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Abstract 
 

Heterogeneous MPSoCs present unique opportunities 
for emerging embedded applications, which require both 
high-performance and programmability. Although, 
software programming for these MPSoC architectures 
requires tedious and error-prone tasks, thereby automatic 
code generation tools are required. A code generation 
method based on fine-grain specification can provide 
more design space and optimization opportunities, such as 
exploiting fine-level parallelism and more efficient 
partitions. However, when partitioned, fine-grain models 
may require a large number of inter-processor communi-
cations, decreasing the overall system performance. This 
paper presents a Simulink-based multithread code 
generation method, which applies Message Aggregation 
optimization technique to reduce the number of inter-
processor communications. This technique reduces the 
communication overheads in terms of execution time by 
reduction on the number of messages exchanged and in 
terms of memory size by the reduction on the number of 
channels. The paper also presents experiment results for 
one multimedia application, showing performance 
improvements and memory reduction obtained with 
Message Aggregation technique.  
 

1. Introduction 
 

Emerging embedded systems are asked to concurrently 
execute various applications such as wireless, video, and 
audio applications. Heterogeneous multiprocessor SoCs 
are becoming attractive solutions mainly because they 
provide highly concurrent computation, flexible 
programmability, and short design time by using pre-
verified processor IPs [1][2].  

Software programming on heterogeneous MPSoC has 
arisen as an important problem with increasing 
complexity of the systems and applications. In this 
context, high-level modeling languages, such as Khan 

Process Network (KPN) [3], dataflow [4] and Simulink 
[5], have been used for system specification and system 
implementation with automatic hardware and software 
code generators [6-11]. 

Automatic code generation method based on fine-grain 
specification can provide more optimization opportunities 
such as exploiting fine-grain parallelism, more efficient 
partitions, and fine-grain memory optimization. However, 
after partitioning, the fine granularity obtained from the 
specification may introduce a large number of messages 
among threads and processors, which ultimately increases 
the communication overhead. This overhead impacts on 
required execution time and memory size and limits the 
benefits that could be obtained with the target MPSoC.  

To reduce the communication overhead, the Message 
Aggregation [12] can be used. This technique merges 
messages with identical source and destination to increase 
the granularity of the data transfers using larger messages. 
It allows the reduction of synchronization costs and of 
communication channels used to promote/manage the 
communication in software.  

Figure 1 presents a motivational example. Figure 1(a) 
shows a partitioned high-level model, which consists of 
functional nodes (Fx), communication nodes (Sx for Send 
operation, and Rx for Receive operation), and links 
between them. After applying Message Aggregation 
technique on the model depicted in Figure 1(a), the high-
level model shown in Figure 1(b) is obtained. Figure 1(c) 
and 1(d) illustrate the codes obtained from the two 
models. As result of this optimization, the five Send nodes 
(S0-S4) were grouped in a unique node (ST1), as shown in 
Figure 1(b). Consequently, the five Send primitives of 
Figure 1(c) are replaced for only one Send in Figure 1(d), 
which sends all the five messages in a unique one, thereby 
reducing the communication overhead in execution time 
and the required software infrastructure by the use of 
larger messages and by the reduction on the number of 
channels. 

This work proposes a Simulink-based multithread code 

81



10th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2007 

  

generation method, in which Message Aggregation 
optimization technique is integrated in order to reduce the 
number of inter-processor data transfers. The insertion of 
this optimization in our code generation flow allows one 
to amortize the synchronization cost by reduction on the 
number of messages and thereby reduces the total amount 
of communication overhead in the execution time. 
Moreover, this optimization also impacts on the memory 
size by the reduction of data structures required to 
represent the communication channels. 
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Figure 1: Motivational Example 
 

This paper is organized as follows. Section 2 presents 
related works. The multithread code generation method is 
presented in section 3. Section 4 describes the 
experiments and shows the obtained results. Section 5 
concludes the paper. 

