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Process Network (KPN) [3], dataflow [4] and Simulin
[5], have been used for system specification araiesy

Heterogeneous MPSoCs present unique opportunitiedmplementation with automatic hardware and software

for emerging embedded applications, which requioth b
high-performance and programmability. Although,

code generators [6-11].
Automatic code generation method based on finexgrai

software programming for these MPSoC architecturesspecification can provide more optimization oppoities

requires tedious and error-prone tasks, therebynzatic
code generation tools are required. A code gemerati
method based on fine-grain specification can pmvid
more design space and optimization opportunitiesh s1s
exploiting fine-level parallelism and more efficten
partitions. However, when partitioned, fine-graimdels
may require a large number of inter-processor conimu
cations, decreasing the overall system performahiis.

such as exploiting fine-grain parallelism, moreicédint
partitions, and fine-grain memory optimization. Hoxer,
after partitioning, the fine granularity obtainewrh the
specification may introduce a large number of mgssa
among threads and processors, which ultimatelyeasas
the communication overhead. This overhead impacts o
required execution time and memory size and lintits
benefits that could be obtained with the target RIS

paper presents a Simulink-based multithread code To reduce the communication overhead, the Message
generation method, which applies Message Aggrematio Aggregation [12] can be used. This technique merges

optimization technique to reduce the number of rinte

messages with identical source and destinationd®ase

processor communications. This technique reduces th the granularity of the data transfers using largessages.

communication overheads in terms of execution tipe

It allows the reduction of synchronization costsl af

reduction on the number of messages exchangednand icommunication channels used to promote/manage the

terms of memory size by the reduction on the nunaber
channels. The paper also presents experiment sefsult
one multimedia application,

communication in software.
Figure 1 presents a motivational example. Figueg 1(

showing performance shows a partitioned high-level model, which cormsist

improvements and memory reduction obtained with functional nodesKx), communication nodesX for Send

Message Aggregation technique.

1. Introduction

operation, andRx for Receive operation), and links
between them. After applying Message Aggregation
technique on the model depicted in Figure 1(a),hilyé-
level model shown in Figure 1(b) is obtained. Feglic)

Emerging embedded systems are asked to concurrenti@d 1(d) illustrate the codes obtained from the two

execute various applications such as wireless,oyidad
audio applications. Heterogeneous multiprocessaZsSo
are becoming attractive solutions mainly becaussy th
provide highly concurrent computation, flexible
programmability, and short design time by using-pre
verified processor IPs [1][2].

models. As result of this optimization, the fi8end nodes
(S0-4) were grouped in a unique nod&{), as shown in
Figure 1(b). Consequently, the fiv&end primitives of
Figure 1(c) are replaced for only oSend in Figure 1(d),
which sends all the five messages in a unique theecby
reducing the communication overhead in executioreti

Software programming on heterogeneous MPSoC hagnd the required software infrastru_cture by the oe
arisen as an important problem with increasing larger messages and by the reduction on the nuofber

complexity of the systems and applications. In this channels.

context, high-level modeling languages, such asnkKha
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This work proposes a Simulink-based multithreadecod
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generation method,
optimization technique is integrated in order tduee the
number of inter-processor data transfers. The tioseof
this optimization in our code generation flow alkbwne

to amortize the synchronization cost by reductiontize
number of messages and thereby reduces the totalrdm
of communication overhead in the execution time.
Moreover, this optimization also impacts on the ragm
size by the reduction of data structures required t
represent the communication channels.

cpu1l channel

CPU2

TN
recv (R0,8); /irecy
recv (R1,8);
F1();

) 4

send (S0, 8); //send 88
send (S1, 8);
send (S2, 8);
send (S3, 8);
send (S4, 8);

YVY

}

(c) Code without message aggregation

TN
recv (RT1,40); lirecy
F10);

send (ST1, 40); //send 408

}

(d) Code with message aggregation

(b) Fine-grain

ication after message ion

Figure 1: Motivational Example

This paper is organized as follows. Section 2 prisse
related works. The multithread code generation otkik
presented
experiments and shows the obtained results. Seétion
concludes the paper.

