. During each traversal, a map which is a set of (symbolic,
real) register pairs is collected and propagated following the
traversal direction. The map is called p_map in the backward
sweep which describes preferred assignments for destination
symbolic registers, and h_map in the forward sweep which
describes the current register allocation result of symbolic
registers.

4.2 Backward Sweep and Forward Sweep

The backward_sweep() algorithm in Fig. 4 is called with
the root of the region as an argument. The purpose of the
backward sweep is computing the p_map, based on the
required register assignment at the end of the region, or at
method calls/returns according to the calling conventions.
For example, if a symbolic register il2 is to be allocated to
a real register r at a method call due to the calling
conventions, and we have an operation sequence “add
is1, is2, is1; mov is1, il2” just before the call, then
the destination register is1 of the add is preferably
allocated to r to avoid a copy. This preference can be
known if the p_map propagated through the add includes
(is1, r).

Copies are important in computing the p_map. If the
p_map includes (x, r) under a copy “mov y, x,” then the
p_map above the copy includes (y, r). At a conditional
branch, the p_map of both paths are unioned, yet if there are
two different p_map for a symbolic register, an arbitrary one
is taken. If the destination register of an instruction is
included in the p_map, its preferred assignment is set to its
mapped real register in the p_map. Fig. 4 shows this process
in detail.

YANG ET AL.: EFFICIENT REGISTER MAPPING AND ALLOCATION IN LATTE, AN OPEN-SOURCE JAVA JUST-IN-TIME COMPILER 61

Fig. 3. A CFG of basic blocks and tree regions.

Fig. 4. The backward sweep algorithm.

Authorized licensed use limited to: Seoul National University. Downloaded on March 10,2010 at 01:11:18 EST from IEEE Xplore. Restrictions apply.

After the preferred assignments for instructions are
computed, the forward sweep is performed to allocate real
registers. The forward_sweep() algorithm in Fig. 5 is
called at the root of the region with h, an h_map that is saved
at the root. Other arguments include refcount that shows
how many symbolic registers are mapped to each real
register and freereg which indicates the set of real
registers to which no symbolic registers map, as determined
from h. For the starting region of a method, h is initialized
by the map of parameters. For example, h for the method
x.func in Section 3.2.4 is initialized by {(al0, %i0),

(il1, %i1), (il2, %i2)}. As regions are allocated in
reverse postorder, h at the end of a region is propagated to
the root of the next region and saved there.

The allocation is performed with a preorder traversal of
the tree from the root. When an instruction z ¼ xþ y is
encountered, the real code is generated as follows. First, the
right-hand-side is generated as h½x� þ h½y�. If the x use is the
last use of x, the refcount of the real register h[x] is
decremented by one, and h[x] is added to the freereg if
the refcount becomes zero, and (x, h[x]) is deleted from
h, meaning that x is now dead. The same is done for y. For
the target register z, if the instruction is a copy z ¼ x and x

was mapped to a real register r, then z is also allocated into
r, meaning that the copy is coalesced. For noncopy
instructions, if there is a preferred assignment for the
instruction (a real register that z will eventually be mapped
into) and if it is in freereg, we choose the register.
Otherwise, we choose the first free register in freereg. If
freereg is empty, we need to spill, which will be
described shortly. Now, the pair (z, the chosen real register)
is inserted into h. After the forward_sweep() passes

through a conditional branch, if some symbolic register x is

dead on a path, (x, h[x]) is deleted from h, and refcount

and freereg are also updated.
Starting from the root of a region, all instructions are

register-allocated as described above. When the root of the

next region is encountered, we save the current h_map at

that root so that the forward sweep at the next region can

start with this as an initial h_map. Since the root is a join

point, more than one forward sweep may reach the same

root. If some h_map is already saved at the root when the

current forward sweep reaches it, we need to reconcile the

current h_map and the old one that has already been there

by inserting some copies, as described below.

4.3 Reconciling h_map at Region Join Points

Let us call the old h_map and the new h_map h old and

h new, respectively. Assume h old½x� ¼ h old½y� ¼ r. If

h new½x� ¼ h new½y� ¼ r0, we need to insert a copy r ¼ r0

on the new incoming edge as shown in Fig. 6. This

conserves the old mapping, namely, h½x� ¼ h½y� ¼ r.

62 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 1, JANUARY 2007

Fig. 5. The forward sweep algorithm.

Fig. 6. Reconciling register allocation.

Authorized licensed use limited to: Seoul National University. Downloaded on March 10,2010 at 01:11:18 EST from IEEE Xplore. Restrictions apply.

If h new½x� is different from h new½y�, however, there is a
problem. Suppose in the new mapping, h new½x� ¼ r0 but
h new½y� ¼ r00. This can happen if there is x ¼ yþ 1 on the
new incoming edge which makes y unequal to x while there
is x ¼ y in the old incoming edge, making y equal to x.
Fig. 7a depicts this situation. It also shows the opposite case,
i.e., u ¼ vþ 1 is on the old incoming edge while there is
u ¼ v on the new incoming edge, which is easier to handle.