 

2. Related works 
 

Message Aggregation (MA) was firstly proposed in 
[13] and it is a well-know communication optimization in 
the parallel computing and distributed systems domain. 
After that, a compiler that integrates several 
communication optimizations, such as Message 
Aggregation and Message Coalescing, was proposed for 
distributed-memory multi-computers [12]. Recently, 
Message Aggregation was used also to reduce the energy 
consumption by the reduction on the number of channels 
in a multi-processor SoC with Network-on-chip [14]. 
Both approaches are compiler-based ones while we 
address this technique in generating software code from 
high-level models. 

Regarding code generation approaches from high-level 
models, several studies can be found. SPADE [6], Sesame 
[7], Artemis [8], and Srijan [9] address automatic 
hardware and software generation from high-level models 

in the form of coarse-grain Khan Process Networks 
(KPN) [3]. As the granularity of communications in the 
KPN is also relatively coarse, they do not address 
communication overhead due to fine-grain specification. 
Moreover, the coarse granularity of KPN may limit the 
design space. 

Ptolemy [10] is a well-known environment for high-
level system specification that supports description and 
simulation of multiple models of computation (e.g. 
synchronous dataflow, boolean dataflow, FSM, etc). For 
multiprocessor software code generation, Ptolemy can 
generate a set of thread codes from a set of clustered 
functional nodes (actors) in a synchronous dataflow 
model. Peace [11] is a Ptolemy based co-design 
environment that supports hardware and software 
generation from the mixed dataflow and FSM 
specifications. Ptolemy and Peace is similar to our 
approach since they generate software code by static 
scheduling fine-grain high-level model. However, they do 
not handle Message Aggregation. 

Real-Time Workshop (RTW) [15] takes a Simulink 
model as the input and generates only single thread 
software code as the output. dSpace [16] can 
automatically generate a software code from a specific 
Simulink model for multiprocessor systems. However, 
they mainly focus on control-intensive applications, so 
they do not address Message Aggregation that is less 
important to such applications. 

In this work, we integrate the Message Aggregation 
technique into our multithread code generation flow, 
which generates a multithreaded program from a Simulink 
specification. Message Aggregation is used to cope with a 
large number of small-sized messages found in the fine-
grain specification by the reduction on the number of 
messages changed among the same source and 
destination. Consequently, it removes performance and 
memory overheads due to fine-granularity while 
preserving the advantages of the use of this granularity.  

 

3. Multithread code generation 
 

The input of our code generation method is a Simulink 
model at a function-level granularity. Since pure 
functional Simulink model does not include target 
architecture information, we defined a system architecture 
modeling style called Simulink Combined Architecture 
Algorithm Model (CAAM) [17] as will be explained in 
section 3.1. This modeling style allows partition the 
system behavior in threads and indicates in which 
processor each thread will run. 

To generate multithreaded software program targeted 
to run on a heterogeneous MPSoC from the Simulink 
CAAM, we developed an automatic code generator called 
LESCEA (Light and Efficient Simulink Compiler for 
Embedded Application). Figure 2 shows the global flow 
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of our multithread code generation, which is composed of 
four main steps.  

Step 1. Simulink Parsing: Simulink parser reads 
Simulink model and creates the Colif [18] representation, 
which is used as intermediate format. This step is detailed 
in section 3.2. 

Step 2. Message Aggregation: LESCEA traverses the 
Colif CAAM and merges messages whose source and 
destination are identical and there are no dependencies 
between them. This step is presented in section 3.3. 

Step 3. Thread Code Generation: for each CPU 
subsystem, LESCEA generates thread codes, each of 
which is a result of static scheduling according to 
precedence dependency. This step is detailed in section 
3.4. 

