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Abstract 

This paper describes SoCBase-VL, which is a C/C++ 

based integrated framework for SoC functional verification. 

It has a layered architecture which provides easier test-

bench description, automatic verification of bus interfaces 

and seamless testbench migration. This framework does not 

require verification engineers to learn other verification 

languages as long as they have sufficient knowledge on 

both C/C++ and SystemC. We have confirmed its useful-

ness by applying it to a TFT-LCD Controller verification.  

1 Introduction

In the dynamic verification, a set of stimuli is applied to 

a design and then, its responses are compared to the corre-

sponding correct outputs to check its equivalence or cor-

rectness. This verification approach requires a testbench 

that generates stimuli and checks correct outputs. Thus, the 

quality of verification depends on the quality of the test-

bench. As the designs are getting more complex, however, 

the difficulty of authoring the testbenches is continuously 

growing even more rapidly.  

The difficulties related to the testbench design can be 

summarized as follows: 

As the number of the state in a component increases 

linearly, the number of test cases increases exponen-

tially. Therefore, manual enumeration of each test 

case is not feasible. 

Several models for a component may be required at 

different abstraction levels. A testbench for each 

model should be re-designed to verify the model.  

Describing a testbench often requires a deep and thor-

ough understanding on domain-specific knowledge. 

e.g. Bus Specification.  

A quantitative measure of the quality of verification is 

needed. Otherwise, the quality of verification tends to 

depend on that of verification engineers.  

To alleviate those problems, many researchers and EDA 

vendors offer tools for testbench authoring [1-5]. The Sys-

temC Verification Library (SCV) is an extension of Sys-

temC for easier testbench authoring which provides con-

strained randomization and transaction level tracing[1]. 

SoCBase-VL is another extension of the SCV, which ad-

ditionally provides a layered architecture for easier test-

bench description, seamless testbench migration, and an 

automatic verification of bus interfaces. It also provides the 

Coverage Monitor Modeling Library (CML) for functional 

coverage monitoring.  

In this paper, we explain our layered testbench architec-

ture in Section 2 and the CML in Section 3. In Section 4, 

we briefly introduce how to use our framework through a 

practical example. The summary and future works are 

given in Section 5. 

2 C/C++-based Layered Testbench 

A H/W component (or a system) can have several ab-

straction level models: transaction level model, RT-level 

model, FPGA prototype and Silicon. We propose a layered 

testbench architecture, depicted in Fig. 1, by which a single 

testbench description can be used for verification of all 

models without manual modification.  

Fig 1. Layered testbench architecture

A verification task (v-task) is a software program that 

generates stimuli to a design and validates its responses. It 

is a C/C++ program described in Verification Task Pro-

gramming Interface (VTPI), which is a set of functions and 
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macros for v-task description. A v-task is a software pro-

gram and some execution methods are needed to execute it. 

There are two kinds of execution methods: the processor 

model and the transactor. The conceptual roles of both 

methods are identical, but their implementations are differ-

ent. To abstract out details of the execution methods, we 

developed a verification-purpose light OS kernel (VPOS) 

and its transaction level version, tVPOS. The VPOS pro-

vides just the basic OS functions such as multi-tasking, 

memory management and interrupt handling. A v-task can 

be run on a processor model with the help of the VPOS or 

on the transactors with the help of the tVPOS, as shown in 

Fig 1(a).  

A transactor is an abstraction adapter that translates a 

transaction function call into the bus signal activities, and 

vice versa. In our framework, we added into the transactor 

an important feature for the automation of the bus-level 

verification. The augmented transactor has two internal 

layers: a protocol layer and a signal layer, as shown in Fig. 

2.

Fig 2. Internal layers of the augmented transactor 

In the protocol layer, read (or write) function calls are 

translated into a sequence of transfers. Although a v-task 

can explicitly select the transfer type of each transfer, it 

also allows the transactor to select each transfer types ran-

domly. In contrast, for the processor-driven testbench, bus-

related parameters are ignored. Therefore, the v-task, which 

invokes the transactor, can control and accelerate the veri-

fication of the bus interface. This layer also checks protocol 

rules and provides the bus protocol coverage information. 

Because the protocol layer of the augmented transactor 

abstracts out the bus-level details, the v-task can be easily 

described without any bus-level details. Moreover, v-tasks 

of a component can be reused for verifying the same com-

ponent with a different bus protocol. 

The signal layer of the transactor translates each transfer 

to the bus signal activities and converts an abstract data 

types to a signal-level data type. For example, the integer 

type is converted into the std_logic_vector type in this layer. 

In the augmented transactor depicted in Fig. 2, the I/O sig-

nals in the RT-level design can be relayed to and from the 

v-task only though the signal layer. This feature enables the 

v-task to validate I/O signals which are not bus related.  

Because a v-task can control the random behavior of its 

transactors, the verification engineer can set them to gener-

ate only simple transfers at the early verification stage, and 

then, change it to generate more complex transfers on later 

stages. Through this approach, we can easily localize the 

bugs related to the bus interface.  

