

A Fast VLSI Architecture for Full-Search Variable Block Size

Motion Estimation in MPEG-4 AVC/H.264

Abstract－ We describe a fast VLSI architecture for full-search
motion estimation for the blocks with 7 different sizes in
MPEG-4 AVC/H.264. The proposed variable block size motion
estimation (VBSME) architecture consists of a 16x16 PE array,
an adder tree and comparators to find all 41 motion vectors and
their minimum SADs for the blocks of 16x16, 16x8, 8x16, 8x8,
8x4, 4x8 and 4x4. It employs a 2-D datapath and its control of
the search area data is simple and regular. The proposed
VBSME can achieve 100% PE utilization by employing a
preload register and a search data buffer inside each PE and
allow real-time processing of 4CIF(704x576) video with 15 fps at
100 Mhz for a search range of [-32~+31].

I. INTRODUCTION

Nowadays, many international video compression
standards such as ITU-T H.261, H.263, MPEG-1, -2, and -4
adopts motions estimation technique to reduce temporal
redundancy between a current frame and its reference frames.
The emerging MPEG-4 AVC/ITU-T H.264 standard supports
motion estimation for the block of 7 different sizes: 16x16,
16x8, 8x16, 8x8, 8x4, 4x8, and 4x4 to improve coding
performance, but its computational complexity becomes
substantially higher. Thus, a fast architecture that can support
motion estimation for all the 7 block sizes is essential for
high-end real-time applications.

Many full-search motion estimation architectures were
proposed so far, but there were only a few architectures that
support motion estimation for variable block size [1-4].
Algorithms in [1] and [2] described 1-D array architectures,
and that in [3] is about a 16x16 PE array for the MPEG-4
standard which supports ME only for the blocks of 16x16,
8x8 and 4x4. The algorithm in [4] described a 2-D array
architecture with 1-D partial data reuse and 1-D data
broadcasting. Note that we limit our discussion only for the
full-search ME algorithm in this paper.

An 1-D array architecture is simple, easy to control, and
occupy smaller area than a 2-D array architecture but
searches only one row or column of the block at a time, so it
is slower than a 2-D array architecture which computes the
sum of absolute differences (SAD) of a search point at every
cycle. Therefore, a 2-D array architecture is more suitable for
high-end real-time video processing.

In the full-search 2-D array architecture, a processing
element (PE) array computes the SADs between a pixel of

the current frame and a pixel of one of its reference at every
cycle, so the pixel data should be changed every cycle.
According to the data flows, the 2-D array architectures can
be divided into 3 classes: (1) The current frame pixel data are
moving while the reference frame pixel data are fixed, (2)
While the current frame pixel data are fixed, the reference
frame pixel data are changed, (3) Both current and reference
frame pixel data are changed.

In the VBSME architectures, the SADs of 4x4 blocks are
first computed on a 16x16 macroblock, and the SADs with
blocks of larger size are calculated by summing up the SADs
of 4x4 blocks. For a 2-D array VBSME architecture,
therefore, the class (1) is not suitable because the positions of
the partition are changed if the current frame pixel data
moves every cycle, which makes it difficult to sum up the
SADs of the block of smaller size for those of larger size. The
class (2) is also not suitable because it is hard to satisfy both
high PE utilization and simple datapath requirements at the
same time when the search area data moves both horizontally
and vertically. In this paper we propose a fast architecture of
the class (3) because it can achieve both high PE utilization
and simple datapath.

II. PROPOSED ARCHITECTURE

Fig. 1 shows the block diagram of the proposed
architecture, which consists of 4 basic blocks. The processing
element array computes sixteen 4x4 SADs of a 16x16
macroblock. The adder & comparator block sums up the 4x4
SADs to form the SADs for 7 different block sizes and finds
the minimum distortions and corresponding motion vectors.
The search area SRAM contains the reference frame pixel
data within a given search range to reduce I/O memory

Search Area
SRAM 16X16

PE Array
Adder &

Comparator

ME Control

16
4X4 SADs

41 MVs

41 min.SADs

4X8 bit Current Block Data

4X8 bit
Search Area Data

16
SA Data

Address

Control

Fig. 1. Block diagram of the VBSME architecture

Minho Kim Ingu Hwang Soo-Ik Chae

School of Electrical Engineering
Seoul National University

Seoul 151-742, Korea
Tel : +82-2-880-5457
Fax : +82-2-888-1691

E-mail : {mhkim,ingu,chae}@sdgroup.snu.ac.kr

 631

7B-5s

0-7803-8736-8/05/$20.00 ©2005 IEEE. ASP-DAC 2005

bandwidth. The ME control block generates the addresses of
the search area SRAMs and the control signals to other
blocks.