Step 4. HdS Adaptation: LESCEA generates a main 
code and a Makefile for each CPU subsystem. The main 
code manages threads and initializes channels and the 
Makefile builds an executable code by linking the thread 
codes, main code, and the HdS (Hardware-dependent 
software) library targeted to the CPU subsystem. This 
step is explained in section 3.5. 
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Figure 2: Multithread code generation flow 
 

3.1 System architecture modeling style 
 

After functional validation using the Simulink 
simulation environment, the designer transforms a 
Simulink functional model to a Simulink CAAM that 
combines aspects related to the architecture model (i.e. 
processing units available in chosen platform) into the 
application model (i.e. multiple threads executed on the 
processing units). Moreover, in the CAAM, explicit 
communication blocks are used to represent intra-
processor or inter-processor communications channels, 
depending whether the threads are in the same subsystem 
or not. As, the communication channels are represented in 
the model, it facilitates to apply communication 

optimization techniques. 
We specify the Simulink CAAM using three-layered 

hierarchical Simulink model as shown in Figure 3. The 
first layer (Figure 3(a)) describes system architecture that 
contains CPU subsystems and inter-subsystem 
communication channels. The second layer (Figure 3(b)) 
describes CPU subsystem architecture that contains 
software threads and intra-subsystem channels. The third 
layer (Figure 3(c)) describes software thread that contains 
Simulink nodes and data links. 
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Figure 3: Simulink CAAM from an algorithm model 
 
To represent CAAM in Simulink, four kinds of 

specific Simulink subsystems are defined as followings.  
 

• CPU-SS is a conceptual representation of CPU 
subsystem and can be refined to a subsystem composed 
of processor, local bus, local memories, etc. CPU0 SS 
is an example of CPU-SS in Figure 3(a), and Figure 
3(b) illustrates its CPU subsystem layer composed of 
two threads communicating through channels. 

• Inter-SS COMM is a conceptual representation of 
communication channels between two CPU-SSs. An 
Inter-SS COMM includes one or more Simulink links, 
each of them corresponding to a point-to-point channel. 
An Inter-SS COMM is refined to a hardware 
communication channel and software communication 
port(s) to access the channel. In Figure 3(a), CH4 is an 
example of Inter-SS COMM. 

• Thread-SS is a conceptual representation of a software 
thread. A Thread-SS is gradually refined to a software 
thread including HdS API calls by the code generator. 
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T0 and T1 in Figure 3(b) are example of Thread-SS. 
Figure 3(c) illustrates the thread layer, where thread T0 
is composed of Simulink nodes. 

• Intra-SS COMM represents communication channels 
between threads on the same CPU subsystem and it can 
include one or more Simulink links. An Intra-SS 
COMM is refined to OS communication channel(s). In 
Figure 3(b), CH0 and CH1 are examples of Intra-SS 
COMM. 

These subsystems are normal Simulink subsystems 
annotated with several architecture parameters (e.g. 
processor and communication type, etc), thus they do not 
affect the original model functionality. At present, this 
transformation is manually performed using Simulink 
graphical user interface and according to the designer’s 
experience. For example, to make a thread subsystem, the 
designer clusters several Simulink nodes into a Simulink 
hierarchical subsystem by a short key (ctrl+g) and then 
annotates the Thread type to the subsystem.  

Currently, we support three communication protocols: 
GFIFO, HWFIFO, and SWFIFO. GFIFO (Global FIFO) 
is an inter-subsystem communication protocol that 
transfers data using a global memory, a bus, and 
mailboxes. The data transfer is divided into two steps. 
First, the CPU in the source subsystem writes data to a 
global memory, and sends an event to the mailbox in the 
target subsystem. After receiving the event, the CPU in 
the target subsystem reads the data from the global 
memory, and sends another event to the mailbox in the 
source subsystem to notify the completion of the read 
operation. HWFIFO is also an inter-subsystem 
communication protocol that transfers data via a hardware 
FIFO. SWFIFO is an intra-subsystem communication 
protocol based on software FIFO. 

 
3.2 Parser 

 
The parser traverses the Simulink CAAM and 

generates an intermediate representation called Colif 
CAAM. Beside of the CAAM format translation, the 
Simulink parser converts a Simulink port connected to an 
Inter-SS COMM or Intra-SS COMM to a Send node or 
Recv node, according to the direction of the port. These 
communication nodes are used to represent the data 
transfer operations and are scheduled together with the 
other nodes during the thread code generation.  