As shown in Fig. 7b, it is still possible to reconcile the
mapping by inserting copies in the old incoming edge. One
issue is that if the region has already been allocated using
h old before h new reaches the region, we might need to
reallocate the region and probably its successor regions,
which will be expensive. Fortunately, since we traverse
regions in reverse postorder, this can occur only at a loop
entry region; when a loop entry region is encountered
following the back edge, it would have already been allocated
using h_map propagated through the loop entry edge.

In order to handle this, when a loop entry region is
encountered for the first time, we force each pseudoregister
to be mapped to a separate real register by inserting copies
(e.g., in Fig. 7a, we insert a copy mov %i3; %i4 at the old
incoming edge and update h½y� ¼ %i4). In this way, when
the loop entry is encountered again through the back edge,
we do not have to update the previous h of the region nor
reallocate the region; we just add copies at the back edge if
required.

Reconcilation overhead is, in practice, small due to the
backward sweep. Let us assume that region A and C are
predecessors of region B, and A is allocated first. The
forward sweep at region A will save its h_map at the root of
region B. Then, the backward sweep at region C will take
the saved h_map as an initial value of its p_map and
propagate across region C. So, the forward sweep at region
C will generate an h_map more compatible with A’s, which
can reduce reconcilation.

Our algorithm also handles a case when there is more
than one edge from region A to region B. In Fig. 2c, for
example, when the forward sweep at region A reaches the
root of region B for the first time following the false path,
we save the current h_map at the root. We know the true
path from A also reaches the same root but has not yet been
forward swept. At this point, we perform an incremental

backward sweep for the true path to give preferred
assignments based on the saved h_map from the false path.
This will also reduce reconcilation when the forward sweep
on the true path reaches the root of region B. Fig. 5 includes
the consideration for this case.

The reconciling problem, in fact, is similar to replacing

SSA � nodes by a set of equivalent move operations [7] and

we can use the same solution to minimize copies.

4.4 Register Spill

When no free registers are available at some instruction I

during the forward sweep, we heuristically choose a real

register r to spill. Let us assume that r is mapped only to

pseudoregisters x and y at that point (h½x� ¼ h½y� ¼ r). We

insert a store instruction to a spill location “st x; SPILL0” just

before I and mark x and y last uses there. We then register

allocate the inserted store, generating “st r; SPILL0” (since

h½x� ¼ r). We now map the symbolic registers x and y to

SPILL0 (i.e., h½x� ¼ h½y� ¼ SPILL0) and r is moved back to

freereg with its refcount zero. In this way, the forward

sweep can continue at I with a new available register r. When

a spilled register is used later by an instruction, say

“add x; 2; w,” we replace the instruction by a new sequence

of instructions, [ld SPILL0; x; mov x; y; add x; 2; w;] (the

copy is needed since both x and y had the same value when

spilled), and continue the register allocation. When the load

and the copy are register allocated, x and ymight be allocated

to a different register this time, say r0. Both x and y are

mapped to r0, and the refcount of r0 is set appropriately.
At a region boundary, reconciling copies may occasion-

ally include spill locations (e.g., SPILL0 ¼ r3; r3 ¼ SPILL1,

or SPILL0 ¼ SPILL1) as well as normal register copies. We

handle them appropriately.

4.5 A Register Allocation Example

Fig. 8 describes the register allocation process for the example

in Fig. 2. There were two regions in Fig. 2c. The backward

sweep and the forward sweep for the region A and the

region B are described in Figs. 8a and 8b, respectively.2 The

final register allocation result is shown in Fig. 8c, where only

the essential code is generated.
The difference and novelty of our register allocation

algorithm compared to the original left-edge interval

coloring algorithm [5] are as follows: Our algorithm uses

aggressive copy elimination to avoid generating code for

copy operations. It maps multiple symbolic registers to the

same real register when they are equal, and uses clever

heuristics to match physical register assignments across tree

region boundaries, in order to avoid introducing copy

operations in such boundaries.

5 COMPARISON WITH PREVIOUS JIT COMPILATION

TECHNIQUES

It is highly desirable to be able generate high-performance

native code for a bytecode instruction, while keeping the

translation process fast.The quantity:

ðtotal compilation time for the bytecodeÞ
þ ðnumber of executions of the bytecodeÞ
� ðaverage execution time of the translated bytecodeÞ

YANG ET AL.: EFFICIENT REGISTER MAPPING AND ALLOCATION IN LATTE, AN OPEN-SOURCE JAVA JUST-IN-TIME COMPILER 63

Fig. 7. Reconciling register allocation. (a) Problem and (b) solution.