2. Related works

Message Aggregation (MA) was firstly proposed in
[13] and it is a well-know communication optimizatiin
the parallel computing and distributed systems doma
After that, a compiler that integrates several
communication  optimizations, such as

Message model

in which Message Aggregationin the form of coarse-grain Khan Process Networks

(KPN) [3]. As the granularity of communications tine
KPN is also relatively coarse, they do not address
communication overhead due to fine-grain specificat
Moreover, the coarse granularity of KPN may lintiet
design space.

Ptolemy [10] is a well-known environment for high-
level system specification that supports descniptémd
simulation of multiple models of computation (e.g.
synchronous dataflow, boolean dataflow, FSM, efoy.
multiprocessor software code generation, Ptolemy ca
generate a set of thread codes from a set of ohubte
functional nodes (actors) in a synchronous dataflow
model. Peace [11] is a Ptolemy based co-design
environment that supports hardware and software
generation from the mixed dataflow and FSM
specifications. Ptolemy and Peace is similar to our
approach since they generate software code byc stati
scheduling fine-grain high-level model. Howeveg\ttdo
not handle Message Aggregation.

Real-Time Workshop (RTW) [15] takes a Simulink
model as the input and generates only single thread
software code as the output. dSpace [16] can
automatically generate a software code from a fpeci
Simulink model for multiprocessor systems. However,
they mainly focus on control-intensive applicatiois®
they do not address Message Aggregation that & les
important to such applications.

In this work, we integrate the Message Aggregation
technique into our multithread code generation flow
which generates a multithreaded program from a Biku
specification. Message Aggregation is used to suffea

in section 3. Section 4 describes thelarge number of small-sized messages found in itiee f

grain specification by the reduction on the numbér
messages changed among the same source and
destination. Consequently, it removes performanceg a
memory overheads due to fine-granularity while
preserving the advantages of the use of this gaaityl

3. Multithread code gener ation

The input of our code generation method is a Simkuli
at a function-level granularity. Since pure

Aggregation and Message Coa|escing, was propog’ed fofUnCtional Simulink model does not include target

distributed-memory multi-computers [12]. Recently,
Message Aggregation was used also to reduce thrgyene
consumption by the reduction on the number of cann
in a multi-processor SoC with Network-on-chip [14].

architecture information, we defined a system aeciire

modeling style called Simulink Combined Architegur
Algorithm Model (CAAM) [17] as will be explained in
section 3.1. This modeling style allows partitiome t

Both approaches are Comp”er_based ones while Wesystem behavior in threads and indicates in which

address this technique in generating software dama
high-level models.

processor each thread will run.
To generate multithreaded softwapeogram targeted

Regarding code generation approaches from high-leveto run on a heterogeneous MPSoC from the Simulink

models, several studies can be found. SPADE [&aise
[7], Artemis [8], and Srijan [9] address automatic
hardware and software generation from high-levellef®
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CAAM, we developed an automatic code generatoedall
LESCEA (Light and Efficient Simulink Compiler for
Embedded Application). Figure 2 shows the globaivfl
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of our multithread code generation, which is conegbsf
four main steps.

Step 1. Simulink ParsingSmulink parser reads
Simulink model and creates the Colif [18] repreatah,
which is used as intermediate format. This stegeisiled
in section 3.2.

optimization techniques.

We specify the Simulink CAAM using three-layered
hierarchical Simulink model as shown in Figure 3eT
first layer (Figure 3(a)) describes system architecthat
contains CPU subsystems and inter-subsystem
communication channels. The second layer (Figubg) 3(

Step 2. Message Aggregation: LESCEA traverses thedescribes CPU subsystem architecture that contains
Colif CAAM and merges messages whose source andsoftware threads and intra-subsystem channels tHitce

destination are identical and there are no depeaieen
between them. This step is presented in sectian 3.3
Step 3. Thread Code Generation: for each CPU

subsystem, LESCEA generates thread codes, each of

which is a result of static scheduling according to
precedence dependency. This step is detailed itiosec
3.4.

Step 4. HAS Adaptation: LESCEA generates a main
code and a Makefile for each CPU subsystem. Tha& mai
code manages threads and initializes channels laad t
Makefile builds an executable code by linking theetdd

codes, main code, and the HdS (Hardware-dependent

software) library targeted to the CPU subsystemis Th
step is explained in section 3.5.