Figure 4 shows an example, where the four ports in T0, 
shown in Figure 4(a), are translated to Send (S1, S2) and 
Recv (R0, R3) nodes in the Colif CAAM, as illustrated in 
Figure 4(b). 

F1

FSWF4

F0

F6

F5

F2 F3

IAS0

IAS1

(a) A Thread-SS in a Simulink CAAM (b) A Thread-SS in a Colif CAAM

T0

F1
FSW

F4

F0

F6

F5

F2 F3

R3

S1

S2

R0

T0

IAS0

IAS1

 
 

Figure 4: (a) Simulink CAAM, (b) Colif CAAM  
 

3.3 Message Aggregation 
 

When a Simulink functional model consists of fine-
grain functions and it is partitioned into several 
processors, Simulink parser will insert a large number of 
communication nodes that exchange messages through 
inter-processor communication channels. Consequently, 
the communication overhead increases, which impacts on 
the system performance and the required memory size. 

The cost for a data transfer in terms of execution time 
can be divided in start-up cost (synchronization cost) and 
effective data transfer cost (rate *length). The start-up 
cost is not depending on the number of sent bytes. 
Message Aggregation (MA) combines messages with the 
same source and destination, increasing the granularity of 
the data transfers and amortizing the start-up cost. 
Consequently, this technique can reduce the total amount 
of communication overhead in terms of execution time. 

Moreover, this technique can reduce the software data 
structures used to represent the channels to promote and 
manage the inter-processors communications. For 
example, a H.264 decoder Simulink CAAM with 6 CPUs 
requires 85 data structures for communication channels, 
which impacts on data memory size. 
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Figure 5: Colif CAAM after Message Aggregation 
 
Applying Message Aggregation on the Colif CAAM 

illustrated in Figure 4(b), the CAAM illustrated in Figure 
5 is obtained. In this example, the Send nodes S1 and S2 in 
T0 have the same source and destination threads, and then 
they are merged in a unique node (S12). As the result, two 
messages are grouped into one, reducing the start-up cost 
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and the software data structures to perform the data 
transfer. Similar group operation is performed for the 
receive nodes R1 and R2 in T1, as shown in Figure 5. 

To avoid deadlock, LESCEA merges Send (or Recv) 
nodes into another Send (or Recv) node only when all of 
them have no precedent dependency. Figure 6 illustrates 
the deadlock problem. As the node R2 has precedent 
dependency with R0 in Figure 6(a), when both are 
grouped in the same merged node, a deadlock is occurred, 
as shown in Figure 6(b).  
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Figure 6: An example of deadlock by Message Aggregation 
 
3.4 Thread Code Generation 

 
The input for the Thread Code Generation step is the 

CAAM resultant of the Message Aggregation step and it 
can be divided in two parts, the scheduling and code 
generation, as shown in Figure 2. Since the input and 
output data sizes of each node in a Simulink model are 
fixed, the scheduling can statically determine the order of 
execution for the Simulink functional nodes and 
communication nodes according to precedence 
dependency. Finally, according to the scheduling, 
LESCEA automatically generates a C-code for each 
thread.  

This step is explained with the example presented in 
Figure 7, where 7(a) shows an original CAAM and 7(b) 
shows the CAAM resultant of the previous step. Figure 
7(c) and 7(d) illustrate the thread code generated from the 
model shown in Figure 7(a) and 7(b), respectively. 

Each thread code includes memory declarations for 
links and behavior codes for nodes in the CAAM. First, 
LESCEA generates memory declarations according to the 
CAAM resultant of the Message Aggregation step. When 
Message Aggregation is not applied, LESCEA declares a 
buffer memory for each data link with its data type as line 
1 of Figure 7(c). But, when Message Aggregation is 
applied, LESCEA declares a structure that combines all 
buffer memories connected to the input (output) port of a 
merged Send (Recv) node. For example, a data structure 
is declared for the merged node S12 in line 3 of Figure 
7(d). This structure combines the input buffer memories 
m8 and m9 of node S12. 