2. The incremental backward sweep is not shown because it does not
affect the allocation result in this example.

Authorized licensed use limited to: Seoul National University. Downloaded on March 10,2010 at 01:11:18 EST from IEEE Xplore. Restrictions apply.

must be minimized, in order to reduce the contribution of a
bytecode instruction to the total execution time. Hence,
finding the right trade-off between translation time and
execution time can be very important.

Modern adaptive JIT compilers selectively resort to
traditional compiler optimizations which can consume a lot
of time, but only for “hot-spot” methods, while interpreting
or performing only moderate compiler optimizations on the
less frequently executed parts of the program. Indeed,
compile time pressure goes away when true hot-spots with
very high re-use rates exist. However, continuously detecting
the hot-spots accurately and with low overhead can itself be
difficult; also, some programs do not have code fragments
that are hot enough and worthy of a time-consuming
optimization effort. Hence, a base compilation technique
similar to LaTTe’s, that can already quickly generate high
performance native code from the start (along with hardware
and OS assistance for accurate profiling), could be helpful for
all JIT compilers, including those following a profile-directed
adaptive strategy for hot-spots.

In this section, we compare LaTTe’s JIT compilation
technique with some of those earlier JIT compilation
techniques that translate all executed methods, including
Kaffe [8], VTune [9], and CACAO [10], focusing on quality and
speed of register allocation. We then describe register
allocation techniques employed by adaptive compilation
techniques.

Kaffe is a public-domain JVM with a relatively simple JIT
compiler. Kaffe detects basic blocks and performs single-
pass code generation with register allocation (i.e., it
generates no pseudocode). For all local variables and
operand stack slots, there are corresponding entries in the
C stack of the translated method. If a variable or a stack slot
is used in a basic block, a register is used to load it from the
C stack. At the end of a basic block, registers corresponding
to locals or stack slots that have been defined in the basic
block are spilled back to the C stack. Consequently, there
are many loads/stores in the translated code.

Intel’s VTune includes a JIT compiler for its x86 platform,
yet the technique itself is applicable to RISC machines as
well. All local variables are globally preallocated before the
translation starts. Then, single-pass code generation is
performed with local register allocation for stack slots and
temporaries. A mimic stack is computed during the transla-
tion to trace the current operand stack which contains
registers and the C stack addresses corresponding to local
variables and temporaries. Lazy code generation with the
mimic stack avoids many copies corresponding to xload,
yet copies from the operand stack to local variables
corresponding to xstore are generated. When the mimic
stack is not empty at the end of a basic block, all stack
entries are spilled to the C stack.3 Fig. 9b shows the
translation process by VTune for our previous example in
Fig. 9a. The VTune code can be compared with the LaTTe
code shown in Fig. 9d.

CACAO is a JIT compiler targeting the Alpha platform.
Each local variable is also preallocated as in VTune, yet for
operand stack slots which are live beyond a basic block,
interface pseudoregisters are allocated instead of spill loca-
tions in the C stack. CACAO first converts the bytecode into
an intermediate form and analyzes the operand stack to build
a static stack for each instruction which contains local
variables and interface registers (i.e., not real registers).
Delayed code generation using the static stack also avoids
many copies corresponding to xload, yet CACAO can also
avoid some copies corresponding to xstore if its target local
variable can be used as a destination for the computation
result at the stack top (e.g., [iload a; iload b; iadd;
istore c;] can be translated into “add a; b; c”). This is
possible because CACAO performs more elaborate analysis
on the intermediate code. Fig. 9c shows the translation
process of CACAO.

The approach of VTune/CACAO based on a simulated
operand stack, has two types of inefficiencies compared to

64 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 1, JANUARY 2007

Fig. 8. Register allocation process for the example in Fig. 2. (a) Register allocation of Region A and (b) register allocation of Region B.

3. Another version of VTune uses priority-based coloring, yet for most
benchmarks, it gives worse results [9].

Authorized licensed use limited to: Seoul National University. Downloaded on March 10,2010 at 01:11:18 EST from IEEE Xplore. Restrictions apply.

LaTTe. First, the fixed preallocation of local variables
generates inefficient code. In LaTTe, if one local variable
is copied into another variable (e.g., through the xload-
xstore sequence), they can be allocated to the same register.
This means that LaTTe can conserve registers better and can
eliminate more copies than VTune/CACAO. LaTTe can
also allocate different registers to different live ranges of a
variable, if required. This is hard to achieve in VTune/
CACAO because of the fixed preallocation, which might
even cause some difficulty in code generation. For example,
if there is an update of a variable while its previous value
resides in the static/mimic stack due to a previous xload,
the copy for the xload cannot be avoided. Fig. 10 shows an
example for a Java statement a ¼ bþþ where a copy for
iload cannot be avoided. A copy for istore cannot be
avoided in VTune, and mostly in CACAO.4

Another inefficiency is that VTune/CACAO gives up
coalescing at join points. When the mimic/static stack is not
empty at a join point, all stack entries are mapped to the C
stack/interface registers, always generating spills/copies,
respectively. On the other hand, LaTTe resolves join
conflicts, coalescing the copy between the stack and the
local variable at least for one path. A typical example is the
Java condition statement5 a ¼ ðb > cÞ?b : c, in Figs. 8 and 9.
For this example, VTune and CACAO generated four and
two more operations than LaTTe, respectively.

