
A C/C++-based Functional Verification Framework

using the SystemC Verification Library

 Sanggyu Park and Soo-Ik Chae

Center for SoC Design Technology,

School of Electrical Engineering and Computer Science

Seoul National University, SEOUL, KOREA

{sanggyu, chae}@sdgroup.snu.ac.kr

Abstract

This paper describes SoCBase-VL, which is a C/C++

based integrated framework for SoC functional verification.

It has a layered architecture which provides easier test-

bench description, automatic verification of bus interfaces

and seamless testbench migration. This framework does not

require verification engineers to learn other verification

languages as long as they have sufficient knowledge on

both C/C++ and SystemC. We have confirmed its useful-

ness by applying it to a TFT-LCD Controller verification.

1 Introduction

In the dynamic verification, a set of stimuli is applied to

a design and then, its responses are compared to the corre-

sponding correct outputs to check its equivalence or cor-

rectness. This verification approach requires a testbench

that generates stimuli and checks correct outputs. Thus, the

quality of verification depends on the quality of the test-

bench. As the designs are getting more complex, however,

the difficulty of authoring the testbenches is continuously

growing even more rapidly.

The difficulties related to the testbench design can be

summarized as follows:

As the number of the state in a component increases

linearly, the number of test cases increases exponen-

tially. Therefore, manual enumeration of each test

case is not feasible.

Several models for a component may be required at

different abstraction levels. A testbench for each

model should be re-designed to verify the model.

Describing a testbench often requires a deep and thor-

ough understanding on domain-specific knowledge.

e.g. Bus Specification.

A quantitative measure of the quality of verification is

needed. Otherwise, the quality of verification tends to

depend on that of verification engineers.

To alleviate those problems, many researchers and EDA

vendors offer tools for testbench authoring [1-5]. The Sys-

temC Verification Library (SCV) is an extension of Sys-

temC for easier testbench authoring which provides con-

strained randomization and transaction level tracing[1].

SoCBase-VL is another extension of the SCV, which ad-

ditionally provides a layered architecture for easier test-

bench description, seamless testbench migration, and an

automatic verification of bus interfaces. It also provides the

Coverage Monitor Modeling Library (CML) for functional

coverage monitoring.

In this paper, we explain our layered testbench architec-

ture in Section 2 and the CML in Section 3. In Section 4,

we briefly introduce how to use our framework through a

practical example. The summary and future works are

given in Section 5.

2 C/C++-based Layered Testbench

A H/W component (or a system) can have several ab-

straction level models: transaction level model, RT-level

model, FPGA prototype and Silicon. We propose a layered

testbench architecture, depicted in Fig. 1, by which a single

testbench description can be used for verification of all

models without manual modification.

Fig 1. Layered testbench architecture

A verification task (v-task) is a software program that

generates stimuli to a design and validates its responses. It

is a C/C++ program described in Verification Task Pro-

gramming Interface (VTPI), which is a set of functions and

Design

(TLM)

Transactor

Design

(RTL)
Design

(RTL)

ISS

VPOS

Design

(FPGA/Silicon)

FPGA/

Silicon

VPOS
tVPOS SystemC/SCV

tVPOS
SystemC

SystemC

HDL Simulator

PCBHDL Simulator

(b) TLM verification (c) Transactor driven

RTL verification
(d) Processor driven

RTL verification
(e) Emulation/

Prototype verification

Verification Task

VTPI

tVPOS

Transactor

SystemC/

SCV

Design

VPOS

Processor

Model

(a) Layered Testbench

Architecture

Authorized licensed use limited to: Seoul National University. Downloaded on November 11, 2009 at 00:22 from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SNU Open Repository and Archive

https://core.ac.uk/display/300077004?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

macros for v-task description. A v-task is a software pro-

gram and some execution methods are needed to execute it.

There are two kinds of execution methods: the processor

model and the transactor. The conceptual roles of both

methods are identical, but their implementations are differ-

ent. To abstract out details of the execution methods, we

developed a verification-purpose light OS kernel (VPOS)

and its transaction level version, tVPOS. The VPOS pro-

vides just the basic OS functions such as multi-tasking,

memory management and interrupt handling. A v-task can

be run on a processor model with the help of the VPOS or

on the transactors with the help of the tVPOS, as shown in

Fig 1(a).

