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Abstract

This paper describes an OpenVG-compliant hardware
rasterizer with configurable anti-aliasing and multi-window
scissoring. This rasterizer requires 129K logic gates with
2KB on-chip SRAM and provides satisfactory image qual-
ity with a reasonable rasterizer speed at the operational
frequency of 100MHz. In this paper, we propose an op-
timized scanline algorithm, which provides better perfor-
mance than the conventional scanline algorithm with super-
sampline while maintaining the flexibility and the hardware
simplicity. We also propose a fast LUT-based scissoring al-
gorithm, which has zero-latency in most of the cases. The
hardware implementation of this rasterizer is explained in
detail.

1. Introduction

OpenVG [6] is a new royalty-free open standard API
for hardware-accelerated two-dementional vector and raster
graphics. Along with many other features, it provides the
drawing functionality required by a SVG Tiny 1.2 viewer
as well as some dynamic features for map display.

Among all stages of the OpenVG pipeline, the rasteriza-
tion stage is very important, which usually contributes more
than 50% of the rendering time. Rasterization in OpenVG
is essentially filling polygons (probably complex and self-
intersecting ones) [5]. The OpenVG specification defines
three levels of rendering quality: NONANTIALIASED,
FASTER, and BETTER, each of which uses a different anti-
aliasing scheme.

The anti-aliasing techniques proposed in most of the lit-
eratures target at the 3D graphics applications. Some of
them either require the polygons to be non-selfintersecting
([2],[10]), or employ difficult polygon decomposition to
convert complex polygons into simple ones [4]. Even
though others aim at or can be applied to 2D graphics, they

are not optimized for hardware implementation [3] or they
require large on-chip memories [8]. None of these methods
is suitable for a low-cost vector graphics hardware rasterizer
targeting at mobile devices.

This paper presents a OpenVG-compliant hardware ras-
terizer with the following features:
• It supports both odd-even and non-zero fill rules.
• It also supports two different anti-aliasing schemes as

well as non-antialiased rendering to realize all the three
rendering qualities.

• It uses an optimized scanline algorithm which provides
better performance than the conventional one while
maintaining the flexibility and hardware simplicity.

• It requires small on-chip memory (2KB).
• It has a small gatecount (129K) while it provides desir-

able image quality with satisfactory rasterizing speed
at the operational frequency of 100MHz.

The rest of this paper is organized as follows. Section
2 explaines the optimized scanline algorithm, which is an
extension of our previous work [5]), and describes its hard-
ware implementation. Section 3 introduces the LUT-based
scissoring algorithm used in our rasterizer, after explaining
why we integrated scissoring into the rasterizer. Section 4
presents some images and their rasterizing time as refer-
ences, which is followed by the conclusion.

2. Rasterization

2.1. Basic scanline algorithm with supersampling

In supersampling, more sample points are evaluated in-
stead of using the pixel center as the only sample point,
which is the case when anti-aliasing is disabled. Each sam-
ple point has some contribution (sample weight) to the in-
tensity of this pixel (coverage value). At each pixel, every
sample point is examined on whether it is inside the polygon
or not. If it is, its sample weight is added to the coverage
value of this pixel. For example, in Figure 1, at pixel p0, 6



out of 8 sample points (denoted as black dots) are inside the
polygon, so the coverage of this pixel is 6/8 if each sample
point has an equal weight of 1/8.
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Figure 1. Illustration of supersampling.

To determine whether a sample point is inside the poly-
gon or not, we draw a ray (conceptually) from this point to
the left horizontally, and check all edges crossing this ray.
Its winding count, which is initially zero, is increased by 1 if
the direction of a crossing edge is upward, and decreased by
1 if downward. The odd-even rule says that a point is inside
the polygon if its winding count is odd, while the non-zero
rule reaches the same conclusion if it is not zero. Figure 2
illustrates the difference between these two fill rules when
they are applied to a pentacle-shape polygon. OpenVG sup-
ports both odd-even and non-zero rules.
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Figure 2. Illustration of two fill rules.