Simulink CAAM (.mdl) o
Step i
o Simulink parsing
i Colif CAAM (xml) HdS library
©
Message Aggregation
v
3 - 4
q‘\fhread code generation ] Q HdS adaptation ]
Threads, Threads,  Threads, Maincode, Main code, Main code ,
Makefile HdS,
Makefile , HdS,
l »f Makefile , HdS,

[SW binary ,] [SW binary 2] [SW binary "]

SW stack for
cpUss,

SW stack for  SW stack for
CPU SS, CPUSS,

Figure 2: Multithread code generation flow
3.1 System architecture modeling style

After functional validation using the Simulink
simulation environment, the designer transforms a
Simulink functional model to a Simulink CAAM that
combines aspects related to the architecture m@eel
processing units available in chosen platform) itite
application model (i.e. multiple threads executedtloe
processing units). Moreover, in the CAAM, explicit
communication blocks are used to represent intra-
processor or inter-processor communications channel
depending whether the threads are in the same stebsy
or not. As, the communication channels are repteddn
the model, it facilitates to apply communication
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layer (Figure 3(c)) describes software thread toatains
Simulink nodes and data links.

CPU-SS
CPU1 CPUO
CPUn
ss SS SS
[1 i1 11] 1
CH4(GFIFO)
Inter-SS COMM
(a) Architecture layer
Simulink To
Block
Thread-SS - FQ)rersserees
\ —Cpuo sS €
\ CHO(SWFIFO)
To T, | | AL e
©®
~F
} _CH1(SWFIFO) 4\‘_‘_ /

/
Intra-SS COMM Simulink link

(b) Subsystem layer (c) Thread layer

Figure 3: Simulink CAAM from an algorithm model

To represent CAAM in Simulink, four kinds of
specific Simulink subsystems are defined as folhmysi
e CPU-SS is a conceptual representation of CPU
subsystem and can be refined to a subsystem coohpose
of processor, local bus, local memories, €U0 SS
is an example ofCPU-SS in Figure 3(a), and Figure
3(b) illustrates its CPU subsystem layer composed o
two threads communicating through channels.

Inter-SS COMM is a conceptual representation of
communication channels between two CPU-SSs. An
Inter-SS COMM includes one or more Simulink links,
each of them corresponding to a point-to-point cle&n

An Inter-SS COMM is refined to a hardware
communication channel and software communication
port(s) to access the channel. In Figure 3t&}4 is an
example ofnter-SS COMM.

Thread-SSis a conceptual representation of a software
thread. AThread-SSis gradually refined to a software
thread including HdS API calls by the code generato
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To and T, in Figure 3(b) are example dhread-SS. To T,
Figure 3(c) illustrates the thread layer, wherealr
is composed of Simulink nodes.

¢ Intra-SS COMM represents communication channels
between threads on the same CPU subsystem and it ca
include one or more Simulink links. Aintra-SS
COMM s refined to OS communication channel(s). In
Figure 3(b),CHO and CH1 are examples olntra-SS

COMM. (a) A Thread-SS in a Simulink CAAM  (b) A Thread-SS in a Colif CAAM
These subsystems are normal Simulink subsystems
annotated with several architecture parameters. (e.g Figure 4: (a) Simulink CAAM, (b) Colif CAAM

