
A Mixed-level Virtual Prototyping Environment
for Refinement-based Design Environment

Sanggyu Park, Sangyong Yoon, and Soo-Ik Chae
School of electrical engineering and computer science, Seoul National University

San 56-1 Sillim-dong, Gwanak-gu, Seoul, Korea
{sanggyu, syyoon}@sdgroup.snu.ac.kr

Abstract

The Communication Architecture Template Tree (CAT-
tree) is an abstraction of the specific range of communica-
tion functions and architectures, which can facilitate sys-
tem function capture and communication architecture re-
finement. In this paper, we explain a TLM-RTL-SW mixed-
level simulation environment that is useful for the func-
tional verification of partially refined system models. We
employed SystemC, GNU Gdb and a HDL simulator for the
simulation of CATtree-based TLM, SW and HW, respec-
tively. We also employed a new operating system, DEOS so
that each SystemC-based TLMs can be cross-compiled to
be executed as software models on the target processors.
We evaluated the flexibility and simulation performance of
the virtual simulation environment with an H.264 decoder
design example.

1 Introduction

Recently, several works [1][2][3] have been published
about the refinement-based design (RBD) methodology,
where its system function model is first captured at a higher
abstraction level and then a part of it is refined into an ar-
chitectural model until the whole system is fully refined. A
main concept in this methodology is orthogonalisation:
function from architecture and computation from commu-
nication [4]. Although the orthogonalisation concept was
first introduced for the platform-based design, it is also
important to the refinement-based design. In the processor-
based design such as MPSoC, the orthogonalisation of
function and architecture is obvious because function is
usually implemented in software. For the separation of
computation and communication, researchers have pro-
posed a layering concept to bridge the gap between the
software computation and the hardware communication
system [5].

In many previous works, the FIFO and the bus are as-
sumed for communication although these assumptions limit
the communication design space substantially. The FIFO is
an abstraction of the point-to-point (P2P) communication.
To find an optimal architecture of a FIFO channel, a set of
architecture templates should be provided that covers a

wide range of the possible design space. The bus is a primi-
tive building block in many current system-on-chip designs.
However, the bus is not a good abstraction of communica-
tion because many other communication functions cannot
be captured with the bus model. Furthermore the bus model
already contains too many architectural decisions that limit
the design spaces to be explored.

Many design approaches that employ the hardware li-
braries assume that all necessary hardware components can
be provided. However, it is almost impossible to provide
such hardware libraries for all applications and additional
hardware components should be designed and verified in a
specific design. Therefore a design flow should provide an
efficient design flow for hardware components, which is
utilized in the refinement process.

In one of our previous works [6], we proposed a concept
of Communication Architecture Template Tree (CATtree),
which is a collection of a communication function, its inter-
faces and several architecture templates in transaction, reg-
ister transfer, and software levels. We constructed a set of
CATtrees that covers a wide range of communication func-
tions and architectures. For a communication function that
is captured by a specific CATtree, the designer can refine it
by exploring the architecture templates in the CATtree.
Moreover, the concept of the CATtree makes the computa-
tion modeling easier, especially for RTL hardware model-
ing because a computation can be modeled without com-
munication-related details, which is modeled with a CAT-
tree.

In the process of developing a CATtree-based system
design environment, which will be described in another
paper in the future, we exploited the CATtree library for
communication refinement, a C-to-RTL synthesis tool for
HW computation refinement, DEOS for SW computation
refinement. DEOS is a C++-based light-weight operating
system that enables SystemC TLMs to be directly executed
as software models. Although its basic concept is already
described in [11], the hardware dependent software (HdS)
of DEOS is configured with the SW templates of CATtrees.

In the RBD, it is essential to have a mixed- level simula-
tion environment, which can simulate partially refinement
system models that contain TLMs, RTLs and SWs together.
Therefore, we developed a CATtree-based mixed-level

Proceedings of the Seventeenth IEEE International Workshop on Rapid System Prototyping (RSP'06)
0-7695-2580-6/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Seoul National University. Downloaded on November 11, 2009 at 00:34 from IEEE Xplore. Restrictions apply.

simulation environment by using SystemC, a commercial
logic simulator and a GNU Gdb.

This paper mainly focuses on the DEOS and the mixed-
level simulation environment for the CATtree-based design
flow. The concept of the CATtree and the design flow are
introduced in Section 2. The DEOS is described in Section
3. We explain the mixed-level simulation environment and
evaluated the simulation environment with an H.264 de-
coder design example in Sections 4 and 5, respectively
which is followed by a conclusion.