As previously mentioned, Message Aggregation 
technique reduces software channel structures and 

consequently, reduces the required data memory size. 
However, this technique can increase buffer memories. 
For example, when a Send node (e.g. S1) is grouped in 
two different merged nodes (e.g. S12 and S13), which of 
them connected to different thread destinations, its buffer 
memory becomes to be duplicated in two data structures. 
Each of them used for each send operation. We will 
present this effect in section 4. 

After memory declaration, LESCEA generates a 
behavior code for each thread according to the scheduling 
result. For a user-defined node (i.e. Simulink S-function), 
LESCEA generates a function invocation corresponding 
to the node and maps the allocated memories for the input 
and output links to the function arguments. As shown in 
line 9 of Figure 7(c), where the function F2 is invoked and 
its input and output are m1 and m3, respectively. For pre-
defined Simulink nodes, LESCEA generates the 
appropriate behavior. For example, in case of a Switch 
node, an If/else statement is generated (lines 8-11). No 
that, the output for the Switch (FSW) in the code without 
MA is m8 (line 9 and 11), but in the optimized code of 
Figure 7(d), its output is part of the structure m10 
declared to packet the data to be sent by the merged node 
S12. 
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1: char m0[1]; int m1[4];
2: // decl m2,m3,m4, m5, m6, m7
3: int m8[4]; int m9[8];
4: T0 ( ) {
5: while (1){
6:    F0 (m0); F1 (m1);
7:    recv (m5,8);  //R0
8:    if (m0) {
9:        F2(m1,m3); F3(m3,m5,m6); m8=m6 ;
10:  else
11:       F4(m1,m4); F5(m4,m7);  m8=m7 ;}
12:  recv (m2,32);  F6(m2, m9);
13:  send ( m8,4); //S1
14:  send ( m9,32); //S2
15: }  }

(c) T0 Code without MA

1: char m0[1]; int m1[4];
2: // decl m2,m3,m4, m5, m6, m7
3: struct {int m8[4]; int m9[8]; } m10; 
4: T0 ( ) {
5: while (1){
6: ...
7: recv (m5,8); //R0
8:    if (m0){
9:       F2(m1,m3); F3(m3,m5,m6); m10.m8=m6 ;
10:  else
11:      F4(m1,m4); F5(m4,m7); m10.m8=m7 ;}
12: recv (m2,32); F6(m2, m10.m9 );
13: send (m10,36 ); // S12
14: } }

(d) T0 Code with MA  
 

Figure 7: Thread code generation with Message Aggregation 
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For communication nodes (Send/Recv nodes), 
LESCEA inserts communication primitive calls defined in 
the HdS API. The Send and Recv primitives have as 
parameters the source address and the message size, and 
the destination address and message size, respectively. 
For example, in the line 13 of Figure 7(d), the source for 
the merged node S12 is the data structure m10. 
Consequently, the functions that produce data for this 
merged node use elements of this data structure as output, 
as shown in line 12 of Figure 7(d), where F6 generates 
part of the data to be sent for this node. Similarly, the 
Recv nodes can be also grouped and, in this case, a data 
structure should be declared to store the received data.  

 
3.5 HdS adaptation 

 
Our multithread code generator uses high-level 

primitives (i.e. HdS API) to generate a multithreaded 
code independent of the architecture details. To execute 
the generated code on target heterogeneous MPSoC, the 
thread codes executing on a specific CPU subsystem 
should be linked with the HdS library targeted to the CPU 
subsystem. To do this, we first assume that there are pre-
built HdS libraries, each of which is targeted to a specific 
CPU. Under this assumption, LESCEA then generates a 
main code, which creates threads and initializes channel 
data structures, and a Makefile, which links the generated 
code and main code with an appropriate HdS library. 