processor and communication type, etc), thus tleepat
affect the original model functionality. At preseithis 3.3 Message Aggregation
transformation is manually performed using Simulink
graphical user interface and according to the desig When a Simulink functional model consists of fine-
experience. For example, to make a thread subsystem grain functions and it is partitioned into several
designer clusters several Simulink nodes into aufiik processors, Simulink parser will insert a large bamof
hierarchical subsystem by a short ketrlf-rg) and then ~ communication nodes that exchange messages through
annotates th&hread type to the subsystem. inter-processor communication channels. Conseguentl
Currently, we support three communication protacols the communication overhead increases, which impatts
GFIFO, HWFIFO, and SWFIFO. GFIFO (Global FIFO) the system performance and the required memory size
is an inter-subsystem communication protocol that The cost for a data transfer in terms of executio®
transfers data using a global memory, a bus, andcan be divided in start-up cost (synchronizatiostrand
mailboxes. The data transfer is divided into twepst effective data transfer costafe *length). The start-up
First, the CPU in the source subsystem writes tiata cost is not depending on the number of sent bytes.
global memory, and sends an event to the mailbdkeén  Message Aggregation (MA) combines messages with the
target subsystem. After receiving the event, thé Gf same source and destination, increasing the gndiyubd
the target subsystem reads the data from the globathe data transfers and amortizing the start-up . cost
memory, and sends another event to the mailboxeén t Consequently, this technique can reduce the tohauat
source subsystem to notify the completion of thadre of communication overhead in terms of executioretim
operation. HWFIFO is also an inter-subsystem  Moreover, this technique can reduce the softwata da
communication protocol that transfers data viara\ware structures used to represent the channels to peoarud
FIFO. SWFIFO is an intra-subsystem communication manage the inter-processors communications. For

protocol based on software FIFO. example, a H.264 decoder Simulink CAAM with 6 CPUs
requires 85 data structures for communication ceénn
3.2 Parser which impacts on data memory size.
The parser traverses the Simulink CAAM and T T

generates an intermediate representation calledf Col
CAAM. Beside of the CAAM format translation, the
Simulink parser converts a Simulink port connedtedn
Inter-SS COMM or Intra-SS COMM to a Send node or
Recv node, according to the direction of the port. Enhes
communication nodes are used to represent the data
transfer operations and are scheduled together tivith
other nodes during the thread code generation.
Figure 4 shows an example, where the four pori,n Figure 5: Colif CAAM after Message Aggregation
shown in Figure 4(a), are translatedSand (S;, ) and
Recv (Ry, Rs) nodes in the Colif CAAM, as illustrated in Applying Message Aggregation on the Colif CAAM
Figure 4(b). illustrated in Figure 4(b), the CAAM illustrated Figure
5 is obtained. In this example, tBend nodes $and $ in
T, have the same source and destination threadghand
they are merged in a unique node,(SAs the result, two
messages are grouped into one, reducing the gtarbst
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and the software data structures to perform the dat
transfer. Similar group operation is performed foe
receive nodes fand R in Ty, as shown in Figure 5.

To avoid deadlock, LESCEA mergé&end (or Recv)
nodes into anothe®end (or Recv) node only when all of
them have no precedent dependency. Figure 6 dliestr
the deadlock problem. As the node Ras precedent
dependency with Rin Figure 6(a), when both are
grouped in the same merged node, a deadlock isrecGu
as shown in Figure 6(b).

0
L

(a) A Colif CAAM

(b) A Colif CAAM with deadlock

Figure 6: An example of deadlock by Message Aggiega

3.4 Thread Code Gener ation

The input for the Thread Code Generation stepés th
CAAM resultant of the Message Aggregation step ind
can be divided in two parts, the scheduling andecod
generation, as shown in Figure 2. Since the inpuat a
output data sizes of each node in a Simulink medel
fixed, the scheduling can statically determine dhder of

execution for the Simulink functional nodes and
communication nodes according to precedence
dependency. Finally, according to the scheduling,

LESCEA automatically generates a C-code for each
thread.

This step is explained with the example presented i
Figure 7, where 7(a) shows an original CAAM and)7(b
shows the CAAM resultant of the previous step. Fégu
7(c) and 7(d) illustrate the thread code generfted the
model shown in Figure 7(a) and 7(b), respectively.

Each thread code includes memory declarations for
links and behavior codes for nodes in the CAAMSE:ir
LESCEA generates memory declarations accordingeo t
CAAM resultant of the Message Aggregation step. Whe
Message Aggregation is not applied, LESCEA declares
buffer memory for each data link with its data type as line
1 of Figure 7(c). But, when Message Aggregation is
applied, LESCEA declares a structure that combaikes
buffer memories connected to the input (output) pbra
merged SendRecv) node. For example, a data structure
is declared for the merged node $ line 3 of Figure
7(d). This structure combines the input buffer mge®mo
m8 andm9 of node $,.

