
10th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2007

Reducing fine-grain communication overhead in multithread code

generation for heterogeneous MPSoC

Lisane Brisolara1, Sang-il Han2,3, Xavier Guerin2, Luigi Carro1, Ricardo Reis1, Soo-Ik Chae3, Ahmed Jerraya2

1 Instituto de Informatica,
Federal Univ. of Rio Grande do

Sul, Porto Alegre, Brazil
{lisane, carro, reis}@inf.ufrgs.br

2 TIMA Laboratory
Grenoble, France

{sang-il.han, xavier.guerin,
ahmed.jerraya}@imag.fr

3 Department of Electrical
Engineering,

Seoul National Univ., Seoul, Korea
chae@sdgroup.snu.ac.kr

Abstract

Heterogeneous MPSoCs present unique opportunities
for emerging embedded applications, which require both
high-performance and programmability. Although,
software programming for these MPSoC architectures
requires tedious and error-prone tasks, thereby automatic
code generation tools are required. A code generation
method based on fine-grain specification can provide
more design space and optimization opportunities, such as
exploiting fine-level parallelism and more efficient
partitions. However, when partitioned, fine-grain models
may require a large number of inter-processor communi-
cations, decreasing the overall system performance. This
paper presents a Simulink-based multithread code
generation method, which applies Message Aggregation
optimization technique to reduce the number of inter-
processor communications. This technique reduces the
communication overheads in terms of execution time by
reduction on the number of messages exchanged and in
terms of memory size by the reduction on the number of
channels. The paper also presents experiment results for
one multimedia application, showing performance
improvements and memory reduction obtained with
Message Aggregation technique.

1. Introduction

Emerging embedded systems are asked to concurrently
execute various applications such as wireless, video, and
audio applications. Heterogeneous multiprocessor SoCs
are becoming attractive solutions mainly because they
provide highly concurrent computation, flexible
programmability, and short design time by using pre-
verified processor IPs [1][2].

Software programming on heterogeneous MPSoC has
arisen as an important problem with increasing
complexity of the systems and applications. In this
context, high-level modeling languages, such as Khan

Process Network (KPN) [3], dataflow [4] and Simulink
[5], have been used for system specification and system
implementation with automatic hardware and software
code generators [6-11].

Automatic code generation method based on fine-grain
specification can provide more optimization opportunities
such as exploiting fine-grain parallelism, more efficient
partitions, and fine-grain memory optimization. However,
after partitioning, the fine granularity obtained from the
specification may introduce a large number of messages
among threads and processors, which ultimately increases
the communication overhead. This overhead impacts on
required execution time and memory size and limits the
benefits that could be obtained with the target MPSoC.

To reduce the communication overhead, the Message
Aggregation [12] can be used. This technique merges
messages with identical source and destination to increase
the granularity of the data transfers using larger messages.
It allows the reduction of synchronization costs and of
communication channels used to promote/manage the
communication in software.

Figure 1 presents a motivational example. Figure 1(a)
shows a partitioned high-level model, which consists of
functional nodes (Fx), communication nodes (Sx for Send
operation, and Rx for Receive operation), and links
between them. After applying Message Aggregation
technique on the model depicted in Figure 1(a), the high-
level model shown in Figure 1(b) is obtained. Figure 1(c)
and 1(d) illustrate the codes obtained from the two
models. As result of this optimization, the five Send nodes
(S0-S4) were grouped in a unique node (ST1), as shown in
Figure 1(b). Consequently, the five Send primitives of
Figure 1(c) are replaced for only one Send in Figure 1(d),
which sends all the five messages in a unique one, thereby
reducing the communication overhead in execution time
and the required software infrastructure by the use of
larger messages and by the reduction on the number of
channels.

This work proposes a Simulink-based multithread code

81

10th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2007

generation method, in which Message Aggregation
optimization technique is integrated in order to reduce the
number of inter-processor data transfers. The insertion of
this optimization in our code generation flow allows one
to amortize the synchronization cost by reduction on the
number of messages and thereby reduces the total amount
of communication overhead in the execution time.
Moreover, this optimization also impacts on the memory
size by the reduction of data structures required to
represent the communication channels.

F2

F5 F10

F9

R1

R2

S0

F4

R0

IAS0

IAS1

FSW

F1

F3

S3

S1

F7 F12R3

F6 S2F11

T1 T2

F8 S4

CPU2channel

R4

R7

R5

R6

R8

...

CPU1

F2

F5 F10

F9

R1

R2

S0

F4

R0

IAS0

IAS1

FSW

F1

F3

S3

S1

F7 F12R3

F6 S2F11

T1 T2

F8 S4

CPU2channel

...