The current HdS library provides basic thread, 
interrupt, synchronization, message passing and shared 
memory primitives. At present, it is targeted to ARM and 
Xtensa processors and supports three communication 
protocols, HWFIFO and GFIFO for inter-processor 
communication, and SWFIFO for intra-processor 
communication. This library is tiny with memory 
footprint is about 2KB to 4KB. 

Figure 8 illustrates an example of main code generated 
with LESCEA from the Simulink CAAM illustrated in 
Figure 8(a), which is composed of three CPU subsystems 
(CPU0-CPU2) and seven threads (T0-T6). The main code 
generated for CPU2 is shown in Figure 8(b). It includes 
primitives to channel declaration (line 1), channel 
initialization (channel_init in line 6), and thread creation 
(thread_create in line 9) according to the CAAM model. 

For each CPU subsystem, LESCEA also generates a 
Makefile that enables to link the generated multithreaded 
code, main code with appropriate HdS library. When 
user-defined functions are used, the bodies for these 
functions should also be linked to the thread codes and 
main code. In this way, the proposed software design flow 
allows build binary files that are executable on the target 
heterogeneous MPSoC. The Makefile generated for 
CPU2 is depicted in Figure 8(c), where directive for 
compilation and files to be compiled are indicated in line 
1 and 3, and the appropriate HdS library is set to the 

linking in line 5. 
 

(a) An example of Simulink CAAM 

1:  channel_t *ch4, *ch5, *ch6, *ch7;
2:  port_t *p4, p5, p6, p7;
3:  void main ( ) {
4:   ISR_attach(0, gfifo_isr);
5:   …
6:   channel_init(&ch6, SWFIFO,…);
7:   port_init(&p6, &ch6, …);
8:   …
9:   thread_create(T4, …);

10:  thread_create(T5, …);

11: … }

(b) Main code for CPU2

1: CC=xt-xcc // Xtensa-compiler
2:  …
3: SRCS= T4.c T5.c T6.c main.c
4:  …
5:  LIBS= libhds-xt.a
6:  …
7: sw.bin: $(OBJS) $(LIBS)
8:  $(CC) –o sw.bin $(OBJS) $(LIBS)

(c) Makefile for CPU2

CH4(GFIFO)

CPU1 (type: Xtensa)

CH3(HWFIFO)

CPU0 (type: ARM7)

CH0(SWFIFO)

CPU2 (type: Xtensa)

T6
T4

T5T3

T2

T1

T0

CH1(SHM)

CH6(SWFIFO)

CH7(SWFIFO)

CH5(GFIFO)

 
 

Figure 8: Example of Main code and Makefile generation 
 

4. Experiments 
 

We used the H264 video decoder as case study to show 
performance improvements and memory reductions 
achieved when Message Aggregation technique is 
integrated in our flow for multithread code generation 
from Simulink models. Section 4.1 presents the 
application. The Simulink CAAM and a preliminary 
description of experiments are given in section 4.2. The 
target platform used for this case study is presented in 
section 4.3. Finally, the experiment results are presented 
and discussed in section 4.4. 

 
4.1 H264 video decoder 
 

The H.264/AVC video coding standard has been 
developed and standardized collaboratively by both the 
ITU-T VCEG and ISO/IEC MPEG organizations [19]. In 
our experiment, we used an H.264 Decoder, which is 
based on the Baseline Profile for video conference and 
videophone applications.  

Figure 9 illustrates block diagram of H264 decoder. It 
receives an encoded video bit stream from a network or a 
storage device and produces a sequence of frames by 
applying iterative executions of macroblock-level 
functions such as variable length decoding (VLD), 
inverse zigzag and quantization (IQ), inverse transform 
(IT), spatial compensation (SC), motion compensation 
(MC) and deblocking filter (DF). 
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Figure 9: H.264 decoder block diagram 
 
4.2 Simulink CAAM 
 

Firstly, we built a Simulink model to represent the 
H264 decoding flow. The whole flow is an iteration of a 
16x16 macroblock process, which starts from a global 
control thread and completes after Deblock for luminance 
and chroma. The data flow for processing a macroblock is 
shown in Figure 10. Each function node in this data flow 
consists of one or more S-Functions in our Simulink 
model. This model includes 83 S-Functions (user-defined 
functions described with a C code), 24 delays, 286 data 
links, 43 if-action-subsystems, 5 for-iteration-subsystems 
and 101 pre-defined Simulink nodes. 