As previously mentioned, Message Aggregation
technique reduces software channel
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structures and

consequently, reduces the required data memory size
However, this technique can increase buffer meraorie
For example, when a Send node (e.g. S1) is grouped
two different merged nodes (e.g. S12 and S13), iwhfc
them connected to different thread destinatiossbitffer
memory becomes to be duplicated in two data strestu
Each of them used for each send operation. We will
present this effect in section 4.

After memory declaration, LESCEA generates a
behavior code for each thread according to thediding
result. For a user-defined node (i.e. Simulink 8efion),
LESCEA generates a function invocation correspandin
to the node and maps the allocated memories fanthe
and output links to the function arguments. As show
line 9 of Figure 7(c), where the function i invoked and
its input and output anel andm3, respectively. For pre-
defined Simulink nodes, LESCEA generates the
appropriate behavior. For example, in case @wéch
node, anlf/else statement is generated (lines 8-11). No
that, the output for th&witch (Fsy) in the code without
MA is m8 (line 9 and 11), but in the optimized code of
Figure 7(d), its output is part of the structumalO
declared to packet the data to be sent by the miergde

Stz

T,

CAAM

To

(b) Colif CAAM after MA

1: char mO[1]; int m1[4];
2: // decl m2,m3,m4, m5, m6, m7
3: int m8[4]; int m9[8];
4:T0 () {
5: while (1){
: FO (mO); F1 (m1);
recv (m5,8); //RO
if (m0) {
F2(m1,m3); F3(m3,m5,m6); m8=m6;
else
F4(m1,m4); F5(m4,m7); m8=m7;}
12: recv (m2,32); F6(m2, m9);
13: send (m8,4); //S1
14: send (m9,32); //S2
15:} }

(c) T, Code without MA

1: char mO[1]; int m1[4];

2: /I decl m2,m3,m4, m5, m6, m7
3: struct {int m8[4]; int m9[8]; } m10;
4:70 () {

5: while (1){

6 ..

7: recv (m5,8); //RO

8: if (mO){

9: F2(m1,m3); F3(m3,m5,m6); m10.m8=m6;
10: else

11: F4(m1,m4); F5(m4,m7); m10.m8=m7;}
12: recv (M2,32); F6(m2, m10.m9);

13:send (m10,36); //S12

14:}}

Lo

10:
11

(d) Tq Code with MA

Figure 7: Thread code generation with Message Aggien
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For communication nodes Sénd/Recv nodes),
LESCEA inserts communication primitive calls define
the HAS API. TheSend and Recv primitives have as
parameters the source address and the messagarsize,
the destination address and message size, resggctiv
For example, in the line 13 of Figure 7(d), therseufor
the merged node ;8§ is the data structuremilO.
Consequently, the functions that produce data fis t
merged node use elements of this data structuoetasit,
as shown in line 12 of Figure 7(d), where F6 getesra
part of the data to be sent for this node. Sinyiatthe
Recv nodes can be also grouped and, in this case,aa dat
structure should be declared to store the recedaal

3.5 HdS adaptation
Our multithread code generator uses high-level

primitives (i.e. HdS API) to generate a multithredd
code independent of the architecture details. Teceabte

linking in line 5.

CPUO (type: ARM7)

CPUL (type: Xtensa)

CPU2 (type: Xtensa)

CHE(SWFIFO)
—
=
cHoswriFo) []] cHisHv) [1] Te
e
CH7(SWFIFO)
—s
= —a
CH3(HWFIFO)  CHA(GFIFO) " CH5(GFIFO)

%

(a) An example of Simulink CAAM

1: channel_t *ch4, *ch5, *ch6, *ch7;
2: port_t *p4, p5, p6, p7;

3: void main () {

4: ISR_attach(0, dfifo_isr);

5 ..

6: channel_init(&h6, SWFIFO,...);
7: port_init(&p6, &ch, ...);

8 ..

9: thread_create(T4, ...);

10: thread_create(T5, ...);

11: ...}

1: CC=xt-xcc // Xtensa-compiler
A

3: SRCS=T4.c T5.c T6.c main.c

4 ...

5: LIBS= libhds-xt.a

6: ...