CPU1

RT2
ST1

T1(){

recv (R0,8); //recv

recv (R1,8);

F1();

...

send (S0, 8) ; // send 8B

send (S1, 8);

send (S2, 8);

send (S3, 8);

send (S4, 8);
}

T1(){
recv (RT1, 40); //recv

F1();
...

send (ST1, 40); // send 40B

}

(a) Fine-grain specification

(b) Fine-grain specification after message aggregation (d) Code with message aggregation

(c) Code without message aggregation

RT1
R4

R7

R5

R6

R8

Figure 1: Motivational Example

This paper is organized as follows. Section 2 presents
related works. The multithread code generation method is
presented in section 3. Section 4 describes the
experiments and shows the obtained results. Section 5
concludes the paper.

2. Related works

Message Aggregation (MA) was firstly proposed in
[13] and it is a well-know communication optimization in
the parallel computing and distributed systems domain.
After that, a compiler that integrates several
communication optimizations, such as Message
Aggregation and Message Coalescing, was proposed for
distributed-memory multi-computers [12]. Recently,
Message Aggregation was used also to reduce the energy
consumption by the reduction on the number of channels
in a multi-processor SoC with Network-on-chip [14].
Both approaches are compiler-based ones while we
address this technique in generating software code from
high-level models.

Regarding code generation approaches from high-level
models, several studies can be found. SPADE [6], Sesame
[7], Artemis [8], and Srijan [9] address automatic
hardware and software generation from high-level models

in the form of coarse-grain Khan Process Networks
(KPN) [3]. As the granularity of communications in the
KPN is also relatively coarse, they do not address
communication overhead due to fine-grain specification.
Moreover, the coarse granularity of KPN may limit the
design space.

Ptolemy [10] is a well-known environment for high-
level system specification that supports description and
simulation of multiple models of computation (e.g.
synchronous dataflow, boolean dataflow, FSM, etc). For
multiprocessor software code generation, Ptolemy can
generate a set of thread codes from a set of clustered
functional nodes (actors) in a synchronous dataflow
model. Peace [11] is a Ptolemy based co-design
environment that supports hardware and software
generation from the mixed dataflow and FSM
specifications. Ptolemy and Peace is similar to our
approach since they generate software code by static
scheduling fine-grain high-level model. However, they do
not handle Message Aggregation.

Real-Time Workshop (RTW) [15] takes a Simulink
model as the input and generates only single thread
software code as the output. dSpace [16] can
automatically generate a software code from a specific
Simulink model for multiprocessor systems. However,
they mainly focus on control-intensive applications, so
they do not address Message Aggregation that is less
important to such applications.

In this work, we integrate the Message Aggregation
technique into our multithread code generation flow,
which generates a multithreaded program from a Simulink
specification. Message Aggregation is used to cope with a
large number of small-sized messages found in the fine-
grain specification by the reduction on the number of
messages changed among the same source and
destination. Consequently, it removes performance and
memory overheads due to fine-granularity while
preserving the advantages of the use of this granularity.

3. Multithread code generation

The input of our code generation method is a Simulink
model at a function-level granularity. Since pure
functional Simulink model does not include target
architecture information, we defined a system architecture
modeling style called Simulink Combined Architecture
Algorithm Model (CAAM) [17] as will be explained in
section 3.1. This modeling style allows partition the
system behavior in threads and indicates in which
processor each thread will run.

To generate multithreaded software program targeted
to run on a heterogeneous MPSoC from the Simulink
CAAM, we developed an automatic code generator called
LESCEA (Light and Efficient Simulink Compiler for
Embedded Application). Figure 2 shows the global flow

82

10th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2007

of our multithread code generation, which is composed of
four main steps.

Step 1. Simulink Parsing: Simulink parser reads
Simulink model and creates the Colif [18] representation,
which is used as intermediate format. This step is detailed
in section 3.2.

Step 2. Message Aggregation: LESCEA traverses the
Colif CAAM and merges messages whose source and
destination are identical and there are no dependencies
between them. This step is presented in section 3.3.

Step 3. Thread Code Generation: for each CPU
subsystem, LESCEA generates thread codes, each of
which is a result of static scheduling according to
precedence dependency. This step is detailed in section
3.4.

Step 4. HdS Adaptation: LESCEA generates a main
code and a Makefile for each CPU subsystem. The main
code manages threads and initializes channels and the
Makefile builds an executable code by linking the thread
codes, main code, and the HdS (Hardware-dependent
software) library targeted to the CPU subsystem. This
step is explained in section 3.5.