The dataflows of the search area data and the current block
data are shown in Fig. 2(a) and 2(b) respectively. In order to
operate all the 16x16 PEs every cycle, 16 pixel data from the
search area must be supplied to the PEs at every cycle. We
decided to shift the search area data only in the horizontal
direction (right to left) and to supply the 16 search area data
to the rightmost column of the 16x16 PEs from the search
area SRAM. In the vertical direction, the current block data
move down and wrap around.

For a search range of [-16~+15], the data sequence in the
PE array is presented in TABLE I where C(x, y) is the pixel
data in the current block and R(x, y) is the pixel data in the
search area. During the clocks from 0 to 31, y coordinates of
the search area pixels are fixed and only x coordinates are
changed. When computations for one row are finished, the
current block data shift down and wrap around by one row
position and the initial search area data is loaded from the
search data buffer (SDB) to the reference block register
(RBR). Then the PE array starts to find the second row in the
search area from the clock 32 without stall.

A PE consists of a absolute difference computing unit, a
current block register (CBR), a RBR, a preload register (PR),
a SDB and two multiplexers as shown in Fig. 3(a). At every
clock, the absolute difference between the CBR and the RBR
is computed. The SDB stores data in the initial search area
data. If the current macroblock is the region 4 in Fig. 3(b), the
shaded macroblocks 0, 3 and 6 will be the initial search area.
Each SDB stores one pixel from each shaded macroblock.

PE
0

PE
16

PE
224

PE
240

...

PE
1

PE
17

PE
225

PE
241

...

PE
15

PE
31

PE
239

PE
255

...

…

SA SRAM 0PE
14

PE
15

PE
0

PE
1 ...

SA SRAM 1PE
30

PE
31

PE
16

PE
17 ...

SA SRAM 15PE
254

PE
255

PE
240

PE
241 ...

…RBoutRBin

at every cycle
(at every change of
horizontal search position)

at every change of
vertical search position

CBout

CBin

 (a) (b)

Fig. 2. (a) Dataflow of the search area data (b) Dataflow of the
current block data

The search area SRAM stores the data in the remaining
regions 1, 2, 4, 5, 7 and 8. When starting the computation for
a new row, the multiplexer in the PE selects the initial data
from the SDB so that we can compute the SADs without stall.
Otherwise, the data from RBin are selected. The regions 1, 4
and 7, which will be the initial search area in the next
macroblock, are stored in the SDB as soon as the
computation for the regions 0, 3, and 6 is finished.

In addition, a preload register is put inside a PE to achieve
macroblock pipelining [5]. When the current block is the
region 4, the data of the next current block, which is the
region 5, are transferred to the preload register in each PE.
They are loaded to the CBR in all PEs immediately before
starting computation for the next macroblock.

As the current block data move down in the PE array, the
position of 4x4 sub-blocks also moves in the proposed
architecture. To compute the 4x4 SADs correctly, we add a
selector inside each 4x16 PE array to match results of 4x1
SADs with adder inputs. Four 4x16 PEs are connected to
arrange the 16x16 PE array.

While computing for the second row of the search range,
all the rows except the first row in the PE array are provided
with the same search area data just like when the first row of
the search range is computed. The search area data of the first
row is supplied with the new data separated by 16 rows from
the one previously supplied. Likewise, when changing the
row position in a search area, we just change one address
among 16 on-chip SRAM addresses, where the new address
is pointing the row below by 16 rows. Therefore, each
on-chip SRAM has only to store every 16th row of the search
area data. That is, k-th (k=0,1,2,…,15) SRAM contains

PR

MUX

CBR

Search
Data
Buffer

| a - b |

RBR

MUX

CBin

RBin
Pin

RBout
Pout

CBout SAD

The region which Search area data
are stored in SA buffer inside PE

The region which Search area data
are stored in SA SRAM outside PE

0 1 2

3 5

6 7 8

4

(a) (b)

Fig. 3. (a) The PE structure (b) The region which the search area
data are stored (when search range is [-16~+15])

TABLE I

DATA SEQUENCE OF THE CURRENT BLOCK DATA AND SEARCH AREA DATA (WHEN SEARCH RANGE IS [-16~+15])

1st row
PE0

C(0,0)-R(-16,-16)

PE1

C(1,0)-R(-15,-16)

PE15

C(15,0)-R(-1,-16)

…

…

2nd row
PE16

C(0,1)-R(-16,-15)

PE17

C(1,1)-R(-15,-15)

PE31

C(15,1)-R(-1,-15)

…

…

…

16th row
PE240

C(0,15)-R(-16,-1)

PE241

C(1,15)-R(-15,-1)