7: sw.bin: $(OBJS) $(LIBS)

8: $(CC) -0 sw.bin $(OBJS) $(LIBS)

(b) Main code for CPU2

(c) Makefile for CPU2

the generated code on target heterogeneous MP8eC, t
thread codes executing on a specific CPU subsystem  Figyre 8: Example of Main code and Makefile gerierat
should be linked with the HdS library targetedhe CPU
subsystem. To do this, we first assume that thergee-
built HAS libraries, each of which is targeted tep&cific
CPU. Under this assumption, LESCEA then generates a We used the H264 video decoder as case study % sho
main code, which creates threads and initializenohl performance improvements and memory reductions
data structures, and a Makefile, which links theegated achieved when Message Aggregation technique is
code and main code with an appropriate HdS library. integrated in our flow for multithread code genienat
The current HdS library provides basic thread, f,y simulink models. Section 4.1 presents the
interrupt, synchronization, message passing andedha application. The Simulink CAAM and a preliminary
memory primitives. At present, it is targeted toMRNd joscrintion of experiments are given in section Zfe
Xtensa processors and supports three communicatioqarget platform used for this case study is preseii

protocols, HWFIFO and GFIFO for inter-processor gection 4.3. Finally, the experiment results aresented
communication, and SWFIFO for intra-processor and discussed in section 4.4.

communication. This library is tiny with memory
footprint is about 2KB to 4KB.

Figure 8 illustrates an example of main code gdedra
with LESCEA from the Simulink CAAM illustrated in
Figure 8(a), which is composed of three CPU sulesyst
(CPUO-CPU2) and seven threads (TO-T6). The maire cod
generated folCPU2 is shown in Figure 8(b). It includes
primitives to channel declaration (line 1), channel
initialization (channel_init in line 6), and thread creation . .
(thread_create in line 9) according to the CAAM model. wdepphone_apphcaﬂons. .

For each CPU subsystem, LESCEA also generates a F|_gure 9 illustrates block d_|agram of H264 decoditer.
Makefile that enables to link the generated mukitiued réceives an 9ncoded video bit siream irom a netsoek
code, main code with appropriate HdS library. When storage de_wce _and produc_es a sequence of frames by
user-defined functions are used, the bodies fosethe applymg lterative exe_cut|ons of macro_block-level
functions should also be linked to the thread coates _funct|ons_ Sk varla_ble_ length d_ecodlng (VLD),
main code. In this way, the proposed software aefbayv Inverse zigzag e qua_nt|zat|on (IQ), Inverse s .
allows build binary files that are executable oa target E:\R:) Z‘?‘Zt'gébclgg(?ﬁnzﬁgf?ljfzs)c)’ motion: compensatio
heterogeneous MPSoC. The Makefile generated for 9 '

CPU2 is depicted in Figure 8(c), where directive for
compilation and files to be compiled are indicaitedine
1 and 3, and the appropriate HdS library is setht®

4. Experiments

4.1 H264 video decoder

The H.264/AVC video coding standard has been
developed and standardized collaboratively by hbth
ITU-T VCEG and ISO/IEC MPEG organizations [19]. In
our experiment, we used an H.264 Decoder, which is
based on the Baseline Profile for video confereaice
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Video Bit
Stream

Inverse Scan

Frame/Slice]
VLD
(1Q)

Inverse Deblocking i
Transform Filter L
(m) (DF) 1
[—> Spatial Prediction Modes _/L LR
T A frame = WxH macroblocks

L 2

‘Spatial
Compensation
Process (SC,

Intra/
Inter MB}

Decoded
Frame Store

Motion
Compensation
Process (MC

Multiple
Previous
Frame Store

Current
Frame Store

L—  Motion Vectors

Figure 9: H.264 decoder block diagram

4.2 Smulink CAAM

Firstly, we built a Simulink model to represent the
H264 decoding flow. The whole flow is an iteratioha
16x16 macroblock process, which starts from a dloba
control thread and completes after Deblock for hance
and chroma. The data flow for processing a macokbi®
shown in Figure 10. Each function node in this dhe
consists of one or more S-Functions in our Simulink
model. This model includes 83 S-Functions (useirdef
functions described with a C code), 24 delays, @&t
links, 43 if-action-subsystems, 5 for-iteration-syftems
and 101 pre-defined Simulink nodes.