Step i

Model

Simulink CAAM (.mdl)

Simulink parsing
1

i

Thread code generation

…

HdS adaptation
4

Makefile 1

Makefile 2

Makefile n

SW binary 1

Threads 1 Threads 2 Threads n

…

Main code 1 Main code 2 Main code n

SW binary 2 SW binary n
…

HdS1

HdS2

HdSn

HdS library

SW stack for
CPU SS1

SW stack for
CPU SS2

SW stack for
CPU SSn

Scheduling

Code generation

3

Colif CAAM (.xml)

Message Aggregation2

Figure 2: Multithread code generation flow

3.1 System architecture modeling style

After functional validation using the Simulink
simulation environment, the designer transforms a
Simulink functional model to a Simulink CAAM that
combines aspects related to the architecture model (i.e.
processing units available in chosen platform) into the
application model (i.e. multiple threads executed on the
processing units). Moreover, in the CAAM, explicit
communication blocks are used to represent intra-
processor or inter-processor communications channels,
depending whether the threads are in the same subsystem
or not. As, the communication channels are represented in
the model, it facilitates to apply communication

optimization techniques.
We specify the Simulink CAAM using three-layered

hierarchical Simulink model as shown in Figure 3. The
first layer (Figure 3(a)) describes system architecture that
contains CPU subsystems and inter-subsystem
communication channels. The second layer (Figure 3(b))
describes CPU subsystem architecture that contains
software threads and intra-subsystem channels. The third
layer (Figure 3(c)) describes software thread that contains
Simulink nodes and data links.

CPU1
SS

CPUn
SS

CPU0
SS

CPU-SS

F1

FSWF4

F0

F6

F5

F2 F3

IAS0

IAS1

…

CH0(SWFIFO)

CH1(SWFIFO)

Thread-SS

CH4(GFIFO)
Inter-SS COMM

…

Intra-SS COMM

Simulink
Block

Simulink link

T0 T1

CPU0 SS

T0

(a) Architecture layer

(b) Subsystem layer (c) Thread layer

Figure 3: Simulink CAAM from an algorithm model

To represent CAAM in Simulink, four kinds of

specific Simulink subsystems are defined as followings.

• CPU-SS is a conceptual representation of CPU
subsystem and can be refined to a subsystem composed
of processor, local bus, local memories, etc. CPU0 SS
is an example of CPU-SS in Figure 3(a), and Figure
3(b) illustrates its CPU subsystem layer composed of
two threads communicating through channels.

• Inter-SS COMM is a conceptual representation of
communication channels between two CPU-SSs. An
Inter-SS COMM includes one or more Simulink links,
each of them corresponding to a point-to-point channel.
An Inter-SS COMM is refined to a hardware
communication channel and software communication
port(s) to access the channel. In Figure 3(a), CH4 is an
example of Inter-SS COMM.

• Thread-SS is a conceptual representation of a software
thread. A Thread-SS is gradually refined to a software
thread including HdS API calls by the code generator.

83

10th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2007

T0 and T1 in Figure 3(b) are example of Thread-SS.
Figure 3(c) illustrates the thread layer, where thread T0
is composed of Simulink nodes.

• Intra-SS COMM represents communication channels
between threads on the same CPU subsystem and it can
include one or more Simulink links. An Intra-SS
COMM is refined to OS communication channel(s). In
Figure 3(b), CH0 and CH1 are examples of Intra-SS
COMM.

These subsystems are normal Simulink subsystems
annotated with several architecture parameters (e.g.
processor and communication type, etc), thus they do not
affect the original model functionality. At present, this
transformation is manually performed using Simulink
graphical user interface and according to the designer’s
experience. For example, to make a thread subsystem, the
designer clusters several Simulink nodes into a Simulink
hierarchical subsystem by a short key (ctrl+g) and then
annotates the Thread type to the subsystem.

Currently, we support three communication protocols:
GFIFO, HWFIFO, and SWFIFO. GFIFO (Global FIFO)
is an inter-subsystem communication protocol that
transfers data using a global memory, a bus, and
mailboxes. The data transfer is divided into two steps.
First, the CPU in the source subsystem writes data to a
global memory, and sends an event to the mailbox in the
target subsystem. After receiving the event, the CPU in
the target subsystem reads the data from the global
memory, and sends another event to the mailbox in the
source subsystem to notify the completion of the read
operation. HWFIFO is also an inter-subsystem
communication protocol that transfers data via a hardware
FIFO. SWFIFO is an intra-subsystem communication
protocol based on software FIFO.

3.2 Parser

The parser traverses the Simulink CAAM and

generates an intermediate representation called Colif
CAAM. Beside of the CAAM format translation, the
Simulink parser converts a Simulink port connected to an
Inter-SS COMM or Intra-SS COMM to a Send node or
Recv node, according to the direction of the port. These
communication nodes are used to represent the data
transfer operations and are scheduled together with the
other nodes during the thread code generation.

Figure 4 shows an example, where the four ports in T0,
shown in Figure 4(a), are translated to Send (S1, S2) and
Recv (R0, R3) nodes in the Colif CAAM, as illustrated in
Figure 4(b).