Many recent JVM JIT compilers employ more elaborate
register allocation algorithms due to their adaptive compi-
lation framework. The HotSpot JVM uses interpretation to
detect hot spots and then uses a JIT compiler to compile and

optimize such hot spots [11], [12]. The JIT compiler uses a
global graph coloring allocator based on Briggs’ and
Chaitin’s algorithm with some refinements for allocation
speed and code quality.

The Jalapeño JVM [13] and its enhanced open-source
version called Jikes RVM [14] employ compile-only adap-
tive compilation. Each method is compiled by a quick
compiler when it is first executed, and then is recompiled
by an optimization compiler if it is computationally
intensive. The optimizing compiler uses a linear-scan
register allocation (LSRA) algorithm [15].

The major differences between LSRA and LaTTe are as
follows: First, LaTTe coalesces copies aggressively during
register allocation while LSRA does not and focuses on fast
register allocation itself. Second, LaTTe employs backward
sweep in order to reduce more copies, especially from those
caused by calling conventions, yet LSRA does not have such
a phase. Finally, the unit for register allocation is tree region
in LaTTe, but it is a sequence of instructions in LSRA.

The IBM JIT compiler also uses interpreter-based
adaptive compilation, yet its register allocation algorithm
is simpler [16]. Frequently used local variables are allocated
to physical registers first, and then the remaining registers
are used for stack variables. When spilling is needed, the
least recently used register is spilled to avoid any complex
computation to search spill candidates.

6 THE LaTTe JVM AND JIT COMPILER

The register mapping and allocation techniques comprise
the basis of the LaTTe JIT compiler. It also includes other

YANG ET AL.: EFFICIENT REGISTER MAPPING AND ALLOCATION IN LATTE, AN OPEN-SOURCE JAVA JUST-IN-TIME COMPILER 65

4. CACAO’s copy elimination for xstore is impossible if preallocation
causes nontrue data dependences, e.g., for [iadd; iload a; istore
b; istore a;], we cannot remove the copy corresponding to “istore a”
due to “iload a.”

5. In Java standard class libraries, there are many source files that include
a call to Math:min or Math:max. We found that the corresponding bytecode is
not a static method call, rather it is an inlined sequence of bytecode for this
conditional form of Java code. Therefore, the conditional form occurs rather
frequently.

Fig. 9. Translation by VTune and CACAO. (a) Bytecode, (b) VTune, (c) CACAO, and (d) LaTTE.

Fig. 10. An inefficient translation example.

Authorized licensed use limited to: Seoul National University. Downloaded on March 10,2010 at 01:11:18 EST from IEEE Xplore. Restrictions apply.

optimization techniques and is well-coordinated with other
JVM components. In this section, we briefly overview the
LaTTe JIT compiler and its other JVM components.

There are two versions of the LaTTe JIT compiler: a base
version (�Obase) and an optimized version (�Oopt). The
base version performs only the fast register allocation
described in Sections 3 and 4 without any other optimiza-
tions. The optimized version performs two additional
optimizations: “traditional” optimizations and limited
object-oriented (OO) optimizations.

For traditional optimization, LaTTe performs common
subexpression elimination (CSE), redundancy elimination
(RE), loop invariant code motion (LICM), and inlining of
static, private, and final methods. Many of these optimiza-
tions are performed on a unit of tree region.

LaTTe’s OO optimization is primarily for reducing the
virtual call overhead of load-load-jump. LaTTe performs
two such optimizations: customization [17] and dynamic
inline patching [18], [19]. Customization creates a “specia-
lized” version of a method based on the actual receiver type
of a virtual call. With dynamic inline patching, both the
inlined version and the load-load-jump sequence are
generated, but the inlined version is executed until the
target method is overridden.

LaTTe delays the translation of exception handlers until
an exception actually occurs [20]. Since an exception would
be an “exceptional” event, this reduces the translation
overhead and, more importantly, it allows full optimiza-
tions when translating the normal flow, without inter-
ference from constraints caused by the exception flows (in
contrast, many JIT compilers seem to turn off optimization
if a method has an exception handler). LaTTe preserves the
consistency of register allocation between the exception-
causing point and the exception handler during translation.

Java supports monitors, a language-level synchroniza-
tion construct for multithreading. The LaTTe JVM includes
an efficient user-level monitor implementation, called the
lightweight monitor [21]. A 32-bit word dedicated to
representing a lock is embedded in each object for efficient
lock access (see Fig. 1). The lock manipulation code is highly
optimized and is inlined by LaTTe.