ITforU
REC for
8x8 blocks LT:J./;'.';: Chroma U Dcit::::l; fgr
CRTL | forchroma [ »] 88 block
U 8x8 block
IT for V
Chroma_V/ 88 blocks e REC for Deblock for
CRTL ic Chroma V|
- | predction | »| 8@ block chroma v
V 8x8 block
Global Pre- IT for 1st
ctrl process 8x8 blocks Tnterintra REC for lum
prediction 1st 8x8 block
for lum 1st
8x8 block
IT for 2nd
848 blocks Thterintra REC for lum
Luminance o| prediction 2nd 8x8 block [ |
CRTL for lum 2nd Deblock
T for 3rd 8x8 block for
luminance
8x8 blocks Tnter/intra REC for lum
prediction 3rd 8x8 block
>
for lum 3rd

8x8 block

IT for 4th
8x8 blocks

Tnter/intra
prediction
for lum 4th
8x8 block

REC for lum
4th 8x8

block

[ ]

Function Block
(composed of one or several

(>

Figure 10: Data flow for processing of a macroblock

In our experiment, this model was partitioned K&t
two processors in order to obtain an initial mutligessor
implementation. This initial solution is describéd a
Simulink CAAM composed of two CPU subsystems
communicating through GFIFO channels. To explore
other solutions, we continue to partitioning the dwmio
building four different CAAMSs that use three, fofive,

4.3 Target Platform

Each CPU subsystem defined in the CAAM model is
composed of Processor, Local Bus, Local Memori&s, P
Timer, Mailbox, and Network Interface (NI). Systein
TLM models for these components are provided by a
component library, which includes instruction-set
simulator (ISS) for Xtensa and ARM processors.

The multiprocessor platform architecture is built
through instantiation of several CPU subsystemsgchwh
are connected to a bus. Figure 11 shows a platform
architecture example with two CPUs and a global
memory. This platform is used in our experiments,
varying the number of processors from two to gixtHis
architecture, the GFIFO protocol is used for inter-
processor communication.

Hardware-dependent software is responsible
provide architecture-specific services such as dudirey
of application threads, communication inter andaint
CPU subsystem, external communication, hardware
resources management and control. An HdS library
includes HAS APIs, an Operating System (0OS),
communication software and a HAL (Hardware
Abstraction Layer). The Operating System is comgose
of a Thread Scheduler and an Interrupt Service iResit
(ISR). At present, our library supports ARM and p&a

processors.
Xtensa Mem MemO
]| [ =
Bus

=
bridge

bridge

| AMBA bus |

to

Xtensa Mem
35 o |

ms
bridge

Figure 11: Platform architecture example

In this work, we analyze the effect of Message
Aggregation in the inter-processor communicatiomgis
the GFIFO protocol that is easy to implement bath i
hardware and in software.

4.4 Experiment results

After modeling and partitioning, we developed CAAM
models with two, three, four, five, and six CPU
subsystems. From these CAAMs, we used LESCEA to

and six CPU subsystems. For each one of these CAAMsgenerate multithread code and we evaluate perfarenan
we generate code with LESCEA and evaluate theand memory size for the different code versions.
performance and the memory improvements achieved Firstly, we analyze the impact of Message Aggregati
when Message Aggregation is applied during codeon the execution time for the different multiproses

generation. The results are presented and discussed
section 4.4.
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solutions. To obtain performance results, we siteuthe
execution of the generated codes under the chosen
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platform using instances of Xtensa ISS simulat@, a CPUs (P6) version, respectively, when Message
Xtensa processors are used in this experimenthigy t Aggregation is applied.
way, for each version of generated code, we oldaihe

number of cycles required to decode a QCIF foreatam Bwio MA B with MA

frame rate of 30 frames /second. % 85
Figure 12 illustrates the performance results for t 8 | 78 ]

generated codes with and without Message Aggregatio 70 )

for the five different CAAM models (P2-P6). The u#s 60 | 0

show that when MA is applied in our code generation
flow, the performance increases for all five
configurations, with improvements from 14% until921
For example, comparing the performance resultsP®r

il
40 A

30 A

Number of channels

20 1

with  MA and without MA (/o MA), we found a o | . 10
performance improvement of 21.2% that was obtamed . 1 g -° = .
the Message Aggregation technique. We also compared by pa b4 b5 b6
our multiprocessor solutions with a single-processoe Number of processors

and we found that the version P6 without MA achiktve
56.4% of performance improvement compared to a
single-processor one (236.8 Mcycles/second), wiike
configuration P6 with MA achieved 65.7%.