F1

FSWF4

F0

F6

F5

F2 F3

IAS0

IAS1

(a) A Thread-SS in a Simulink CAAM (b) A Thread-SS in a Colif CAAM

T0

F1
FSW

F4

F0

F6

F5

F2 F3

R3

S1

S2

R0

T0

IAS0

IAS1

Figure 4: (a) Simulink CAAM, (b) Colif CAAM

3.3 Message Aggregation

When a Simulink functional model consists of fine-
grain functions and it is partitioned into several
processors, Simulink parser will insert a large number of
communication nodes that exchange messages through
inter-processor communication channels. Consequently,
the communication overhead increases, which impacts on
the system performance and the required memory size.

The cost for a data transfer in terms of execution time
can be divided in start-up cost (synchronization cost) and
effective data transfer cost (rate *length). The start-up
cost is not depending on the number of sent bytes.
Message Aggregation (MA) combines messages with the
same source and destination, increasing the granularity of
the data transfers and amortizing the start-up cost.
Consequently, this technique can reduce the total amount
of communication overhead in terms of execution time.

Moreover, this technique can reduce the software data
structures used to represent the channels to promote and
manage the inter-processors communications. For
example, a H.264 decoder Simulink CAAM with 6 CPUs
requires 85 data structures for communication channels,
which impacts on data memory size.

F1
FSW

F4

F0

F6

F5

F2 F3

m0

R3

S12

R0

F8 S3

R12

S0

F7

Z2
-k

Z1
-1 F9

T0 T1

m1

m2 m9

m4

m3

m5

m6

m7

m8

IAS0

IAS1

Figure 5: Colif CAAM after Message Aggregation

Applying Message Aggregation on the Colif CAAM

illustrated in Figure 4(b), the CAAM illustrated in Figure
5 is obtained. In this example, the Send nodes S1 and S2 in
T0 have the same source and destination threads, and then
they are merged in a unique node (S12). As the result, two
messages are grouped into one, reducing the start-up cost

84

10th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2007

and the software data structures to perform the data
transfer. Similar group operation is performed for the
receive nodes R1 and R2 in T1, as shown in Figure 5.

To avoid deadlock, LESCEA merges Send (or Recv)
nodes into another Send (or Recv) node only when all of
them have no precedent dependency. Figure 6 illustrates
the deadlock problem. As the node R2 has precedent
dependency with R0 in Figure 6(a), when both are
grouped in the same merged node, a deadlock is occurred,
as shown in Figure 6(b).

R2

S1

R0

S2

R1

S0

F1

F2

…

…

S1

R02

R1

S02

F1

F2

… …

(a) A Colif CAAM (b) A Colif CAAM with deadlock

Figure 6: An example of deadlock by Message Aggregation

3.4 Thread Code Generation

The input for the Thread Code Generation step is the

CAAM resultant of the Message Aggregation step and it
can be divided in two parts, the scheduling and code
generation, as shown in Figure 2. Since the input and
output data sizes of each node in a Simulink model are
fixed, the scheduling can statically determine the order of
execution for the Simulink functional nodes and
communication nodes according to precedence
dependency. Finally, according to the scheduling,
LESCEA automatically generates a C-code for each
thread.

This step is explained with the example presented in
Figure 7, where 7(a) shows an original CAAM and 7(b)
shows the CAAM resultant of the previous step. Figure
7(c) and 7(d) illustrate the thread code generated from the
model shown in Figure 7(a) and 7(b), respectively.

Each thread code includes memory declarations for
links and behavior codes for nodes in the CAAM. First,
LESCEA generates memory declarations according to the
CAAM resultant of the Message Aggregation step. When
Message Aggregation is not applied, LESCEA declares a
buffer memory for each data link with its data type as line
1 of Figure 7(c). But, when Message Aggregation is
applied, LESCEA declares a structure that combines all
buffer memories connected to the input (output) port of a
merged Send (Recv) node. For example, a data structure
is declared for the merged node S12 in line 3 of Figure
7(d). This structure combines the input buffer memories
m8 and m9 of node S12.

As previously mentioned, Message Aggregation
technique reduces software channel structures and

consequently, reduces the required data memory size.
However, this technique can increase buffer memories.
For example, when a Send node (e.g. S1) is grouped in
two different merged nodes (e.g. S12 and S13), which of
them connected to different thread destinations, its buffer
memory becomes to be duplicated in two data structures.
Each of them used for each send operation. We will
present this effect in section 4.

After memory declaration, LESCEA generates a
behavior code for each thread according to the scheduling
result. For a user-defined node (i.e. Simulink S-function),
LESCEA generates a function invocation corresponding
to the node and maps the allocated memories for the input
and output links to the function arguments. As shown in
line 9 of Figure 7(c), where the function F2 is invoked and
its input and output are m1 and m3, respectively. For pre-
defined Simulink nodes, LESCEA generates the
appropriate behavior. For example, in case of a Switch
node, an If/else statement is generated (lines 8-11). No
that, the output for the Switch (FSW) in the code without
MA is m8 (line 9 and 11), but in the optimized code of
Figure 7(d), its output is part of the structure m10
declared to packet the data to be sent by the merged node
S12.