The sample pattern determines the number of sample
points within one pixel and their positions. The N-Queens
sample pattern used in this accelerator uses an N ×N sam-
ple grid within a pixel and each sample point is placed such
that no other sample point occupies the same row, column,
or diagonal of the grid [7], as shown in Figure 1(8-Queens)
and Figure 4(4-Queens). A weighting function W (xd, yd)
is used to determine the sample weight of each sample
point, where xd and yd are the distances of this sample point
from the pixel center along the x and y axes, respectively.
Such weighting function is also called as a reconstruction
filter in OpenVG specification. Two kinds of reconstruction
filter are used in our rasterizer: box filter (W (xd, yd) = 1)
and Gaussian 1

2 filter (W (xd, yd) = 2−4(x2
d+y2

d)). The box
filter has an effective support radius (filter radius) of 0.5,
which covers only one pixel; while the filter radius of Gaus-
sian 1

2 filter is 1.5, which covers 9 pixels, so the coverage
calculation of a pixel should take the sample points in the
neighboring pixels into consideration. Therefore, a Gaus-
sian 1

2 filter usually results in a lower rasterizing speed and
a better image quality with smoother edges than a box filter
does. The comparison of the resulting image quality and
rasterizing speed of these two filters is given in Section 4.

2.2. Denotations

Before introducing our optimized scanline algorithm,
some denotations and terminologies are introduced to fa-
cilitate its description.
• Active edge: an edge intersecting or totally lying inside

the vertical sample range (e.g. AE1–AE4 in Figure 4).
• minx, maxx:as Figure 3 shows, the line on which

an active edge lies has two intersections with the re-
construction filter; the minx (maxx) denotes the x-
coordinate values of the left (right) intersections.

• pcx: the x-coordinate value of center of pixel p..
• ppcx: the x-coordinate value of center of the pixel that

precedes p.
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Figure 3. Illustration of the denotations.

2.3. Data structure

The data structure of an active edge in our algorithm in-
cludes the following items:
1) AEy0: y-coordinate of the lower vertex.
2) AEy1: y-coordinate of the upper vertex.
3) AEx0: x-coordinate of the lower vertex.
4) AEminx: (minx - filter radius).
5) AEmaxx: (maxx + filter radius).
6) AEdy: (AEy1 − AEy0).
7) AEdx: (AEx1 − AEx0), where AEx1 is the x-

coordinate of the upper vertex.
8) AEdirection: indicates whether this edge is upward

or downward.
While the necessary data structure to represent an active

edge is {AEx0, AEy0, AEx1, AEy1}, the one used in our
algorithm occupies 8 words, which is twice the size of the
basic one. However, this structure enables us to avoid a lot
of vain computations and memory accesses as discussed in
Section 2.4 and Section 2.5, which speeds up the rasteriza-
tion substantially.

2.4. Optimized algorithm

Though the basic scanline algorithm is easy to imple-
ment, it requires checking every sample point against every
edge, which is too costly to be practical. Some observations
help us optimize the algorithm, as introduced below.

Observation I. For all piexels on a certain scanline, only
the active edges can affect their coverage values.



Optimization I. When a new scanline is to be processed,
go through all the edges and put all the active edges into an
active-edge table (AET). Sample points are checked against
active edges instead of all edges.

Observation II. The inside-outside testing suggests that
the active edges of interest are those that cross the conceptu-
ally horizontal ray drawn from the sample point to the left.

Optimization II. When the coverage value of a pixel p is
computed, we ignore all the active edges with (AEminx >
pcx), for those edges are totally on the right side of cur-
rent reconstruction filter. To skip the irrelevant active edges
without going through all of them repeatedly, we should sort
the active edges by AEminx in advance.

Observation III. Only the active edges intersecting the
filters applied to a pixel p and its neighboring pixels can
make the coverage values of these two pixels different.
For example, in Figure 4, active edge AE1–AE99 have the
same effect on the winding counts of pixel p1 and p2; only
AE100–AE103 make the winding counts of these two pix-
els different, which results in different coverage values.

Optimization III. When a pixel p is being processed, we
record the winding counts when the first active edge with
AEmaxx greater than pcx (denoted as AEstart) is encoun-
tered. 1 When the next pixel is to be processed, the exami-
nation starts from AEstart and the winding counts are accu-
mulated based on the numbers stored previously. This pro-
cess is illustrated in Figure 4 (assuming the winding counts
before AE100 is checked are 0, 1, 0, 1 from top to bottom).
As shown in Figure 4, instead of examining more than 100
active edges repeatedly, only a few active edges need to be
checked at each pixel, which reduces the computation as
well as the number of memory accesses substantially.
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Figure 4. Illustration of Optimization III.