Memory management is also crucial to JVM’s perfor-
mance. LaTTe allocates small objects using lazy worst fit [22],
which usually allocates objects using pointer increments,
and uses worst fit to find a new free memory chunk if
pointer-incrementing allocation does not work.

LaTTe employs a partially conservative mark and sweep
garbage collector, in the sense that the runtime stack is
scanned conservatively for pointers while all objects located
in the heap are handled in a type accurate manner. For the
sweep phase, we use selective sweeping [23], which sorts all
live objects by address and then frees each gap between live
objects in constant time.

7 EXPERIMENTAL RESULTS

In this section, we perform an evaluation of LaTTe’s JIT
compilation technique. In order to evaluate whether
LaTTe’s sophisticated register mapping and allocation
really pays off, we compare the performance of LaTTe’s
JIT compiler with that of Kaffe’s, by implementing both JIT
compilers on the same LaTTe JVM. Then, we evaluate how
LaTTe allocates registers.

7.1 Experimental Environment

Our benchmarks are composed of seven SPECjvm98
benchmarks [24], 12 Java Grande benchmarks [25], and
14 nontrivial Java programs we found from the public
domain (listed in Table 1 with the translated bytecode size).
They are a good mix of integer and floating-point programs.

Our test machine is a SUN Ultra5 270 MHz with 256 MB
of memory, running Solaris 2.6, tested in a single-user
mode. We ran each benchmark five times and took the
minimum running time. In fact, there was little variance in
those five running times.

7.2 Evaluation of LaTTe’s JIT Compilation
Techniques

We modified the LaTTe JVM to use Kaffe’s JIT compiler as an
execution engine, and compared its performance with that of
the base version of the LaTTe JIT compiler. Since neither JIT
compilers perform any serious optimizations other than the
code translation with register allocation, this experiment can
evaluate the effectiveness of LaTTe’s sophisticated register
mapping and allocation, compared against a naive one that
maps local variables and stack slots to memory.

Table 1 shows the total running time (TOT)6 of each JIT
configuration with the translation overhead (TR); TR is part
of TOT. The table shows that the TOT with LaTTe’s JIT is
about half of the TOT with Kaffe’s JIT. As for the translation
overhead, LaTTe’s TR is three times larger than Kaffe’s TR
on average, yet both TRs take a tiny portion of the TOTs.

We also checked the relationship between the translation
overhead and the translated bytecode size. Fig. 11 depicts
for each benchmark the TR of both JIT compilers and the
translated bytecode size shown in Table 1. We can see that
LaTTe’s TR grows much faster than Kaffe’s since LaTTe
requires more compilation passes with elaborate analysis.

66 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 1, JANUARY 2007

TABLE 1
LaTTe JVM Running Time (Seconds) with

LaTTe JIT and Kaffe JIT

6. TOT means the total elapsed time, which is not comparable with a
SPECjvm98 metric.

Authorized licensed use limited to: Seoul National University. Downloaded on March 10,2010 at 01:11:18 EST from IEEE Xplore. Restrictions apply.

However, LaTTe’s TR still increases almost linearly7 to the
translated amount of bytecode, as Kaffe’s TR does.

The results in this section indicate that LaTTe’s sophis-
ticated register mapping and allocation really pay off
without causing a big translation overhead. In order to
complete the evaluation, however, it would be desirable to
compare with register-mapping JIT compilers such as
CACAO or VTune. Unfortunately, it would be extremely
difficult to implement and tune them completely on the
same framework and to make a fair comparison.

7.3 Speed and Quality of LaTTe’s Register Mapping
and Allocation

Although LaTTe’s JIT compilation overhead is higher than
that of Kaffe’s, Table 1 indicates that LaTTe’s translation
overhead is reasonable since it takes a tiny portion of the
total running time; for all benchmarks except for javacc, TR
consistently takes only one or two seconds when TOT takes
several tens of seconds. Since register mapping and
allocation is the main contributor to TR in the base LaTTe
(our experiments show that it takes 67 percent of TR, on
average), this means LaTTe’s register mapping and alloca-
tion is reasonably fast.

In order to examine how LaTTe allocates registers, we
measured for each method the “peak” number of real
registers (including spill locations) used during its register
allocation. This is measured by tracing the number of live
real registers mapped to some symbolic registers in the
h_map during the forward sweep. Comparing this number
with worst-case register requirements or minimum require-
ments when preallocating local variables will be helpful in
evaluating LaTTe.

For the base LaTTe, Table 2 shows the peak number
(denoted by M) for the top five methods with the highest
bytecode execution counts in each benchmark (which
comprises 57 percent of the total bytecode execution counts
on average), along with the number of local variables
(denoted by L). The table also includes the number of stack
entries used (denoted by S) and the number of temporary
registers used (denoted by T), at some point in the method
where Sþ T is maximum. The sum Lþ Sþ T thus is the
worst-case register requirement. If local variables are
preallocated as in CACAO, Lþ T is the minimum number

of real registers required (for VTune, some nonoverlapping
local variables can be allocated to the same register via
limited live range analysis).