(a) Colif CAAM

F1
FSW

F4

F0

F6

F5

F2 F3

m0

R3

S1

S2

R0

F8 S3

R1

R2

S0

F7

Z2
-k

Z1
-1 F9

T0 T1

m1

m2 m9

m4

m3

m5

m6

m7

m8

IAS0

IAS1

(b) Colif CAAM after MA

F1
FSW

F4

F0

F6

F5

F2 F3

m0

R3

S12

R0

F8 S3

R12

S0

F7

Z2
-k

Z1
-1 F9

T0 T1

m1

m2 m9

m4

m3

m5

m6

m7

m8

IAS0

IAS1

1: char m0[1]; int m1[4];
2: // decl m2,m3,m4, m5, m6, m7
3: int m8[4]; int m9[8];
4: T0 () {
5: while (1){
6: F0 (m0); F1 (m1);
7: recv (m5,8); //R0
8: if (m0) {
9: F2(m1,m3); F3(m3,m5,m6); m8=m6 ;
10: else
11: F4(m1,m4); F5(m4,m7); m8=m7 ;}
12: recv (m2,32); F6(m2, m9);
13: send (m8,4); //S1
14: send (m9,32); //S2
15: } }

(c) T0 Code without MA

1: char m0[1]; int m1[4];
2: // decl m2,m3,m4, m5, m6, m7
3: struct {int m8[4]; int m9[8]; } m10;
4: T0 () {
5: while (1){
6: ...
7: recv (m5,8); //R0
8: if (m0){
9: F2(m1,m3); F3(m3,m5,m6); m10.m8=m6 ;
10: else
11: F4(m1,m4); F5(m4,m7); m10.m8=m7 ;}
12: recv (m2,32); F6(m2, m10.m9);
13: send (m10,36); // S12
14: } }

(d) T0 Code with MA

Figure 7: Thread code generation with Message Aggregation

85

10th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2007

For communication nodes (Send/Recv nodes),
LESCEA inserts communication primitive calls defined in
the HdS API. The Send and Recv primitives have as
parameters the source address and the message size, and
the destination address and message size, respectively.
For example, in the line 13 of Figure 7(d), the source for
the merged node S12 is the data structure m10.
Consequently, the functions that produce data for this
merged node use elements of this data structure as output,
as shown in line 12 of Figure 7(d), where F6 generates
part of the data to be sent for this node. Similarly, the
Recv nodes can be also grouped and, in this case, a data
structure should be declared to store the received data.

3.5 HdS adaptation

Our multithread code generator uses high-level

primitives (i.e. HdS API) to generate a multithreaded
code independent of the architecture details. To execute
the generated code on target heterogeneous MPSoC, the
thread codes executing on a specific CPU subsystem
should be linked with the HdS library targeted to the CPU
subsystem. To do this, we first assume that there are pre-
built HdS libraries, each of which is targeted to a specific
CPU. Under this assumption, LESCEA then generates a
main code, which creates threads and initializes channel
data structures, and a Makefile, which links the generated
code and main code with an appropriate HdS library.

The current HdS library provides basic thread,
interrupt, synchronization, message passing and shared
memory primitives. At present, it is targeted to ARM and
Xtensa processors and supports three communication
protocols, HWFIFO and GFIFO for inter-processor
communication, and SWFIFO for intra-processor
communication. This library is tiny with memory
footprint is about 2KB to 4KB.

Figure 8 illustrates an example of main code generated
with LESCEA from the Simulink CAAM illustrated in
Figure 8(a), which is composed of three CPU subsystems
(CPU0-CPU2) and seven threads (T0-T6). The main code
generated for CPU2 is shown in Figure 8(b). It includes
primitives to channel declaration (line 1), channel
initialization (channel_init in line 6), and thread creation
(thread_create in line 9) according to the CAAM model.

For each CPU subsystem, LESCEA also generates a
Makefile that enables to link the generated multithreaded
code, main code with appropriate HdS library. When
user-defined functions are used, the bodies for these
functions should also be linked to the thread codes and
main code. In this way, the proposed software design flow
allows build binary files that are executable on the target
heterogeneous MPSoC. The Makefile generated for
CPU2 is depicted in Figure 8(c), where directive for
compilation and files to be compiled are indicated in line
1 and 3, and the appropriate HdS library is set to the

linking in line 5.