Observation IV. Let the minimum AEminx which is
greater than pcx be m; if pixel p is totally inside or to-
tally outside the polygon, all pixels between p and (�m�, py)
have the same inclusion status with p.

1All active edges before this one are totally on the left side of the re-
construction filter without any intersection. The winding counts should be
recorded before sample points are checked against this active edge.

Optimization IV. If a pixel p has a coverage value of 1
or 0, assign the same value to every pixel between p and
(�m�, py) without examination.

Putting all the optimizations together, the algorithm for
filling pixels on a scanline is described as follows.
1) Go through all the edge data and construct an active

edge table.
2) Sort the active edges by AEminx. Start to process the

leftmost pixel from Step 3.
3) At the current pixel p, check each related sample point

on whether it is inside the polygon or not. If it is,
add its sample weight to the coverage value of this
pixel. This step starts from the first active edge with
(AEmaxx > ppcx), and ends with the last active edge
with (AEminx < pcx). Winding counts are accumu-
lated based on the numbers recorded when the previous
pixel was processed. When the first active edge with
(AEmaxx > pcx) is encountered, record the index of
this active edge and the winding counts for later use.

4) If the coverage value of this pixel is 0 or 1, assign the
same value to every pixel between p and (�m�, py),
where m is the minimum AEminx which is greater
than pcx.

5) Process the next pixel from Step 3 repeatedly until the
horizontal bound of the current viewport is reached.

The algorithm presented above is a universal algorithm
suitable for all reconstruction filters and sample patterns.
To implement a new reconstruction filter or/and a new sam-
ple pattern, we only need to update the data of filter ra-
dius and sample positions as well as their sample weights.
Since such information can be stored and altered easily in
main memory, the anti-aliasing scheme can be configured
by users as long as they provide valid parameters. This con-
figurability enables flexible control of the trade-off between
quality and rendering speed.

2.5. Hardware implementation

The rasterization stage was accelerated substantially on
the algorithm level as described in the previous section.
Here we describe the hardware implementation which ac-
celerates it further by reducing the computation time as well
as the memory accesses.

2.5.1. Reducing the computation time. To determine
whether or not an active edge crosses the horizontal ray
from a sample point (Sx, Sy) to the left, we need to find
the x-intersection of this edge with the line on which the
ray lies using the following equation:

x = AEx0 +
(Sy − AEy0)(AEx1 − AEx0)

(AEy1 − AEy0)
(1)

The active edge intersects the ray if Sx is greater than x.
This method requires five additions/substractions, one mul-



tiplication and one division. The following equation [9] is
used to avoid the time-consuming division:

n = (Sx − AEx0)(AEy1 − AEy0) −
(Sy − AEy0)(AEx1 − AEx0) (2)

The active edge intersects the ray if (n > 0). Since
(AEx1 − AEx0) and (AEy1 − AEy0) can be pre-
computed during the AET construction, they are included
in the active edge data structure (denoted as dx and dy re-
spectively). Hence the computation time is reduced further.

2.5.2. Reducing the number of memory accesses. The
memory accesses mainly occur in the following three pro-
cedures: 1) going through all edge data to construct AET;
2) sorting active edges by AEminx; 3) reading active edge
data when the sample points are checked against them. We
discuss how the rasterizer accelerate these procedures in the
following.

Reading edge data. Two buffers, each of which has six-
teen 32-bit registers, are used to buffer the data. When the
data in one buffer are being processed, the buffer controller
fetches the next 16 words and stores them in the other buffer.
To minimize the average memory access latency, 16-burst
mode [1] is used. Our simulation shows that such double-
buffering overlaps more than 94% of the memory access
time with the computation time of AET construction, which
results in a speed-up of 70%–80% in the Step 1 of our algo-
rithm.