A transactor is an abstraction adapter that translates a

transaction function call into the bus signal activities, and

vice versa. In our framework, we added into the transactor

an important feature for the automation of the bus-level

verification. The augmented transactor has two internal

layers: a protocol layer and a signal layer, as shown in Fig.

2.

Fig 2. Internal layers of the augmented transactor

In the protocol layer, read (or write) function calls are

translated into a sequence of transfers. Although a v-task

can explicitly select the transfer type of each transfer, it

also allows the transactor to select each transfer types ran-

domly. In contrast, for the processor-driven testbench, bus-

related parameters are ignored. Therefore, the v-task, which

invokes the transactor, can control and accelerate the veri-

fication of the bus interface. This layer also checks protocol

rules and provides the bus protocol coverage information.

Because the protocol layer of the augmented transactor

abstracts out the bus-level details, the v-task can be easily

described without any bus-level details. Moreover, v-tasks

of a component can be reused for verifying the same com-

ponent with a different bus protocol.

The signal layer of the transactor translates each transfer

to the bus signal activities and converts an abstract data

types to a signal-level data type. For example, the integer

type is converted into the std_logic_vector type in this layer.

In the augmented transactor depicted in Fig. 2, the I/O sig-

nals in the RT-level design can be relayed to and from the

v-task only though the signal layer. This feature enables the

v-task to validate I/O signals which are not bus related.

Because a v-task can control the random behavior of its

transactors, the verification engineer can set them to gener-

ate only simple transfers at the early verification stage, and

then, change it to generate more complex transfers on later

stages. Through this approach, we can easily localize the

bugs related to the bus interface.

3 Coverage Monitor Modeling Library

We developed the Coverage monitor Modeling Library

(CML), which is a C/C++ class library for functional cov-

erage monitor description. Fig. 3 is a part of an AHB slave

coverage monitor described using the CML.

cov_value NONSEQ, SEQ,IDLE, BUSY;

cov_value BYTE, HALF, WORD;

cov_literal HTRANS = IDLE|BUSY|NONSEQ|SEQ;

cov_literal HSIZE = BYTE | HALF | WORD;

cov_expr expr1 = (HSEL[0] == TRUE) & (HTRANS == NONSEQ)

 & (HREADY[0]==TRUE) & (HWRITE[0] == HWRITE.all()) &

 (HRESP[1] == HRESP_OKAY);

cov_expr expr2 = HTRANS[0] == (NONSEQ | SEQ)

cov_expr expr3 = HTRANS[0] == (NONSEQ + SEQ)

cov_sampler NOWAIT;

if(HREADY == TRUE) { NOWAIT = HTRANS; … }

expr4 <<= NOWAIT;

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

Fig 3. CML-based Coverage Monitor

In CML, five object types are defined: the coverage

value, the coverage literal, the coverage expression, the

sampler, and the coverage monitor. A coverage value repre-

sents a value of a state in the design and a coverage literal

represents a state in the design. A set of coverage values

must be assigned to a coverage literal. As in the expression

(3), HTRANS can have any value among IDLE, BUSY,

NONSEQ and SEQ. A coverage expression is a formal

representation that defines multiple functional covers with

coverage literals, coverage values and coverage operators

which are listed in Table 1.

Table 1. Coverage operator

Left Op. Right Meaning

VA | VB VA or VB

VA + VB VA or VB, respectably

L[k] == VA If the value of L[k] is VA then hit

L[k] != VA If the value of L[k] isn’t VA then hit

L[k] >,<

>=,<=

VA If the value of L[k] is {greater, smaller, equal

or greater, equal or smaller } than VA then

coverage hit

EA &= EB If the EA and EB is true then hit

EA += EB Merge the EB into EA

VA : Value A L[k] : Literal[k] EA : Expression A

The notation of literal[k] represents the value at time k.

For example, the expression (6) reports a coverage hit

when the current value of HREADY is ‘FALSE’ and the

next-time value is ‘TRUE’. Note that the function of ‘+’

operator is somewhat special in defining the functional

for(...) {

 // processing 1

 ahb->write(addr, size, data);

 // processing 2

 io->read(value);

 if(result is invalid){

 //report error

 }

 }

Signal Layer

Protocol Layer

Function Call

Function Call

Bus Signal

Bus Interface

Design

Data Type

Conversion

Transaction Randomization

Protocol Rule Checking

Protocol Coverage Monitoring

Verification Task 1

I/O Signal

Transactor

Authorized licensed use limited to: Seoul National University. Downloaded on November 11, 2009 at 00:22 from IEEE Xplore. Restrictions apply.

covers. Expression (7) defines one functional cover which

reports a hit when the value of HTRANS is NONSEQ or

SEQ. Meanwhile, expression (8) defines two functional

covers: one for a hit when the value of HTRANS is

NONSEQ and the other for a hit when the value of

HTRANS is SEQ.