(a) An example of Simulink CAAM

1: channel_t *ch4, *ch5, *ch6, *ch7;
2: port_t *p4, p5, p6, p7;
3: void main () {
4: ISR_attach(0, gfifo_isr);
5: …
6: channel_init(&ch6, SWFIFO,…);
7: port_init(&p6, &ch6, …);
8: …
9: thread_create(T4, …);

10: thread_create(T5, …);

11: … }

(b) Main code for CPU2

1: CC=xt-xcc // Xtensa-compiler
2: …
3: SRCS= T4.c T5.c T6.c main.c
4: …
5: LIBS= libhds-xt.a
6: …
7: sw.bin: $(OBJS) $(LIBS)
8: $(CC) –o sw.bin $(OBJS) $(LIBS)

(c) Makefile for CPU2

CH4(GFIFO)

CPU1 (type: Xtensa)

CH3(HWFIFO)

CPU0 (type: ARM7)

CH0(SWFIFO)

CPU2 (type: Xtensa)

T6
T4

T5T3

T2

T1

T0

CH1(SHM)

CH6(SWFIFO)

CH7(SWFIFO)

CH5(GFIFO)

Figure 8: Example of Main code and Makefile generation

4. Experiments

We used the H264 video decoder as case study to show
performance improvements and memory reductions
achieved when Message Aggregation technique is
integrated in our flow for multithread code generation
from Simulink models. Section 4.1 presents the
application. The Simulink CAAM and a preliminary
description of experiments are given in section 4.2. The
target platform used for this case study is presented in
section 4.3. Finally, the experiment results are presented
and discussed in section 4.4.

4.1 H264 video decoder

The H.264/AVC video coding standard has been
developed and standardized collaboratively by both the
ITU-T VCEG and ISO/IEC MPEG organizations [19]. In
our experiment, we used an H.264 Decoder, which is
based on the Baseline Profile for video conference and
videophone applications.

Figure 9 illustrates block diagram of H264 decoder. It
receives an encoded video bit stream from a network or a
storage device and produces a sequence of frames by
applying iterative executions of macroblock-level
functions such as variable length decoding (VLD),
inverse zigzag and quantization (IQ), inverse transform
(IT), spatial compensation (SC), motion compensation
(MC) and deblocking filter (DF).

86

10th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2007

A frame = WxH macroblocks

Macroblock
VLD

Inverse Scan
Quantization

(IQ)

Inverse
Transform

(IT)
+

Deblocking
Filter
(DF)

Video Bit
Stream

Frame/Slice
VLD

Decoded
Frame Store

Spatial
Compensation
Process (SC)

Multiple
Previous

Frame Store

Motion
Compensation
Process (MC)

Current
Frame Store

Switch

Spatial Prediction Modes

Motion Vectors

Intra/
Inter MB

W

H

Image

Fetch (IF)

Figure 9: H.264 decoder block diagram

4.2 Simulink CAAM

Firstly, we built a Simulink model to represent the
H264 decoding flow. The whole flow is an iteration of a
16x16 macroblock process, which starts from a global
control thread and completes after Deblock for luminance
and chroma. The data flow for processing a macroblock is
shown in Figure 10. Each function node in this data flow
consists of one or more S-Functions in our Simulink
model. This model includes 83 S-Functions (user-defined
functions described with a C code), 24 delays, 286 data
links, 43 if-action-subsystems, 5 for-iteration-subsystems
and 101 pre-defined Simulink nodes.

Figure 10: Data flow for processing of a macroblock

In our experiment, this model was partitioned firstly in

two processors in order to obtain an initial multiprocessor
implementation. This initial solution is described in a
Simulink CAAM composed of two CPU subsystems
communicating through GFIFO channels. To explore
other solutions, we continue to partitioning the model,
building four different CAAMs that use three, four, five,
and six CPU subsystems. For each one of these CAAMs,
we generate code with LESCEA and evaluate the
performance and the memory improvements achieved
when Message Aggregation is applied during code
generation. The results are presented and discussed in
section 4.4.

4.3 Target Platform

Each CPU subsystem defined in the CAAM model is
composed of Processor, Local Bus, Local Memories, PIC,
Timer, Mailbox, and Network Interface (NI). System C
TLM models for these components are provided by a
component library, which includes instruction-set
simulator (ISS) for Xtensa and ARM processors.

The multiprocessor platform architecture is built
through instantiation of several CPU subsystems, which
are connected to a bus. Figure 11 shows a platform
architecture example with two CPUs and a global
memory. This platform is used in our experiments,
varying the number of processors from two to six. In this
architecture, the GFIFO protocol is used for inter-
processor communication.

Hardware-dependent software is responsible to
provide architecture-specific services such as scheduling
of application threads, communication inter and intra-
CPU subsystem, external communication, hardware
resources management and control. An HdS library
includes HdS APIs, an Operating System (OS),
communication software and a HAL (Hardware
Abstraction Layer). The Operating System is composed
of a Thread Scheduler and an Interrupt Service Routines
(ISR). At present, our library supports ARM and Xtensa
processors.