Sorting active edges by AEminx. Sorting requires exten-
sive data movements with frequent memory access. We use
a 2KB SRAM to buffer data and reduce the number of main
memory accesses. In the rasterizer, sorting is divided into
two stages. In the first stage, the data are read into the on-
chip SRAM and sorted with a selection-sort algorithm and
then written back to the main memory. After this step, all
the data in the main memory are organized as sorted blocks,
each of which has a size of 2KB. In the second stage, a
merge-sort algorithm is used to merge all the sorted blocks
in the main memory. By doing so, every relevant data item
in main memory is accessed only 2(1+�log2(

N
2048 )�) times,

where N is the size of active edge table in bytes. The
SRAM used this sorter is reused to cache the active edge
data as introduced below.

Reading active edge data. Note that this procedure starts
from the first active edge with (AEmaxx > ppcx) and ends
with the last one with (AEminx < pcx). The data access
pattern of this procedure is illustrated in Figure 5. Some
active edges accessed when pi was processed are accessed
again when pi+1 is being processed, as shown in Figure 4
and marked by a shaded area in Figure 5. The SRAM used
in the sorter is reused to cache such active edges. Note
that the re-accessed active edges are always those that have
been accessed most recently. Therefore, the SRAM is used

as a 512-word cyclic cache which only stores the data of
the latest 64 active edges. Two 32-bit registers (initAddr
and endAddr) are used to record the address of the old-
est and the newest active edge data in the cache. A data
item is in the cache if its address (Addr) is in the range of
[initAddr, endAddr], and its address in SRAM i can be
calculated by the following equation:

i = ((Addr − initAddr)/4 + initSramAddr) mod 512
(3)

where initSramAddr is the SRAM address of the oldest
data. If the data item is not in the SRAM, there are two
possibilities: 1) the active edge requested precedes the latest
64 ones stored in the on-chip SRAM (Addr < initAddr);
2) this active edge has not yet been accessed. In the former
situation, the data item is fetched from the main memory but
not stored in the SRAM (we only cache the latest 64 active
edges). In the later situation, the data fetched from the main
memory should be stored in the SRAM, replacing the oldest
data item (if the cache is full) or filling an empty entry (if
otherwise); then initSramAddr, initAddr and endAddr
are updated accordingly.
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Figure 5. Illustration of data access pattern.

Two vector images (Figure 8(a) and Figure 6(c)) are
used to evaluate the efficiency of the cyclic cache. Fig-
ure 8(a) represents an image with subtle details such as
tiger’s whiskers, while Figure 6(c) represents a text or a
relatively sparse image. The profiling result is shown in
Table 1, in which “#active edges” is the sum of the num-
ber of active edges on each scanline, and reading the data
of one active edge (8 words) from main memory is counted
as one memory access. As shown in Table 1, the number
of memory access is reduced substantially and the hit rates
excluding the compulsory cache miss are 100% and 91.3%,
which is impossible to achieve by a conventional cache of
the same size.

Table 1. Performance of the cyclic cache.

Figure #active
edges

#memory accesses
Reduction Hit

Rateno cache with cache
6(c) 8260 30110 8260 73% 100%
8(a) 64972 234769 70604 70% 91.3%



3. Scissoring

Drawing may be restricted to the union of a set of scis-
sor rectangles. All OpenVG implementations are required
to support at least 32 scissor rectangles. In Section 3.1,
we explain the reason why scissoring is implemented in the
rasterizer instead of in a stand-alone stage as the specifica-
tion suggests. And in Section 3.2, an efficient look-up-table
(LUT) based scissoring algorithm is introduced.

3.1. Scissoring in rasterizer

The OpenVG pipeline proposed by the specification sug-
gests that the scissoring stage should be followed by the
rasterization stage. While it is ideal in concept, it is not
efficient in practice as the following discussion shows.

Scissoring and rasterization can be accelerated based by
the following facts:
• We only need to check the pixels against the active scis-

soring rectangles, which are the scissor rectangles hav-
ing intersection with the current scanline.

• If a scanline does not have intersection with any of the
active rectangles, it is invisible, which means the cov-
erage values of all pixels on this scanline do not need
to be calculated.

If scissoring is implemented in a stand-alone stage after
rasterization, the aforementioned optimizations cannot be
performed so that the coverage value of every pixel (even it
is on an invisible scanline) has to be calculated in the ras-
terization stage, and its position has to be checked against
every scissor rectangle (even it is not an active one) in the
scissoring stage, which results in a considerable waste of
time. Therefore, instead of matching the proposed pipeline
stage-for-stage, we integrate scissoring into the rasterizer
to avoid vain computation. This integration eliminates the
FIFO between rasterization and scissoring, which reduces
the on-chip memory. However, it demands rapid scissoring
scheme because rasterization and scissoring are no longer
processed separately in parallel. The scissoring algorithm
used in the rasterizer is introduced in the next subsection.