2 Design Flow using the CATtree

OSCI announced a TLM library that contains FIFO and
handshaking channels. These two channels are not suffi-
cient to capture a current complex communication although
they are essential. Furthermore, the OSCI TLM library does
not provide any architectural information required in refin-
ing the channels. Therefore, we employed the CATtree to
alleviate these problems.

2.1 Concept of the CATtree
A CATtree captures several abstraction levels of a

channel that covers a specific domain of communication
functions and also contains architecture templates, which
are parameterized implementations, for communication
refinement. They can be a composition of channels and
adapters. Two types of adaptors exist. A channel adaptor is
one for matching the difference of protocols or data struc-
tures and an abstraction adaptor is one for matching two
different abstraction levels.

Each architecture template in the CATtree for a channel
has a TLM in SystemC, a RTL model in HDL, and a SW
model in C++. To be able to simulate a mixed-level simula-
tion model smoothly after refining some components from
TLM to RTL in a system, each CATtree should provide
two abstraction adaptors: one from TLM to RTL and the
other from RTL to TLM. Abstraction adapters for SWs are
not needed because a processor model does abstraction
adaptation.

During an H.264 decoder system development, we have
constructed a CATtree library as shown in Table 1 and we
will add more CATtrees to the library in the future so that
we can cover communication functions more effectively.
Although the FIFO CATtree can be a better example be-
cause it is more fundamental and easier to be understood,
the Array CATtree is explained in this paper because the
FIFO CATtree was introduced once in [6]. In its diagram
shown in Figure 1, which is just a part of the Array CAT-
tree, the bus-wired array architecture contains a bus chan-
nel, two channel adapters (ArrayBusMasterAdpt and Ar-
rayBusSlaveAdpt), and an embedded array channel. The

embedded array channel can be refined into the architecture
of RegArray or CachedArray. Similarly, the embedded
array in the CachedArray architecture can be refined into a
bus-wired array architecture.
Table 1 Currently Developed CATtrees

CATtree Name Description

FIFO Point-to-point ordered and synchronized
data transmission

Array Indexed data storage with one writer and
one reader.

Variable Data storage with (possibly) multiple writ-
ers and (possibly) multiple readers.

Event Point-to-point event notification with sim-
ple and light handshaking protocol.

Handshaking
(H/S)

Offset-addressable point-to-point hand-
shaking data transmission.

Shared bus A group of handshaking channels
Shared event A group of event channels.

Block-read FIFO An augmented FIFO channel which can
read fixed number of data items.

Block-write FIFO An augmented FIFO channel which can
write fixed number of data items.

Multi-read FIFO An augmented FIFO channel which can
read arbitrary number of data items.

Multi-write FIFO An augmented FIFO channel which can
write arbitrary number of data items.

2D array An augmented array channel which has
two dimensional indices.

3D array An augmented array channel which has
three dimensional indices.

Packet FIFO An augmented FIFO channel which can
store packetized data stream.

2.2 CATtree-based Design Flow
Figure 2 shows the CATtree-based design flow in

which the designer partitions computation and communica-

ArrayAW AR

RegArrayAW AR

CacheAW AR

ArrayAW AR

AW AR

CachedArray

On-chip SSRAM
ControllerAW AR

On-chip
SSRAMO

O

SSRAM Array

ArrayBus
MasterAdptAW AR

ArrayBus
SlaveAdpt

M

Bus-wired Array

M

S

S

ArrayAW AR

AW ARSDRAM
ControllerAW AR

SDRAMD

D

SDRAM Array

Passive port

Active port

AW Array write interface

AR Array read interface

O On-chip SSRAM interface

D External SDRAM Interface

M Bus-Master Interface

S Bus-Slave Interfacce

Figure 1 Array CATtree

Proceedings of the Seventeenth IEEE International Workshop on Rapid System Prototyping (RSP'06)
0-7695-2580-6/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Seoul National University. Downloaded on November 11, 2009 at 00:34 from IEEE Xplore. Restrictions apply.

tion first from the informal specification in the function
capture step, which is relatively easier because the design-
ers decide only what is captured with the CATtree library
as communication functions. Therefore, to develop a sys-
tem TLM, the designer should describe computation TLMs
by themselves and integrate them with the communication
TLMs in the CATtree library.

 After integrating a system TLM, the designer should
execute and improve it through verification and validation.
Therefore, it is essential to construct a complete set of test-
benches, with which the correct-by-construction can be
confirmed easily in the architecture refinement process.