Mailbox Mailbox

AMBA bus

Xtensa
ISS

Mem

TimerBus
bridge

PIC
Mem0

Bus
bridge

Xtensa
ISS

Mem

TimerBus
bridge

PIC

Figure 11: Platform architecture example

In this work, we analyze the effect of Message

Aggregation in the inter-processor communication using
the GFIFO protocol that is easy to implement both in
hardware and in software.

4.4 Experiment results

After modeling and partitioning, we developed CAAM
models with two, three, four, five, and six CPU
subsystems. From these CAAMs, we used LESCEA to
generate multithread code and we evaluate performance
and memory size for the different code versions.

Firstly, we analyze the impact of Message Aggregation
on the execution time for the different multiprocessor
solutions. To obtain performance results, we simulate the
execution of the generated codes under the chosen

87

10th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2007

platform using instances of Xtensa ISS simulator, as
Xtensa processors are used in this experiment. In this
way, for each version of generated code, we obtained the
number of cycles required to decode a QCIF foreman at a
frame rate of 30 frames /second.

Figure 12 illustrates the performance results for the
generated codes with and without Message Aggregation,
for the five different CAAM models (P2-P6). The results
show that when MA is applied in our code generation
flow, the performance increases for all five
configurations, with improvements from 14% until 21%.
For example, comparing the performance results for P6
with MA and without MA (w/o MA), we found a
performance improvement of 21.2% that was obtained by
the Message Aggregation technique. We also compared
our multiprocessor solutions with a single-processor one
and we found that the version P6 without MA achieved
56.4% of performance improvement compared to a
single-processor one (236.8 Mcycles/second), while the
configuration P6 with MA achieved 65.7%.

181,3

156,0

109,7 103,9 103,1

81,283,0
93,2

134,1

154,8

0,0

20,0

40,0

60,0

80,0

100,0

120,0

140,0

160,0

180,0

200,0

P2 P3 P4 P5 P6

Number of processors

M
cy

cl
es

/s
ec

on
d

w/o MA With MA

Figure 12: Performance results for H264 decoder

Secondly, we analyzed the impact of the Message

Aggregation in the number of required communication
channels. Figure 13 illustrates the effect of this technique
for different configurations of the H264 model, varying
the number of processor from two to six. The results show
that Message Aggregation achieved a reduction on the
number of inter-processor channels around 90% for all
configurations (P2-P6). For example, in case of four CPU
subsystems (P4), the achieved reduction is from 70 to 5
channels (92.8%). These reductions depend on the
granularity of each block that composes the system and
the chosen partitioning.

The reduction on the number of channels impacts on
the software infrastructure required for communication,
reducing data memory size. Figure 14 shows the results
for data memory size obtained for the five versions of the
H264 CAAM. These results show a reduction of 15.9%
and 14% in the four CPUs (P4) version and in the six

CPUs (P6) version, respectively, when Message
Aggregation is applied.

41

60

70

78

85

1 3 5 6
10

0

10

20

30

40

50

60

70

80

90

P2 P3 P4 P5 P6

Number of processors

N
um

be
r

of
 c

ha
nn

el
s

w/o MA with MA

Figure 13: Reduction on the number of channels

9,3

11,2 11,3
12,4

14,2

8,2

9,6 9,5

11,4
12,2

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

P2 P3 P4 P5 P6

Number of processors

K
by

te

w/o MA with MA

Figure 14: Reduction on data memory size

Table I: Data memory size in bytes for the solution P4

 Without MA With MA
Constant 2172 2172
Channel 3360 240
Buffer 6006 7320
Total 11538 9732

Table I shows the data memory size obtained for the

generated code with four CPUs (P4). As it is a
multiprocessor solution, the data memory is composed of
Constant, Buffer and Channel memories. The constant
memory represents constant tables such as VLD table
used in the decoding algorithm. The buffer memory
represents the memory required to implement the
Simulink data links and the channel memory represents
the channel data structures required to promote the
communication. The results show that Message
Aggregation can achieve a large reduction on the data

88

10th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2007

structures used to manage channels (channel in Table I),
92.8% in case of version P4, by the reduction on the
number of required channels. It means a reduction of 14%
in the total data memory size. Note that the required
buffer memories increase by 17% with Message
Aggregation. The reason for this small increasing is
explained in section 3.4.

In addition, Message Aggregation also improves code
size by the reduction on the code lines required to declare
and initialize channels and to invoke communication
primitives in Main and Thread codes. As in this
experiment, these codes represent a small part of the total
code size, which also includes HdS and application
libraries, this improvement is too small. In case of P4
version, where Thread and Main codes represent only
11.5% of the total code size, MA achieves a reduction of
only 0.5% of the total code size. Regarding only Thread
and Main codes, a reduction of 4.4% was observed.