 

 
 

Figure 10: Data flow for processing of a macroblock 
 
In our experiment, this model was partitioned firstly in 

two processors in order to obtain an initial multiprocessor 
implementation. This initial solution is described in a 
Simulink CAAM composed of two CPU subsystems 
communicating through GFIFO channels. To explore 
other solutions, we continue to partitioning the model, 
building four different CAAMs that use three, four, five, 
and six CPU subsystems. For each one of these CAAMs, 
we generate code with LESCEA and evaluate the 
performance and the memory improvements achieved 
when Message Aggregation is applied during code 
generation. The results are presented and discussed in 
section 4.4. 

 
4.3 Target Platform  
 

Each CPU subsystem defined in the CAAM model is 
composed of Processor, Local Bus, Local Memories, PIC, 
Timer, Mailbox, and Network Interface (NI). System C 
TLM models for these components are provided by a 
component library, which includes instruction-set 
simulator (ISS) for Xtensa and ARM processors.  

The multiprocessor platform architecture is built 
through instantiation of several CPU subsystems, which 
are connected to a bus. Figure 11 shows a platform 
architecture example with two CPUs and a global 
memory. This platform is used in our experiments, 
varying the number of processors from two to six. In this 
architecture, the GFIFO protocol is used for inter-
processor communication. 

Hardware-dependent software is responsible to 
provide architecture-specific services such as scheduling 
of application threads, communication inter and intra-
CPU subsystem, external communication, hardware 
resources management and control. An HdS library 
includes HdS APIs, an Operating System (OS), 
communication software and a HAL (Hardware 
Abstraction Layer). The Operating System is composed 
of a Thread Scheduler and an Interrupt Service Routines 
(ISR). At present, our library supports ARM and Xtensa 
processors.  

 
 

Mailbox Mailbox

AMBA bus

Xtensa
ISS

Mem

TimerBus
bridge

PIC
Mem0

Bus
bridge

Xtensa
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Mem

TimerBus
bridge
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Figure 11: Platform architecture example 
 
In this work, we analyze the effect of Message 

Aggregation in the inter-processor communication using 
the GFIFO protocol that is easy to implement both in 
hardware and in software.  
 
4.4 Experiment results 
 

After modeling and partitioning, we developed CAAM 
models with two, three, four, five, and six CPU 
subsystems. From these CAAMs, we used LESCEA to 
generate multithread code and we evaluate performance 
and memory size for the different code versions. 

Firstly, we analyze the impact of Message Aggregation 
on the execution time for the different multiprocessor 
solutions. To obtain performance results, we simulate the 
execution of the generated codes under the chosen 
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platform using instances of Xtensa ISS simulator, as 
Xtensa processors are used in this experiment. In this 
way, for each version of generated code, we obtained the 
number of cycles required to decode a QCIF foreman at a 
frame rate of 30 frames /second. 

Figure 12 illustrates the performance results for the 
generated codes with and without Message Aggregation, 
for the five different CAAM models (P2-P6). The results 
show that when MA is applied in our code generation 
flow, the performance increases for all five 
configurations, with improvements from 14% until 21%. 
For example, comparing the performance results for P6 
with MA and without MA (w/o MA), we found a 
performance improvement of 21.2% that was obtained by 
the Message Aggregation technique. We also compared 
our multiprocessor solutions with a single-processor one 
and we found that the version P6 without MA achieved 
56.4% of performance improvement compared to a 
single-processor one (236.8 Mcycles/second), while the 
configuration P6 with MA achieved 65.7%.  
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Figure 12: Performance results for H264 decoder 
 