3 Coverage Monitor Modeling Library 

We developed the Coverage monitor Modeling Library 

(CML), which is a C/C++ class library for functional cov-

erage monitor description. Fig. 3 is a part of an AHB slave 

coverage monitor described using the CML. 

cov_value NONSEQ, SEQ,IDLE, BUSY; 

cov_value BYTE, HALF, WORD; 

cov_literal HTRANS = IDLE|BUSY|NONSEQ|SEQ; 

cov_literal HSIZE = BYTE | HALF | WORD; 

cov_expr expr1 = (HSEL[0] == TRUE) & (HTRANS == NONSEQ) 

           & (HREADY[0]==TRUE) & (HWRITE[0] == HWRITE.all()) &

          (HRESP[1] == HRESP_OKAY); 

cov_expr expr2 = HTRANS[0] == (NONSEQ | SEQ) 

cov_expr expr3 = HTRANS[0] == (NONSEQ + SEQ) 

cov_sampler NOWAIT; 

if(HREADY == TRUE) { NOWAIT = HTRANS; … } 

expr4 <<= NOWAIT; 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10)

(11)

Fig 3. CML-based Coverage Monitor 

In CML, five object types are defined: the coverage 

value, the coverage literal, the coverage expression, the 

sampler, and the coverage monitor. A coverage value repre-

sents a value of a state in the design and a coverage literal 

represents a state in the design. A set of coverage values 

must be assigned to a coverage literal. As in the expression 

(3), HTRANS can have any value among IDLE, BUSY, 

NONSEQ and SEQ. A coverage expression is a formal 

representation that defines multiple functional covers with 

coverage literals, coverage values and coverage operators 

which are listed in Table 1.  

Table 1. Coverage operator 

Left Op. Right Meaning 

VA | VB VA or VB

VA + VB VA or VB, respectably 

L[k] == VA If the value of L[k] is VA then hit 

L[k] != VA If the value of L[k] isn’t VA then hit 

L[k] >,<

>=,<=

VA If the value of L[k] is {greater, smaller, equal

or greater, equal or smaller } than VA then

coverage hit 

EA &= EB If the EA and EB is true then hit 

EA += EB Merge the EB into EA

VA : Value A    L[k] : Literal[k]     EA : Expression A 

The notation of literal[k] represents the value at time k.

For example, the expression (6) reports a coverage hit 

when the current value of HREADY is ‘FALSE’ and the 

next-time value is ‘TRUE’. Note that the function of   ‘+’ 

operator is somewhat special in defining the functional 

for(...) {

    // processing 1

    ahb->write(addr, size, data);

    // processing 2

    io->read(value);

    if(result is invalid){

         //report error

    }

 }
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covers. Expression (7) defines one functional cover which 

reports a hit when the value of HTRANS is NONSEQ or 

SEQ. Meanwhile, expression (8) defines two functional 

covers: one for a hit when the value of HTRANS is 

NONSEQ and the other for a hit when the value of 

HTRANS is SEQ.  

To analyze each coverage expression, a set of history of 

the literals needs to be stored. A sampler is an object that 

stores the literal values cycle by cycle. Expression (9-10) 

defines a sampler that stores the literal values only when 

the current value of HREADY is TRUE. A coverage ex-

pressions must be linked to a sampler with an operator 

‘<<=’ as shown in (11). A coverage monitor is a collection 

of these objects that provides several common methods for 

user interface.  

4 TFT LCD Controller Verification 

In this section, we present a TFT LCD Controller verifi-

cation example to show the effectiveness of our framework.  

The basic operation flow of the TFT LCD Controller is 

as follows: 1) The AHB slave interface receives mode set-

up commands and configures the operation mode. 2) The 

AHB master interface reads in image data and stores those 

into FIFO. 3) The timing controller retrieves pixel data 

from FIFO and drives TFT LCD controller outputs. The 

TFT LCD controller has six parameters such as color for-

mat selections, bit inversion mode, and endianness. There-

fore, it has a total of 64 operation modes to be verified.  

The testbench architecture for the TFT LCD controller 

verification is illustrated in Fig. 4. The AHB slave interface 

of the TFT LCD Controller is connected to the v-task with 

a AHB slave transactor. And the AHB master interface is 

connected to the verification memory with a AHB master 

transactor. The TFT LCD controller output is connected to 

a SystemC panel model that receives the output stream of 

the TFT LCD controller and stores it to the verification 

memory. The v-task contains a C behavior model of the 

TFT LCD controller, and its six parameters are randomly 

selected and configured. The v-task compares the output of 

the RT-level model stored in the verification memory with 

the results of behavior model to validate the behavior.   

From this test environment, we could verify the RT-level 

model of the TFT LCD controller thoroughly. Especially, 

the bus interfaces are verified without any manual descrip-

tion. The verification quality was reported with the AHB 

coverage monitors described in the CML. These monitors 

are reusable for other verification works.  The v-task can be 

compiled with the compiler for the embedded processors 

such as ARM processors, and it can be run on those proces-

sor models with the VPOS.  

With this feature, we could verify the TFT-LCD control-

ler integrated in a FPGA prototype that includes an embed-

ded processor by adding a hardware circuit that stores the 

output of the TFT-LCD controller into the memory.  

Fig 4. TFT-LCD Controller Testbench 

5 Summary and Future Works 

In this paper, we proposed an integrated framework with a 

layered architecture of the testbenches, which provides 

seamless testbench migration with a verification purpose 

operating system, the capability of precise and concise 

functional coverage monitor description, bus-level verifica-

tion automation, and high-level testbench description 

power. Although each technique in the proposed frame-

work is widely used, it provides a unified C/C++ and Sys-

temC based framework. Our work on the verification 

framework is not finished yet and still on-going. Although 

the current version of the framework does not support 

software verification issues, we have a plan to enhance the 

VPOS for HdS verification. We also need to support the 

transactor-driven testbench in the emulation level by devel-

oping a more flexible emulation system in the future..  
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