Informal specification

Computation TLM

CATtree Library

FIFO Array
Variable Event

Bus ...

System TLM Model

verification

validation

HW-SW
Partitioning

Component
RTL

High-level synthesis
Manual HDL coding

Component
RTLComputation

RTL

Processor-aware
system model

processor-aware
communication refinement

Communication
Architecture Refinement

Implementation

verification

RTL

TLM

TLM

TLM

TLM

TLM

SW

SW

Directly used
w/o modification

Figure 2 Simplified design flow of SoCBase-DE
In the computation refinement step, computations are

partitioned into hardware and software. For a computation
function mapped into hardware, we can reuse the hardware
components if it is readily available. If not, however, hard-
ware models should be newly described in RTL. Designing
the communication part such as bus interfaces for a new
computation component is known to be relatively complex.
In the design flow, the communication parts are captured
and refined only with already verified CATtrees. Thus, in
the verification, the designer can focus on the computation
function and its RT-level interfaces. Moreover, the system
TLM can be used as a testbench for the verification of com-
putation RTLs by inserting necessary abstraction adapters.
The abstraction adapter can provide randomization tech-
niques proposed in [10] with which the RT-level interfaces
can be verified more thoroughly.

If a computation function is refined into software, its
SystemC TLM is directly used as a software model with the
help of a new operating system, DEOS described in the
next section. Hardware and software computations can be

refined separately, as shown Figure 3. Therefore, it is nec-
essary that any intermediate models should be able to be
executed in a mixed-level simulation environment, which
will be described in Section 4. After finishing the software-
hardware partition, the designer should refine communica-
tion and find better communication architecture by using
the architecture templates of CATtrees in the design flow.
We are still working on several issues on this communica-
tion refinement, which will be covered in the future.

3 DEOS and Software Refinement

DEOS, which is a C++-based light-weight operating
system kernel, is specifically designed to enable CATtree-
based SystemC computation models be executed on a target
microprocessor. Similarly to the approach of SPACE [11],
SystemC TLMs are cross-compiled and executed on the
target processors. However, there are subtle differences
between SPACE and DEOS. In SPACE, the authors as-
sume the communication model to be either Un-timed
Functional (UTF) or Timed Functional (TF) channels as an
abstraction of the bus. In contrast, DEOS provides more
extensive communication models. Moreover, DEOS can
execute SW models with multiple inputs and outputs
whereas SPACE supports only a UTF with an input and an
output. DEOS can configure the Hardware dependent
Software (HdS) flexibly with the SW templates of CAT-
trees.

A software computation, which is embedded in a mi-
croprocessor, requires processor-aware communication
architecture. In the communication viewpoint, however, the
interface of a processor is somewhat inflexible and limited.
Conventional processors communicate with other proces-
sors or hardware components only through one or two bus
master interfaces and one or two interrupt signals. All the
channels of a SW computation that communicates with a
HW component or a SW component mapped to another
processor should be refined into the processor-aware archi-
tectures. For example, a FIFO channel should be refined
into the bus-wired FIFO architecture [6].

As shown in Figure 3, an array channel should be re-
fined into the bus-wired array architecture. In an example
for a processor-aware architecture refinement, shown in
Figure 3, there are four computations (CMPTA, CMPTB,
CMPTC, and CMPTD) connected by three FIFO channels
(FIFOA, FIFOB and FIFOC), where CMPTA and CMPTB is
implemented in software and CMPTC, and CMPTD remain
in the transaction level. FIFOA and FIFOC are refined into
the master-write bus-wired FIFO respectively, which is a
composition of a bus FIFO sender, a bus FIFO receiver
adapter, a H/S channel, and an event channel. FIFOB is
refined into the master-read bus-wired FIFO, which is a

Proceedings of the Seventeenth IEEE International Workshop on Rapid System Prototyping (RSP'06)
0-7695-2580-6/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Seoul National University. Downloaded on November 11, 2009 at 00:34 from IEEE Xplore. Restrictions apply.

composition of a bus FIFO reader, a bus FIFO keeper, a
H/S channel, and an event channel.