PE255

C(15,15)-R(-1,-1)

…
Clock

0

C(0,0)-R(-15,-16) C(1,0)-R(-14,-16) C(15,0)-R(0,-16) C(0,1)-R(-15,-15) C(1,1)-R(-14,-15) C(15,1)-R(0,-15) C(0,15)-R(-15,-1) C(1,15)-R(-14,-1) C(15,15)-R(0,-1)1

… … … … … … … … ……

C(0,0)-R(15,-16) C(1,0)-R(16,-16) C(15,0)-R(30,-16) C(0,1)-R(15,-15) C(1,1)-R(16,-15) C(15,1)-R(30,-15)

…

C(0,15)-R(15,-1) C(1,15)-R(16,-1) C(15,15)-R(30,-1)

…

31

C(0,15)-R(-16,0) C(1,15)-R(-15,0) C(15,15)-R(-1,0) C(0,0)-R(-16,-15) C(1,0)-R(-15,-15) C(15,0)-R(-1,-15) C(0,14)-R(-16,-1) C(1,14)-R(-15,-1) C(15,15)-R(-1,-1)

…

32

C(0,15)-R(-15,0) C(1,15)-R(-14,0) C(15,15)-R(0,0) C(0,0)-R(-15,-15) C(1,0)-R(-14,-15) C(15,0)-R(0,-15) C(0,14)-R(-15,-1) C(1,14)-R(-14,-1) C(15,15)-R(0,-1)33

… … … … … … … … ……

C(0,15)-R(15,0) C(1,15)-R(16,0) C(15,15)-R(30,0)

…

C(0,0)-R(15,-15) C(1,0)-R(16,-15) C(15,0)-R(30,-15)

…

…

C(0,14)-R(15,-1) C(1,14)-R(16,-1) C(15,15)-R(30,-1)63

… … …
C(0,1)-R(-16,16) C(1,1)-R(-15,16) C(15,1)-R(-1,16) C(0,2)-R(-16,17) C(1,2)-R(-15,17) C(15,2)-R(-1,17) C(0,0)-R(-16,15) C(1,0)-R(-15,15) C(15,0)-R(-1,15)992

C(0,1)-R(-15,16) C(1,1)-R(-14,16) C(15,1)-R(0,16) C(0,2)-R(-15,17) C(1,2)-R(-14,17) C(15,2)-R(0,17) C(0,0)-R(-15,15) C(1,0)-R(-14,15) C(15,0)-R(0,15)993

… … … … … … … … ……

C(0,1)-R(15,16) C(1,1)-R(16,16) C(15,1)-R(30,16)

…

C(0,2)-R(15,17) C(1,2)-R(16,17) C(15,2)-R(30,17)

… …

C(0,0)-R(15,15) C(1,0)-R(16,15) C(15,0)-R(30,15)

…

1023

 632

PE 4x1

PE 4x1

PE 4x1

A
dd

er
Ad

de
r

Ad
de

r

Se
le

ct
or

Ad
de

r

4x4 SAD0

4x4 SAD1

4x4 SAD2

4x4 SAD3

CB Data

SA Data0
4x1 SAD 0

4x1 SAD 1

4x1 SAD 15

PE 4x1
4x1 SAD 2

PE 4x1
4x1 SAD 14

PE 4x1
4x1 SAD 13

SA Data1

SA Data2

SA Data13

SA Data14

SA Data15

…
…
…
…

…
…
…
…

Fig. 4. The architecture of the 4x16 PE array

 SA SRAM 0

SA SRAM 1

SA SRAM 15

Row 0
Row 1
Row 2

Row 15
Row 16
Row 17…

…

…
…

…
…

Fig. 5. Data transfer of reference frame data to search area SRAM

(16i+k)-th row data in the search area (i: nonnegative integer)
as shown in Fig. 5. It can be done easily by manipulating
address generation.

Sixteen 4x4 SADs, which are the outputs of a 16x16 PE
array, are inputted to an adder & comparator block. Before
adding them up, the 16 4x4 SADs are stored in the temporal
registers and an adder tree sums them up to produce 8x4, 4x8,
8x8, 16x8, 8x16 and 16x16 SADs. Comparators compare
total 41 SADs and save the 41 minimums with their
corresponding motion vectors. They can be used at the
rate-distortion optimization stage to find the best block mode.

It takes only one cycle to compute the absolute differences
for each search position so finding 4x4 SADs for the search
range of [-16~+15] can be performed in 1024 cycles as
shown in TABLE I. If we add one more cycle for the adder
tree delay to obtain the SADs of larger sizes, the total number
of cycles required to finish the computation becomes 1025
for one macroblock. Therefore, for the search range of
[-32~+31], the number of the clock cycles required is 64x64
+ 1 = 4097.