Experiment results show that Message Aggregation
can achieve a large reduction on the number of inter-
processor data transfers for a fine-grain system
specification. However, this optimization cannot achieve
proportional reduction on the number of cycles required
to process one macroblock. One reason for this is because
Message Aggregation can increase the message latency in
some cases, thereby decreasing performance. In terms of
data memory size, Message Aggregation presents a
reduction around 14%.

5. Conclusion

The communication on multiprocessor system can
present a huge impact on the whole system performance.
We presented here a code generation method that applies
one communication optimization technique called
Message Aggregation to reduce communication overhead.
Through the experiments, we showed that this technique
reduces the overhead in terms of execution time by the
reduction on the number of messages and memory size by
the reduction on the required software infrastructure to
promote the communication.

The experiments results show that for big fine-grain
specifications like used in our H264 decoder, we can
achieve improvements around 20% for performance
applying the Message Aggregation technique during the
code generation. In terms of memory, we achieved a
reduction around 14% for data memory size and 4% for
code size. Note that for a small model, where the number
of channels is not really large, this technique can not
achieve similar improvements.

However, the Message Aggregation technique can
decrease the performance because data is not sent to the
target function nodes as soon as it is available. To address
this problem, a global scheduling policy that can consider

both the communication overhead reduction and message
latency problem is required. This will be addressed as
future work.

References

[1] A. A. Jerraya, W. Wolf, H. Tenhunen, Guest Editors.

IEEE Computer, Special Issue on MPSoC. v. 38, n. 7, pp.
36-40, July 2005.

[2] R. Kumar et al. Heterogeneous Chip Multiprocessors. In
IEEE Computer, v. 38, issue 11, Nov. 2005.

[3] G. Khan, D.B. MacQueen. “Coroutines and Networks of
Parallel Processes,” In B. Gilchrist, editor, Information
Processing 77, Proc., pp. 993-998, Toronto, Canada.

[4] Lee, E. A., Parks, T. M. “Dataflow process networks,”
Proc. of the IEEE. v. 83, n.5, pp. 773-801. May, 1995.

[5] Simulink, Mathworks. http://www.mathworks.com.
[6] P. Lieverse et al. “A Methodology for Architecture

Exploration of Heterogeneous Signal Processing Systems”
J. VLSI Signal Processing for Signal, Image, and Video
Technology, v.29, n.3, pp.197-207, Nov. 2001.

[7] A. D. Pimentel, C. Erbas, S. Polstra. “A Systematic
Approach to Exploring Embedded System Architectures
at Multiple Abstraction Levels”. IEEE Trans. On
Computers, v. 55, n. 2, Feb., 2006.

[8] Artemis Project. http://ce.et.tudelft.nl/artemis/.
[9] S. K. Dwivedi, A. Kumar, M. Balakrishnan. “Automatic

Synthesis of System on Chip Multiprocessor
Architectures for Process Networks”. Proc of
CODES+ISSS’04, Sweden, Sept. 2004.

[10] J. T. Buck et al. "Ptolemy: A Framework for Simulating
and Prototyping Heterogeneous Systems". International
Journal of Computer Simulation, v. 4, pp. 155-182.

[11] S. Ha et al, “Hardware-software codesign of multimedia
embedded systems: the PEACE approach”, RTCSA,
2006.

[12] P. Banerjee et al."The Paradigm Compiler for Distributed-
Memory Multicomputers," Computer, v.28, n.10, pp. 37-
47, Oct., 1995.

[13] S. Hiranandani, K. Kennedy, C. Tseng. Compiling
Fortran D for MIMD Distributed Memory Machines.
Commun. ACM v. 35, n.8, pp. 66-80. 1992.

[14] G. Chen, F. Li, and M. Kandemir. Compiler-Directed
Channel Allocation for Saving Power in On-chip
Networks. In: ACM SIGPLAN Notices. v.41, n.1 pp.194-
205. 2006.

[15] Real-Time Workshop. http://www.mathworks.com.
[16] RTI-MP,

http://www.dspaceinc.com/ww/en/inc/home/products/sw/i
mpsw/rtimpblo.cfm.

[17] K. Popovici et al. “Mixed Hardware Software Multilevel
Modeling and Simulation for Multithread Heterogeneous
MPSoC”. In: VLSI-DAT 2007 (to appear).

[18] W. Cesario et al. "Multiprocessor SoC Platforms: A
Component-Based Design Approach ", IEEE Design &
Test of Computers, v. 19, n. 6, Nov-Dec, 2002.

[19] T. Wiegand, et al., “Overview of the H.264/AVC Video
Coding Standard”, Circuits and Systems for Video
Technology, v.13, n.8, pp 560-570, July 2003.

89