CMPTA

CMPTCFIFOAW W R R

CMPTD

FIFOBR R W W

CMPTB FIFOCW W R R

Bus-FIFO
Sender(SW)

Bus-FIFO
Receiver

Bus-FIFO
Reader(SW)

Bus-FIFO
Keeper

Bus-FIFO
Sender(SW)

Bus-FIFO
Receiver

M SM S

M

M

M

S

S

S

M

M

M

S

S

S

W

R

W

R

W

R

CMPTA
(SW)

W

R

CMPTB
(SW) W

CMPTCR

CMPTD

W

R

A

A

A

E

E

E

eventA E

M SM S

A E

A

A

A

E

E

E

Generic RISC
processor

Application Software Hardware
dependent SW

Operating
System

Interrupt
Manager

Interrupt
Controller

Shared
Bus

Master

Shared
Bus

Slave

(a) Function Model

(b) Architecture refined model

Communication Hardware

A

M

Figure 3 Example function model and its processor-
aware architecture

The three event channels are grouped and mapped into a
shared event CATtree. The architecture of the shared event
CATtree can be mapped into a composition of an interrupt
manager, an interrupt controller, an event channel, and an
H/S channel. In Figure 3, the interrupt manager is a basic
service of DEOS.

Four H/S channels (three from bus-wired FIFOs and
one from a shared event channel) are grouped and mapped
into a shared bus CATtree, A shared bus can be a composi-
tion of a shared bus master, a shared bus slave and an H/S
channel. The shared bus master adapter is embedded in a
processor. The shared bus can be refined into a crossbar
switch or a NoC. Many researchers have emphasized the
automatic synthesis of shared bus architecture [12], which
can be easily adapted in the simulation environment.

The performance of SW templates is a critical issue. In
fact, many researches on MPSoC design methodology tar-
geted to its optimization, which is not a trivial problem.
However, current SW templates are not yet optimized,
which will be one of our future works.

4 Mixed-level Simulation Environment

The mixed-level simulation environment can execute
SystemC-based TLMs, hardware models in HDL, and SW
models. The SW models are running on the instruction set
simulators (ISS) of a target processor. We used GNU Gdb
as an ISS because of following reasons:

Gdb contains 19 processor models including ARM,
MIPS, and PowerPC etc.
Gdb provides source-level debugging feature.

We can modify source code to add several verification
features including architecture-aware profiling.
GDB is an open source and we can construct inexpen-
sive design environment.

The mixed-level simulation flow is basically another
hardware-software co-simulation environment that supports
TLM simulation additionally. There are many works on the
mixed-level simulation environment [2][11][13]. Here we
describe the mixed-level simulation environment that uses
the TLMs of CATtrees.

4.1 TLM-RTL Co-simulation
We assume that all HWs are described in HDL because

it is a more popular language than SystemC. The abstrac-
tion adapters, which are inserted after computation and
communication refinement, translate transaction function
calls into RT-level signal activities, and vice versa. An ab-
straction adapter is a SystemC module whose RT-level in-
terface is modeled using sc_signal channel. A RTL model
in HDL can be connected to an abstraction adapter through
a co-simulation linker (CSL).

The CSL can be divided into three parts: a TLM-to-IPC
interface, a RTL-to-IPC interface, and a named pipe as an
inter-process communication (IPC). In our approach, the
TLM-to-IPC interface sends/receives the sc_signals to/from
the abstraction adaptors and creates a virtual clock to syn-
chronize the SystemC adaptors with the logic simulator.
The TLM simulator should control the time to synchronize
the logic simulator and the ISS. In commercial logic simu-
lators that provide built-in SystemC simulation feature, the
sc_signals in TLM can be directly connected. Even in such
case, the CSL is still required to use the source-level de-
bugger for TLM debugging.

4.2 TLM-SW Co-Simulation
When a computation function is refined into SW, its

channels should be also refined into a processor-aware ar-
chitecture that contains adapters either in software or in
hardware. In the TLM-SW co-simulation, all SW computa-
tions and adapters are obviously executed in the target
processor ISS of Gdb. Software models run in the ISS can
communicate the TLMs in SystemC though a processor
BFM, that is, a CSL for TLM-SW co-simulation.

Synchronization between the ISS and the TLM simula-
tor is required when a SW model accesses to a TLM model.
A simple solution is to synchronize the TLM and ISS at
every clock cycle although it is too slow due to the IPC
synchronization overhead. Optimistic ISS simulation and
role-back method [14] was useful for SW-RTL co-
simulation because an ISS is usually an order-of-magnitude
faster than a logic simulator. However, this method cannot
be applicable to the TLM-SW mixed simulation because a

Proceedings of the Seventeenth IEEE International Workshop on Rapid System Prototyping (RSP'06)
0-7695-2580-6/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Seoul National University. Downloaded on November 11, 2009 at 00:34 from IEEE Xplore. Restrictions apply.