3.2. LUT-based scissoring

The most straightforward implementation of scissoring
is checking a pixel against all active scissor rectangles, and
if it is inside one of them, its coverage value is passed
to the next stage; otherwise, it is discarded. In the worst
case, when N scissor rectangles are used, a pixel has to go
through N scissor tests, which takes at least N cycles ex-
cluding the memory access time. This computation load
overweights the reduction of computation caused by the in-
tegration of two stages, so it is not suitable for our rasterizer.

We use a LUT-based scissoring algorithm instead, which
has zero-latency in most of the cases, as introduced below.

The basic idea of LUT-based scissoring is using a regis-
ter as a look-up table (LUT), which records the scissoring
status of a range of pixels, with each bit representing a pixel.
If the corresponding bit of a pixel is set, the pixel is inside a
scissor rectangle, so its coverage value is passed to the next
stage; otherwise, it is discarded.

The LUT is constructed when a new scanline is to be pro-
cessed. If a pixel that is currently processed is outside the
range of the LUT, then the LUT is updated. A 64-bit regis-
ter is used as the LUT, which records the scissoring status
of pixel p0 – p63 initially and of pixels p64–p127, after an
update. It will be reused for the next 64 pixels after each up-
date. We use 64 parallel sub-circuits to examine the scissor-
ing status of 64 pixels simultaneously so that it can update
the LUT within one cycle. When there are N active scissor
rectangles, it takes (N + 1) cycles to construct or update a
LUT. Note that the extra one cycle is used to clear the pre-
vious LUT before any active scissor rectangle is checked.
The LUT construction/update can be done in parallel with
the coverage calculation process, which reduces the perfor-
mance overhead further and achieves zero-latency in most
of the cases.

4. Experimental Result

Since no standard measuring metric for vector graphics
rasterizer exists, we provide three types of images and their
rasterizing time (Table 2) as references. Figure 6(a–d) rep-
resent vector text, Figure 7 is a typical animation-quality
image, and Figure 8 is a high-quality static image.

The rendering time was obtained from HDL simulation
on the following two conditions: 1) the rasterizer is simu-
lated without the bus contention effect; 2) the initial main
memory access latency and the access time of each word
are assumed to be 4 cycles and 1 cycle, respectively.

Based on the image quality and rendering time of Fig-
ure 6(a–d), we chose box filter with 8-Queens sample pat-
tern as the anti-aliasing scheme used for FASTER, and
Gaussian 1

2 filter with 4-Queens sample pattern for BET-
TER. The gatecount is 129K (synthesized with Synopsys c©

Design Analyzer, using 0.25µm standard cell library), ex-
cluding the 2KB on-chip SRAM.

5. Conclusion

In this paper, we present a design of low-complexity
hardware rasterizer targeting at vector graphics in mobile
devices. It is fully OpenVG compliant and provides satis-
factory image quality at a reasonable speed. An optimized
scanline algorithm is used in this rasterizer, which provides



better performance than the conventional one while main-
taining the simplicity and flexibility. Scissoring is inte-
grated into the rasterizer to enable the optimization of both
rasterization stage and scissoring stage. A fast LUT-based
scissoring with zero-latency in most of the cases is intro-
duced. This rasterizer can handle the data of more than
100 animation-quality images or 5 high-quality static im-
ages per second at a clock frequency of 100MHz.

Table 2. Rasterizing speed

Figure #active edges
Rasterizing time
(million cycles)

6(a) 2774 0.727
6(b) 8260 1.898
6(c) 8260 1.991
6(d) 13613 4.721

7 4092 0.982
8(a) 64972 19.638
8(b) 64972 18.392

(a) Anti-aliasing disabled

(b) Box filter with 4-Queens

(c) Box filter with 8-Queens

(d) Gaussian 1/2 filter with 4-Queens

Figure 6. Text with different anti-aliasing schemes.

Figure 7. Courtesy of Lauri (FASTER).

(a) (b)

Figure 8. Tiger(FASTER)(a) with 20 scissors (b).
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