III. IMPLEMENTATION

The proposed architecture was implemented with a VHDL
description and synthesized by Synopsys Design Compiler

 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0a

1a

2a

3a

4a

5a

6a

7a

0b

1b

2b

3b

4b

5b

6b

7b

0c

1c

2c

3c

0d

1d

0e

1e

0f

4X48X4 4X8 8X8 16X8 8X16 16X16

Fig. 6. Block diagram of the adder tree

with TSMC 0.18um standard cell library. Our design has a
search range of [-32~+31], and it requires 10Kb on-chip
memory as the search data buffer inside a PE and 40Kb as the
search area SRAM and an additional 10 Kb as the search area
SRAM for the next search area so the total 60Kb on-chip
memory is required. If we search [-16~+15] range, only 24Kb
on-chip memory is required.

Our design contains total 154k gates. The gate counts of
the blocks are 113.4k for the PE array, 22.1k for the ME
control block, and 18.5k for the adder & comparator block.

The search range of our ME can be selected to be either
[-16~+15] or [-32~+31]. When the search range is [-16~+15],
it becomes 4 times faster than when the search range is
[-32~+31]. TABLE II illustrates the summary of our ME
design.

The comparison of our proposed architecture with other
full-search VBSME architectures is presented in TABLE III.
This table shows that our architecture is faster for the same
search range, requires less on-chip memory, and has more
flexible and wider search range.

TABLE II
DESIGN SPECIFICATION

of PE

Search Range

Block size

16X16 (2-D array)

32X32, 64X64 (flexible)

Max Freq.

4X4, 4X8, 8X4, 8X8,
8X16, 16X8, 16X16

Process TSMC 0.18um standard cell library

100Mhz

Throughput
(search range 64X64) 4CIF 15 fps

Gate Count 154k

On-chip memory 60 kbits

Algorithm Full Search

 633

TABLE III
COMPARISON OF VBSME ARCHITECTURES

of PE

Search Range

Block size

[3][1] [4] Ours

16X1616 16X1616X16

64X6432X32
16X16 48X32 64X64

32X32

16X16,
8X8,
4X4

Max Freq.

7 kinds of
block size

7 kinds of
block size

7 kinds of
block size

100Mhz

Process 0.5um0.13um 0.35um 0.18um

100Mhz 66.67 Mhz 100Mhz

Throughput(blocks/sec)
(search range 32X32) -5560 61218 97560

Throughput(blocks/sec)
(search range 64X64) 23668- - 24408

Gate Count -108k 106k 154k

On-chip memory 96k bits- 24k bits 60k bits

IV. CONCLUSION

This paper presents a new fast VLSI architecture for
VBSME in MPEG-4 AVC/H.264. It is based on 2-D array
architecture and computes the SADs for the blocks of all the
7 different sizes. The search area data moves only
horizontally, and the current block data moves only vertically
to simplify the dataflow. It achieves 100% PE utilization and
macroblock pipelining by employing 16 on-chip SRAMs and
search data buffers inside each PE. For the search range of
[-32~+31], our implementation allows variable block size
motion estimation of 4CIF (704x576) video with 15 fps at
100 Mhz.

REFERENCES

[1] Swee Yeow Yap, John V. McCanny, “A VLSI

architecture for advanced video coding motion
estimation,” Proc. IEEE International Conference on
Application-Specific Systems, Architectures, and
Processors (ASAP’03), June 24-26, 2003.

[2] Cao Wei, Mao Zhi Gang, “A novel SAD computing
hardware architecture for variable-size block motion
estimation and its implementation with FPGA,” Proc.
5th international conference on ASIC, Oct 21-24, 2003.

[3] P. M. Kuhn, A. Weisgerber, R. Poppenwimmer, and W.
Stechele, “A flexible VLSI architecture for variable
block size segment matching with luminance
correction,” IEEE International conference on
Application-specific Systems, Architectures, and
Processors (ASAP 97), Zurich, 1997.

[4] Yu-Wen Huang, Tu-Chih Wang, Bing-Yu Hsieh, and
Liang-Gee Chen, “Hardware architecture design for
variable block size motion estimation in MPEG-4
AVC/JVT/ITU-T H.264,” Proc. IEEE International
Symposium on Circuits and Systems(ISCAS 2003),
Bangkok, Thailand, May 2003.

[5] Jen-Chieh Tuan, Tian-Sheuan Chang, “On the data reuse
and memory bandwidth analysis for full-search
block-matching VLSI architecture,” IEEE Transactions
on circuits and systems for video technology, vol.12,
no.1, Jan. 2002.

 634