TLM simulation is usually faster than an ISS simulation. A
simple but effective method is to synchronize periodically
after the ISS executes a pre-determined number of instruc-
tions. This method looses some accuracy for the sake of
better simulation speed. In the simulation environment, the
TLM-SW synchronization is performed in the following
cases.

1. When the ISS accesses to TLM or RTL
2. When the ISS has executed for the pre-defined num-

ber of instructions.
3. When DEOS enters an idle state because all SW

threads are waiting external events.
For the third case, we modified Gdb to handle it with a

special software interrupt.

SystemC

CA

CC

CB

CD

a

e

b dc

SystemC

CA

CC CD

a

e

b c

CBcosim
linker
(TLM) d

Logic Simulator

cosim
linker
(RTL)

named
pipe

(a) Transaction level simulation (b) TLM-RTL co-simulation

SystemC

CA

CC

CD

a

c

cosim
linker
(TLM)

named
pipe

b1

Processor
BFM

e1

ARM-GDB

DEOS
(for ARM)

named
pipeb2 e2

(c) TLM-RTL-SW co-simulation

clk

CB

d

Logic Simulator

cosim
linker
(RTL) clk

Figure 4 Mixed-abstraction simulation of SoCBase-DE

4.3 Automatic Transaction Compare (ATC)
We provide the Automatic Transaction Compare (ATC)

feature that compares data written into an abstract channel
with data written into a refined channel. The designer can
configure a channel model to store all the written values
into a file, that is, a Reference Data Stream (RDS). This
RDS is a reference data to be checked by its refined chan-
nel model. The designer can control generating and com-
paring the RDS by configuring the template models for the
purpose of verification.

5 Experiment

In this section, we also compared the speed of TLM,
TLM-SW, and TLM-RTL co-simulations and RTL-SW
virtual-prototype simulation for an H.264 decoder example.

5.1 An H.264 Decoder System
We designed an H.264 baseline decoder by using the

design flow. We modeled twelve computation functions
including a parser (PARSER), a variable length decoder
(VLD), an inverse transform and inverse quantization
(ITQ) unit, an inter-picture prediction (INTER) unit, an
intra-picture prediction (INTRA) unit, and a de-blocking
loop filter (DF). These computation functions communicate
each other though 117 channels. We used all the CATtrees
in Table 1 except the 2D array CATtree.

The partition of hardware and software was performed
manually. We decided that only the parser was imple-
mented in software and all the other components in hard-
ware to achieve a higher performance. The current imple-
mentation of the H.264 decoder can decode one macrob-
lock in 3,110 cycles on the average, including the overhead
of external SDRAM accesses.

5.2 Simulation Performance Comparison
For the simulation, we used MR3_TANDBERG_B bit-

stream of QCIF 300 frames. The host platform was a Linux
workstation with a 2.4 GHz Pentium4 CPU and a 1GB
memory. Table 2 summarizes the simulation results of sev-
eral configurations. We used Mentor Graphics ModelSim®
as a logic simulator. The logic simulator-side CSL was im-
plemented using the Foreign Language Interface (FLI) of
ModelSim®.
Table 2 Performance of mixed-abstraction simulation

No Configuration Cycles Sim.
Time

1 ITU-T JM8.2 Reference C - 4 sec
2 TLM function model - 153 sec
3 Architecture refined TLM - 237 sec
4 TLM with PARSER software* 68.0M 311 sec
5 TLM with VLD hardware 5.03M 546 sec
6 TLM with ITQ hardware 5.08M 474 sec
7 TLM with INTER hardware 16.0M 5838 sec
8 TLM with INTRA hardware 1.4M 339 sec
9 TLM with DF hardware 15.2M 3972 sec

10 Parser SW with all hardware 112M 34950 sec
* ISS-TLM synchronization period = 100

The transaction level function model (2) is 40 times
slower than reference C implementation (1) because the
SystemC-based TLM is a multi-threaded program that in-
curs much context switching and synchronization overhead
and the TLM templates of channels contain several services
for easier functional verification including the ATC tech-
nique.