We can find from the table that M is smaller than Lþ Sþ
T in many cases (marked by <). For some methods, M is even
smaller than Lþ T (marked by #) or even than L itself
(222 mpegaudio and four richards benchmarks). This is
possible because LaTTe can coalesce copies between local
variables generated by the xload-xstore bytecode se-
quences, and can allocate the same register into nonover-
lapping local variables through its conservative live
variable analysis. This flexibility is due to LaTTe’s aggres-
sive register mapping with pseudocode generation as well
as LaTTe’s efficient register allocation, which obviates
preallocating local variables as in CACAO or VTune.

In this table, we can also find there are only two methods
that spill (marked by �). Since spills are related to the
register pressure of the translated code as well as to the
quality of register allocation, we also need to check those
cases where register pressure would be higher.

We examined the top five methods with the largest
number of local variables as shown in Table 3. Although the
register pressure is much higher, we see spills only in five
methods.8 (In this table, M is still smaller than Lþ Sþ T and
smaller than Lþ T or L in even more methods).

We have also measured the same data for the optimized
version of LaTTe for the same methods in Table 2 and Table 3
where the register pressure is higher due to inlining and other
optimizations. In particular, L tends to be increased due to
inlining. Also, there are many cases when S is reduced while T
is increased. This is due to CSE which replaces many stack
variables by temporary variables. We found that even with
this higher register pressure, LaTTe rarely spills registers.

YANG ET AL.: EFFICIENT REGISTER MAPPING AND ALLOCATION IN LATTE, AN OPEN-SOURCE JAVA JUST-IN-TIME COMPILER 67

Fig. 11. Translation overheads and translated bytes of LaTTe JIT and

Kaffe JIT.

TABLE 2
Register Mapping and Allocation Quality of the Base LaTTe for

Top Five Frequent Methods

7. In fact, all phases in the LaTTe JIT compilation are linear in the
bytecode size except for the register allocation phase. The backward sweep
and the forward sweep are linear, but the reconciliation at join points is
quadratic, however, we found in practice that the reconciliation time is
negligible in most cases.

8. The first method in many benchmarks (M ¼ 35; L ¼ 37; S ¼ 7; T ¼ 1)
that causes the spill is the same one in the JDK class library called dtoaðÞ
which converts double numbers into strings.

Authorized licensed use limited to: Seoul National University. Downloaded on March 10,2010 at 01:11:18 EST from IEEE Xplore. Restrictions apply.

These results indicate that even with LaTTe’s aggressive
mapping of registers and copy coalescing, the register
pressure of the translated code would rarely be too high,
which makes LaTTe’s fast, region-based register allocation
with local lookahead effective enough to avoid spills.9

In conclusion, LaTTe generates efficient code via aggres-
sive register mapping and efficient register allocation. On
the other hand, it is unlikely for a JIT compiler that can
generate code as efficient as LaTTe’s to be much faster than
LaTTe since LaTTe’s JIT compilation overhead is already
small enough. Therefore, we believe LaTTe made a reason-
able trade-off between speed and quality of JIT compilation.

8 SUMMARY

In this paper, we described the design and implementation of
LaTTe, a Java JIT compiler with fast and efficient register
mapping and allocation. Our aggressive register mapping
with a separate pass for real register allocation that coalesces
copies with a local lookahead is an elaborate engineering
solution that trades off the quality of generated code and the
speed of JIT compilation. This trade-off was confirmed
empirically by measuring translation overhead and perfor-
mance impact.

ACKNOWLEDGMENTS

The source code of LaTTe can be downloaded from its Web
site http://latte.snu.ac.kr, and more than 4,200 copies have
been downloaded as of November 2005. This paper revises
and expands—with results and details not originally
presented—a paper published in the Proceedings of the
1999 International Conference on Parallel Architectures and

Compilation Techniques, Newport Beach, California,

pages 196-204, October 1999. That work was supported by

a grant from the IBM T.J. Watson Research Center. Kemal

Ebcio�glu performed the work described in this paper while

at the IBM T.J. Watson Research Center. He is currently at

Global Supercomputing Corporation, New York.

REFERENCES

[1] J. Farley, Java Distributed Computing. O’Reilly, 1998.
[2] J. Aycock, “A Brief Bistory of Just-in-Time,” ACM Computing

Surveys, vol. 35, no. 2, June 2003.
[3] F. Yellin and T. Lindholm, The Java Virtual Machine Specification.

Addison-Wesley, 1996.
[4] D.L. Weaver and T. Germond, The SPARC Architecture Manual

Version 9, 1994.
[5] A. Tucker, “Coloring a Family of Circular Arcs,” SIAM J. Applied

Math., vol. 29, no. 3, pp. 493-502, Nov. 1975.
[6] S. Muchnick, Advanced Compiler Design and Implementation.