To analyze each coverage expression, a set of history of

the literals needs to be stored. A sampler is an object that

stores the literal values cycle by cycle. Expression (9-10)

defines a sampler that stores the literal values only when

the current value of HREADY is TRUE. A coverage ex-

pressions must be linked to a sampler with an operator

‘<<=’ as shown in (11). A coverage monitor is a collection

of these objects that provides several common methods for

user interface.

4 TFT LCD Controller Verification

In this section, we present a TFT LCD Controller verifi-

cation example to show the effectiveness of our framework.

The basic operation flow of the TFT LCD Controller is

as follows: 1) The AHB slave interface receives mode set-

up commands and configures the operation mode. 2) The

AHB master interface reads in image data and stores those

into FIFO. 3) The timing controller retrieves pixel data

from FIFO and drives TFT LCD controller outputs. The

TFT LCD controller has six parameters such as color for-

mat selections, bit inversion mode, and endianness. There-

fore, it has a total of 64 operation modes to be verified.

The testbench architecture for the TFT LCD controller

verification is illustrated in Fig. 4. The AHB slave interface

of the TFT LCD Controller is connected to the v-task with

a AHB slave transactor. And the AHB master interface is

connected to the verification memory with a AHB master

transactor. The TFT LCD controller output is connected to

a SystemC panel model that receives the output stream of

the TFT LCD controller and stores it to the verification

memory. The v-task contains a C behavior model of the

TFT LCD controller, and its six parameters are randomly

selected and configured. The v-task compares the output of

the RT-level model stored in the verification memory with

the results of behavior model to validate the behavior.

From this test environment, we could verify the RT-level

model of the TFT LCD controller thoroughly. Especially,

the bus interfaces are verified without any manual descrip-

tion. The verification quality was reported with the AHB

coverage monitors described in the CML. These monitors

are reusable for other verification works. The v-task can be

compiled with the compiler for the embedded processors

such as ARM processors, and it can be run on those proces-

sor models with the VPOS.

With this feature, we could verify the TFT-LCD control-

ler integrated in a FPGA prototype that includes an embed-

ded processor by adding a hardware circuit that stores the

output of the TFT-LCD controller into the memory.

Fig 4. TFT-LCD Controller Testbench

5 Summary and Future Works

In this paper, we proposed an integrated framework with a

layered architecture of the testbenches, which provides

seamless testbench migration with a verification purpose

operating system, the capability of precise and concise

functional coverage monitor description, bus-level verifica-

tion automation, and high-level testbench description

power. Although each technique in the proposed frame-

work is widely used, it provides a unified C/C++ and Sys-

temC based framework. Our work on the verification

framework is not finished yet and still on-going. Although

the current version of the framework does not support

software verification issues, we have a plan to enhance the

VPOS for HdS verification. We also need to support the

transactor-driven testbench in the emulation level by devel-

oping a more flexible emulation system in the future..

References

[1] Verisity, Inc. “Invisible Specman Developer’s Guide

Version 4.0.5”, http://www.verisity.com

[2] Synopsys, Inc. “OpenVera Language Reference Man-

ual”, http://www.open-vera.com, Apr, 2003.

[3] OSCI, “SystemC Verification Standard Specification

Version 1.0e”, http://www.systemc.org, May, 2003.

[4] Cadence. “TestBuilder User Guide”, Aug, 2003.

[5] ARM LTD, “AMBA Compliance Testbench User

Guides”, http://www.arm.com, Feb, 2003.

AHB Master Interface

AHB Slave Interface

TFT-LCD

Controller

Timing

Controller

TFT-LCD Panel I/OFIFO

Control Bus

Data Bus

AHB Master

Transactor

AHB Slave

Transactor Verification Memory

Verification

Task

Transaction Level TestbenchRT Level Testbench

TFT-LCD

Panel Model

RTG RTS

RTG RTS

Authorized licensed use limited to: Seoul National University. Downloaded on November 11, 2009 at 00:22 from IEEE Xplore. Restrictions apply.