Secondly, we analyzed the impact of the Message 

Aggregation in the number of required communication 
channels. Figure 13 illustrates the effect of this technique 
for different configurations of the H264 model, varying 
the number of processor from two to six. The results show 
that Message Aggregation achieved a reduction on the 
number of inter-processor channels around 90% for all 
configurations (P2-P6). For example, in case of four CPU 
subsystems (P4), the achieved reduction is from 70 to 5 
channels (92.8%). These reductions depend on the 
granularity of each block that composes the system and 
the chosen partitioning. 

The reduction on the number of channels impacts on 
the software infrastructure required for communication, 
reducing data memory size. Figure 14 shows the results 
for data memory size obtained for the five versions of the 
H264 CAAM. These results show a reduction of 15.9% 
and 14% in the four CPUs (P4) version and in the six 

CPUs (P6) version, respectively, when Message 
Aggregation is applied.  
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Figure 13: Reduction on the number of channels 
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Figure 14: Reduction on data memory size 
 

Table I: Data memory size in bytes for the solution P4  
 

 Without MA With MA 
Constant 2172 2172 
Channel 3360 240 
Buffer 6006 7320 
Total 11538 9732 

 
Table I shows the data memory size obtained for the 

generated code with four CPUs (P4). As it is a 
multiprocessor solution, the data memory is composed of 
Constant, Buffer and Channel memories. The constant 
memory represents constant tables such as VLD table 
used in the decoding algorithm. The buffer memory 
represents the memory required to implement the 
Simulink data links and the channel memory represents 
the channel data structures required to promote the 
communication. The results show that Message 
Aggregation can achieve a large reduction on the data 
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structures used to manage channels (channel in Table I), 
92.8% in case of version P4, by the reduction on the 
number of required channels. It means a reduction of 14% 
in the total data memory size. Note that the required 
buffer memories increase by 17% with Message 
Aggregation. The reason for this small increasing is 
explained in section 3.4.  

In addition, Message Aggregation also improves code 
size by the reduction on the code lines required to declare 
and initialize channels and to invoke communication 
primitives in Main and Thread codes. As in this 
experiment, these codes represent a small part of the total 
code size, which also includes HdS and application 
libraries, this improvement is too small. In case of P4 
version, where Thread and Main codes represent only 
11.5% of the total code size, MA achieves a reduction of 
only 0.5% of the total code size. Regarding only Thread 
and Main codes, a reduction of 4.4% was observed.  

Experiment results show that Message Aggregation 
can achieve a large reduction on the number of inter-
processor data transfers for a fine-grain system 
specification. However, this optimization cannot achieve 
proportional reduction on the number of cycles required 
to process one macroblock. One reason for this is because 
Message Aggregation can increase the message latency in 
some cases, thereby decreasing performance. In terms of 
data memory size, Message Aggregation presents a 
reduction around 14%. 
 

5. Conclusion 
 

The communication on multiprocessor system can 
present a huge impact on the whole system performance. 
We presented here a code generation method that applies 
one communication optimization technique called 
Message Aggregation to reduce communication overhead. 
Through the experiments, we showed that this technique 
reduces the overhead in terms of execution time by the 
reduction on the number of messages and memory size by 
the reduction on the required software infrastructure to 
promote the communication.  

The experiments results show that for big fine-grain 
specifications like used in our H264 decoder, we can 
achieve improvements around 20% for performance 
applying the Message Aggregation technique during the 
code generation. In terms of memory, we achieved a 
reduction around 14% for data memory size and 4% for 
code size. Note that for a small model, where the number 
of channels is not really large, this technique can not 
achieve similar improvements. 

However, the Message Aggregation technique can 
decrease the performance because data is not sent to the 
target function nodes as soon as it is available. To address 
this problem, a global scheduling policy that can consider 

both the communication overhead reduction and message 
latency problem is required. This will be addressed as 
future work. 
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