Morgan Kaufmann Publishers, 1997.
[7] P. Briggs, K. Cooper, T. Harvey, and L. Simpson, “Practical

Improvement to the Construction and Destriuction of Static Single
Assignment Form,” Software Practice and Experience, vol. 28, no. 8,
July 1998.

[8] Kaffe Home Page, http://www.transvirtual.com/, 1998.
[9] A.-R. Adl-Tabatabai, M. Ciernak, G.-Y. Lueh, V.M. Parikh, and

J.M. Stichnoth, “Fast, Effective Code Generation in a Just-in-Time
Java Compiler,” Proc. ACM SIGPLAN ’98 Conf. Programming
Language Design and Implementation, http://orp.sourceforge.net,
June 1998.

[10] A. Krall, “Efficient JavaVM Just-in-Time Compilation,” Proc. Int’l
Conf. Parallel Architectures and Compilation Techniques, http://
www.cacaojvm.org, 1998.

[11] The Java HotSpot Virtual Machine, vol. 1.4.1, http://java.sun.com/
products/hotspot/, Sept. 2002.

[12] M. Paleczny, C. Viek, and C. Click, “The Java HotSpot Server
Compiler,” Proc. Java Virtual Machine Research and Technology
Symp. (JVM ’01), pp. 1-12, Apr. 2001.

[13] B. Alpern et al., “The Jalapeno Virtual Machine,” IBM System J.,
vol. 39, no. 1, Feb. 2000.

[14] Jikes RVM homepage, http://jikesrvm.sourceforge.net, 2000.
[15] M. Poletto and V. Sarkar, “Linear Scan Register Allocation,” ACM

Trans. Programming Languages and Systems, vol. 21, no. 5, Sept. 1999.
[16] T. Suganuma et al., “A Dynamic Optimization Framework for a

Java Just-in-Time Compiler,” Proc. ACM Conf. Object-Oriented
Programming, Systems, Languages, and Applications, Oct. 2001.

[17] C. Chambers and D. Ungar, “Customization: Optimizing Compi-
ler Technology for SELF, a Dynamically-Typed Object-Oriented
Programming Language,” Proc. SIGPLAN ’89 Conf. Programming
Language Design and Implementation, 1989.

[18] K. Ishizaki, M. Kawahito, T. Yasue, M. Takeuchi, T. Ogasawara, T.
Suganuma, T. Onodera, H. Kamatsu, and T. Nakatani, “Design,
Implementation, and Evaluation of Optimizations in a Just-in-
Time Compiler,” Proc. ACM 1999 Conf. Java Grande, 1999.

[19] M. Cierniak, G.-Y. Lueh, and J.M. Stichnoth, “Practicing JUDO: Java
under Dynamic Optimizations,” Proc. ACM SIGPLAN Conf.
Programming Language Design and Implementation, pp. 13-26, June
2000.

[20] S. Lee, B.-S. Yang, and S.-M. Moon, “Efficient Java Exception
Handling in Just-in-Time Compilation,” Software Practice and
Experience, vol. 34, no. 15, Dec. 2004.

[21] B.-S. Yang, S.-M. Moon, and K. Ebcio�glu, “Lightweight Monitors
for the Java Virtual Machine,” Software Practice and Experience,
vol. 35, no. 3, Mar. 2005.

[22] H.-K. Choi, Y.C. Chung, and S.-M. Moon, “Java Memory
Allocation with Lazy Worst Fits for Small Objects,” The Computer
J., vol. 48, no.4, July 2005.

[23] Y.C. Chung, S.-M. Moon, K. Ebcio�glu, and D. Sahlin, “Reducing
Sweep Time for a Nearly Empty Heap,” Proc. 27th Ann. ACM
SIGPLAN-SIGACT Symp. Principles of Programming Languages
(POPL ’00), pp. 378-389, Jan. 2000.

[24] SPEC JVM98 Benchmarks, http://www.spec.org/osg/jvm98,
1998.

[25] The Java Grande Forum Benchmark Suite, http://www.epcc.
ed.ac.uk/javagrande/, 1998.

68 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 1, JANUARY 2007

9. Actually, even some of those spills are due to the SPARC calling
conventions, not due to high register pressure.

TABLE 3
Register Allocation Quality of the Base LaTTe for Top Five

Largest-Locals Methods

Authorized licensed use limited to: Seoul National University. Downloaded on March 10,2010 at 01:11:18 EST from IEEE Xplore. Restrictions apply.

Byung-Sun Yang received the BEE and MSEE
degrees in electrical engineering and computer
sciences from the Seoul National University,
Korea, in 1997 and 1999, respectively, and is
currently working toward the PhD degree.

Junpyo Lee received the BEE and MSEE
degrees in electrical engineering and computer
sciences from the Seoul National University,
Korea, in 1998 and 2000, respectively, and is
currently working toward the PhD degree.