Figure 13: Reduction on the number of channels

O w/o MA mwith MA
o w/o MA mWith MA
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Number of processors

. Figure 14: Reduction on data memory size
Figure 12: Performance results for H264 decoder

. Table I: Data memory size in bytes for the solufftzh
Secondly, we analyzed the impact of the Message

Aggregation in the number of required communication Without MA | With MA

channels. Figure 13 illustrates the effect of thishnique Constant 2172 2172

for different configurations of the H264 model, yiag Channel 3360 240

the number of processor from two to six. The ressittow Buffer 6006 7320

that Message Aggregation achieved a reduction en th Total 11538 9732

number of inter-processor channels around 90% Hor a

configurations (P2-P6). For example, in case of foRU Table | shows the data memory size obtained for the

subsystems (P4), the achieved reduction is fronto79 generated code with four CPUs (P4). As it is a
channels (92.8%). These reductions depend on themultiprocessor solution, the data memory is comgaxfe
granularity of each block that composes the sysiach Constant, Buffer and Channel memories. The constant
the chosen partitioning. memory represents constant tables such as VLD table
The reduction on the number of channels impacts onused in the decoding algorithm. The buffer memory
the software infrastructure required for commurnaat represents the memory required to implement the
reducing data memory size. Figure 14 shows theltsesu Simulink data links and the channel memory reprissen
for data memory size obtained for the five versiohthe the channel data structures required to promote the
H264 CAAM. These results show a reduction of 15.9% communication. The results show that Message
and 14% in the four CPUs (P4) version and in the si Aggregation can achieve a large reduction on th@ da

88
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structures used to manage channefgr{nel in Table 1),

both the communication overhead reduction and ngessa

92.8% in case of version P4, by the reduction am th latency problem is required. This will be addressed

number of required channels. It means a reductid?%
in the total data memory size. Note that the reglir
buffer memories increase by 17%
Aggregation. The reason for this small increasisg i
explained in section 3.4.

In addition, Message Aggregation also improves code
size by the reduction on the code lines requiredetdare
and initialize channels and to invoke communication [2]
primitives in Main and Thread codes. As in this 3]
experiment, these codes represent a small panedbtal
code size, which also includes HdS and application
libraries, this improvement is too small. In cadePd [4]
version, where Thread and Main codes represent only
11.5% of the total code size, MA achieves a reduactf [5]
only 0.5% of the total code size. Regarding only€eEial (6]
and Main codes, a reduction of 4.4% was observed.

Experiment results show that Message Aggregation
can achieve a large reduction on the number ofr-inte
processor data transfers for a fine-grain system
specification. However, this optimization cannohiave
proportional reduction on the number of cycles nexgli
to process one macroblock. One reason for thiséauise  [8]
Message Aggregation can increase the messageyatenc [9]
some cases, thereby decreasing performance. I1$ t&frm
data memory size, Message Aggregation presents a
reduction around 14%.

(1]

(7]

(10]

5. Conclusion
[11]

The communication on multiprocessor system can
present a huge impact on the whole system perfarenan
We presented here a code generation method thhesipp [12]
one communication optimization technique called
Message Aggregation to reduce communication overhea
Through the experiments, we showed that this tegkeni
reduces the overhead in terms of execution timehby
reduction on the number of messages and memorygize [14]
the reduction on the required software infrastmectto
promote the communication.

The experiments results show that for big finesgrai
specifications like used in our H264 decoder, wa ca [15]
achieve improvements around 20% for performance [16]
applying the Message Aggregation technique durirgy t
code generation. In terms of memory, we achieved a17]
reduction around 14% for data memory size and 4f6 fo
code size. Note that for a small model, where talrer
of channels is not really large, this technique cat
achieve similar improvements.

However, the Message Aggregation technique can
decrease the performance because data is notosérd t
target function nodes as soon as it is availaldeaddress
this problem, a global scheduling policy that cansider

(13]

(18]

(19]
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