The TLM-SW co-simulation (4) is slightly slower than
the architecture refined TLM (3) because the simulation
load of ISS is relatively low and the synchronization over-

Proceedings of the Seventeenth IEEE International Workshop on Rapid System Prototyping (RSP'06)
0-7695-2580-6/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Seoul National University. Downloaded on November 11, 2009 at 00:34 from IEEE Xplore. Restrictions apply.

head between TLM and ISS is not so high. When synchro-
nization period was 1, 10, 100, 500 and 1000, the simula-
tion times were 1,005 second, 420 second, 311 second, 310
second, 308 second, respectively. In general, the time unit
of SW is millisecond. Thus, a timing skew of 10 or 100
cycles is negligible.

In the experiments from 5 to 9, we refined each major
computation to verify its RTL description one by one. Be-
cause only one computation is in RT-level and the rest of
functions are remained in TLM in each of these experi-
ments, the total clock count is a good performance measure
of that computation. Therefore, we checked the clock cycle
count to improve the performance of each computation. In
these configurations, the communication is still in TLM and
the communication-related overhead including the latency
of memory accesses is not included in the cycle counts.

In experiment 10, the system model has a completely
refined architecture. Its simulation speed is very slow be-
cause all channels are refined into hardware. The simula-
tion cycle count contains the overhead of the refined chan-
nels including the latency of external SDRAM memory
accesses.

From the results of these experiments, we confirmed
that the virtual prototyping environment supports refine-
ment-base design and verification.

6 Conclusion

In this paper, we briefly introduced the concept of
CATtree and a refinement-based design flow that supports
mixed-level virtual prototyping and effective functional
verification. We explained that user-described TLMs can
be used as SW on a target processor by the help of DEOS.
With DEOS and the SW templates in the CATtrees, the
hardware dependent software (HdS) is configured, which is
compatible with the refinement-based design methodology.
For the verification of partially refined system models, we
constructed a TLM-RTL-SW mixed-abstraction simulation
environment using CATtree library, SystemC, a commer-
cial logic simulator and a Gdb. With experiments, we
showed that the simulation environment provides reason-
able simulation performance with great flexibility.

References
[1] S. Abdi, D. Gajski, “Automatic communication refinement

for system level design”, Proc. of 40th Design Automation
Conference, pp. 300-305, 2003.

[2] I. Petkov, A. Jerraya, “Systematic design flow for fast hard-
ware/software prototype generation from bus functional
model for MPSoC”, Proc. 16th RSP, pp.218-224, 2005.

[3] V. Reyes, W. Kruijtzer, “CASSE: A system-level modeling
and design space exploration tool for multiprocessor system-

on-chip”, Proc. of the EUROMICRO systems on digital sys-
tem design, 2004

[4] K. Keutzer, A. Sangiovanni-Vncentelli, “System level de-
sign: orthogonalisation of concerns and platform-based de-
sign”, Trans. on computer-aided design of integrated circuit
and systems, Vol. 19, No. 12, Dec. 2000

[5] A. Jerraya, W. Wolf, “Hardware/Software interface codesign
for embedded systems”, IEEE computers. Feb. 2005.

[6] S. Park, S. Chae, “Reusable component IP design using re-
finement-based design environment”, Proc. of 11th ASP-DAC,
Jan. 2006.

[7] OSCI, “Functional specification for SystemC 2.0”, 2002
[8] A. Rose, J Femandez, “Transaction level modeling in Sys-

temC”, Apr. 2005.
[9] S. Edwards, A. Sangiovanni-vincentelli, “Design of embed-

ded systems: formal models, validation, and synthesis”, Proc.
of the IEEE, Vol. 85, No.3, Mar. 1997.

[10] S. Park, S. Chae, “An open source based integrated frame-
work for functional verification of system on chip”, Proc. of
16th RSP, 2005.

[11] J. Chevalier, F.Boyer, “SPACE: A hardware/software Sys-
temC modeling platform including an RTOS”, Forun on de-
sign languages, Sep. 2003.

[12] K. Lahiri, S. Dey, “Design space exploration for optimizing
on-chip communication architectures”. Trans. on computer-
aided design of integrated circuits and systems, Vol. 23, No.
6, Jun. 2004.

[13] CoWare, “ConvergenSC technical overview”,
http://www.coware.com/products/convergensc.php

[14] Y. Ahn, K. Choi, “An efficient simulation environment and
simulation techniques for Bluetooth device design”, Design
automation for embedded systems, Vol. 8, No. 2, pp. 119-
138, Sep. 2003.

Proceedings of the Seventeenth IEEE International Workshop on Rapid System Prototyping (RSP'06)
0-7695-2580-6/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Seoul National University. Downloaded on November 11, 2009 at 00:34 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