SeungIl Lee received the BEE and MSEE
degrees in electrical engineering and computer
sciences from the Seoul National University,
Korea, in 1998 and 2000, respectively, and is
currently working toward the PhD degree. He
had participated in developing open source Java
Virtual Machine, LaTTe, and is currently working
on Java Virtual Machine on embedded systems.
His research interests include performance
optimization such as just-in-time compilation

and ahead-of-time compilation for Java Virtual Machines especially on
embedded systems.

Seongbae Park received the BEE and MSEE
degrees in electrical engineering and computer
sciences from the Seoul National University,
Korea, in 1997 and 1999, respectively, and was
a staff engineer of the SPARC code generator
group at Sun Microsystems from 1999-2006. He
is now a staff engineer at Google Inc. His
research interests are in the areas of the
microprocessor architecture and the optimizing
compiler.

Yoo C. Chung received the BEE and MSEE
degrees in electrical engineering and computer
sciences from the Seoul National University,
Korea, in 1999 and 2001, respectively, and is
currently enrolled in the PhD program at the
Information and Communications University.

Suhyun Kim received the PhD degree in
electrical engineering and computer sciences
from the Seoul National University, Korea, in
2005, and is currently a postdoctorate at the
IBM T.J. Watson Research Center. His current
research interests are in the field of optimizing
compilers, with special interests in the following
topics: instruction-level parallelism, embedded
systems, dynamic optimization, and virtual
machines.

Kemal Ebcio�glu received the PhD degree in
computer science from the State University of
New York at Buffalo in 1986. He conducted
research on compilers, architectures, and lan-
guages for fine-grain parallelism at the IBM T.J.
Watson Research Center, from 1986 to 2005.
Dr. Ebcioglu led numerous IBM Research
projects on fine-grain parallelism (including
VLIW and DAISY). His last position at IBM was
coleader, Programming Model and Tools,

HPCS/PERCS Project, which is IBM’s DARPA-funded supercomputer
design effort. In 2006, he retired from IBM and founded Global
Supercomputing Corporation. Dr. Ebcioglu has more than 70 technical
publications and nine US patents. He has served as IFIP Working
Group 10.3 (Concurrent Systems) chair in the period 2001-2006, and as
ACM SIGMICRO Chair in the period 1999-2005. He has served as
general chair, program chair, and steering committee chair for various
conferences related to fine grain parallelism. He is an associate editor of
ACM Transactions on Architecture and Code Optimization, and is a
senior member of the IEEE and the IEEE Computer Society. His present
research interests include high productivity peta-scale systems, over-
coming the memory wall barrier, parallel utility computing, and dynamic
binary translation and optimization.

Erik Altman is a research staff member at the
IBM T.J. Watson Research Center. His research
interests include binary translation and optimiza-
tion, compilers, architecture, and microarchitec-
ture. He has authored or coauthored more than
30 conference and journal papers. He was one of
the original architects of the IBM DAISY project,
that allowed VLIW architectures to achieve
100 percent binary compatibility with the
PowerPC architectures, while also providing

excellent performance. He was also one of the original architects of
the Cell processor chip that is to appear in the forthcoming Sony
Playstation 3 game consoles. He has been the program chair and
general of several conferences, such as the International Conference on
Parallel Architectures and Compilation Techniques (PACT) and the
P=ac2 (Power/Performance = Architecture x Circuits x Compilers). He
has served on numerous program committees, and has also served as
guest editor of IEEE Computer, the ACM Journal of Instruction Level
Parallelism, and the IBM Journal of Research and Development. He is
currently the vice-chair of the ACM Special Interest Group on
Microarchitecture (SIGMICRO). He is a member of the IEEE and the
IEEE Computer Society.

Soo-Mook Moon received the PhD degree at
the University of Maryland, College Park, in
1993. From 1992-1993, he worked at the IBM
T.J. Watson Research Center where he devel-
oped the IBM VLIW compiler. From 1993-1994,
he was a software design engineer at the
Hewlett-Packard Company in the California
Language Lab where he contributed to the
development of an optimizing compiler for the
PA-RISC CPUs. Since 1994, he has been with

the faculty of the Seoul National University in the School of Electrical
Engineering where he is now a professor. He now leads the
Microprocessor Architecture and System Software (MASS) Laboratory,
which is researching advanced compilation techniques for ILP
machines, embedded RISC CPUs, and Java virtual machines in the
context of just-in-time (JIT) compilation. Professor Moon visited the IBM
T.J. Watson research center as a visiting scientist during the summer of
1997. He was with Sun Microsystems during 2002 as a visiting
professor. He was a receipient of IBM Faculty Award in 2000-2001.
He is a member of the IEEE and the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

YANG ET AL.: EFFICIENT REGISTER MAPPING AND ALLOCATION IN LATTE, AN OPEN-SOURCE JAVA JUST-IN-TIME COMPILER 69

Authorized licensed use limited to: Seoul National University. Downloaded on March 10,2010 at 01:11:18 EST from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

